Earth Tech AECOM 300 Broadacres Drive, Bloomfield, NJ 07003 T 973.338.6680 F 973.338.1052 www.earthtech.aecom.com

October 31, 2008

Brian Jankauskas New York State Department of Environmental Conservation Remedial Bureau A Division of Environmental Remediation, 11th Floor 625 Broadway, Albany, NY 12233-7015

Re: Anchor Lith Kem Ko Site Round One Groundwater Sampling

Dear Mr. Jankauskas:

Earth Tech Northeast has completed the Phase I investigations at the Anchor Lith Kem Ko Site in Hicksville, NY. A Site location map is presented in Figure 1. Seven Solinst continuous multi-channel tubing (CMT) wells were installed at the Site. The Draft September 26, 2008 Letter Report has been edited based on comments provided to Earth Tech dated October 7, 2008.

Monitoring Well Installation and Development

Seven Solinst CMT Multilevel Systems (PW01 to PW07) were installed by SGS Environmental Services, Inc. The locations of the CMTs are shown on Figure 2.

Drilling was accomplished using a CME-1050 drill rig. Each CMT boring was advanced using a combination of 6¹/₄-inch hollow stem augers (HSAs) and 4-inch spin casing. HSAs were advanced into the water table (approximately 65 feet below ground surface [ft bgs]) in order to seal off the unsaturated soils. The boring then continued to the targeted depth using water injected spin casing. Downhole geophysical logging was performed at PW05, PW06 and PW07 by Aqua Terra Geophysics inside the spin casing. Copies of the geophysical logs are included in Appendix A. Once the geophysical logging was completed, CMT installation continued. The CMT device was installed in the casing in accordance with the Solinst CMT Multilevel System Assemble Manual. Boring logs are included in Appendix B.

The well installation and development activities began on March 10, 2008 and were completed on June 13, 2008. Drilling and installation of PW03 was performed from March 4, 2008 to March 20, 2008, PW02 from March 31 to April 7, PW04 from April 8 to April 11, PW07 from April 14 to April 21, PW01 from April 22 to April 28, PW06 from May 19 to June 2, and PW05 from June 3 to June 13.

Wells PW03, PW02, PW04, PW07 and PW01 were developed within two weeks of installation. Development was completed between April 29 and May 7, 2008. PW05 and PW06 were developed between June 10 and June 13, 2008. Different lengths of Solinst Model 408M 3/8-inch diameter flexible micro double valve pumps constructed of stainless steel and LDPE were used to purge each channel. The goal of the development effort was to achieve a turbid free or low turbid flow of groundwater from the sampling port. Along with turbidity other parameters recorded were temperature, conductivity, dissolved oxygen (DO), pH, and oxidation-reduction potential (ORP). In cases where the field parameters did not

Mr. Brian Jankauskas Page 2 October 31, 2008

stabilize, development efforts were limited to 2.5 hours or three well casing volumes, whichever came first. Development logs are in Appendix C.

Groundwater Elevations

Groundwater level measurements were collected prior to development, at the start of the Phase I sampling and again on September 16, 2008. A summary of groundwater level measurements are shown in Table 1. Table 1 also lists the elevation (NAVD 88 [North American Vertical Datum, 1988]) of water table for each location and the elevation of the screened interval.

The general flow direction is to the south. The water table is very flat across the study area as shown on Figure 3. The groundwater flow direction is to the south which is consistent with previous investigations. The gradient at the Site is approximately 0.0047. The gradients are slightly higher on the former Anchor Lith Kem Ko Site (now the Cookie Factory) and are slightly lower south of West John Street (the locations of the CMTs).

On-site monitoring wells were screened at two depths: approximately 63 - 53 ft (NAVD 88), and 21 to 11 ft NAVD 88.

Each CMT has seven separate screened intervals which are listed on Table 1. The first 6 channels are each two feet in length. The lowest (7th or center) channel is 6-inches in length. The CMT screen depths vary between locations. At PW01, the screen intervals are approximately: 67 to 65 ft NAVD 88, 57 to 55 NAVD 88, 37 to 35 ft NAVD 88, 27 to 25 ft NAVD 88, 17 to 15 ft NAVD 88, 6.5 to 6 ft NAVD 88. For CMTs PW02, PW03 and PW04, the screened intervals are approximately 65 to 63 ft NAVD 88, 49 to 47 ft NAVD 88, 35 to 33 ft NAVD 88, 20 to 18 ft NAVD 88, 5 to 3 ft NAVD 88, and -26.5 to -27 ft NAVD 88. For CMTs PW05, PW06 and PW07 the screen intervals are approximately: 63 to 61 ft NAVD 88, 43 to 41 ft NAVD 88, 15 to 14 ft NAVD 88, -17 to -19 ft NAVD 88, -33 to -35 ft NAVD 88, -47 to -49 ft NAVD 88, and -87.5 to -80 ft NAVD 88.

Groundwater Sampling

An initial round of groundwater samples were collected from each of the seven channels of the seven CMT wells (PW01 to PW07). Seven additional monitoring wells (MW-4, MW-5S, MW-5D, MW-6S, MW-6D, MW-7S, and MW-7D) on the former Anchor Lith Kem Ko property (currently the Cookie Factory) were also sampled. The seven monitoring wells were sampled using low-flow techniques in accordance with the USEPA low-flow procedures outlined in the FAP. Four monitoring wells previously known to exist at the Site could not be located: MW-1S, MW-1D, MW-2 and MW-3. It appears that MW-2 and MW-3, located in front of the building along West John Street, were paved over. A well was located in the vicinity of well cluster MW-1; however, the casing was blocked a few feet below grade and the depth could not be measured. The paired well could not be located. Consequently, the well that was found could not be identified or sampled.

The groundwater sampling activities were performed from July 2, 2008 to July 18, 2008. CMT sampling was conducted using a modified version of the low-flow techniques. Individual CMT channels are too narrow for both a pump and a water level meter. Consequently, the water level could not be monitored during sampling to verify that drawdown during purging was less than 0.3 ft. The Solinst 408M is a gas driven pump. An Earth Tech representative monitored purge rates and adjusted the pump rates

Mr. Brian Jankauskas Page 3 October 31, 2008

accordingly to minimize any contact with the gas. The use of high purity nitrogen was a precautionary step to maintain the integrity of the samples. The maximum flow rate from a Solinst 408M pump is approximately 80 to 90 milliliters per minute (mL/min). Field parameters (turbidity, temperature, conductivity, DO, pH, and ORP) were measured during sampling. Samples were collected after the measurements had stabilized over three consecutive readings. In cases where the stabilization parameters were not met, purging efforts were limited to 1 hour. Different lengths of Model 408M 3/8-inch diameter flexible micro double valve pumps constructed of stainless steel and LDPE were used to collect samples from each channel. Pumps were decontaminated after each application using Alconox solution and water. Groundwater samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260 and TAL Metals by EPA method 6010/7141. Groundwater sampling forms are included in Appendix D.

Groundwater Analytical Results

Data validation was performed on all groundwater data by Analytical Assurance Associates. A Data Usability Summary Report (DUSR) was prepared and is included as Appendix E. Summary tables of the data are also included in Appendix E. As stated in the Work Assignment, contaminants of concern for the Site include 1,1,1-trichloroethane (1,1,1-TCA), methylene chloride, trichloroethene (TCE), tetrachloroethene (PCE), chromium and lead.

Monitoring Well Samples

A summary of detections found in the seven monitoring wells is shown on Table 2. VOCs were present in the sample from MW-7S. Acetone was detected at a concentration of 19 μ g/L. Chloroform was detected at a concentration of 2.8 μ g/L. Toluene was detected at a concentration of 8.1 μ g/L which exceeded the NYSDEC Class GA criterion of 5 μ g/L. VOCs were not detected in any other sample above the method detection limits.

Several metals were detected in monitoring wells samples. Aluminum, barium, calcium, cobalt, magnesium, manganese, nickel, potassium and zinc were detected in various wells at concentrations below their Class GA criterion and will not be discussed further. Iron and sodium were also detected in several monitoring wells at concentrations that occasionally exceeded the Class GA criteria; however, these are naturally occurring metals and will not be discussed further.

Cadmium was detected in two wells, MW-5D and MW-6D at concentrations of 6.2 μ g/L and 17 μ g/L, respectively, that exceeded the Class GA criterion of 5 μ g/L. Chromium was detected in four of seven monitoring well samples. Chromium concentrations exceeded the Class GA criterion of 50 μ g/L in these four samples with concentrations ranging from 91 μ g/L to 220 μ g/L.

CMT Samples

A summary of compounds that exceeded their Class GA criterion in CMT points is shown on Table 3. Concentrations of 2-butanone, 2-hexanone, chloroform, methylene chloride, methyl-tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) were detected in a few samples at concentrations below their respective Class GA criterion and will not be discussed further (these compounds are not included in Table 3 but are shown on Appendix Table E-1). Several chlorinated VOCs were detected including 1,1,1-TCA, 1,1-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, PCE and TCE. A summary of total chlorinated VOCs is shown on Figure 4.

1,1,1-Trichloroethane was detected in nine of 49 CMT samples. Two of these samples exceeded the Class GA criterion of $5 \mu g/L$. The highest concentration noted was $13 \mu g/L$.

1,1-Dichloroethane was detected in nine of 49 CMT samples. Two of these samples exceeded the Class GA criterion of $5 \mu g/L$. The highest concentration noted was 9.5 $\mu g/L$.

1,1-Dichloroethene was detected in five of 49 CMT samples. All five detections were at concentrations below the Class GA criterion of $5 \mu g/L$.

Cis-1,2-dichloroethene was detected in on CMT sample at a concentration of 1.3 μ g/L which is below the Class GA criterion of 5 μ g/L.

PCE was detected in nine of 49 CMT samples. Three samples exceeded the 5 μ g/L Class GA criterion: PW02-07 at 82 μ g/L, 7.8 μ g/L at PW03-07, and 130 μ g/L at PW06-07.

TCE was detected in five of 49 CMT samples. Of these five samples only one, PW07-05 at 11 μ g/L, exceeded the Class GA criterion of 5 μ g/L.

Acetone was detected in 26 of 49 CMT samples. Of these 25 detections, 16 exceeded the Class GA criterion of 50 μ g/L. Concentrations ranged from 17 μ g/L at PW04-06 to 720 μ g/L at PW02-06 with 10 samples at concentrations greater than 100 μ g/L. Although acetone is a common laboratory/sampling artifact, the acetone detections found during this investigation appear to represent actual groundwater conditions south of the Site. Acetone was not used as a field decontamination solvent. As noted in the DUSR (Appendix E), acetone was not flagged as a possible laboratory artifact. Acetone was stored at the former Anchor Lith Kem Ko Site and is therefore a contaminant of concern. Lastly, the high concentrations noted in several samples (ten samples reported at concentrations above 100 μ g/L) indicate that the detections represent actual groundwater conditions. A summary of acetone concentrations is shown on Figure 5.

Several metals were detected in CMT groundwater samples. Of the 23 TAL metals, antimony, beryllium silver and thallium were not detected in any sample. The following eight metals were detected at concentrations below their Class GA criterion or have no criterion: mercury, aluminum, cobalt, magnesium, potassium, vanadium, and zinc. Barium, calcium, iron, and manganese were detected in several samples and in some instances, exceeded their Class GA criterion; however, these are all commonly occurring elements in groundwater and will not be discussed further.

Arsenic was detected in 20 of 49 CMT samples at concentrations ranging from 4.2 μ g/L to 280 μ g/L. There were two exceedances of the arsenic criterion (25 μ g/L) at PW05-06 (170 μ g/L) and PW05-07 (280 μ g/L).

Chromium was detected in four samples. Three of these samples exceeded the Class GA criterion of $50 \ \mu g/L$: PW05-06 (440 $\mu g/L$), PW05-07 (400 $\mu g/L$), and PW06-04 (160 $\mu g/L$).

Copper was detected in two samples, both of which exceeded the Class GA criterion of 200 μ g/L. Copper was found in PW05-06 (810 μ g/L) and PW05-07 (660 μ g/L).

Mr. Brian Jankauskas Page 5 October 31, 2008

Lead was detected in two samples, both of which exceeded the Class GA criterion of 25 μ g/L. Lead was found in PW05-06 (400 μ g/L) and PW05-07 (290 μ g/L).

Nickel was detected in 13 of 49 CMT samples art concentrations ranging from 11 μ g/L to 490 μ g/L. Three samples exceeded the Class GA criterion of 100 μ g/L: PW05-05 (120 μ g/L), PW05-06 (490 μ g/L) and PW05-07 (390 μ g/L).

Discussion of Results

Only three VOCs were detected in on-site monitoring wells: acetone, chloroform, and toluene. Of these three compounds, only toluene (8.1 μ g/L) exceeded the Class GA criterion of 5 μ g/L. Chloroform was detected in only two off-site CMT samples at concentrations below the Class GA criterion. Toluene was not detected in any CMT sample.

Thirteen VOCs were detected in CMT groundwater samples. Six of these compounds were detected at concentrations below their Class GA criterion or the compound had no criterion. These include: 2-butanone, 2-hexanone, chloroform, methylene chloride, MTBE, and TBA.

Six chlorinated VOCs were detected in CMT samples. Two compounds, 1,1-dichloroethene and cis-1,2dichloroethene, were detected at concentrations below the Class GA criterion of 5 μ g/L. Three compounds, 1,1,1-TCA, 1,1-dichloroethane, and TCE, were detected at less than three times their Class GA criterion of 5 μ g/L. PCE was detected in nine of 49 CMT samples, of which three samples exceeded the Class GA criterion of 5 μ g/L (7.8 μ g/L, 82 μ g/L, and 130 μ g/L).

Seven CMT samples exceeded the Class GA criterion for individual chlorinated VOCs. Samples from two intervals at PW02 (100 ft and 160 ft) exceeded the Class GA criterion. The 100 ft bgs hit of 1,1,1-TCA corresponds to the hit from a previous study in 2003 that found 57 μ g/L at this same interval near this location. In the nearest downgradient location, PW05, these concentrations appear to have dissipated and no longer exceed the criterion. The highest concentration of PCE (130 μ g/L) was noted in PW06 at 220 ft bgs.

Acetone was detected in on-site monitoring well MW-7S and several CMT samples at concentrations ranging from below the Class GA criterion to significantly above the criterion. Acetone was detected in PW01 at 101 ft bgs at a concentration of 23 μ g/L. In the next down downgradient row of CMTs, acetone is present in most of the samples in PW02 and PW03 with very high concentrations in the middle and lower sample points (115 to 160 ft bgs). Acetone is present in two sample points in PW04: 130 and 145 ft bgs. In the most downgradient row of CMTs, acetone is present in the two deepest sample points at PW05 (193 and 220 ft bgs). High concentrations of acetone are also present in PW06 at 150 to 180 ft bgs which is similar depth to the contamination found in PW02 and PW03. A high concentration of acetone is also present at the water table in PW07 (70 ft bgs). Acetone shows up sporadically to 220 ft bgs at PW07. The acetone plume may be contiguous from PW01 (110 ft bgs) to PW02/PW03/PW04 (115 to 160 ft bgs) to PW05/PW06/PW07 (150 to 220 ft bgs). The presence of acetone at PW07-01 (water table interval) appears to be an outlier as the concentration is almost an order of magnitude higher than any other water table sample.

Cadmium was detected above the Class GA criterion in on-site monitoring well samples MW-5D and MW-6D. Chromium was detected above the Class GA criterion in on-site monitoring well samples

Mr. Brian Jankauskas Page 6 October 31, 2008

MW-5S, MW-5D, MW-6D and MW-7D. A review of the field data collected during monitoring well purging indicates that turbidity in these samples was below the sampling criterion of 50 NTUs. Consequently, these cadmium and chromium exceedances may be representative of groundwater conditions beneath the Site.

Five TAL metals of concern were detected at concentrations greater than the Class GA criterion in off-site CMT samples. These include arsenic, chromium, copper, lead, and nickel. The exceedances are concentrated in two locations: the lower intervals at PW05, and mid-level at PW06. Nickel exceeded the criterion at PW05-05 (168 ft bgs). Samples PW05-06 (193 ft bgs) and PW05-07 (220 ft bgs) had exceedances of all five metals. Chromium exceeded the criterion at PW06-04 (150 ft bgs). The gamma log for PW05 indicates increasing clay content below 180 ft bgs which would include samples PW05-06 and PW05-07. A review of the turbidity readings for these samples indicates high turbidity (greater than 1,000 NTUs, the upper limit of the meter) was present in the affected CMT samples. Consequently, the reported metals values may be biased high due to suspended sediment in the samples and may not be indicative of the actual dissolved metals concentrations in groundwater. The acid preservative may also have reacted with the suspended sediment and affected the results, resulting in a biased high value.

Recommendations

The results of the on-site groundwater sampling indicate that metals are no longer a concern in Site monitoring wells. Cadmium was present in two monitoring wells slightly above the Class GA criterion. Chromium was found in four monitoring wells at concentrations ranging from approximately two to four times the criterion. These metals were not detected in off-site CMT sampling points except at PW05 in the deeper intervals (193 and 220 ft bgs). These off-site metals detections do not appear to be linked to the Anchor Lith Kem Ko Site. It is possible that the exceedances noted at PW05 are emanating from another source are located west of the Site or a result of turbidity.

The results of the on-site groundwater sampling indicate that VOCs are no longer a concern in Site monitoring wells. There was only one low concentration detection of toluene in MW-7S at 8.1 μ g/L, slightly above the Class GA criterion. 1,1,1-TCA was not detected in any of the seven on-site monitoring wells sampled during this investigation. Downgradient of the Site, several chlorinated VOCs and acetone were detected above their Class GA criterion. However, there is not a clear link to the Site as evidenced by the lack of contaminants noted in any of the samples from PW01. Chlorinated VOCs and acetone begin to show up in samples from downgradient locations PW02, PW03 and PW04. Known contaminant sources to the west may be contributing to the chlorinated VOCs exceedances noted in the downgradient CMT sample locations.

The source of the acetone needs further investigation. Although acetone was present at the Site in a confirmed leaking underground storage tank (UST), the current link to downgradient locations is not clear. Acetone was not detected in any of the seven on-site monitoring wells. In addition, acetone was only detected in one interval at PW01, the closest downgradient CMT, at a depth of 100 ft bgs. However, the concentration was below the Class GA criterion. Acetone detections increase in both the number of detections and the overall concentrations in the CMTs further from the Site as shown in CMTs PW02, PW03 and PW04.

Mr. Brian Jankauskas Page 7 October 31, 2008

Earth Tech recommends that a second round of groundwater samples be collected from selected CMT intervals and monitoring wells to confirm the acetone and chromium concentrations detected during the first round of sampling.

Should you have any questions or need additional information, please contact me.

Very truly yours, Earth Tech | AECOM

Paul Kaieth

Paul Kareth Project Manager

Enclosures

Well #	Reference	Date	Time	Depth	Water Table	Screen E	Ievation	Comments
	Elevation			to Water	Elevation	Тор	Bottom	
MW-4	137.50	7/2/08	8:35	59.00	78.50		53.10	
		9/16/08		58.56	78.94			
MW-5D	134.38	7/2/08	10:35	55.60	78.78		11.58	
		9/16/08		55.31	79.07			
MW-5S	134.12	7/1/08	11:00	55.45	78.67		51.12	
		9/16/08		55.08	79.04			
MW-6D	137.55	7/2/08	14:40	58.75	78.80		14.95	
		9/16/08						under a shipping container
	407.07	7/0/00	40.00	50 57	70.00		50 57	
10100-65	137.37	7/2/08	16:30	58.57	78.80		53.57	
		9/16/08		56.39	80.98			
	100 11	7/1/00	10.25	E 4 2 E	70 76		11 11	
	155.11	0/16/08	10.55	54.55	70.70		11.11	
		9/10/00		54.00	75.11			
MW-7S	133 55	7/1/08	15:30	54 80	78 75		51 95	
	100.00	9/16/08	10.00	54 04	79.51		01.00	
		0/10/00		01.01	10.01			
PW01-1	136.60	5/7/08	9:01	57.50	79.10	66.99	64.99	
		7/11/08	8:10	58.55	78.05			
		9/16/08		57.83	78.77			
PW01-2	136.60	5/7/08	10:25	58.00	78.60	56.99	54.99	
		7/11/08	9:40	58.55	78.05			
		9/16/08		57.83	78.77			
PW01-3	136.60	5/7/08	9:05	58.00	78.60	46.99	44.99	
		7/11/08	11:10	58.55	78.05			
		9/16/08		57.84	78.76			
	400.00	E /7 /00	40.45	50.00	70.00	00.00	04.00	
PVV01-4	136.60	5/7/08	12:15	58.00	78.60	36.99	34.99	
		7/11/08	8:20	58.55	78.05			
		9/16/08		57.85	/8./5			
	136 60	5/7/09	15.00	58 00	78 60	26.00	24 00	
F VV01-5	130.00	5/1/00 7/1//09	10.22	50.00	78.00	20.99	24.99	
		0/16/08	10.00	57.85	78.75			
		5/10/00		57.00	10.15			
PW01-6	136 60	5/7/08	13.10	58 00	78 60	16.99	14.99	
		7/11/08	9:45	58 55	78.05			
		9/16/08	0.10	57.85	78.75			

Well #	Reference	Date	Time	Depth	Water Table	Screen E	Elevation	Comments
	Elevation			to Water	Elevation	Тор	Bottom	
PW01-7	136.60	5/7/08	10:35	57.50	79.10	6.49	5.49	
		7/14/08	11:00	58.80	77.80			
		9/16/08		57.85	78.75			
P\\/02_1	134 62	4/30/08	8.30	56.00	78.62	64 13	62 13	
1 102 1	104.02	7/9/08	15.20	58 55	76.02	04.10	02.10	
		9/16/08	10.20	56.37	78.25			
PW02-2	134.62	4/30/08	9:55	56.00	78.62	49.13	47.13	
		7/9/08	13:20	58.65	75.97			
		9/16/08		56.35	78.27			
PW02-3	134.62	4/30/08	13:00	56.00	78.62	34.13	32.13	
		7/10/08	9:10	58.70	75.92			
		9/16/08		56.39	78.23			
D\\/02_4	134 62	1/30/08	15.20	56.00	78.62	10 13	17 13	
F VVUZ-4	134.02	7/10/08	0.05	58.70	76.02	19.15	17.15	
		9/16/08	9.05	56.70	75.92			
		3/10/00		50.45	70.15			
PW02-5	134.62	4/30/08	7:45	56.00	78.62	4.13	2.13	
		7/9/08	13:30	58.70	75.92	-	_	
		9/16/08		56.20	78.42			
PW02-6	134.62	4/30/08	10:46	56.00	78.62	-10.87	-12.87	
		7/9/08	14:50	58.70	75.92			
		9/16/08		56.45	78.17			
	404.00	4/20/00	4 4 . 40	50.00	70.00	00.07	07.07	
PVV02-7	134.62	4/30/08	14:40	50.00	78.02	-20.37	-21.31	
		0/16/08	13.00	56.70	75.92			
		3/10/00		50.51	70.11			
PW03-1	134.39	4/29/08	9:30	56.00	78.39	64.90	62.90	
		7/8/08	13:30	56.40	77.99			
		9/16/08		56.20	78.19			
PW03-2	134.39	4/29/08	11:45	56.00	78.39	49.90	47.90	
		7/8/08	11:35	56.50	77.89			
		9/16/08		56.25	78.14			
D\\/02 2	12/ 20	1/20/00	12.15	56 00	79 20	34.00	32.00	
1- 000-3	134.39	7/0/00	13.43	56.00	70.39	34.90	32.90	
		9/16/08	11.40	56 23	78 16			
		5, 10,00		00.20	, 0.10			
PW03-4	134.39	4/30/08	8:50	56.00	78.39	19.90	17.90	
		7/8/08	12:50	56.55	77.84			
		9/16/08		56.25	78.14			

Well #	Reference	Date	Time	Depth	Water Table	Screen F	Elevation	Comments
	Elevation	-	i I	to Water	Elevation	Тор	Bottom	
PW03-5	134.39	4/30/08 7/8/05 9/16/08	13:30 14:45	56.00 56.25	78.39 78.14 134.39	4.90	2.90	
PW03-6	134.39	5/1/08 7/9/08 9/16/08	7:30 9:00	56.00 56.65 56.29	78.39 77.74 78.10	-10.10	-12.10	
PW03-7	134.39	5/1/08 7/9/08 9/16/08	9:55 10:20	56.00 56.60 56.39	78.39 77.79 78.00	-25.10	-27.10	
PW04-1	130.88	5/2/08 7/15/08 9/16/08	9:10 15:30	52.00 53.00 52.50	78.88 77.88 78.38	60.22	58.22	
PW04-2	130.88	5/2/08 7/15/08 9/16/08	10:50 16:00	52.00 53.10 52.51	78.88 77.78 78.37	45.22	43.22	
PW04-3	130.88	5/5/08 7/15/08 9/16/08	8:31 15:15	52.00 53.10 52.50	78.88 77.78 78.38	30.22	28.22	
PW04-4	130.88	5/5/08 7/16/08 9/16/08	11:10 9:05	52.00 53.10 52.58	78.88 77.78 78.30	15.22	13.22	
PW04-5	130.88	5/5/08 7/16/08 9/16/08	14:05 10:40	52.00 53.10 52.58	78.88 77.78 78.30	0.22	-1.78	
PW04-6	130.88	5/6/08 7/16/08 9/16/08	7:30 8:40	52.00 53.10 52.62	78.88 77.78 78.26	-14.78	-16.78	
PW04-7	130.88	5/6/08 7/16/08 9/16/08	12:00 10:30	52.00 53.10 52.58	78.88 77.78 78.30	-30.28	-31.28	
PW05-1	132.59	6/13/08 7/17/08 9/16/08	7:20 16:00	54.80 55.50 55.10	77.79 77.09 77.49	62.61	60.61	

Well #	Reference	Date	Time	Depth	Water Table	ble Screen Elevation		Comments
	Elevation			to Water	Elevation	Тор	Bottom	
PW05-2	132.59	6/12/08	8:00	54.80	77.79	37.61	35.61	
		7/18/08	7:05	55.50	77.09			
		9/16/08		55.10	77.49			
PW05-3	132.59	6/12/08	8:15	54.80	77.79	12.61	10.61	
		7/17/08	16:05	55.50	77.09			
		9/16/08		55.14	77.45			
PW05-4	132.59	6/12/08	8:05	54.80	77.79	-12.39	-14.39	
		7/18/08	7:25	55.50	77.09			
		9/16/08		55.12	77.47			
PW05-5	132.59	6/12/08	8:00	54.80	77.79	-37.39	-39.39	
		7/18/08	10:20	55.70	76.89			
		9/16/08		55.12	77.47			
PW05-6	132.59	6/12/08	8:20	54.80	77.79	-62.39	-64.39	
		7/18/08	11:35	56.00	76.59			
		9/16/08		55.64	76.95			
PW05-7	132.59	6/12/08	8:10	54.80	77.79	-89.39	-90.39	
		7/18/08	8:25	58.80	73.79			
		9/16/08		57.47	75.12			
PW06-1	132.27	6/10/08	8:20	54.50	77.77	62.83	60.83	
		7/16/08	14:30	55.00	77.27			
		9/16/08						paved over
PW06-2	132.27	6/10/08	10:40	54.50	77.77	42.83	40.83	
		7/16/08	15:45	55.00	77.27			
		9/16/08						paved over
PW06-3	132.27	6/10/08	12:42	54.50	77.77	14.83	12.83	
		7/16/08	14:25	55.00	77.27			paved over
		9/16/08						
PW06-4	132.27	6/10/08	16:15	54.50	77.77	-17.17	-19.17	
		7/17/08	8:00	55.10	77.17			
		9/16/08						paved over
	400.07	0/44/00	0.40	- 4 - 2		00.47	05 15	
PW06-5	132.27	6/11/08	8:10	54.50	//.77	-33.17	-35.17	
		//1//08	10:30	55.20	//.0/			
		9/16/08						paved over
	400.07	0/40/00	44 50	- 4 - 2		47 17	40.1-	
PVV06-6	132.27	6/10/08	11:50	54.50	//.//	-47.17	-49.17	
		//1//08	7:55	55.20	//.0/			
		9/16/08						paved over

Well #	Reference Elevation	Date	Time	Depth to Water	Water Table Elevation	Screen E Top	Elevation Bottom	Comments
PW06-7	132.27	6/10/08 7/17/08 9/16/08	15:50 10:50	54.50 55.20	77.77 77.07	-87.17	-88.17	paved over
PW07-1	129.25	5/2/08 7/14/08 9/16/08	9:40 14:45	52.00 51.50 51.43	77.25 77.75 77.82	59.64	57.64	
PW07-2	129.25	5/2/08 7/15/08 9/16/08	11:20 8:20	52.00 51.80 51.43	77.25 77.45 77.82	34.64	32.64	
PW07-3	129.25	5/5/08 7/14/08 9/16/08	8:15 15:00	51.00 51.80 51.52	78.25 77.45 77.73	9.64	7.64	
PW07-4	129.25	5/5/08 7/15/08 9/16/08	11:33 9:30	52.00 52.00 51.52	77.25 77.25 77.73	-15.36	-17.36	
PW07-5	129.25	5/5/08 7/15/08 9/16/08	15:00 10:50	51.00 52.00 51.58	78.25 77.25 77.67	-40.36	-42.36	
PW07-6	129.25	5/6/08 7/15/08 9/16/08	9:27 9:55	52.00 52.50 52.04	77.25 76.75 77.21	-67.36	-69.36	
PW07-7	129.25	5/6/08 7/15/08 9/16/08	13:02 12:40	52.00 52.50 52.12	77.25 76.75 77.13	-90.36	-91.36	

Notes:

All water table measurements taken from top of PVC riser or CMT riser, unless otherwise noted.

MW-1S and MW-1D are damaged or missing; can't determine which one was located due to obstruction in well.

Cannot locate MW-2 or MW-3.

Screen length of 10 ft assumed for all monitoring wells at the former Anchor Lith Kem Ko Site.

TABLE 2 ANCHOR LITH KEM KO (SITE 1-30-021) GROUNDWATER EVALUATION

SUMMARY OF VOLATILE ORGANIC COMPOUNDS AND METALS IN MONITORING WELL SAMPLES

Sample Location		MW-4		MW-5S		MW-5D	MW-6S	MW-6D	MW-7S	MW-7D
Sample ID	NYSDEC	MW-4		MW-5S		MW-5D	MW-6S	MW-6D	MW-7S	MW-7D
Screen interval (ft bgs)	Class GA	74 - 84	·	73 - 83		112 - 122	72 - 82	112 - 122	72 - 82	112 - 122
Laboratory ID	Groundwater	AC38518-00	8	AC38518-00	1	AC38518-009	AC3854-004	AC3854-003	AC38518-005	AC38518-006
Sample Date	Criteria	7/3/08		7/3/08		7/3/08	7/2/08	7/2/08	7/3/08	7/3/08
Matrix	water	water		water		water	water	water	water	water
Units	µg/L	µg/L		µg/L		µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q		conc Q	!	conc Q	conc Q	conc Q	conc Q	conc Q
Volatile Organic Compounds										
Acetone	50	ND		ND		ND	ND	ND	19	ND
Chloroform	7	ND		ND		ND	ND	ND	2.8	ND
Toluene	5	ND		ND		ND	ND	ND	8.1	ND
TAL Metals										
Aluminum	NC	ND		ND		170	ND	270	250	ND
Barium	1,000	54 J		160 J		83 J	87	31	46 J	110 J
Cadmium	5	ND		ND		6.2	ND	17	ND	ND
Calcium	NC	14,000 J		7,200 J		4,600 J	14,000	11,000	14,000 J	7,600 J
Chromium	50	ND		140 J		150 J	ND	91	ND	220 J
Cobalt	NC	ND		ND		ND	ND	ND	ND	11
Iron	300	180 J		660 J		940 J	ND	640	4,300 J	1,300 J
Magnesium	35,000	2,000		ND		ND	2,300	1,400	1,300	1,200
Manganese	300	ND		ND		ND	ND	ND	32	81
Nickel	100	12		ND		29	ND	16	ND	57
Potassium	NC	ND		3,800		2,700	2,600	2,500	3,100	ND
Sodium	20,000	21,000		6,400		43,000	13,000	14,000	21,000	41,000
Zinc	2,000	ND		ND		ND	ND	28	240	ND

Screen lengths are asumed to be 10 ft

NC - No criterion

J - Estimated value

ND - Not detected

Bold/Italics indicates exceedances

Earth Tech Northeast, Inc.

VOLATILE ORGANIC COMPOUNDS AND METALS IN CMT GROUNDWATER SAMPLES

Sample Location		PW-01	PW-01	PW-01	PW-01	PW-01	PW-01	PW-01
CMT Sample ID	NYSDEC	PW-01-01	PW-01-02	PW-01-03	PW-01-04	PW-01-05	PW-01-06	PW-01-07
CMT screen interval (ft bgs)	Class GA	70-72	80-82	90-92	100-102	110-112	120-122	130-132
Laboratory ID	Groundwater	AC38653-00	1 AC38653-003	AC38653-008	AC38653-002	AC38711-001	AC38653-004	AC38711-002
Sample Date	Criteria	7/11/08	7/11/08	7/11/08	7/11/08	7/14/08	7/11/08	7/14/08
Matrix	water	water	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc C	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Volatile Organic Compounds								
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	23	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND
Total Chlorinated VOCs		ND	ND	ND	ND	ND	ND	ND
TAL Metals								
Arsenic	25	ND	ND	7.1	ND	ND	ND	4.2
Chromium	50	ND	ND	ND	ND	ND	ND	ND
Copper	200	ND	ND	ND	ND	ND	ND	ND
Lead	25	ND	ND	ND	ND	ND	ND	ND
Nickel	100	ND	ND	ND	ND	ND	ND	ND

J - Estimated value

ND - Not detected

VOLATILE ORGANIC COMPOUNDS AND METALS IN CMT GROUNDWATER SAMPLES

Sample Location		PW-02	F	PW-02	PW-02	PW-02	PW-02	PW-02	PW-02
CMT Sample ID	NYSDEC	PW-02-0	1 F	PW-02-02	PW-02-03	PW-02-04	PW-02-05	PW-02-06	PW-02-07
CMT screen interval (ft bgs)	Class GA	71-73	ε	86-88	101-103	116-118	131-133	146-148	160-162
Laboratory ID	Groundwater	AC38637-0	02 A	AC38601-008	AC38637-004	AC38637-003	AC38601-009	AC38637-001	AC38637-005
Sample Date	Criteria	7/9/08	7	7/9/08	7/10/08	7/10/08	7/9/08	7/9/08	7/10/08
Matrix	water	water	۱	water	water	water	water	water	water
Units	µg/L	µg/L	ŀ	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc (ຊ	conc Q					
Volatile Organic Compounds									
1,1,1-Trichloroethane	5	ND		ND	13	ND	ND	ND	ND
1,1-Dichloroethane	5	ND		ND	9.5	ND	ND	ND	ND
1,1-Dichloroethene	5	ND		ND	2	ND	ND	ND	ND
Acetone	50	28		27	30	230	ND	720	79
cis-1,2-Dichloroethene	5	ND		ND	ND	ND	ND	ND	1.3
Tetrachloroethene	5	ND		ND	ND	ND	ND	3	82
Trichloroethene	5	ND		ND	ND	ND	ND	ND	2.4
Total Chlorinated VOCs		ND		ND	24.5	ND	ND	3	85.7
TAL Metals									
Arsenic	25	ND		7	ND	ND	ND	4.4	6.8
Chromium	50	ND		ND	ND	ND	ND	ND	ND
Copper	200	ND		ND	ND	ND	ND	ND	ND
Lead	25	ND		ND	ND	ND	ND	ND	ND
Nickel	100	ND		ND	ND	ND	15	ND	ND

J - Estimated value

ND - Not detected

VOLATILE ORGANIC COMPOUNDS AND METALS IN CMT GROUNDWATER SAMPLES

Sample Location		PW-03						
CMT Sample ID	NYSDEC	PW-03-01	PW-03-02	PW-03-03	PW-03-04	PW-03-05	PW-03-06	PW-03-07
CMT screen interval (ft bgs)	Class GA	70-72	85-87	100-102	115-117	130-132	145-147	160-162
Laboratory ID	Groundwater	AC38601-003	AC38601-001	AC38601-005	AC38601-002	AC38601-004	AC38601-006	AC38601-007
Sample Date	Criteria	7/8/08	7/8/08	7/9/08	7/8/08	7/8/08	7/9/08	7/9/08
Matrix	water							
Units	µg/L							
		conc Q						
Volatile Organic Compounds								
1,1,1-Trichloroethane	5	1.5	1.2	9.7	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	2.3	4.6	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	1.1	ND	ND	ND	ND
Acetone	50	38	37	ND	130	73	200	560
cis-1,2-Dichloroethene	5	ND						
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	7.8
Trichloroethene	5	ND						
Total Chlorinated VOCs		1.5	3.5	15.4	ND	ND	ND	7.8
TAL Metals								
Arsenic	25	ND	7.9	ND	ND	ND	ND	5.9
Chromium	50	ND						
Copper	200	ND						
Lead	25	ND						
Nickel	100	13	ND	ND	ND	12	ND	ND

J - Estimated value

ND - Not detected

VOLATILE ORGANIC COMPOUNDS AND METALS IN CMT GROUNDWATER SAMPLES

Sample Location		PW-04						
CMT Sample ID	NYSDEC	PW-04-01	PW-04-02	PW-04-03	PW-04-04	PW-04-05	PW-04-06	PW-04-07
CMT screen interval (ft bgs)	Class GA	71-73	86-88	101-103	116-118	131-133	146-148	161-163
Laboratory ID	Groundwater	AC38739-007	AC38739-003	AC38739-002	AC38739-005	AC38739-009	AC38739-006	AC38739-008
Sample Date	Criteria	7/15/08	7/15/08	7/15/08	7/16/08	7/16/08	7/16/08	7/16/08
Matrix	water							
Units	µg/L							
		conc Q						
Volatile Organic Compounds								
1,1,1-Trichloroethane	5	2.5	ND	ND	ND	ND	ND	2.5
1,1-Dichloroethane	5	1.1	ND	ND	ND	ND	ND	1
1,1-Dichloroethene	5	ND						
Acetone	50	ND	ND	ND	ND	96 J	17	ND
cis-1,2-Dichloroethene	5	ND						
Tetrachloroethene	5	ND						
Trichloroethene	5	ND						
Total Chlorinated VOCs		3.6	ND	ND	ND	ND	ND	3.5
TAL Metals								
Arsenic	25	5.1	ND	ND	ND	6.7	ND	ND
Chromium	50	ND						
Copper	200	ND						
Lead	25	ND						
Nickel	100	11	ND	ND	ND	ND	ND	13

J - Estimated value

ND - Not detected

VOLATILE ORGANIC COMPOUNDS AND METALS IN CMT GROUNDWATER SAMPLES

Sample Location		PW-05						
CMT Sample ID	NYSDEC	PW-05-01	PW-05-02	PW-05-03	PW-05-04	PW-05-05	PW-05-06	PW-05-07
CMT screen interval (ft bgs)	Class GA	68.5-70.5	93.5-95.5	118.5-120.5	143.5-145.5	168.5-170.5	193.5-195.5	220.5-221.5
Laboratory ID	Groundwater	AC38771-006	AC38492-001	AC38771-007	AC38492-002	AC38492-007	AC38492-008	AC38492-006
Sample Date	Criteria	7/17/08	7/18/08	7/17/08	7/18/08	7/18/08	7/18/08	7/18/08
Matrix	water							
Units	µg/L							
		conc Q						
Volatile Organic Compounds								
1,1,1-Trichloroethane	5	ND						
1,1-Dichloroethane	5	ND						
1,1-Dichloroethene	5	ND						
Acetone	50	ND	ND	ND	ND	ND	130	94 J
cis-1,2-Dichloroethene	5	ND						
Tetrachloroethene	5	ND	ND	ND	1.8	1.2	ND	1.4
Trichloroethene	5	ND						
Total Chlorinated VOCs		ND	ND	ND	1.8	1.2	ND	1.4
TAL Metals								
Arsenic	25	ND	ND	5.4	6	5.5	170	280
Chromium	50	ND	ND	ND	ND	ND	440	400
Copper	200	ND	ND	ND	ND	ND	810	660
Lead	25	ND	ND	ND	ND	ND	400	290
Nickel	100	15	ND	ND	ND	120	490	390

J - Estimated value

ND - Not detected

VOLATILE ORGANIC COMPOUNDS AND METALS IN CMT GROUNDWATER SAMPLES

Sample Location		PW-06						
CMT Sample ID	NYSDEC	PW-06-01	PW-06-02	PW-06-03	PW-06-04	PW-06-05	PW-06-06	PW-06-07
CMT screen interval (ft bgs)	Class GA	70-72	90-92	118-120	150-152	166-168	180-182	221-222
Laboratory ID	Groundwater	AC38739-010	AC38739-012	AC38739-011	AC38771-002	AC38771-003	AC38771-001	AC38771-004
Sample Date	Criteria	7/16/08	7/16/08	7/16/08	7/17/08	7/17/08	7/17/08	7/17/08
Matrix	water							
Units	µg/L							
		conc Q						
Volatile Organic Compounds								
1,1,1-Trichloroethane	5	ND	4.2	3.5	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	7.2	1.7	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	2.3	1.8	ND	ND	ND	ND
Acetone	50	ND	20	ND	300 J	320 J	360 J	ND
cis-1,2-Dichloroethene	5	ND						
Tetrachloroethene	5	ND	ND	ND	ND	ND	1.1	130
Trichloroethene	5	ND	ND	2.6	ND	ND	ND	ND
Total Chlorinated VOCs		ND	13.7	9.6	ND	ND	1.1	130
TAL Metals								
Arsenic	25	ND	5.9	ND	5.8	5.6	9.3	ND
Chromium	50	ND	42	ND	160	ND	ND	ND
Copper	200	ND						
Lead	25	ND						
Nickel	100	ND	ND	ND	91	49	87	12

J - Estimated value

ND - Not detected

VOLATILE ORGANIC COMPOUNDS AND METALS IN CMT GROUNDWATER SAMPLES

Sample Location		PW-07	I	PW-07	PW-07	PW-07	PW-07	PW-07	PW-07
CMT Sample ID	NYSDEC	PW-07-0)1 I	PW-07-02	PW-07-03	PW-07-04	PW-07-05	PW-07-06	PW-07-07
CMT screen interval (ft bgs)	Class GA	70-72	ę	95-97	120-122	145-147	170-172	197-199	220-221
Laboratory ID	Groundwater	AC38711-0)03 A	AC38711-005	AC38711-004	AC38711-006	AC38711-008	AC38711-007	AC38711-012
Sample Date	Criteria	7/14/08	7	7/15/08	7/14/08	7/15/08	7/15/08	7/15/08	7/15/08
Matrix	water	water	١	water	water	water	water	water	water
Units	µg/L	µg/L		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc (Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Volatile Organic Compounds									
1,1,1-Trichloroethane	5	ND		2	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	3.1		1.3	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	3.6		ND	ND	ND	ND	ND	ND
Acetone	50	210		ND	77	20	ND	78	39
cis-1,2-Dichloroethene	5	ND		ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND		ND	ND	ND	1.5	ND	ND
Trichloroethene	5	3.2		ND	ND	ND	11	ND	1.6
Total Chlorinated VOCs		9.9		3.3	ND	ND	12.5	ND	1.6
TAL Metals									
Arsenic	25	9		ND	ND	ND	ND	ND	4.5
Chromium	50	ND		ND	ND	ND	ND	ND	ND
Copper	200	ND		ND	ND	ND	ND	ND	ND
Lead	25	ND		ND	ND	ND	ND	ND	ND
Nickel	100	ND		ND	ND	ND	ND	ND	ND

J - Estimated value

ND - Not detected

_	400.000		1 000 000	
0	400,000	800,000	1,600,000 Feet	W<

NYSDEC Site No. 1-30-021 Anchor Lith Kem Ko Site Hicksville, Nassau County, NY

Figure 1 Site Location

EARTH TECH AECOM

- $\mathbf{\Theta}$ CMT WELL LOCATION
- MONITORING WELL LOCATION $\mathbf{\Theta}$

1. ALL UNITS IN ug/L 2. GRAPHIC SCALE IS APPROXIMATE

WELL SCREEN

 \bigvee

- $\mathbf{\Theta}$ CMT WELL LOCATION
- MONITORING WELL LOCATION Θ

1. ALL UNITS IN ug/L 2. GRAPHIC SCALE IS APPROXIMATE

WELL SCREEN

 \bigvee

Earth	Tech	AECO	M			BORIN	g log	;	Boring No	o.: PW01
PROJECT: Anchor Lith Kem Ko				CONTRAC	CTOR:	SGS Enviro	nmental S	Services	PAGE 1 OF	7
PROJECT No.: 101351			LOCATIO	N:	Hicksville, N	١Y		DATE:	4/22/2008	
CLIENT: NYSDEC				DRILLER:		Jim			ET REP.:	Vipul
V	ATER LE	VELS						DRIL	LING AND SAMP	LING
DATE	TIME	DEPTH			1	CASING		AUGER	CORE	TUBE
				TYPE		Steel		Steel		
				I.D.		4-inch	<u> </u>	6-inch		
	CMT		DID	WT./Fall						
Depth	Screen	Packing	Reading			RE	MARKS	AND STRATUM C	HANGES	
(ft)	Interval	r doning	rtodding				, a a a a a			
(1) (1)				Fill mate	erial ravel, c	obbles				

Earth Tech | AECOM

BORING LOG

Boring No.:

PW01

PROJEC	CT: Ancho	Lith Kem	Ko		
PROJEC	CT No.:	101351		PAGE 2 OF 7	_
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-
20—					
21 —					_
- 22 —					_
- 23					_
23-					_
24 —					_
25—					_
26—					
					_
 28					-
-					-
29 — -					_
30 —					
31 —					
- 32 —					_
- 33					_
					-
34 — -					-
35 — -					_
36—					_
37 —					_
- 38—					_
30_					-
<u> </u>					-
40 —					
BORING LOG

Boring No.:

PROJEC	CT: Anchoi	r Lith Kem I	Ко		
PROJEC	CT No.:	101351		PAGE 3 OF 7	-
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-
40 —					_
41 —					_
42 —					-
43—					-
44 —					
45 —				Medium fine sand, little fine gravel CO = 0, LEL = 0, VOC = 0, H2S = 0, O2 = 20.9	_
46—					_
47 —					_
48—					
49 —					_
					-
_ 51 —					-
					-
53 —					_
- 54 —					_
- 55 —					_
- 56 —					_
					_
					-
- 59 —					-
60 —				Dense fine sand	

BORING LOG

Boring No.:

PROJEC	CT: Anchoi	r Lith Kem I	Ко		
PROJEC	CT No.:	101351		PAGE 4 OF 7	_
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-
60 —					_
61 —					_
- 62					_
- 63					_
- 64					_
- 65 —					_
- 66					_
- 67 —					_
- 68				Approximately 200 gallons of slurry used	_
- 69					_
- 70 —					_
	1				_
- 72—					_
- 73					_
					_
- 75—					_
76 —					_
					_
- 78					-
- 79—					-
- 80 —					_

BORING LOG

Boring No.:

PROJEC	CT: Anchor	· Lith Kem I	Ко		
PROJEC	CT No.:	101351		PAGE 5 OF 7	_
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-
80 —					
- 81 —	2				-
82—					
83—					_
84—					
85 —					
86—					
87 —					
- 88					
- 89 —					
90 —					
_ 91 —	3				_
92 —					_
93 —					
94—					
95 —				Dense fine sand, little clay stringers CO = 0, LEL = 0, VOC = 0, H2S = 0, O2 = 20.9	
96—					
97 —					
98 —					
99 —					
100 —					

BORING LOG

Boring No.:

PW01

٦

PROJE	CT: Anchor	Lith Kem	Ko		
PROJE	CT No.:	101351		PAGE 6 OF 7	_
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-
100—					_
101 —	4				
- 102 —					_
- 103 —					_
- 104 —					_
- 105 —					_
- 106 —					_
- 107 —					_
- 108 —					_
- 109—					_
- 110—					-
- 111 —	5				_
- 112 —	Ť				_
					_
- 114					_
					_
- 116					_
-					_
- 110					-
- 118					
119— -					_
120—					

BORING LOG

Boring No.:

Earth	Tech	AECO	Μ			BORIN	G LOO	G	Bori	ng No.:	PW02
PROJEC	T: Anchor	Lith Kem	Ko	CONTRAC	CTOR:	SGS Enviro	onmental	Services	PAGE	1 OF	9
PROJEC	T No.:	101351		LOCATIO	N:	Hicksville, I	NY		DATE:		3/31/2008
CLIENT:	NYSDEC)		DRILLER:		Jim			ET REF	».:	Vipul
W	ATER LE	VELS						DRILI	ING AND	SAMPLIN	G
DATE	TIME	DEPTH				CASING		AUGER	C	ORE	TUBE
				TYPE		Steel		Steel			
				I.D.		4-inch		6-inch			
	СМТ		PID	WI./Fall							
Depth	Screen	Packing	Reading			RF	MARKS	AND STRATUM CH	ANGES		-
(ft)	Interval	·	······································								-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				compact medium	fine sa	nd, some	COARSE	to fine gravel, si	It		
19 – 20 –				CO = 0,	LEL =	0, VOC =	0, H2S	= 0, O2 = 20.9			

BORING LOG

Boring No.: PW02

PROJEC	PROJECT: Anchor Lith Kem Ko						
PROJEC	CT No.:	101351		PAGE 2 OF 9			
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES			
20—							
21 —				_			
22—				-			
23—							
				-			
				-			
26-				-			
27_				-			
28-				-			
29-				-			
30 —				-			
31 —							
32—				-			
33—				_			
34 —				_			
35 —				-			
- 36 —							
				-			
30				-			
40							
40 —							

-

BORING LOG

PROJEC	CT: Anchor	Lith Kem	Ko		
PROJEC	CT No.:	101351		PAGE 3 OF 9	-
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	
40—					_
41 —					_
42—					
43—					
44 —					1
45 —					-
46—					l
- 47—					
- 48—					-
- 49—					
- 50 —				CO = 1, LEL = 0, VOC = 0, H2S = 0, O2 = 20.9	
- 51 —					
- 52—					
- 53—					
- 54—					-
- 55					-
- 56					
57—					
- 58-					
- 50 -					-
- 60					-
00-					-

BORING LOG

PROJEC	PROJECT: Anchor Lith Kem Ko						
PROJEC	CT No.:	101351		PAGE 4 OF 9	_		
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-		
60 —					_		
- 61 —					_		
62 —					_		
- 63					_		
64 —					_		
65 —				dense fine sand	_		
66 —					_		
67 —					_		
- 68 —					_		
- 69 —					_		
- 70 —					_		
71 —							
72 —	1				_		
73—					_		
74—					_		
75 —					_		
76—					_		
77 —					_		
78—					_		
79 —							
- 80 —				Sand and gravel	_		

BORING LOG

Boring No.: PW02

PROJEC	PROJECT: Anchor Lith Kem Ko						
PROJEC	CT No.:	101351		PAGE 5 OF 9	_		
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES			
Depth (ft) 80 - 81 - 82 - 83 - 83 - 84 - 86 - 87 - 88 - 90 - 91 - 92 - 93 - 91 - 92 - 93 - 93 - 94 - 96 - 97 - 98 - 98 -	Screen Interval	Packing	PID Reading	Varved clay			
- 100 —				00 - 0, LLL - 0, $000 - 0$, $1120 - 0$, $02 = 20.9$	_		

-

BORING LOG

PROJEC	CT: Anchor	Lith Kem I	Ко		
PROJEC	CT No.:	101351		PAGE 6 OF 9	_
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	_
100—					_
101 —					_
102—	3				
103—					
104 —				dense fine sand	
105—					_
106—					_
107 —					_
108—					
109—					_
110—					
111—					_
112—					_
113—					
114—					
115—				dense line sand, and white clay stringers	
116—					
117—	4				_
118—					_
119—					_
120—				little clay stringers	

BORING LOG

PROJEC	CT: Anchor	Lith Kem	Ko		
PROJEC	CT No.:	101351		PAGE 7 OF 9	_
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-
120—					
121 —					_
122—					_
123—					_
124 —					_
125—					_
126 —					_
127 —					_
128—					_
129—					_
130—				dense fine sand CO = 0, LEL = 0, VOC = 0, H2S = 0, O2 = 20.9	_
131 —					_
132—	5				
133—					
134 —					_
135—					
136—					
137—					_
138—					_
139—				Iron ore deposits	_
140—					

BORING LOG

PROJECT: And	PROJECT: Anchor Lith Kem Ko							
PROJECT No.	: 101351		PAGE 8 OF 9	_				
Depth Scree (ft) Interv	en Packing al	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-				
$\begin{array}{c} (1) & \text{Interv} \\ 140 \\ - \\ 141 \\ - \\ 142 \\ - \\ 142 \\ - \\ 143 \\ - \\ 143 \\ - \\ 144 \\ - \\ 145 \\ - \\ 146 \\ - \\ 146 \\ - \\ 148 \\ - \\ 148 \\ - \\ 149 \\ - \\ 150 \\ - \end{array}$			- dense fine sand and clay stringers - - -					
- 151 152 153 154 155 156 157 158 159 160			- 2nd varved clay - - -					

BORING LOG

PROJEC	PROJECT: Anchor Lith Kem Ko								
PROJEC	CT No.:	101351		PAGE 9 OF 9	_				
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-				
Depth (ft) 160 — 161 — 162 — 163 — 164 — 165 — 166 — 166 — 167 — 168 — 168 — 169 — 170 — 171 — 172 — 173 — 174 — 175 — 176 —	Screen Interval	Packing	Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES dense fine sand End of Boring at 163 ft bgs Notes: Approximately 15,000 gallons of water used 125 pounds of revert (Variflow QD) used (80'-140', 145'-163') Variflow QD is a coarse granular, high viscosity blend of guar gum formualted for easy and quick dispersion in drilling applications. Coarser granules prevent lumps or encapsulation. Soil descriptions are based on soil cuttings and drillers observations except at locations where split-spoon samples are indicated.					
178— - 179— - 180—									

Earth	Tech	AECO	M		BORING LO	G	Boring No.:	PW03
PROJEC [®]	T: Anchor	Lith Kem I	Ко	CONTRAC	TOR: SGS Environmenta	I Services	PAGE 1 OF	9
PROJEC ⁻	T No.:	101351		LOCATION	I: Hicksville, NY		DATE:	3/11/2008
CLIENT:	NYSDEC	;		DRILLER:	Jim		ET REP.:	Vipul
W	ATER LE	/ELS				DRILLI	NG AND SAMPLIN	G
DATE	TIME	DEPTH			CASING	AUGER	CORE	TUBE
				TYPE	Steel	Steel		
				I.D.	4-Incn	6-Inch		
	CMT		PID	vvi./raii				
Depth	Screen	Packing	Reading		REMARKS	, AND STRATUM CH	ANGES	-
(ft)	Interval	-						-
$\begin{array}{c} (0) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$				Compact	ted fill LEL = 0, VOC = 0, H2S	s = 0, O2 = 20.9		

BORING LOG

Boring No.: PW03

PROJECT: Anchor Lith Kem Ko

PROJEC	CT No.:	101351		PAGE 2 OF 9	_
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-
20—					
					_
					-
					_
_ 24 —					-
- 25—					-
26—					-
20 -					_
- 20					-
20-					-
- 29					-
30 —					-
31 — -					
32 —					_
33—					
34 —					
35 —					
36 —					
37 —					_
38 —					_
39 —					_
40 —					-

BORING LOG

Boring No.: PW03

PROJECT: Anchor Lith Kem Ko

PROJEC	CT No.:	101351		PAGE 3 OF 9	_
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-
40 —					
					_
- 42—					-
- 43—					-
					-
- 45 —					-
- 46 —					-
- 47 —					
_ 					_
-					-
49—					_
50 —					
51 —					_
52—					
53 —					_
					_
- 55				CO = 0, LEL = 0, VOC = 0, H2S = 0, O2 = 20.9	-
- 56					-
57					_
57 -					_
58 —					-
59 —					
60 —				Medium fine sand, little fine gravel	

BORING LOG

Boring No.: PW03

PROJECT: Anchor Lith Kem Ko PROJECT No.: 101351 PAGE 4 OF 9 PID Depth Screen Packing Reading SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (ft) Interval 60 61 62-63 64 CO = 1, LEL = 0, VOC = 0, H2S = 0, O2 = 20.9 65-66 67 68· 69· 70 71-72 73 74 75 76 77-78 79 Sand and gravel 80

BORING LOG

Boring No.: PW03

PROJECT: Anchor Lith Kem Ko

PROJEC	T No.:	101351		PAGE 5 OF 9	_
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	
80 —					
- 81 —					-
- 82—					-
- 83—					-
- 84 —					-
- 85 —					-
- 86 —	2				-
- 87 —					-
- 88—					_
- 89 —					-
- 90 —					-
- 91 —					-
- 92 —					-
- 93—					-
- 94 —					-
- 95 —				Dense fine sand	-
- 96 —					-
- 97 —					-
- 98—				UU = 0, LEL = 0, VUU = 0, H2S = 0, U2 = 20.9	-
- 99					-
- 100 —					-

BORING LOG

Boring No.: PW03

PROJECT: Anchor Lith Kem Ko

PROJEC	CT No.:	101351		PAGE 6 OF 9	
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-
100—					—
- 101 —	3				_
102—					_
103—					
104—					—
105—					_
106—					_
107 —					_
108—					_
109—					_
110—					_
111 —					_
112—					_
113—					_
114—					_
115—					_
116—	4				_
117—					_
118—					_
119—					-
120 —				dense fine sand	

BORING LOG

Boring No.: PW03

PROJECT: Anchor Lith Kem Ko PROJECT No.: 101351 PAGE 7 OF 9 PID Reading Depth Screen Packing SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES Interval (ft) 120 121 122 123 124dense fine sand, little clay stringers 125 126 127 128 129 130 5 131 -132 133 134 135-136 137-138 139 140-

BORING LOG

Boring No.: PW03

PROJECT: Anchor Lith Kem Ko

PROJEC	T No.:	101351		PAGE 8 OF 9	
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	
140—					_
_ 142_					-
					_
143-					
144 —					_
145—					_
146—	6				_
					_
- 148—					-
_ 149—					-
- 150 —					-
-					_
152					_
153—					_
154 —					_
155 —					_
156 —					_
 157 —					-
- 158—				lignite	- -
159					_
-				dense fine sand	
160 —					

BORING LOG

PROJEC	ROJECT: Anchor Lith Kem Ko									
PROJEC	CT No.:	101351		PAGE 9 OF 9						
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES						
160 —										
- 161 —										
162 — -	-									
163 —	- 1			End of Boring at 163 ft						
- 164 —										
- 165 —				Notes: - Approximately 24.000 gallons of water used						
- 166 —				- 50 pounds of revert (Variflow QD) used (120'-163')						
- 167 —				Variflow QD is a coarse granular, high viscosity blend of guar gum formualted for easy and quick dispersion in drilling applications.						
- 168				- Soil descriptions are based on soil cuttings and drillers observations except at locations where split-spoon samples are indicated.						
169 —										
- 170 —				- Type 1 sand						
171 —				IIIIIIIIIIIII- Bentonite						
				- Screen Interval						
173—				- Portland grout						
174 —				- Type 00 sand						
175—				- Bentonite slurry						
176—				Drum Count						
- 177 —				- 10 Soil - 3 Liquid						
178 —				- 1 Mix						
- 179—				-						
- 180 —				-						

Earth	Tech	AECO	M			BORING	S LOG	3	Boring	No.:	PW04
PROJEC	T: Anchor	Lith Kem I	Ко	CONTRAC	CTOR:	SGS Enviror	nmental	Services	PAGE 1 C)F 9	
PROJEC	CT No.:	101351		LOCATION	N:	Hicksville, N	Y		DATE:	4/8/	2008
CLIENT:	NYSDEC	;		DRILLER:		Jim			ET REP.:	Vip	ul
V	ATER LE	VELS						DRIL	LING AND SA	MPLING	
DATE	TIME	DEPTH			T	CASING		AUGER	CORE	-	TUBE
				TYPE		Steel		Steel			
						4-inch		6-inch	_		
	CMT		חום	wi./Fall							
Depth	Screen	Packing	FID			DEM	AARKS		HANGES		-
(ft)	Interval	1 acking	rteading				1/41/1/0, /		HANGEO		-
(1) 1 1 2 2 - 3 - 4 - - - - - - - -				Cover fill Medium	to fine :	sand, some	e coars	e to fine grave			

BORING LOG

Boring No.:

PROJEC	ROJECT: Anchor Lith Kem Ko									
PROJEC	CT No.:	101351		PAGE 2 OF 9	_					
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES						
20—										
					-					
22—					-					
23—					_					
24—					_					
25 — 										
20 27—					-					
					_					
29—				medium to fine sand, trace fine to medium gravel, trace silt CO = 1, LEL = 0, VOC = 0, H2S = 0, O2 = 20.9						
30—					_					
31 —					_					
32					_					
34 —					_					
- 35 —					_					
					_					
37—					_					
38—					_					
39 —										
40—					_					

BORING LOG

Boring No.:

PW04

٦

PROJEC	CT: Anchor	Lith Kem	Ko		
		101251			_
			PID		
Depth (ft)	Screen Interval	Packing	Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	_
40 —					
-					_
42 —					
- 43					_
					_
44 —					
45 —					
+0 -					_
47 —					
- 48					_
-					_
49 —					
50 —					
- 51 —					_
-					_
52—					
53 —					
- 54					-
- 54 -					_
55 —					
- 56 —					_
					_
57—					
58 -					
- 59				Dense fine sand	_
-					-
60 —					

BORING LOG

Boring No.:

PW04

PROJECT: Anchor Lith Kem Ko PROJECT No.: 101351 PAGE 4 OF 9 PID Depth Screen Packing Reading SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (ft) Interval 60-61-Varved clay 62 63· 64-65· 66 dense fine sand 67-68 69 70-71 72-1 73-74 75 76 77 78 79 CO = 0, LEL = 0, VOC = 0, H2S = 0, O2 = 20.9 silt and fine sand 80

BORING LOG

Boring No.:

PW04

٦

PROJE	ROJECT: Anchor Lith Kem Ko									
PROJE	CT No.:	101351		PAGE 5 OF 9	_					
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-					
80—	-									
- 81 —					_					
82 —										
- 83 —	-				_					
- 84 —										
- 85 —	-				_					
86—										
- 87 —	2				_					
- 88 —										
- 89 —	-									
90 —				dense fine sand, little clay stringers						
91 —	-									
92 —					_					
93 —	-									
94 —										
95 —	-									
96 —					_					
97 —	-				_					
- 98 —	-									
- 99 —	4									
- 100 —	4									

BORING LOG

Boring No.:

PROJEC	CT: Anchor	Lith Kem I	Кo		
PROJEC	CT No.:	101351		PAGE 6 OF 9	_
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	
100 —					_
- 101 —		QWA			
102 —	3	E E			
103—		Түр			I I
104—					_
105—					_
106—					_
107—					_
108—					_
109—				2nd verve clay CO = 0, LEL = 0, VOC = 0, H2S = 0, O2 = 20.9	_
110—					
111 —					
112—					
113—					
114—					_
115—					_
116—					_
117—	4				
118—					
119—					
				little clay stringers	_

BORING LOG

Boring No.:

PROJEC	CT: Anchoi	r Lith Kem I	Ko		
PROJEC	CT No.:	101351		PAGE 7 OF 9	_
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	_
120—					
121 —					
- 122 —				dense fine sand and clay stringers	_
- 123—					
- 124—					
- 125—					_
126					_
120 -					_
-					_
128—					
129 — -					
130—					
131 —					
132—	5				
- 133 —					
_ 134 —				Dense fine sand, little clay stringers	_
- 135 —					_
- 136 —					_
- 137 —					-
- 138—					_
- 130 -					-
-					_
140 —					

BORING LOG

Boring No.:

PROJEC	CT: Ancho	r Lith Kem	Ko		
PROJEC	CT No.:	101351		PAGE 8 OF 9	-
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-
140 —					
- 141 —					_
- 142 —					_
- 143 —					
- 144 —					_
- 145 —					_
- 146 —					_
- 147 —	6				_
- 148 —					-
- 149 —					-
- 150 —					-
- 151 —					-
- 152 —					_
- 153 —					_
- 154 —					-
- 155 —					-
- 156 —					-
- 157 —					-
- 158 —					_
- 159 —					_
- 160 —					_
	1	1			

BORING LOG

Boring No.:

PW04

PROJECT: Anchor Lith Kem Ko PROJECT No.: 101351 PAGE 9 OF 9 PID Reading Depth Screen Packing SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (ft) Interval 160-161 -CO = 0, LEL = 0, VOC = 0, H2S = 0, O2 = 20.9 162 7 163 End of Boring at 163 ft 164 Notes: 165 - Approximately 6,000 gallons of water used - 75 pounds of revert (Varilfow QD) used (59'-163') 166 Variflow QD is a coarse granular, high viscosity blend of guar gum formualted for easy and quick dispersion in drilling applications. 167 Coarser granules prevent lumps or encapsulation. - Soil descriptions are based on soil cuttings and drillers observations 168 except at locations where split-spoon samples are indicated. 169 170 - Type 1 sand 171· Bentonite 172 Screen Interval 173 - Portland grout 174-- Type 00 sand 175 - Bentonite slurry 176 Drum Count - 5 Soil 177. - 2 Liquid - 1 Decon pad 178 - 4 Mix 179 180

Earth	Tech	AECO	M			BORIN	IG LO	G	Boring No	o.: PW05
PROJEC	T: Anchor	Lith Kem I	Кo	CONTRAC	CTOR:	SGS Envir	onmenta	I Services	PAGE 1 OF	12
PROJEC	CT No.:	101351		LOCATIO	N:	Hicksville,	NY		DATE:	6/3/2008
CLIENT:	NYSDEC	;		DRILLER:		Jim			ET REP.:	Vipul
V	WATER LEVELS							DRIL	LING AND SAMP	LING
DATE	TIME	DEPTH			1	CASING		AUGER	CORE	TUBE
				TYPE		Steel		Steel		
				I.D.		4-inch		6-INCh		
	CMT		PID	WT./Fall						
Depth	Screen	Packing	Reading			RE	MARKS	. AND STRATUM CH	HANGES	-
(ft)	Interval		J					,		-
				Compac	ted fill					
1										_
'_										_
2—										_
_				Sand an	d Grav	vel				-
3—										_
-										-
4—										
										-
5-				CO = 0,	LEL =	0, VOC =	0, H2S	= 0, O2 = 20.9		
6—										_
- I										-
7—										_
_										-
8—										
										-
9—										
10										_
										-
11—										_
-										-
12—										
										-
13—										
14										_
										_
15—										_
-										-
16—										_
-										-
17—										
40										-
18										_
19										-
										-
20—										_

Γ

BORING LOG

Boring No.: PW05

PROJEC	PROJECT: Anchor Lith Kem Ko						
PROJEC	CT No.:	101351		PAGE 2 OF 12	_		
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	_		
20 —					_		
21 —							
22—							
_ 23—					-		
24 —							
25 —							
26 —					_		
27 —					_		
_ 28—					-		
- 30 —				CO = 0. LEL = 0. VOC = 0. H2S = 0. O2 = 20.9	_		
32 —							
33—							
34 —							
35 —					_		
- 36 —							
- 37 —					_		
- 38 —					_		
- 39 —					_		
40 —					_		

BORING LOG

PROJEC	PROJECT: Anchor Lith Kem Ko							
PROJECT No.: 101351 PAGE 3 OF 12								
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES				
40—								
41 —								
42—								
43—								
44 —								
45-					_			
46					-			
47 -								
48 -					-			
				dense fine sand, little fine gravel	-			
53—								
54 —					, I			
55—								
56—								
57—								
58-					-			
59— -				CO = 1, LEL = 0, VOC = 0, H2S = 0, O2 = 20.9	_			
00-								

Γ

BORING LOG

Boring No.: PW05

PROJECT: Anchor Lith Kem Ko						
PROJEC	CT No.:	101351		PAGE 4 OF 12		
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES		
60 —				_		
61 —				-		
62 —				-		
63 —						
64 —				_		
- 65 —				-		
66 —						
67—						
68—						
69—	4			_		
70 —				-		
- 71 —				-		
- 72—				-		
- 73—				-		
- 74 —				-		
- 75 —				-		
- 76 —				-		
- 77 —				-		
- 78—				-		
- 79—				-		
- 80—				-		
BORING LOG

PROJEC	CT: Anchor	Lith Kem	Ko		
PROJEC	CT No.:	101351		PAGE 5 OF 12	
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	_
80 — 81 — 82 — 83 — 83 — 84 — 85 — 86 — 87 — 88 — 90 — 91 — 92 — 93 — 93 — 93 — 93 — 93 — 93 — 93 — 93	2			Dense fine sand, some clay stringers, fine gravel lenses	

BORING LOG

PROJEC	CT: Anchor	· Lith Kem	Ko		
PROJEC	CT No.:	101351		PAGE 6 OF 12	_
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-
100—					_
101 —					_
102 —					_
103—					_
104 —					_
105 —					_
106—					_
107 —					_
108—					_
109—					_
110—					_
111 —					_
112—					_
113—					_
114—					_
115 —					
116—					_
117—					_
118—					_
119—					_
120 —	3				_

Γ

BORING LOG

Boring No.: PW05

PROJEC	PROJECT: Anchor Lith Kem Ko							
PROJEC	CT No.:	101351		PAGE 7 OF 12				
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES				
120—								
- 121 —				-				
- 122 —				-				
- 123 —				-				
- 124 —				-				
- 125 —				-				
- 126 —				-				
_ 127 —				-				
- 128 —				-				
_ 129 —				-				
- 130 —				-				
- 131 —				-				
- 132 —				-				
- 133 —				-				
- 134 —				-				
- 135 —				-				
- 136 —				-				
- 137 —				-				
- 138 —				-				
- 139 —				-				

BORING LOG

PROJEC	CT: Anchor	Lith Kem	Ко		
PROJEC	CT No.:	101351		PAGE 8 OF 12	-
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-
140 — - 141 — - 142 — - 143 — - 144 — - 145 — - 146 — - 147 — - 148 —	4			- Dense fine sand, some clay stringers - - -	
149 — 150 — 151 — 152 — 152 — 153 — 154 — 155 — 156 — 157 — 158 — 159 — 160 —				Dense fine sand, iron ore deposits	

BORING LOG

PROJEC	PROJECT: Anchor Lith Kem Ko							
PROJEC	CT No.:	101351		PAGE 9 OF 12				
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES				
(IT) 160	5			Lignite clay Dense fine sand				

BORING LOG

PROJEC	T: Anchor	·Lith Kem I	Ко	
PROJEC	T No.:	101351		PAGE 10 OF 12
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES
180 —				_
181 —				-
				-
- 183 —				Varve clay
- 184 —				-
- 185 —				-
- 186 —				-
- 187 —				-
- 188 —				-
- 189 —				Lignite clay
- 190 —				-
- 191 —				-
				-
				-
- 194 —	¢			-
- 195 —	Ø			-
- 196 —				-
- 197 —				-
- 198 —				- -
- 199 —				- -
200 —				

BORING LOG

PROJEC	CT: Anchor	· Lith Kem I	Ko		
PROJEC	CT No.:	101351		PAGE 11 OF 12	-
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-
200 —					
					_
					_
					_
204 —					_
205 —					_
206 —					_
207 —				Fine sand, some fine gravel	_
- 208 —					_
209 —					_
					_
					_
212 —					_
213—					_
214—					_
215—					_
216—					_
217—					_
218—					_
219—					_
220—					

BORING LOG

PROJE	CT: Anchor	Lith Kem	Ko		
PROJEC	CT No.:	101351		PAGE 12 OF 12	_
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	_
220 —	7				_
221 —				End of Boring at 221 ft bgs	
222-					
223—				Notes: - Approximately 5,000 gallons of water used	_
224 —				Enchances the carrying capacity of drilling fluids without significantly	_
225 —				increasing the viscosity. - 50 pounds of soda ash (59'-165')	-
226—				Used as an additive to revert to increase viscosity. - 75 pounds of revert (Variflow QD) used (59'-165')	_
				Variflow QD is a coarse granular, high viscosity blend of guar gum formualted for easy and quick dispersion in drilling applications.	_
228—				Coarser granules prevent lumps or encapsulation. - 3 gallons of Aquaclear PFD used	-
229—				Is a concentrated liquid polymer dispersant that provides superior mud and sediment removal form the formation.	-
230 —				 For clay distribution refer to gamma log Soil descriptions are based on soil cuttings and drillers observations 	_
- 231 —				except at locations where split-spoon samples are indicated.	_
232—				- Type 1 sand	_
233—				Bentonite	
234—				- Screen Interval	-
235 —				- Portland grout	_
- 236 —				- Natural Cave In	_
- 237 —				- Bentonite slurry	
238—				Drum Count	_
- 239—				- 2 Liquid	_
- 240 —				- 6 Soil	_

Earth	Tech	AECO	М			BORIN	G LO	G	Вс	oring No	.: PW06	
PROJEC	CT: Anchor	· Lith Kem I	Ko	CONTRAC	CTOR:	SGS Envir	onmenta	Services	PAG	E 1 OF	12	
PROJEC	CT No.:	101351		LOCATION	N:	Hicksville,	NY		DAT	Ξ:	5/19/2008	
CLIENT:	NYSDEC	;		DRILLER:		Jim			ET R	EP.:	Vipul	
V	ATER LE	VELS						DR	RILLING AN	ND SAMPL	ING	
DATE	TIME	DEPTH				CASING		AUGER		CORE	TUBE	
				TYPE		Steel		Steel				
				I.D.		4-inch		6-inch				
	CMT		חום	WT./Fall								
Depth	Screen	Packing	Peading			DE	MARKS		CHANGE	\$		-
(ft)	Interval	1 acking	rteading						ONANGE	5		-
				Compac	ted fill							
				•								-
												_
2—												
-												-
3—												
												-
4—												
				Medium	fine sa	and, some	coarse	to fine gravel.	cobbles			-
5-				CO = 2,	LEL =	0, VOC =	0, H2S	= 0, 02 = 20.9	9			
6						-						_
0-												_
7—												
												_
8—												
												-
9—												
10												-
10-												
11_												
												_
12—												
-												-
13—												
												-
14—												
15												_
15												_
16—												
												_
17—												
-												-
18—												
												-
19—												
20-												_
20-												

BORING LOG

Boring No.: PW06

PROJEC	CT: Anchor	Lith Kem I	Ko	
PROJEC	CT No.:	101351		PAGE 2 OF 12
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES
20—				_
				-
				-
23—				-
				-
25 —				-
26 —				_
27 —				_
28—				
29—				
30—				
31 —				
32—				
33—				-
34—				
35—				CO = 0, LEL = 0, VOC = 0, H2S = 0, O2 = 20.9
36—				-
37 —				-
38—				-
39 —				-
40 —				_

Γ

BORING LOG

Boring No.: PW06

PROJEC	ROJECT: Anchor Lith Kem Ko								
PROJEC	CT No.:	101351	351 PAGE 3 OF 12						
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-				
40 —					_				
41 —					_				
- 42 —					_				
- 43—					_				
- 44 —					_				
- 45 —					_				
- 46 —					_				
- 47 —					_				
- 48					_				
- 49					_				
- 50 —				Fine sand, little medium to fine gravel	_				
- 51 —					_				
- 52					_				
- 53—					_				
- 54 —					_				
- 55 —					_				
- 56 —					_				
- 57					-				
					_				
				Dense fine sand	_				
- 60 —				CO = 0, LEL = 0, VOC = 0, H2S = 0, O2 = 20.9	-				

BORING LOG

PROJEC	CT: Anchor	Lith Kem	Ko	
PROJEC	CT No.:	101351		PAGE 4 OF 12
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES
60 —				-
61—				_
62—				—
63 —				_
64—				_
65 —				_
66 —				-
67—				-
68—				-
69 —				-
70—				-
71—	1			-
72—				-
73—				-
74—				-
- 75 —				-
76—				-
77 —				-
- 78—				-
79—				-
80—				

BORING LOG

PROJECT: Anchor Lith Kem Ko										
PROJEC	CT No.:	101351		PAGE 5 OF 12	_					
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES						
80 — 81 — 82 — 83 — 83 — 84 — 85 —				Dense fine sand, some clay stringers						
86 — 87 — 88 — 89 — 90 — 91 — 92 —	2			Dense fine sand					
93 — 94 — 95 — 96 — 97 — 98 — 98 —				Dense fine sand, some silt						
100-				Dense fine sand, some silt	-					

BORING LOG

PROJECT: Anchor Lith Kem Ko										
PROJEC	CT No.:	101351		PAGE 6 OF 12	_					
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-					
100 —					_					
- 101 —					_					
- 102 —					_					
- 103 —					_					
- 104 —					_					
- 105 —					_					
- 106 —					_					
- 107 —				Dense fine sand, some clay stringers	_					
- 108 —					_					
- 109 —					_					
- 110 —					_					
- 111 —					_					
- 112—					_					
- 113—					_					
- 114 —					_					
- 115 —					_					
- 116—				Dense fine sand, some gravel, clay	_					
- 117 —				00 - 0, 222 - 0, 700 - 0, 720 - 0, 02 - 20.9	_					
- 118—					_					
- 119—	3				_					
_ 120 —					_					

BORING LOG

PROJECT: Anchor Lith Kem Ko										
PROJEC	CT No.:	101351		PAGE 7 OF 12						
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES						
120—										
121 —				_						
122—				Soft white clay						
- 123—				Dense fine sand						
124—				_						
125—				_						
126—				-						
- 127 —				Soft white clay						
- 128—				-						
- 129—				Dense fine sand, trace stringers						
- 130—				-						
- 131 —				-						
- 132—				-						
- 133—				-						
- 134 —				-						
- 135—				-						
- 136—				Varved Clay						
- 137 —				-						
- 138—				-						
- 139—				- Dense fine sand						
- 140 —										

BORING LOG

PROJECT: Anchor Lith Kem Ko										
PROJECT No.:	101351		PAGE 8 OF 12	_						
Depth Screen (ft) Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	_						
140— - 141—				-						
- 142— -				-						
143 — - 144 —			Dense fine sand, some clay stringers							
145-										
147				- -						
148— - 149—				-						
150				- -						
151 — 4 - 152 —				-						
153-				-						
155 —				-						
156 — _ 157 —			Varved Clay CO = 0, LEL = 0, VOC = 0, H2S = 0, O2 = 20.9	_						
158										
159— - 160—			Dense fine sand, silt							

BORING LOG

Boring No.: PW06

PROJEC	T: Anchor	[.] Lith Kem I	Ko					
PROJECT No.: 101351				PAGE 9 OF 12				
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	_			
160 —								
- 161 —					_			
162 —					_			
163 —					_			
164 —					_			
165 —					_			
166 —					_			
167 —	5				_			
168—					_			
169—					_			
170 —					_			
171 —					_			
172 —					_			
173—					_			
174 —					_			
175 —								
176 —								
177 —					_			
178 — -					_			
179 — _				Dense fine sand				
180 —								

BORING LOG

PROJECT: Anchor Lith Kem Ko									
PROJEC	CT No.:	101351		PAGE 10 OF 12					
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES					
180—									
181 —	6								
182—									
183—									
184 —									
185—									
186—									
187 —									
188—				Lignite, Clay					
189— -				-					
190 — -									
191 — -									
192 — -									
193 — -									
194 — -									
195 —									
196 —									
197 —									
198 — -									
199—									
200 —									

BORING LOG

PROJECT: Anchor Lith Kem Ko										
PROJECT No.:	101351		PAGE 11 OF 12	-						
Depth Screen (ft) Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	1 1						
200 — 201 — 202 — 203 — 203 — 204 — 205 — 206 — 207 — 208 —			- Dense fine sand, some silt - - -							
- 209 — - 210 — - 211 — - 212 — - 213 — - 213 — - 214 — - 215 — - 216 — - 217 — - 218 — - 219 — - 220 —			Dense fine sand, iron ore deposit CO = 0, LEL = 0, VOC = 0, H2S = 0, O2 = 20.9							

BORING LOG

PROJECT: Anchor Lith Kem Ko										
PROJE	CT No.:	101351		PAGE 12 OF 12	-					
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-					
220— - 221—										
222—	_/			End of Boring at 222 ft bgs						
223 — 224 — 225 — 226 —				Notes: - Approximately 5,000 gallons of water used - 10 pounds of no-sag used (100'-222') Enchances the carrying capacity of drilling fluids without significantly increasing the viscosity. - 200 pounds of revert (Variflo QD) used (59'-100', 100'-222'') Variflow QD is a coarse granular, high viscosity blend of guar gum						
227 — 228 — 229 — 230 —				 formualted for easy and quick dispersion in drilling applications. Coarser granules prevent lumps or encapsulation. 3 gallons of Aquaclear PFD used (188'-222') Is a concentrated liquid polymer dispersant that provides superior mud and sediment removal form the formation. For clay distribution refer to gamma log. 						
231 —				- Type 1 sand	_					
232 233 234 235 235 236 237 238 238 239				- Bentonite - Screen Interval - Portland grout - Natural Cave In - Bentonite slurry Drum Count - 5 Liquid - 4 Mix - 6 Soil - 1 Decon pad plastic.						
					_					

Earth	Tech	AECO	М			BORIN	G LOG	ì	Boring N	o.: PW07
PROJEC	CT: Anchor	Lith Kem I	Ko	CONTRA	CTOR:	SGS Enviro	onmental S	Services	PAGE 1 OF	12
PROJECT No.: 101351				LOCATIO	N:	Hicksville, N	٧Y		DATE:	4/14/2008
CLIENT: NYSDEC				DRILLER:		Jim			ET REP.:	Vipul
V	ATER LE	VELS						DR	LLING AND SAMP	PLING
DATE	TIME	DEPTH				CASING		AUGER	CORE	TUBE
				TYPE		Steel		Steel		
				I.D.		4-inch		6-inch		
	ONT		DID	WT./Fall						
Dopth	CMT	Dooking	PID			DEI				
(ft)	Interval	Facking	Reading			REI	MARNO, P	AND STRATOWN	SHANGES	
$\begin{array}{c} (11) \\ 1 \\ - \\ 2 \\ - \\ 3 \\ - \\ 3 \\ - \\ 3 \\ - \\ - \\ - \\ -$				Compac	ted fill	and, some	e fine gra	avel		

BORING LOG

PROJEC	PROJECT: Anchor Lith Kem Ko								
PROJEC	CT No.:	101351		PAGE 2 OF 12					
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES					
20—				—					
21 —				-					
22—				-					
23—				-					
24—				-					
-				-					
25-				-					
26-									
27—				_					
28—				_					
29—				-					
30—				-					
31_				-					
-				-					
32-				-					
33—				-					
34—				_					
35—									
36—				-					
37—				-					
38				-					
				-					
39-									
40—				—					

BORING LOG

PROJEC	PROJECT: Anchor Lith Kem Ko									
PROJEC	CT No.:	101351		PAGE 3 OF 12	_					
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	-					
40—					_					
41 —					_					
42—					_					
43—					_					
44 —					_					
45 —					_					
46—					_					
47 —					_					
48—					_					
49—				medium to sand, little fine gravel, trace silt	_					
50—					_					
51—					_					
52—					_					
53— -					_					
54 —					_					
55 —					_					
56 —					_					
57—				dense fine sand, clay stringer	_					
58—					_					
59—				Idense fine sand and white clay stringers	_					
60 —					_					

Γ

BORING LOG

Boring No.: PW07

PROJEC	PROJECT: Anchor Lith Kem Ko								
PROJEC	T No.:	101351		PAGE 4 OF 12	_				
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	I I				
60 —									
_ 61 —									
62—					I I				
63—									
64—					I I				
65 —					I I				
66 —									
67—									
68—					I I				
69—				dense fine sand	. I				
70—					. I				
71—	1				I I				
72—					. I				
73—					Ι.				
74—				dense fine sand, some clay stringers					
75—					l				
76—					. I				
77 —									
78—				dense fine sand					
79—									
80 —									

BORING LOG

PROJEC	T: Anchor	·Lith Kem I	Ко									
PROJEC	T No.:	101351		PAGE 5 OF 12								
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES								
80—												
81 —												
82—				-								
- 83 —				-								
- 84 —				-								
85 —				-								
- 86 —				-								
- 87 —				-								
- 88 —				-								
- 89 —				-								
90 —				-								
91 —				dense fine sand								
92 —				-								
93 —				-								
94 —				-								
95 —				-								
96 —	2			-								
97 —				-								
- 98												
99 —				- 								
100 —												

BORING LOG

PROJEC	CT: Anchor	Lith Kem	Ko									
PROJEC	CT No.:	101351		PAGE 6 OF 12	-							
Depth (ft)	Screen Interval	PID Packing Reading		SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES								
100—					_							
101 —												
102—					_							
103-					_							
104 —					_							
105 —					_							
106—					_							
107 —					_							
- 108 —					_							
- 109 —					_							
					_							
_ 111 —					_							
_ 112—					_							
- 113—					_							
- 114 —					_							
- 115 —					_							
- 116—					_							
- 117 —				dense fine sand CO = 0.1 EL = 0. VOC = 0. H2S = 0. O2 = 20.9	_							
118—				-0, LL - 0, VOO - 0, HZO - 0, OZ - 20.0	_							
_ 119—					_							
				little clay stringers	-							

BORING LOG

PROJEC	PROJECT: Anchor Lith Kem Ko										
PROJEC	CT No.:	101351		PAGE 7 OF 12							
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES							
120—											
121 —	3										
122—											
123—				1st varved clay							
124—				-							
- 125 —				-							
- 126—				-							
- 127 —				-							
- 128—				dense fine sand							
- 129—				-							
- 130 —				-							
- 131 —				-							
- 132—				-							
- 133—				-							
- 134—				lignite, little fine sand							
- 135—				-							
- 136—				-							
- 137 —				- 							
- 138—				- 							
- 139—				- 							
_ 140 —				- 							

BORING LOG

PROJEC	CT: Anchor	Lith Kem	Ko									
PROJEC	CT No.:	101351		PAGE 8 OF 12	_							
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES								
140 —					_							
141 —												
143-				dense fine sand CO = 0, LEL = 0, VOC = 0, H2S = 0, O2 = 20.9	-							
144 —					_							
145 —				interbedded sand and clay	_							
146—	4				_							
147 —					_							
148-					-							
149 -												
- 151 —					-							
- 152 —					-							
153 —					_							
154 —					_							
155 — -				stiff orange and white clay	_							
156 — -					_							
157 —					_							
158—					_							
159 —				interbedded sand and clay								
160—												

BORING LOG

PROJEC	PROJECT: Anchor Lith Kem Ko										
PROJEC	CT No.:	101351		PAGE 9 OF 12							
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES							
160—											
161 —											
162—				_							
163—				_							
164 —				_							
165 —											
166—				Stiff clay							
167 —				Interbedded clay and sand							
168—				_							
169—											
170—				_							
171 —	5										
172—											
173—											
174—											
175—											
176—											
177 —											
178—											
179—				-							
180—											

BORING LOG

PROJEC	CT: Anchor	Lith Kem	Ko								
PROJEC	CT No.:	101351		PAGE 10 OF 12							
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES							
180—											
181 —											
182—											
183—											
184 —											
185—											
186—											
187 —				dense fine sand							
188—				_							
189—				-							
190 —				-							
191 —				-							
- 192 —				-							
193 —				-							
- 194 —				-							
195 —				-							
- 196 —				-							
- 197 —				-							
198—	6			-							
- 199 —				-							
200 —											

BORING LOG

PROJECT: Anchor Lith Kem Ko											
PROJECT No.:	101351		PAGE 11 OF 12								
Depth Screen (ft) Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES								
Depth Screen (ft) Interval 200 - 201 - 202 - 203 - 204 - 205 - 206 - 207 - 208 - 209 - 210 - 211 - 213 - 214 - 215 - 216 - 217 - 218 - 219 - 220 -	Packing	Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES								

BORING LOG

PROJE	CT: Anchor	Lith Kem	Ko		
PROJE	CT No.:	101351		PAGE 12 OF 12	_
Depth (ft)	Screen Interval	Packing	PID Reading	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	1
220 —					_
221 —				End of Boring at 221 ft bgs	_
222—					_
223-				Notes: - Approximately 6,000 gallons of water used - 150 pounds of revert (Variflow OD) used (57'-223')	
224 — - 225 —				Variflow QD is a coarse granular, high viscosity blend of guar gum formualted for easy and quick dispersion in drilling applications.	
 226—				- For clay distribution refer to gamma log.	_
- 227 —				Type 1 sand	- -
228				Bentonite	_
229—				- Screen Interval	_
230 —				- Portland grout	_
231 —				- Type 00 sand	_
232—				- Bentonite slurry	
233—				Drum Count	_
234 —				- 5 Soil - 7 Mix	
235 —				- 1 Liquid - 1 Decon pad	_
236 —					_
237 —					_
238—					_
- 239—					_
240—					_

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	DEVE	LOPMEN	T FORI	М	Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATI	ON	_			4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
Hicksv	ille, NY				Ma	ay 7, 20	800			May 7, 2008	
2. CLIENT					6. NAME C	OF INSPEC	FOR				
		NY					SPECTOR				
SGS F)rillina										
000 2	Jinnig										
ONE WELL		:	0.138	gal	WELL TD:		70	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	•		(ntu)			
9:01	57.5	60							Controller at	90 ft head	
									Pump placed	l at 65 ft bos	
9.35			18.83	987	9 91	4 72	49	105	(CPM4-7-8)	at bo it bgo	
0.00			10.00	007	0.01	7.72	-10	100			
0.40			10 10	074	0.92	47	52	467			
9.40			19.19	974	9.02	4.7	52	407			
0.50			10.22	050	10.24	4 70	20	FCC			
9.50			10.32	952	10.34	4.72	30	000		da .	
									weil purged	ary	
									Smell of rotte	en garbage	
									Purged vol =	1 gallons	
Pump	Type:	Micro do	uble va	lve pump	S						
Analyti	ical Par	ameters:	N/A								

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	DEVE	LOPMEN	T FOR	М	Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATI	ON				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
Hicksv	ille, NY	/			Ma	ay 7, 20	08			May 7, 2008	
2. CLIENT					6. NAME C	DF INSPEC	IOR				
3. DRILLIN		NY			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	Drilling										
	3										
ONE WELL		:	0.248	gal	WELL TD:		80	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
10:25	57.5	80							Controller at	100 ft head	
									Pump placed	l at 70 ft bgs	
10:30			20.39	338	9.94	4.93	56	648	(CPM4-8-7)		
10:40			20.62	825	9.9	4.8	29	117			
						-	-				
10:55			20.53	889	10.06	4.76	37	206			
11:05			20.63	881	10.04	4.71	32	185			
11.00			20.00	001	10101		02				
11.15			20.1	823	10.37	4 65	32	203			
11.10			20.1	020	10.07	1.00	- 02	200			
11.25			21 33	762	99	4 64	30	164			
11.20			21.00	102	0.0	1.01	00	101			
11.35			21 56	788	12 49	4 63	38	209			
11.00			21.00	100	12.45	4.00	00	200		dry	
									Smell of rotte	arhane	
									Purged vol -	1 25 gallons	
									Filtor currour	dod ny fino cond	
										ided fly fille Salid	
	-										
Pump	i ype:	wicro do	uble va	ive pump	S						
Analyti	ical Par	rameters:	N/A								

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	DEVE	LOPMEN	T FOR	М	Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATI	ON				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
Hicksv	ille, NY	<i>'</i>			Ma	ay 7, 20	800			May 7, 2008	
2. CLIENT					6. NAME C	OF INSPECT	FOR				
							SPECTOR				
	ng compa Drilling				7. SIGNAT	UKE OF IN	SPECTOR				
500 L	/ming										
ONE WELL		:	0.358	gal	WELL TD:		90	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	нα	ORP	Turbidity	1	REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(ma/L)	P		(ntu)			
		<u> </u>	(-)	(() /			())			
9.05	57 5	60							Controller at	85 ft head	
5.05	57.5	00							Pump placed	l at 72 ft bas	
0.15			10 77	255	0.60	1 00	96	00		1 at 72 it bys	
9.15			10.77	200	9.69	4.02	00	90	(CPIVI4-0-7)		
			10.05	=	0.00						
9:30			19.35	533	9.62	4./1	75	89			
9:40		60	19.96	324	9.46	4.7	65	52.6	Controller at	100 ft head	
									Pump placed	l at 85ft bgs	
9:45			18.99	377	9.98	4.70	39	54.5	(CPM4-8-7)		
9:55			19.27	716	10.02	4.73	15	49.6			
10.02			19 44	711	10.06	4 68	35	48			
10.00					10.00		00	.0	Smell of rotte	en darbade	
									Purged vol -	0.75 gallons	
										0.75 gallolis	
			1	I	1			I	1		
Pump	Type	Micro do	uhle va	lve numn	S						
unp	i ype.			ive pump	0						
Analyt	ical Dav	amotora	NI/A								
Analyli	icai Fdi	ameters.	IN/ <i>I</i> A								

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	DEVE	LOPMEN	T FOR	М	Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATI	ON				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
Hicksv	ille, NY				Ma	ay 7, 20	08			May 7, 2008	
2. CLIENT	=0				6. NAME C	DF INSPEC	IOR				
3. DRILLIN		NY			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	rillina										
ONE WELL	VOLUME	:	0.468	gal	WELL TD:		100	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
12:15	57.5 60								Controller at	100 ft head	
									Pump placed	l at 75 ft bgs	
12:25			26.65	355	10.06	4.74	48	118	(CPM3-10-10))	
									``````````````````````````````````````	/	
12:35			26.52	565	10.17	4.67	38	113			
12.20			26 16	683	10 27	4 64	27	92.5			
12.00			20.10	000	10.27			02.0			
13.00			26.26	731	0.83	4 61	<i>4</i> 1	4.8			
10.00			20.20	701	0.00	4.01	1	4.0			
13.07	3:07 60								Controller at	130 ft boad	
15.07		00							Dump placed	1 of 07 ft bac	
12.15			26.71	707	0.65	1.62	26	271		at 97 it bys	
13.15			20.71	131	9.00	4.03	30	271	(CFIVI4-0-7)		
40.05			05.04	700	10.42	4.00	22	70.0			
13:25			25.21	768	10.43	4.63	33	70.8			
40.55			05.40	750	40.40	4.00	20	40.4			
13:55			25.18	758	10.43	4.62	30	10.4	D	4	
									Purgea voi =	1 gallon	
Pump	Type:	Micro do	uble va	lve pump	s						
Analyti	cal Par	ameters:	N/A								
A **tyco** International Ltd. Company

_					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	VELL DEVELOPMENT FORM . location Hicksville, NY . client					r Lith K	em Ko		101351	1 оғ	1
1. LOCATI	ON				4. DATE V	VELL STAR	TED		•	5. DATE WELL COMPLETED	
Hicksv	ille, NY	<i>'</i>			Ma	ay 7, 20	800			May 7, 2008	
2. CLIENT					6. NAME C	OF INSPEC	FOR				
							SPECTOR				
	)rillina				7. SIGNAI		SFLOTOR				
500 L	/ming										
ONE WELL		:	0.578	gal	WELL TD:		110	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рΗ	ORP	Turbidity	1	REMARKS	
_	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	•	-	(ntu)			
	. ,	, ,		. ,	,						
15.22	57 5	60							Controller at	100 ft head	
10.22	07.0	00							Pump placed	at 75 ft bas	
15.40			25.13	345	0.11	46	76	102	(CPM2_15_1	5)	
15.40			25.15	345	9.44	4.0	70	102	(CF102-15-16	))	
45.50			05.40	500	0.00	4.50	50	00.0			
15:50			25.48	588	9.39	4.56	50	28.3			
16:00		100							Controller at	130 ft head	
	0.05								Pump placed	l at 105 ft bgs	
16:05			706	10.54	4.55	45	349	(CPM2-15-18	5)		
16:15			22.17	708	10.51	4.54	41	763			
16:20			21.92	698	10.63	4.54	45	302			
						-					
16:30			21 04	705	10.99	4 55	27	248			
10.00			21.01	100	10.00	1.00	21	210			
16.40			20.78	701	11 01	1 56	23	32.2			
10.40			20.70	701	11.01	4.00	20	52.2		1.5 gallon	
										1.5 galloli	
					ļ				ļ		
					ļ						
					-				•		
Pump	Type:	Micro do	uble va	lve pump	S						
	) - <del>.</del> .				-						
Analyti	ical Par	ameters.	N/A								
, analyti											

A **tyco** International Ltd. Company

#### WELL NO. PW01-6

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	DEVE	LOPMEN	T FOR	M	Anchor	<u>r Lith K</u>	em Ko		101351	1 оғ	1
1. LOCATI		,	_	_	4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
2. CLIENT	llie, in i				IVIC 6. NAME (	$\frac{1}{3}$ <b>Y I</b> , $\angle \cup$	TOR			Way 7, 2000	
NYSD	EC				•••••						l
3. DRILLIN		NY			7. SIGNAT	URE OF IN	SPECTOR		-		
SGS D	Jrilling										
ONE WELI		:	0.688	gal	WELL TD:		120	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	1	REMARKS	
			[]								
13:10	57.5	60				['			Controller at	100 ft head	
									Pump placed	d at 75 ft bgs	
13:20			26.56	296	9.74	4.66	81	90.5	(CPM2-15-15	5)	
'	<u> </u>					<u> </u>					
13:30	<u> </u>	<u> </u>	26.36	297	9.89	4.63	68	62.3			
	<b>└──</b> ′	<b></b>	<u> </u> '		ليسيل	<u> </u>	L				
13:40	<b>└───</b> '	───	26.12	306	9.92	4.63	57	65.6	4		
10.50	<b>└───</b> ′	───	07.04	400	0.40	1.00			-		
13:50	<b>├</b> ────'	───	27.04	439	9.48	4.62	58	68.2	-		
14.00	<b>└───┘</b>	┣────	26.22	710	10.04	4 72	12	12 7			
14.00	┝───┘	├───	20.25	/ 12	10.04	4.13	13	43.7			
14.08	<b>├</b> ────′	100	<b> </b> '	┢────	╂────┦	'	┢────	├───	Controller at	120 ft head	
14.00		100		<u> </u>	<b>∤</b> ───┦	'	┢────	<del> </del>	Pump placed	1 at 118 ft bos	
14:15		<u> </u>	22.36	856	11.89	4.76	12	387	(CPM2-18-12	2)	
		<u> </u>			+	···· -				_/	
14:25		1	22.26	765	11.97	4.75	10	196	1		
, i					1				1		
14:35		<u> </u>	22.27	743	11.96	4.74	11	172			
14:45			21.72	672	12.03	4.72	13	175			
<u> </u>	<u> </u>	<u> </u>	!		I	<u> </u>					
14:55	<b>└──</b> ′	<b></b>	21.32	618	12.12	4.7	5	107			
	<b>└──</b> ′	───			<u>   </u>		<u> </u>				
15:15	<b> '</b>	───	21.13	650	11.45	4.72	-/	1/1	<u> </u>		
45.20	<b>├</b> ────'	───	20.60	C10	44.61	4 74	<u> </u>	460	-		
15:20	<b>└───┘</b>	┣────	20.69	619	11.01	4.71	-ð	162	Durgod vol -	2.25 callon	
╏────┘	┟────┘	<b> </b>	<b> '</b>	<b> </b>	┨────┦	┢────┘	───	╂────		2.20 yanon	
<b> </b> '	<b>├</b> ────′	<del> </del>	<b> </b> '	┣────	╂────┦	'	┣────	├───	<u> </u>		
<b> </b> '		L	<u> </u>			<u>لــــــــــ</u>	L	L			
Pump	Type.	Micro do	uble va	alve numr	19						l
1 on the	1960		0010 12	100 P 0111P	.0						
Analyti	ical Par	rameters:	N/A								

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET SHEET	ſS
WELL	DEVE	L <u>OPMEN</u>	T FOR	M	Ancho	r <u>Lith K</u>	em Ko		101351	1 OF 1	
1. LOCATI	ION	-			4. DATE W	VELL STAR	TED			5. DATE WELL COMPLETED	
Hicksv	ille, NY	<u>′                                    </u>			Ma	ay 7, 20	108			May 7, 2008	_
	FC				6. NAME	JF INSPECT	<b>OR</b>				
3. DRILLII		NY			7. SIGNAT	TURE OF IN	SPECTOR				-
SGS C	Drilling										
	¥						·				
ONE WELL		:	0.798	gal	WELL TD:		130	ft	PUMP INTAKE:		
	Depth	Burgo		FIE	LD MEAS	SUREME	NTS				
Time	Water	Purge	Tomp	Conduct		<u>ън</u>	ORP	Turbidity	4	DEMADKQ	
Time	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	1 11		(ntu)			
┟────┤		(,	(*,	(1110, 011.)	(	!	[]	(,	+		-
10.35	57.5	60		<u> </u>	łł	<b>├</b> ────┦	'	├	Controller at	100 ft head	-
10.00	07.0	00		<u> </u>	V	┟────┦	i'	┣────	Dumn place	d at 75 ft has	-
10.50	<b> </b> '	<del> </del>	25 11	217	8.23	52	16	230	1/CDM2_15_1	<u>בו היה הטעט</u>	-
10.50	┟────┘	┠────	20.11	317	0.20	0.2	40	200		5)	-
11.00	───′	───	24.1	250	0.71	4 75	62	1 / Q	<del> </del>		-
11.00	┝────'	───	24.1	259	Ŏ./I	4.15	63	140			_
44.10	┝────'	───	04.07	064	0.60	47	62	407			_
11:10	<b> '</b>	───	24.37	204	ŏ.o∠	4.7	62	127	<b></b>		_
11.00	<b>↓</b> '	───	04.70	010	0.50	4.07	<u> </u>	447	<b></b>		_
11:20	<b>↓</b> '		24.76	319	8.52	4.67	55	117	╉─────		_
	<b> '</b>	───		<u> </u>		<u> </u> '	<u> </u>		<b></b>		_
11:30	<b>└──</b> ′	Ļ	26.02	596	10.26	4.65	52	73.5			
<u> </u>	<b>└──</b> ′	<u> </u>	<u> </u>		<u> </u> '	<u>                                     </u>	Ļ'				
11:40	<u> </u>	<u> </u>	26.06	681	10.34	4.64	38	39.6			
'	<u> </u>	<u> </u>				<u> </u>	<b></b> `				
11:50	<u> </u>	90				<u> </u>	L'		Controller at	140 ft head	
<u> </u>	<u> </u>					<u> </u>	L'		Pump placed	d at 128 ft bgs	
12:00	<u> </u>		22.78	696	11.97	4.61	27	N/R	(CPM2-18-12	2)	
	<u> </u>					<u> </u>	<u> </u>				
12:05	<u>['</u>		20.73	718	13.06	4.55	19	266			
						[ <u> </u>					
12:10	<u>['</u>		20.95	662	12.96	4.54	19	249	Γ		
12:20			20.93	616	12.84	4.53	17	235			
									1		
12:30			20.53	576	13.34	4.51	25	269	1		
									1		
12:45			19.89	557	13.53	4.51	24	269	1		
					1	i			Purged vol =	= 2 gallon	
					<b> </b>			1	Pump screer	n covered with fine sand	
l	<b>├</b> ───′				<b>├</b> ──┤			<u>├</u> ───	1		
<b> </b> '	L	L	<u> </u>	L	<u> </u>	L	·	L			
Pump	Type.	Micro do	whie va	alve numr	<b>`</b>						
	Typo.			no bamb	,						
Analyt	ical Pa	romotors.	ΝΙ/Δ								
Analyt	icar i ai	ameters.									

A **tyco** International Ltd. Company

_					PROJECT				PROJECT No.	SHEET SHEETS
WELL	VELL DEVELOPMENT FORM LOCATION HICKSVIIIE, NY CLIENT					r Lith K	em Ko		101351	1 OF 1
1. LOCATI	ON				4. DATE W	ELL STAR	TED		•	5. DATE WELL COMPLETED
Hicksv	ille, NY	,			Apr	il 30, 2	800			April 30, 2008
2. CLIENT					6. NAME C	OF INSPECT	FOR			
NYSD	EC									
		NY			7. SIGNAT	URE OF IN	SPECTOR			
363 L	rilling									
ONE WELL		:	0.154	gal	WELL TD:		70	ft	PUMP INTAKE:	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS			
Time	Water	Rate	Temn	Conduct	DO	nH	ORP	Turbidity	-	REMARKS
Time	(ft)	(ml/min)	(C)	(ms/cm)	(ma/l)	pri	on	(ntu)		NEMAKKO
	(14)	(1110/11111)	(0)	(ma/cm)	(iiig/L)			(iitu)		
0.00	50	00	40.04	000	40 54	4.40		74.0	<u>Cantuallan at</u>	100 ft h a a d
8:30	56	80	10.91	288	10.54	4.16		74.3	Controller at	100 ft head
8:40									Well purged	dry. Stopped for well to
									recharge	
9:05		40	10.72	306	11.13	4.49		39.2	Controller at	80 ft head
0.10			324	8 4 5	1 71		3/1 30			
3.10			11.50	524	0.45	4.71		54.50		
0.00			44 54	204	0.00	4.70		22.40		
9:20			11.51	321	8.96	4.76		33.10		
									Purged Vol =	1 gallons
Pump	Type:	Micro do	uble va	lve pump	S					
		-								
Analvti	cal Par	ameters.	N/A							

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET SHEETS
WELL	NELL DEVELOPMENT FORM LOCATION Hicksville, NY					r Lith K	em Ko		101351	1 OF 1
1. LOCAT	ION				4. DATE W	ELL STAR	TED		•	5. DATE WELL COMPLETED
Hicksv	ille, NY	/			Apr	il 30, 2	800			April 30, 2008
2. CLIENT					6. NAME C	OF INSPECT	FOR			
							SPECTOR			
SGS D	)rillina				7. OIONAI		DILOTOR			
	, ining									
ONE WELL		:	0.319	gal	WELL TD:		85	ft	PUMP INTAKE:	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS			
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	-		(ntu)		
9:55	56	120	12.5	303	9.93	5.04		83.4	Controller at	95 ft head
		-								
10.10			13 42	472	10 19	4 54		191		
10.10			10.12		10.10	1.01		10.1		
10.15			13.54	480	10.13	1 55		0.2		
10.15			15.54	400	10.15	4.55		9.2		
10.20			12.25	476	10.20	1 56		21.00		
10.20			13.35	470	10.20	4.30		21.00		
40.05	2:35									
12:35	2:35								DEC recomn	nended using 0.011 gai/ft
									Purging stop	ped immediately
									Purged Vol =	3.5 gallons
-										
_	_									
Pump	Type:	Micro do	uble va	lve pump	S					
Analyti	ical Par	ameters:	N/A							

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL DEVELOPMENT FORM 1. location Hicksville, NY 2. client					Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATI	ON	_			4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	)
Hicksv	ille, NY				Apr	il 30, 2	800			April 30, 2008	
2. CLIENT					6. NAME C	OF INSPEC	TOR				
		NY			7 SIGNAT		SPECTOR				
SGS D	)rillina				n olona		of Loron				
000 2	Jinnig										
ONE WELL		:	0.484	gal	WELL TD:		100	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	-		(ntu)			
13:00	56	100	14.3	171	10.09	5.28		154	Controller at	110 ft head	
									Pump placed	at 70 ft bos	
13.15			14 37	292	10 57	4 58		66.3		at to thogo	
10.10			14.07	202	10.07	4.00		00.0			
12.20			1/ 95	274	10.25	1 55		15.6	Durgod 1/2 y		
15.20			14.05	5/4	10.55	4.55		45.0			
12.50		00	14.02	496	10.02	1 50		74 7	Controllar at	10E ft bood	
13.50		00	14.93	400	10.65	4.59		/ 1./	Controller at		
40.55			40.55	400	40.04	4 5 4		00.00	Pump placed	at 95 ft bgs	
13:55			16.55	488	10.31	4.54		63.90			
14:05			16.75	497	10.37	4.57		46.80			
14:10			17.05	510	10.35	4.58		45.80			
14:15			16.05	515	10.72	4.53		45			
									Purged Vol =	1 gallon	
								L			
Dume	Tunai	Miora da									
Pump	i ype:		uble va	ive pump	5						
A notest		omotore									
Analyti	ical Par	ameters:	IN/A								

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	DEVE		T FOR	М	Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATI		,			4. DATE W		TED			5. DATE WELL COMPLETED	
HICKSV 2 CLIENT	ille, in r				Apr 6 NAME (	TI 30, Z				April 30, 2008	
NYSD	FC				0. 10/une 0						
3. DRILLIN		NY			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	Drilling										
ONE WELL		:	0.649	gal	WELL TD:		115	ft	PUMP INTAKE:		
	Depth	Durana		FIE	LD MEAS	SUREME	NTS				
Time	to Water	Purge	Tomp	Conduct	DO	лH	OPP	Turbidity	REMARKS		
TIME	(ft)	(ml/min)	(C)	(ms/cm)	(ma/L)	pri	ON	(ntu)			
	(,	(,)	(0)	(	(			()			
15:20	56	80	15.68	165	10.86	5.75		69.5	Controller at	110 ft head	
									Pump placed	d at 85 ft bos	
15:25			15.39	149	10.68	5.44		25			
				_		-		_			
15:30			16.51	150	10.56	5.37		24.5			
15:35			16.13	150	10.74	5.37		26.1			
15:40			155	10.78	5.33		29.20				
15:45			15.91	198	10.93	5.29		46.70	Purged 1/2 w	vell volume	
15:50		100	15.69	475	10.88	5.20		299.00	Controller at	135 ft head	
									Pump placed	d at 130 ft bgs	
15:55			15.62	517	10.86	5.19		106			
40.00			45.05	50.4	10.0			70.4			
16:00			15.27	504	10.9	5.23		78.4			
40.05			45.45	400	40.0	5.40		<b>547</b>	-		
16:05			15.45	498	10.9	5.19		54.7			
16.15			15 71	170	10.07	5 10		27			
10.15			15.71	470	10.97	5.19		37			
16.20			15.63	468	10.81	5 18		36.5			
10.20			10.00	400	10.01	0.10		00.0	Purged Vol -	1 gallon	
										ganon	
									1		
									1		
									1		
									Ī		
									Ī		
			-	-				-	-		
Pump	Type:	Micro do	uble va	lve pump	s						
Analyti	ical Par	ameters:	N/A								

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL DEVELOPMENT FORM 1. LOCATION Hicksville, NY 2. CLIENT					Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATI	ION	-			4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
Hicksv	ille, NY	/			Ma	ay 1, 20	800			May 1, 2008	
2. CLIENT					6. NAME C	OF INSPEC	FOR				
		NV					SPECTOR				
SGS D	)rillina				n olona		or coron				
0001	Jinnig										
ONE WELL	VOLUME	:	0.814	gal	WELL TD:		130	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	-		(ntu)			
7:45	56	60							Controller at	100 ft head	
									Pump placed	d at 80 ft bos	
7:55			8.77	392	12.18	5.42		52.3			
			0			0		02.0			
8.02			11 01	208	6.31	5 37		16.5			
0.00			11.01	200	0.01	0.07		10.0			
8.20			10.43	156	11 26	5 44		4.8		1 at 90 ft has	
0.20			10.40	100	11.20	0.77		4.0		1 41 50 11 595	
8.25			11 11	156	10.83	534		0.80			
0.25			11.11	150	10.05	5.54		0.00			
8.37		100							Controller at	140 ft bood	
0.57		100								140 It fiedu	
0.15			12.2	601	10.02	6.02		127.00		at 125 ft bys	
0.40			13.3	004	10.03	0.02		127.00			
0.55			10 51	1010	10.01	6 1 4		40.4			
0.00			13.31	1010	10.01	0.14		40.4			
0.05			40.70	1000	10.00	F 00		10.0			
9.05			13.72	1000	10.06	5.90		13.9			
0.45			40.04	050	0.00	0.05		4.0			
9:15			13.84	950	9.89	6.25		4.2			
0.05			44.00	700	0.00	0.07		7.0			
9:25			14.03	792	9.99	0.27		1.2			
									Dunnertit		
									Purged Vol =	2.5 gallon	
									<b> </b>		
									l		
	-										
Pump	Type:	Micro do	uble va	lve pump	S						
	–										
Analyti	ical Pa	rameters:	N/A								

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	WELL DEVELOPMENT FORM L LOCATION Hicksville, NY C CLIENT					r Lith K	em Ko		101351	1 оғ	1
1. LOCATI	ON	_			4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
Hicksv	ille, NY	/			Ma	ay 1, 20	800			May 1, 2008	
2. CLIENT					6. NAME C	OF INSPEC	FOR				
		NV					SPECTOR				
SGS D	)rillina				7. OIGHAI		DI LOTOK				
	, ming										
ONE WELL	VOLUME	:	0.979	gal	WELL TD:		145	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рH	ORP	Turbidity		REMARKS	
_	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	•	-	(ntu)			
	. ,	. ,	, í	. ,	, <b>,</b> ,			. ,			
10.46	56	80							Controller at	110 ft head	
10.40	00	00							Pump placed	1 at 00 ft bas	
11.25			10 51	107	10.02	6 1 0		140		1 81 90 11 993	
11.55			10.01	107	10.03	0.10		142			
40.00			10.50	4.00	0.07	5 70		00.5			
12:00			19.53	169	9.27	5.79		33.5			
12:20		100	17.14	694	9.94	5.22		153	Controller at	160 ft head	
									Pump placed	l at 140 ft bgs	
12:35			16.37	799	10.57	5.13		89	(CPM4-10-5)		
12:55			17.16	756	9.32	5.11		43.30			
13:10			17.59	757	9.32	5.15		47.60			
13.30			17 09	745	96	5 16		49.3			
					0.0	00			Purged Vol =	1 75 gallon	
										in o gaion	
									<b> </b>		
Pump	Type:	Micro do	uble va	lve pump	S						
		-									
Analvti	ical Pai	ameters:	N/A								

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	WELL DEVELOPMENT FORM 1. LOCATION Hicksville, NY 2. CLIENT					r Lith K	em Ko		101351	1 оғ	1
1. LOCATI		,			4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
HICKSV	ille, NY					3y 1, 20	108 TOP			May 1, 2008	
	FC				O. NAME	JF INSPEC	IUK				
3. DRILLIN		NY			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	Drilling										
			0.000				400				
ONE WELL	VOLUME	:	0.832	gai	WELL TD:		160	π	PUMP INTAKE:		
	Depth			FIE	LD MEAS	SUREME	NTS				
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
14:40	56	80	18.29	847	9.87	6.7		114	Controller at	100 ft head	
									Pump placed	l at 85 ft bgs	
15:07			17.25	205	9.92	6.88		14.2			
15:15			18.61	180	9.33	6.26		28.7			
15:20		80							Controller at	165 ft head	
	5:25 10.55 160								Pump placed	d at 155 ft bgs	
15:25			19.55	160	9.01	6.21		19	(CPM3-11-9)		
15:30			19.25	166	9.04	5.84		61.40			
15:35			19.02	204	9.21	5.94		104.00			
15:45			18.48	458	9.33	6.23		29.2			
15:50			18.46	510	9.39	5.88		38.4			
15:55			18.48	528	9.36	5.84		28.7	-		
									Purged Vol =	1 gallon	
									-		
Duran	Tunai	Mioro d-	ublesse								
Pump	i ype:		uble va	ive pump	5						
Anolyt	ical Da	amotora									
Anaiyti	icai Fdi	ameters.	11/7								

A **tuco** International Ltd. Company

<u> </u>					PROJECT				PROJECT No.	SHEET SHEETS
WELL	VELL DEVELOPMENT FORM LOCATION Hicksville, NY CLIENT					r Lith K	em Ko		101351	1 оғ 1
1. LOCAT					4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED
HICKSV	ille, NY				Apr	11 29, 2	008			April 29, 2008
	FC				O. NAME	JF INSPEC	IOR			
3. DRILLIN		NY			7. SIGNAT	URE OF IN	SPECTOR			
SGS D	Drilling									
ONE WELL		:	0.176	gal	WELL TD:		72	ft	PUMP INTAKE:	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS			
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	-	REMARKS
9:30	56	100								
9:45			9.86	609	-	458		34		
9:50			10.02	608	12.21	4.59		34	-	
0.55			0.05	610	10.0	4 5 0		25 50		
9:55			9.95	619	12.2	4.59		35.50		
10.00			9 97	621	12.2	4 60		38 30		
10.00			5.57	021	12.2	4.00		00.00		
10:15			9.51	654	12.45	4.67		28.00	Puraed Vol =	= 1.5 gallons
									i ingen er	Je generie
									ł – – – – – – – – – – – – – – – – – – –	
								ļ	1	
						L	L		1	
									1	
									1	
Pump	Туре:	Micro do	uble va	ve pumps	6					
Analyti	ical Par	ameters:	N/A							

A *tuco* International Ltd. Company

Ē					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	VELL DEVELOPMENT FORM . LOCATION Hicksville, NY . CLIENT					r Lith K	em Ko		101351	1 оғ	1
1. LOCATI					4. DATE W	VELL STAR	TED			5. DATE WELL COMPLETED	
HICKSV	ille, NY				Apr	11 29, 2	008			April 29, 2008	
	FC				O. NAME	JF INSPEC	IOR				
3. DRILLIN		NY			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	Drilling										
ONE WELL	VOLUME :		0.319	gal	WELL TD:		85	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)		REMARKS	
11:45	56	80	11.11	190	11.55	5.48		39			
11:50			11.16	473	11.19	5.86		17			
10.00								10.0			
12:00			11.2	697	11.2	6.3		16.3			
10.15			12.01	705	11 24	6 42		17.40			
12.15			12.01	705	11.24	0.43		17.40			
12.40			11.6	745	11.5	6 5 1		23.00			
12.40			11.0	740	11.0	0.01		20.00			
13:05			11.85	12.2	9.26	6.60		14.50	Puraed Vol =	- 2 gallons	
											-
									l		
Pump Analyti	Type: ical Par	Micro do ameters:	uble va N/A	ve pump	6						

A **tuco** International Ltd. Company

WELL DEVELOPMENT FORM					PROJECT				PROJECT No.	SHEET S	HEETS
WELL	WELL DEVELOPMENT FORM 1. LOCATION Hicksville, NY					r Lith K	em Ko		101351	1 оғ	1
1. LOCAT	ION				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
Hicksv	ille, NY				Apr	il 29, 2	008			April 29, 2008	
2. CLIENT					6. NAME C	OF INSPEC	FOR				
		NY			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	Prillina										
					Į						
ONE WELL			0.484	gal	WELL TD:		100	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рΗ	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
13:45	56	100	10.24	188	11.83	5.82		500			
14:00			10.15	259	12.2	6.21		122			
4445			0.70		10.00	0.00		405			
14:15			9.76	300	12.33	6.32		125			
4.4.45			40.47	200	44.05	0.40		00.00			
14:45			12.47	302	11.65	6.42		96.00			
15:00			10.76	200	11.6	6.40		62.50			
15.00			12.70	300	11.0	0.40		02.30			
15.15			12 17	200	11 /2	6.26		55 70			
15.15			13.17	300	11.42	0.30		55.70			
15.20			13 56	200	11 31	6 35		47.40			
10.20			10.00	200	11.01	0.00		-70			
15.25			13 65	296	11 23	6 35		44 1	Purged Vol -	2.5 gallons	
10.20			10.00	200	11.20	0.00				2.0 gallorio	
-											
			ļ								
			ļ								
	<del>.</del>										
Pump	Pump Type: Micro double valve pump										
Anche	achitical Daramatara: N/A										
Analyt	alytical Parameters: N/A										

A *tuco* International Ltd. Company

<u> </u>	WELL DEVELOPMENT FORM				PROJECT				PROJECT No.	SHEET SHEETS
WELL	VELL DEVELOPMENT FORM LOCATION HICKSVIIIE, NY CLIENT					r Lith K	em Ko		101351	1 оғ 1
1. LOCAT					4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED
HICKSV	ille, NY				Apr	11 30, 2	008			April 30, 2008
	FC				O. NAME	JF INSPEC	IOR			
3. DRILLIN		NY			7. SIGNAT	URE OF IN	SPECTOR			
SGS D	Drilling									
		_	0 640	aal			115	ft		
ONE WELL			0.049	yai	WELL ID:		115	π	PUMP INTAKE:	
	Depth	Dumme		FIE	LD MEAS	SUREME	NTS			
Timo	to Wator	Purge	Tomp	Conduct		nH		Turbidity	-	DEMARKS
Time	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	рп	UN	(ntu)		KEMAKK5
					<b>``</b>					
8:50	56	80	11.39	341	11.18	5.5		482		
9:05			11.67	466	5.78	5.97		341		
0.15			11 78	990	5.61	6 1 1		86.4		
9.15			11.70	330	5.01	0.11		00.4		
9:25			11.89	1050	6.33	6.01		27.70		
9:40			12.27	990	5.8	6.39		31.20		
12:38									DEC recomm	nended using 0.011 gal/ft
									Purging stop	ped immediately
									Purgod Vol -	5.5 gallons
									Fulged Vol –	5.5 galions
		ļ		ļ						
	_									
Pump	ump Type: Micro double valve pump									
Analyti	alutical Parameters: N/A									
Anaiyt	ivai F di		i N/ <i>F</i> *							

A *tuco* International Ltd. Company

					PROJECT				PROJECT No.	SHEET SHI	EETS
WELL	VELL DEVELOPMENT FORM LOCATION Hicksville, NY					r Lith K	em Ko		101351	1 оғ	1
1. LOCATI					4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
HICKSV	ille, NY					11 30, 2	008			April 30, 2008	
NYSD	FC				0. NAME C						
3. DRILLIN	NG COMPA	NY			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	Drilling										
ONE WELL	VOLUME :		0.814	gal	WELL TD:		130	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)		REMARKS	
13:30	56	80	14.78	157	10.69	5.6		111	Controller at	90 ft head	
									Pump at 75 f	t bgs	
13:35			14.33	151	10.98	5.45		42			
10.15					10.00	/					
13:45			14.87	151	10.96	5.54		34			
12.51			14.62	154	10.91	5 5 7		20			
13.01			14.02	104	10.01	5.57		20			
14:20		150	14.73	336	11.2	5.75		78.30	Controller at	150 ft head	
						0.1.0			Pump placed	at 125 ft	
14:30			14.84	412	11.22	5.89		68.90			
14:35			14.17	421	11.55	6.02		44.30			
14:40			14.39	422	11.45	6.04		45.1			
14:45			14.89	406	11.25	6.09		45.1			
									Durged Val	1 25 gollopo	
									Fulged Vol –	1.25 galions	
Pump ⁻	Type:	Micro do	uble val	ve pump	6						
Analyti	ical Par	ameters:	N/A								

A *tuco* International Ltd. Company

Ē					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	DEVEL	OPMEN	T FORM	Λ	Ancho	r Lith Ko	em Ko		101351	1 оғ	1
1. LOCAT					4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
	ille, NY					3y 1, 20	08			May 1, 2008	
	FC				O. NAME		IOR				
3. DRILLI	NG COMPA	NY			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	Drilling										
			0.070		-		4 4 5	£1			
ONE WELI			0.979	gai	WELL TD:		145	п	PUMP INTAKE:		
	Depth			FIE	LD MEAS	SUREME	NTS				
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
7:30	56	100							Controller at	130 ft head	
									Pump placed	at 80 ft bgs	
7:40			9.02	290	11.79	4.19		33.1			
7:50			10.31	185	11.24	4.72		22.9			
0.00			10.00	0.47	11.10	4 75		05.4			
8:00			10.62	247	11.16	4.75		25.1	Purged 1/2 v	vell volume	
0.05		400							O e re tree II e re est		
8:25		100							Controller at		
0.20			10.00	047	10.10	4.00		C 00	Pump placed	at 130 ft bgs	
8:30			12.63	647	10.18	4.63		6.20			
0.40			12.00	747	10.12	4.60		7.00			
0.40			13.00	/ 1 /	10.13	4.09		7.20			
8.50			13 13	710	10.00	1 77		13			
0.50			15.15	713	10.03	4.77		4.5			
Q.UU			13 16	726	10.16	1 88		73			
5.00			10.10	720	10.10	4.00		7.0			
9.10			13 48	727	10 18	4 87		69			
0.10			10.10	121	10.10	1.07		0.0			
9:20			13.59	722	10.21	4.87		13.1			
									Puraed Vol =	2.5 gallon	
									<u> </u>		
									1		
									Ī		
Pump	Туре:	Micro do	uble val	lve pumps	S						
Analyti	ical Par	ameters:	N/A								

A *tuco* International Ltd. Company

WELL DEVELOPMENT FORM 1. LOCATION Hicksville NY					PROJECT				PROJECT No.	SHEET SHEETS
WELL	VELL DEVELOPMENT FORM LOCATION Hicksville, NY					r Lith K	em Ko		101351	1 оғ 1
1. LOCAT	ION				4. DATE W	VELL STAR	TED			5. DATE WELL COMPLETED
Hicksv	ille, NY				Ma	ay 1, 20	800			May 1, 2008
2. CLIENT					6. NAME C	OF INSPEC	FOR			
		NY			7. SIGNAT	URE OF IN	SPECTOR			
SGS D	Drillina									
ONE WELI			0.832	gal	WELL TD:		160	ft	PUMP INTAKE:	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS			
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)		
9:55	56	60							Controller at	110 ft head
									Pump placed	l at 80 ft bgs
12:03			17.76	528	9.32	4.92		270	Could not ge	t continuous purge flow
									Moved pump	to 155 ft bgs
12:15		60							Controller at	175 ft head
									(CPM3-14-6)	1
12:30			19.26	673	8.88	5.24		162	Pump placed	l at 90 ft bgs
12:50			18.63	653	8.48	5.34		55.60	(CPM3-12-8)	
									, , , , , , , , , , , , , , , , , , ,	
13:00			19.14	613	8.65	5.45		37.60		
13:20			19.13	620	8.73	5.55		45.40		
13:35			20.13	632	8.39	5.51		31.3		
									Purged Vol =	2 gallon
									Ŭ	5
	1		1							
	İ		İ							
	İ		İ							
	İ		İ							
	İ		İ							
	İ		Ì	<b>-</b>						
	1		1							
	1		1							
	1									
									1	
	1	L	1	L	1			1	1	
Pump	Pump Type: Micro double valve pumr									
i unp	ump Type: Micro double valve pump									
Analyti	alvtical Parameters: N/A									
, incary t	ui		, , .							

A **tyco** International Ltd. Company

_					PROJECT				PROJECT No.	SHEET SHEETS	
WELL	VELL DEVELOPMENT FORM Location licksville, NY					r Lith K	em Ko		101351	1 оғ 1	
1. LOCATI	ON				4. DATE W	ELL STAR	TED		•	5. DATE WELL COMPLETED	
Hicksv	ille, NY	/			Ma	ay 2, 20	08			May 2, 2008	
2. CLIENT					6. NAME C	OF INSPECT	FOR				
NYSD	EC										
	NG COMPA	NY			7. SIGNAT	URE OF IN	SPECTOR				
363 L	ming										
ONE WELL		:	0.209	gal	WELL TD:		71	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	Ha	ORP	Turbidity	REMARKS		
_	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	•	-	(ntu)		-	
	,	,	. ,	,	\ <b>U</b> /			,			
9.10	52	60							Controller at	80 ft head	
0.10	02	00							Pump placed	t at 65 ft bos	
0.20			13 73	385	10 70	5 1 2		477	$(CPM_{1-0-6})$		
9.20			15.75	305	10.79	J.12		4//	(CF 1014-3-0)		
0.00			40.50	477	40.04	F 40		400			
9:30			13.53	477	10.81	5.46		136			
0.40			40.00	770	10.00	5.00		50.4			
9:40			13.66	778	10.68	5.62		53.1			
9:50			13.6	910	10.67	5.66		24.5			
10:00			13.81	814	10.57	5.64		16.90			
10:10			13.94	796	10.51	5.63		20.00			
10:20			14.2	789	10.49	5.63		20.9			
									Purged Vol =	1 gallon	
								L			
								L			
Pump	Type:	uble va	lve pump	S							
Analyti	ical Par	ameters:	N/A								

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	WELL DEVELOPMENT FORM 1. LOCATION Hicksville, NY 2. CLIENT					r Lith K	em Ko		101351	1 оғ	1
1. LOCATI	ON	-			4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
Hicksv	ille, NY	/			Ma	ay 2, 20	800			May 2, 2008	
					6. NAME C	OF INSPEC	FOR				
		NY			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	Drillina										
0000	, ining										
ONE WELL		:	0.374	gal	WELL TD:		86	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity	1	REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	-		(ntu)			
10:50	52	90	14.63	337	10.48	5.44		153	Controller at	90 ft head	
									Pump placed	at 70 ft bas	
11:00			14,79	442	10.4	5.35		120	(CPM4-11-9)		
						0.00			(0		
11.10			15.05	693	10 37	5 55		467			
11.10			10.00	000	10.07	0.00		-107			
11.15			15.1	703	10.29	56		<i>45 4</i>			
11.15			15.1	705	10.23	5.0		40.4			
11.20	1:30 120 15.14 724					5.61		104.0	Controllor at	110 ft bood	
11.30		120	15.14	120	10.22	5.01		104.0		Lot 90 ft bao	
44.05			45 40	740	10.00	E 47		00.00		a at ou it bys	
11:35			15.19	749	10.26	5.47		99.20	(CPIVI4-10-10	J)	
44.45			45.4	000	40.44	5 50		00.00			
11:45			15.1	686	10.41	5.58		88.30			
				0.47	10.10			17.0			
11:55			15.15	647	10.42	5.56		47.9			
10.05			15.00		10.00			10.0			
12:05			15.26	605	10.38	5.55		46.2			
12:15			15.02	563	10.51	5.53		34.7			
12:25			14.95	535	10.54	5.54		42.2			
									Purged Vol =	2 gallon	
									•		
Pump Type: Micro double valve pump					S						
г [.]	amp Type. Micro double valve pump										
Analvti	nalytical Parameters: N/A										

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	WELL DEVELOPMENT FORM 1. location Hicksville, NY 2. client					r Lith K	em Ko		101351	1 оғ	1
1. LOCATI	ION				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
Hicksv	<u>ille, NY</u>				Ma	ay 5, 20	08			May 5, 2008	
2. CLIENT					6. NAME C	OF INSPEC	FOR				
		NY			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	Drillina										
ONE WELL			0.528	gal	WELL TD:		100	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рΗ	ORP	Turbidity	REMARKS		
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
8:31	52	60							Controller at	95 ft head	
									Pump placed	d at 70 ft bgs	
8:35			15.59	262	10.59	5.52		674	(CPM3-10-10	))	
9:05			16.93	408	10.18	5.51		194			
9:15		100							Controller at	120 ft head	
									Pump placed	d at 95 ft bgs	
9:20			17.65	414	10.1	5.63		330	(CPM3-10-10	))	
9:30			18.59	398	9.82	5.49		212			
9:45			18.11	388	10.25	5.57		181.00			
9:55			18.07	371	10.47	5.53		137			
10:10			18.38	356	10.67	5.57		116			
10:25			18.64	344	10.48	5.53		113			
10:35			18.8	347	10.28	5.49		105			
10:45			19.32	327	10.05	5.6		82			
									Purged more	than 3 well volume	S.
									Purged vol =	3 gallons	
Pump	Type:	Micro do	uble va	lve pump	S						
Analyti	ical Par	ameters:	N/A								
-											

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET SI	HEETS
WELL	WELL DEVELOPMENT FORM 1. LOCATION Hicksville, NY 2. CLIENT					r Lith K	em Ko		101351	1 оғ	1
1. LOCAT		,			4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
HICKSV	ille, NY					ay 5, 20	08			May 5, 2008	
	FC.				O. NAME	FINSFEC	IUK				
3. DRILLIN		NY			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	Drilling										
							445				
ONE WELL		:	0.693	gal	WELL TD:		115	ft	PUMP INTAKE:		
	Depth			FIE	LD MEAS	SUREME	NTS				
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
11:10	52	80							Controller at	90 ft head	
									Pump placed	l at 75 ft bgs	
11:15			22.03	215	9.32	5.73		140	(CPM3-10-10	))	
11:25			22.07	188	9.28	5.09		202			
11:40			22.69	216	9.14	4.94		67			
									-		
11:55		80	21.62	566	9.58	5.44		850	Controller at	125 ft head	
									Pump placed	at 110 ft bgs	
12:05			20.43	700	9.97	5.48		455	(CPM3-10-10	))	
12:15			20.53	678	10.12	5.42		487.00			
12:25			20.76	669	10.11	5.41		347			
10.00			00.45	0.47	10.15	- 10					
12:30			20.45	647	10.15	5.48		205			
10.10			00.55	044	40.04	5.40					
12:40			20.55	611	10.01	5.46		114			
10.50			20.04	FOF	0.00	E 40		104			
12:50			20.81	595	9.96	5.43		104			
12:00			20.02	564	0.70	5 5 1		100			
13.00			20.93	504	9.70	5.51		155			
13.10			20.00	534	0.63	5 /7		35.2			
13.10			20.99	554	9.05	5.47		JJ.Z			
13.30			20.94	512	9.62	5 5 1		8/	Purged more	than 3 well volumes	
15.50			20.34	512	3.02	5.51		04	Purged vol –	2 aallons	·
										o ganono	
	1		1						1		
Pump	Type	Micro do	uble va	lve numn	s						
i unp	i ype.			ive pump	0						
Analyti	ical Par	ameters.	N/A								
			,								

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL DEVELOPMENT FORM 1. LOCATION Hicksville, NY 2. CLIENT					Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATI	ON	_			4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
Hicksv	ille, NY				Ma	ay 5, 20	08			May 5, 2008	
2. CLIENT					6. NAME C	OF INSPEC	FOR				
		NY			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	Drillina										
					I						
ONE WELL			0.858	gal	WELL TD:		130	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
14:05	52	80	24.44	230	9.82	5.09		863	Controller at	90 ft head	
									Pump placed	l at 75 ft bgs	
14:45			25.73	355	10.16	5.09		321	(CPM2-10-20	))	
										/	
15:00			25.32	398	10.55	5.16		322			
15:10			23.77	422	10.35	5.15		120			
						00					
15.20			25.3	437	10.43	5 18		187	Controller at	150 ft head	
10.20			20.0	-107	10.40	0.10		107	Pump placed	1 at 135 ft bos	
15.30			20.38	474	12 47	5 16		716	(CPM3-10-1)		
10.00			20.00	7/7	12.71	0.10		710		<i>,</i>	
15.40			10.35	/01	12 75	5 17		200			
13.40			13.55	431	12.75	5.17		230			
15.50			10.17	500	12.65	5 17		240			
15.50			19.17	500	12.05	5.17		240			
16:00			10.22	400	12.22	5 10		220			
10.00			19.23	499	12.55	5.19		220	Durgod 2 wo	ll volumos	
									Purged 3 we	2 E gollono	
									Purged voi =	2.5 gallons	
									<b> </b>		
									<b> </b>		
									<b> </b>		
									<b> </b>		
									ļ		
Pump	Type:	Micro do	uble va	lve pump	S						
Analyti	ical Par	ameters:	N/A								

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL DEVELOPMENT FORM 1. LOCATION Hicksville, NY 2. CLENT					Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATI	ION	_			4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
Hicksv	ille, NY	, 			Ma	ay 6, 20	008			May 6, 2008	
2. CLIENT					6. NAME C	DF INSPEC	IOR				
3. DRILLIN		NY			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	Drilling										
ONE WELL		:	1.298	gal	WELL TD:		170	ft	PUMP INTAKE:		
	Depth to	Purae		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity	REMARKS		
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	•		(ntu)			
7:30	52	70							Controller at	90 ft head	
									Pump placed	d at 75 ft bos	
7:40			14.58	315	10.02	4.97	91	475	(CPM2-15-1	5)	
				0.0			•••			- /	
7.20			16.37	218	9.89	5.01	55	497			
1.00			10.07	210	0.00	0.01	00	407			
8.05			15.8	230	10.20	5.04	73	457			
0.00			10.0	200	10.25	0.04	10	-01			
9.15			15.92	268	10.26	5.07	60	707			
0.15			15.65	200	10.30	5.07	00	191			
0.25			16.60	244	10.11	5 20	7	707			
0.25			10.09	341	10.11	5.29	1	101			
0.42			17 10	260	10.02	E 20		220			
0.43			17.12	309	10.02	5.39		239			
0.55			47.00	000	0.00	5.40	4	405			
8:55			17.82	383	9.83	5.49	-1	105			
0.00		00								440 (11 1	
9:29		80							Controller at	140 ft head	
					10.00			407	Pump placed	at 135 ft bgs	
9:37			17.54	385	10.23	5.53		187	(CPM2-20-10	J)	
9:47			17:30	381	10.28	5.54	-3	157			
10:00			17.72	368	10.36	5.63	-7	230			
10:10			18.02	356	10.47	5.61	-4	287			
10:20			17.95	572	10.6	5.72	-10	235			
10:30			17.93	356	10.72	5.74	-13	210			
									Purged vol =	2.5 gallons	
Pump	Type:	Micro do	uble va	lve pump	S						
Analyti	nalytical Parameters: N/A										

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL DEVELOPMENT FORM 1. LOCATION Hicksville, NY 2. CLIENT					Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATI	ON	_			4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
Hicksv	ille, NY				Ma	ay 6, 20	800			May 6, 2008	
2. CLIENT					6. NAME C	OF INSPEC	FOR				
		NY			7. SIGNAT		SPECTOR				
SGS D	Drillina										
	g										
ONE WELL		:	0.864	gal	WELL TD:		160	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
12:00	52	80	23.02	448	9.26	5.65	-9	260	Controller at	85 ft head	
									Pump placed	l at 75 ft bgs	
12:10			22.1	407	9.36	5.54	5	210	(CPM4-7.5-7	.5)	
									`	,	
12:20			23.96	415	8.96	5.54	3	196			
					0.00	0.0.	-				
12.30			23 21	434	9 16	5 47	8	201			
12.00			20121	101	0.10	0.11					
12.45			22.92	435	9.29	5 53	7	195			
12.40	2:45 22.92 435					0.00	'	100			
13.40		100							Controller at	170 ft bead	
13.40		100								Lot 155 ft bac	
14:00			27 69	407	7 5 9	E 10	F	70			
14.00			27.00	407	7.50	5.40	5	70	(CPIVIZ-20-10	))	
14.10			20.00	445	7.40	F 40	0	04.0			
14:10			28.09	415	7.42	5.42	9	24.3			
44.00			00.50	44.0	7.00		45	447			
14:20			28.56	410	7.26	5.5	15	14.7	Durant	0	
									Purged voi =	2 gallons	
Pump	Type:	Micro do	uble va	lve pump	S						
Analyti	nalytical Parameters: N/A										
-											

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	DEVEL	OPMENT		1	Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	DN NO.				4. DATE W	VELL STAR	TED			5. DATE WELL COMPLETED	
HICKSVI	lle, NY					e 13, 2	008			June 13, 2008	
	-C				O. NAME	JF INSPEC	IOR				
3. DRILLIN	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	rilling										
ONE WELL	VOLUME :		0.222	gal	WELL TD:		75	ft	PUMP INTAKE:		
	Depth	_		FIE	LD MEAS	SUREME	NTS				
Time	to Weter	Purge	Tomp	Conduct	DO	nU		Turbidity	4		
Time	vvater (ft)	(ml/min)	(C)	(ms/cm)	00 (ma/l.)	рп	URP	(ntu)		REWARKS	
	(11)	(1110/1111)	(0)	(ma/cm)	(iiig/L)			(inta)			
7.20	54.8	60							Controller at	100 ft head	
1.20	04.0	00							Pump placed	1 at 68 5 ft bos	
7:30									(CPM2-15-14	5)	
1.00											
7.45			19 44	600	11.35	6 69	-22	N/R			
			10111	000	11100	0.00					
8:00			19.03	363	10.01	6.15	3	481			
							_	-			
8:15			19.65	500	10.6	6.58	-33	N/R			
8:30			21.61	400	9.68	6.63	-31	N/R			
8:45			23.81	999	9.91	6.66	-29	N/R			
9:00			24.02	900	9.68	6.68	-26	N/R			
9:15			24.98	850	9.34	6.1	-15	N/R			
9:30			24.56	900	9.61	6.53	-30	N/R			
0.45			04.44	070	0.05	0.74	0.1	N/D			
9:45			24.41	870	9.85	6.71	-31	N/R			
									Purged vol -	1 gallon	
								ļ		i guion	
	1	<u> </u>			1				1		
Pump 7	Type:	Micro do	uble va	lve pump	S						
	783.				-						
Analytic	cal Para	ameters:	N/A								

A *tuco* International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	DEVEL	OPMENT	FORM	1	Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	DN N				4. DATE V	VELL STAR	TED		-	5. DATE WELL COMPLETE	)
Hicksvi	lle, NY				Jun	ie 12, 2	008			June 12, 2008	
	C				6. NAME C	JF INSPEC	IOR				
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	rilling										
ONE WELL	VOLUME :		0.44	gal	WELL TD:		95	ft	PUMP INTAKE:		
	Denth		1	FIF		SUREME	NTS				
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	-		(ntu)			
8:00	54.8								Controller at	100 ft head	
									Pump placed	d at 90 ft bgs	
									(CPM2-15-1	5)	
14:05		80	24.02	673	8.46	7.51	-109				
14:20			24.21	400	8.08	7.11	-179	991			
14:35			24.81	400	8.12	7.23	-180	N/R			
14:50			24.28	300	8.35	7.13	-182	N/R			
15:05			23.45	990	7.91	6.90	-155	N/R			
15:20			24.15	400	7.99	7.23	-165	N/R			
15:35			22.51	500	8.12	7.17	-235	N/R			
15:50			23.28	431	7.74	6.95	-238	N/R			
16:05			24.81	485	8.19	7.15	-212	N/R			
16:20			24.61	445	8.05	7.1	-232	N/R			
									Purged vol =	2.5 gallon	
									ļ		
_											
Pump 1	Гуре:	Micro do	uble va	lve pump	S						
Analytic	cal Para	ameters:	N/A								

A *tuco* International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	DEVEL	OPMENT			Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	DN LL NIX				4. DATE W	VELL STAR	TED			5. DATE WELL COMPLETED	
HICKSVI	lie, NY					E 12, 2				June 12, 2008	
NYSDE	C				O. NAME						
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR				
SGS DI	rilling										
ONE WELL	VOLUME :		0.71	gal	WELL TD:		120	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
	. ,	, ,	. ,	, , , , , , , , , , , , , , , , , , ,	( ) /			. /			
8:15	54.8	70							Controller at	105 ft head	
									Pump placed	d at 115 ft bgs	
									(CPM2-15-1	5)	
									ľ		
11:30											
								-			
11:45			28.07	483	6.94	7.31	-92	991			
12:00			26.39	717	7.45	7.01	-222	N/R			
12:15			26.44	740	7.21	6.89	-308	N/R			
									Pump placed	d at 215 ft bgs	
12:30			26.6	702	7.44	6.88	-317	N/R			
12:45			26.57	672	7.47	6.87	-323	N/R			
10.00			00.07	0.40		0.00	005				
13:00			26.87	649	1.57	6.93	-285	N/R			
40.05			07.04	070	7.04	0.04	250	E 40			
13.25			27.01	0/0	1.24	0.04	-300	549			
									+		
									+		
									1		
									1		
									1		
									1		
									Purged vol =	2 gallon	
									1		
									•		
Pump T	ype:	Micro do	uble va	lve pump	s						
Analytic	cal Para	ameters:	N/A								
-											

A *tuco* International Ltd. Company

<u> </u>					PROJECT				PROJECT No.	SHEET	SHEETS	
WELL	DEVEL	<b>OPMEN1</b>		1	Ancho	r Lith K	em Ko		101351	1 оғ	1	
1. LOCATIC	DN NO C				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED		
HICKSVI	lle, NY					e 12, 2	008			June 12, 2008		
	C				O. NAME C	JF INSPEC	IOR					
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR					
SGS D	rilling											
ONE WELL	VOLUME :		0.99	gal	WELL TD:		145	ft	PUMP INTAKE:			
	Depth			FIE	LD MEAS	SUREME	NTS					
	to	Purge										
Time	Water	Rate	Temp.	Conduct.	DO	рΗ	ORP	Turbidity		REMARKS		
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)				
8:05	54.8	100							Controller at	150 ft head		
									Pump placed	d at 140 ft bgs		
									(CPM2-15-1	5)		
8:30			17.55	560	10.88	6.81	-63	N/R				
8:45			17.68	629	10.37	7.7	-140	991				
9:00			18,65	675	10.58	8.12	-186	N/R				
9:15			18.71	720	10.44	7.38	-222	N/R				
9:30			18.37	736	10.43	7.13	-242	N/R				
9:45			18.46	731	9.73	6.79	-265	N/R				
10.00			10.00				070					
10:00			19.02	702	10.17	7.03	-278	N/R	-			
10.15			10.05	700	40.00	0.00	0.1.0	5.40	-			
10:15			18.85	732	10.68	6.98	-310	549				
10.20			10.10	740	7.00	0.05	200					
10:30			19.13	743	1.82	6.95	-300	N/R				
								-				
								-				
										4 gallon		
										- yanon		
									<del> </del>			
	1		1						<u>I</u>			
Pumn T	Type:	Micro do	uhle va		S							
	ump rype. whole valve pumps											
Analytic	al Para	ameters:	N/A									
y tro			,									

A *tuco* International Ltd. Company

_					PROJECT				PROJECT No.	SHEET	SHEETS	
WELL	DEVEL	OPMENT			Ancho	r Lith K	em Ko		101351	1 оғ	1	
1. LOCATIC					4. DATE W	VELL STAR	TED			5. DATE WELL COMPLETED	)	
HICKSVI	lle, NY					e 12, 2	008			June 12, 2008		
	C				O. NAME							
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR					
SGS D	rilling											
ONE WELL	VOLUME :		1.26	gal	WELL TD:		170	ft	PUMP INTAKE:			
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS					
Time	Water	Rate	Temp.	Conduct.	DO	Ha	ORP	Turbidity		REMARKS		
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)				
8:00	54.8								Controller at	165 ft head		
									Pump placed	d at 165 ft bgs		
									(CPM2-15-1	5)		
14:10		85	33.85	200	5.32	7.25	-73	N/R				
14:25			34.81	100	5.31	7.21	-81	N/R				
14:40			32.13	200	5.57	7.03	-104	N/R				
15:05			32.13	500	5.56	6.89	-129	N/R				
45.00			00.00		5.00	0.00	105					
15:20			33.23	200	5.98	6.98	-135	N/R				
45.05			24.04	101	F F0	C 00	170					
15.35			31.04	131	5.59	0.09	-170	IN/K				
15.50			20.46	124	5 71	6 92	195	NI/D				
13.30			50.40	124	5.71	0.02	-105	IN/IN				
16.05			31 23	151	5 75	6 79	-165	N/R				
10.00			01.20	101	0.70	0.75	100	11/11				
16:25			31.65	145	5.61	6.92	-103	N/R				
									Ī			
									Purged vol =	3.5 gallon		
Pump 1	ump Type: Micro double valve pumps											
Analytic	cal Para	ameters:	N/A									

A *tuco* International Ltd. Company

_					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	DEVEL	<b>OPMEN1</b>	FORM	1	Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIC	N NIX				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
HICKSVI	lle, NY				Jun	e 12, 2	008			June 12, 2008	
	C				6. NAME	JF INSPEC	IUR				
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	rilling										
			1 5 4	aal			105	f+			
ONE WELL	VOLUME :		1.04	yai	WELL ID:		190	п	PUMP INTAKE:		
	Depth	_		FIE	LD MEAS	SUREME	NTS				
-	to	Purge	<b>T</b>	O	50		000	Table	4		
Time	water	Rate (ml/min)	Temp.	Conduct.		рн	ORP	i urbidity		REMARKS	
	(11)	(111/11111)	(0)	(IIIS/CIII)	(iiig/L)			(iitu)			
8.20	54.8								Controller at	100 ft head	
0.20	54.0								Pump placed	1 at 185 ft bas	
									$(CPM2_{15_{1}})$	5)	
										)	
11.45		80									
11.45		00									
12.00			30.82	743	6.22	7.07	-55	991			
12.00			00.02	740	0.22	1.07	00	001			
12.15			30 15	574	62	7 10	-110	N/R			
12.10			00.10	011	0.2						
12:30			30.35	840	6.32	6.91	-72	N/R			
12:45			30.47	981	6.45	6.24	-101	N/R			
13:00			29.57	3	6.7	6.81	-126	N/R			
13:30			30.43	1450	6.16	6.83	-55	N/R			
13:45			29.92	990	6.49	6.97	-11	N/R			
									Purged for 2	hours	
									Purged vol =	2 gallon	
L -	_										
Pump	ype:	Micro do	uble va	ive pump	S						
A			N1/A								
Analytic	cal Para	ameters:	N/A								

A *tuco* International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS	
WELL	DEVEL	OPMENT			Ancho	r Lith K	em Ko		101351	1 оғ	1	
1. LOCATIO	DN NIC				4. DATE V	VELL STAR	TED			5. DATE WELL COMPLETED		
HICKSVI	lle, NY				JUN	12, 2	008			June 12, 2008		
	C				O. NAME	JF INSPEC	IOR					
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR					
SGS Di	rilling											
			1 32	len			220	ft				
ONE WELL			1.52	gai	WELL ID:		220	11	PUMP INTAKE:			
	Depth	_		FIE	LD MEAS	SUREME	NTS					
Time	to	Purge	Tamm	Conduct	<b>D</b> 0		000	Touchidian	-	DEMARKO		
Time	vvater (ft)	Rate (ml/min)	remp.	(ms/cm)		рн	ORP	i urbiaity		REMARKS		
	(11)	(111/1111)	(0)	(IIIS/CIII)	(ing/L)			(iitu)				
8:10	54.8	60							Controller at	170 ft head		
									Pump placed	d at 150 ft bgs		
									(CPM2-15-1	5)		
8:30			20.73	531	8.95	7.38	49	N/R				
8:45			21.51	287	9.09	7.92	7	991				
9:00			23.01	907	8.3	7.96	-13	N/R				
0.45			04.47	000	0.01	7.44	50					
9:15			24.17	932	8.01	7.41	-52	N/R	Dump place	d at 215 ft baa		
0.20								NI/D	Pump placed	at 215 It bgs		
9.50												
9.45			22 73	1470	8.06	7 04	-94	N/R				
0.10			22.70	1110	0.00	7.01	01	14/1				
10:00			21.59	1810	8.71	7.02	-140	N/R				
10:15			22.39	2020	8.93	7.04	-192	549				
10:30			22.06	2140	8.64	6.87	-168	N/R				
10.45			22.00	2250	0.00	0.04	170					
10.45			23.00	2250	0.02	0.94	-172	IN/ K				
									Purged vol =	4 gallon		
Pump T	ump Type: Micro double valve pumps											
Analytic	cal Para	ameters:	N/A									

A *tuco* International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	DEVEL	OPMENT	FORM		Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO					4. DATE W	VELL STAR	TED			5. DATE WELL COMPLETED	)
HICKSVI	lle, NY				JUN	e 10, 2	008			June 10, 2008	
	-0				O. NAME	JF INSPEC	IOR				
3. DRILLIN	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	rilling										
ONE WELL	VOLUME :		0.171	gal	WELL TD:		70	ft	PUMP INTAKE:		
	Depth	Burgo		FIE	LD MEAS	SUREME	NTS				
Time	Water	Purge	Tomp	Conduct	DO	лH	OPP	Turbidity	1	DEMARKS	
Time	(ft)	(ml/min)	(C)	(ms/cm)	(ma/L)	pri	ON	(ntu)		REMARKO	
	(,	(,	(0)	(	(			()			
8:20	54.5	90							Controller at	90 ft head	
0.20	0.10								Pump placed	at 65 ft bos	
8:35			28.31	323	8.03	5 50	20	358	(CPM3-11-9)		
0.00			20.01	020	0.00	0.00		000		,	
8.42			27 80	279	8 20	5 61	-5	358			
0.10			21100	2.0	0.20	0.01	Ű	000			
8:57				276		5.42					
0.01						0=					
9:15			28.35	323	9.09	5.75	-34	N/R			
							-				
9:35			29.9	312	7.92	5.59	-39	N/R			
9:45		90	28.82	315	8.46	5.72	-51	N/R			
9:50											
									Purged vol =	1 gallon	
	-										
Pump	i ype:	Micro do	uble va	ive pump	S						
A			N1/A								
Analyti	cal Para	ameters:	N/A								

A *tuco* International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	<u>DEVEL</u>	<b>OPMENT</b>		<u> </u>	Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIC	N NIX				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
HICKSVI	lle, NY				JUN	e 10, 2	008			June 10, 2008	
	C				O. NAME	JF INSPEC	I UK				
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	rilling										
			0 30	len			QN	ft			
ONE WELL			0.55	gai	WELL ID:		30	it.	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	Ηα	ORP	Turbidity	1	REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
				´							
10:40	54.5	90							Controller at	90 ft head	
									Pump placed	l at 70 ft bgs	
10:50			29.63	440	8.01	5.81	-15	N/R	(CPM3-10-10	))	
11:00			29.88	734	7.95	5.02	-14	N/R			
44.40			00.07	4.450	7.45	4.07	0.1		<b>.</b>		
11:10			30.07	1450	7.45	4.87	-21	98	Pump moved	d to 85 ft	
10.00			00.05	4500	7.50	4.00		445	Controller at	100 ft head	
10:30			28.65	1590	7.58	4.90	-39	115			
11.10			20.24	1590	7 20	4.02	20	96 G			
11.40			29.24	1560	7.39	4.93	-29	00.0			
11.55			29 14	1540	7 32	4 95	-25	65.3			
11.00			20.14	10-10	1.02	4.00	20	00.0			
12:05			29.98	1530	6.86	4.98	-26	45.7			
									Purged vol -	1.3 gallon	
										1.0 gallott	
	1		11		1				1		
Pump T	ype:	Micro do	uble va	lve pump	S						
Analytic	cal Para	ameters:	N/A								

A *tuco* International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	DEVEL	OPMENT		1	Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	<b>N</b>				4. DATE V	ELL STAR	TED			5. DATE WELL COMPLETE	)
Hicksvi	lle, NY				Jun	e 10, 2	800			June 10, 2008	
	· ~				6. NAME C	OF INSPEC	TOR				
		Y			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	rillina	•									
000 0.	iiiig										
ONE WELL	VOLUME :		0.66	gal	WELL TD:		118	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
12:42	54.5	90							Controller at	105 ft head	
									Pump placed	l at 85 ft bgs	
13:00			24.78	510	8.05	6.12	-65	N/R	(CPM3-10-10	))	
										,	
13:30			24.52	409	7.69	5.70	-33	N/R			
13:35		120							Controller at	110 ft head	
13:45			24.16	394	7.75	5.51	-30	N/R			
14:00		100							Pump at 115	ft	
									Controller at	115 ft head	
14:18			31.11	394	6.05	5.45	-2	N/R			
			_								
14:28			31.49	394	5.78	5.43	3	550			
14:47			31.40	398	5.76	5.47	-1	337			
15:00			31.10	382	5.80	5.63	-11	N/R			
									Purged vol =	2 gallon	
										<b>V</b> -	
	1				1		1				
Pump T	vpe:	Micro do	uble va	lve pump	S						
	780.				-						
Analytic	al Para	meters:	N/A								
, and y the											

A *tuco* International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	DEVEL	OPMENT		1	Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIC	N N				4. DATE W	ELL STAR	TED		-	5. DATE WELL COMPLETED	)
Hicksvi	lle, NY				Jun	e 10, 2	008			June 10, 2008	
	C .				6. NAME C	JF INSPEC	IOR				
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	rilling										
ONE WELL	VOLUME :		1.05	gal	WELL TD:		150	ft	PUMP INTAKE:		
	Depth			FIE		SUREME	NTS				
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
16:15	54.5	80							Controller at	160 ft head	
									Pump at 145	ft	
									(CPM3-10-10	D)	
16:30			21.6	383	9.43	5.20	-258	194			
16:45			21.59	887	9.02	4.96	-278	97.8			
17:00			20.91	1390	8.9	5.02	-299	98.3			
17:15			20.76	1380	8.9	4.98	-311	183			
17:30			19.89	1430	9.73	4.92	-271	107			
17:45			20.9	1440	9.87	4.95	-262	165			
18:00			19.51	1430	9.63	5	-240	136			
18:15			19.52	1380	10.25	4.99	-240	101			
18:30			20.09	1330	10.16	4.97	-259	189			
									Purged vol =	3.4 gallon	
									ļ		
Pump T	ype:	Micro do	uble va	lve pump	S						
Analytic	cal Para	ameters:	N/A								

A *tuco* International Ltd. Company

<u> </u>					PROJECT				PROJECT No.	SHEET SHEETS
WELL	DEVEL	OPMENT		1	Ancho	r Lith K	em Ko		101351	1 оғ 1
1. LOCATIO	N NIX				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED
HICKSVI	lle, NY					e 11, 2	008			June 11, 2008
	C				O. NAME	JF INSPEC	IOR			
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR			
SGS D	rilling									
	VOLUME :		1.22	gal	WELL TD:		165	ft	PUMP INTAKE:	
	Depth	Duras		FIE	LD MEAS	SUREME	NTS			
Time	to Water	Purge	Tomp	Conduct	DO	лH	OPP	Turbidity	-	DEMARKS
THIE	(ft)	(ml/min)	(C)	(ms/cm)	(ma/L)	pn	UN	(ntu)		NEWANNO -
	(,	(,)	(0)	(,)	(			()		
08:10	54.5	60							Controller at	100 ft head
		100							Pump placed	at 85 ft bos
08:30			21.73	400	10.87	5.72	-22	496	(CPM3-10-10	))
									,	
08:45			20.7	288	12.48	5.48	-39	565		
09:00			21.03	373	12.35	5.05	-26	486	Pump move	d to 85 ft
09:10			20.79	544	12.48	5.04	-16	472		
09:25		80							Pump at 115	ft
		165								
09:45			28.49	835	8.98	4.95	-16	N/R		
10:00			28.52	811	8.68	4.96	-16	596		
10.15			00.0	0.47	7.00	1.0.1	0.4	707		
10:15			28.9	847	7.88	4.94	-34	737		
40.00			00.00	044	7.07	4.07	00	040		
10:30			29.68	811	7.97	4.87	-23	613		
10.45			20.05	787	7.86	1 82	-33	5/8		
10.45			29.05	101	7.00	4.02	-55	540		
11.00			29.63	777	7.56	4 78		654		
11.00			20.00					007		
									Purged vol =	3.68 gallon
Pump T	ype:	Micro do	uble va	lve pump	S					
Analytic	cal Para	ameters:	N/A							
A *tuco* International Ltd. Company

WELL DEVELOPMENT FORM			PROJECT				PROJECT No.	SHEET	SHEETS		
WELL	DEVEL	OPMENT			Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIC	DN NO C				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
	lle, NY				JUN	e 10, 2	008			June 10, 2008	
	C.				O. NAME	JF INSPEC	IOR				
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	rilling										
ONE WELL	VOLUME :		1.33	gal	WELL TD:		180	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	•		(ntu)			
11:50	54.5	80							Controller at	100 ft head	
									Pump at 90 f	t	
12:30			33.19	410	6.34	4.71	-96	743	No flow obtain	ined	
									Pump at 175	ft	
12:45			32.43	380	6.5	4.69	-104	305	(CPM3-10-10	))	
13:00			32.62	671	6.4	4.69	-102	236			
13:15			32.39	2	6.35	4.70	-196	239			
13:30			33	718	6.13	4.72	-201	196			
13:45			33.35	702	5.91	4.71	-204	182.0	(CPM2-12-18	3)	
14:00			32.92	701	5.97	4.69	-214	158			
4445			00.04	000	5 70	4.00	100	400			
14:15			33.01	698	5.78	4.69	-198	169			
44.20			22.4	007	F 70	4.00	201	475			
14.30			<u>33.1</u>	097	0.70	4.00	-201	175			
									Purged for 2	hours	
									Purged vol =	3.5 gallon	
										<u> </u>	
	_		_		-				-		
Pump T	Гуре:	Micro do	uble va	lve pump	S						
Analytic	cal Para	ameters:	N/A								

A *tuco* International Ltd. Company

					PROJECT				PROJECT No.	SHEET SHE	ETS
WELL	WELL DEVELOPMENT FORM 1. location Hicksville, NY 2. client					r Lith K	em Ko		101351	1 оғ 1	1
1. LOCATIO	N H = NNZ				4. DATE V	VELL STAR	TED			5. DATE WELL COMPLETED	
HICKSVI 2 CLIENT	lie, NY				JUN 6 NAME (	IE 10, 2	UU8 TOR			June 10, 2008	
NYSDE	C						i on				
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	rilling										
ONE WELL	VOLUME :		1.34	gal	WELL TD:		222	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)		REMARKS	
15:50	54.5	60		-					Controller at	180 ft head	
10.15			04.70	100	6.00	4 70	4.4.4		Pump at 160	ft	
10:15			31.70	162	0.33	4.78	-144	IN/R	(CDM2 15 16	5)	
16.30			30.28	150	6 56	4 76	-147	N/P		)	
10.50			50.20	159	0.50	4.70	-147	IN/IN			
16:45			29.74	259	6.43	4.76	-242	N/R			
					01.0						
17:00			28.59	435	6.43	4.89	-260	N/R			
17:15			27.41	471	6.63	4.93	-270	N/R			
17:30			27.35	450	7.72	5.15	-192	N/R			
47.45		400							Placed pump	o at 215 ft	
17:45		120							Controller at	230 ft head	
18.00			21 12	100	8 00	5 1 3	-210	N/R			
10.00			27.72	405	0.00	0.10	215	11/11			
18:15			28.75	374	9.1	5.15	-185	N/R			
18:30			22.53	347	9.34	5.13	-262	N/R			
18:45			21.3	336	9.29	5.15	-204	N/R			
									<b> </b>		
									Purged vol -	3 gallon	
									Fine sand on	the screen noted after	r
									pump was wi	thdrawn	
	1				1	1	1				
Pump T	ype:	Micro do	uble va	lve pump	S						
Applytic	ol Por	motore	NI/A								
	airdia		in/ <i>F</i> 1								

A **tyco** International Ltd. Company

VIELL DEVELOPMENT FORM         Anchor Lift Kem Ko         101351         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th></th> <th></th> <th></th> <th></th> <th></th> <th>PROJECT</th> <th></th> <th></th> <th></th> <th>PROJECT No.</th> <th>SHEET SHEETS</th>						PROJECT				PROJECT No.	SHEET SHEETS
Locknow         L. DATE WELL STATED         S. DATE WELL COMPLETED           May 2, 2008         May 2, 2008         May 2, 2008           2. CURNT         6. NAME OF INSPECTOR         May 2, 2008           3. ORLING COMPARY         7. SIGNATURE OF INSPECTOR         May 2, 2008           SGS Drilling         7. SIGNATURE OF INSPECTOR         Pump Prace:           Depth to to to to to to to to to to to to to	WELL	DEVE	LOPMEN	Μ	Ancho	r Lith K	em Ko		101351	1 OF 1	
Hickswille, NY     May 2, 2008     May 2, 2008       NYSDEC     -     -       NYSDEC     -     -       SGS Drilling     -     -       One wellt volume:     0.209 gal     wellt ro:     71 ft     pump mtake:       Time     Rate     -     71 ft     pump mtake:       1     Ore wellt volume:     0.209 gal     wellt ro:     71 ft     pump mtake:       1     Ore wellt volume:     0.209 gal     wellt ro:     71 ft     pump mtake:       1     Ore wellt volume:     0.209 gal     wellt ro:     71 ft     pump mtake:       1     Ore wellt volume:     0.209 gal     wellt ro:     71 ft     pump mtake:       1     Ore method     Pump     Conduct.     D0     PH     ORP     Turbidity       9:40     52     60     2     2     2     Controller at 80 ft head       9:45     13.92     285     10.53     5.63     2200     COPM4-11-9)       9:55     14.26     287     10.38     5.66     77.6       10:15     14.26     287     10.37     5.88     48.3       10:35     15.17     260     10.19     5.38     38.60       10:35     15.17     260	1. LOCATI	ON				4. DATE W	ELL STAR	TED		•	5. DATE WELL COMPLETED
2 CUENT NYSDEC 3 ORELING COMPANY SGS Drilling ORE WELL VOLME: 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORELING COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY 3 ORE OF COMPANY	Hicksv	ille, NY	/			Ma	ay 2, 20	08			May 2, 2008
NYSDEC SOELUNG COMPANY SGS Drilling       . SIGNATURE OF INSPECTOR         SOELUNG COMPANY SGS Drilling       0.209 gal       well TD:       71 ft       PUMP INTAKE:         Depth (ft)       Purge (ml/min)       FIELD MEASUREMENTS       REMARKS         9:40       52       60       1       1       0       0       pH       0RP       Turbidity (ntu)       REMARKS         9:45       1       13.92       285       10.53       5.63       2200       (CPM4-11-9)         9:55       13.96       311       10.51       5.68       167       167         10:05       14.26       287       10.38       5.56       77.6       167         10:05       14.52       301       10.37       5.68       48.3       167         10:25       14.81       265       10.36       5.42       42.50       167         10:25       14.81       265       10.36       5.42       42.50       167         10:35       15.17       260       10.19       38.60       167       167         10:35       14.52       301       10.36       5.42       42.50       167         10:35       14.51       260       10.19	2. CLIENT					6. NAME C	OF INSPECT	FOR			
A declar boundary       P. stand like to inspective         ONE WELLYOLME:       0.209 gal       well to:       71 ft       Pump Intrace:         Time       Variable for the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the formation of the f	NYSD	EC									
SASE DITIMING           ONE WELL VOLUME:         0.209 gal         WELTD:         71 ft         PUMP INTAKE:           Depth (f)         Purge (m/min)         FIELD MEASUREMENTS         REMARKS           9:40         52         60         1         1         1         1           9:40         52         60         1         1         1         1         1           9:45         1         13.92         255         10.53         5.63         220         (CPM4-11-9)           9:55         1         13.96         311         10.51         5.68         167         1           10:05         1         14.26         287         10.38         5.56         1         1           10:05         14.52         301         10.37         5.68         48.3         1           10:05         15.17         260         10.19         5.38         38.60         1           10:35         15.17         260         10.19         5.38         1         1           10:35         1         1.1         1         1         1         1         1           10:35         1         1         1 <td></td> <td>NG COMPAI</td> <td>NY</td> <td></td> <td></td> <td>7. SIGNAT</td> <td>URE OF IN</td> <td>SPECTOR</td> <td></td> <td></td> <td></td>		NG COMPAI	NY			7. SIGNAT	URE OF IN	SPECTOR			
ONE WELL VOLUME:     0.209 gal     WELL TO:     71 ft     PUMP HAKE:       Time     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget (r)     Purget	363 L	ming									
Depti to to to to to to to to to to to to to	ONE WELL		:	0.209	gal	WELL TD:		71	ft	PUMP INTAKE:	
Time         Water (t)         Rate (t)         Temp. (c)         Conduct. (ms/cm)         DO (mg/L)         PH         ORP         Turbidity (nu)         REMARKS           9:40         52         60         Image: Conduct.         DO (mg/L)         Image: Conduct.         DO (DO         Image: Conduct.         DO (DO         Image: Conduct.         DO         Image: Conduct.         Image: Conduct.         Image: Conduct.         Image: Conduct.         Image: Conduct.         Image:		Depth to	Purge		FIE	LD MEAS	SUREME	NTS			
International         (m)         (m)         (m)         (m)         (m)         (m)         (m)           9:40         52         60         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <	Time	Water	Rate	Temp.	Conduct.	DO	рH	ORP	Turbidity	1	REMARKS
Org         Case of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se		(ft)	(ml/min)	(C)	(ms/cm)	(ma/L)	P.1	0.0	(ntu)		
9:40       52       60       Image: style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style st		()	(,	(0)	(	(			()		
3.740       32       300       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1<	9.40	52	60							Controller at	80 ft bead
9:45         13.92         285         10.53         5.63         220         (CPM4.11-9)           9:55         13.96         311         10.51         5.68         167           9:55         14.26         287         10.38         5.56         77.6           10:05         14.26         287         10.38         5.56         77.6           10:15         14.52         301         10.37         5.68         48.3           10:15         14.52         301         10.37         5.68         48.3           10:25         14.81         265         10.36         5.42         42.50           10:35         15.17         260         10.19         5.38         38.60           10:35         15.17         260         10.19         5.38         38.60           11:35         15.17         260         10.19         5.38         38.60           11:35         15.17         260         10.19         5.42         42.50           11:35         15.17         260         10.19         5.48         38.60           11:35         10.19         15.17         260         10.19         10.19           10	3.40	52	00							Dump placed	1 at 65 ft bac
3.43       13.92       263       10.33       3.63       220       (CFN44-11-9)         9.55       13.96       311       10.51       5.68       167	0.45			12.02	205	10 52	F 62		220		
9:55       1       13.96       311       10.51       5.68       167         10:05       14.26       287       10.38       5.56       77.6	9.45			13.92	200	10.55	5.63		220	(CPI014-11-9)	
9:55       13.96       311       10.51       5.68       167				10.00		10 - 1			107		
Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc. <thinc.< th="">         Inc.         Inc.         <thi< td=""><td>9:55</td><td></td><td></td><td>13.96</td><td>311</td><td>10.51</td><td>5.68</td><td></td><td>167</td><td></td><td></td></thi<></thinc.<>	9:55			13.96	311	10.51	5.68		167		
10:05       14.26       287       10.38       5.56       77.6         10:15       14.52       301       10.37       5.68       48.3         10:15       14.81       265       10.36       5.42       42.50         10:25       14.81       265       10.36       5.42       42.50         10:35       15.17       260       10.19       5.38       38.60         10:35       15.17       260       10.19       5.38       38.60         10:35       15.17       260       10.19       5.38       38.60         10:35       15.17       260       10.19       5.38       38.60         10:35       15.17       260       10.19       5.38       38.60         10:35       15.17       260       10.19       5.38       38.60         10:35       15.17       260       10.19       5.38       38.60         10:35       15.17       260       10.19       5.38       38.60         10:35       15.17       260       10.19       5.38       38.60         10:36       15.17       260       10.19       10.10       10.10         10:37       10:3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial         Initial <t< td=""><td>10:05</td><td></td><td></td><td>14.26</td><td>287</td><td>10.38</td><td>5.56</td><td></td><td>77.6</td><td></td><td></td></t<>	10:05			14.26	287	10.38	5.56		77.6		
10:15       14.52       301       10.37       5.68       48.3         10:25       14.81       265       10.36       5.42       42.50         10:35       15.17       260       10.19       5.38       38.60         10:35       15.17       260       10.19       5.38       38.60         10:35       15.17       260       10.19       5.38       38.60         10:36       12       12       12       12       12       12         10:37       16.17       260       10.19       5.38       38.60       10.10         10:36       15.17       260       10.19       5.38       38.60       10.10         10:37       10       12       12       12       12       12       12         10:37       10       10       12       12       12       12       12         10:38       10:19       10:19       10:19       12       12       12       12         10:39       10:19       10:19       12       12       12       12       12         10:39       10:19       12       12       12       12       12       12       12<											
Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image <th< td=""><td>10:15</td><td></td><td></td><td>14.52</td><td>301</td><td>10.37</td><td>5.68</td><td></td><td>48.3</td><td></td><td></td></th<>	10:15			14.52	301	10.37	5.68		48.3		
10:25       14.81       265       10.36       5.42       42.50         10:35       15.17       260       10.19       5.38       38.60         10:35       15.17       260       10.19       5.38       38.60         10:35       10.1       15.17       260       10.19       5.38       38.60         10:35       10.1       15.17       260       10.19       5.38       38.60         10:35       10.1       10.1       10.1       10.1       10.1       10.1         10       10.1       10.1       10.1       10.1       10.1       10.1         10       10.1       10.1       10.1       10.1       10.1       10.1         10.1       10.1       10.1       10.1       10.1       10.1       10.1         10.1       10.1       10.1       10.1       10.1       10.1       10.1         10.1       10.1       10.1       10.1       10.1       10.1       10.1         10.1       10.1       10.1       10.1       10.1       10.1       10.1         10.1       10.1       10.1       10.1       10.1       10.1       10.1											
10:35       10:10       15.17       260       10.19       5.38       38.60         10:35       10:10       10:10       5.38       38.60       Purged Vol = 0.75       gallon         10:35       10:10       10:10       10:10       10:10       10:10       10:10       10:10         10:35       10:10       10:10       10:10       10:10       10:10       10:10       10:10         10:10       10:10       10:10       10:10       10:10       10:10       10:10       10:10         10:10       10:10       10:10       10:10       10:10       10:10       10:10       10:10         10:10       10:10       10:10       10:10       10:10       10:10       10:10       10:10         10:10       10:10       10:10       10:10       10:10       10:10       10:10       10:10         10:10       10:10       10:10       10:10       10:10       10:10       10:10       10:10       10:10         10:10       10:10       10:10       10:10       10:10       10:10       10:10       10:10       10:10       10:10       10:10       10:10       10:10       10:10       10:10       10:10       10:10 <td>10:25</td> <td></td> <td></td> <td>14.81</td> <td>265</td> <td>10.36</td> <td>5.42</td> <td></td> <td>42.50</td> <td></td> <td></td>	10:25			14.81	265	10.36	5.42		42.50		
10:35       15.17       260       10.19       5.38       38.60         Image: Solution of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat											
Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:	10:35			15.17	260	10.19	5.38		38.60		
Image: Sector of the general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector general sector				_						Puraed Vol =	0.75 gallon
Image: Sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector										i ingen rei	generi
Image: Sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector											
Image: Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain Strain											
Image: Stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress											
Image: Constraint of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of											
Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:											
Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:											
Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:											
Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:											
Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:											
Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:											
Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:											
Image: Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second											
Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se											
Image: Micro double valve pumps       Analytical Parameters: N/A											
Pump Type: Micro double valve pumps Analytical Parameters: N/A											
Pump Type: Micro double valve pumps Analytical Parameters: N/A											
Pump Type: Micro double valve pumps Analytical Parameters: N/A											
Analytical Parameters: N/A	Pump	Type:	Micro do	uble va	lve pump	S					
Analytical Parameters: N/A			-								
	Analvti	ical Par	ameters:	N/A							

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	ICCATION ICCATION ICKSVIIIE, NY					r Lith K	em Ko		101351	1 оғ	1
1. LOCATI	ON				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
Hicksv	ille, NY				Ma	ay 2, 20	08			May 2, 2008	
	FC				6. NAME C	JF INSPEC	IOR				
3. DRILLIN		NY			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	Drilling										
ONE WELL			0.473	gal	WELL TD:		95	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
11:20	52	90							Controller at	100 ft head	
									Pump placed	d at 70 ft bgs	
11:40			15.2	388	10.3	5.7		65	(CPM4-10-10	D)	
									`	/	
11:45			15.37	362	10.31	5.71		32.9	Controller at	110 ft head	
						-			Pump placed	d at 90 ft bos	
12:00			15.42	343	10.3	5.72		25.2	(CPM4-10-10	))	
				0.0		0=				- / ·	
12.10			15 46	319	10.3	5 84		22.7			
12.10			10110	0.0	1010	0.01					
12.20			15 16	332	10 44	5 64		27.50			
12.20			10.10	002	10.11	0.01		21.00	Purged Vol -	1.25 gallon	
										1.20 galloli	
Pump	Type:	Micro do	uble va	lve pump	S						
Analyti	ical Par	ameters:	N/A								

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL DEVELOPMENT FORM 1. LOCATION Hicksville, NY			М	Ancho	r Lith K	em Ko		101351	1 оғ	1	
1. LOCATI	ON	_			4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
Hicksv	ille, NY				Ma	ay 5, 20	08			May 5, 2008	
2. CLIENT					6. NAME C	OF INSPEC	FOR				
		NY			7 SIGNAT		SPECTOR				
SGS D	)rillina				n olonai						
0000	, ining										
ONE WELL		:	0.759	gal	WELL TD:		120	ft	PUMP INTAKE:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	-		(ntu)			
8:15	51	90	15.55	347	10.73	5.22		265	Controller at	90 ft head	
	-			-		-			Pump placed	at 75 ft bos	
8.20			15 95	312	10 48	5 29		299	(CPM3-8-12)		
0.20			10.00	0.2	10110	0.20		200			
8.35			17.06	402	10.05	4 93		181			
0.00			17.00	402	10.00	4.00		101			
0.30			18 53	452	9.82	51		530			
5.50			10.00	702	0.02	0.1		000			
0.40			10 37	111	9.62	5 10		354			
3.40			13.57		3.02	5.10		554			
10.05			10.33	153	0.04	5 1 8		205			
10.05			19.55	400	9.94	5.10		295			
10.15		100							Controllor of	120 ft bood	
10.15		120								130 IL Hedu	
40.00			47.00	400	40.04	<b>5 40</b>		400		a inditions	
10:20			17.96	426	10.84	5.18		468	(CPM3-10-10	J)	
40.00			40.00	000	40.54	5.04		470			
10:30			18.32	388	10.54	5.21		176			
10.10			10.10		10.01	- 10					
10:40			18.18	387	10.61	5.12		154			
10 50			10.11		10.00	- 10		4.0.0			
10:50			18.41	386	10.62	5.18		168	<b> </b>		
44.00			40.07	050	40.01	E 4 =			<b> </b>		
11:00			18.85	356	10.31	5.17		114	<u> </u>		
									Purged more	than 3 well volume	÷S.
									-		
									<b> </b>		
									ļ		
									ļ		
Pump	Type:	Micro do	uble va	lve pump	S						
Analyti	ical Par	ameters:	N/A								

A **tyco** International Ltd. Company

#### WELL NO. PW07-4

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	DEVE	LOPMEN	T FOR	M	Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATI		,			4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
HICKSV	<u>ilie, in r</u>					IV 5, 20	108			May 5, 2008	/
NYSD	FC				0. WANE C	/F ING: LC.					
3. DRILLI	NG COMPA	NY			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	Drilling										
			4 000				1 4 5	41			
ONE WELL		:	1.025	gai	WELL TD:		145	π	PUMP INTAKE:		I
, ,	Depth			FIE	LD MEA	SUREME	NTS				<u> </u>
	to	Purge									/
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	]	REMARKS	/
<b> </b> '	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	<b>└───</b> ′	───	(ntu)			/
<u> </u>		<u> </u>	<b> </b> '	<b> </b>	ļ!	└───′	───	<b></b>			!
11:33	52	80	<b></b> '	<b> </b>	ļ/	<b>└──</b> ′		<b></b>	Controller at	95 ft head	!
<u> </u>	<b> </b> '	<b> </b> '	<u> </u> '	<u> </u>	ليبيل	<u> </u>			Pump placed	d at 75 ft bgs	!
11:40	<b> </b> '	<b> </b> '	24.18	434	8.62	5.87	L	240	(CPM3-10-10	0)	/
	<b> </b> '	<b></b> '	<u>                                     </u>	<u> </u>	<u>                                     </u>	L'	L				/
11:50	<b> </b> '	<b></b> '	23.39	197	8.88	5.05	L	129			/
	<b> </b> '	<b></b> '	<u> </u>	<u> </u>	<u> </u>	<u> </u>	L	<u> </u>			/
12:00	<b></b> '	<b></b> '	24.88	200	8.34	5.03	L	197			/
	<u> </u>	<u> </u>	<u> </u>			<u> </u>					/
12:10	<u> </u>	<u> </u>	25.57	207	8.17	5.04		177			/
<u>ا</u> ا	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					
12:20		<u> </u>	25.42	232	8.29	4.97		182			
<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					
12:30	<u> </u>	90	20.68	394	10.09	5.11		268	Controller at	150 ft head	
<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>			Pump placed	d at 135 ft bgs	
12:40		<u> </u>	18.64	512	10.81	5.13		234	(CPM3-10-10	0)	
<u>'</u>		<u> </u>	<u> </u>			<u> </u>					
12:50	<u> </u>	<u> </u>	19.48	475	10.56	5.12		204			
I	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					
13:03	<u> </u>	<u> </u>	18.35	435	10.89	5.21		224			
I	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	L				
13:11	<u> </u>	<u> </u>	18.46	422	10.82	5.2	L	235			
I	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					
13:20	<u> </u>	<u> </u>	18.44	413	10.77	5.15	L	224			
!	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	L				
13:35	<u> </u>	<u> </u>	18.38	401	10.8	5.19	L	223			
!	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	L				
13:45	<u> </u>	<u> </u>	18.01	440	10.82	5.22	L	229	Purged 3 we	Il volumes.	
!	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	L		Purged vol =	<ul> <li>3 gallons</li> </ul>	
I	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					
			<u> </u>			<u> </u>					
											- 1
Pump	Type:	Micro do	uble va	lve pump	)S						l
											l
Analyti	ical Par	rameters:	N/A								

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	WELL DEVELOPMENT FORM I. LOCATION Hicksville, NY					r Lith K	em Ko		101351	1 оғ	1
1. LOCATI		,			4. DATE V	VELL STAR	TED			5. DATE WELL COMPLETED	
HICKSV	ille, NY				Ma	ay 5, 20	008			May 5, 2008	
	FC				6. NAME	JF INSPEC	IOR				
3. DRILLIN		NY			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	Drilling										
							. – .				
ONE WELL		:	1.309	gal	WELL TD:		170	ft	PUMP INTAKE:		
-	Depth			FIE		SUREME	NTS				
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
15:00	51	60							Controller at	120 ft head	
									Pump placed	d at 90 ft bgs	
15:15			29.2	235	8.85	4.88		440	(CPM2-16-14	4)	
15:30			29.68	308	8.45	4.89		244			
16:00			27.57	438	8.51	4.98		N/R			
16:15			458	8.7	5.09		N/R				
16:30			26.66	465	8.89	5.10		N/R			
7:35		80							Controller at	180 ft head	
									Pump placed	d at 165 ft bgs	
8:05			16.5	434	9.93	5.08		N/R	(CPM2-20-10	(5/6/08)	
0.10			10.1	400	10.01						
8:12			16.1	422	10.21	5.05		238			
0.00			10.00	440	40.00	= 1		4.45			
8:20			16.63	418	10.02	5.1		145	-		
0.00			47.00	440	0.70	F 00		74 5			
8:30			17.39	449	9.76	5.22		74.5			
0.40			47.00	44.4	0.04	E 04		40 F			
8:40			17.88	414	9.64	5.24		40.5			
0.50			19 60	202	0.27	5.2		25.6			
0.50			10.09	303	9.37	5.5		20.0	Durgod vol -	1 25 gallong	
										1.25 gallons	
					<u> </u>				<u> </u>		
					<u> </u>				<u> </u>		
					<u> </u>				<u> </u>		
	1		<u> </u>		1			l	l		
Pump	Type	Micro do			NC NC						
runp	i ype.			ive pump	13						
Analyti	ical Pa	amotore.	N/A								
/ laiyl	icai r di		1 N/ / A								

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET S	SHEETS
WELL	DEVE	LOPMEN	T FOR	М	Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATI		,			4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
	ille, NY	•			Ma	3y 6, 20	08			May 6, 2008	
NYSD	FC.				O. NAME	JF INSPEC	IUK				
3. DRILLIN		NY			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	Drilling										
			4 5 7 0				405				
ONE WELL		:	1.573	gal	WELL TD:		195	ft	PUMP INTAKE:		
	Depth			FIE	LD MEAS	SUREME	NTS				
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
9:27	52	60							Controller at	95 ft head	
									Pump placed	l at 75 ft bgs	
9:35			19.15	258	9.5	5.59	14	871	(CPM2-17-13	3)	
9:45			19.28	186	9.4	5.12	54	175			
9:55			20.95	184	8.95	5.14	64	153			
10:10			21.65	185	8.87	5.10	60	104			
	0.05										
10:35		80							Controller at	200 ft head	
									Pump placed	l at 190 ft bgs	
11:45			27.98	668	7.44	4.92	50	289	(CPM2-20-10	))	
12:00			27.87	686	7.51	4.92	47	232			
12:15			27.76	687	7.6	4.95	51	43.8			
12:30			27.71	638	7.59	4.93	49	25.1	<u> </u>		
									Purged vol =	2 gallons	
	1								l		
Pump	Type	Micro do		lve numn	19						
runp	i ype.			ive pump	3						
Analyti	nalvtical Parameters: N/A										
/ liary li			1 1/7								

A **tyco** International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL DEVELOPMENT FORM 1. LOCATION Hicksville, NY					Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATI		,			4. DATE W	VELL STAR	TED			5. DATE WELL COMPLETED	
HICKSV	ille, NY					AY 6, 20	108 TOP			May 6, 2008	
	FC				O. NAME						
3. DRILLIN		NY			7. SIGNAT	URE OF IN	SPECTOR				
SGS D	Drilling										
			0.004				400	"			
ONE WELL	VOLUME	:	0.864	gai	WELL TD:		160	π	PUMP INTAKE:		
	Depth			FIE	LD MEAS	SUREME	NTS				
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
13:02	52	60							Controller at	95 ft head	
									Pump placed	d at 75 ft bgs	
13:05			26.34	1810	7.93	7.13	-73	153	(CPM2-20-10	0)	
13:15			23.5	206	8.83	5.26	48	252			
13:30			25.45	185	8.23	4.91	71	205			
13:50			26.42	186	7.99	4.82	80	163			
14:05			192	8.41	4.80	77	203				
		400								005 (1)	
14:45		100							Controller at	225 ft head	
									Pump placed	d at 215 ft bgs	
15:00			28.01	361	7.41	4.85	68	N/R	(CPM2-20-10	J)	
45.05			07.04	400	7 67	4 74	36	704			
15:25			27.34	402	1.57	4.71	75	781			
45.40			05.00	400	0.00	47	<u> </u>	405			
15:40			25.23	428	8.29	4.7	64	185			
45.50			40.44	44.0	0.54	47	C1	450			
15:50			12:14	418	8.54	4.7	61	153			
16:00			22.07	400	0 70	4 6 9	62	100			
16.00			23.97	420	0.70	4.00	03	190			
16.10			23 OF	/10	0.06	1 69	62	211			
10.10			20.00	410	9.00	4.00	02	211			
16.20			22.40	400	0.1/	17	61	186			
10.20			22.43	403	3.14	4.7	01	100		2.5 gallons	
									1		
Pump	Type	Micro do			19						
runp	i ype.			ive pump	3						
Analyti	ical Par	ametere.	N/A								
/ lary l			11/7								

A **tyco** International Ltd. Company

#### WELL NO. MW-4

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	SAMPL		Ancho	r Lith K	em Ko		101351	1 оғ	1		
1. LOCATIO					4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
HICKSVI	lie, NY					Y 2, 20	08			July 2, 2008	
NYSDE	-C				Saby (	Chatteri	ee Priv	val Pandv	а		
3. DRILLIN	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	farr array	<u>а</u>		
SGS D	rilling										
ONE WELL	VOLUME :			gal	WELL TD:		84.44	ft	PUMP INTAKE:	75 ft	
	Denth						NTO		- • • • • • • • • • • • • • • • • • • •		
	Depth	Purae		FIE		OREME	N15				
Time	Water	Rate	Temp	Conduct	DO	рH	ORP	Turbidity	1	REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mq/L)	<b>P</b> 11	•	(ntu)			
	59.00	/		, ,	, <b>,</b> ,				Static head		
8:35	58.90								Pump On		
8:40	58.95	325	17.1	0.156	17.43	5.7	123	12.9			
8:45	58.95	325	16.6	0.198	14.5	5.58	140	13.9			
8:50	58.95	325	16.6	0.199	14.88	5.55	147	10.8			
8:55	58.95	325	16.5	0.200	14.9	5.54	150	4.0			
9:00	58.95	325	16.6	0.200	13.75	5.52	154	5.5			
9:05	58.95	325	16.6	0.200	13.72	5.51	155	18.6			
9:10	58.95	325	16.6	0.200	13.71	5.50	157	20.1			
9:15	58.95	325	16.6	0.199	13.73	5.49	158	20.6			
9:20	58.95	325	16.6	0.198	13.73	5.50	161	21.9			
9:25									Collect samp	le MW-4	
Dumo 7		Pladdar -		Foflog tub	ing De		a.			10/5 6000	
Fump	i ype.	biauuer p	bump, I		my, Po	ιγ ταριή	9				
Analyti	cal Para	motore			ale						
raiyil	un raid		v UUS,		013						

A **tyco** International Ltd. Company

### WELL NO. MW-5S

WELL SAMPLING FORM 1. LOCATION					PROJECT				PROJECT No.	SHEET SH	EETS
WELL	SAMPL	ING FOR	M		Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	ON				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
Hicksvi	lle, NY				Ju	ly 1, 20	08			July 1, 2008	
2. CLIENT	-				6. NAME (	OF INSPEC	FOR	al Dandu	-		
		v			Saby C	URE OF IN	SPECTOR	yai Panuy	a		
SGS D	rillina	•				0112 01 11	of Loron				
0000	g										
ONE WELL	VOLUME :			gal	WELL TD:		83	ft	PUMP INTAKE:	75 ft	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
	55.45								Static head		
11:00	55.40	150	17.9	0.113	14.7	5.55	342	94.4	Pump On		
11:05	55.50	250	16.4	0.099	13.45	5.52	368	45.5			
11:10	55.52	325	15.9	0.092	13.33	5.46	0.98	26.1			
11:15	55.48	325	15.9	0.090	12.88	5.44	399	35.5			
11:20	55.50	325	15.9	0.089	12.8	5.41	403	21.0			
11:25	55.52	325	16.2	0.089	12.84	5.42	403	21.5			
11:35	55.52	325	15.9	0.089	12.91	5.41	404	21.8			
11:40	55.52	325	15.8	0.088	12.95	5.39	405	21.3			
11:45	55.55	325	15.8	0.087	12.98	5.38	409	21.1			
11:50	55.55	325	15.8	0.086	12.95	5.35	410	20.9			
11.55	55 55	325	15.8	0.086	12.94	5.34	410	21.1			
	00.00			0.000		0.0 .					
12.00									Collect same	ble MW-5S	
									MS/MSD		
									Duplicate sa	mple MW-55S	
									D'apricate da		
				L							
					1				l		
Dumo 7		Bladdar -		Coflor tub	ing Do	ly tubia	<b>a</b>			10/5 70nci	
Fump	iype.	biauuer p	bump,		ning, PO		y			10/3 / 0481	
Anchet	ool Doro	motoro	VOCC								
Analytic	Jai Fala	ineleis.	vuus,		als						

A **tyco** International Ltd. Company

### WELL NO. MW-5D

WELL SAMPLING FORM         Anchor Lith Kem Ko         101351         1         or         1         July 2, 2008	_					PROJECT				PROJECT No.	SHEET	SHEETS
Location         4. bate well stratter         b. bate well completing           0. custom         4. bate well stratter         July 2, 2008           0. custom         4. bate well stratter         July 2, 2008           0. subtom completing         6. were of inspectors         July 2, 2008           0. subtom completing         7. secand         Pump and and and and and and and and and and	WELL	SAMPL	ING FOR	M		Ancho	r Lith K	em Ko		101351	1 оғ	1
HICKSWIIE, NY       Louiy 2, 2008       July 2, 2008         VTSDEC       Saby Chatterjee, Priyal Pandya         Seture of Inspector       Saby Chatterjee, Priyal Pandya         SCS Drilling       .         New eul volume:       gal         gal       Well to:       122.8 ft       Pump Instance:         S55.60       Purge       FELD MEASUREMENTS       REMARKS         (mu)       Temp.       Conduct.       DO       pH       OPP         (10:35       55.60       200       16.9       0.261       16.00       6.00       122       36.9         10:35       55.60       200       16.3       0.258       14.41       5.94       122       35.2         10:45       55.50       250       16.3       0.258       13.54       5.31       124       34.8         10:55       55.50       325       15.5       0.258       10.94       5.84       132       10.4         11:10       55.50       325       15.5       0.258       10.94       5.82       142       15.1         11:10       55.50       325       15.5       0.258       10.93       5.80       149       16.1         11:10	1. LOCATIO	ON NIX				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
A Leen         B. ANAB OF NATE-CLUK           SABO Chatterie, Prival Pandya         . SIGKATURE OF INSPECTOR           SCS Drilling	Hicksvi	lle, NY				Ju	ly 2, 20	08			July 2, 2008	
DetLING ComPARY         Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of		C				6. NAME (	hattori	οο Driv	val Pandv	2		
SGS Drilling         gal         well to:         122.8 ft         PUMP NTAKE:         118 ft           Time         Water (t)         FUTGE         Conduct.         DO         pH         ORP         Turbidity         REMARKS           55.60         Tome         Conduct.         DO         pH         ORP         Turbidity         REMARKS           10:35         55.60         200         16.9         0.261         16.00         6.00         122         36.9           10:40         55.60         220         16.9         0.251         14.41         5.94         122         35.2           10:50         55.50         325         15.7         0.258         13.45         5.91         124         34.8           10:50         55.50         325         15.5         0.257         10.24         5.84         132         10.4           11:10         55.50         325         15.5         0.258         10.93         5.84         131         1           11:10         55.50         325         15.5         0.268         10.93         5.82         142         15.1           11:10         55.50         325         15.5         0.269	3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	yan anuy	a		
DNE WELL VOLUME :         gal         WELL TD:         122.8 ft         PUMP INTAKE:         118 ft           Time         Water (n)         Free (n)         FIELD MEASUREMENTS (mg/L)         FIELD MEASUREMENTS         REMARKS           55.60         C         C         Masce (mg/L)         DO         PH         ORP         Turbidity (mu)         REMARKS           10:40         55.50         200         16.3         0.261         16.00         6.00         122         36.9           10:45         55.50         200         16.3         0.258         13.44         5.94         122         36.2           10:50         55.50         325         15.7         0.258         13.74         5.91         124         34.8           10:55         55.50         325         15.5         0.258         11.14         5.87         12.2         36.2           11:00         55.50         325         15.5         0.258         10.93         5.82         142         15.1           11:10         55.50         325         15.5         0.259         10.93         5.80         149         16.1           11:20         55.0         325         15.5         0.260	SGS D	rilling										
Det WELL VOLUME:         gal         WELL TD:         122.8 ft         PUMP NTAKE:         118 ft           Time         Water         Rater         Temp.         Conduct.         D0         pH         ORP         Turbidity         REMARKS           10:35         55.60         200         16.3         0.256         116.00         0.00         122         36.9         Pump On           10:45         55.50         200         16.3         0.258         11.41         5.94         122         36.9            REMARKS           10:45         55.50         200         16.3         0.258         11.44         5.94         122         36.9                  Static head                     Static head </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
Depth to         Purge (tt)         FIELD MEASUREMENTS         REMARKS           55.60         Temp.         Conduct.         DO         pH         ORP         Turbidity         REMARKS           10:35         55.80         200         Image: Conduct.         DO         PH         ORP         Turbidity         REMARKS           10:45         55.50         200         I6.9         0.261         16.00         6.00         122         36.9           10:45         55.50         250         16.3         0.258         14.41         5.81         35.2         Image: Conduct.         Purge On           10:45         55.50         325         15.5         0.257         10.24         58.51         10.4         Image: Conduct.         Image: Conduct.         Purge On         Image: Conduct.         Image: Conduct.         Image: Conduct.         Purge On         Image: Conduct.         WELL</td> <td>VOLUME :</td> <td></td> <td></td> <td>gai</td> <td>WELL TD:</td> <td></td> <td>122.8</td> <td>ft</td> <td>PUMP INTAKE:</td> <td>118 π</td> <td></td>	ONE WELL	VOLUME :			gai	WELL TD:		122.8	ft	PUMP INTAKE:	118 π	
to         Purge Rate (nt/min)         Temp. (C)         Conduct. (mg/L)         DO PH         ORP         Turbidity (ntu)         REMARKS           55.60         -         -         -         Static head         -         -         -         Purpo         -         -         Purpo         -         -         Purpo         -         -         Purpo         -         -         -         -         Purpo         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td></td><td>Depth</td><td></td><td></td><td>FIE</td><td>LD MEAS</td><td>SUREME</td><td>NTS</td><td></td><td></td><td></td><td></td></t<>		Depth			FIE	LD MEAS	SUREME	NTS				
Time         Water (ft)         Rate (m/m/m)         Temp. (c)         Conduct. (ms/cm)         Do (mg/L)         PH         ORP         Turbidity         REMARKS           15:6         -         -         -         Static head         -         -         -         -         -         -         Pump On           10:40         55:50         200         16:9         0.261         16:00         6.00         122         36:9         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td></td> <td>to</td> <td>Purge</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		to	Purge									
(ft)         (mWm)         (G)         (ms/cm)	Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
55.60         Static head           10:35         55.80         200         16.9         0.261         16.00         6.00         122         36.9           10:40         55.50         2250         16.3         0.258         14.41         5.94         122         35.2           10:50         55.50         325         15.7         0.258         11.14         5.87         127         15.0           11:00         55.50         325         15.5         0.257         10.24         5.85         132         10.4           11:10         55.50         325         15.5         0.258         10.94         5.82         142         15.1           11:10         55.50         325         15.5         0.258         10.94         5.82         146         13.1           11:10         55.50         325         15.5         0.260         10.93         5.82         146         13.1           11:20         55.50         325         15.5         0.260         10.93         5.80         149         16.1           11:30         I         I         I         I         I         I         I         I         I <tr< td=""><td></td><td>(ft)</td><td>(ml/min)</td><td>(C)</td><td>(ms/cm)</td><td>(mg/L)</td><td></td><td></td><td>(ntu)</td><td></td><td></td><td></td></tr<>		(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
10:35       55.80       200       Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco		55.60								Static head		
10:40 55.50 200 16.3 0.261 16.00 6.00 122 36.9 10:45 55.50 250 16.3 0.258 14.41 5.94 122 35.2 10:50 55.48 325 15.8 0.259 13.54 5.91 124 34.8 10:55 55.50 325 15.5 0.258 11.14 5.87 127 15.0 11:00 55.50 325 15.5 0.258 10.94 5.82 142 15.1 11:10 55.50 325 15.5 0.258 10.94 5.82 142 15.1 11:10 55.50 325 15.5 0.258 10.93 5.82 146 13.1 11:12 55.50 325 15.5 0.260 10.93 5.80 149 16.1 11:30 55.0 325 15.5 0.260 10.93 5.80 149 16.1 11:30 Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Col	10:35	55.80	200	10.0	0.004	10.00		100		Pump On		
10:45 55.50 220 16.3 0.288 14.41 5.94 122 35.2 10:50 55.48 325 15.8 0.299 13.54 5.91 124 34.8 10:55 55.50 325 15.5 0.258 11.14 5.87 127 15.0 11:00 55.50 325 15.5 0.258 10.94 5.85 132 10.4 11:05 55.50 325 15.5 0.258 10.94 5.82 142 15.1 11:15 55.50 325 15.5 0.258 10.93 5.84 137 4.9 11:10 55.50 325 15.5 0.258 10.93 5.82 142 15.1 11:20 55.50 325 15.5 0.260 10.93 5.80 149 16.1 11:30 Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect sample MW-5D Collect	10:40	55.50	200	16.9	0.261	16.00	6.00	122	36.9			
10:50       55.48       325       15.8       0.259       13.54       5.91       124       34.8         10:55       55.50       325       15.7       0.257       10.24       5.85       132       10.4         11:05       55.50       325       15.5       0.257       10.24       5.85       132       10.4         11:05       55.50       325       15.5       0.258       10.94       5.82       142       15.1         11:10       55.50       325       15.5       0.258       10.93       5.82       142       15.1         11:15       55.50       325       15.5       0.260       10.93       5.80       149       16.1         11:30	10:45	55.50	250	16.3	0.258	14.41	5.94	122	35.2			
10:55       55:50       325       15.7       0.258       11:14       5.87       127       15.0         11:00       55:50       325       15.5       0.257       10.24       5.85       132       10.4         11:05       55:50       325       15.5       0.258       10.94       5.82       142       15.1         11:10       55:50       325       15.5       0.259       10.93       5.82       142       15.1         11:15       55:50       325       15.5       0.269       10.93       5.82       142       15.1         11:20       55:50       325       15.5       0.260       10.93       5.82       146       13.1         11:30	10:50	55.48	325	15.8	0.259	13.54	5.91	124	34.8			
11:00       55.50       325       15.5       0.257       10.24       5.85       137       4.9         11:05       55.50       325       15.5       0.258       10.94       5.84       137       4.9         11:10       55.50       325       15.5       0.258       10.94       5.82       142       15.1         11:15       55.50       325       15.5       0.259       10.93       5.82       146       13.1         11:20       55.50       325       15.5       0.260       10.93       5.80       149       16.1         11:30	10:55	55.50	325	15.7	0.258	11.14	5.87	127	15.0			
11:10       55.50       325       15.5       0.258       10.94       5.84       137       4.9         11:10       55.50       325       15.5       0.258       10.94       5.82       142       15.1         11:15       55.50       325       15.5       0.259       10.93       5.82       142       15.1         11:20       55.50       325       15.5       0.260       10.93       5.80       149       16.1         11:20       55.50       325       15.5       0.260       10.93       5.80       149       16.1         11:30	11:00	55.50	325	15.5	0.257	10.24	5.85	132	10.4			
11:10       55.50       325       15.5       0.258       10.94       5.82       142       15.1         11:15       55.50       325       15.5       0.259       10.93       5.82       146       13.1         11:20       55.50       325       15.5       0.260       10.93       5.80       149       16.1         11:30	11:05	55.50	325	15.5	0.258	10.95	5.84	137	4.9			
11:15       55.50       325       15.5       0.259       10.93       5.82       146       13.1         11:20       55.50       325       15.5       0.260       10.93       5.80       149       16.1         11:30       Image: State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State S	11:10	55.50	325	15.5	0.258	10.94	5.82	142	15.1			
11:20       55.50       325       15.5       0.260       10.93       5.80       149       16.1         11:30	11:15	55.50	325	15.5	0.259	10.93	5.82	146	13.1			
11:30       Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D         Image: Contract symple MW-5D <td>11:20</td> <td>55.50</td> <td>325</td> <td>15.5</td> <td>0.260</td> <td>10.93</td> <td>5.80</td> <td>149</td> <td>16.1</td> <td></td> <td></td> <td></td>	11:20	55.50	325	15.5	0.260	10.93	5.80	149	16.1			
11:30       Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sample MW-5D         Image: Collect sa	11.00											
Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	11:30									Collect samp	DIE MIW-5D	
Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se												
Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s												
Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s												
Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se												
Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s												
Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se												
Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se												
Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se												
Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se												
Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s												
Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s												
Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se												
Pump Type:     Bladder pump, Teflon tubing, Poly tubing       Analytical Parameters:     VOCs, TAL Metals					L				L			
Pump Type: Bladder pump, Teflon tubing, Poly tubing Analytical Parameters: VOCs, TAL Metals					L				L			
Pump Type: Bladder pump, Teflon tubing, Poly tubing Analytical Parameters: VOCs, TAL Metals												
Pump Type: Bladder pump, Teflon tubing, Poly tubing Analytical Parameters: VOCs, TAL Metals												
Pump Type: Bladder pump, Teflon tubing, Poly tubing Analytical Parameters: VOCs, TAL Metals												
Pump Type: Bladder pump, Teflon tubing, Poly tubing Analytical Parameters: VOCs, TAL Metals								1		I		
Analytical Parameters: VOCs, TAL Metals	Pump T	Type:	Bladder r	oump. T	Feflon tub	ina. Po	lv tubin	a				
Analytical Parameters: VOCs, TAL Metals	· •	783.		p,			.,	3				
	Analvtic	cal Para	ameters:	VOCs.	TAL Met	als						
				,								

A **tyco** International Ltd. Company

### WELL NO. MW-6S

WELL SAMPLING FORM					PROJECT				PROJECT No.	SHEET	SHEETS
WELL SAMPLING FORM 1. location Hicksville, NY					Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	DN				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	)
Hicksvi	lle, NY				Ju	ly 2, 20	08			July 2, 2008	
	C				Saby (	hatteri	DA Priv	val Pandv	a		
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	yarr anay	u		
SGS D	rilling										
							00.75	tı.		75 4	
ONE WELL	VOLUME :			gai	WELL TD:		83.75	π	PUMP INTAKE:	75 π	
	Depth			FIE	LD MEAS	SUREME	NTS				
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
40.00	58.57								Static head		
16:30	58.55	325	10.0	0.470	10.00				Pump On		
16:35	58.58	325	16.2	0.172	19.99	5.90	157	/1.4			
16:40	58.57	325	15.0	0.164	14.20	5.53	187	49.4			
16:45	58.57	325	15.0	0.162	14.78	5.49	196	44.0			
16:50	58.58	325	15.0	0.161	14.95	5.46	202	44.6			
16:55	58.58	325	14.9	0.160	15.79	5.47	207	45.5			
17:00	58.58	325	14.9	0.160	15.80	5.47	210	46.8			
17:05	58.58	325	14.8	0.159	15.78	5.46	212	35.5			
17:10	58.58	325	14.8	0.159	15.80	5.46	213	37.0			
17:15	58.58	325	14.8	0.158	15.81	5.45	213	38.5			
17:20	58.59	325	14.8	0.158	15.82	5.45	214	37.5			
47.05											
17:25									Collect samp		
					1		l		I		
Pumn T	vpe.	Bladder r	oumn T	Teflon tub	ina Po	lv tuhin	a				
	, , , , , , , , , , , , , , , , , , , ,		samp,		<u>9</u> , i U	.,	3				
Analytic	cal Para	meters:	VOCs	TAL Met	als						

A **tyco** International Ltd. Company

### WELL NO. MW-6D

WELL SAMPLING FORM 1. LOCATION Hicksville NY					PROJECT				PROJECT No.	SHEET SHEETS
WELL	WELL SAMPLING FORM 1. LOCATION Hicksville, NY					r Lith K	em Ko		101351	1 оғ 1
1. LOCATIO					4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED
HICKSVI	lie, in r				5 NAME C	IY Z, ZU				July 2, 2008
NYSDE	-C				Saby (	Chatteri	ee Priv	val Pandv	а	
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	farr anay	а —	
SGS D	rilling									
				~~l			100.0	£1		110 #
ONE WELL	VOLUME :			gai	WELL TD:		122.0	π	PUMP INTAKE:	118 10
	Depth			FIE	LD MEAS	SUREME	NTS			
	to	Purge								
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)		
	58.75								Static head	
14:40	58.78								Pump On	
14:45	58.78	275	16.3	0.115	15.42	6.23	95	48.0		
14:50	58.80	425	15.5	0.131	10.66	5.96	128	52.2		
14:55	58.80	400	15.3	0.132	9.17	5.95	138	46.1		
15:00	58.80	340	15.8	0.132	9.91	5.94	157	27.7		
15:05	58.80	340	15.5	0.132	10.21	5.91	168	24.9		
15:10	58.80	340	15.4	0.131	11.71	5.91	167	17.1		
15:15	58.80	340	15.4	0.131	11.70	5.91	174	15.2		
15:20	58.80	340	15.4	0.131	11.70	5.92	174	11.0		
15:30									Collect samp	le MW-6D
L -	_	<b>D</b> 1 / ·	_							
Pump T	ype:	Bladder p	oump, ⊺	eflon tub	ing, Po	ly tubin	g			No well cover
Analytic	cal Para	ameters:	vOCs,	I AL Met	als					

A **tyco** International Ltd. Company

WELL NO. MW-7S

WELL SAMPLING FORM					PROJECT				PROJECT No.	SHEET	SHEETS
WELL SAMPLING FORM 1. location Hicksville, NY 2. client					Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	DN				4. DATE W	VELL STAR	TED			5. DATE WELL COMPLETE	ED
Hicksvi	lle, NY				Ju	ly 1, 20	08			July 1, 2008	
2. CLIENT	i C				6. NAME (	DF INSPEC	ror oo Driv	val Dandy	2		
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	yai Fanuy	a		
SGS D	rilling										
ONE WELL	VOLUME :			gal	WELL TD:		81.55	ft	PUMP INTAKE:	75 ft	
	Depth			FIE	LD MEAS	SUREME	NTS				
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
	54.80								Static head		
15:30	55.75								Pump On		
15:35	54.85	250	16.7	0.373	17.74	4.79	-5	274.0			
15:40	54.82	350	15.6	0.330	8.42	4.69	10	169.0			
15:45	54.80	350	15.6	0.319	6.51	4.67	16	133.0			
15:50	54.80	350	15.5	0.308	6.07	4.65	16	135.0			
15:55									Horiba cleare	ed	
16:00	54.80	350	16.0	0.289	6.04	4.63	18	101.1			
16:05	54.80	350	15.9	0.278	6.56	4.61	16	97.8			
16:10	54.80	350	15.9	0.270	6.50	4.62	15	98.2			
16:15	54.80	350	15.8	0.263	6.01	4.63	15	101.0			
16:20	54.80	350	15.9	0.254	6.04	4.62	14	103.0			
16:25	54.80	350	15.7	0.245	6.35	4.64	13	94.7			
16:30	54.81	350	15.7	0.241	6.53	4.63	13	92.50	Horiba cleare	ed	
16:35	54.81	350	15.7	0.233	6.98	4.63	13	71.7			
16:40	54.81	350	15.7	0.229	6.46	4.65	11	68.8			
16:45	54.8	350	15.7	0.219	8.09	4.63	10	70.5			
16:50	54.8	350	15.7	0.218	7 22	4 64	9	74.4			
16:55	54.8	350	15.7	0.214	7.5	4 63	7	67.8			
17.00	54.8	350	15.7	0.209	7.63	4 63	5	69.1			
17:05	54.8	350	15.7	0.203	65	4 64	3	68.1			
17:00	54.8	200	15.6	0.198	7 44	4.65	-1	68.4			
17:10	54.8	200	16.5	0.100	7.02	4.67	-1	68 3			
17:10	54.8	200	16.5	0.100	8.45	4.67	-1	68.7			
17.20	54.8	200	16.5	0.132	8 38	4.02	-4	70.3			
17.20	54.0	200	16.5	0.192	0.00	4.04	-5	70.3			
17.30	54.0	200	10.5	0.193	0.35	4.05	-0	10.2			
17:05											
17:35											
17.40	E4 00	200	16 5	0.400	0.00	4.00		60.0			
17:40	54.80	200	10.5	0.193	0.39	4.69	-/	09.0			
17:45	54.77	200	16.5	0.193	8.37	4.69	-1	69.3	l		
Pump 1	ype:	Bladder p	oump, ⁻	Feflon tub	ing, Po	ly tubin	g				

Analytical Parameters: VOCs, TAL Metals

A **tyco** International Ltd. Company

### WELL NO. MW-7D

WELL SAMPLING FORM					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	WELL SAMPLING FORM 1. location Hicksville, NY					r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	DN NIX				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	)
HICKSVI	lle, NY				JU	ly 1, 20	08			July 1, 2008	
	C.				Sahv (	hatteri	ee Priv	val Pandv	а		
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	arr anay	ŭ		
SGS D	rilling										
				aol			100	44		110 #	
ONE WELL	VOLUME :			gai	WELL TD:		122	п	PUMP INTAKE:	110 11	
	Depth			FIE	LD MEAS	SUREME	NTS				
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
40.05	54.35	005							Static head		
18:35	54.38	225	457	0.057	45 40	F F 7	00	40.4	Pump On		
18:40	55.50	300	15.7	0.257	15.43	5.57	90	40.4			
10.40	55.5Z	400	15.3	0.200	14.02	5.53	100	40.0			
10.00	55.52	400	15.5	0.201	14.04	5.50	122	20.0			
10.00	55.52	400	15.1	0.253	14.07	5.52	130	29.1			
19.00	55.52	400	15.0	0.254	14.00	5.00	140	20.3			
10.00	55 52	400	14.0	0.259	13 30	5.49	150	13.7			
19.10	55 52	400	14.9	0.230	13.30	5.49	159	15.5			
19:10	55 52	400	15.0	0.201	13.30	5.40	161	12.4			
10.20	00.02	400	10.0	0.202	10.00	5.47	101	12.0			
19.25									ColeIct same	le MW-7D	
10.20								-	Coloiot Camp		
								-			
											_
	-	Diada		<b>F</b> . (1							
Pump 1	ype:	Bladder p	oump,	etion tub	ing, Po	iy tubin	g				
Anchetic	ol Doro	motoro									
Analytic	lai Para	inelers:	vuus,	I AL IVIET	ais						

A *tuco* International Ltd. Company

WELL SAMPLING FORM 1. LOCATION					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	VELL SAMPLING FORM					r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO					4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
	lle, NY					y 11, 20	008			July 11, 2008	
	-C				Saby (	Chatter	nee Pri	ival Pandy	/a		
3. DRILLIN	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	yarr anay	a		
SGS D	rilling										
				aol			70	44		CO #	
ONE WELL	VOLUME :			gai	WELL TD:		70	п	PUMP INTAKE:	00 11	
	Depth			FIE	LD MEAS	SUREME	NTS				
	to	Purge			-		-				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
0.40	58.55								Static head		
8:10		80	00.00	0 75 4	7 70	5.00	445	00.0	Pump On		
8:15			20.90	0.754	1.73	5.63	-115	60.0			
8:20			21.11	0.779	4.41	5.85	-111	32.1			
8:25			20.85	0.801	3.50	5.89	-114	25.5			
8:30			20.13	0.825	3.02	5.90	-114	19.1			
8:35			19.91	0.834	2.68	5.90	-115	33.3			
8:40			19.89	0.832	2.42	5.88	-117	38.6			
8:45			20.11	0.852	2.26	5.86	-118	36.5			
8:50			20.26	0.852	2.07	5.87	-119	34.9			
8:55			20.29	0.852	2.03	5.87	-119	34.5			
9:00			20.30	0.853	1.97	5.87	-121	36.3			
9:05			20.42	0.857	1.94	5.87	-124	41.3			
0.40											
9:10									Collect samp		
								-			
								-			
								-			
	1				1				1		
Pumo 7	Type [.]	CMT our	nn								
	ype.		יי <b>۲</b> ,								
Analyti	cal Para	meters:	VOCs	TAI Met	als						
. and y the			,	.,							

A *tuco* International Ltd. Company

-	WELL SAMPLING FORM								PROJECT No.	SHEET	SHEETS
WELL	ICCATION ICCATION ICKSVIIIE, NY CLIENT					r Lith K	em Ko		101351	1 оғ	1
1. LOCATIC	DN NIX				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
HICKSVI	lle, NY					y 11, 20	008			July 11, 2008	
	C				Saby (	hatter	non Pr	ival Pandı	/2		
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	iyari anay	/u		
SGS Di	rilling										
										oo <i>t</i> i	
ONE WELL	VOLUME :			gal	WELL TD:		85	ft	PUMP INTAKE:	83 ft	
	Depth			FIE	LD MEAS	SUREME	NTS				
	to	Purge			-						
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(mi/min)	(C)	(ms/cm)	(mg/L)			(ntu)	Statia baad		
0.40	00.00	90							Static nead		
9:40			00.00	0.044	0.00	4.00	-	45.0	Pump On		
9:45			20.92	0.241	6.89	4.63	-5	15.9			
9:50			20.89	0.241	5.27	4.78	-16	11.5			
9:55			21.18	0.238	4.01	4.93	-18	12.2			
10:00			21.39	0.240	3.77	5.06	-36	11.3			
10:05			21.71	0.241	3.55	5.26	-46	12.2			
10:10			21.93	0.242	3.35	5.38	-60	12.8			
10:15			22.16	0.241	3.11	5.50	-72	15.3			
10:20			22.28	0.238	2.96	5.98	-76	15.6			
10:25			22.55	0.246	2.91	5.58	-87	16.1			
10:30			22.86	0.242	2.95	5.56	-84	16.6			
10:35			23.36	0.243	2.69	5.53	-84	18.3			
10:40			23.39	0.246	2.63	5.55	-90	16.80			
10:45									Collect samp	ole PW01-02	
	1		1		1						
Pump T	vpe:	CMT pur	np.								
Analvtic	nalytical Parameters: VOCs, TAL Me										
					-						

A **tyco** International Ltd. Company

WELL SAMPLING FORM 1. LOCATION					PROJECT				PROJECT No.	SHEET	SH	IEETS
WELL	WELL SAMPLING FORM L LOCATION Hicksville, NY					r Lith K	em Ko		101351	1 0	ЭF	1
1. LOCATIO	DN				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLI	ETED	
Hicksvi	lle, NY				Jul	y 11, 2	208			July 11, 2008	)	
2. CLIENT	C				6. NAME C		TOR NOO Dri	val Dandı	<i>(</i> 2			
		Ŷ					JEE, PII	yai Panuy	/a			
SGS D	rillina	-										
ONE WELL	VOLUME :			gal	WELL TD:		110	ft	PUMP INTAKE:	107 ft		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS					
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity		REMARKS		
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)				
	58.55								Static head			
11:10		80							Pump On			
11:15			34.92	0.258	3.33	5.77	-122	23.7				
11:20			34.91	0.260	3.29	5.78	-122	22.9				
11:25			34.88	0.250	2.81	5.84	-114	19.9				
11:30			35.14	0.252	2.39	5.83	-108	17.4				
11:35			35.35	0.253	2.20	5.84	-105	15.4				
11:40			35.56	0.253	2.10	5.84	-97	13.1				
11.45			35 65	0 254	2 03	5.85	-101	3.8				
11:50			35.81	0.253	1.87	5.86	-97	14.2				
11:55			35.98	0.254	1.83	5.87	-96	15.0				
12.00			36 15	0.255	1.89	5.87	-94	12.8				
12.00			00.10	0.200		0.01	0.	12.0				
12.15									Colect samp	le PW01-03		
12.10									Coloci damp			
		CMT nur	nn									
runp i	ype.	Civit pur	πp,									
Analytic	al Dara	motore	VOCa		ale							
7 liary (IC			v 003,		ulo							

A **tyco** International Ltd. Company

WELL SAMPLING FORM 1. LOCATION					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	WELL SAMPLING FORM I. LOCATION Hicksville, NY					r Lith K	em Ko		101351	1 0	оғ 1
1. LOCATIO	DN				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLE	ETED
Hicksvi	lle, NY				Jul	<u>y 11, 2</u>	208			July 11, 2008	j
2. CLIENT	ic.				6. NAME (	>bottor	ror noo Dri	ival Dandy	(2)		
3. DRILLIN	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	iyar Fanuy	ya		
SGS D	rilling										
ONE WELL	VOLUME :			gal	WELL TD:		115	ft	PUMP INTAKE:	113 ft	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity	1	REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
	58.55								Static head		
8:20		85							Pump On		
8:25			23.94	0.315	8.32	5.32	4	0.0			
8:30			22.86	0.302	7.55	5.70	-44	0.0			
8:35			22.81	0.295	7.03	5.84	-67	0.0			
8:40			22.96	0.293	6.75	5.94	-85	0.0			
8:45			23.18	0.292	6.72	5.98	-94	0.0			
8:50			23.31	0.293	6.70	6.08	-101	0.0			
8:55			23.41	0.293	6.43	6.14	-103	0.0			
9:00			23.65	0.293	6.43	6.27	-107	0.0			
9:05			23.93	0.293	6.39	6.29	-114	0.0			
9:10			24.10	0.293	6.41	6.30	-116	0.0			
9:15									Collect same	le PW01-04	
Pump 7	Гуре:	CMT pur	np,								
		1 ~	• •								
Analytic	cal Para	meters:	VOCs.	TAL Met	als						
			,								

A **tyco** International Ltd. Company

WELL SAMPLING FORM					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	VELL SAMPLING FORM					r Lith K	em Ko		101351	1 о	ғ 1
1. LOCATIO	ON				4. DATE W	VELL STAR	TED			5. DATE WELL COMPLE	ΓED
Hicksvi	lle, NY				Jul	<u>y 14, 2</u>	208			July 14, 2008	
2. CLIENT	ic.				6. NAME C	Achro	ror Drival E	andva			
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	anuya			
SGS D	rilling										
ONE WELL	VOLUME :		-	gal	WELL TD:		160	ft	PUMP INTAKE:	157 ft	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity	1	REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
	58.80								Static head		
10:00		80							Pump On		
10:05			22.15	0.283	8.27	5.17	-21	47.4			
10:10			21.55	0.257	5.48	5.30	7	30.0			
10:15			21.57	0.252	4.51	5.29	17	28.4			
10:20			21.69	0.249	4.14	5.27	23	26.8			
10:25			21.79	0.247	3.99	5.27	28	24.7			
10:30			21.79	0.248	3.94	5.26	30	22.2			
10:35			21.69	0.244	3.91	5.30	31	17.0			
10:40			21.67	0.243	3.83	5.25	35	15.9			
10:45			21.80	0.240	3.73	5.28	34	15.2			
10:50			21.82	0.240	3.70	5.27	35	13.9			
11:00									Colect samp	le PW01-05	
			1		1				1		
Pump T	Гуре:	CMT pur	np,								
		1	• ′								
Analytic	cal Para	meters:	VOCs,	TAL Met	als						

A **tyco** International Ltd. Company

WELL SAMPLING FORM					PROJECT				PROJECT No.	SHEET	SHEETS
WELL SAMPLING FORM 1. LOCATION Hicksville, NY					Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIC	DN NIX				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
HICKSVI	lle, NY					y 11, 20	008			July 11, 2008	
	C				Saby (	hatter	nee Pri	ival Pandy	/a		
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	iyari ana	yu		
SGS Di	rilling										
							4.40			100 (	
ONE WELL	VOLUME :			gai	WELL TD:		140	π	PUMP INTAKE:	138 ft	
	Depth			FIE	LD MEAS	SUREME	NTS				
	to	Purge		-							
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
	58.55	80							Static head		
9:45					0.07	- 10			Pump On		
9:50			21.74	0.446	8.37	5.16	37	0.0			
9:55			21.77	0.415	7.62	5.30	27	0.0			
10:00			21.14	0.385	7.90	5.47	16	0.0			
10:05			21.30	0.360	7.68	5.66	3	0.0			
10:10			21.43	0.349	7.70	5.81	-10	0.0			
10:15			21.73	0.358	7.71	5.99	-23	0.0			
10:20			21.93	0.338	7.48	6.05	-31	0.0			
10:25			22.15	0.335	7.49	6.16	-37	0.0			
10:30			22.31	0.333	7.48	6.19	-40	0.0			
10:35			22.31	0.333	7.48	6.21	-43	0.0			
10:40			22.45	0.332	7.42	6.24	-45	0.0			
10:45			22.36	0.332	7.45	6.23	-46	0.00			
11:00									Sample colle	ected PW01-06	
									MS/SMD		
									Duplicate sa	mple PW01-56	
									Note: Pump	touched the bottom	
									around 140 f	t	
	_										
Pump T	ype:	CMT pur	np,								
Analytic	cal Para	ameters:	VOCs,	TAL Met	als						

A **tyco** International Ltd. Company

	WELL SAMPLING FORM								PROJECT No.	SHEET	SHEETS
WELL	VELL SAMPLING FORM					r Lith K	em Ko		101351	1 оғ	1
1. LOCATIC	DN				4. DATE W	ELL STAR	TED		•	5. DATE WELL COMPLETED	
Hicksvil	lle, NY				Jul	y 14, 20	800			July 14, 2008	
2. CLIENT	<u> </u>				6. NAME (		TOR Drivel F	landua			
		Y			7. SIGNAT	URFOFIN	SPECTOR	ranuya			
SGS D	rillina	•									
ONE WELL	VOLUME :		-	gal	WELL TD:		160	ft	PUMP INTAKE:	157 ft	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	•		(ntu)			
	58.80								Static head		
11:00		140							Pump On		
11:05			18.05	0.382	4.17	5.09	-9	12.0	•		
11:10			17.96	0.381	3.52	5.27	-22	11.6			
11:15			18.00	0.382	3.41	5.37	-29	11.7			
11:20			18.08	0.383	3.59	5.47	-32	11.0			
11:25			18.43	0.381	3.47	5.53	-33	10.6			
11:30			18.63	0.383	3 46	5.57	-34	10.3			
11.35			18.79	0.383	3 55	5.61	-33	11.2			
11:40			18.95	0.383	3.62	5.62	-32	10.2			
11:45			18.99	0.385	3.78	5.64	-31	8.6			
11:50			18.85	0.386	3.80	5.65	-30	6.4			
11.00			10.00	0.000	0.00	0.00	50	0.4			
12.00									Collect same		
12.00									Collect Samp		
Pump T	vpe.	CMT our	np.								
	780.	Sint pu	··•,								
Analytic	cal Para	meters:	VOCs,	TAL Met	als						

A *tuco* International Ltd. Company

WELL SAMPLING FORM					PROJECT				PROJECT No.	SHEET	SHEETS
WELL \$	VELL SAMPLING FORM LOCATION licksville, NY					r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	DN N				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	)
Hicksvil	lle, NY				Ju	ly 9, 20	08			July 9, 2008	
	C				Saby (	hatter	noo Pri	ival Pandı	/2		
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	iyari anu	a		
SGS Dr	rilling										
										(	
ONE WELL	VOLUME :			gai	WELL TD:		70	ft	PUMP INTAKE:	68 ft	
	Depth			FIE	LD MEAS	SUREME	NTS				
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
	58.55	80							Static head		
15:20									Pump On		
15:25			29.74	0.222	6.56	6.64	-135	0.0			
15:30			29.64	0.222	6.33	6.67	-137	0.0			
15:35			30.01	0.219	5.94	6.74	-143	0.0			
15:40			30.29	0.218	5.85	6.80	-146	0.0			
15:45			30.49	0.217	5.47	6.82	-147	0.0			
15:50			30.46	0.216	5.49	6.80	-145	0.0			
15:55			31.00	0.215	5.47	6.78	-145	0.0			
16:00			31.32	0.212	5.45	6.80	-147	0.0			
16:05			32.33	0.212	5.47	6.88	-149	0.0			
16:10			32.24	0.213	5.49	6.89	-152	0.0			
16:15			32.29	0.215	5.45	6.87	-147	0.0			
16:20									Collect samp	ole PW02-01	
			1		1		1		1		
Pump T	vpe:	CMT nur	np.								
	785.	Sin pu	··•P* ,								
Analytic	cal Para	meters:	VOCs	TAL Met	als						
					-						

A **tyco** International Ltd. Company

_	WELL SAMPLING FORM								PROJECT No.	SHEET	SHEETS
WELL	VELL SAMPLING FORM					r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	DN				4. DATE W	VELL STAR	TED			5. DATE WELL COMPLETED	)
Hicksvi	lle, NY				Ju	ly 9, 20	800			July 9, 2008	
2. CLIENT	C C				6. NAME (	OF INSPEC	TOR Dec Dec	ivel Dend	10		
		Y			7. SIGNAT			iyai Fanu	ya		
SGS D	rillina					0.12 0.1					
ONE WELL	VOLUME :			gal	WELL TD:		85	ft	PUMP INTAKE:	82 ft	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity	1	REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
	56.65	80							Static head		
13:20									Pump On		
13:25			23.12	0.31	4.72	6.01	-126	95.4			
13:30			22.83	0.301	3.22	6.03	-129	90.5			
13:35					-		_		Horiba clean	ed	
13.40			22.86	0 294	3 05	5 99	-124	43.1			
13:45			22 74	0.288	2 47	6.03	-126	45.0			
13.50			22.04	0.285	2.17	5.00	-124	45.4			
13.55			22.01	0.285	1 93	5 99	-126	47.2			
14.00			22.01	0.200	1.00	5.00	-128	18.8			
14:00			23.13	0.200	2.16	5.03	-120	40.0			
14.03			23.00	0.204	2.10	5.95	-125	44.1			
14.10			22.02	0.200	2.00	5.33	120	46.6			
14.15			23.29	0.202	1.90	5.97	-120	40.0			
14:05											
14.25									Collect Samp		
									Cleanweter		
										0 400 #	
									CPIVI 3, 10/1	0, 100 II	
Pump 1	Гуре:	CMT pur	np,								
Analytic	cal Para	ameters:	VOCs,	TAL Met	als						

A **tyco** International Ltd. Company

WELL SAMPLING FORM					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	WELL SAMPLING FORM					r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	DN				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	)
Hicksvi	lle, NY				Jul	y 10, 2	008			July 10, 2008	
2. CLIENT	C				6. NAME (	DF INSPEC	TOR Dr	ivel Dend	10		
		Y			7. SIGNAT	URE OF IN	SPECTOR	iyai Fanu	ya		
SGS D	rillina										
ONE WELL	VOLUME :		-	gal	WELL TD:		100	ft	PUMP INTAKE:	98 ft	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity	1	REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	•		(ntu)			
	56.70	80							Static head		
9:10									Pump On		
9:15			27.38	0.38	6.05	4.92	-55	12.9			
9:20			27.34	0.399	4.23	4.99	-76	6.7			
9:25			27.73	0.407	3.32	5.26	-105	7.9			
9:30			28.03	0 407	2 75	5.37	-120	8.4			
9:35			27.99	0.415	2.36	5 49	-125	4.6			
9.40			28.38	0.413	2.00	5 54	-131	4.0			
0:40			28.00	0.410	2.27	5.57	-120	4.4			
0.50			28.52	0.414	2.23	5.62	-123	3.7			
9.50			20.52	0.410	2.23	5.02	-120	3.7			
9.00			20.40	0.410	2.22	5.01	122	3.5			
10.00			20.72	0.417	2.20	5.05	-123	3.2			
									Sample DW(	)2 02 collected	
									Sample PWC	J2-03 collected	
									0040.40/4		
									CPIM 3, 10/1	0, 100 ft	
Pump T	Type:	CMT pur	np,								
		•	-								
Analytic	cal Para	ameters:	VOCs,	TAL Met	als						

A **tyco** International Ltd. Company

WELL SAMPLING FORM					PROJECT				PROJECT No.	SHEET	SHEETS
WELL SAMPLING FORM					Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	ON				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETE	2
Hicksvi	lle, NY				Jul	y 10, 2	008			July 10, 2008	
2. CLIENT	-				6. NAME (	>bottor	TOR Dec Dri	ival Dandy	(2)		
		Y			7. SIGNAT	URE OF IN	SPECTOR	iyal Fallu	ya		
SGS D	rillina										
	U										
ONE WELL	VOLUME :		-	gal	WELL TD:		115	ft	PUMP INTAKE:	113 ft	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity	1	REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	•		(ntu)			
	56.70	90							Static head		
9:05									Pump On		
9:10			23.97	0.23	8.26	6.19	-39	0.0			
9:15			23.95	0.223	7.23	6.30	-68	0.0			
9:20			23.90	0.221	6.83	6.43	-98	0.0			
9:25			24.10	0.216	6.80	6.48	-113	0.0			
9:30			24.30	0.211	6.84	6.52	-120	0.0			
9:35			24.22	0.214	6.48	6.55	-121	0.0			
9:40			24.67	0.215	6.29	6.61	-119	0.0			
9:45			24.73	0.215	6.08	6.65	-119	0.0			
9:50			24 65	0.216	6 10	6.08	-118	0.0			
9:55			24 52	0.217	6.09	6 68	-116	0.0			
0.00				0	0.00	0.00		0.0			
10.02									Collect same	ole PW02-04	
10.00									Concer camp		
									CPM 3 10/1	0 120 ft	
										0, 120 11	
			1		]		]		l		
Dumo 7			nn								
Fump	i ype:	Civit pur	np,								
Anchet	nalvtical Parameters [.] VOCs_TAL_Me										
Analytic			voos,	TAL Met	ais						

A **tyco** International Ltd. Company

WELL SAMPLING FORM					PROJECT				PROJECT No.	SHEET	SHEETS
WELL SAMPLING FORM					Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	DN				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	)
Hicksvi	lle, NY				Ju	ly 9, 20	08			July 9, 2008	
2. CLIENT	C				6. NAME C		TOR	vol Dondu	<i>(</i> 2		
		Y			JADY C		SPECTOR	iyai Panuy	/a		
SGS D	rillina	-									
ONE WELL	VOLUME :		-	gal	WELL TD:		130	ft	PUMP INTAKE:	128 ft	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рΗ	ORP	Turbidity	1	REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)		••••	(ntu)			
	56.70	85	. ,		,				Static head		
13:30									Pump On		
13:40			24.30	0.308	10.34	6.12	-48	33.7			
13:45			23.38	0.301	9.89	6.12	-68	0.0			
13:50			23.61	0.299	9.90	6.16	-72	0.0			
13:55			24 00	0.292	10.01	6.17	-68	0.0			
14.00			24.14	0.289	10.01	6.19	-63	0.0			
14:05			24.14	0.205	8 31	6 14	-54	0.0			
14.00			24.00	0.200	8.34	6 16	-50	0.0			
14.10			24.40	0.204	8.00	6 15	-30	0.0			
14.13			24.32	0.279	8.00	6.17	-47	0.0			
14.20			24.32	0.201	7.90	6.20	-45	0.2			
14.20			23.00	0.200	7.00	6.20	-40	0.2			
14.30			24.29	0.202	7.03	6.22	-37	22.00			
14.55			24.30	0.203	7.00	0.32	-30	22.00			
44.40											
14:40									Collect samp	DIE PVV02-05	
										0 400 #	
									CPINI 3, 10/1	0, 120 π	
Pump T	уре:	CMT pur	np,								
Analytic	cal Para	ameters:	VOCs,	TAL Met	als						

A **tyco** International Ltd. Company

_									PROJECT No.	SHEET	SHEETS
WELL	SAMPL	ING FOR	RM		Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	ON NIX				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
HICKSVI	lle, NY				JU	ly 9, 20	08			July 9, 2008	
	C				Saby (	hatter	nee Pr	ival Pandı	/2		
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	iyari anay	,a		
SGS D	rilling										
							4.45	<i>c.</i>		4.40.5	
ONE WELL	VOLUME :			gai	WELL TD:		145	ft	PUMP INTAKE:	140 ft	
	Depth			FIE	LD MEAS	SUREME	NTS				
	to	Purge	_						4		
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)		(C)	(ms/cm)	(mg/L)			(ntu)	Statia boad		
14.50	56.70	00									
14.50			25.07	0.202	4.69	E 24	61	110	Pump On		
14.55			25.07	0.303	4.00	5.34	-01	14.0			
15:00			25.30	0.379	3.34	5.27	-67	11.2			
15:05			25.15	0.401	2.41	5.41	-84	8.8			
15:10			25.19	0.403	2.30	5.53	-103	9.4			
15:15			24.95	0.396	2.25	5.74	-128	13.7			
15:20			24.64	0.386	1.73	5.83	-150	15.3			
15:25			24.21	0.381	1.69	5.90	-161	16.6			
15:30			23.98	0.374	1.56	5.99	-169	17.2			
15:35			23.91	0.371	1.54	5.99	-165	32.6			
15:40			24.07	0.368	1.49	6.01	-1/1	30.9			
15:45			23.93	0.368	1.51	6.02	-170	31.9			
									Sample PW0	02-06 collected	
									CPM 3, 10/1	0, 155 ft	
Pump T	Гуре:	CMT pur	np,								
Analytic	cal Para	ameters:	VOCs,	TAL Met	als						

A **tyco** International Ltd. Company

WELL NO. PW02-07

WELL SAMPLING FORM					PROJECT				PROJECT No.	SHEET	SHEETS
WELL \$	SAMPL	ING FOR	RM		Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIC	DN				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	)
Hicksvi	lle, NY				Jul	y 10, 20	208			July 10, 2008	
	C C				6. NAME (	hottor	non Dr	ival Dandy	10		
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	iyal Falluy	ya		
SGS DI	rilling										
										_	
ONE WELL	VOLUME :			gal	WELL TD:		160	ft	PUMP INTAKE:	157 ft	
	Depth			FIE	LD MEAS	SUREME	NTS				
	to	Purge		1		1			-		
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)	Otatia haad		
10.00	56.70	80							Static head		
13:00			07.00	0.000	4	5 70	100	00.4	Pump On		
13:05			37.93	0.236	5.74	5.78	-126	38.4			
13:10			37.24	0.359	5.02	5.64	-142	44.0			
13:15			37.31	0.453	5.55	3.64	-142	43.5			
13:20			37.74	0.479	5.54	3.24	-142	48.8			
13:25									Horiba clean	ed	
13:30									Horiba clean	ed	
13:35			38.94	0.509	2.50	5.66	-153	43.9			
13:40			38.23	0.525	2.29	5.67	-159	45.5			
13:45			38.99	0.499	2.26	5.67	-149	45.2			
13:50			38.83	0.501	2.02	5.79	-154	64.3			
13:55									Horiba clean	ed	
14:00			39.22	0.483	5.52	5.88	-130	62.70			
14:05			37.11	0.482	5.49	5.90	-130	66.9			
14:10			39.35	0.478	5.08	5.90	-121	69.3			
14:15			39.43	0.474	4.88	5.93	-115	72.1			
14:20			39.74	0.474	4.56	5.94	-110	68.9			
14:25			39.85	0.47	4.37	5.96	-107	78.7			
14:30			40.01	0.47	4.30	5.95	-105	79.5			
14:40											
14:45			40.01	0.461	4.25	5.94	-104	71.5			
14:50			40.13	0.458	4.18	5.96	-101	81.1			
			İ						Sample PW0	2-07 collected	
									CPM 3, 10/1	0, 170 ft	
			1						-, -, -,	,	
	1		8						•		
Pump T	ype:	CMT pur	np,								

Analytical Parameters: VOCs, TAL Metals

A **tyco** International Ltd. Company

WELL SAMPLING FORM					PROJECT				PROJECT No.	SHEET	SHEETS	
WELL SAMPLING FORM					Ancho	r Lith K	em Ko		101351	1 оғ	1	
1. LOCATIO	DN				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED		
Hicksvi	lle, NY				Ju	ly 8, 20	08			July 8, 2008		
	ic i				6. NAME (	hattor	non Dri	ival Pandı	12			
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	iyari anu	ya			
SGS D	rilling											
										(		
ONE WELL	VOLUME :			gal	WELL TD:		70	ft	PUMP INTAKE:	68 ft		
	Depth			FIE		SUREME	NTS		I			
	to	Purge										
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS		
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)				
	56.40								Static head			
13:30									Pump On			
13:40		90	28.30	0.489	7.55	5.59	-41	24.5				
13:45			27.92	0.487	5.02	5.80	-42	19.8				
13:50			27.70	0.488	4.82	5.84	-41	18.1				
13:55			27.42	0.489	4.66	5.89	-40	25.2				
14:00			27.44	0.486	4.26	5.91	-40	34.7				
14:05			27.30	0.486	3.87	5.91	-40	42.0				
14:10			27.15	0.484	3.83	5.91	-41	51.7				
14:15			27.17	0.452	3.78	5.92	-41	62.2				
14:20			26.96	0.486	3.76	5.95	-41	72.3				
14:25			26.83	0.485	3.21	6.00	-43	101.0				
14:30			26.77	0.485	2.83	6.00	-48	102.0				
14:35			26.77	0.483	2.73	6.01	-50	112.00				
14:40			26.86	0.483	2.68	6.01	-51	129				
14:45			26.93	0.483	2.67	6.03	-52	136				
14:50									Horiba clean	ed		
14:55			27.15	0.502	2.36	6.03	-58	1.6				
15:00			27.09	0.502	2.31	6.02	-59	2.4				
15:05			27.00	0.503	2.28	6.03	-61	2.9				
15:10			26.89	0.502	2.2	6.05	-61	3.7				
									Sample PW0	03-01 collected		
									CPM 3, 10/1	0, 90 ft		
Pump T	ype:	CMT pur	np,									
	. –											
Analytic	cal Para	ameters:	VOCs,	TAL Met	als							

A **tyco** International Ltd. Company

WELL SAMPLING FORM					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	WELL SAMPLING FORM					r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	DN N				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
Hicksvi	lle, NY				Ju	ly 8, 20	08			July 8, 2008	
	C				Saby (	hatter	non Pri	ival Pandı	/2		
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	iyari anay	/u		
SGS D	rilling										
										oo <i>t</i> i	
ONE WELL	VOLUME :			gal	WELL TD:		70	ft	PUMP INTAKE:	68 ft	
	Depth			FIE	LD MEAS	SUREME	NTS				
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	DO	рΗ	ORP	Turbidity	1	REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
	56.50								Static head		
11:35		60							Pump On		
11:40			21.35	1.01	16.46	6.51	-108	171.0			
11:45			21.18	0.750	5.46	6.20	-111	92.9			
11:50		80	22.14	0.693	3.56	6.21	-107	82.8			
11:55			22.85	0.647	6.71	6.16	-100	53.7			
12:00			22.46	0.651	6.60	6.17	-100	40.0			
12:05			22.93	0.624	6.10	6.19	-101	30.7			
12:10			22.88	0.622	5.30	6.21	-102	24.2			
12:15			22.91	0.619	5.29	6.23	-106	25.3			
12:20			22.44	0.618	5.29	6.25	-102	19.8			
12:25			22.66	0.611	4.99	6.28	-107	12.5			
12:30			22.41	0.611	4.87	6.31	-109	21.3			
12:35			22.45	0.609	4.50	6.33	-112	15.80			
12:45									Collect samp	le PW03-02	
									CPM 3, 10/1	0, 90 ft	
Pump T	Гуре:	CMT pur	np,								
Analytic	cal Para	ameters:	VOCs,	TAL Met	als						

A **tyco** International Ltd. Company

_	WELL SAMPLING FORM								PROJECT No.	SHEET	SHEETS	
WELL	WELL SAMPLING FORM					r Lith K	em Ko		101351	1 оғ	1	
1. LOCATIO	ON				4. DATE W	VELL STAR	TED			5. DATE WELL COMPLETED	)	
Hicksvi	lle, NY				Ju	ly 9, 20	08			July 9, 2008		
2. CLIENT	- -				6. NAME (	DF INSPEC	ror Dr	ivel Dend	10			
3. DRILLIN		Y			7. SIGNAT	URE OF IN	SPECTOR	iyai Fallu	ya			
SGS D	rilling											
ONE WELL	VOLUME :			gal	WELL TD:		100	ft	PUMP INTAKE:	98 ft		
	Depth to	Purae		FIE	LD MEAS	SUREME	NTS					
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity	1	REMARKS		
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)				
	56.50								Static head			
8:40		70							Pump On			
8:50			24.32	0.276	7.25	5.68	-27	14.7				
8:55			24.36	0.253	4.29	5.54	14	9.6				
9:00			24.80	0.292	3.90	5.45	47	11.1				
9:05			24.70	0.238	3.89	5.46	64	12.2				
9.10			25.12	0.234	3.92	5 47	72	14.0				
9.15			25.24	0.233	3.97	5 44	81	13.7				
9.20			25.24	0.231	4 64	5 4 5	89	14.7				
9.25			25.89	0.201	4.87	5 44	97	16.1				
9.20			25.75	0.220	4.07	5 50	98	16.7				
0.35			25.85	0.230	1.88	5.50	97	17.2				
0.00			25.00	0.200	4.00	5.00	00	10.3				
9.40			23.24	0.220	4.32	5.49	33	19.5				
0.45												
9.45									Collect Samp	NE F W03-03		
									CPM 3, 10/1	0, 120 ft		
Pump 7	Pump Type: CMT pump,											
Analytic	cal Para	ameters:	VOCs,	TAL Met	als							

A **tyco** International Ltd. Company

WELL SAMPLING FORM					PROJECT				PROJECT No.	SHEET		SHEETS
WELL	WELL SAMPLING FORM					r Lith K	em Ko		101351	1	OF	1
1. LOCATIO	ON NIX				4. DATE W	ELL STAR	TED			5. DATE WELL COMPI	ETED	
Hicksvi	lle, NY				Ju	ly 8, 20	08			July 8, 2008	<u>;                                    </u>	
2. CLIENT	ic.				6. NAME (	>bottor	ror noo Dri	ival Dandy	10			
		Y			7. SIGNAT	URE OF IN	SPECTOR	iyal Falluy	/d			
SGS D	rilling											
ONE WELL	VOLUME :			gal	WELL TD:		115	ft	PUMP INTAKE:	113 ft		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS					
Time	Water	Rate	Temp.	Conduct.	DO	рΗ	ORP	Turbidity		REMARKS		
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)		••••	(ntu)				
	56.55		. , ,		,				Static head			
12:50									Pump On			
12:55		80	26.16	0.412	8.06	6.90	-120	305.0				
13:00			25.75	0.406	7.87	6.94	-123	352.0				
13:05			25.29	0.393	7.93	7.02	-123	345.0				
13.10			25.53	0.384	7 76	7 11	-133	108.0				
13.15			25 54	0.385	7.37	7.12	-133	86.8				
13.20			25 50	0.377	7 74	7.12	-135	0.0				
13.25			25.34	0.379	7 31	7.10	-135	0.0				
13.30			20.04	0.380	7.01	7.20	-135	0.0				
13:35			24.04	0.300	7.32	7.22	-136	0.0				
13:40			24.73	0.370	6.88	7.26	-137	0.0				
13:45			24.01	0.368	7 20	7.20	-138	0.0				
13:50			24.42	0.368	7.23	7.21	-138	0.0				
13:55			24.00	0.367	7.21	7.21	-138	0.0				
14.00			24.23	0.365	7.01	7.20	-130	0				
14.00			24.14	0.505	1.24	7.50	-103	0				
14.05									Collect same	DA DW03-04		
14.00									Collect Samp			
									CPM 2 10/1	0 140 ft		
										0, 140 11		
Dumo 7												
Fump	ype:	Civit pur	np,									
Analytic	al Para	motore	VOCa									
	nalytical Parameters: VOCs, TAL Me											

A **tyco** International Ltd. Company

WELL SAMPLING FORM					PROJECT				PROJECT No.	SHEET	SHEETS
WELL SAMPLING FORM					Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	DN				4. DATE W	/ELL STAR	TED			5. DATE WELL COMPLETED	
Hicksvi	lle, NY				Ju	ly 8, 20	08			July 8, 2008	
2. CLIENT	~				6. NAME C						
		v			Sady C		Jee, Pri	iyal Pandy	/a		
SGS D	rillina					0112 01 11					
000 0	innig										
ONE WELL	VOLUME :			gal	WELL TD:		130	ft	PUMP INTAKE:	128 ft	
	Depth to	Purae		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	•		(ntu)			
	56.65								Static head		
14:45			24.9	0.265	10.05	6.33	-3	0.0	Pump On		
		80							•		
14:50			24.77	0.264	9.73	6.31	-29	0.0			
14:55			24.22	0.262	9.57	6.20	-13	0.0			
15:00			24.17	0.262	9.20	6.20	-11	0.0			
15:05			24.09	0.265	9.60	6.20	1	0.0			
15.10			23.98	0.269	9.65	6.20	7	0.0			
15:15		0.272	9.85	6.25	10	0.0					
15:20			23.83	0.272	9.00	6.26	10	0.0			
15:25			23.88	0.272	9.45	6.29	10	0.0			
15:30			23.00	0.277	9.50	6.31	10	0.0			
15:35			23.01	0.277	0.00	6.31	10	0.0			
15:40			23.33	0.277	9.43	6.3/	10	0.0			
13.40			27.21	0.270	5.47	0.54	15	0.00			
15.50											
15.50									Collect Samp	Ne F W03-05	
16:10	<b>FG G</b>										
10.10	0.00										
									CPM 3, 10/1	0, 140 ft	
Pump T	ype:	CMT pur	np,								
Analytic	cal Para	ameters:	VOCs,	TAL Met	als						

A **tyco** International Ltd. Company

WELL SAMPLING FORM					PROJECT				PROJECT No.	SHEET	SHEETS	
WELL SAMPLING FORM 1. LOCATION					Ancho	r Lith K	em Ko		101351	1 оғ	1	
1. LOCATIO	DN NIX				4. DATE W	VELL STAR	TED			5. DATE WELL COMPLETED		
	lie, NY				JU	IY 9, 20	08			July 9, 2008		
	C.				Sahv (	Chatter	nee Pri	ival Pandy	/a			
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	lyarr anay	, u			
SGS D	rilling											
ONE WELL	VOLUME :			gal	WELL TD:		145	ft	PUMP INTAKE:	142 ft		
	Depth			FIE	LD MEAS	SUREME	NTS					
	to	Purge										
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS		
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)				
	56.65	80				~ · · ·			Static head			
9:00			21.78	0.436	9.3	6.14	-24	0.0	Pump On			
9:05			21.84	0.438	8.88	6.13	-33	0.0				
9:10			22.04	0.437	8.14	6.18	-69	0.0				
9:15			21.82	0.428	8.02	6.25	-89	0.0				
9:20			21.62	0.420	7.48	6.35	-111	0.0				
9:25			21.93	0.412	7.20	6.40	-120	0.0				
9:30			21.78	0.390	7.17	6.53	-128	0.0				
9:35			21.83	0.390	7.15	6.56	-131	0.0				
9:40			21.72	0.378	7.21	6.58	-130	0.0				
9:45			21.75	0.365	7.17	6.62	-130	0.0				
9:50			21.74	0.367	7.19	6.61	-131	0.0				
9:55			21.65	0.361	7.13	6.65	-135	0.0				
10:00			21.75	0.363	7.15	6.69	-133	0.00				
40.05												
10:05									Collect samp	DIE PVV03-06		
									CPM 3. 10/1	0. 155 ft		
										-,		
Pump T	vpe:	CMT pur	np.									
	76.21		<b>-</b> ,									
Analytic	cal Para	meters:	VOCs.	TAL Met	als							
-												
A **tyco** International Ltd. Company

WELL SAMPLING FORM					PROJECT PROJECT No. SHEET Anchor Lith Kem Ko 101351 1						SHEETS	
WELL SAMPLING FORM 1. LOCATION Hicksville, NY					Ancho	r Lith K	em Ko		101351	1	OF	1
1. LOCATIO					4. DATE W	ELL STAR	TED			5. DATE WELL COMP		
HICKSVI	lie, NY				JU 6 NAME (	IV 9, 20				July 9, 200	8	
NYSDE	-C				Saby (	Chatter	nee Pri	ival Pandy	/a			
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	yarr anay	G			
SGS D	rilling											
							400	<i>u</i>				
ONE WELL	VOLUME :			gai	WELL TD:		160	It	PUMP INTAKE:	157 10		
	Depth			FIE	LD MEAS	SUREME	NTS					
	to	Purge										
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS		
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)				
	56.60	80							Static head			
10:20									Pump On			
10:25			30.66	0.499	6.13	5.95	-101	65.2				
10:30			30.85	0.468	4.71	6.10	-108	40.9				
10:35			31.43	0.453	4.10	6.10	-107	58.8				
10:40			31.85	0.447	3.78	6.10	-106	61.9				
10:45			32.20	0.445	3.71	6.07	-103	68.9				
10:50			32.98	0.443	3.22	6.05	-101	/1.4				
10:55			32.89	0.441	3.00	6.01	-97	67.9				
11:00			32.91	0.442	2.85	6.01	-96	67.0				
11:05			32.97	0.446	2.69	6.03	-92	68.0				
11:10			33.55	0.447	2.45	6.02	-97	44.6				
11:15			33.54	0.449	2.35	6.03	-95	60.7				
11:20			33.69	0.446	2.30	6.04	-97	55.80				
11:25			04.00	0.404	0.00	0.00	100		Horiba clean	ed		
11:30			34.08	0.434	2.30	6.09	-106	23.6				
11:35			33.11	0.433	2.30	6.10	-108	19				
11:40			33.30	0.42	2.20	6.11	-108	17.9				
11:45			33.77	0.417	2.16	6.09	-108	18.5				
11:50			33.79	0.416	2.12	6.09	-108	18.5				
44.55												
11:55									Collect samp	DIE PW03-07		
									Matar had at			
									water had st			
									CPM 3 8/12	170 ft		
									0/12	, 1701		
									1			
Pumn T	vpe.	CMT nur	nn									
	ype.		ייP,									
Analytic	Analytical Parameters: VOCs TAL Met				als							
, and y de					~10							

A *tuco* International Ltd. Company

					PROJECT				PROJECT No.	SHEET SHEETS
WELL	SAMPL	ING FOF	RM		Ancho	r Lith K	em Ko		101351	1 оғ 1
1. LOCATIO	ON				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED
Hicksvi	lle, NY				Jul	y 15, 20	208			July 15, 2008
2. CLIENT	C				6. NAME C	OF INSPECT	ror Drivol E	) and va		
3. DRILLIN		Y			7. SIGNAT	URE OF IN	SPECTOR	ranuya		
-										
								•		
ONE WELL	VOLUME :			gal	WELL TD:		73	ft	PUMP INTAKE:	/1 ft
	Depth			FIE	LD MEAS	SUREME	NTS			
	to	Purge								
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)		
	53.00								Static head	
13:20		80							Pump On	
13:25		80	32.03	0.37	5.15	5.71	-96	0.0	Turbidity sen	isor shorted
13:30		80	31.81	0.369	4.99	5.73	-94	0.0	Cloudy wate	r
13:35		80	28.40	0.371	5.01	5.75	-84	0.0		
13:40		80	28.37	0.376	5.00	5.75	-70	0.0		
13:45		80	30.17	0.365	4.57	5.78	-70	0.0		
13:50		80	30.48	0.363	4.19	5.82	-70	0.0		
13:55		80	30.63	0.367	4.12	5.83	-69	0.0	Clear water	
14:00		80	30.70	0.366	4.08	5.89	-70	0.0		
14:05		80	30.83	0.365	4.01	5.93	-70	0.0		
14:10		80	30.88	0.363	3.93	5.96	-70	0.0	Other horiba	meter
14:15		80	30.89	0.364	3.91	5.97	-70	0.0	Turbidity = 4	4 NTU
14:20		80	30.82	0.365	3.90	5.96	-70	0.0	Turbidity = $3$	7 NTU
14:25									Sample colle	ected PW04-01 at 14:25
Pump 1	Pump Type: CMT pump,									
Analytic	cal Para	ameters:	VOCs,	TAL Met	als					

A *tuco* International Ltd. Company

WELL SAMPLING FORM					PROJECT PROJECT No. SHEET SHEE						
WELL	WELL SAMPLING FORM L LOCATION Hicksville, NY					r Lith K	em Ko		101351	1 оғ 1	
1. LOCATIO	DN				4. DATE W	ELL STAR	TED		•	5. DATE WELL COMPLETED	
Hicksvi	lle, NY				Jul	y 15, 2	800			July 15, 2008	
2. CLIENT	<u> </u>				6. NAME (		TOR Drivel F	landua			
		v			VIPULIN 7. SIGNAT	URFOFIN	PTIYAL P	ranuya			
		•									
-											
ONE WELL	VOLUME :			gal	WELL TD:		88	ft	PUMP INTAKE:	86 ft	
	Depth	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp	Conduct	DO	nН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(ma/L)	P	•	(ntu)			
	53.10	( )	(-)	( /					Static head		
16:00		80							Pump On		
16:05		80	24.80	0.347	5.24	5.62	-166	29.6			
16.10		80	24 41	0.347	3.84	5.63	-168	26.3			
16:15		80	23.95	0.350	2 27	5 71	-173	26.8			
16:20		80	23 70	0.359	1 79	5.83	-166	6.6			
16:25		80	23 55	0.363	1.70	5.87	-163	53			
16.30		80	23.02	0.000	1.70	5.87	-156	5.8			
16:35		80	23.02	0.363	1.00	5.87	-150	5.0			
16:40		80	23.50	0.365	1.04	5.87	-144	6.4			
16:40		80	23.10	0.303	1.40	5.07	-144	0.4 Q 1			
10.45		00	22.90	0.303	1.40	5.67	-140	0.1			
16.55									Sample colle	otod DW04 02 of 16:55	
10.55									Sample colle	cied F W04-02 at 10.55	
Pump T	Type:	CMT pur	np								
Analytic	cal Para	meters:	VOCs,	TAL Met	als						

A *tuco* International Ltd. Company

_					PROJECT				PROJECT No.	SHEET	SHEETS
WELL S	SAMPL	ING FOR	RM		Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIC	DN				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETE	D
Hicksvi	lle, NY				Jul	y 15, 20	008			July 15, 2008	
	C				Vinul N	lehra	Prival F	Pandva			
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	unuyu			
ONE WELL	VOLUME :			gal	WELL TD:		103	ft	PUMP INTAKE:	100 ft	
	Depth	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	нα	ORP	Turbidity	-	REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)		••••	(ntu)			
	53.10								Static head		
15:15		85							Pump On		
15:20		85	34.92	0.23	5.52	5.68	-44	0.0	Turbidity ser	sor is shorted	
15:25		85	34.66	0.224	5.08	5.67	-44	0.0	Clear water		
15:30		85	31.06	0.226	5.88	5.59	-29	0.0			
15:35		85	30.19	0.221	5.89	5.50	-13	0.0			
15:40		85	29.59	0.217	5.96	5.42	1	0.0			
15:45		85	30.50	0.215	5.86	5.39	9	0.0			
15:50		85	30.85	0.217	5.63	5.37	27	0.0			
15:55		85	31.58	0.216	5.44	5.37	39	0.0			
16:00		85	32.62	0.215	5.45	5.36	50	0.0			
16:05		85	33.47	0.214	5.43	5.35	55	0.0			
16:10		85	33.98	0.14	5.44	5.35	57	0.0			
16:20									Sample colle	ected PW04-03 at	16:20
				L				L			
	1		1		1				1		
Pump T	Type:	CMT pur	np								
Analytic	cal Para	ameters:	VOCs,	TAL Met	als						

A **tyco** International Ltd. Company

_					PROJECT				PROJECT No.	SHEET SHEETS
WELL	SAMPL	ING FOF	RM		Ancho	r Lith K	em Ko		101351	1 оғ 1
1. LOCATIO	N				4. DATE V	ELL STAR	TED			5. DATE WELL COMPLETED
Hicksvi	lle, NY				Jul	y 16, 20	800			July 16, 2008
2. CLIENT	C				6. NAME (		TOR Drivol E	) and va		
3. DRILLIN	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	anuya		
ONE WELL	VOLUME :			gal	WELL TD:		118	ft	PUMP INTAKE:	116 ft
	Depth			FIE		SUREME	NTS		I	
	to	Purge								
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	1	REMARKS
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)		
	53.10								Static head	
9:05		90							Pump On	
9:10		90	21.85	0.321	2.18	4.71	29	505.0		
9:15		90	21.28	0.307	2.15	4.84	20	249.0		
9:20									Horiba clean	ed
9:25		90	20.97	0.291	2.68	4.85	19	139.0		
9:30		90	21.07	0.290	2.67	4.86	20	118.0		
9:35		90	21.17	0.286	2.67	4.81	22	96.9		
9:40		90	21.23	0.284	3.25	4.84	20	60.6	Horiba clean	ed
9:45		90	21.35	0.287	2.96	4.86	20	49.8		
9:50		90	21.56	0.284	2.86	4.85	22	43.0		
9:55		90	21.61	0.283	2.76	4.84	22	40.6		
10:00		90	21.72	0.286	2.72	4.83	22	38.0		
10.10										
10:10									Sample colle	ected PW04-04 at 10:10
		-							Had issue wi	
		-							Had issue wi	th clay
					<u> </u>					
					<u> </u>					
	1				1				1	
Pumo 7	Tvne:	CMT nur	nn							
	ump rype. Civit pump									
Analytic	alvtical Parameters: VOCs TAL Me				als					
i i aiyat			,							

A **tyco** International Ltd. Company

WELL SAMPLING FORM					PROJECT PROJECT No. SHEET S						
WELL	WELL SAMPLING FORM 1. location Hicksville, NY					r Lith K	em Ko		101351	1 оғ 1	
1. LOCATIC	DN				4. DATE W	ELL STAR	TED		•	5. DATE WELL COMPLETED	
Hicksvil	lle, NY				Jul	y 16, 2	800			July 16, 2008	
2. CLIENT	<u> </u>				6. NAME (		TOR Drivel F	landua			
		Ŷ			7. SIGNAT	URFOFIN	SPECTOR	ranuya			
•• •••		-									
ONE WELL	VOLUME :		-	gal	WELL TD:		133	ft	PUMP INTAKE:	132 ft	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	Ha	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	•		(ntu)			
	53.10								Static head		
10:40		100							Pump On		
10:45		100	21.72	0.365	2.75	5.39	-87	28.8			
10:50		100	21.03	0.356	2.02	5.50	-99	10.0			
10:55		100	20.62	0.344	1.68	5.69	-113	11.6			
11:00		100	20.75	0.333	1.53	5.81	-118	12.5			
11:05		100	20.54	0.327	1.39	5.95	-119	13.3			
11:10		100	20.62	0.320	1.31	5.99	-116	9.2			
11:15		100	20.72	0.320	1.20	6.04	-114	10.3			
11:20		100	20.73	0.321	1.14	6.07	-113	13.1			
11:25		100	20.88	0.321	1.10	6.10	-112	11.4			
11:30		100	20.52	0.321	1.10	6.10	-110	12.2			
11:40									Sample colle	cted PW04-05 at 11:40	
			1				1		1		
Pump T	ype:	CMT pur	np								
Analytic	nalytical Parameters: VOCs, TAL Me										

A **tyco** International Ltd. Company

WELL SAMPLING FORM					PROJECT PROJECT No. SHEET SI						
WELL	WELL SAMPLING FORM LOCATION Hicksville, NY					r Lith K	em Ko		101351	1 оғ 1	
1. LOCATIO	DN				4. DATE W	ELL STAR	TED		•	5. DATE WELL COMPLETED	
Hicksvi	lle, NY				Jul	y 16, 20	208			July 16, 2008	
2. CLIENT	<u> </u>				6. NAME (		TOR Drivel F	) and va			
		v			VIPULIN 7. SIGNAT	URFOFIN	SPECTOR	ranuya			
ONE WELL	VOLUME :			gal	WELL TD:		148	ft	PUMP INTAKE:	146 ft	
	Depth	Burgo		FIE	LD MEAS	SUREME	NTS				
Timo	Water	Pate	Tomp	Conduct	DO	ъH	OPP	Turbidity	1	DEMARKS	
TIME	(ft)	(ml/min)	(C)	(ms/cm)	(ma/l)	pri	UN	(ntu)		REMARKS	
	53 10	(,	(0)	(	(			()	Static head		
8.40	00.10	100							Pump On		
8:45		100	26.09	0.37	8.30	5 52	-65	633.0			
8:50		100	25.00	0.374	8.02	5 48	-59	497.0			
8:55		100	20.00	0.07 1	0.02	0.10	00	10710	Horiba clean	ed	
9.00		100	25 75	0 327	5 16	5 4 8	-48	118.0	rioniba oldari	<u></u>	
9.05		100	25.54	0.027	4.09	5.42	-47	69.5			
9.00		100	25.04	0.324	3.72	5.41	-45	46.2			
0.15		100	25.58	0.305	3.00	5 36	-30	45.0			
9.20		100	25.60	0.302	2.89	5 35	-35	46.6			
9:25		100	25.01	0.002	2.00	5 33	-29	43.7			
9.20		100	25.86	0.200	2.73	5 35	-22	44.5			
0.00		100	20.00	0.201	2.70	0.00		0			
9.40									Sample colle	octed PW04-06 at 9:40	
5.40										00 at 9.40	
									1		
Pumn T	vne:	CMT nur	nn								
, unp i											
Analytic	alvtical Parameters: VOCs. TAL Me				als						

A *tuco* International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	WELL SAMPLING FORM LOCATION Hicksville, NY					r Lith K	em Ko		101351	1 оғ	1
1. LOCATIC	DN				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
Hicksvil	lle, NY					y 16, 20	008			July 16, 2008	
	C				Vinul N	/ehra	Prival P	Pandva			
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	anaya			
ONE WELL	VOLUME :			gal	WELL TD:		163	ft	PUMP INTAKE:	160 ft	
	Depth to	Purae		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity	1	REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	-		(ntu)			
	53.10								Static head		
10:30		80							Pump On		
10:35		80	27.97	0.297	4.05	4.75	28	273.0			
10:40		80	27.55	0.349	3.42	4.68	27	216.0			
10:45		80	28.11	0.393	3.13	4.71	27	127.0	Horiba clean	ed	
10:50		80	28.69	0.394	2.25	4.72	30	107.0			
10:55		80	28.82	0.397	2.11	4.76	30	92.5			
11:00		80	29.20	0.395	1.84	4.80	30	79.5			
11:05		80	29.35	0.394	1.73	4.83	30	72.1			
11:10		80	29.93	0.394	1.57	4.92	30	63.1			
11:15		80	30.35	0.392	1.47	4.88	30	53.9			
11:20		80	30.98	0.388	1.42	4.91	30	39.5			
11:25		80	31.11	0.388	1.86	4.92	30	35.1			
11:30		80	31.32	0.388	1.83	4.93	31	38.70			
11:35									Sample colle	cted PW04-07 at 1	1:35
Dumo T			<b>~</b> ~								
Pump Type: CMT pump											
Apolytic	nalutical Parametore: VOCe TAL Me										
Analytic	ai rafa	ameters:	vous,		a15						

A *tuco* International Ltd. Company

					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	SAMPL	ING FOR		Ancho	r Lith K	em Ko		101351	1 оғ	1	
1. LOCATIO					4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	
HICKSVI	lle, NY					y 17, 20	JU8			July 17, 2008	
	-C					/lehra	Prival F	Pandva			
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	anaya			
ONE WELL	VOLUME :			gal	WELL TD:		70	ft	PUMP INTAKE:	68 ft	
	Depth	Purgo		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temn	Conduct	DO	nH	ORP	Turbidity	REMARKS		
Time	(ft)	(ml/min)	(C)	(ms/cm)	(ma/L)	pri	OI	(ntu)			
	55.50		(-/	( /					Static head		
16:00		90							Pump On		
16:05		90	25.54	0.22	2.87	4.80	25	153.0			
16:10		90	25.14	0.223	2.07	5.01	18	135.0			
16:15		90	24.56	0.236	2.17	5.03	14	125.0			
16:20		90	24.40	0.236	1.74	5.07	13	113.0			
16:25		90	23.99	0.239	1.64	5.10	12	100.0			
16:30		90	23.95	0.240	1.58	5.16	11	92.8			
16:35		90	24.06	0.239	1.54	5.15	10	81.8			
16:40		90	24.09	0.239	1.52	5.18	9	72.2			
16:45		90	23.79	0.244	1.50	5.20	8	65.4			
16:50		90	23.89	0.244	1.46	5.25	6	61.2			
16:55		90	24.04	0.243	1.40	5.24	5	49.8			
17:00		90	23.59	0.248	1.41	5.25	5	48.2			
17:05		90	23.74	0.247	1.38	5.25	5	48.5			
17:10		90	23.80	0.246	1.36	5.24	5	47.8			
17:15									Collect samp	ble PW05-01	
Dump 7		CMT our	nn								
rump i	Pump Type: CMT pump										
Analytic	nalytical Parameters: VOCs, TAL Me			TAL Met	als						

A **tyco** International Ltd. Company

_					PROJECT				PROJECT No.	SHEET	SHEETS
WELL SAMPLING FORM 1. LOCATION Hicksville, NY 2. CLIENT					Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	NC NC				4. DATE W	VELL STAR	TED			5. DATE WELL COMPLET	Ð
HICKSVI	lle, NY					y 18, 20	008			July 18, 2008	
	C				Vinul N	/ehra	Prival F	Pandva			
3. DRILLIN	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	unuyu			
ONE WELL	VOLUME :			gal	WELL TD:		90.5	ft	PUMP INTAKE:	88 ft	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
	55.50								Static head		
7:05		100							Pump On		
7:10		100	19.30	0.472	8.36	6.39	-82	28.1			
7:15		100	18.83	0.487	4.64	6.51	-93	23.6			
7:20		100	18.42	0.482	2.79	6.47	-83	16.8			
7:25		100	18.30	0.480	2.76	6.43	-77	15.7			
7:30		100	18.23	0.479	2.61	6.40	-74	15.6			
7:25		100	18.12	0.481	2.45	6.42	-72	15.0			
7:40									N2 cylinder o	nange	
7.55											
7.55									Collect Samp	NE F W03-02	
Pump 7	Гуре:	CMT pur	np								
Analytic	cal Para	meters:	VOCs,	TAL Met	als						

A **tyco** International Ltd. Company

WELL SAMPLING FORM					PROJECT PROJECT No. SHEET						
WELL	WELL SAMPLING FORM LOCATION Hicksville, NY					r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	DN				4. DATE W	ELL STAR	TED		•	5. DATE WELL COMPLETED	
Hicksvi	lle, NY				Jul	y 17, 2	800			July 17, 2008	
2. CLIENT	<u> </u>				6. NAME (		TOR Drivel F	landua			
		Y			7. SIGNAT	URFOFIN	SPECTOR	ranuya			
		•									
ONE WELL	VOLUME :		-	gal	WELL TD:		120.5	ft	PUMP INTAKE:	118 ft	
	Depth to	Purae		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	•		(ntu)			
	55.50								Static head		
16:05		100							Pump On		
16:10		100	23.38	0.662	3.18	6.53	-117	116.0			
16:15		100	23.03	0.566	2.13	6.60	-118	72.5			
16:20		100	22.96	0.505	1.87	6.64	-117	56.6			
16:25		100	22.57	0.470	1.73	6.67	-118	50.0			
16:30		100	22.58	0.446	1.57	6.68	-121	49.4			
16:35		100	22.56	0.427	1.52	6.68	-121	42.9			
16:40		100	22.44	0.403	1.42	6.70	-125	37.2			
16:45		100	22.24	0.384	1.38	6.73	-127	35.6			
16:50		100	22.36	0.376	1.33	6.73	-127	32.2			
								-			
16:55									Collect same	ble PW05-03	
			1								
			1								
			1				1		1		
Pump T	ype:	CMT pur	np								
Analytic	nalytical Parameters: VOCs, TAL Me				als						
-			-								

A **tyco** International Ltd. Company

#### WELL NO. PW05-04

_					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	SAMPL	ING FOR	RM		Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	ON				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETE	D
Hicksvi	lle, NY				Jul	y 18, 20	008			July 18, 2008	
2. CLIENT	-					Appro 1	IOR Drival E	Dandva			
3. DRILLIN	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	anuya			
							–				
ONE WELL	VOLUME :			gal	WELL TD:		145	ft	PUMP INTAKE:	143 ft	
	Depth		1	FIF		SUREME	NTS				
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity	1	REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	-		(ntu)			
	55.50								Static head		
7:25		80							Pump On		
7:30		80	22.85	0.506	3.18	4.78	28	314.0			
7:35		80	22.78	0.497	2.33	4.97	3	214.0			
8:00		80	24.77	0.467	2.70	5.12	-3	171.0			
8:05		80	25.01	0.455	2.29	5.29	-10	206.0			
8:10		80	24.83	0.446	2.16	5.35	-16	219.0			
8:15		80	24.80	0.431	2.17	5.37	-20	227.0			
8:20		80	24.75	0.427	2.19	5.40	-21	250.0			
8:25		80	24.90	0.412	2.03	5.59	-32	319.0			
8:30		80	25.15	0.406	1.95	5.66	-36	384.0			
8:35		80	25.48	0.401	1.81	5.73	-44	393.0			
8:40		80	25.79	0.392	1.61	5.88	-55	402.0			
8:45		80									
8:50		80	27.46	0.374	2.83	5.93	-55	71.1			
8:55		80	28.20	0.377	1.51	6.06	-63	71.5			
9:00		80	28.71	0.375	1.29	6.11	-63	85.0			
9:05		80	29.12	0.373	1.13	6.17	-69	95.7			
9:10		80	29.57	0.371	1.05	6.20	-70	115.0			
0.10			20101	0.011		0.20		11010			
9.15		80							Collect same	ble PW05-04	
0.10									MS/MSD		
									Duplicate sa	mple PW05-54	
									D'aplicato da		
			<u> </u>								
9.40		80	30.01	0,369	1 01	6 68	-75	123.0			
9:45		80	30.49	0.363	0.97	6.72	-76	120.0			
0.40			00.40	0.000	0.07	0.12		120.0			
			<u> </u>	L							
<b> </b>	1		1					1	1		
Pump	Type	CMT nur	mn								
unp	ump Type: CMT pump										
Analyti	cal Para	metere	VOCe		als						
r si icti y ti			$v \cup \cup 0$		ulu						

A *tuco* International Ltd. Company

					PROJECT				PROJECT No.	SHEET SHEETS
WELL	SAMPL	ING FOF	RM		Ancho	r Lith K	em Ko		101351	1 оғ 1
1. LOCATIO	N				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED
Hicksvi	lle, NY				Jul	y 18, 20	208			July 18, 2008
2. CLIENT	-				6. NAME (		TOR Drivel F	)ondvo		
		Y			7. SIGNAT	URE OF IN	SPECTOR	ranuya		
		-								
ONE WELL	VOLUME :			gal	WELL TD:		170	ft	PUMP INTAKE:	168 ft
	Depth			FIE	LD MEAS	SUREME	NTS			
	to	Purge								
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)		
10.00	55.70	100							Static head	
10:20		100							Pump On	
10:25		100	32.34	0.362	2.38	4.84	28	>999		
10:30		100	31.80	0.361	1.94	5.07	13	>999		
10:35		100	31.13	0.344	1.31	5.12	7	>999		
10:40		100	31.09	0.322	1.13	5.14	6	>999		
10:45		100	30.94	0.317	1.11	5.13	6	>999		
10:50		100	30.47	0.308	1.09	5.15	6	>999		
10:55		100	30.75	0.294	1.04	5.10	9	>999		
11:00		100	31.68	0.287	1.02	5.11	10	>999		
11:05		100	31.92	0.281	1.04	5.12	12	>999		
11:10		100	31.95	0.281	1.08	5.10	13	>999		
11:15		100	31.53	0.277	1.13	5.08	13	>999		
11:20		100	31.33	0.27	1.26	5.01	14	900.0		
11:25		100	31.96	0.264	1.33	4.97	16	889.0		
11:30		100	31.37	0.268	1.36	4.98	16	779.0		
11:35		100	31.10	0.264	1.44	4.93	17	756.0		
11:40		100	32.43	0.266	1.43	4.96	17	778.0		
11:45		100	33.04	0.266	1.49	4.90	17	693.0		
11:50		100	33.34	0.265	1.49	4.98	17	657.0		
11:55		100							Collect samp	le PW05-05
12:05		100	33.69	0.266	1.51			651.0		
12:10		100	33.78	0.264	1.53			658.0		
Pump 1	Гуре:	CMT pur	np							
Analytic	cal Para	ameters:	VOCs.	TAL Met	als					

A *tuco* International Ltd. Company

#### WELL NO. PW05-06

<u> </u>					PROJECT PROJECT No. SHEET SHEE Anghor Lith Kom Ko 101251 1 1						SHEETS
WELL	SAMPL	ING FOF	RM		Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO					4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETE	2
	lle, NY					y 18, 20	JU8			July 18, 2008	
NYSDE	С					/lehra.	Prival F	Pandva			
3. DRILLIN	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR				
ONE WELL	VOLUME :			gal	WELL TD:		195	ft	PUMP INTAKE:	193 ft	
	Depth			FIE	LD MEAS	SUREME	NTS				
	to	Purge			1						
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(mi/min)	(C)	(ms/cm)	(mg/L)			(ntu)	Statia bood		
11.25	56.00	100							Static fieldu		
11:40		100	22.20	1 220	1 21	6.62	142	>000	Fump On		
11:40		100	32.20	1.220	1.21	0.03	-142	>999			
11.40		100	32.37	1.240	0.02	6.67	157	>999			
11.50		100	24 14	1.210	0.92	6.49	-107	>999			
12.00		100	34.14	1.110	0.85	6.40	-100	>999			
12:00		100	34.00	0.040	0.74	6 30	-182	~000			
12.03		100	35 36	0.990	0.70	6.37	-102	2999 813.0			
12.10		100	35.30	0.940	0.07	6.35	-160	<pre>&gt;013.0</pre>			
12:13		100	35.75	0.310	0.00	6 34	-204	~999			
12.20		100	36 18	0.762	0.66	6.32	-212	>999			
12:20		100	37.04	0.762	0.65	6.34	-221	>999			
12:35		100	37.30	0.741	0.65	6.34	-230	>999			
12:40		100	37.15	0.783	0.66	6.35	-234	>999			
12:45		100	37.14	0.953	0.65	6.33	-240	>999			
12:50		100	37.37	0.730	0.64	6.34	-243	>999			
12:55		100	37.35	0.719	0.65	6.33	-242	>999			
13:00		100							Collect samp	le PW05-06	
13:05		100	37.48	0.707	0.65	6.34	-243	>999			
13:10		100	37.51	0.698	0.65	6.33	-241	>999			
Pump 1	Pump Type: CMT pump										
Analytic	cal Para	ameters:	VOCs,	TAL Met	als						

A *tuco* International Ltd. Company

					PROJECT				PROJECT No. SHEET SHEETS			
WELL	SAMPL	ING FOF	RM		Ancho	r Lith K	em Ko		101351	1 оғ	1	
1. LOCATIO					4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED		
	lle, NY					y 18, 20	008			July 18, 2008		
NYSDE	-C					/lehra	Prival F	Pandva				
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR					
ONE WELL	VOLUME :			gal	WELL TD:		220	ft	PUMP INTAKE:	218 ft		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS					
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	1	REMARKS		
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	-		(ntu)				
	58.80								Static head			
8:25		100							Pump On			
8:30		100	26.60	1.350	5.26	6.80	-118	>999				
8:40		100							Horiba clean	ed		
9:00		100	32.02	2.210	1.18	6.81	-139	>999				
9:05		100	32.23	2.220	0.79	6.84	-149	>999				
9:10		100	32.81	2.200	0.76	6.85	-150	>999				
9:15		100	33.20	2.130	0.97	6.85	-150	>999				
9:20		100	31.10	2.190	0.86	6.71	-154	>999				
9:25		100	32.81	2.280	0.64	6.69	-160	>999				
9:30		100	33.04	2.320	0.62	6.67	-165	>999				
9:35		100	35.04	2.270	0.60	6.68	-171	>999				
9:40		100	35.72	2.270	0.58	6.71	-175	>999	Horiba clean	ed		
10:20		100	35.23	0.900	0.73	7.18	-225	>999				
10:25		100	34.78	0.999	0.73	7.41	-252	>999				
10:30		100	35.00	1.130	0.70	7.50	-265	>999				
									Pump off for	water reacharge		
10:45		100							Colect samp	le PW05-07		
10:55		100	35.15	1.170	0.69	7.72	-269	>999				
11:00		100	35.23	1.200	0.68	7.69	-272	>999				
									Muddy water			
Pump T	ype:	CMT pur	np									
Analytic	cal Para	ameters:	VOCs,	TAL Met	als							

A *tuco* International Ltd. Company

					PROJECT				PROJECT No. SHEET SHEETS				
WELL \$	SAMPL	ING FOF	RM		Ancho	r Lith K	em Ko		101351	1 оғ	1		
1. LOCATIO	DN				4. DATE W	VELL STAR	TED			5. DATE WELL COMPLETED			
Hicksvil	lle, NY				Jul	y 16, 2	008			July 16, 2008			
2. CLIENT	ic i				6. NAME C	Approx Approx	TOR Drival E	Pandva					
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	anuya					
							70	<i>c.</i>		00.4			
ONE WELL	VOLUME :			gai	WELL TD:		70	ft	PUMP INTAKE:	68 ft			
	Depth			FIE	LD MEAS	SUREME	NTS						
	to	Purge			-		-	-					
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS			
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)					
44.00	55.00	50							Static head				
14:30		50	07.00	0.040	1.00	5.00	10	00.0	Pump On				
14:35		50	27.89	0.248	4.28	5.88	18	30.3					
14:40		50	27.92	0.255	4.57	5.94	48	30.1					
14:45		50	28.12	0.267	5.05	6.07	76	29.2					
14:50		50	27.66	0.265	4.84	6.04	84	32.7					
14:55		50	27.61	0.255	4.34	6.06	93	35.0					
15:00		50	27.58	0.251	3.88	6.04	99	38.8					
15:05		50	26.97	0.246	3.95	6.06	100	41.8					
15:10		50	27.05	0.242	3.82	6.06	105	45.2					
15:15		50	26.72	0.240	3.79	6.07	107	48.1					
15:25									Collect samp	ble PW06-01			
Pump T	ype:	CMT pur	np										
Analytic	al Para	ameters:	VOCs,	TAL Met	als								

A **tyco** International Ltd. Company

WELL SAMPLING FORM					PROJECT				PROJECT No. SHEET SHEETS				
WELL	SAMPL	ING FOF	RM		Ancho	r Lith K	em Ko		101351	1 оғ	1		
1. LOCATIO	DN				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETE	D		
HICKSVI	lle, NY					y 16, 20	008			July 16, 2008			
	C				Vinul N	/ehra	Prival P	Pandva					
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	unuyu					
ONE WELL	VOLUME :			gal	WELL TD:		90	ft	PUMP INTAKE:	88 ft			
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS						
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS			
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)					
	55.00								Static head				
15:45		80							Pump On				
15:50		80	23.12	0.715	2.32	5.93	-167	29.9					
15:55		80	23.14	0.703	1.57	6.31	-178	19.3					
16:00		80	22.77	0.690	1.39	6.36	-174	27.2					
16:05		80	22.81	0.681	1.23	6.38	-171	35.1					
16:10		80	22.77	0.683	1.20	6.46	-170	28.5					
16:15		80	22.41	0.680	1.16	6.48	-169	32.1					
16:20		80	22.91	0.665	1.05	6.49	-168	46.3					
16:25		80	22.32	0.668	1.02	6.51	-168	49.7					
16:30		80	22.62	0.664	0.97	6.49	-167	38.7					
10.10										- BM/00.00			
16:40									Collect samp	DIE PW06-02			
			Ì										
			l										
							1						
Pump T	Type:	CMT pur	np										
-		-											
Analytic	cal Para	ameters:	VOCs,	TAL Met	als								

A *tuco* International Ltd. Company

_					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	SAMPL	ING FOR	RM		Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIC	DN				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	2
Hicksvi	lle, NY				Jul	<u>y 16, 2</u>	208			July 16, 2008	
2. CLIENT	ic i					Appro 1	IOR Drival E	Dandva			
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	anuya			
ONE WELL	VOLUME :			gal	WELL TD:		118	ft	PUMP INTAKE:	116 ft	
	Depth			FIE	LD MEAS	SUREME	NTS				
	to	Purge	_						-		
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(II) 55.00	(mvmin)	(0)	(ms/cm)	(mg/L)			(ntu)	Static boad		
14.25	55.00	00									
14.20		90	20.02	0.204	1 20	4 00	21	5.0	Fump On		
14.30		90	29.03	0.234	2.58	4.90	_17	-3.0	Horiba clean	ed	
14.33		90	26.40	0.270	2.30	5.64	-17	310.0	TIOTIDA Clean	eu	
14.40		90	20.07	0.270	2.57	5.04	-10	315.0			
14.43		90	23.22	0.271	2.49	5.54	-11	515.0	Horiba clean	ed	
14.50		90	25 30	0.266	3 1 1	5 27	8	133.0	TIOTIDA Clean	eu	
15:00		90	24.80	0.200	3 10	5.21	12	124.0			
15:00		90	24.03	0.207	3.13	5.21	14	119.0			
15:10		90	25.07	0.207	3 32	5.11	20	104.0			
15.15		90	25.09	0.265	3.42	5.07	21	104.0			
15:20		90	24.00	0.269	3.66	5 10	23	89.9			
15:25		90	24 23	0.269	3.64	5.05	25	88.6			
15:30		90	23.94	0.270	4 00	5.04	25	36.4	Horiba clean	ed	
15:35		90	23 65	0.272	3.95	5.02	26	86.4	i loniba oloan	00	
15:40		90	23.53	0.270	3.95	5.03	28	109.0			
15:45		90	23.96	0.267	3.85	5.03	29	80.5			
15:50		90	23.76	0.270	3.86	5.03	30	75.4			
15:55		90	23.78	0.268	3.81	5.04	31	71.0			
16:00		90	23.75	0.268	3.97	5.05	30	69.9			
											-
16:10		90							Collect samp	ble PW06-03	
16:20		90	23.79	0.269	3.91	5.05	32	65.4			
16:25		90	23.77	0.270	3.89	5.04	31	59.8			
			1								
	<u>,</u>										
Pump T											
·		•									
Analytic	al Para	ameters:	VOCs,	TAL Met	als						

A *tuco* International Ltd. Company

<u> </u>					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	SAMPL	ING FOF	۲M		Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIO	DN				4. DATE V	VELL STAR	TED		-	5. DATE WELL COMPLETED	
Hicksvi	lle, NY				Jul	y 17, 20	008			July 17, 2008	
	-0					/ehra	Prival F	Pandva			
3. DRILLIN	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	unuyu			
ONE WELL	VOLUME :			gal	WELL TD:		152	ft	PUMP INTAKE:	150 ft	
	Denth		r	FIF		SUREME	NTS		Γ		
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
	55.10								Static head		
8:00		80							Pump On		
8:05		80	26.45	1.26	5.25	5.29	-7	606.0			
8:10		80							Horiba clean	ed	
8:15		80	27.10	1.34	5.32	4.04	-3	249.0			
8:20		80	27.60	1.35	2.64	5.30	2	154.0			
8:25		80							Horiba clean	ed	
8:30		80	28.12	1.35	2.56	5.31	8	146.0			
8:35		80	28.65	1.38	1.86	5.29	10	110.0			
8:40		80	29.22	1.38	1.82	5.28	11	110.0			
8:45		80	30.19	1.37	1.82	5.28	11	108.0			
8:50		80	30.18	1.37	1.83	5.28	10	105.0			
8:55		80	31.67	1.36	1.63	5.29	9	77.0			
9:00		80	32.86	1.38	1.51	5.30	7	59.5			
9:05		80	33.54	1.36	1.42	5.31	5	59.3			
9:10		80	33.16	1.36	1.36	5.32	3	58.1			
9:15		80	34.54	1.36	1.33	5.32	3	56.4			
9:20		80	35.86	1.36	1.18	5.33	2	58.4			
9:25		80	36.20	1.36	1.17	5.33	0	56.5			
930		80	36.53	1.36	1.16	5.34	-2	63.5			
9:35		80	37.05	1.36	1.17	5.33	-2	57.8			
0.40			ļ								
9:40		80	!						Collect samp	DIE PVV06-04	
0.50		0.0	07.44	4.00	4.47	5.00		00.4			
9:50		80	37.11	1.36	1.17	5.33	-3	60.1			
9:55		80	37.29	1.36	1.16	5.33	-4	58.7			
			┨────┤								
			┨────┤								
			┨────┤								
			┨────┤								
Dumo -		CMT	<b>~</b> n								
Fump	i ype:	Civit pur	πp								
Analyti	ool Porc	motore									
Analyti	uai rala	11101013.	v 005,		เสเอ						

A **tyco** International Ltd. Company

					PROJECT PROJECT No. SHEET SH						SHEETS
WELL S	WELL SAMPLING FORM						em Ko		101351	1 оғ	1
1. LOCATIO					4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETE	)
HICKSVII	lie, in r				6 NAME (	$y$ 17, $Z_{0}$				July 17, 2008	
NYSDE	C					/lehra.	Prival F	andva			
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR				
ONE WELL	VOLUME :			gal	WELL TD:		168	ft	PUMP INTAKE:	166 ft	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)	-		
	55.20								Static head		
10:30		90							Pump On		
10:35		90	34.95	0.98	3.35	5.20	58	603.0			
10:40		90							Horiba clean	ed	
10:45		90	31.81	0.977	2.12	5.16	64	276.0			
10:50		90	34.73	0.944	1.69	5.15	64	279.0			
10:55		90	35.82	0.926	1.54	5.11	64	286.0			
11:00		90	36.44	0.897	1.41	5.11	61	401.0			
11:05		90	36.64	0.880	1.40	5.10	61	438.0			
11:10		90	36.69	0.871	1.38	5.09	61	422.0			
11:15		90	37.19	0.846	1.42	5.08	62	336.0			
11:20		90	36.88	0.820	1.47	5.08	62	366.0			
11:25		90	36.64	0.804	1.46	5.09	62	280.0			
11:30		90	37.32	0.79	1.40	5.05	63	223.0			
11:35		90	37.44	0.781	1.38	8.00	63	239.0			
11:40		90	36.98	0.772	1.32	5.04	62	244.0			
11.45		90	30.05	0.768	1.23	5.05	60	261.0			
11:50		90	30.93	0.762	1.10	5.05	57	260.0			
11.00		90	37.12	0.756	1.12	5.05	50	136.0			
12:00		90	37.50	0.749	1.07	5.05	50 47	149.0			
12.05		90	37.00	0.742	0.95	5.04	47	147.0			
12.10		00							Collect same		
12.10		90							Collect Samp	DE F W00-05	
12.20		٩n	38.06	0 736	0.87	5.05	43	130 0			
12:20		90	38 34	0.730	0.07	5.00	40	133.0			
12.20		00	00.04	0.720	0.14	0.04	1	100.0			
				L							
									1		
			1		1	[		<u> </u>	1		
Pump T	vpe:	CMT pur	np								
	76.21		F								
Analytic	cal Para	meters:	VOCs.	TAL Met	als						
, i			,								

A *tuco* International Ltd. Company

					PROJECT PROJECT No. SHEET						SHEETS
WELL	SAMPL		Anchor Lith Kem Ko 101351 1 or					1			
1. LOCATIO					4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	I
HICKSVI 2 CLIENT	lie, in r				6 NAME (	$y$ 17, $z_0$				July 17, 2008	
NYSDE	EC				Vipul N	/lehra.	Prival F	Pandva			
3. DRILLIN	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR				
ONE WELL	VOLUME :			gal	WELL TD:		182	ft	PUMP INTAKE:	180 ft	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
	55.20								Static head		
7:55		90							Pump On		
8:00		90	27.93	0.664	3.81	4.01	82				
8:05		90	28.05	0.667	2.86	4.03	77	621.0			
8:10		90						107.0			
8:15		90	28.96	0.730	2.20	4.19	63	487.0			
8:20		90	29.34	0.728	1.84	4.19	63	425.0			
8:25		90			0.01						
8:30		90	29.98	0.696	2.24	4.19	60	237.0			
8:35		90	30.48	0.690	1.62	4.27	56	230.0			
8:40		90	30.66	0.677	2.50	4.22	60	209.0			
8:45		90	31.46	0.665	3.75	4.20	58	179.0			
8:50		90	31.30	0.660	4.30	4.18	60	181.0			
8:55		90	31.98	0.643	4.01	4.21	60	163.0			
9:00		90	32.88	0.629	3.75	4.26	58	158.0			
9:05		90	31.10	0.625	3.50	4.24	58	161.0			
9:10		90	31.90	0.619	3.39	4.26	59	165.0			
9:15		90	33.70	0.608	2.77	4.28	59	223.0			
9:20		90	34.95	0.606	2.30	4.27	59	242.0			
9:25		90	35.18	0.605	2.25	4.28	59	247.0			
9.30		90	35.40	0.607	2.17	4.31	59	204.0			
0.25		00									
9.00		30							Collect Samp		
0.40	$\left  \right $	00	35 51	0 606	2 1 1	1 22	50	301			
9.40		90	35.54	0.000	2.11	4.32	58	37/			
3.43		30	55.07	0.007	2.07	4.55	50	574			
				L				L			
				L				L			
	1	L	1		1	1	1		1		
Pump ⁻	Type:	CMT pur	np								
Analvti	cal Para	ameters:	VOCs.	TAL Met	als						
			,								

A *tuco* International Ltd. Company

					PROJECT PROJECT No. SHEET SHE					SHEETS	
WELL	SAMPL	ING FOF	RM		Ancho	r Lith K	em Ko		101351	1 оғ	1
1. LOCATIC	N				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED	)
Hicksvi	le, NY				Jul	y 17, 20	208			July 17, 2008	
2. CLIENT	C					Appro 1	IOR Drival E	andva			
3. DRILLING	COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	anuya			
					-					040.4	
ONE WELL	VOLUME :			gal	WELL TD:		220	ft	PUMP INTAKE:	218 ft	
	Depth			FIE	LD MEAS	SUREME	NTS				
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
	55.20								Static head		
10:50		100							Pump On		
10:55		100	28.53	0.489	2.43	4.41	46	-5.0			
11:00		100							Horiba clean	ed	
11:05		100	27.54	0.479	1.40	4.50	41	982.0			
11:10		100	27.69	0.477	1.38	4.53	35	979.0			
11:15		100	27.32	0.468	1.24	4.56	36	-5.0			
11:20		100	27.41	0.463	1.15	4.59	38	-5.0			
11:25		100	27.14	0.458	1.10	4.66	36	-5.0			
11:30		100	27.41	0.434	1.01	4.73	30	-5.0			
11:35		100	27.55	0.421	0.97	4.77	28	-5.0			
11:40		100	27.39	0.401	1.02	4.75	29	366.0	Horiba clean	ed	
11:45		100	27.29	0.394	1.08	4.77	29	377.0			
11:50		100	27.13	0.391	1.07	4.78	29	-5.0			
11:55		100	27.39	0.382	1.05	4.80	28	947.0			
12:00		100	27.80	0.368	1.02	4.83	27	835.0			
12:05		100	27.61	0.366	1.07	4.81	26	851.0			
12:10		100	27.48	0.365	1.10	4.82	25	871.0			
12:15		100	26.73	0.357	1.14	4.81	24	826.0			
12:20		100	27.09	0.348	1.14	4.85	23	798.0			
12:25		100	27.39	0.340	1.12	4.87	21	767.0			
10.00		100									
12:30		100							Collect samp	DIE PW06-07	
10.10		400	00.04	0.000	4.40	4.04	00	740			
12:40		100	28.01	0.333	1.13	4.91	22	740			
12:45		100	28.13	0.326	1.14	4.93	25	721			
		CMT ~···	nn								
rump I	Pump Type: CMT pump										
Apolytic	Analytical Parameters: V/OCs TAL Me										
Analytic	airaia		v OCS,	TAL Met	a15						

A *tuco* International Ltd. Company

					PROJECT				PROJECT No. SHEET SHEETS			
WELL	SAMPL	ING FOF	RM		Ancho	r Lith K	em Ko		101351	1 оғ	1	
1. LOCATIC	DN				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED		
Hicksvi	lle, NY				Jul	y 14, 2	008			July 14, 2008		
2. CLIENT	C				6. NAME C	Achro	TOR Drival E	andva				
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	anuya				
ONE WELL	VOLUME :			gal	WELL TD:		70	ft	PUMP INTAKE:	68 ft		
	Depth			FIE		SUREME	NTS					
	to	Purge										
Time	Water	er Rate Temp. Conduct. DO pH ORP Turbidity							REMARKS			
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)				
	51.50								Static head			
14:45		80							Pump On			
14:50			24.35	0.605	2.87	5.84	-116	29.0				
14:55			24.65	0.583	2.03	5.88	-110	22.9				
15:00			24.79	0.588	1.88	5.94	-108	28.3				
15:05			24.33	0.594	1.69	6.00	-110	56.8				
15:10			24.79	0.588	1.53	6.02	-110	58.2				
15:15			25.32	0.588	1.42	6.02	-110	56.1				
15:20			25.86	0.590	1.34	6.03	-112	59.6				
15:25			25.72	0.596	1.34	6.07	-116	66.9				
15:30			25.88	0.595	1.32	6.08	-118	68.6				
15:35			25.98	0.594	1.27	6.09	-120	69.0				
15:40			25.74	0.592	1.24	6.08	-121	50.0				
15:45			25.8	0.592	1.2	6.08	-121	48.60				
15:50			25.7	0.591	1.16	6.09	-122	46.3				
15:55									Collect samp	ole PW07-01		
									Water with m	nixed smell of revert a	nd	
									ammonia			
Pump Type: CMT pump,												
Analytic	cal Para	ameters:	VOCs,	TAL Met	als							

A **tyco** International Ltd. Company

_					IPROJECT PROJECT No. SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET						
WELL	SAMPL	ING FOR	RM		Ancho	r Lith K	em Ko		101351	1 оғ 1	
1. LOCATIO	ON				4. DATE W	VELL STAR	TED		•	5. DATE WELL COMPLETED	
Hicksvi	lle, NY				Jul	y 15, 20	800			July 15, 2008	
2. CLIENT	-				6. NAME (		TOR Drivol E	) and va			
3. DRILLIN		Y			7. SIGNAT	URE OF IN	SPECTOR	anuya			
										00 <i>l</i>	
ONE WELL	VOLUME :			gai	WELL TD:		95	ft	PUMP INTAKE:	92 ft	
	Depth			FIE	LD MEAS	SUREME	NTS				
	to	Purge			1		1	1			
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)	Ctatic band		
0.00	51.80	100							Static nead		
8:20			20.05	0.000	7.00	4 0 0	20	64.0	Pump On		
8:25			20.05	0.288	7.30	4.88	-29	04.Z			
8:30			18.90	0.244	3.72	5.10	-42	40.8			
8:35			18.66	0.243	4.24	5.29	-41	32.0			
8:40			18.80	0.242	4.68	5.37	-32	27.7			
8:45			18.37	0.245	5.10	5.44	-18	22.1			
8:50			10.00	0.245	5.27	5.47	-12	20.8			
8:55			18.76	0.246	5.28	5.48	-5	19.8			
9:00			18.86	0.246	5.28	5.50	1	18.3			
9:05			18.90	0.246	5.28	5.49	4	17.2			
0.15		-									
9.15									Collect samp	Die PVV07-02	
									Mater with m	nived smell of revert and	
										lixed shield of revent and	
									ammonia		
								L			
Pump	Гуре:	CMT pur	np,								
Analytic	cal Para	ameters:	voCs,	IAL Met	als						

A **tyco** International Ltd. Company

				PROJECT				PROJECT No.	SHEET	SHEETS				
WELL	SAMPL	<u>ING FOF</u>	RW		Ancho	r <u>Lith K</u>	.em Ko		101351	1 оғ	1			
1. LOCATIC					4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED				
HICKSVII	lle, NY					y 14, 20				July 14, 2008	I			
NYSDE	EC				Vipul N	√lehra.	Prival F	Pandva			I			
3. DRILLIN	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	<u>u</u>						
											I			
ONE WELL	VOLUME :			gal	WELL TD:		120	ft	pump intake: 118 ft					
	Depth			FIE	LD MEA	SUREME	NTS							
	to	Purge	L	<del></del>	<del></del>	<del></del>		<del></del>	4	<b></b>	I			
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	I			
	(ft) 51.90	(mi/min)	(0)	(ms/cm)	(mg/L)	───′	<b> </b> '	(ntu)	Statia boad					
15:00	51.00	100	20.91	0.292		5 22	21		Static neau					
15.00	───╯	╂────	20.01	0.203	0.10	5.25	13	0.0	Turbidity sor	acar charted				
15.00	<b>├</b> ───┘	╂────	20.02	0.20	7.68	5.21	-13	0.0	Mator soom					
15.10	<b> </b> /	<b> </b>	20.00	0.270	7.00	5.2	8	0.0	Water Seems	S Clear				
15.15	╂────┦	╂────	21.20	0.270	9.13	5.23	20	0.0	+					
15.20	<b> </b> '	<b> </b>	20.84	0.270	7 71	5.25	20	0.0	+					
15.20		<del> </del>	20.04	0.278	7 47	5.20	23	0.0	+					
15.35	<b>├</b> ───′	├───	20.00	0.278	7 37	5 34	26	0.0	+					
15:40	+	├───	20.40	0.270	8.72	5 40	20	0.0	+					
15:45	<b>├</b> ─── <i>!</i>	<u> </u>	20.52	0.281	8.66	5 46	20	0.0	+					
15:50	<b>├</b> ───┦	<del> </del>	20.02	0.283	8.04	5.53	13	0.0	+					
15:55	+	t	20.29	0.200	8.03	5.56	9	3.4	+					
16:00	+	ł	20.18	0.283	8.06	5.60	6	9.20	+					
16:05	+	ł	20.22	0.283	8.03	5.65	0	14.4	+					
16:10	++		20.39	0.283	8.03	5.68	-2	21.4	+					
16:15	++		20.63	0.282	8.04	5.71	-5	22.2	+					
16:20	<del>                                     </del>	l	20.75	0.283	8.04	5.74	-8	22.8	+					
16:25	<del>                                     </del>	l	21.36	0.281	8.03	5.78	-11	20	+					
16:30	<b>├</b> ──,		21.30	0.283	8.03	5.79	-11	19.5	+					
-	<b>   </b>	(	†	-				-	1					
16:35	<b>   </b>	(	·		<b> </b>				Collect sam	ole PW07-03				
	<b>†</b>	[	1 1		1 1				· ·					
16:45	<b>†</b>	[	20.98	0.283	8.04	5.81	-11	18.4	1					
16:50			21.05	0.283	8.04	5.79	-12	19.7	1		1			
			<u> </u>						<u> </u>					
			<u> </u>											
			<u> </u>		<u> </u>	í <u> </u>			T					
	<u> </u>		<u> </u>		<u> </u>	<u> </u>								
	<u> </u>		<u> </u>		<u> </u>	<u> </u>								
	<u> </u>		<u> </u>		<u> </u>	<u> </u>								
Pump T	Гуре:	CMT pur	mp,											
l														
Analytic	cal Para	ameters:	VOCs,	, TAL Met	als									

A *tuco* International Ltd. Company

-				PROJECT				PROJECT No.	SHEET	SHEETS				
WELL \$	SAMPL	ING FOF	RM		Ancho	r Lith K	em Ko		101351	1 оғ	1			
1. LOCATIC					4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED				
HICKSVII	lle, NY					y 15, 20	JU8			July 15, 2008				
	-C					/lehra	Prival P	andva						
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	anaya						
ONE WELL	VOLUME :			gal	WELL TD:		145	ft	pump intake: 143 ft					
	Depth	Purge		FIE	LD MEASUREMENTS									
Time	Time Water Rate		Temp	Conduct				Turbidity		REMARKS				
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	P.1	•	(ntu)						
	52.00	· · · ·	. ,	· · /	<u>, , ,</u>				Static head					
9:30		85							Pump On					
9:35									•					
9:40			20.90	0.325	4.07	4.99	-86	40.8						
9:45			20.64	0.312	2.37	5.16	-105	28.9						
9:50			20.58	0.305	2.19	5.17	-108	26.9						
9:55			20.51	0.299	2.01	5.25	-111	28.1						
10:00			20.59	0.286	1.81	5.22	-110	27.3						
10:05			20.31	0.269	1.73	5.31	-111	29.7						
10:10			20.43	0.256	1.69	5.39	-106	35.1						
10:15			20.75	0.251	1.69	5.40	-103	38.2						
10:20			20.93	0.248	1.68	5.41	-99	45.3						
10:25			20.81	0.247	1.7	5.42	-95	43.0						
10:30									Collect samp	le PW07-04				
									1					
		CMT our	nn											
runp i	ype.	Civit put	ιp,											
Analytic	Analytical Parameters: VOCs TAL Met				als									
/ lary th			v 003,											

A *tuco* International Ltd. Company

-				PROJECT				PROJECT No.	SHEET	SHEETS				
WELL :	S <u>AMPL</u>	ING FOF	<u>۸۱ M</u>		Ancho	r <u>Lith K</u>	e <u>m Ko</u>		101351	1 оғ	1			
1. LOCATIC	ON NO C				4. DATE W	VELL STAR	TED			5. DATE WELL COMPLETED	)			
HICKSVII	ile, NY					<u>y 15, 20</u>	<u> 108</u>			July 15, 2008				
NYSDE	С				Vipul N	Mehra.	Prival F	andva						
3. DRILLING	G COMPAN	Y			7. SIGNAT	TURE OF IN	SPECTOR	<u>u</u>						
ONE WELL	VOLUME :			gal	WELL TD:		170	ft	PUMP INTAKE:	157 ft				
	Depth	Burgo		FIE	LD MEASUREMENTS									
Time	tu Water	Rate	Temn	Conduct					4	DEMADKS				
Time	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	P		(ntu)						
	52.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(	(····3- ,			(****)	Static head					
10:50		80							Pump On					
10:55			32.63	0.254	5.77	5.74	-55	0.0	Turbidity ser	sor shorted.				
11:00		Í	32.55	0.253	5.54	5.87	-57	0.0	Water seems	s clear				
11:05			32.48	0.250	5.40	5.89	-57	0.0						
11:10			32.26	0.245	5.32	5.88	-54	0.0						
11:15			32.50	0.239	5.16	5.87	-52	0.0						
11:20			32.59	0.238	5.15	5.88	-51	0.0	<u> </u>		_			
11:25		<b></b>	32.57	0.235	5.16	5.88	-51	0.0						
11:30		<b></b>	32.72	0.232	5.13	5.87	-49	0.0						
11:35		<b></b>	32.61	0.231	5.14	5.89	-49	0.0						
11:40		<b></b>	<u>اــــــا</u>	<b></b>	<u>ا</u> ا	<b> </b> '	<b> </b> '	<b> </b>						
	<b> </b>	<b> </b>	ļ/	<b> </b>	<b></b> '	<b> </b> '	<b> </b> '	<b> </b>						
11:50	ļ!	<b> </b>	ļ/	<b> </b>	<u> </u> '	<b> </b> '	<b> </b> '	<b> </b>	Collect samp	ble PW07-05				
	<b> </b>	<b> </b>	───′	<b> </b>	<b> </b> '	<b> </b> '	<b> </b> '	<b> </b>						
	╂────┦	l	───′	<b> </b>	<b> </b> '	<b> </b> '	<b> </b> '	<b> </b>	MS/MSD					
	┨────┦		<b>├</b> ───┦	<b> </b>	<b> </b> '	<b> </b> '	<b> </b> '	<b> </b>	Duplicato ca	mala DW/07 55				
	┨────┦		<b>↓</b> /	<b> </b>		<b> </b> '	<b> </b> '	<b> </b>						
	┨────┦	<u> </u>	┨────┦	<b> </b>	<b> </b> '	<b> </b> '	<b> </b> '	<b> </b>	<del> </del>					
	┨────┦		┨────┦	<b> </b>	<b> '</b>	<b> </b> '	<b> </b> '	<b> </b>	+					
	┨───┦	<u> </u>	<b>├</b> ───┦			<b> </b> '	<b> </b> '		+					
	╂───┦	i	<b>├</b> ───┦		<b>├</b> ───┦	┣────	┢────		+					
	<b>├</b> ──┤				<b>├</b> ───┦	<u> </u>	'		+					
	<b>├</b> ───		<b>├</b> ──		łł	<b>├</b> ────	<b>├</b> ────		1					
	<b>├</b> ───┤	i	<b>!</b>						†					
									1					
									1					
		Í		ſ				ſ	1					
				ſ				l l	1					
		[		ſ	1 <u></u> '	[]		[	1					
Pump T	Гуре:	CMT pur	np,											
Analytic	al Para	ameters:	VOCs,	TAL Met	als									

A *tuco* International Ltd. Company

				PROJECT				PROJECT No.	SHEET SHEETS					
WELL	SAMPL	ING FOR	RM		Ancho	r Lith K	em Ko		101351	1 оғ 1				
1. LOCATIO	DN NIX				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED				
Hicksvi	lle, NY					y 15, 20	008			July 15, 2008				
	C				Vinul N	/ehra	Prival P	Pandva						
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	anaya						
ONE WELL	VOLUME :			gal	WELL TD:		195	ft	pump intake: 193 ft					
	Denth			FIF		SUREME	NTS							
	to	Purge												
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	1	REMARKS				
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	-		(ntu)						
	52.50	110							Static head					
9:55									Pump On					
10:00			29.00	0.371	6.66	5.06	-82	0.0	Turbidity ser	sor shorted.				
10:05			27.37	0.405	5.91	5.18	-105	0.0	Cloudy wate	r - high turbidity				
10:10			27.51	0.396	4.95	5.33	-128	0.0						
10:15			27.64	0.398	4.88	5.39	-138	0.0						
10:20			28.16	0.397	4.70	5.44	-153	0.0						
10:25			28.54	0.402	4.62	5.52	-166	0.0	Clear water -	- Horiba meter changed				
10:30			28.99	0.367	2.80	5.33	-151	52.7						
10:35			29.38	0.364	2.33	5.39	-157	47.8						
10:40			29.96	0.359	2.12	5.50	-163	45.6						
10:45			30.02	0.362	2.02	5.60	-165	42.8						
10:50			30.04	0.344	1.97	5.61	-163	39.5						
10:55			30.37	0.334	1.91	5.70	-162	41.10						
11:00			30.29	0.335	1.85	5.77	-158	47.3						
11:05			30.53	0.324	1.81	5.78	-157	52.2						
11:10			30.83	0.324	1.77	5.84	-154	61.2						
11:15			30.91	0.323	1.71	5.84	-153	64.8						
11:20			31.04	0.317	1.73	5.89	-151	71.9						
11:25			31.29	0.313	1.6	5.9	-148	73						
11:30			31.55	0.311	1.79	5.88	-146	77.2						
11:40									Collect samp	ble PW07-06				
11:50			32.05	0.309	1.77	5.89	-144	78.1						
11:55			32.13	0.308	1.78	5.88	-143	79.7						
			-	•			-		•					
Pump T	Гуре:	CMT pur	np,											
			VOO	<b>TAL 14</b>	- 1-									
Analytic	cal Para	ameters:	VUCs,	I AL Met	ais									

A **tyco** International Ltd. Company

#### WELL NO. PW07-07

				PROJECT				PROJECT No.	SHEET	SHEETS				
WELL \$	SAMPL	ING FOF	RM		Ancho	r Lith K	em Ko		101351	1 оғ	1			
1. LOCATIC	DN NIX				4. DATE W	ELL STAR	TED			5. DATE WELL COMPLETED				
Hicksvi	lle, NY				Jul	y 15, 20	008			July 15, 2008				
2. CLIENT	ic i				6. NAME C	Appro 1	IOR Drival E	Pandva						
3. DRILLING	G COMPAN	Y			7. SIGNAT	URE OF IN	SPECTOR	anuya						
ONE WELL	VOLUME :			gal	WELL TD:		220	ft	pump intake: 218 ft					
	Depth			FIE	LD MEAS	SUREME	NTS							
	to	Purge												
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS				
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)						
	52.50								Static head					
12:40		100							Pump On					
12:45			26.38	0.357	5.55	4.50	-23	115.0						
12:50			25.63	0.442	4.02	4.44	-49	79.8						
12:55			26.40	0.446	3.12	4.49	-58	84.2						
13:00			26.57	0.461	2.64	4.54	-65	84.6						
13:05			27.22	0.464	2.21	4.63	-78	116.0						
13:10			27.42	0.463	1.99	4.72	-88	129.0						
13:15			26.63	0.453	1.92	4.82	-100	170.0						
13:20			27.10	0.447	1.67	4.88	-114	206.0						
13:25			27.37	0.433	1.58	4.96	-121	217.0						
13:30			28.16	0.421	1.50	4.98	-121	230.0						
13:35			28.53	0.405	1.45	5.07	-116	263.0						
13:40			26.99	0.391	1.55	5.25	-111	277.0	Horiba clean	ed				
13:45			26.06	0.367	1.56	5.27	-101	260.0						
13:50			26.33	0.366	1.52	5.38	-103	256.0						
13:55			27.21	0.359	1.45	5.35	-96	252.0						
14:00			28.06	0.356	1.40	5.39	-94	259.0						
14:05			28.89	0.355	1.37	5.43	-93	264.0						
14:10			29.07	0.356	1.37	5.49	-93	274.0						
14:15			29.68	0.356	1.36	5.52	-92	281.0						
14:20									Collect samp	ble PW07-07				
14.30			20 60	0 355	1 25	5 51	-00	284						
14.30			29.09	0.355	1.35	5.54	-90	204						
14.00			23.71	0.000	1.55	5.57	-31	201						
		-												
								l						
			l											
							1							
Pump T	уре:	CMT pur	np,											
-		-												
Analytic	cal Para	ameters:	VOCs,	TAL Met	als									

CMT Sample ID NYSDEC PW-01-01 PW-01-02 PW-01-03 PW-01-04 PW-01-00   CMT screen interval (ft bgs) Class GA 70-72 80-82 90-92 100-102 110-112   Laboratory ID Groundwater AC38653-001 AC38653-003 AC38653-008 AC38653-002 AC38653-002 AC38653-002 AC38711-02   Sample Date Criteria 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08	PW-01-05 110-112 2 AC38711-001
CMT screen interval (ft bgs) Class GA 70-72 80-82 90-92 100-102 110-112   Laboratory ID Groundwater AC38653-001 AC38653-003 AC38653-008 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 AC38653-002 </td <td>110-112 2 AC38711-001</td>	110-112 2 AC38711-001
Laboratory ID Groundwater AC38653-001 AC38653-003 AC38653-008 AC38653-002 AC38711-0   Sample Date Criteria 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08	2 AC38711-001
Sample Date Criteria 7/11/08 7/11/08 7/11/08 7/11/08 7/11/08 7/14/08	
	7/14/08
Matrixi water iwater lwater lwater lwater lwater lwater	water
Units ug/L ug/L ug/L ug/L ug/L ug/L	ua/L
conc Q conc Q conc Q conc Q conc Q	conc Q
Volatile Organic Compounds	
1,1,1-Trichloroethane 5 1U 1U 1U 1U 1U	1 U
1,1,2,2-Tetrachloroethane 5 1 U 1 U 1 U 1 U 1 U	1 U
1,1,2-trichloro-1,2,2-trifluoroethane 5 1 U 1 U 1 U 1 U 1 U 1 U	1 U
1,1,2-Trichloroethane 1 1 1U 1U 1U 1U 1U	1 U
1,1-Dichloroethane 5 1U 1U 1U 1U 1U	1 U
1,1-Dichloroethene 5 1 U 1 U 1 U 1 U 1 U	1 U
1,2,3-Trichlorobenzene 5 1U 1U 1U 1U 1U 1	1 U
1,2,3-Trichloropropane 5 1 U 1 U 1 U 1 U 1 U	1 U
1,2,4-Trichlorobenzene 5 1 U 1 U 1 U 1 U 1 U	1 U
1,2,4-Trimethylbenzene 5 1 U 1 U 1 U 1 U 1 U	1 U
1,2-Dibromo-3-chloropropane 0.04 1U 1U 1U 1U 1U 1U	1 U
1,2-Dibromoethane 5 1 U 1 U 1 U 1 U 1 U	1 U
1,2-Dichlorobenzene 3 1 U 1 U 1 U 1 U 1 U	1 U
1,2-Dichloroethane 0.6 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	0.5 U
1,2-Dichloropropane 1 1 1U 1U 1U 1U 1U	1 U
1,3,5-Trimethylbenzene 5 1 U 1 U 1 U 1 U 1 U	1 U
1,3-Dichlorobenzene 3 1 U 1 U 1 U 1 U 1 U	1 U
1,3-Dichloropropane 5 1U 1U 1U 1U 1U	1 U
1,4-Dichlorobenzene 3 1U 1U 1U 1U 1U	1 U
1,4-Dioxane NC 50 R 50 R 50 R 50 R 50 R	50 R
2-Butanone NC 1U 1U 1U 1U 1U	1 U
2-Chloroethylvinylether NC 1 UJ 1 UJ 1 UJ 1 UJ 1 UJ	J 1 ŪJ
2-Hexanone 50 1 U 1 U 1 U 1 U 1 U	10
4-Isopropyltoluene 5 1 U 1 U 1 U 1 U 1 U	1 0
4-Methyl-2-Pentanone NC 1U 1U 1U 1U 1U	1 0
Acetone 50 5 U 5 U 23 5	5 U
Acrolein 5 5U 5U 5UJ 5U 5U	5 UJ
Acrylonitrile 5 1 U 1 U 1 U 1 U	1 U
Benzene 1 0.5 U 0.5 U 0.5 U 0.5 U	0.5 U
Bromochloromethane 5 1U 1U 1U 1U	1 U
Bromodichloromethane 50 1 U 1 U 1 U 1 U	1 U
Bromoform 50 1U 1U 1U 1U	1 U
Bromomethane 5 1U 1U 1U 1U	10
Carbon Disulfide 60 1U 1U 1U 1U	1 1
Carbon Tetrachloride 5 1 U 1 U 1 U 1 U	1 U
Chlorobenzene 5 1U 1U 1U 1U	1 1
Chloroethane 5 1 1 1 1 1 1 1 1	
Chloromethane 5 1 U 1 U 1 U 1 U	
cis-1.2-Dichloroethene 5 1 U 1 U 1 U 1 U	1 1

		DW/ 04	DW/ 04			DW/ 04
Sample Location		PW-01	PW-01	PW-01	PW-01	PW-01
CMT Sample ID	NYSDEC	PW-01-01	PW-01-02	PW-01-03	PW-01-04	PW-01-05
CMT screen interval (ft bgs)	Class GA	70-72	80-82	90-92	100-102	110-112
Laboratory ID	Groundwater	AC38653-001	AC38653-003	AC38653-008	AC38653-002	AC38711-001
Sample Date	Criteria	7/11/08	7/11/08	7/11/08	7/11/08	7/14/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q
cis-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U
Cyclohexane	NC	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	5	1 U	1 U	1 U	1 U	1 U
Dichlorodifluoromethane	5	1 U	1 U	1 UJ	1 U	1 U
Ethvlbenzene	5	1 U	1 U	1 U	1 U	1 U
Isopropylbenzene	5	1 U	1 U	1 U	1 U	1 U
m&p-Xylenes	5	211	211	211	211	211
Methyl Acetate	NC	1 11	1 11	1 11	1 11	1 11
Methylovclobexane	NC	1 1	1 1	1 11	1 1	1 1
Methylene Chloride	5	1 1	1 1	1 1	1 1	1 1
Methyletie Chloride	10	1 1	10	1 1	10	1 1
	10	10	10	10	10	10
	5	10	10	10	10	10
n-Propyidenzene	5	10	10	10	10	10
o-Xylene	5	10	10	10	10	10
sec-Butylbenzene	5	10	10	10	10	10
Styrene	5	10	10	10	10	10
t-Butyl Alcohol	NC	5 UJ	5 UJ	5 UJ	5 UJ	5 UJ
t-Butylbenzene	5	10	10	10	10	10
Tetrachloroethene	5	1 U	10	10	1 U	1 U
Toluene	5	1 U	10	10	1 U	1 U
Trans-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U
Trans-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5	1 U	1 U	1 U	1 U	1 U
Trichlorofluoromethane	5	1 U	1 U	1 U	1 U	1 U
Vinyl Chloride	2	1 U	1 U	1 UJ	1 U	1 U
TAL Motolo						
Moroury	0.7	0.211	0.211	0.211	0.211	0.2.11
	0.7	0.2 0	0.2 0	0.2 0	0.2 0	0.2 0
Autimonu				370		200
Anumony	ు ఎర్	7.5 U	7.5 U	7.5 0	7.5 U	7.5 U
Alsenic	20	40	40	7.1	40	40
Banum	1,000	93	12	67	65	76
	3	40	40	40	40	40
	5	20	20	20	20	20
	NC	9,600 J	14,000 J	10,000 J	10,000 J	9,800 J
Chromium	50	25 U	25 U	25 U	25 U	25 U
Cobalt	NC	18	10 U	10 U	10 U	10 U
Copper	200	25 U	25 U	25 U	25 U	25 U
Iron	300	<b>7,900</b> J	1,200 J	6,000 J	7,000 J	2,600
Lead	25	5 U	5 U	5 U	5 U	5 U
Magnesium	35,000	1,700	1,900	1,500	1,500	1,500

Earth Tech Northeast, Inc.

App E CMT gw data - July 2008.xls

Sample Location		PW-01		PW-01	PW-01	PW-01	PW-01
CMT Sample ID	NYSDEC	PW-01-01		PW-01-02	PW-01-03	PW-01-04	PW-01-05
CMT screen interval (ft bgs)	Class GA	70-72		80-82	90-92	100-102	110-112
Laboratory ID	Groundwater	AC38653-00	1	AC38653-003	AC38653-008	AC38653-002	AC38711-001
Sample Date	Criteria	7/11/08	ŀ	7/11/08	7/11/08	7/11/08	7/14/08
Matrix	water	water	1	water	water	water	water
Units	µg/L	µg/L		µg/L	µg/L	µg/L	µg/L
		conc G	2 I	conc Q	conc Q	conc Q	conc Q
Manganese	300	2000		150	880	1,100	340
Nickel	100	10 L	J	10 U	10 U	10 U	10 U
Potassium	NC	2,500 L	J	2,900	2,800	2,800	2,700
Selenium	10	25 L	J	25 U	25 U	25 U	25 U
Silver	50	10 L	J	10 U	10 U	10 U	10 U
Sodium	20,000	150,000		23,000	27,000	34,000	24,000
Thallium	0.5	5 L	J	5 U	5 U	5 U	5 U
Vanadium	NC	25 L	J	25 U	25 U	25 U	25 U
Zinc	2000	25 L	J	25 U	25 U	25 U	130

U - Not detected

NC - No criterion

J - Estimated value

Sample Location		PW-01	PW-01	PW-02	PW-02	PW-02
CMT Sample ID	NYSDEC	PW-01-06	PW-01-07	PW-02-01	PW-02-02	PW-02-03
CMT screen interval (ft bgs)	Class GA	120-122	130-132	71-73	86-88	101-103
Laboratory ID	Groundwater	AC38653-00	4 AC38711-0	2 AC38637-002	AC38601-008	AC38637-004
Sample Date	Criteria	7/11/08	7/14/08	7/9/08	7/9/08	7/10/08
Matrix	water	water	water	water	water	water
Units	ua/L	ua/L	ua/L	ug/L	ua/L	ug/L
	P 3 [,] -	conc C	conc C	conc Q	conc Q	conc Q
Volatile Organic Compounds						
1,1,1-Trichloroethane	5	1 U	11	1 U	1 U	13
1,1,2,2-Tetrachloroethane	5	1 U	1 L	1 U	1 UJ	1 U
1,1,2-trichloro-1,2,2-trifluoroethane	5	1 U	1 L	1 U	1 U	1 U
1,1,2-Trichloroethane	1	1 U	1 L	1 U	1 U	1 U
1,1-Dichloroethane	5	1 U	1 L	1 U	1 U	9.5
1,1-Dichloroethene	5	1 U	1 L	1 U	1 U	2
1,2,3-Trichlorobenzene	5	1 U	1 L	1 U	1 U	1 U
1,2,3-Trichloropropane	5	1 U	1 L	1 U	1 UJ	1 U
1,2,4-Trichlorobenzene	5	1 U	1 L	1 U	1 U	1 U
1,2,4-Trimethylbenzene	5	1 U	1 L	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	0.04	1 U	1 L	1 U	1 U	1 U
1,2-Dibromoethane	5	1 U	1 L	1 U	1 U	1 U
1,2-Dichlorobenzene	3	1 U	1 L	1 U	1 U	1 U
1,2-Dichloroethane	0.6	0.5 U	0.5 L	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	1	1 U	1 L	1 U	1 U	1 U
1,3,5-Trimethylbenzene	5	1 U	1 L	1 U	1 U	1 U
1,3-Dichlorobenzene	3	1 U	1 L	1 U	1 U	1 U
1,3-Dichloropropane	5	1 U	1 L	1 U	1 U	1 U
1,4-Dichlorobenzene	3	1 U	1 L	1 U	1 U	1 U
1,4-Dioxane	NC	50 R	50 F	50 R	50 R	50 R
2-Butanone	NC	1 U	1 L	1 U	1 U	1 U
2-Chloroethylvinylether	NC	1 U	J 1 L	J 1 U.	J 1 UJ	1 UJ
2-Hexanone	50	1 U	1 L	1 U	1 UJ	1 U
4-Isopropyltoluene	5	1 U	1 L	1 U	1 U	1 U
4-Methyl-2-Pentanone	NC	1 U	1 L	1 U	1 UJ	1 U
Acetone	50	5 U	5 L	28	27	30
Acrolein	5	5 U	5 L	J 5 U	5 U	5 U
Acrylonitrile	5	1 U	1 L	1 U	1 U	1 U
Benzene	1	0.5 U	0.5 L	0.5 U	0.5 U	0.5 U
Bromochloromethane	5	1 U	1 L	1 U	1 U	1 U
Bromodichloromethane	50	1 U	1 L	1 U	1 U	1 U
Bromoform	50	1 U	1 L	1 U	1 U	1 U
Bromomethane	5	1 U	1 L	1 U	1 UJ	1 U
Carbon Disulfide	60	1 U	1 L	1 U	1 UJ	1 U
Carbon Tetrachloride	5	1 U	1 L	1 U	1 U	1 U
Chlorobenzene	5	1 U	11	1 U	1 U	1 U
Chloroethane	5	1 U	11	1 U	1 UJ	1 U
Chloroform	7	1 U	11	1 U	1 U	1 U
Chloromethane	5	1 U	1 1	1 U	1 UJ	1 U
cis-1,2-Dichloroethene	5	1 U	1 L	1 U	1 U	1 U

Earth Tech Northeast, Inc.

		DW/ 04				
Sample Location		PVV-01	PVV-01	PVV-02	PVV-02	PVV-02
CMT Sample ID	NYSDEC	PW-01-06	PW-01-07	PW-02-01	PW-02-02	PW-02-03
CMT screen interval (ft bgs)	Class GA	120-122	130-132	/1-/3	86-88	101-103
Laboratory ID	Groundwater	AC38653-004	AC38711-002	AC38637-002	AC38601-008	AC38637-004
Sample Date	Criteria	7/11/08	7/14/08	7/9/08	7/9/08	7/10/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q
cis-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U
Cyclohexane	NC	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	5	1 U	1 U	1 U	1 U	1 U
Dichlorodifluoromethane	5	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	1 U	1 U	1 Ū	1 U	1 Ū
Isopropylbenzene	5	1 U	1 U	1 U	1 U	1 U
m&p-Xylenes	5	2 U	2 U	2 U	2 U	2 U
Methyl Acetate	NC	1 11	1 11	1 11	1 111	1 1
Methylcyclobexane	NC	1 1	1 11	1 11	1 11	1 1
Methylene Chloride	5	1 1	1 11	1 1	1 1	1 1
Methyl-t-butyl other	10	1 1	1 1	1 1	1 1	1 1
n Butylbonzono	10	1 1	1 1	10	1 1	1 1
n Dronylbonzono	5	10	10	10	10	10
	5	10	10	10	10	10
	5 F	10	10	10	10	10
Sec-Butylbenzene	5	10	10	10	10	10
Styrene	5	10	10	10	10	10
t-Butyl Alconol	NC	5 UJ	5 UJ	5 UJ	50	5 UJ
t-Butylbenzene	5	10	10	10	10	10
	5	10	10	10	10	10
loluene	5	10	10	10	10	10
Irans-1,2-Dichloroethene	5	10	10	10	10	10
Trans-1,3-Dichloropropene	0.4	10	10	1 U	1 U	1 U
Trichloroethene	5	10	10	1 U	1 U	1 U
Trichlorofluoromethane	5	10	10	1 U	1 U	1 U
Vinyl Chloride	2	1 U	1 U	1 U	1 U	1 U
TAL Metals	. –					
Mercury	0.7	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Aluminum	NC	100 U	100 U	410	150	100 U
Antimony	3	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U
Arsenic	25	4 0	4.2	40	1	4 U
Barium	1,000	72	91	47	40	190
Beryllium	3	4 U	4 U	4 U	4 U	4 U
Cadmium	5	2 U	2 U	2 U	2 U	2 U
Calcium	NC	12,000 J	13,000 J	19,000	13,000 J	14,000
Chromium	50	25 U	25 U	25 U	25 U	25 U
Cobalt	NC	10 U	10 U	10 U	10 U	10 U
Copper	200	25 U	25 U	25 U	25 U	25 U
Iron	300	1,300 J	3,000	5,000	5,900 J	4,600
Lead	25	5 U	5 U	5 U	5 U	5 U
Magnesium	35,000	1,600	1,700	3,500	2,600	2,900

Earth Tech Northeast, Inc.

Sample Location		PW-01	PW-01	PW-02	PW-02	PW-02
CMT Sample ID	NYSDEC	PW-01-06	PW-01-07	PW-02-01	PW-02-02	PW-02-03
CMT screen interval (ft bgs)	Class GA	120-122	130-132	71-73	86-88	101-103
Laboratory ID	Groundwater	AC38653-00	4 AC38711-00	AC38637-002	AC38601-008	AC38637-004
Sample Date	Criteria	7/11/08	7/14/08	7/9/08	7/9/08	7/10/08
Matrix	water	water	water	water	water	water
Units	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q
Manganese	300	130	71	140	150	1200
Nickel	100	10 U	10 U	10 U	10 U	10 U
Potassium	NC	2,500 U	2,500 U	2,500 U	2,500 U	2,500 U
Selenium	10	25 U	25 U	25 U	25 U	25 U
Silver	50	10 U	10 U	10 U	10 U	10 U
Sodium	20,000	41,000	50,000	5,000	30,000	52,000
Thallium	0.5	5 U	5 U	5 U	5 U	5 U
Vanadium	NC	25 U	25 U	25 U	25 U	25 U
Zinc	2000	25 U	49	25 U	25 U	25 U

U - Not detected

NC - No criterion

J - Estimated value

Sample Location		PW-02		PW-02		PW-02		PW-02		PW-03	
CMT Sample ID	NYSDEC	PW-02-	04	PW-02-	05	PW-02	-06	PW-02-	07	PW-03	-01
CMT screen interval (ft bos)	Class GA	116-118	3	131-13	3	146-14	8	160-162	>	70-72	0.
Laboratory ID	Groundwater	AC38637	-003	AC38601	-009	AC3863	- 7-001	AC38637	- -005	AC38601	1-003
Sample Date	Criteria	7/10/08	000	7/9/08	000	7/9/08	001	7/10/08	000	7/8/08	
Matrix	water	water		water		water		water		water	
Linits										ua/l	
	P9/ L	conc	Q	conc	Q	conc	Q	conc	Q	conc	Q
Volatile Organic Compounds			-								
1.1.1-Trichloroethane	5	1	U	1	U		U	1	U	1.5	5
1.1.2.2-Tetrachloroethane	5	1	Ū	1	ŪJ		Ū	1	Ū	1	1 U
1.1.2-trichloro-1.2.2-trifluoroethane	5	1	Ū	1	U		Ū	1	Ū	1	1 U
1.1.2-Trichloroethane	1	1	Ū	1	Ū		Ū	1	Ū	1	1 U
1 1-Dichloroethane	5	1	Ŭ	1	Ŭ		Ū	1	Ŭ	1	1 U
1 1-Dichloroethene	5	1	Ŭ	1	Ŭ		Ū	1	Ŭ	1	1 U
1 2 3-Trichlorobenzene	5	1	ŭ	1	Ŭ			1	Ŭ	-	1 11
1 2 3-Trichloropropage	5	1	п	1	ш			1	ы П		1 11
1.2.4-Trichlorobenzene	5	1	ы П	1	11			1	ы П		1 11
1,2,4-Trimothylbonzono	5	1	11	1	1			1	1		1 11
1,2,4-11iiieiiiyidenzene	0.04	1	0	1	1						1 11
1,2-Dibromosthana	0.04	1		1							1 11
1,2-Diblomoethane	5	1	0	1	0				0		
1,2-Dichlorobenzene	3		0		0	0.0			U	0.5	
1,2-Dichloroethane	0.6	0.5	U	0.5	U	0.5		0.5	U	0.5	
1,2-Dichloropropane	1	1	U	1	U				U		
1,3,5-I rimethylbenzene	5	1	U	1	U				U		
1,3-Dichlorobenzene	3	1	U	1	U			1	U	1	
1,3-Dichloropropane	5	1	U	1	U		U	1	U	1	
1,4-Dichlorobenzene	3	1	U	1	U	_	U	1	U	1	IU
1,4-Dioxane	NC	50	R	50	R	50	R	50	R	50	) R
2-Butanone	NC	1	U	1	U	1	U	1	U	5	5 U
2-Chloroethylvinylether	NC	1	UJ	1	UJ	1	I UJ	1	UJ	1	I UJ
2-Hexanone	50	1	U	1	UJ	1	U	1	U	5	5 U
4-Isopropyltoluene	5	1	U	1	U	1	U	1	U	1	IU
4-Methyl-2-Pentanone	NC	1	U	1	UJ	1	U	1	U	1	IU
Acetone	50	230		5	U	720	)	79		38	3
Acrolein	5	5	U	5	U	Ę	5 U	5	U	5	5 U
Acrylonitrile	5	1	U	1	U	1	U	1	U	1	IU
Benzene	1	0.5	U	0.5	U	0.5	5 U	0.5	U	0.5	5 U
Bromochloromethane	5	1	U	1	U	1	U	1	U	1	1 U
Bromodichloromethane	50	1	U	1	U	1	U	1	U	1	1 U
Bromoform	50	1	U	1	U	1	U	1	U	1	1 U
Bromomethane	5	1	U	1	UJ	1	U	1	U	1	1 U
Carbon Disulfide	60	1	U	1	UJ		U	1	U	1	1 U
Carbon Tetrachloride	5	1	U	1	U		U	1	U	1	1 U
Chlorobenzene	5	1	U	1	U	-	U	1	U	1	1 U
Chloroethane	5	1	U	1	UJ	1	U	1	U	1	1 U
Chloroform	7	1	U	1	U		U	1.8		1	1 U
Chloromethane	5	1	U	1	ÚJ		Ū	1	U	1	1 Ū
cis-1,2-Dichloroethene	5	1	U	1	U	1	U	1.3		1	1 U

Earth Tech Northeast, Inc.
Sample Location		PW-02	PW-02	PW-02	PW-02	PW-03
CMT Sample ID	NYSDEC	PW-02-04	PW-02-05	PW-02-06	PW-02-07	PW-03-01
CMT screen interval (ft bgs)	Class GA	116-118	131-133	146-148	160-162	70-72
Laboratory ID	Groundwater	AC38637-003	AC38601-009	AC38637-001	AC38637-005	AC38601-003
Sample Date	Criteria	7/10/08	7/9/08	7/9/08	7/10/08	7/8/08
Matrix	water	water	water	water	water	water
Units	ua/l	ua/l	ua/l	ua/l	ua/l	ua/l
	~- [~]	conc Q	conc Q	conc Q	conc Q	conc Q
cis-1 3-Dichloropropene	0.4	1 11	1 11	1 11	1 11	1 11
Cyclobeyane		1 1	1 1	1 1	1 1	1 1
Dibromochloromothono	F F	10	10	10	10	10
Diplomocnioromethane	5	10	10	10	10	10
	5 5	10	10	10	10	
	5					10
Isopropylbenzene	5	10	10	10	10	10
m&p-Xylenes	5	20	20	20	20	20
Methyl Acetate	NC	1 U	1 UJ	1 U	1 U	1 U
Methylcyclohexane	NC	1 U	1 0	1 U	1 U	1 U
Methylene Chloride	5	1 U	1 U	1 U	2.1	1 U
Methyl-t-butyl ether	10	1 U	1 U	1 U	1 U	1 U
n-Butylbenzene	5	1 U	1 U	1 U	1 U	1 U
n-Propylbenzene	5	1 U	1 U	1 U	1 U	1 U
o-Xylene	5	1 U	1 U	1 U	1 U	1 U
sec-Butylbenzene	5	1 U	1 U	1 U	1 U	1 U
Styrene	5	1 U	1 U	1 U	1 U	1 U
t-Butyl Alcohol	NC	5 U.	5 U	5 UJ	5 UJ	5 U
t-Butylbenzene	5	1 U	1 U	1 1	1 U	1 U
Tetrachloroethene	5	1 1	1 11	3	82	1 1
Toluene	5	1 1	1 11	111	1 11	1 0
Trans 1.2 Dichloroothono	5	1 1	1 1	1 1	1 1	1 1
Trans 1.2 Dichloropropopo	0.4	1 1	1 1	10	10	10
Trails-1,3-Dictilotoproperie	0.4 E	10	10	10	24	10
Trichlereflueremethere	5	10	10	10	2.4	10
	5	10	10	10	10	10
Vinyi Chloride	2	10	10	10	10	10
I AL Metals	0.7	0.0.11	0.011	0.0.11	0.0.11	0.0.11
Mercury	0.7	0.2 0	0.2 0	0.2 0	0.2 0	0.2 0
Aluminum	NC	360	3,800	100 U	400	100 U
Antimony	3	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U
Arsenic	25	4 U	4 0	4.4	6.8	4 U
Barium	1,000	58	57	75	35	120
Beryllium	3	4 U	4 U	4 U	4 U	4 U
Cadmium	5	2 U	2 U	2 U	2 U	2 U
Calcium	NC	17,000	18,000 J	19,000	17,000	23,000 J
Chromium	50	25 U	25 U	25 U	25 U	25 U
Cobalt	NC	10 U	10 U	10 U	10 U	12
Copper	200	25 U	25 U	25 U	25 U	25 U
Iron	300	7,600	6,400 J	10,000	18,000	14,000 J
Lead	25	5 U	5 U	5 U	5 U	5 U
Magnesium	35,000	1,800	2,700	5,300	5,100	2,900

Sample Location		PW-02		PW-02		PW-02		PW-02		PW-0	3
CMT Sample ID	NYSDEC	PW-02-04	4	PW-02-0	)5	PW-02-	06	PW-02	-07	PW-0	3-01
CMT screen interval (ft bgs)	Class GA	116-118		131-133		146-148	3	160-16	52	70-72	
Laboratory ID	Groundwater	AC38637-0	03	AC38601-0	009	AC38637	-001	AC3863	7-005	AC3860	01-003
Sample Date	Criteria	7/10/08		7/9/08		7/9/08		7/10/08	В	7/8/08	3
Matrix	water	water		water		water		water		water	
Units	µg/L	µg/L		µg/L		µg/L		µg/L		µg/L	
		conc C	ג	conc	Q	conc	Q	conc	Q	conc	Q
Manganese	300	1300		130		380		53	3	44	0
Nickel	100	10 L	J	15		10	U	1(	D C	1	3
Potassium	NC	2,500 L	J	2,500	U	2,800		2,50	D C	24,00	00
Selenium	10	25 L	J	25	U	25	U	2	5 U	2	25 U
Silver	50	10 L	J	10	U	10	U	1(	U C	1	0 U
Sodium	20,000	14,000		29,000		38,000		58,00	0	39,00	0
Thallium	0.5	5 L	J	5	U	5	U	Ę	5 U		5 U
Vanadium	NC	25 L	J	25	U	25	U	2	5 U	2	25 U
Zinc	2000	25 L	J	25	U	25	U	2	5 U	13	80

U - Not detected

NC - No criterion

Sample Location		PW-03		PW-03		PW-03		PW-03		PW-03	
CMT Sample ID	NYSDEC	PW-03-0	าว	PW-03-	ივ	PW-03	-04	PW-03-	05	PW-03	-06
CMT screen interval (ft bas)	Class GA	85-87	52	100-102	>	115-11	7	130-133	2	145-14	7
Laboratory ID	Groundwater	AC28601	001	AC28601	- 005	110 11	002	AC 28601	<u>-</u> 		1 006
Sample Date	Criteria	7/8/08	001	7/0/08	-005	7/8/08	-002	7/8/08	-004	7/0/08	1-000
Sample Date Matrix	water	water		water		wator		water		wator	
	water										
Units	µg/∟	µy/L conc	0	µy/∟ conc	0	µy/L conc	0	µy/L	0	µy/L conc	0
Volatile Organic Compounds			Q	conc	Q	CONC	Q	CONC	Q	CONC	Q
1 1 1-Trichloroethane	5	12		97		1	U	1	U		1 U
1 1 2 2-Tetrachloroethane	5	1	U	1	U.I	1	Ŭ	1	Ū.I		. U.I
1 1 2-trichloro-1 2 2-trifluoroethane	5	1	ŭ	1	11	1	Ŭ	1	11		1 11
1 1 2-Trichloroethane	1	1	ы П	1	U U	1	ы П		ы П		1 11
1 1-Dichloroethane	5	23	0	4.6	0	1	п	1	ы П		1 11
1,1-Dichloroethene	5	2.5		4.0		1	П П	1	1		1 11
1, 1-Dichlorobenzene	5	1	ы П	1.1	ш	1	1	1	11		1 11
1,2,3-Trichloropropaga	5			1							1 11
1,2,3-Thenloropropane	5	1		1	00		0		00		
1,2,4-Trimothylhonzono	5		0	1	0		0		0		
1,2,4-1 nmethylbenzene	5		U	1	U		0		0		
1,2-Dibromo-3-chioropropane	0.04		U	1	U		U		U		
1,2-Dibromoetnane	5	1	U	1	U	1	U	1	U	1	
1,2-Dichlorobenzene	3	1	U	1	U	1	. U	1	U	1	
1,2-Dichloroethane	0.6	0.5	U	0.5	U	0.5	• U	0.5	U	0.5	ן ט נ
1,2-Dichloropropane	1	1	U	1	U	1	U	1	U	1	
1,3,5-I rimethylbenzene	5	1	U	1	U	1	U	1	U	1	
1,3-Dichlorobenzene	3	1	U	1	U	1	U	1	U	1	10
1,3-Dichloropropane	5	1	U	1	U	1	U	1	U	1	10
1,4-Dichlorobenzene	3	1	U	1	U	1	U	1	U	1	1 U
1,4-Dioxane	NC	50	R	50	R	50	) R	50	R	50	) R
2-Butanone	NC	5	U	1	U	5	5 U	1	U	1	1 U
2-Chloroethylvinylether	NC	1	UJ	1	UJ	1	UJ	1	UJ	1	I UJ
2-Hexanone	50	5	U	1	UJ	5	5 U	1	UJ	1	I UJ
4-Isopropyltoluene	5	1	U	1	U	1	U	1	U	1	1 U
4-Methyl-2-Pentanone	NC	1	U	1	UJ	1	U	1	UJ	1	1 UJ
Acetone	50	37		5	U	130	)	73		200	)
Acrolein	5	5	U	5	U	5	5 U	5	U	Ę	5 U
Acrylonitrile	5	1	U	1	U	1	U	1	U	1	1 U
Benzene	1	0.5	U	0.5	U	0.5	5 U	0.5	U	0.5	5 U
Bromochloromethane	5	1	U	1	U	1	U	1	U	1	1 U
Bromodichloromethane	50	1	U	1	U	1	U	1	U	1	1 U
Bromoform	50	1	U	1	U	1	U	1	U	1	1 U
Bromomethane	5	1	U	1	UJ	1	U	1	UJ	1	1 UJ
Carbon Disulfide	60	1	U	1	UJ	1	U	1	UJ	1	1 UJ
Carbon Tetrachloride	5	1	U	1	U	1	U	1	U	1	1 U
Chlorobenzene	5	1	U	1	U	1	U	1	U	1	1 U
Chloroethane	5	1	U	1	UJ	1	U	1	UJ	1	1 UJ
Chloroform	7	1	U	1	U	1	U	1	U	1	1 U
Chloromethane	5	1	Ū	1	ŪJ	1	Ū	1	ŪJ	1	1 ŪJ
cis-1,2-Dichloroethene	5	1	U	1	U	1	U	1	U	1	1 U

Sample Location		D\W_03	D_03	D\\/_03	D_03	D\\/_03
CMT Sample ID		PW-03-02	PW/-03-03	PW-03-04	PW/-03-05	PW-03-06
CMT screen interval (ft bas)	Class GA	85-87	100-102	115-117	130-132	145-147
Laboratory ID	Groundwater	AC38601-001	AC38601-005	AC38601-002	AC38601-004	AC38601-006
Sample Date	Criteria	7/8/08	7/9/08	7/8/08	7/8/08	7/9/08
Matrix	water	water	water	water	water	water
Units	µg/∟	$\mu g/L$	$\mu g/L$	$\mu g/L$	pg/L	$\mu g/L$
in 1.2 Dichlerenrenene	0.4	1 11	1 11	1 1	1 1	1 11
Cycloboxopo	0.4 NC	10	1 1	10	1 1	1 1
Dibromochloromothano	5	10	1 1	10	1 1	1 1
Dichlorodifluoromothana	5	10	1 1	10	1 1	1 1
Ethylbonzono	5	10	1 1	10	1 1	1 1
	5	10	1 1	10	1 1	1 1
	5				10	10
Mathyl Apatata		20	20	20	20	20
Methylayalahayana	NC	10	1 0 0 0 0 0	10	1 0 0	1 00
Methylcyclonexane		10	10	10	10	10
Methylene Chloride	5	10	10	10	10	10
Metnyi-t-butyi etner	10	10	10	10	10	10
n-Butylbenzene	5	10	10	10	10	10
n-Propyibenzene	5	10	10	10	10	10
o-Xylene	5	10	10	10	10	10
sec-Butylbenzene	5	10	10	10	10	10
Styrene	5	10	10	10	10	1 U
t-Butyl Alcohol	NC	50	50	50	50	5 U
t-Butylbenzene	5	10	10	10	10	1 U
Tetrachloroethene	5	10	10	10	10	1 U
Toluene	5	1 U	10	1 U	1 U	1 U
Trans-1,2-Dichloroethene	5	1 U	10	1 U	10	1 U
Trans-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5	1 U	10	1 U	10	1 U
Trichlorofluoromethane	5	1 U	10	1 U	10	1 U
Vinyl Chloride	2	1 U	1 U	1 U	1 U	1 U
TAL Motolo						
Moroury	0.7	0.211	0.211	0.211	0211	0211
	0.7	100 11	100 11	0.2 0	100 11	0.2 0
Antimony				210		7511
Arconic	3 25	7.50	7.5 0	7.5 0	7.5 U	7.5 U
Arsenic	20	7.9	25 11	25 11	40	40
Bandlium	1,000	290	25 0	25 0	40	44
Codmium	5	40	40	40	40	40
Calcium		24 000 1		12 000 1	12 000 1	12 000 1
Chromium	NC E0	24,000 J	0,000 J	13,000 J	12,000 J	12,000 J
Chiomum	50 NC	25 0	25 0	25 0	25 0	25 U
Coppor						
Licon	200	25 U				20 U
	300	10,000 J	450 J	0,000 J	3,200 J	4,000 J
Magnasium	20 25 000	2 000	1 200	2 5 U	2 000	2 000
iviagnesium	35,000	3,000	1,300	∠,ວ∪∪	∠,000	3,000

Earth Tech Northeast, Inc.

App E CMT gw data - July 2008.xls

Sample Location		PW-03	PW-03	PW-03	PW-03	PW-03
CMT Sample ID	NYSDEC	PW-03-02	PW-03-03	PW-03-04	PW-03-05	PW-03-06
CMT screen interval (ft bgs)	Class GA	85-87	100-102	115-117	130-132	145-147
Laboratory ID	Groundwater	AC38601-001	AC38601-005	AC38601-002	AC38601-004	AC38601-006
Sample Date	Criteria	7/8/08	7/9/08	7/8/08	7/8/08	7/9/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q
Manganese	300	2,700	370	800	130	510
Nickel	100	10 U	10 U	10 U	12	10 U
Potassium	NC	25,000	2,500 U	2,500 U	2,500 U	2,500 U
Selenium	10	25 U	25 U	25 U	25 U	25 U
Silver	50	10 U	10 U	10 U	10 U	10 U
Sodium	20,000	54,000	29,000	57,000	34,000	44,000
Thallium	0.5	5 U	5 U	5 U	5 U	5 U
Vanadium	NC	25 U	25 U	25 U	25 U	25 U
Zinc	2000	25 U	52	25 U	29	25 U

U - Not detected

NC - No criterion

Sample Location		PW-03		PW-04		PW-04		PW-04		PW-04	
CMT Sample ID	NYSDEC	PW-03-0	07	PW-04-0	)1	PW-04	-02	PW-04-	03	PW-04	-04
CMT screen interval (ft bas)	Class GA	160-162	»	71-73		86-88		101-10	3	116-11	8
Laboratory ID	Groundwater	AC38601-	- .007	AC38739-0	001	AC38739	9-003	AC38739	-002	AC3873	9-005
Sample Date	Criteria	7/9/08		7/15/08		7/15/08	}	7/15/08	002	7/16/08	8
Matrix	water	water		water		water		water		water	
Units		ua/l		ua/l		ua/l		ua/l		ua/l	
	P9/-	conc	Q	conc	Q	conc	Q	conc	Q	conc	Q
Volatile Organic Compounds			- •								
1,1,1-Trichloroethane	5	1	U	2.5		1	U	1	U		1 U
1,1,2,2-Tetrachloroethane	5	1	UJ	1	U	1	U	1	U		1 U
1,1,2-trichloro-1,2,2-trifluoroethane	5	1	U	1	U	1	U	1	U		1 U
1,1,2-Trichloroethane	1	1	U	1	U	1	U	1	U		1 U
1,1-Dichloroethane	5	1	U	1.1		1	U	1	U		1 U
1,1-Dichloroethene	5	1	U	1	U	1	U	1	U		1 U
1,2,3-Trichlorobenzene	5	1	U	1	U	1	U	1	U		1 U
1,2,3-Trichloropropane	5	1	UJ	1	U	1	U	1	U		1 U
1,2,4-Trichlorobenzene	5	1	U	1	U	1	U	1	U		1 U
1.2.4-Trimethylbenzene	5	1	Ū	1	Ū	1	Ū	1 1	Ū		1 U
1.2-Dibromo-3-chloropropane	0.04	1	Ū	1	Ū	1	Ū	1 1	Ū		1 U
1.2-Dibromoethane	5	1	Ū	1	Ū	1	Ū	1	Ū		1 U
1.2-Dichlorobenzene	3	1	Ū	1	Ū	1	Ū	1	Ū		1 U
1.2-Dichloroethane	0.6	0.5	Ū	0.5	Ū	0.5	5 Ū	0.5	Ū	0.5	5 U
1.2-Dichloropropane	1	1	Ū	1	Ū	1	Ū	1	Ū		1 U
1.3.5-Trimethylbenzene	5	1	Ū	1	Ū	1	Ū	1 1	Ū		1 U
1.3-Dichlorobenzene	3	1	Ū	1	Ū	1	Ū	1 1	Ū		1 U
1.3-Dichloropropane	5	1	Ū	1	Ū	1	Ū	1	Ū		1 U
1.4-Dichlorobenzene	3	1	Ū	1	Ū	1	Ū	1	Ū		1 U
1.4-Dioxane	NC	50	R	50	R	50	) R	50	R	50	0 R
2-Butanone	NC	1	U	1	U	1	U	1	U		1 U
2-Chloroethvlvinvlether	NC	1	ŪJ	1	ŪJ	1	ŪJ	1	ŪJ		1 UJ
2-Hexanone	50	1	UJ	1	U	1	U	1 1	U		1 U
4-Isopropyltoluene	5	1	U	1	Ū	1	Ū	1	Ū		1 U
4-Methyl-2-Pentanone	NC	1	ŪJ	1	Ū	1	Ū	1	Ū		1 U
Acetone	50	560		5	Ū	5	5 Ū	5	Ū	ļ	5 U
Acrolein	5	5	U	5	U	Ę	5 U	5	Ŭ	ļ	5 U
Acrylonitrile	5	1	Ū	1	Ū	1	Ū	1	Ū		1 U
Benzene	1	0.5	Ū	0.5	Ū	0.5	5 Ū	0.5	Ū	0.5	5 U
Bromochloromethane	5	1	Ŭ	1	U	1	Ū	1	Ŭ		1 U
Bromodichloromethane	50	1	Ŭ	1	U	1	Ū	1	Ŭ		1 U
Bromoform	50	1	Ŭ	1	U	1	Ū	1	Ŭ		1 U
Bromomethane	5	1	Ū.J	1	Ŭ	1	Ŭ	1	Ŭ		1 U
Carbon Disulfide	60	1	UJ	1	U.J	1	ŪJ	1	ŬJ		1 U
Carbon Tetrachloride	5	1	U	1	U	1	U	1	U		1 U
Chlorobenzene	5	1	Ŭ	1	Ŭ	1	Ŭ	1	Ŭ		1 U
Chloroethane	5	1	Ū.I	1	Ū	1	Ū	1	Ū		1 U
Chloroform	7	1	U	1	Ū	1	U	1	Ũ		1 U
Chloromethane	5	1	Ū.I	1	Ū		Ū	1	Ū		1 U
cis-1,2-Dichloroethene	5	1	U	1	Ū	1	Ū	1	Ū		1 Ū

				DVA/ 0.4	DVA/ 0.4	
Sample Location		PW-03	PVV-04	PVV-04	PVV-04	PVV-04
CMT Sample ID	NYSDEC	PW-03-07	PW-04-01	PW-04-02	PW-04-03	PW-04-04
CMT screen interval (ft bgs)	Class GA	160-162	71-73	86-88	101-103	116-118
Laboratory ID	Groundwater	AC38601-007	AC38739-001	AC38739-003	AC38739-002	AC38739-005
Sample Date	Criteria	7/9/08	7/15/08	7/15/08	7/15/08	7/16/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q
cis-1.3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U
Cvclohexane	NC	1 Ū	1 U	1 Ū	1 U	1 U
Dibromochloromethane	5	1 Ū	1 U	1 Ū	1 U	1 U
Dichlorodifluoromethane	5	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	1 U	1 U	1 U	1 U	1 U
Isopropylbenzene	5	1 U	1 U	1 U	1 U	1 U
m&p-Xylenes	5	2 U	2 U	2 U	2 U	2 U
Methyl Acetate	NC	1 U.	1 U	1 U	1 U	1 U
Methylcyclobexane	NC	1 11	1 1	1 11	1 11	1 1
Methylene Chloride	5	1 1	1 11	1 1	1 1	1 1
Methyl-t-butyl ether	10	1 1	1 11	1 1	1 1	1 1
n-Butylbenzene	5	1 1	1 11	1 1	1 1	1 1
	5	1 1	1 1	1 1	1 1	1 1
	5	1 1	1 1	1 1	1 1	1 1
	5	10	10	10	10	10
Sec-Dutyidenzene	5	10	10	10	10	10
		50	5 UJ	5 UJ	5 UJ	5 UJ
t-Butyibenzene	5	70	10	10	10	10
Tetrachioroethene	5	7.8	10	10	10	10
	5	10	10	10	10	10
I rans-1,2-Dichloroethene	5	10	10	10	10	10
I rans-1,3-Dichloropropene	0.4	10	10	10	10	10
	5	10	10	10	10	10
l richlorofluoromethane	5	10	10	10	10	10
Vinyl Chloride	2	10	1 U	1 U	1 U	1 U
TAL Metals	- <b>-</b>					
Mercury	0.7	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Aluminum	NC	320	100 U	100 U	100 U	230
Antimony	3	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U
Arsenic	25	5.9	5.1	4 U	4 U	4 U
Barium	1,000	48	120	85	75	25 U
Beryllium	3	4 U	4 U	4 U	4 U	4 U
Cadmium	5	2 U	2 U	2 U	2 U	2 U
Calcium	NC	19,000 J	12,000	13,000	9,600	7,100
Chromium	50	25 U	25 U	25 U	25 U	25 U
Cobalt	NC	10 U	10 U	10 U	10 U	10 U
Copper	200	25 U	25 U	25 U	25 U	25 U
Iron	300	35,000 J	3,300	7,100	220	650
Lead	25	5 U	5 U	5 U	5 U	5 U
Magnesium	35,000	5,400	2,300	2,800	1,500	1,200

Earth Tech Northeast, Inc.

App E CMT gw data - July 2008.xls

Sample Location		PW-03	PW-04	PW-04	PW-04	PW-04
CMT Sample ID	NYSDEC	PW-03-07	PW-04-01	PW-04-02	PW-04-03	PW-04-04
CMT screen interval (ft bgs)	Class GA	160-162	71-73	86-88	101-103	116-118
Laboratory ID	Groundwater	AC38601-00	7 AC38739-00	1 AC38739-003	AC38739-002	AC38739-005
Sample Date	Criteria	7/9/08	7/15/08	7/15/08	7/15/08	7/16/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q
Manganese	300	370	550	310	65	26
Nickel	100	10 U	11	10 U	10 U	10 U
Potassium	NC	2,500 U	7,500	2,500 U	2,500 U	2,500 U
Selenium	10	25 U	25 U	25 U	25 U	25 U
Silver	50	10 U	10 U	10 U	10 U	10 U
Sodium	20,000	32,000	42,000	38,000	25,000	39,000
Thallium	0.5	5 U	5 U	5 U	5 U	5 U
Vanadium	NC	25 U	25 U	25 U	25 U	25 U
Zinc	2000	25 U	25 U	25 U	25 U	25 U

U - Not detected

NC - No criterion

Sample Location		PW-04		PW-04	PW-04		PW-05		PW-05	
CMT Sample IF	NYSDEC	PW-04-0	)5	PW-04-06	PW-04-	07	PW-05-	01	PW-05	-02
CMT screen interval (ft bos)	Class GA	131-133		146-148	161-163	3	68 5-70	5	93 5-95	55
	Groundwater	AC38739-0	009	AC38739-00	AC38739	-008	AC38771	-006	AC38492	2-001
Sample Date	Criteria	7/16/08		7/16/08	7/16/08		7/17/08		7/18/08	3
Matrix	water	water		water	water		water		water	-
Units		ua/l		ua/l	ua/l		ua/l		ua/l	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	conc	Q	conc Q	conc	Q	conc	Q	conc	0
Volatile Organic Compounds			~			~		~		~
1.1.1-Trichloroethane	5	1	U	1 U	2.5		1	U		1 U
1.1.2.2-Tetrachloroethane	5	1	Ŭ	1 U	1	U	1	Ŭ		1 U
1.1.2-trichloro-1.2.2-trifluoroethane	5	1	Ū	1 U	1	Ū	1	Ū		1 U
1.1.2-Trichloroethane	1	1	Ū	1 U	1	Ū	1	Ŭ		1 U
1.1-Dichloroethane	5	1	Ū	1 U	1	-	1	Ū		1 U
1.1-Dichloroethene	5	1	Ŭ	1 U	1	U	1	Ŭ		1 U
1.2.3-Trichlorobenzene	5	1	Ŭ	1 U	1	Ŭ	1	Ŭ		1 U
1 2 3-Trichloropropane	5	1	Ŭ	1 U	1	Ŭ	1	Ŭ		1 U
1 2 4-Trichlorobenzene	5	1	Ŭ	1 U	1	Ŭ	1	Ŭ		1 U
1 2 4-Trimethylbenzene	5	1	Ŭ	1 U	1	Ŭ	1	Ŭ		1 U
1 2-Dibromo-3-chloropropane	0.04	1	Ŭ	1 U	1	Ŭ	1	Ŭ		1 U
1 2-Dibromoethane	5	1	Ŭ	1 U	1	Ŭ	1	Ŭ		1 U
1 2-Dichlorobenzene	3	1	Ŭ	1 U	1	Ŭ	1	Ŭ		1 U
1 2-Dichloroethane	0.6	0.5	Ŭ	05 U	0.5	Ŭ	0.5	Ŭ	0.5	5 U
1 2-Dichloropropane	1	0.0	Ŭ	1 U	1	Ŭ	0.0	Ŭ	0.0	1 U
1.3.5-Trimethylbenzene	5	1	Ŭ	1 U	1	Ŭ	1	Ŭ		1 U
1 3-Dichlorobenzene	3	1	Ŭ	1 U	1	Ŭ	1	Ŭ		1 U
1.3-Dichloropropane	5	1	Ŭ	1 U	1	Ŭ	1	Ŭ		1 U
1 4-Dichlorobenzene	3	1	Ŭ	1 U	1	Ŭ	1	Ŭ		1 U
1 4-Dioxane	NC	50	R	50 R	50	R	50	R	50	) R
2-Butanone	NC	1	Ü	1 U	1	Ü	1	Ü		1 U
2-Chloroethylvinylether	NC	1	Ŭ.I	1 U	ı 1	Ū.J	1	Ū.J		1 U.J
2-Hexanone	50	1	U	1 U	1	U	1	U		1 U.J
4-Isopropyltoluene	5	1	Ŭ	1 U	1	Ŭ	1	Ŭ		1 U
4-Methyl-2-Pentanone	NC	1	Ŭ	1 U	1	Ŭ	1	Ŭ		1 U.J
Acetone	50	96	.1	17	5	Ŭ	5	U.I	F	5 U.I
Acrolein	5	5	Ŭ.I	5.0	5	Ŭ	5	U.J	F	5 U.J
Acrylonitrile	5	1	U.J	1 U	1	Ŭ	1	U.J		1 U.J
Benzene	1	0.5	U	05 U	0.5	Ŭ	0.5	1	0.5	5 U
Bromochloromethane	5	1	Ŭ	1 U	1	Ŭ	1	Ŭ		1 U
Bromodichloromethane	50	1	Ŭ	1 U	1	Ŭ	1	Ŭ		1 U
Bromoform	50	1	Ŭ	1 U	1	Ŭ	1	Ŭ		1 U
Bromomethane	5	1	U.I	1 U	1	Ŭ	1	U.I		1 U
Carbon Disulfide	60	1	U.I	1 U	ı 1	U.I	1	U.I		1 U.I
Carbon Tetrachloride	5	1	U	1 U	1	00	1	1		1 U
Chlorobenzene	5	1	Ŭ	1 U	1	Ŭ	1	Ŭ		1 U
Chloroethane	5	1	Ŭ	1 11		Ü	1	ü		1 U
Chloroform	7	1	Ū	1 11		Ŭ	1	Ŭ		1 U
Chloromethane	5	1	Ŭ	1 11		Ü	1	ü		1 U
cis-1.2-Dichloroethene	5	1	Ū	1 U		Ŭ	1	Ŭ		1 U

Sample Location		PW-04		PW-04		PW-04		PW-05		PW-05	
CMT Sample ID	NYSDEC	PW-04-	05	PW-04-	06	PW-04	-07	PW-05-	-01	PW-05	-02
CMT screen interval (ft bgs)	Class GA	131-133	3	146-148	3	161-16	3	68.5-70	).5	93.5-95	5.5
Laboratory ID	Groundwater	AC38739	-009	AC38739-	-006	AC38739	9-008	AC38771	-006	AC38492	2-001
Sample Date	Criteria	7/16/08		7/16/08		7/16/08	3	7/17/08	;	7/18/08	3
Matrix	water	water		water		water		water		water	
Units	ua/L	ua/L		ua/L		ua/L		ua/L		ua/L	
	15	conc	Q	conc	Q	conc	Q	conc	Q	conc	Q
cis-1.3-Dichloropropene	0.4	1	U	1	U	1	U	1	U	1	U
Cvclohexane	NC	1	Ū	1	Ū	1	Ū	1	Ū	1	Ū
Dibromochloromethane	5	1	Ŭ	1	Ŭ	1	Ŭ	1	Ŭ	1	Ŭ
Dichlorodifluoromethane	5	1	Ŭ.I	1	Ŭ	1	ŭ	1	Ŭ.I	1	Ŭ
Ethylbenzene	5	1	11	1	п	1	ы	1	11	1	ы
Isopropylbenzene	5	1	ы П	1	ы П	1	н	1	ы	1	U U
	5	י ר		י ר			о 11	1			
		2		2	0	2					
Methyl Acetate	NC	1	UJ	1	0	1	U	1	UJ	1	UJ
Methylcyclohexane	NC	1	U	1	U	1	U	1	U	1	U
Methylene Chloride	5	1	U	1	U	1	U	1	U	1	U
Methyl-t-butyl ether	10	1	U	1	U	1	U	1	U	1	U
n-Butylbenzene	5	1	U	1	U	1	U	1	U	1	U
n-Propylbenzene	5	1	U	1	U	1	U	1	U	1	U
o-Xylene	5	1	U	1	U	1	U	1	U	1	U
sec-Butylbenzene	5	1	U	1	U	1	U	1	U	1	U
Styrene	5	1	U	1	U	1	U	1	U	1	U
t-Butvl Alcohol	NC	5	UJ	5	UJ	5	5 UJ	5	UJ	5	5 UJ
t-Butylbenzene	5	1	U	1	U	1	Ū	1	U	1	U
Tetrachloroethene	5	1	Ŭ	1	Ŭ	1	ŭ	1	ŭ	1	Ü
Toluene	5	1	п	1	п	1	ы	1	й	1	U U
Trans-1 2-Dichloroethone	5	1	ы П	1	ы П	1	н	1	ы	1	U U
Trans 1.2 Dichloropropopo	0.4	1		1		1		1		1	
Trails-1,3-Dictilotoproperie	0.4 E	1		1		1		1		1	
	5 F	1			0		0		0		0
	5	1		1	0	1	U	1		1	U
Vinyl Chloride	2	1	UJ	1	U	1	U	1	UJ	1	U
TAL Motols											
Moroury	07	0.2		0.2		0.2		0.2		0.2	
	0.7	100		1 200	0	1.00		140	. 0	100	
Antimony			0	1,200				140	, 		
Antimony	3	7.5	U	1.5	U	7.5		7.5		7.5	
Arsenic	25	6.7		4	0	4	ιU	4	·U	4	. 0
Barium	1,000	35		25	U	120	)	36		()	
Beryllium	3	4	U	4	U	4	ιU	4	·U	4	·U
Cadmium	5	2	U	2	U	2	2 U	2	U	2	2 U
Calcium	NC	12,000		5,200		12,000	)	17,000	)	18,000	)
Chromium	50	25	U	25	U	25	5 U	25	U	25	5 U
Cobalt	NC	10	U	10	U	15	5	22		10	) U
Copper	200	25	U	25	U	25	5 U	25	U	25	5 U
Iron	300	12,000		4,400		4,600	)	6,400	)	8,500	)
Lead	25	5	U	5	U	5	5 U	5	U	5	5 U
Magnesium	35,000	2,000		1,000	U	2,100	)	4,300	)	3,500	)

Sample Location		PW-04		PW-04	PW-04	PW-05	PW-05
CMT Sample ID	NYSDEC	PW-04-0	5	PW-04-06	PW-04-07	PW-05-01	PW-05-02
CMT screen interval (ft bgs)	Class GA	131-133		146-148	161-163	68.5-70.5	93.5-95.5
Laboratory ID	Groundwater	AC38739-0	09	AC38739-006	6 AC38739-00	AC38771-006	AC38492-001
Sample Date	Criteria	7/16/08		7/16/08	7/16/08	7/17/08	7/18/08
Matrix	water	water		water	water	water	water
Units	µg/L	µg/L		µg/L	µg/L	µg/L	µg/L
		conc C	כ	conc Q	conc Q	conc Q	conc Q
Manganese	300	320		62	490	790	460
Nickel	100	10 L	J	10 U	13	15	10 U
Potassium	NC	2,500 L	J	2,500 U	8,200	2,500 U	2,500 U
Selenium	10	25 L	J	25 U	25 U	25 U	25 U
Silver	50	10 L	J	10 U	10 U	10 U	10 U
Sodium	20,000	35,000		36,000	44,000	16,000	57,000
Thallium	0.5	5 L	J	5 U	5 U	5 U	5 U
Vanadium	NC	25 L	J	25 U	25 U	25 U	25 U
Zinc	2000	25 L	J	25 U	25 U	25 U	26

U - Not detected

NC - No criterion

Sample Location		PW-05	PW-05	PW-05	PW-05	PW-05
CMT Sample ID	NYSDEC	PW-05-03	PW-05-04	PW-05-05	PW-05-06	PW-05-07
CMT screen interval (ft bas)	Class GA	118 5-120	143 5-145	168 5-170	193 5-195 5	220 5-221 5
Laboratory ID	Groundwater	AC38771-00	7 AC38492-002	AC38492-007	AC38492-008	AC38492-006
Sample Date	Criteria	7/17/08	7/18/08	7/18/08	7/18/08	7/18/08
Matrix	water	water	water	water	water	water
Units	ua/L	ua/L	ua/L	ug/L	ua/L	ua/L
- · · · · ·	~- [~]	conc Q	conc Q	conc Q	conc Q	conc Q
Volatile Organic Compounds						
1,1,1-Trichloroethane	5	1 U	1 U	1 U	1 U	1 U
1.1.2.2-Tetrachloroethane	5	1 U	1 U	1 U	1 U	1 U
1,1,2-trichloro-1,2,2-trifluoroethane	5	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1	1 U	1 U	1 U	1 U	1 U
1.1-Dichloroethane	5	1 U	1 U	1 U	1 U	1 U
1.1-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U
1.2.3-Trichlorobenzene	5	1 U	1 U	1 U	1 U	1 U
1.2.3-Trichloropropane	5	1 U	1 U	1 U	1 U	1 U
1.2.4-Trichlorobenzene	5	1 U	1 U	1 U	1 U	1 U
1.2.4-Trimethylbenzene	5	1 U	1 U	1 U	1 U	1 U
1.2-Dibromo-3-chloropropane	0.04	1 U	1 U	1 U	1 U	1 U
1.2-Dibromoethane	5	1 U	1 U	1 U	1 U	1 U
1.2-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U
1.2-Dichloroethane	0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1.2-Dichloropropane	1	1 U	1 U	1 U	1 U	1 U
1.3.5-Trimethylbenzene	5	1 U	1 U	1 U	1 U	1 U
1.3-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U
1.3-Dichloropropane	5	1 U	1 U	1 U	1 U	1 U
1 4-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U
1.4-Dioxane	NC	50 R	50 R	50 R	50 R	50 R
2-Butanone	NC	1 U	1 U	1 U	1 U	1 U
2-Chloroethylvinylether	NC	1 U.	J 1 UJ	1 UJ	1 U.	1 UJ
2-Hexanone	50	1 U	1 UJ	1 UJ	16 J	1 UJ
4-Isopropyltoluene	5	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-Pentanone	NC	1 U	1 U.I	1 U.I	1 U	1 U.I
Acetone	50	5 U	5 0.1	5 UJ	130	94 .1
Acrolein	5	5 U	5 UJ	5 UJ	5.0	5 U.
Acrylonitrile	5	1 U	1 1 1.1	1 U.J	1 U	1 U.
Benzene	1	05.0	050	05 U	05 U	05 U
Bromochloromethane	5	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	50	1 U	1 U	1 U	1 U	1 U
Bromoform	50	1 U	1 U	1 U	1 U	1 U
Bromomethane	5	1 U	1 1 0	1 U	1 U	1 U
Carbon Disulfide	60	1 U	1 1 1	1 U.I	1 U	1 U
Carbon Tetrachloride	5	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	5	1 U	1 U	1 U	1 U	1 U
Chloroethane	5	1 11	1 1	1 U	1 1	1 []
Chloroform	7	1 U	1 1	1 U	1 U	1 U
Chloromethane	5	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U

Comple Leastion						
	NYSDEC	PVV-05-03	PVV-05-04	PVV-05-05	PVV-05-06	PVV-05-07
CIMIT screen interval (ft bgs)	Class GA	118.5-120.	143.5-145.	168.5-170.	193.5-195.5	220.5-221.5
Laboratory ID	Groundwater	AC38771-007	AC38492-002	AC38492-007	AC38492-008	AC38492-006
Sample Date	Criteria	7/17/08	7/18/08	7/18/08	7/18/08	7/18/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q
cis-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U
Cyclohexane	NC	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	5	1 U	1 U	1 U	1 U	1 U
Dichlorodifluoromethane	5	1 UJ	1 U	1 U	1 U	1 U
Ethylbenzene	5	1 U	1 U	1 U	1 U	1 U
Isopropylbenzene	5	1 U	1 U	1 U	1 U	1 U
m&p-Xvlenes	5	2 U	2 U	2 U	2 U	2 U
Methyl Acetate	NC	1 UJ	1 U.J	1 U	1 U	1 UJ
Methylcyclohexane	NC	1 U	1 U	1 U	1 U	1 U
Methylene Chloride	5	1 U	1 U	1 U	1 U	1 U
Methyl-t-butyl ether	10	1 11	1 1	1 11	1 11	1 1
n-Butylbenzene	5	1 11	1 11	1 1	1 1	1 1
n-Propylbenzene	5	1 1	1 1	1 1	1 1	1 1
	5	1 1	1 1	1 1	1 1	1 1
soc Butylbonzono	5	1 1	1 1	1 1	1 1	1 1
Sec-Dutyidenzene	5	10	10	10	10	10
					10	
		5 UJ	5 UJ	5 UJ	10	14 J
t-Butyibenzene	5	10	10	10	10	10
Tetrachioroethene	5	10	1.8	1.2	10	1.4
	5	10	10	10	10	10
I rans-1,2-Dichloroethene	5	10	10	10	10	10
Trans-1,3-Dicnioropropene	0.4	10	10	10	10	10
	5	10	10	10	10	10
Irichlorofluoromethane	5	10	10	10	10	1 U
Vinyl Chloride	2	1 UJ	1 U	1 U	1 U	1 U
TAL Metals						
Mercury	0.7	0.2 U	0.2 U	0.2 U	0.58	0.66
Aluminum	NC	260	350	1,900	150,000	78,000
Antimony	3	7.5 U	7.5 U	7.5 U	38 U	38 U
Arsenic	25	5.4	6	5.5	170	280
Barium	1,000	43	32	63	1600	720
Beryllium	3	4 U	4 U	4 U	20 U	20 U
Cadmium	5	2 U	2 U	2 U	10 U	10 U
Calcium	NC	11,000	15,000	8,700	35,000	34,000
Chromium	50	25 U	25 U	25 U	440	400
Cobalt	NC	10 U	10 U	18	430	300
Copper	200	25 U	25 U	25 U	810	660
Iron	300	29,000	22,000	4,800	99,000	230,000
Lead	25	5 U	5 U	5 U	400	290
Magnesium	35,000	2,000	1,800	1,300	13,000	9,400

Earth Tech Northeast, Inc.

App E CMT gw data - July 2008.xls

Sample Location		PW-05		PW-05		PW-05		PW-05		PW-05	
CMT Sample ID	NYSDEC	PW-05-03	3	PW-05-	04	PW-05-0	5	PW-05-0	06	PW-05	-07
CMT screen interval (ft bgs)	Class GA	118.5-120	).5	143.5-1	45.	168.5-17	0.	193.5-19	95.5	220.5-2	221.5
Laboratory ID	Groundwater	AC38771-00	07	AC38492	-002	AC38492-0	07	AC38492-	800	AC38492	2-006
Sample Date	Criteria	7/17/08	ŀ	7/18/08		7/18/08		7/18/08		7/18/08	3
Matrix	water	water	1	water		water		water		water	
Units	µg/L	µg/L		µg/L		µg/L		µg/L		µg/L	
		conc C	2	conc	Q	conc (	ว	conc	Q	conc	Q
Manganese	300	1800		3,600		4,800		350	)	47	0
Nickel	100	10 L	J	10	U	120		490	)	39	0
Potassium	NC	2,500 L	J	2,500	U	2,500 (	J	17,000	)	14,00	0
Selenium	10	25 L	J	25	U	25 (	J	120	U	12	0 U
Silver	50	10 L	J	10	U	10	J	50	U	5	0 U
Sodium	20,000	38,000		36,000		29,000		160,000	)	190,00	0
Thallium	0.5	5 L	J	5	U	5 l	J	25	U	2	5 U
Vanadium	NC	25 L	J	25	U	25 l	J	640	)	54	0
Zinc	2000	25 L	J	25	U	27		620	)	1,10	0

U - Not detected

NC - No criterion

Sample Location		PW-06	PW-06	PW-06	PW-06	PW-06
CMT Sample ID	NYSDEC	PW-06-01	PW-06-02	PW-06-03	PW-06-04	PW-06-05
CMT screen interval (ft bgs)	Class GA	70-72	90-92	118-120	150-152	166-168
Laboratory ID	Groundwater	AC38739-010	AC38739-012	AC38739-011	AC38771-002	AC38771-003
Sample Date	Criteria	7/16/08	7/16/08	7/16/08	7/17/08	7/17/08
Matrix	water	water	water	water	water	water
Units	ua/L	ua/L	ua/L	ua/L	ua/L	ua/L
	1.2	conc Q	conc Q	conc Q	conc Q	conc Q
Volatile Organic Compounds						
1,1,1-Trichloroethane	5	1 U	4.2	3.5	1 U	1 U
1,1,2,2-Tetrachloroethane	5	1 U	1 U	1 U	1 U	1 U
1,1,2-trichloro-1,2,2-trifluoroethane	5	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5	1 U	7.2	1.7	1 U	1 U
1,1-Dichloroethene	5	1 U	2.3	1.8	1 U	1 U
1,2,3-Trichlorobenzene	5	1 U	1 U	1 U	1 U	1 U
1,2,3-Trichloropropane	5	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	5	1 U	1 U	1 U	1 U	1 U
1,2,4-Trimethylbenzene	5	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	0.04	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	5	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	1	1 U	1 U	1 U	1 U	1 U
1,3,5-Trimethylbenzene	5	1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U
1,3-Dichloropropane	5	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U
1,4-Dioxane	NC	50 R	50 R	50 R	50 R	50 R
2-Butanone	NC	1 U	1 U	1 U	64	31
2-Chloroethylvinylether	NC	1 UJ	1 U	1 UJ	1 UJ	1 UJ
2-Hexanone	50	1 U	1 UJ	1 U	1 UJ	1 UJ
4-Isopropyltoluene	5	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-Pentanone	NC	1 U	1 U	1 U	1 U	1 U
Acetone	50	5 U	20	5 U	300 J	320 J
Acrolein	5	5 U	5 U	5 U	5 UJ	5 UJ
Acrylonitrile	5	1 U	1 U	1 U	1 UJ	1 UJ
Benzene	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromochloromethane	5	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	50	1 U	1 U	1 U	1 U	1 U
Bromoform	50	1 U	1 U	1 U	1 U	1 U
Bromomethane	5	1 U	1 U	1 U	1 U	1 U
Carbon Disulfide	60	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
Carbon Tetrachloride	5	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	5	1 U	1 U	1 U	1 U	1 U
Chloroethane	5	1 U	1 U	1 U	1 U	1 U
Chloroform	7	1 U	1 U	1 U	2.3	1 U
Chloromethane	5	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U

Sample Location		PW-06	PW-06	PW-06	PW-06	PW-06
CMT Sample ID	NYSDEC	PW-06-01	PW-06-02	PW-06-03	PW-06-04	PW-06-05
CMT screen interval (ft bgs)	Class GA	70-72	90-92	118-120	150-152	166-168
Laboratory ID	Groundwater	AC38739-010	AC38739-012	AC38739-011	AC38771-002	AC38771-003
Sample Date	Criteria	7/16/08	7/16/08	7/16/08	7/17/08	7/17/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q
cis-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U
Cvclohexane	NC	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	5	1 U	1 U	1 U	1 U	1 U
Dichlorodifluoromethane	5	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	1 U	1 U	1 U	1 U	1 U
Isopropylbenzene	5	1 U	1 U	1 U	1 U	1 U
m&n-Xylenes	5	211	211	211	211	211
Methyl Acetate		1 11	1 11	1 11	1 1 1 1	1 1 1
Methyleveloboxano	NC	1 1	10	10	1 1 1	1 03
Methylene Chloride	F F	10	10	10	10	10
Methylene Chionde	5		10	10		
Metnyi-t-butyi etner	10	10	10	10	10	10
n-Butylbenzene	5	10	10	10	10	10
n-Propylbenzene	5	10	10	10	10	10
o-Xylene	5	1 U	1 U	1 U	1 U	1 U
sec-Butylbenzene	5	1 U	1 U	1 U	1 U	1 U
Styrene	5	1 U	1 U	1 U	1 U	1 U
t-Butyl Alcohol	NC	5 UJ	5 UJ	5 UJ	5 UJ	5 UJ
t-Butylbenzene	5	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5	1 U	1 U	1 U	1 U	1 U
Toluene	5	1 U	1 U	1 U	1 U	1 U
Trans-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U
Trans-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5	1 U	1 U	2.6	1 U	1 U
Trichlorofluoromethane	5	1 U	1 U	1 U	1 U	1 U
Vinvl Chloride	2	1 Ū	1 U	1 Ū	1 U	1 Ū
, <u> </u>		_	_	_	_	_
TAL Metals						
Mercury	0.7	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Aluminum	NC	740	320	220	2.500	1.000
Antimony	3	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U
Arsenic	25	4 U	5.9	4 U	5.8	5.6
Barium	1 000	35	36	83	160	150
Bervllium	.,	411	4 11	411	4 []	4 []
Cadmium	5	211	211	211	211	211
Calcium	NC	9 500	20.000	15 000	33,000	24 000
Chromium	50	25 11	20,000	25 11	160	24,000
Cobalt	NC	10 11	42	25 0	71	25 0
Coppor	200	25 11	25 11	25 11	25 11	43 25 11
Iron	200	20 U 400	20 000	20 U 1 200	20 U	20 U
	300	420	29,000	1,200		34,000
	25	50	50	50	50	50
Iviagnesium	35,000	1,200	2,700	6,200	8,600	6,900

Earth Tech Northeast, Inc.

App E CMT gw data - July 2008.xls

Sample Location		PW-06	PW-06	PW-06	PW-06	PW-06
CMT Sample ID	NYSDEC	PW-06-01	PW-06-02	PW-06-03	PW-06-04	PW-06-05
CMT screen interval (ft bgs)	Class GA	70-72	90-92	118-120	150-152	166-168
Laboratory ID	Groundwater	AC38739-010	AC38739-012	AC38739-011	AC38771-002	AC38771-003
Sample Date	Criteria	7/16/08	7/16/08	7/16/08	7/17/08	7/17/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q
Manganese	300	310	1,800	51	1,500	590
Nickel	100	10 U	10 U	10 U	91	49
Potassium	NC	6,000	4,500	2,500 U	10,000	10,000
Selenium	10	25 U	25 U	25 U	25 U	25 U
Silver	50	10 U	10 U	10 U	10 U	10 U
Sodium	20,000	23,000	86,000	19,000	150,000	91,000
Thallium	0.5	5 U	5 U	5 U	5 U	5 U
Vanadium	NC	25 U	25 U	25 U	25 U	25 U
Zinc	2000	25 U	25 U	25 U	330	200

U - Not detected

NC - No criterion

Sample Location		PW-06		PW-06	PW-07	PW-07	PW-07
CMT Sample ID	NYSDEC	PW-06-06	3	PW-06-07	PW-07-01	PW-07-02	PW-07-03
CMT screen interval (ft bas)	Class GA	180-182	<u> </u>	221-222	70-72	95-97	120-122
Laboratory ID	Groundwater	AC38771-00	01	AC38771-004	AC38711-003	AC38711-005	AC38711-004
Sample Date	Criteria	7/17/08	• .	7/17/08	7/14/08	7/15/08	7/14/08
Matrix	water	water		water	water	water	water
Units		ug/l		ua/l	ug/l		ug/l
	P9/-	conc C	2	conc Q	conc Q	conc Q	conc Q
Volatile Organic Compounds							
1.1.1-Trichloroethane	5	1 L	J	5 U	1 U	2	1 U
1.1.2.2-Tetrachloroethane	5	1 L	J	5 U	1 U	1 U	1 Ū
1.1.2-trichloro-1.2.2-trifluoroethane	5	1 L	J	5 U	1 U	1 U	1 Ū
1.1.2-Trichloroethane	1	1 L	J	5 U	1 U	1 U	1 Ū
1.1-Dichloroethane	5	1 L	J	5 U	3.1	1.3	1 Ū
1.1-Dichloroethene	5	1 L	J	5 U	3.6	1 U	1 Ū
1.2.3-Trichlorobenzene	5	1 L	J	5 U	1 U	1 U	1 Ū
1.2.3-Trichloropropane	5	1 L	J	5 U	1 U	1 U	1 U
1.2.4-Trichlorobenzene	5	1 L	J	5 U	1 U	1 U	1 U
1.2.4-Trimethylbenzene	5	1 L	J	5 U	1 U	1 U	1 U
1.2-Dibromo-3-chloropropane	0.04	11	J	5 U	1 U	1 U	1 U
1.2-Dibromoethane	5	11	J	5 U	1 U	1 U	1 U
1.2-Dichlorobenzene	3	11	J	5 U	1 U	1 U	1 U
1.2-Dichloroethane	0.6	0.5 L	J	2.5 U	0.5 U	0.5 U	0.5 U
1.2-Dichloropropane	1	1 L	j	5 U	1 U	1 U	1 U
1.3.5-Trimethylbenzene	5	1 L	J	5 U	1 U	1 U	1 U
1.3-Dichlorobenzene	3	11	J	5 U	1 U	1 U	1 U
1.3-Dichloropropane	5	11	J	5 U	1 U	1 U	1 U
1.4-Dichlorobenzene	3	11	J	5 U	1 U	1 U	1 U
1.4-Dioxane	NC	50 R	2 2	250 R	50 R	50 R	50 R
2-Butanone	NC	42		5 U	1 U	1 U	1 U
2-Chloroethylvinylether	NC	1 L	JJ	5 UJ	1 U.	1 UJ	1 UJ
2-Hexanone	50	1 L	JJ	5 UJ	1 U	1 U	1 U
4-Isopropyltoluene	5	11	J	5 U	1 U	1 U	1 U
4-Methyl-2-Pentanone	NC	11	J	5 U	1 U	1 U	1 U
Acetone	50	360 J		25 UJ	210	5 U	77
Acrolein	5	5 L	IJ	25 UJ	5 U.	5 U.	5 UJ
Acrylonitrile	5	1 L	JJ	5 UJ	1 U	1 U	1 U
Benzene	1	0.5 L	J	2.5 U	0.5 U	0.5 U	0.5 U
Bromochloromethane	5	1 1	J	5 U	1 U	1 U	1 U
Bromodichloromethane	50	11	J	5 U	1 U	1 U	1 U
Bromoform	50	1 L	J	5 U	1 U	1 U	1 U
Bromomethane	5	11	J	5 U	1 U	1 U	1 U
Carbon Disulfide	60	1 L	JJ	5 UJ	1 U	1 U	1 U
Carbon Tetrachloride	5	11	J	5 U	1 U	1 U	1 U
Chlorobenzene	5	11	J	5 U	1 U	1 U	1 U
Chloroethane	5	11	j	5 U	1 U	10	1 U
Chloroform	7	11	j	5 U	1 U	10	1 U
Chloromethane	5	11	J	5 U	1 U	10	1 U
cis-1,2-Dichloroethene	5	1 1	J	5 U	1 U	1 U	1 U

Comple Leastion						
					PVV-07	PVV-07
	NY SDEC	PVV-06-06	PVV-06-07	PVV-07-01	PVV-07-02	PVV-07-03
CMT screen interval (ft bgs)	Class GA	180-182	221-222	70-72	95-97	120-122
Laboratory ID	Groundwater	AC38771-001	AC38771-004	AC38711-003	AC38711-005	AC38711-004
Sample Date	Criteria	7/17/08	//1//08	7/14/08	7/15/08	7/14/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q
cis-1,3-Dichloropropene	0.4	1 U	5 U	1 U	1 U	1 U
Cyclohexane	NC	1 U	5 U	1 U	1 U	1 U
Dibromochloromethane	5	1 U	5 U	1 U	1 U	1 U
Dichlorodifluoromethane	5	1 U	5 U	1 U	1 U	1 U
Ethylbenzene	5	1 U	5 U	1 U	1 U	1 U
Isopropylbenzene	5	1 U	5 U	1 U	1 U	1 U
m&p-Xylenes	5	2 U	10 U	2 U	2 U	2 U
Methyl Acetate	NC	1 UJ	5 UJ	1 U	1 U	1 U
Methylcyclohexane	NC	1 U	5 U	1 U	1 U	1 U
Methylene Chloride	5	1 U	5 U	1 U	1 U	1 U
Methyl-t-butyl ether	10	1 U	5 U	1 U	1 U	1 U
n-Butylbenzene	5	1 U	5 U	1 U	1 U	1 U
n-Propylbenzene	5	1 U	5 U	1 U	1 U	1 U
o-Xvlene	5	1 11	5.0	1 11	1 11	1 1
sec-Butylbenzene	5	1 11	5 11	1 1	1 1	1 1
Sturene	5	1 1	50	1 1	1 1	1 1
t-Butyl Alcohol		5 11	25 111	5 11	5 11	5 11
t Butylbonzono	5	1 1	23 03	1 1	3 03	1 1
Tetrachloroothono	5	11	120	10	10	10
	5 F	1.1	130	10	10	10
Toluene	5 F	10	50	10	10	10
Trans-1,2-Dichloroethene	5	10	50	10	10	10
Trians-1,3-Dichloropropene	0.4	10	50	10	10	10
	5	10	50	3.2	10	10
	5	10	50	10	10	10
Vinyl Chloride	2	1 U	50	1 U	1 U	1 U
I AL Metals	o <b>7</b>					
Mercury	0.7	0.2 0	0.2 0	0.2 0	0.2 0	0.2 0
Aluminum	NC	1,300	1,400	100 U	100 U	100 U
Antimony	3	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U
Arsenic	25	9.3	40	9	4 0	4 U
Barium	1,000	120	44	86	57	73
Beryllium	3	4 U	4 U	4 U	4 U	4 U
Cadmium	5	2 U	2 U	2 U	2 U	2 U
Calcium	NC	23,000	12,000	34,000 J	11,000 J	13,000 J
Chromium	50	25 U	25 U	25 U	25 U	25 U
Cobalt	NC	160	15	52	10 U	10 U
Copper	200	25 U	25 U	25 U	25 U	25 U
Iron	300	51,000	6,100	74,000	1,300	1,900
Lead	25	5 U	5 U	5 U	5 U	5 U
Magnesium	35,000	7,400	3,900	11,000	1,400	3,300

Sample Location		PW-06	PW-06	PW-07	PW-07	PW-07
CMT Sample ID	NYSDEC	PW-06-06	PW-06-07	PW-07-01	PW-07-02	PW-07-03
CMT screen interval (ft bgs)	Class GA	180-182	221-222	70-72	95-97	120-122
Laboratory ID	Groundwater	AC38771-007	AC38771-004	AC38711-003	AC38711-005	AC38711-004
Sample Date	Criteria	7/17/08	7/17/08	7/14/08	7/15/08	7/14/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q
Manganese	300	710	120	6,600	100	110
Nickel	100	87	12	10 U	10 U	10 U
Potassium	NC	12,000	2,900	5,900	2,600	2,500 U
Selenium	10	25 U	25 U	25 U	25 U	25 U
Silver	50	10 U	10 U	10 U	10 U	10 U
Sodium	20,000	65,000	38,000	13,000	25,000	31,000
Thallium	0.5	5 U	5 U	5 U	5 U	5 U
Vanadium	NC	25 U	25 U	25 U	25 U	25 U
Zinc	2000	470	42	25 U	31	36

U - Not detected

NC - No criterion

Sample Location		PW-07	PW-07	PW-07	PW-07
CMT Sample ID	NYSDEC	PW-07-04	PW-07-05	PW-07-06	PW-07-07
CMT screen interval (ft bgs)	Class GA	145-147	170-172	197-199	220-221
Laboratory ID	Groundwater	AC38711-006	AC38711-008	AC38711-007	AC38711-012
Sample Date	Criteria	7/15/08	7/15/08	7/15/08	7/15/08
Matrix	water	water	water	water	water
Units	µg/L	µq/L	µq/L	µq/L	µq/L
	15	conc Q	conc Q	conc Q	conc Q
Volatile Organic Compounds					
1,1,1-Trichloroethane	5	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	5	1 U	1 U	1 U	1 U
1,1,2-trichloro-1,2,2-trifluoroethane	5	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5	1 U	1 U	1 U	1 U
1,1-Dichloroethene	5	1 U	1 U	1 U	1 U
1,2,3-Trichlorobenzene	5	1 U	1 U	1 U	1 U
1,2,3-Trichloropropane	5	1 U	1 U	1 U	1 U
1.2.4-Trichlorobenzene	5	1 U	1 U	1 U	1 U
1,2,4-Trimethylbenzene	5	1 U	1 U	1 U	1 U
1.2-Dibromo-3-chloropropane	0.04	1 Ū	1 Ū	1 U	1 U
1.2-Dibromoethane	5	1 Ū	1 Ū	1 U	1 U
1.2-Dichlorobenzene	3	1 Ū	1 Ū	1 U	1 U
1.2-Dichloroethane	0.6	0.5 U	0.5 U	0.5 U	0.5 U
1.2-Dichloropropane	1	1 U	1 U	1 U	1 U
1.3.5-Trimethylbenzene	5	1 Ū	1 Ū	1 U	1 U
1.3-Dichlorobenzene	3	1 Ū	1 Ū	1 U	1 U
1.3-Dichloropropane	5	1 Ū	1 Ū	1 Ū	1 Ū
1.4-Dichlorobenzene	3	1 Ū	1 Ū	1 U	1 U
1.4-Dioxane	NC	50 R	50 R	50 R	50 R
2-Butanone	NC	1 U	1 U	1 U	1 U
2-Chloroethylvinylether	NC	1 ŪJ	1 UJ	1 UJ	1 UJ
2-Hexanone	50	1 U	1 U	1 U	1 U
4-Isopropyltoluene	5	1 Ū	1 Ū	1 U	1 U
4-Methyl-2-Pentanone	NC	1 Ū	1 Ū	1 U	1 U
Acetone	50	20	5 U	78	39
Acrolein	5	5 U	5 UJ	5 UJ	5 UJ
Acrvlonitrile	5	1 U	1 U	1 U	1 U
Benzene	1	0.5 U	0.5 U	0.5 U	0.5 U
Bromochloromethane	5	1 U	1 U	1 U	1 U
Bromodichloromethane	50	1 Ū	1 Ū	1 Ū	1 Ū
Bromoform	50	1 Ū	1 Ū	1 U	1 U
Bromomethane	5	1 Ū	1 Ū	1 U	1 U
Carbon Disulfide	60	1 Ú	1 Ú	1 Ú	1 Ū
Carbon Tetrachloride	5	1 U	1 U	1 U	1 U
Chlorobenzene	5	1 U	1 U	1 U	1 U
Chloroethane	5	1 U	1 U	1 U	1 U
Chloroform	7	1 U	1 U	1 U	1 U
Chloromethane	5	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5	1 Ū	1 Ū	1 U	1 U

Sample Location		PW-07	PW-07	PW-07	PW-07
CMT Sample ID	NYSDEC	PW-07-04	PW-07-05	PW-07-06	PW-07-07
CMT screen interval (ft bos)	Class GA	145-147	170-172	197-199	220-221
Laboratory ID	Groundwater	AC38711-006	AC38711-008	AC38711-007	AC38711-012
Sample Date	Criteria	7/15/08	7/15/08	7/15/08	7/15/08
Matrix	water	water	water	water	water
Linits	ug/l	ua/l	ua/l	ua/l	ua/l
	µ9/−	conc Q	conc Q	conc Q	conc Q
cis-1 3-Dichloropropene	0.4	1 U	1 U	1 U	1 U
Cyclohexane	NC	1 U	1 U	1 U	1 U
Dibromochloromethane	5	1 1	1 11	1 1	1 1
Dichlorodifluoromethane	5	1 []	1 1	1 1	1 []
Ethylbenzene	5	1 []	1 1	1 1	1 []
Isopropylbenzene	5	1 1	1 1	1 1	1 1
m&n-Xylenes	5	211	211	211	211
Methyl Acetate		2.0	2.0	2.0	20
Methylevelebevene	NC	10	10	10	10
Methylene Chleride	NC E	10	10	10	10
Methylene Chionde	5	10	10	10	10
Methyl-t-butyl ether	10	3.7	10	10	10
n-Butylbenzene	5	10	10	10	10
n-Propylbenzene	5	10	10	10	10
o-Xylene	5	10	10	10	10
sec-Butylbenzene	5	10	10	10	10
Styrene	5	1 U	1 U	1 U	1 U
t-Butyl Alcohol	NC	5 UJ	5 UJ	5 UJ	5 UJ
t-Butylbenzene	5	1 U	1 U	1 U	1 U
Tetrachloroethene	5	1 U	1.5	1 U	1 U
Toluene	5	1 U	1 U	1 U	1 U
Trans-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U
Trans-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U
Trichloroethene	5	1 U	11	1 U	1.6
Trichlorofluoromethane	5	1 U	1 U	1 U	1 U
Vinyl Chloride	2	1 U	1 U	1 U	1 U
TAL Metals	o <b>7</b>				
Mercury	0.7	0.2 U	0.2 U	0.2 U	0.2 U
Aluminum	NC	100 U	100 U	100 U	100 U
Antimony	3	7.5 U	7.5 U	7.5 U	7.5 U
Arsenic	25	4 U	4 U	4 U	4.5
Barium	1,000	29	30	25 U	25 U
Beryllium	3	4 U	4 U	4 U	4 U
Cadmium	5	2 U	2 U	2 U	2 U
Calcium	NC	6,100 J	11,000 J	4,200 J	5,600 J
Chromium	50	25 U	25 U	25 U	25 U
Cobalt	NC	10 U	10 U	10 U	10 U
Copper	200	25 U	25 U	25 U	25 U
Iron	300	3,300	1,800	3,600	6,100
Lead	25	5 U	5 U	5 U	5 U
Magnesium	35,000	1,300	3,300	1,200	1,600

Sample Location		PW-07	PW-07	PW-07	PW-07
CMT Sample ID	NYSDEC	PW-07-04	PW-07-05	PW-07-06	PW-07-07
CMT screen interval (ft bgs)	Class GA	145-147	170-172	197-199	220-221
Laboratory ID	Groundwater	AC38711-006	AC38711-008	AC38711-007	AC38711-012
Sample Date	Criteria	7/15/08	7/15/08	7/15/08	7/15/08
Matrix	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q
Manganese	300	48	25 U	38	34
Nickel	100	10 U	10 U	10 U	10 U
Potassium	NC	2,500 U	2,500 U	2,500 U	2,500 U
Selenium	10	25 U	25 U	25 U	25 U
Silver	50	10 U	10 U	10 U	10 U
Sodium	20,000	29,000	23,000	50,000	54,000
Thallium	0.5	5 U	5 U	5 U	5 U
Vanadium	NC	25 U	25 U	25 U	25 U
Zinc	2000	34	25 U	49	180

U - Not detected

NC - No criterion

Sample Location		MW-4	MW-5S	MW-5D	MW-6S
Sample ID	NYSDEC	MW-4	MW-5S	MW-5D	MW-6S
Screen interval (ft bos)	Class GA	74 - 84	73 - 83	112 - 122	73 - 83
Laboratory ID	Groundwater	AC38518-008	AC38518-001	AC38518-009	AC3854-004
Sample Date	Criteria	7/3/08	7/3/08	7/3/08	7/2/08
Matrix	water	water	water	water	water
Units	ua/L	ua/L	ua/L	ua/L	ua/L
	P 3' -	conc Q	conc Q	conc Q	conc Q
Volatile Organic Compounds					
1,1,1-Trichloroethane	5	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	5	1 U	1 U	1 U	1 U
1,1,2-trichloro-1,2,2-trifluoroethane	5	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5	1 U	1 U	1 U	1 U
1,1-Dichloroethene	5	1 U	1 U	1 U	1 U
1.2.3-Trichlorobenzene	5	1 U	1 U	1 U	1 U
1.2.3-Trichloropropane	5	1 Ū	1 U	1 U	1 U
1.2.4-Trichlorobenzene	5	1 U	1 U	1 U	1 U
1.2.4-Trimethylbenzene	5	1 U	1 U	1 U	1 U
1.2-Dibromo-3-chloropropane	0.04	1 U	1 U	1 U	1 U
1 2-Dibromoethane	5	1 U	1 U	1 U	1 U
1.2-Dichlorobenzene	3	1 U	1 U	1 U	1 U
1 2-Dichloroethane	0.6	050	050	05 U	05 U
1 2-Dichloropropane	1	1 U	1 U	1 U	1 U
1.3.5-Trimethylbenzene	5	1 U	1 U	1 U	1 U
1.3-Dichlorobenzene	3	1 U	1 U	1 U	1 U
1.3-Dichloropropane	5	1 U	1 U	1 U	1 U
1 4-Dichlorobenzene	3	1 U	1 U	1 U	1 U
1 4-Dioxane	NC	50 R	50 R	50 R	50 R
2-Butanone	NC	1 11	1 11	1 1	1 1
2-Chloroethylvinylether	NC	1 1.1	1 111	1 111	1 111
2-Hexanone	50	1 11	1 11	1 11	1 11
4-Isopropyltoluene	5	1 11	1 1	1 1	1 11
4-Methyl-2-Pentanone	NC	1 1	1 1	1 1	1 11
Acetone	50	511	511	511	511
Acrolein	5	5.0	511	5.0	511
Acrylonitrile	5	1 11	1 11	1 1	1 111
Benzene	1	0511	0511	0511	0511
Bromochloromethane	5	1 11	1 11	1 1	1 11
Bromodichloromethane	50	1 11	1 1	1 1	1 1
Bromoform	50	1 1	1 1 1	1 1	1 1
Bromomethane	5	1 1	1 1 1	1 1	1 1
Carbon Disulfide	60	1 1	1 1 1	1 1	1 1
Carbon Tetrachloride	5	1 1	1 1 1	1 1	1 1
Chlorobonzono	5	1 1	1 1	1 1 1	1 1
Chloroothana	5 5	1 1 1	1 111	1 1 1	1 1
Chloroform	5	1 00	1 00	1 0 0 1	1 0
Chloromethane	/ 5	1 1	1 1	1 1	1 1
children die	3 F				10
cis-1,2-Dichloroethene	Э	10	10	10	10

Sample Location		MW-4	MW-5S	MW-5D	MW-6S
Sample ID	NYSDEC	MW-4	MW-5S	MW-5D	MW-6S
Screen interval (ft bos)	Class GA	74 - 84	73 - 83	112 - 122	73 - 83
Laboratory ID	Groundwater	AC38518-008	AC38518-001	AC38518-009	AC3854-004
Sample Date	Criteria	7/3/08	7/3/08	7/3/08	7/2/08
Matrix	water	water	water	water	water
l Inits				ua/l	ua/l
	P9/ L	conc Q	conc Q	conc Q	conc Q
cis-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U
Cyclohexane	NC	1 U	1 U	1 U	1 U
Dibromochloromethane	5	1 Ū	1 Ū	1 U	1 U
Dichlorodifluoromethane	5	1 Ū	1 Ū	1 U	1 U
Ethylbenzene	5	1 U	1 U	1 U	1 U
Isopropylbenzene	5	1 U	1 U	1 U	1 U
m&p-Xylenes	5	2 U	2 U	2 U	2 U
Methyl Acetate	NC	1 U	1 U	1 U	1 U
Methylcyclobexane	NC	1 11	1 1	1 11	1 []
Methylene Chloride	5	1 11	1 1	1 1	1
Methyl-t-butyl ether	10	1 1	1 1	1 1	1 1
n-Butylbonzono	5	1 1	1 1 1	1 1	1 1
	5	1 1	1 1 1	1 1	1 1
	5	1 1	1 1	10	10
	5	10	1 1	10	10
Sec-Dutyidenzene	5	10	10	10	10
Styrene	5 NG				10
		5 UJ	5 UJ	5 UJ	50
	5	10	10	10	10
	5	10	10	10	10
loluene	5	10	10	10	10
I rans-1,2-Dichloroethene	5	10	10	10	10
I rans-1,3-Dichloropropene	0.4	10	10	10	10
Trichloroethene	5	1 U	10	10	10
Trichlorofluoromethane	5	1 U	10	10	10
Vinyl Chloride	2	1 U	1 U	10	1 U
TAL Metals					
Mercury	07	0211	0211	0211	0211
Aluminum		100 11	100 11	170	
Antimony	3	7511	7511	7511	7511
Arconic	25	7.5 0	7.5 0	7.5 0	7.5 0
Barium	1 000	54 1	160 1	83 1	87 1
Bondlium	1,000	34 5	100 5	03 J	07 J 4 H
Cadmium	5	211	211	4 U 6 2	211
Calaium		20	7 2 0	0.2	20
Chicium	NC FO	14,000 J	7,200 J	4,600 J	14,000 J
Chromium	50 NG	25 U	140 J	150 J	25 U
Cobait		10 0	10 0	10 0	10 0
Copper	200	25 U	25 U	25 U	25 U
Iron	300	180 J	660 J	940 J	150 U
Lead	25	5 U	5 U	5 U	5 U
Magnesium	35,000	2,000	1,000 U	1,000 U	2,300

Sample Location		MW-4	MW-5S	MW-5D	MW-6S
Sample ID	NYSDEC	MW-4	MW-5S	MW-5D	MW-6S
Screen interval (ft bgs)	Class GA	74 - 84	73 - 83	112 - 122	73 - 83
Laboratory ID	Groundwater	AC38518-008	AC38518-001	AC38518-009	AC3854-004
Sample Date	Criteria	7/3/08	7/3/08	7/3/08	7/2/08
Matrix	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q
Manganese	300	25 U	25 U	25 U	25 U
Nickel	100	12	10 U	29	10 U
Potassium	NC	2,500 U	3,800 J	2,700	2,600
Selenium	10	25 U	25 U	25 U	25 U
Silver	50	10 U	10 U	10 U	10 U
Sodium	20,000	21,000	6,400 J	43,000	13,000 J
Thallium	0.5	5 U	5 U	5 U	5 U
Vanadium	NC	25 U	25 U	25 U	25 U
Zinc	2,000	25 U	25 U	25 U	25 U

U - Not detected

NC - No criterion

Sample Location		MW-6D	MW-7S	MW-7D
Sample ID	NYSDEC	MW-6D	MW-7S	MW-7D
Screen interval (ft bgs)	Class GA	112 - 122	71 - 81	112 - 122
Laboratory ID	Groundwater	AC3854-003	AC38518-005	AC38518-006
Sample Date	Criteria	7/2/08	7/3/08	7/3/08
Matrix	water	water	water	water
Units		ug/l	ua/l	ua/l
	P-9' -	conc Q	conc Q	conc Q
Volatile Organic Compounds				
1,1,1-Trichloroethane	5	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	5	1 U	1 U	1 U
1,1,2-trichloro-1,2,2-trifluoroethane	5	1 U	1 U	1 U
1,1,2-Trichloroethane	1	1 U	1 U	1 U
1.1-Dichloroethane	5	1 U	1 U	1 U
1.1-Dichloroethene	5	1 U	1 U	1 U
1 2 3-Trichlorobenzene	5	1 U	1 U	1 U
1 2 3-Trichloropropane	5	1 U	1 U	1 U
1 2 4-Trichlorobenzene	5	1 11	1 1	1 1
1 2 4-Trimethylbenzene	5	1 1	1 1	1 1
1.2-Dibromo-3-chloropropane	0.04	1 1	1 1	1 11
1.2-Dibromoethane	5	1 1	1 1	1 1
1,2-Dichlorobenzene	3	1 1	1 1	1 1 1
1,2-Dichloroethane	0.6	0511	0511	0511
1,2-Dichloropropapa	0.0	0.3 0	0.5 0	0.5 0
1,2-Dichloroproparie	5	1 1	1 1	1 1 1
1.3 Dichlorobonzono	2	1 1	1 1	1 1 1
1,3-Dichloropropaga	5	10	10	1 1
1,3-Dichlorobonzono	5	10	10	1 1
		50 D	50 D	F0 D
1,4-Dioxane	NC	50 R	50 R	50 R
2-Butanone	NC	10	10	
2-Chloroethylvinylether	NC FO	1 UJ	1 UJ	1 0 0
2-Hexanone	50	10	10	10
4-Isopropyitoluene	5	10	10	10
4-Methyl-2-Pentanone	NC	10	10	10
Acetone	50	50	19	50
Acrolein	5	50	5 UJ	5 UJ
Acrylonitrile	5	10	10	10
Benzene	1	0.5 U	0.5 U	0.5 U
Bromochloromethane	5	10	10	10
Bromodichloromethane	50	1 U	1 U	1 U
Bromoform	50	1 U	1 U	1 U
Bromomethane	5	1 U	1 U	1 U
Carbon Disulfide	60	1 U	1 U	1 U
Carbon Tetrachloride	5	1 U	1 U	1 U
Chlorobenzene	5	1 U	1 U	1 U
Chloroethane	5	1 U	1 U	1 U
Chloroform	7	1 U	2.8	1 U
Chloromethane	5	1 U	1 U	1 U
cis-1,2-Dichloroethene	5	1 U	1 U	1 U

Sample Location		MW-6D	MW-7S	MW-7D
Sample ID	NYSDEC	MW-6D	MW-7S	MW-7D
Screen interval (ft bgs)	Class GA	112 - 122	71 - 81	112 - 122
Laboratory ID	Groundwater	AC3854-003	AC38518-005	AC38518-006
Sample Date	Criteria	7/2/08	7/3/08	7/3/08
Matrix	water	water	water	water
Units	ua/L	ua/L	ua/L	ua/L
	1.3	conc Q	conc Q	conc Q
cis-1,3-Dichloropropene	0.4	1 U	1 U	1 U
Cyclohexane	NC	1 U	1 U	1 U
Dibromochloromethane	5	1 U	1 U	1 U
Dichlorodifluoromethane	5	1 U	1 U	1 U
Ethylbenzene	5	1 U	1 U	1 U
Isopropylbenzene	5	1 U	1 U	1 U
m&p-Xylenes	5	2 U	2 U	2 U
Methyl Acetate	NC	1 U	1 U	1 U
Methylcyclohexane	NC	1 U	1 U	1 U
Methylene Chloride	5	1 U	1 U	1 U
Methyl-t-butyl ether	10	1 U	1 U	1 U
n-Butvlbenzene	5	1 U	1 U	1 Ū
n-Propylbenzene	5	1 U	1 U	1 Ū
o-Xvlene	5	1 U	1 U	1 U
sec-Butylbenzene	5	1 U	1 U	1 U
Styrene	5	1 U	1 U	1 U
t-Butyl Alcohol	NC	5 U	5 UJ	5 U
t-Butylbenzene	5	1 U	1 U	1 U
Tetrachloroethene	5	1 U	1 U	1 U
Toluene	5	1 U	81	1 U
Trans-1 2-Dichloroethene	5	1 1	111	1 11
Trans-1 3-Dichloropropene	04	1 U	1 U	1 U
Trichloroethene	5	1 1	1 1	1 11
Trichlorofluoromethane	5	1 11	1 1	1 1
Vinyl Chloride	2	1 1	1 1	1 1
Viriyi Chionde	2	10	10	10
TAL Metals				
Mercury	0.7	0.2 U	0.2 U	0.2 U
Aluminum	NC	270	250	100 U
Antimony	3	7.5 U	7.5 U	7.5 U
Arsenic	25	4 U	4 U	4 U
Barium	1,000	31 J	46 J	110 J
Beryllium	3	4 U	4 U	4 U
Cadmium	5	17	2 U	2 U
Calcium	NC	11,000 J	14,000 J	7,600 J
Chromium	50	91 J	25 U	220 J
Cobalt	NC	10 U	10 U	11
Copper	200	25 U	25 U	25 U
Iron	300	640 J	4,300 J	1,300 J
Lead	25	5 U	5 U	5 U
Magnesium	35,000	1,400	1,300	1,200

	Sample Location		MW-6D	MW-7S	MW-7D
	Sample ID	NYSDEC	MW-6D	MW-7S	MW-7D
	Screen interval (ft bgs)	Class GA	112 - 122	71 - 81	112 - 122
	Laboratory ID	Groundwater	AC3854-003	AC38518-005	AC38518-006
	Sample Date	Criteria	7/2/08	7/3/08	7/3/08
	Matrix	water	water	water	water
	Units	µg/L	µg/L	µg/L	µg/L
			conc Q	conc Q	conc Q
Manganese		300	25 U	32	81
Nickel		100	16	10 U	57
Potassium		NC	2,500	3,100	2,500 U
Selenium		10	25 U	25 U	25 U
Silver		50	10 U	10 U	10 U
Sodium		20,000	14,000 J	21,000	41,000
Thallium		0.5	5 U	5 U	5 U
Vanadium		NC	25 U	25 U	25 U
Zinc		2,000	28	240	25 U

U - Not detected

NC - No criterion



# Analytical Assurance Associates, Inc.

600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

# ORGANIC & INORGANIC DATA VALIDATION REPORT

# EARTH TECH ANCHOR LITH KEM KO PROJECT

# ANALYZED BY HAMPTON-CLARKE VERITECH LABORATORY LABORATORY CASE No.: 8070306

REVIEWED BY: Analytical Assurance Associates (A³) 600 Rock Raymond Road Downingtown, PA 19335

# EARTH TECH ANCHOR LITH KEM KO PROJECT LABORATORY ID: AC38518 CASE NO.: 8070306

# **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from seven groundwater samples including one field duplicate and one trip blank, collected on July 1 and 2, 2008. Samples were received by Hampton-Clarke/Veritech laboratory on July 3, 2008 and analyzed for specific volatile organic compounds (VOCs) using EPA Method 624 following the criteria set forth in NYSDEC Category B.

The following samples are evaluated and included in this package review.

MW-5S	<b>TB070108</b>
MW-55S	<b>MW-4</b>
MW-7S	MW-5D
MW-7D	

MS/MSD analysis was performed on sample MW-5S from this batch.

The reported analytical data for the above samples were evaluated in accordance with the following parameters and summarized in this report.

#### **QUALITY ASSURANCE REVIEW**

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations
- Blanks
- Surrogate Recoveries
- Internal Standards Recovery
- Matrix Spike/Spike Duplicate/Blank Spike Analyses
- Instrument Performance
- Field Duplicate Results
- Sample Results

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8070306

# DATA COMPLETENESS

The reported data was summarized on the similar CLP forms and is considered acceptable.

The narrower ranges for percent abundance ratios in tune analysis were reported by the laboratory for ions 50, 174, and 175. The data was not impacted since the reported abundance ratios were within the method recommended limits.

The laboratory did not calculate the %Ds in continuing calibrations in accordance with the applied method. Consequently, some %Ds were above 25%. The %Ds were recalculated by the data reviewer and reported accordingly.

Data package assembly was incorrect. The raw data section was included in the package prior to the standard calibration data.

# HOLDING TIME

Samples were analyzed within 10 days of VTSR. All samples were preserved at pH< 2.

A daily tune analysis was performed by the laboratory. Consequently the 12-hour tune analysis was exceeded for all samples except samples MW-55S and MW-7D. Samples were analyzed from 6 minutes to 3:17 hours beyond 12-hour tune analysis, the frequency required by the CLP VOC SOW and also by SW-846 Method 8260B. However, these samples were analyzed using EPA Method 624, which only requires a tune "at the beginning of each day that analyses are to be performed." As the tune frequency was consistent with the requirements of the method, sample data were accepted, since all other criteria met the requirements for the tune analysis.

# **CALIBRATION**

All %RSDs were within the control limits. The "recalculated" %Ds were above 25% in the following continuing calibrations:

Compound	CC	CC	CC
	7-07-08 @ 7:45	7-09-08 @ 8:34	7-09-08 @ 6:54
Acrolein		26.2	29.2
Chloroethane	33		
t-Butyl alcohol	37.7		26.9
Samples AC38518-	001	004	005
_	007	006	
	008		
	009		

The reported sample results and non-detected values were qualified estimated (J and UJ).

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8070306

The response factors for acrolein (0.042, 0.042, and 0.042), t-butyl alcohol (0.038), and 1,4dioxane (0.007, 0.007, 0.007, and 0.009) were below data validation requirement of 0.05 in initial and continuing calibrations. These compounds are not considered as TCL compounds and they are known as low response factor compounds. Sample data was not qualified for acrolein and t-butyl alcohol since their Rfs were above "0.01" control limits recommended by the method. However, the reported results and non-detected values for 1,4-dioxane were qualified in accordance with the Region II guidelines.

1,4-Dioxane was not detected in the samples. The reported non-detected values were contractually rejected "R".

## **BLANKS**

The laboratory method blanks and trip blank were free of target compounds. A storage blank was not analyzed with this batch.

#### SURROGATE RECOVERIES

Samples were spiked with four surrogate compounds prior to analysis. The recoveries were within the control limits.

#### MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

Matrix spike/spike duplicate analysis was performed on sample MW-5S from this batch and sample AC38547-002 from an alternate batch. The recoveries and RPDs were with in the control limits with the exception of recoveries for 2-chloroethylvinylether (0.0%) in both sets of MS/MSD samples. The laboratory case narrative indicated that this compound readily decomposes under acidic condition. This compound was not detected in the samples. Therefore, the non-detected values were qualified estimated "UJ" since the recoveries were within the control limits in the blank spike samples. The matrix interference is expected.

Three blank spike samples were analyzed. The recoveries were within the control limits.

#### INTERNAL STANDARD

The recoveries and retention times were within the control limits.

#### FIELD DUPLICATE

Field duplicate analysis was performed on the duplicate sample pair MW-5S/MW-55S. Target compounds were not detected in these two samples.

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8070306

## SAMPLE RESULTS

All samples were analyzed at one-fold dilutions. Sample data were accepted with the applied qualifier codes.

## **SUMMARY**

The cooler temperature (3.7°C) was reported and considered acceptable.

Up to 31 compounds were listed in the applied analysis method "EPA Test Method 624". However, 65 target compounds were reported in each sample. Please note that the analysis of some specific compounds such as acrolein and acrylonitrile were not recommended by this method.

All data have been validated in accordance with the data quality assurance set forth in NYSDEC ASP for evaluating organic analyses. The USEPA Region II Data Validation SOP # HW-6 Revision 14 (September 2006), modified as needed for the specific requirements the analytical used by the laboratory (EPA Method 624), was utilized to review the data completeness and data quality. The analysis problems encountered to the sample analysis were discussed in the above sections. If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 269-9989.

Sincerely,

Zohreh Hamid, Ph.D Analytical Assurance Associates

# **INORGANIC ANALYSIS**

# EARTH TECH ANCHOR LITH KEM KO PROJECT LABORATORY ID: AC38518 CASE NO.: 8070306

# **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from six ground water samples including one set of field duplicate, collected on July 1 and 2, 2008. Samples were received by Hampton-Clarke/Veritech laboratory on July 3, 2008 and analyzed for ICP metals and mercury according to the EPA Methods 200.7 and 245.1 respectively.

The following samples are evaluated and included in this package review.

MW-5S	MW-7D
MW-55S	<b>MW-4</b>
MW-7S	MW-5D

MS and MD analyses were performed on sample MW-5S from this batch.

The sample analysis data were reviewed in accordance with the following parameters and all problems encountered during the analysis were summarized in this report.

#### **QUALITY ASSURANCE REVIEW**

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations & CRDL Analyses
- Blanks
- ICP Interference Check Sample
- Matrix Spike Analysis
- Matrix Duplicate Analysis
- Laboratory Control Sample Analysis
- ICP Serial Dilution Analysis
- Instrument Detection Limits
- Field Duplicate Results
- Sample Results
Earth Tech Project No. 8070306

### **DATA COMPLETENESS**

The IDLs and MDLs were not included in the data package. The laboratory was contacted. The tabulated IDLs and MDLs were submitted by the laboratory. The IDLs and MDLs for potassium, sodium, and mercury were not listed on the resubmission. The laboratory stated that this form is not required for the applied method.

The serial dilution outliers were not qualified with an "E" qualifier code. The laboratory stated that this code is applied solely to the CLP Method analysis.

The %Ds in the serial dilution sample was not calculated as recommended by the CLP Method. The %Ds was calculated for all detected and non-detected results reported on the raw data. Consequently, many %Ds were reported above 10%. The reporting format did not follow the CLP and the review of the data was very time consuming.

### HOLDING TIME

Samples were digested and analyzed within the holding time requirements established in the corresponding methods.

### **CALIBRATIONS & CRDL ANALYSES**

The recoveries were within the control limits in initial and continuing calibrations analyzed prior and after sample analysis for all metals. The CRDL sample analysis was not performed for ICP metals.

### **BLANKS**

The preparation blanks, ICBs, and CCBs were free of target analytes at levels above the CRDLs.

### **ICP INTERFERENCE CHECK SAMPLE**

The recoveries for ICSA and ICSB were within the control limit of 80-120% for ICP metals.

### MATRIX SPIKE ANALYSIS

Matrix spike analysis was performed on sample MW-5S. The recoveries were within 75-125% control limits.

### MATRIX DUPLICATE ANALYSIS

Matrix duplicate analysis was performed on the above sample. The RPDs were within the control limits for ground water samples.

Earth Tech Project No. 8070306

### LABORATORY CONTROL SAMPLE

The recoveries were within the control limits in this analysis.

### SERIAL DILUTION

This quality control sample was analyzed on sample MW-5S for ICP metals. The %Differences were above 10% for Ba (14%), Ca (13%), Cr (14%), Fe (11%), and Zn (181%). The positive results for these outliers with the exception of zinc were qualified estimated. Sample data for zinc accepted unqualified since the reported results in serial dilution samples were below 50 times the corresponding MDL.

### FIELD DUPLICATE ANALYSIS

Field duplicate was analyzed on sample MW-5S and MW-55S. The RPDs were listed on Table I (attached). The reproducibility is satisfactory.

### **SUMMARY**

The cooler temperature (3.7 °C) was within the acceptable limits. The reported sample data was considered acceptable.

All data have been validated in accordance with the data quality assurance set forth in NYSDEC ASP for Evaluating TAL metals. The USEPA Region II Data Validation SOP # HW-2, Revision 13 (September 2006) was utilized to review the data completeness and data quality. The analysis problems were discussed in the above sections. If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 269-9989.

Sincerely,

Zohreh Hamid, Ph.D Analytical Assurance Associates

# Table IField Duplicate PrecisionLaboratory Project No.: 8070306

Analyte	Field Sample MW-5S	Field Dup MW-55S	RPD
Aluminum			
Antimony			
Arsenic			
Barium	160	140	13
Beryllium			
Cadmium			
Calcium	7200	6600	9
Chromium	140	120	15
Cobalt			
Copper			
Iron	660	610	8
Lead			
Magnesium			
Manganese			
Mercury			
Nickel			
Potassium	3800	3700	3
Selenium			
Silver			
Sodium	6400	6100	5
Thallium			
Vanadium			
Zinc			

The reproducibility is satisfactory.

1. Appendix A- Glossary of Data Qualifier

Appendix B- Laboratory Form I, & Applied Qualifier Codes
Appendix C- Resubmission (if applicable)

### Appendix A Glossary of Data Qualifiers

### **GLOSSARY OF DATA QUALIFIERS**

### **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- U=NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL<br/>REPORTED IN LABORATORY OR FIELD BLANKS.<br/>[Substantially is equivalent to a result less than 10 times the<br/>blank level for common contaminants (methylene chloride,<br/>acetone and 2- butanone in the VOA<br/>analyses, and common phthalates in the BNA analyses, along<br/>with tentatively identified compounds) or less than 5 times the<br/>blank level for other target compounds.]
- R = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

### **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

### **OTHER CODES**

Q = NO ANALYTICAL RESULT.

Appendix B Laboratory Form I and Applied Qualifier Codes

J

ORGANICS VOLATILE REPORT

### Sample Number: AC38518-001 Client Id: MW-5S Data File: 8M29294.D Analysis Date: 07/07/08 19:41 Date Rec/Extracted: 07/03/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

1	Cas # Compound	<u></u>	Conc	Cas # Compound	RI	Conc
	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	00110
	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	1
(Tr.)	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	U
	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	н <i>л</i> т
	75-34-3 1,1-Dichloroethane	1.0	υ	67-66-3 Chloroform	1.0	
_	75-35-4 1,1-Dichloroethene	1.0	υ	74-87-3 Chloromethane	1.0	0
	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1.2-Dichloroethene	1.0	0
	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1.3-Dichloropropene	1.0	0
	120-82-1 1,2,4-Trichlorobenzene	1.0	υ	110-82-7 Cyclohexane	1.0	0
	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	0
	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	0
Catal.	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4 Ethylhenzene	1.0	U
NT198	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8 Isopropylepzene	1.0	U
	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7 m&n-Xvienes	2.0	0
	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	2.0	0
	108-67-8 1,3,5-Trimethylbenzene	1.0	υ	108-87-2 Methylcyclohexane	1.0	0
<b>1</b>	541-73-1 1,3-Dichlorobenzene	1.0	υ	75-09-2 Methylene Chloride	1.0	0
	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	0
	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzene	1.0	U
ess)	123-91-1 1,4-Dioxane	50	υρ	103-65-1 n-Pronylbenzene	1.0	U
×	78-93-3 2-Butanone	1.0		95-47-6 o-Xviene	1.0	U
1000	110-75-8 2-Chloroethylvinylether	1.0	U U1	135-98-8 sec-Butylbenzene	1.0	U
	591-78-6 2-Hexanone	1.0	ار * ن	100-42-5 Styrene	1.0	0
	99-87-6 4-isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcobol	5.0	U U1
	108-10-1 4-Methyl-2-Pentanone	1.0	υ	98-06-6 t-Butylbanzana	5.0	U V)
	67-64-1 Acetone	5.0	U	127-18-4 Tetrachloroethene	1.0	0
<b>.</b>	107-02-8 Acrolein	5.0	U	108-88-3 Toluene	1.0	U
	107-13-1 Acrylonitrile	1.0	U	156-60-5 trans-1 2-Dichloroethene	1.0	U
6210	71-43-2 Benzene	0.50	Ū I	10061-02-6 trans-1 3-Dichloropropone	1.0	U
5.004	74-97-5 Bromochloromethane	1.0	U	79-01-6 Trichloroethene	1.0	U
	75-27-4 Bromodichloromethane	1.0	Ū	75-69-4 Trichlorofluoromothere	1.0	U
<u></u>	75-25-2 Bromoform	1.0	Ū I	75-01-4 Vinvl Chlorida	1.0	U
	74-83-9 Bromomethane	1.0	U I	10-01-4 Villyi Chionae	1.0	U
		-				

Worksheet #: 87811

Second Second

51

#### Total Target Concentration 0

- Indicates the compound was analyzed but not activities. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of ste instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

### Sample Number: AC38518-004 Client Id: MW-55 S Data File: 8M29330.D Analysis Date: 07/08/08 12:05 Date Rec/Extracted: 07/03/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

	Cas # Compound	RL	Conc	Cas #	Compound	RI	Conc	
	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0		
	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U U	
Ĩ	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	10	0	
	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	10	11	
Way :	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	10	U U	
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0		
	87-61-6 1,2,3-Trichlorobenzene	1.0	υ	156-59-2	cis-1,2-Dichloroethene	1.0	11	
	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	0	
	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	11	
	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U U	
	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	1	
102	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4	Ethvibenzene	1.0	1	
1 ¹¹ 7	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	1	
	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7 r	m&p-Xvienes	20	U U	
	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	Ű	
	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U	
	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 N	Methylene Chloride	10	Ű	
副	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 N	Vethyl-t-butyl ether	1.0	0	
	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 r	1-Butylbenzene	1.0	0	
87) 1	123-91-1 1,4-Dioxane	50	υR	103-65-1 n	1-Propylbenzene	10	U U	
	78-93-3 2-Butanone	1.0	υ	95 <b>-</b> 47-6 c	o-Xviene	1.0		
-95-7 -	110-75-8 2-Chloroethylvinylether	1.0	υVኘ	135-98-8 s	ec-Butvibenzene	10	U U	
2055	591-78-6 2-Hexanone	1.0	υ	100-42-5 S	Styrene	1.0	U U	
	99-87-6 4-Isopropyltoluene	1.0	U	75-65-0 t-	-Butyl Alcohol	5.0	ŭ	
<u> (</u> ]]	108-10-1 4-Methyl-2-Pentanone	1.0	U	98-06-6 t-	-Butylbenzene	1.0	U U	
	67-64-1 Acetone	5.0	U	127-18-4 T	etrachloroethene	1.0	U U	
嬼	107-02-8 Acrolein	5.0	υ V]	108-88-3 T	oluene	1.0	0	
	107-13-1 Acrylonitrile	1.0	υ	156-60-5 tr	ans-1,2-Dichloroethene	1.0	U	
	71-43-2 Benzene	0.50	U	10061-02-6 tr	ans-1.3-Dichloropropene	10		
<b>(</b> )	74-97-5 Bromochloromethane	1.0	U	79-01-6 T	richloroethene	1.0	U U	
	75-27-4 Bromodichloromethane	1.0	U	75-69-4 T	richlorofluoromethane	1.0	U U	
<u>S9</u>	75-25-2 Bromoform	1.0	U	75-01-4 V	inyl Chloride	1.0	ц Ц	
	74-83-9 Bromomethane	1.0	U		•		0	
~ .								

Worksheet #: 87811

COLUMN DE LA COLUMN

#### **Total Target Concentration** 0

- Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of ge instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

### Sample Number: AC38518-005 Client Id: MW-7S Data File: 3M50573.D Analysis Date: 07/09/08 20:55 Date Rec/Extracted: 07/03/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

	Cas #	Compound	RL	Conc	Cas # Compound	d Ri	Conc	
	71-55-	6 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disul	fide 1.0	11	
	79-34-	5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetra	chloride 1.0	Ŭ	
(@\	76-13-	1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzer	1e 1.0	Ŭ	
	79-00-	5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	10	11	
. J	75 <b>-</b> 34-	3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	28	
-	75-35	4 1,1-Dichloroethene	1.0	U	74-87-3 Chloromethar	ne 1.0	1	
	87-61-0	3 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichlo	roethene 1.0	U U	
	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichlo	ropropene 1.0	ů U	
	120 <b>-</b> 82-'	1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	U U	
(i)	95-63-6	3 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochlor	omethane 1.0	U U	
	96-12-8	3 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluo	romethane 1.0	U U	
	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	Ű	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<b>95-50</b> -1	1,2-Dichlorobenzene	1.0	U	98-82-8 Isopropylbenz	ene 1.0	Ŭ	
- Sector	107-06-2	2 1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	Ŭ	
	78-87-5	1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetat	e 1.0	Ŭ	
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohe	exane 1.0	Ŭ	
1	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Ch	loride 1.0	Ŭ	
J	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl	ether 1.0	Ŭ	
	106-46-7	1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzen	ie 1.0	Ŭ	
)	123-91-1	1,4-Dioxane	50	υR	103-65-1 n-Propylbenze	ne 1.0	U U	
	78-93-3	2-Butanone	1.0	U	95-47-6 o-Xylene	1.0	Ū	
	110-75-8	2-Chloroethylvinylether	1.0	υUŢ	135-98-8 sec-Butylbenz	ene 1.0	ŭ	
7.3	591-78-6	2-Hexanone	1.0	U	100-42-5 Styrene	1.0	Ŭ	
	99-87-6	4-Isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcohol	5.0	υl	バ
N.	108-10-1	4-Methyl-2-Pentanone	1.0	U	98-06-6 t-Butylbenzene	e 1.0	Ū	J
	67-64-1	Acetone	5.0	19	127-18-4 Tetrachloroeth	ene 1.0	Ŭ	
1	107-02-8	Acrolein	5.0	UUT	108-88-3 Toluene	1.0	8.1	
J	107-13 <b>-</b> 1	Acrylonitrile	1.0	u 1	156-60-5 trans-1,2-Dichl	oroethene 1.0	U	
-	71-43-2	Benzene	0.50	U	10061-02-6 trans-1,3-Dichl	oropropene 1.0	Ŭ	
3	74-97 <b>-</b> 5	Bromochloromethane	1.0	U	79-01-6 Trichloroethen	e 1.0	Ŭ	
	75-27-4	Bromodichloromethane	1.0	U	75-69-4 Trichlorofluoro	methane 1.0	υ υ	
J	75 <b>-</b> 25-2	Bromoform	1.0	U	75-01-4 Vinyl Chloride	1.0	Ŭ	
	74-83-9	Bromomethane	1.0	U	-		<b>.</b>	

Worksheet #: 87811

Total Target Concentration 29.9

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of

- Indicates the compound was analyzed but not detected.

ste instrument.

South States

ORGANICS VOLATILE REPORT

### Sample Number: AC38518-006 Client Id: MW-7D Data File: 8M29332.D Analysis Date: 07/08/08 12:40 Date Rec/Extracted: 07/03/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ua/L

(i)	Cas # Compound	RL	Conc	Cas #	Compound	RI	Cono
	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	
se s	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U U
<u>ر المعام</u>	76-13-1 1,1,2-Trichloro-1,2,2-trifluc	or 1.0	υ	108-90-7	Chlorobenzene	1.0	
	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	0
	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	Ц
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	U U
<b>)</b>	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1.2-Dichloroethene	1.0	
	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1.3-Dichloropropene	1.0	0
	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cvclohexane	1.0	Ц
(約)	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	0
	96-12-8 1,2-Dibromo-3-Chloropropa	a 1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
247	106-93-4 1,2-Dibromoethane	1.0	υ	100-41-4	Ethvibenzene	1.0	0
- Mai.	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
Í.	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xvienes	20	U
	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U U
	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methvicyclohexane	1.0	Ŭ
7	541-73-1 1,3-Dichlorobenzene	1.0	υ	75-09-2	Methylene Chloride	1.0	0
	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	Ŭ
	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8	n-Butvibenzene	1.0	
8	123-91-1 1,4-Dioxane	.50	υR	103-65-1	n-Propylbenzene	1.0	
ſ	78-93-3 2-Butanone	1.0	U	95-47-6	o-Xvlene	1.0	0
îw.	110-75-8 2-Chloroethylvinylether	1.0	υVΊ	135-98-8	sec-Butvlbenzene	1.0	U U
	591-78-6 2-Hexanone	1.0	U 7	100-42-5 \$	Styrene	1.0	0
	99-87-6 4-Isopropyltoluene	1.0	υ	75-65-0 t	-Butvi Alcohol	50	U U
3	108-10-1 4-Methyl-2-Pentanone	1.0	U	98-06-6 t	-Butvlbenzene	1.0	1
	67-64-1 Acetone	5.0	U	127-18-4 7	Tetrachloroethene	1.0	U U
2	107-02-8 Acrolein	5.0	υUŢ	108-88-3 1	Foluene	1.0	U H
1	107-13-1 Acrylonitrile	1.0	υ [	156-60-5 t	rans-1.2-Dichloroethene	1.0	
	71-43-2 Benzene	0.50	U	10061-02-6 t	rans-1.3-Dichloropropene	1.0	U U
3	74-97-5 Bromochloromethane	1.0	U	79-01-6 T	richloroethene	1.0	Ц
1	75-27-4 Bromodichloromethane	1.0	U	75-69-4 1	richlorofluoromethane	1.0	U U
1	75-25-2 Bromoform	1.0	U	75-01-4 V	/inyl Chloride	1.0	
	74-83-9 Bromomethane	1.0	U				Ģ

Worksheet #: 87811

ŝ

からの正常にな

言語

558032Q

#### Total Target Concentration 0

- Indicates the compound was analyzed but not detected. 9 - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of ge instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

### Sample Number: AC38518-007 Client Id: TB070108 Data File: 8M29291.D Analysis Date: 07/07/08 18:49 Date Rec/Extracted: 07/03/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

	Cas # Compound	RL	Conc	Cas # Compound	R!	Conc
	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	
	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	Ŭ
ger 1	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	10	LF
	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	ັ້ນ ປາ
	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	10	ر ^ن
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3 Chloromethane	10	0
	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	1
震	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	U U
	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	Ű
藰	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	U U
	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	Ŭ
20	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	U U
	95-50-1 1,2-Dichlorobenzene	1.0	υ	98-82-8 isopropylbenzene	1.0	U U
Č.	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	U
	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	U U
	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	U U
	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	U U
	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	Ű
	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzene	1.0	U U
1	123-91-1 1,4-Dioxane	50	υR	103-65-1 n-Propylbenzene	1.0	U U
	78-93-3 2-Butanone	1.0	U	95-47-6 o-Xylene	1.0	ц Ц
20	110-75-8 2-Chloroethylvinylether	1.0	υυζ	135-98-8 sec-Butylbenzene	1.0	Ŭ
271	591-78-6 2-Hexanone	1.0	υ	100-42-5 Styrene	1.0	U U
	99-87-6 4-Isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcohol	5.0	Ŭ UJ
ý	108-10-1 4-Methyl-2-Pentanone	1.0	U	98-06-6 t-Butylbenzene	1.0	U .
	67-64-1 Acetone	5.0	U	127-18-4 Tetrachloroethene	1.0	Ŭ
3	107-02-8 Acrolein	5.0	U	108-88-3 Toluene	1.0	U U
	107-13-1 Acrylonitrile	1.0	U	156-60-5 trans-1,2-Dichloroethene	1.0	Ŭ
-	71-43-2 Benzene	0.50	U	10061-02-6 trans-1,3-Dichloropropene	1.0	U U
3	74-97-5 Bromochloromethane	1.0	U	79-01-6 Trichloroethene	1.0	Ŭ
1	75-27-4 Bromodichloromethane	1.0	U	75-69-4 Trichlorofluoromethane	1.0	U U
)	75-25-2 Bromoform	1.0	U	75-01-4 Vinyl Chloride	1.0	U U
	74-83-9 Bromomethane	1.0	υ	•		Ų

Worksheet #: 87811

態接

があるのない

### Total Target Concentration 0

Indicates the combound was analyzed but not detected.
Indicates the analyte was found in the blank as well as in the sample.
E - Indicates the analyte concentration exceeds the calibration range of specinstrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

### Sample Number: AC38518-008 Client Id: MW-4 Data File: 8M29301.D Analysis Date: 07/07/08 21:43 Date Rec/Extracted: 07/03/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

	Cas # Compound	RL	Conc	Cas # Compound	RI	Conc
	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	
الدار	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	U U
NA P	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	U U
	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	μ dτ
	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	ů J
	75-35-4 1,1-Dichloroethene	1.0	υ	74-87-3 Chloromethane	1.0	U U
習慣	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	U U
割	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	U U
	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	U U
(i)	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	10	U U
	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	U U
2	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	
.,	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8 isopropyibenzene	10	U U
Sec.	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	U U
	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	Ŭ
	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	U
	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	U U
5	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	Ŭ
••	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzene	1.0	U U
a	123-91-1 1,4-Dioxane	50	υR	103-65-1 n-Propylbenzene	1.0	Ŭ
	78-93-3 2-Butanone	1.0	υ	95-47-6 o-Xylene	1.0	Ц
0	110-75-8 2-Chloroethylvinylether	1.0	υUJ	135-98-8 sec-Butylbenzene	1.0	
~	591-78-6 2-Hexanone	1.0	U	100-42-5 Styrene	1.0	U U
)	99-87-6 4-Isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcohol	5.0	υUT
J	108-10-1 4-Methyl-2-Pentanone	1.0	U	98-06-6 t-Butylbenzene	1.0	<u> </u>
	67-64-1 Acetone	5.0	U	127-18-4 Tetrachloroethene	1.0	Ŭ
)	107-02-8 Acrolein	5.0	U	108-88-3 Toluene	1.0	Ŭ
ļ	107-13-1 Acrylonitrile	1.0	U	156-60-5 trans-1,2-Dichloroethene	1.0	Ű
7	71-43-2 Benzene	0.50	U	10061-02-6 trans-1.3-Dichloropropene	1.0	U U
۰	74-97-5 Bromochloromethane	1.0	U	79-01-6 Trichloroethene	1.0	Ŭ
(	75-27-4 Bromodichloromethane	1.0	U	75-69-4 Trichlorofluoromethane	1.0	U U
)	75-25-2 Bromoform	1.0	U	75-01-4 Vinyl Chloride	1.0	U U
	74-83-9 Bromomethane	1.0	U	•		Ç

Worksheet #: 87811

)

#### Total Target Concentration 0

- Indicates the compound was analyzed but not detected. - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of ye instrument.

**R** - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

Sample Number: AC38518-009 Client Id: MW-5D Data File: 8M29302.D Analysis Date: 07/07/08 22:00 Date Rec/Extracted: 07/03/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

	Cas # Compound	RL	Conc	Cas # Compound	RI	Conc
	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	<u> </u>
West 1	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	Ŭ
(Tria)	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	U U
	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	υor
2104 1950	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	ر» _ت
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3 Chloromethane	1.0	Ŭ
	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	Ū.
<b>M</b>	96-18-4 1,2,3-Trichloropropane	1.0	υ	10061-01-5 cis-1,3-Dichloropropene	1.0	Ū
	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	ŭ
<b>(</b> )	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	Ū
	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	Ŭ
Void	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	U
1	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8 Isopropylbenzene	1.0	U
	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	Ŭ
	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	Ŭ
	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	Ŭ
\$\$P	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	÷
j,	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	Ŭ
	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzene	1.0	Ŭ
67	123-91-1 1,4-Dioxane	50	υR	103-65-1 n-Propylbenzene	1.0	. U
	78-93-3 2-Butanone	1.0	U	95-47-6 o-Xylene	1.0	Ŭ
000 CEGO	110-75-8 2-Chloroethylvinylether	1.0	υVJ	135-98-8 sec-Butylbenzene	1.0	Ŭ
ermen.	591-78-6 2-Hexanone	1.0	υ	100-42-5 Styrene	1.0	Ŭ
	99-87-6 4-Isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcohol	5.0	υU
J	108-10-1 4-Methyl-2-Pentanone	1.0	U	98-06-6 t-Butylbenzene	1.0	U J
	67-64-1 Acetone	5.0	U	127-18-4 Tetrachloroethene	1.0	U
2	107-02-8 Acrolein	5.0	U	108-88-3 Toluene	1.0	Ŭ
	107-13-1 Acrylonitrile	1.0	U	156-60-5 trans-1,2-Dichloroethene	1.0	Ŭ
	71-43-2 Benzene	0.50	U	10061-02-6 trans-1,3-Dichloropropene	1.0	Ŭ
<u>ی</u>	74-97-5 Bromochloromethane	1.0	U	79-01-6 Trichloroethene	1.0	Ū
	75-27-4 Bromodichloromethane	1.0	U	75-69-4 Trichlorofluoromethane	1.0	Ū
<u>影</u> }	75-25-2 Bromoform	1.0	U	75-01-4 Vinyl Chloride	1.0	- U
	74-83-9 Bromomethane	1.0	U	-		-

Worksheet #: 87811

100.2

(Lineardo)

Total Target Concentration 0

- Indicates the compound was analyzed but not detected. - Indicates the compound was analyzed out not detected. - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of sye instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Form1 Inorganic Analysis Data Sheet

Sample ID: AC38518-001 Client Id: Matrix: Level: LOW

MW-5S AQUEOUS

% Solid: 0 Units: UG/L Date Rec: 7/3/2008

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No: Case No:

						Analysia	Deen	-	-		
Cas No.	Analyte	RL	Conc	Di	il Fact	Date:	Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	ND		.5	07/16/08	9254	A9254G2	14	Р	PEICP2
7440-36-0	Antimony	7.5	ND	H	.5	07/14/08	9254	A9254D2	14	Р	PEICP2
7440-38-2	Arsenic	4.0	ND		.5	07/14/08	9254	A9254D2	14	Р	PEICP2
7440-39-3	Barium	25	160	1	.5	07/14/08	9254	A9254D2	14	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	-	.5	07/14/08	9254	A9254D2	14	P	PEICP2
7440-43-9	Cadmium	2.0	ND		.5	07/14/08	9254	A9254D2	14	Р	PEICP2
7440-70-2	Calcium	1000	7200	Y ]	.5	07/14/08	9254	A9254D2	14	Р	PEICP2
7440-47-3	Chromium	25	140	1]	.5	07/14/08	9254	A9254D2	14	Р	PEICP2
7440-48-4	Cobalt	10	ND		.5	07/14/08	9254	A9254D2	14	Р	PEICP2
7440-50-8	Copper	25	ND		.5 (	07/14/08	9254	A9254D2	14	Р	PEICP2
7439-89-6	Iron	150	660	17	.50	07/14/08	9254	A9254D2	14	Р	PEICP2
7439-92-1	Lead	5.0	ND		.5	07/14/08	9254	A9254D2	14	Р	PEICP2
7439-95-4	Magnesium	1000	ND		.50	07/14/08	9254	A9254D2	14	P	PEICP2
7439-96-5	Manganese	25	ND		.50	07/14/08	9254	A9254D2	14	Р	PEICP2
7439-97-6	Mercury	0.20	ND		10	07/17/08	9254	H9254A	14	cv	HGCV2
7440-02-0	Nickel	10	ND		.50	07/14/08	9254	A9254D2	14	Р	PEICP2
7440-09-7	Potassium	2500	3800		.50	7/14/08	9254	A9254P2	13	Р	PEICPRAD2
7782-49-2	Selenium	25	ND		.50	7/14/08	9254	A9254D2	14	P	PEICP2
7440-22-4	Silver	10	ND		.50	7/14/08	9254	A9254D2	14	Р	PEICP2
7440-23-5	Sodium	2500	6400	/	.50	7/14/08	9254	A9254P2	13	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND		.50	7/14/08	9254	A9254D2	14	Р	PEICP2
7440-62-2	Vanadium	25	ND		.50	7/14/08	9254	A9254D2	14	Р	PEICP2
7440-66-6	Zinc	25	ND		.50	7/14/08	9254	A9254D2	14	P	PEICP2
	·		····				······································			1	

Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET

Street St

Contraction of the second second second second second second second second second second second second second s

### Form1 Inorganic Analysis Data Sheet

Sample ID: AC38518-004 Client Id: Matrix: Level:

MW-55 S AQUEOUS LOW

% Solid: 0 Units: UG/L Date Rec: 7/3/2008 Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No: Case No:

ł			······································	7								
	Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr	
	7429-90-5	Aluminum	100	ND	.5	07/16/08	9254	A9254G2	22	Р	PEICP2	-
	7440-36-0	Antimony	7.5	ND	.5	07/14/08	9254	A9254D2	22	Р	PEICP2	
l	7440-38-2	Arsenic	4.0	ND	.5	07/14/08	9254	A9254D2	22	Р	PEICP2	
	7440-39-3	Barium	25	140	J.5	07/14/08	9254	A9254D2	22	Р	PEICP2	
	7440-41-7	Beryllium	4.0	ND	.5	07/14/08	9254	A9254D2	22	P	PEICP2	Ì
	7440-43-9	Cadmium	2.0	ND	.5	07/14/08	9254	A9254D2	22	Р	PEICP2	
	7440-70-2	Calcium	1000	6600	J .5	07/14/08	9254	A9254D2	22	P	PEICP2	
	7440-47-3	Chromium	25	120	٦.5	07/14/08	9254	A9254D2	22	Ρ	PEICP2	-
	7440-48-4	Cobalt	10	ND	.5	07/14/08	9254	A9254D2	22	Р	PEICP2	
	7440-50-8	Copper	25	ND	.5	07/14/08	9254	A9254D2	22	P	PEICP2	
	7439-89-6	Iron	150	610	].5	07/14/08	<b>9</b> 254	A9254D2	22	Р	PEICP2	
	7439-92-1	Lead	5.0	ND	.5	07/14/08	9254	A9254D2	22	Р	PEICP2	ĺ
	7439-95-4	Magnesium	1000	ND	.5	07/14/08	<del>9</del> 254	A9254D2	22	Р	PEICP2	l
	7439-96-5	Manganese	25	ND	.5	07/14/08	9254	A9254D2	22	Р	PEICP2	1
	7439-97-6	Mercury	0.20	ND	1	07/17/08	9254	H9254A	18	cv	HGCV2	
	7440-02-0	Nickel	10	ND	.5	07/14/08	9254	A9254D2	22	Р	PEICP2	
	7440-09-7	Potassium	2500	3700	.5	07/14/08	<del>9</del> 254	A9254P2	21	P	PEICPRAD2	
	7782-49-2	Selenium	25	ND	.50	07/14/08	9254	A9254D2	22	P	PEICP2	
	7440-22-4	Silver	10	ND	.50	07/14/08	9254	A9254D2	22	Р	PEICP2	
	7440-23-5	Sodium	2500	6100	.50	07/14/08	9254	A9254P2	21	Р	PEICPRAD2	
	7440-28-0	Thallium	5.0	ND	.50	07/14/08	9254	A9254D2	22	Р	PEICP2	
	7440-62-2	Vanadium	25	ND	.50	07/14/08	9254	A9254D2	22	Р	PEICP2	
	7440-66-6	Zinc	25	ND	.50	07/14/08	9254	A9254D2	22	Р	PEICP2	
	··- ··· · · · · · · · · · · · · · · · ·								1			

#### Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Series and

CONTRACT OF

No.  门

### Form1 Inorganic Analysis Data Sheet

Client Id: MW-7S

Sample ID: AC38518-005 Matrix: AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/3/2008 Lab Name: Veritech Lab Code: Contract:

Nras No: Sdg No: Case No:

F		1		1						
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date	Prep Batch	File:	Seq Num:	M	Instr
7429-90-5	Aluminum	100	250	.5	07/16/08	9254	A9254G2	23	P	PEICP2
7440-36-0	Antimony	7.5	ND	.5	07/14/08	9254	A9254D2	23	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	.5	07/14/08	9254	A9254D2	23	Р	PEICP2
7440-39-3	Barium	25	46	5. آ	07/14/08	9254	A9254D2	23	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	.5	07/14/08	9254	A9254D2	23	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	.5	07/14/08	9254	A9254D2	23	Р	PEICP2
7440-70-2	Calcium	1000	14000	J .5	07/14/08	9254	A9254D2	23	Р	PEICP2
7440-47-3	Chromium	25	ND	.5	07/14/08	9254	A9254D2	23	Р	PEICP2
7440-48-4	Cobalt	10	ND	.5	07/14/08	9254	A9254D2	23	Р	PEICP2
7440-50-8	Copper	25	ND	.5	07/14/08	9254	A9254D2	23	Р	PEICP2
7439-89-6	Iron	150	4300	1.5	07/14/08	9254	A9254D2	23	Р	PEICP2
7439-92-1	Lead	5.0	ND	.5	07/14/08	9254	A9254D2	23	Р	PEICP2
7439-95-4	Magnesium	1000	1300	.5	07/14/08	9254	A9254D2	23	P	PEICP2
7439-96-5	Manganese	25	32	.5	07/14/08	9254	A9254D2	23	P	PEICP2
7439-97-6	Mercury	0.20	ND	10	07/17/08	9254	H9254A	19	cv	HGCV2
7440-02-0	Nickel	10	ND	.50	07/14/08	9254	A9254D2	23	Р	PEICP2
7440-09-7	Potassium	2500	3100	.50	07/14/08	9254	A9254P2	22	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	.50	07/14/08	9254	A9254D2	23	P	PEICP2
7440-22-4	Silver	10	ND	.50	07/14/08	9254	A9254D2	23	P	PEICP2
7440-23-5	Sodium	2500	21000	.50	07/14/08	9254	A9254P2	22	P	PEICPRAD2
7440-28-0	Thallium	5.0	ND	.50	07/14/08	9254	A9254D2	23	Р	PEICP2
7440-62-2	Vanadium	25	ND	.50	7/14/08	9254	A9254D2	23	Р	PEICP2
7440-66-6	Zinc	25	240	.50	7/14/08	9254	A9254D2	23	Р	PEICP2
L_	<u> </u>							1		

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

States of

Ĩ

### Form1 Inorganic Analysis Data Sheet

Sample ID: AC38518-006 Client Id: MW-7D Matrix: AQUEOUS

Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/3/2008 Lab Name: Veritech Lab Code: Contract:

Nras No: Sdg No: Case No:

								1	i	
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	ND	.5	07/16/08	9254	A9254G2	24	Р	PEICP2
7440-36-0	Antimony	7.5	ND	.5	07/14/08	9254	A9254D2	24	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	.5	07/14/08	9254	A9254D2	24	Р	PEICP2
7440-39-3	Barium	25	110	7.5	07/14/08	9254	A9254D2	24	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	.5	07/14/08	9254	A9254D2	24	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	.5	07/14/08	9254	A9254D2	24	Р	PEICP2
7440-70-2	Calcium	1000	7600	J.5	07/14/08	9254	A9254D2	24	Ρ	PEICP2
7440-47-3	Chromium	25	220	J.5	07/14/08	9254	A9254D2	24	Р	PEICP2
7440-48-4	Cobalt	10	11	.5	07/14/08	9254	A9254D2	24	P	PEICP2
7440-50-8	Copper	25	ND	.5	07/14/08	9254	A9254D2	24	Р	PEICP2
7439-89-6	Iron	150	1300	J .5	07/14/08	9254	A9254D2	24	Р	PEICP2
7439-92-1	Lead	5.0	ND	.5	07/14/08	<b>92</b> 54	A9254D2	24	Р	PEICP2
7439-95-4	Magnesium	1000	1200	.5	07/14/08	9254	A9254D2	24	Р	PEICP2
7439-96-5	Manganese	25	81	.5	07/14/08	9254	A9254D2	24	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/17/08	9254	H9254A	20	cv	HGCV2
7440-02-0	Nickel	10	57	.5	07/14/08	9254	A9254D2	24	P	PEICP2
7440-09-7	Potassium	2500	ND	.5	07/14/08	9254	A9254P2	23	Р	PEICPRAD2
7782-49-2	Selenium	25	DN	.5	07/14/08	9254	A9254D2	24	Р	PEICP2
7440-22-4	Silver	10	ND	.5	07/14/08	9254	A9254D2	24	Р	PEICP2
7440-23-5	Sodium	2500	41000	.50	07/14/08	9254	A9254P2	23	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	.50	07/14/08	9254	A9254D2	24	P	PEICP2
7440-62-2	Vanadium	25	ND	.5	07/14/08	9254	A9254D2	24	Р	PEICP2
7440-66-6	Zinc	25	ND	.50	07/14/08	9254	A9254D2	24	Р	PEICP2

Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Street and

Form1 Inorganic Analysis Data Sheet

Sample ID: AC38518-008 Client Id: MW-4 Matrix: AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/3/2008

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No: Case No:

					Analysis	Prep	1	Seo		
Cas No.	Analyte	RL	Conc	Dil Fact	Date:	Batch	File:	Num:	м	Instr
7429-90-5	Aluminum	100	ND	.5	07/16/08	9254	A9254G2	25	Ρ	PEICP2
7440-36-0	Antimony	7.5	ND	.5	07/14/08	9254	A9254D2	25	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	.5	07/14/08	9254	A9254D2	25	Р	PEICP2
7440-39-3	Barium	25	54	J.5	07/14/08	9254	A9254D2	25	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	.5	07/14/08	9254	A9254D2	25	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	.5	07/14/08	9254	A9254D2	25	Р	PEICP2
7440-70-2	Calcium	1000	14000	J .5	07/14/08	9254	A9254D2	25	Р	PEICP2
7440-47-3	Chromium	25	ND	.5	07/14/08	9254	A9254D2	25	P	PEICP2
7440-48-4	Cobait	10	ND	.5	07/14/08	9254	A9254D2	25	Р	PEICP2
7440-50-8	Copper	25	ND	.5	07/14/08	9254	A9254D2	25	P	PEICP2
7439-89-6	Iron	150	180	3.5	07/14/08	9254	A9254D2	25	Р	PEICP2
7439-92-1	Lead	5.0	ND	.5	07/14/08	9254	A9254D2	25	Р	PEICP2
7439-95-4	Magnesium	1000	2000	.5	07/14/08	9254	A9254D2	25	Р	PEICP2
7439-96-5	Manganese	25	ND	.5	07/14/08	9254	A9254D2	25	Р	PEICP2
7439-97-6	Mercury	. 0.20	ND	1	07/17/08	9254	H9254A	23	cv	HGCV2
7440-02-0	Nickel	10	12	.5	07/14/08	9254	A9254D2	25	Р	PEICP2
7440-09-7	Potassium	2500	ND	.50	07/14/08	9254	A9254P2	24	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	.50	07/14/08	9254	A9254D2	25	Р	PEICP2
7440-22-4	Silver	10	ND	.50	07/14/08	9254	A9254D2	25	Р	PEICP2
7440-23-5	Sodium	2500	21000	.5	07/14/08	9254	A9254P2	24	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	.50	7/14/08	9254	A9254D2	25	Р	PEICP2
7440-62-2	Vanadium	25	ND	.50	7/14/08	9254	A9254D2	25	Р	PEICP2
7440-66-6	Zinc	25	ND	.50	7/14/08	9254	A9254D2	25	Р	PEICP2

Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

State of 8132400 1924 

のないの

1997) 1997)

Form1 Inorganic Analysis Data Sheet

Client Id: Matrix: AQUEOUS

Sample ID: AC38518-009 MW-5D Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/3/2008

Lab Name: Veritech Lab Code: Contract:

Nras No: Sdg No: Case No:

					Analysis	Pren	1	Sec	ļ	1
Cas No.	Analyte	RL	Conc	Dil Fact	Date	Batch	File:	Num:	м	Instr
7429-90-5	Aluminum	100	170	.5	07/16/08	9254	A9254G2	26	P	PEICP2
7440-36-0	Antimony	7.5	ND	.5	07/14/08	9254	A9254D2	26	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	.5	07/14/08	9254	A9254D2	26	Р	PEICP2
7440-39-3	Barium	25	83	].5	07/14/08	9254	A9254D2	26	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	.5	07/14/08	9254	A9254D2	26	Р	PEICP2
7440-43-9	Cadmium	2.0	6.2	.5	07/14/08	9254	A9254D2	26	Р	PEICP2
7440-70-2	Calcium	1000	4600	Ĵ.5	07/14/08	9254	A9254D2	26	Р	PEICP2
7440-47-3	Chromium	25	150	J.5	07/14/08	9254	A9254D2	26	Р	PEICP2
7440-48-4	Cobait	10	ND	.5	07/14/08	9254	A9254D2	26	Р	PEICP2
7440-50 <b>-</b> 8	Copper	25	ND	.5	07/14/08	9254	A9254D2	26	P.	PEICP2
7439-89-6	Iron	150	940	ີ] .5	07/14/08	9254	A9254D2	26	Р	PEICP2
7439-92-1	Lead	5.0	ND	.5	07/14/08	9254	A9254D2	26	Р	PEICP2
7439-95-4	Magnesium	1000	ND	.5	07/14/08	9254	A9254D2	26	Р	PEICP2
7439-96-5	Manganese	25	ND	.5	07/14/08	9254	A9254D2	26	Р	PEICP2
7439-97-6	Mercury	0.20	ND	10	07/17/08	9254	H9254A	24	cv	HGCV2
7440-02-0	Nickel	10	29	.5	07/14/08	9254	A9254D2	26	Р	PEICP2
7440-09-7	Potassium	2500	2700	.5	07/14/08	9254	A9254P2	25	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	.5 (	07/14/08	9254	A9254D2	26	Р	PEICP2
7440-22-4	Silver	10	ND	.50	07/14/08	9254	A9254D2	26	Р	PEICP2
7440-23-5	Sodium	2500	43000	.50	07/14/08	9254	A9254P2	25	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	.50	7/14/08	9254	A9254D2	26	P	PEICP2
7440-62-2	Vanadium	25	ND	.50	07/14/08	9254	A9254D2	26	Р	PEICP2
7440-66-6	Zinc	25	ND	.50	)7/14/08	9254	A9254D2	26	Р	PEICP2
		L	·				_			

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

であるの

SUND.

Appendix C Support Documentation/Resubmission If Applicable

### MDL / RL SUMMARY 200.7 PE ICP 2

•,

ELEMENT	MDL (mg/L)	Reporting Limits (mg/L)	<b>/DL</b> (mg/L)
AL	0.036082	0.2	0.00508
SB	0.003599	0.015	0.00217
AS	0.03478	0.008	0.0039
BA	0.00025	0.05	0.000131
BE	0.0000472	0.008	0.0000201
CD	0.00023	0.004	0.000327
CA	0.027025	2	0.0154
CR	0.000493	0.05	0.000268
СО	0.000445	0.02	0.000301
CU	0.0045251	0.05	0.00059
FE	0.01976	0.3	0.00396
PB	0.002245	0.01	0.00135
MG	0.032404	2	0.0302
MN	0.000204	0.05	0.000107
МО	0.000925	0.02	0.000571
NI	0.001021	0.02	0.000516
SE	0.010471	0.05	0.00825
AG	0.000315	0.02	0.000363
TL	0.005023	0.01	0.00269
SŇ	0.002302	0.05	0.00175
TI	0.000327	0.05	0.000115
v	0.00096	0.05	0.000942
ZN	0.007783	0.05	0.000858

Analytical Assurance Associates, Inc.



600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

## ORGANIC & INORGANIC DATA VALIDATION REPORT

### EARTH TECH ANCHOR LITH KEM KO PROJECT

### ANALYZED BY HAMPTON-CLARKE VERITECH LABORATORY LABORATORY CASE No.: 8070312

REVIEWED BY: Analytical Assurance Associates (A³) 600 Rock Raymond Road Downingtown, PA 19335

### EARTH TECH ANCHOR LITH KEM KO PROJECT LABORATORY ID: AC38524 CASE NO.: 8070312

### **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from four groundwater samples including one field blank and one trip blank, collected on July 2, 2008. Samples were received by Hampton-Clarke/Veritech laboratory on July 3, 2008 and analyzed for TCL volatile organic compounds (VOCs) using EPA Method 624 following the criteria set forth in NYSDEC Category B.

The following samples are evaluated and included in this package review.

### FBGW070208 TB070208 MW-6D MW-6S

The MS/MSD analysis was not performed on the above samples.

The reported analytical data for the above samples were evaluated in accordance with the following parameters and summarized in this report.

### **QUALITY ASSURANCE REVIEW**

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations
- Blanks
- Surrogate Recoveries
- Internal Standards Recovery
- Matrix Spike/Spike Duplicate/Blank Spike Analyses
- Instrument Performance
- Field Duplicate Results
- Sample Results

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8070312

### DATA COMPLETENESS

The reported data was summarized on similar CLP form and considered acceptable.

The assigned ranges for % abundance ratios were smaller than the recommended ranges established in SOP for ions 50, 174, and 175. The data was not impacted since the % abundance ratios were within the recommended limits.

%Ds in continuing calibrations reported by the laboratory was calculated based on the amount of calibration standard injected in continuing calibration analysis. Consequently, some %Ds were reported above 25%. The %Ds were calculated by the data reviewer and reported accordingly.

Up to seven calibration analyses were reported for these four samples. The review of this data package was very time consuming.

### HOLDING TIME

Samples were analyzed within 10 days of VTSR. The sample analysis also met the 12-hour analysis requirement with the exception of sample MW-6D. This sample was analyzed 3:27 hours beyond the 12-hour tune analysis, the frequency required by the CLP VOC SOW and also by SW-846 Method 8260B. However, these samples were analyzed using EPA Method 624, which only requires a tune "at the beginning of each day that analyses are to be performed." As the tune frequency was consistent with the requirements of the method, sample data were accepted, since all other criteria met the requirements for the tune analysis.

### **CALIBRATION**

All %RSDs and %Ds were within the data validation limits of 30% and 25%, respectively, with the exception of acrolein (26.0%) and Acrylonitrile (29.6%) in continuing calibration analyzed on July 8 at 8:34. These compounds were not detected in the samples. The non-detected values were qualified estimated in the affected samples (001, 002, and 004). The response factors for acrolein (0.048, 0.042, and 0.048), t-butyl alcohol (0.026 and 0.025), and 1,4-dioxane (0.003, 0.007, 0.003 and 0.009) were below the data validation requirement of 0.05 in initial and continuing calibrations. These compounds were not considered as TCL compounds and they were known as low response factor compounds. Sample data was not qualified for these compounds with the exception of 1,4-dioxane since the Rfs for acrolein and t-butyl alcohol were above "0.01" analysis recommended method.

1,4- Dioxane was not detected in the samples. The reported non-detected values were contractually rejected "R".

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8070312

### **BLANKS**

The laboratory method blanks, trip blank, and field blank were free of target compounds. A storage blank was not analyzed with this batch.

### SURROGATE RECOVERIES

Samples were spiked with four surrogate compounds prior to analysis. The recoveries were within the control limits.

### MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

Matrix spike/spike duplicate analysis was performed on samples AC38547 and AC 38641 from alternate batches for 31 specific volatile compounds. The recoveries and RPDs were with in the control limits with the exception of recoveries for 2-chloroethylvinylether (0.0%) in AC38547MS/MSD.

Four sets of MS/MSD were analyzed from this specific site and the analysis results were included in separate cover pages. The review of the four sets of QC samples indicated the similar problem. Therefore, it is the data reviewer's opinion that 2-chloroethylvinylether could not be recovered under this specific sampling/analysis procedure and the non-detected values should be considered estimated "UJ".

### INTERNAL STANDARD

The recoveries and retention times were within the control limits.

### FIELD DUPLICATE

Field duplicate analysis was not performed with this batch of samples. However, four sets of field duplicate samples were collected for this site. The analysis results were reported under separate cover page and considered satisfactory.

### SAMPLE RESULTS

All samples were analyzed at one-fold dilutions. Target compounds were not detected in these samples. TICs were not searched/reported for these samples.

### **SUMMARY**

The cooler temperature (3.5 °C) was reported and considered acceptable.

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8070312

Up to 31 compounds were listed in the applied analysis method "EPA Test Method 624". However, 65 target compounds were reported in each sample. Please note that the analysis of some specific compounds such as acrolein and acrylonitrile were recommended by this method.

All data have been validated in accordance with the data quality assurance set forth in NYSDEC ASP for Evaluating Organic analyses. The USEPA Region II Data Validation SOP # HW-6 Revision 14 (September 2006), modified as for the specific requirements the analytical used by the laboratory (EPA Method 624), was utilized to review the data completeness and data quality. The major and minor analysis problems were discussed in the above sections.

If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 269-9989.

Sincerely,

Zohreh Hamid, Ph.D Analytical Assurance Associates

# **INORGANIC ANALYSIS**

### EARTH TECH ANCHOR LITH KEM KO PROJECT LABORATORY ID: AC38524 CASE NO.: 8070312

### **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from three groundwater samples including one field blank, collected on July 2, 2008. Samples were received by Hampton-Clarke/Veritech laboratory on July 2, 2008 and analyzed for ICP metals and mercury according to the EPA Methods 200.7 and 245.1 respectively.

The following samples are evaluated and included in this package review.

### FBGW070207 MW03-6D MW-6S

MS and MD analyses were not performed on these samples.

The analysis data were reviewed in accordance with the following parameters and all problems encountered during the analysis were summarized in this report.

### **QUALITY ASSURANCE REVIEW**

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations & CRDL Analyses
- Blanks
- ICP Interference Check Sample
- Matrix Spike Analysis
- Matrix Duplicate Analysis
- Laboratory Control Sample Analysis
- ICP Serial Dilution Analysis
- Instrument Detection Limits
- Field Duplicate Results
- Sample Results

Earth Tech Project No. 8070312

### **DATA COMPLETENESS**

The method detection limits were not included in the data package. The laboratory was contacted. The tabulated IDLs and MDLs were submitted by the laboratory. The IDLs and MDLs for potassium, sodium, and mercury were not listed on the resubmission. The laboratory stated that this form is not required for the applied method.

The serial dilution outliers were not qualified with an "E" qualifier code. The laboratory stated that this code is applied solely to the CLP Method analysis.

The %Ds in the serial dilution sample was not calculated as recommended by the CLP Method. The %Ds was calculated for all detected and non-detected results reported on the raw data. Consequently, many %Ds were reported above 10%. The reporting format did not follow the CLP and the review of the data was very time consuming.

### HOLDING TIME

Samples were digested and analyzed within the holding time requirements established in the corresponding methods.

### **CALIBRATIONS & CRDL ANALYSES**

The recoveries were within the control limits in initial and continuing calibrations analyzed prior and after sample analysis for all metals. The CRDL sample analysis was not performed for ICP metals.

### **BLANKS**

The preparation blanks, ICBs, and CCBs were free of target analyte at levels above the CRDLs. Sodium was detected in the field blank (8000  $\mu$ g/L) at a level above the CRDL. This analyte was reported in the samples at levels above the field blank concentration. Therefore, sample results were considered estimated and qualified "J" because the concentrations were below 10 times of the field blank contamination level.

### ICP INTERFERENCE CHECK SAMPLE

The recoveries for ICSA and ICSB were within the control limit of 80-120% for ICP metals.

### MATRIX SPIKE ANALYSIS

Matrix spike analysis was not performed on these samples. The results from the other batch (AC38518-001) were included with this batch. The recoveries were within the control limits of 75-125% for all metals.

### MATRIX DUPLICATE ANALYSIS

Matrix duplicate analysis was performed on the above sample. The RPDs were within the control limits in all matrix duplicate analyses.

Four samples were collected from this site and assigned as QC samples (MS and MD) by the sampler. The analyses results were reported under separate cover pages. All recoveries were within the control limits.

### LABORATORY CONTROL SAMPLE

The recoveries were within the control limits in this analysis.

### SERIAL DILUTION

This quality control sample was analyzed on sample from the other batch (AC38518-001) for ICP metals. The %Ds were within the control limits with the exception of Ba (14%), Ca (13%), Cr (14%), Fe (11%), and Zn (181%). The reported positive results for these analytes were qualified estimated "J" with the exception of zinc since the results for zinc in the serial dilution samples were below 50 x the MDL.

### FIELD DUPLICATE ANALYSIS

Field duplicate was not analyzed for this batch. However, four field duplicate samples were collected for this site and the analyses results were reported under separate cover pages. RPDs were within the control limits which indicated a satisfactory reproducibility.

### **SUMMARY**

The cooler temperature (3.5 °C) was within the acceptable limits. The reported sample data was considered acceptable. All data have been validated in accordance with the data quality assurance set forth in NYSDEC ASP for Evaluating TAL metals. The Region II Data Validation SOP # HW-2, Revision 13 (September 2006) was utilized to review the data completeness and data quality. The analysis problems were discussed in the above sections. If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 269-9989.

Sincerely,

Zohreh Hamid, Ph.D Analytical Assurance Associates 1. Appendix A- Glossary of Data Qualifier

Appendix B- Laboratory Form I, & Applied Qualifier Codes
Appendix C- Resubmission ( if applicable)

### Appendix A Glossary of Data Qualifiers

### **GLOSSARY OF DATA QUALIFIERS**

### **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- U=NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL<br/>REPORTED IN LABORATORY OR FIELD BLANKS.<br/>[Substantially is equivalent to a result less than 10 times the<br/>blank level for common contaminants (methylene chloride,<br/>acetone and 2- butanone in the VOA<br/>analyses, and common phthalates in the BNA analyses, along<br/>with tentatively identified compounds) or less than 5 times the<br/>blank level for other target compounds.]
- R = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.

N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

#### CODES RELATING TO QUATITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

### **OTHER CODES**

Q = NO ANALYTICAL RESULT.

Appendix B Laboratory Form I and Applied Qualifier Codes

# 

ORGANICS VOLATILE REPORT

### Sample Number: AC38524-001 Client Id: FBGW070208 Data File: 8M29344.D Analysis Date: 07/08/08 16:08 Date Rec/Extracted: 07/03/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

鑦)	Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
	71-55-6	1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	U
	79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	U
	79-00-5	1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
	75-34-3	1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
	75-35-4	1,1-Dichloroethene	1.0	υ	74-87-3	Chloromethane	1.0	U
劉	87-61-6	1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
ara: h	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
55	95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	υ
17	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xylenes	2.0	U
	78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
878) 	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	U
984 	106-46-7	1,4-Dichlorobenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	U
5001	123-91-1	1,4-Dioxane	50	υĸ	103-65-1	n-Propylbenzene	1.0	U
	78-93-3	2-Butanone	1.0	U	95-47-6	o-Xylene	1.0	U
	110-75-8	2-Chloroethylvinylether	1.0	UVJ	135-98-8	sec-Butylbenzene	1.0	U
	591-78-6	2-Hexanone	1.0	υ 🖌	100-42-5	Styrene	1.0	U
	99-87-6	4-isopropyltoluene	1.0	U	75-65-0	t-Butyl Alcohol	5.0	U
	108-10-1	4-Methyl-2-Pentanone	1.0	U	98-06-6	t-Butylbenzene	1.0	U
_	67-64-1	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	U
<b>*</b>	107-02-8	Acrolein	5.0	1C/U	108-88-3	Toluene	1.0	U
	107-13-1	Acrylonitrile	1.0	UUJ	156-60-5	trans-1,2-Dichloroethene	1.0	U
	71-43-2	Benzene	0.50	υŰ	10061-02-6	trans-1,3-Dichloropropene	1.0	U
	74-97-5	Bromochloromethane	1.0	U	79-01-6	Trichloroethene	1.0	U
	75-27-4	Bromodichloromethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
	75-25-2	Bromoform	1.0	U	75-01-4	Vinyl Chloride	1.0	U
	74-83-9	Bromomethane	1.0	U				

Worksheet #: 87781

#### Total Target Concentration 0

- Indicates the compound was analyzed but not detected. - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. **R** - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.
#### Sample Number: AC38524-002 Client Id: TB070208 Data File: 8M29345.D Analysis Date: 07/08/08 16:25 Date Rec/Extracted: 07/03/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

2	Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
	71-55-6	1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	U
έi.,	7 <b>9</b> -34-5	1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	U
	79-00-5	1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
J	75 <b>-</b> 34-3	1,1-Dichloroethane	1.0	U	67 <b>-6</b> 6-3	Chloroform	1.0	U
	75-35-4	1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	U
<b>3</b> 0	87-61-6	1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
6 <b>6</b> 71	95-63 <b>-</b> 6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
34	96-12 <b>-</b> 8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U U
5.) (*	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	isopropylbenzene	1.0	U
100	107-06 <b>-</b> 2	1,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xylenes	2.0	U
	78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
ា	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	U
<b>第1</b>	106-46-7	1,4-Dichlorobenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	U
~.	123-91-1	1,4-Dioxane	50	υR	103-65-1	n-Propylbenzene	1.0	U
	78-93-3	2-Butanone	1.0	U	95-47-6	o-Xylene	1.0	U
	110-75-8	2-Chloroethylvinylether	1.0	ս Մ ֆ	135-98-8	sec-Butylbenzene	1.0	U
	591-78-6	2-Hexanone	1.0	U	100-42-5	Styrene	1.0	U
<b>}</b> ]	99-87-6	4-Isopropyltoluene	1.0	U	75-65-0	t-Butyl Alcohol	5.0	U
彩瓷	108-10-1	4-Methyl-2-Pentanone	1.0	U	98-06-6	t-Butylbenzene	1.0	U
-	67-64-1	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	U
<u>25</u>	107-02-8	Acrolein	5.0	UVJ	108-88-3	Toluene	1.0	U .
	107-13-1	Acrylonitrile	1.0	U U []	156-60-5	trans-1,2-Dichloroethene	1.0	U
	71-43-2	Benzene	0.50	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
	74-97-5	Bromochloromethane	1.0	U	79-01-6	Trichloroethene	1.0	U
	75-27-4	Bromodichloromethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
	75-25-2	Bromoform	1.0	U	75-01-4	Vinyl Chloride	1.0	U
	74-83-9	Bromomethane	1.0	U				

Worksheet #: 87781

際日開

#### Total Target Concentration 0

- Indicates the combound was analyzed but not detected. - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. *R* - Retention Time Out *J* - Indicates an estimated value when a compound is detected at less than the specified detection limit.

Sample Number: AC38524-003 Client Id: MW-6D Data File: 3M50514.D Analysis Date: 07/08/08 23:13 Date Rec/Extracted: 07/03/08-NA Column: DB-624 25M 0.200mm ID 1.12um film Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

20 1	Cas #	Compound	RL	Conc	Cas #	Compound	<u> </u>	Conc	_
	71-55-6	1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	U	
25 I	79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U	
	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	U	
劉.	79-00-5	1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U	
IJ	75-34-3	1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	U	
	75-35-4	1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	U	
(2)	87-61-6	1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U	
が知	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U	
	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U	
83	95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U	
4	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U	
<u>,</u>	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U	
	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U	
7	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xylenes	2.0	U	
100	78-87-5	1,2-Dichloropropane	1.0	U	, 79-20-9	Methyl Acetate	1.0	U	
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U	
57	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U	
	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	U	
in-	106-46-7	1,4-Dichlorobenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	U	
~~~	123-91-1	1,4-Dioxane	50	υR	103-65-1	n-Propylbenzene	1.0	U	
1010	78-93-3	2-Butanone	1.0	U	95-47-6	o-Xylene	1.0	U	
9)	110-75-8	2-Chloroethylvinylether	1.0	υνζ	135-98-8	sec-Butylbenzene	1.0	U	
	591-78-6	2-Hexanone	1.0	U	100-42-5	Styrene	1.0	U	
3	99-87-6	4-Isopropyitoluene	1.0	U	75-65-0	t-Butyl Alcohol	5.0	U	
	108-10-1	4-Methyl-2-Pentanone	1.0	U	98-06-6	t-Butylbenzene	1.0	U	
	67-64-1	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	U	
3	107-02-8	Acrolein	5.0	U	108-88-3	Toluene	1.0	U	
	107-13-1	Acrylonitrile	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U	
I)	71-43-2	Benzene	0.50	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U	
	74-97-5	Bromochloromethane	1.0	U	79-01-6	Trichloroethene	1.0	U	
	75-27-4	Bromodichloromethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U	
ļ	75-25-2	Bromoform	1.0	U	75-01-4	Vinyl Chloride	1.0	U	
	74-83-9	Bromomethane	1.0	U					

Not analyged under Calibration any in of 7-8-08 at 8:34

Worksheet #: 87781

Total Target Concentration 0

- Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of

**R** - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coclution. Lower concentration used.

🛒 e instrument.

### Sample Number: AC38524-004 Client Id: MW-6S Data File: 8M29348.D Analysis Date: 07/08/08 17:17 Date Rec/Extracted: 07/03/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

際	Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
	71-55-6	1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	U
¥92.47	79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	<b>56-23</b> -5	Carbon Tetrachloride	1.0	U
67203	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	U
	7 <del>9</del> -00-5	1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
	75-34-3	1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
	75-35-4	1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	U
闣	87-61-6	1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
<b>(</b> 11)	95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xylenes	2.0	U
	78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	7-2 Methylcyclohexane 1.0	U	
	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	- U
	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	U
	106-46-7	1,4-Dichlorobenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	U
: () ()	123-91-1	1,4-Dioxane	50	υŔ	103-65-1	n-Propylbenzene	1.0	U
	78-93-3	2-Butanone	1.0	U	95-47-6	o-Xylene	1.0	U
€:-7	110-75-8	2-Chloroethylvinylether	1.0	υVງ	135-98-8	sec-Butylbenzene	1.0	U
<b>6</b>	591-78-6	2-Hexanone	1.0	U	100-42-5	Styrene	1.0	U
	99-87-6	4-Isopropyitoluene	1.0	U	75-65-0	t-Butyl Alcohol	5.0	U
	108-10-1	4-Methyl-2-Pentanone	1.0	U	98-06-6	t-Butylbenzene	1.0	U
	67-64-1	Acetone	5.0	υ	127-18-4	Tetrachloroethene	1.0	U
<b>(</b> )	107-02-8	Acrolein	5.0	U V1	108-88-3	Toluene	1.0	U
	107-13-1	Acrylonitrile	1.0	U U1	156-60-5	trans-1,2-Dichloroethene	1.0	U U U U U
12000	71-43-2	Benzene	0.50	υ υ	10061-02-6	trans-1,3-Dichloropropene	1.0 U 1.0 U 1.0 U	U
858 <b>4</b>	74-97-5	Bromochloromethane	1.0	U	79-01-6	Trichloroethene	1.0	U
	75-27-4 1	Bromodichloromethane	1.0	U	75-69-4	39-2       cis-1,2-Dichloroethene       1.0       U         32-7       Cyclohexane       1.0       U         32-7       Cyclohexane       1.0       U         32-7       Cyclohexane       1.0       U         18-1       Dibromochloromethane       1.0       U         11-4       Ethylbenzene       1.0       U         11-4       Ethylbenzene       1.0       U         12-8       Isopropylbenzene       1.0       U         20-7       m&p-Xylenes       2.0       U         20-9       Methyl Acetate       1.0       U         20-9       Methyl Acetate       1.0       U         20-7       m&p-Xylenes       2.0       U         20-9       Methyl Acetate       1.0       U         20-9       Methyl Acetate       1.0       U         20-7       Methyl-t-butyl ether       1.0       U         21-8       n-Butylbenzene       1.0       U         21-8       n-Propylbenzene       1.0       U         21-6       o-Xylene       1.0       U         22-5       Styrene       1.0       U         32-5       Styrene </td <td>U</td>	U	
<u>(1</u> )	75-25-2	Bromoform	1.0	U	75-01-4	Vinyl Chloride	1.0	U
	74-83-9	Bromomethane	1.0	U				

Worksheet #: 87781

Total Target Concentration 0

Indicates the compound was analyzed but not detected.
 Indicates the analyte was found in the blank as well as in the sample.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. **R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Sample ID: AC38524-001 % Solid: 0 Lab Name: Veritech Nras No: Sdg No: Client Id: FBGW070208 Lab Code: Units: UG/L AQUEOUS Case No: Matrix: Date Rec: 7/3/2008 Contract: Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	ND	.5	07/16/08	9254	A9254G2	37	Р	PEICP2
7440-36-0	Antimony	7.5	ND	.5	07/14/08	9254	A9254D2	37	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	.5	07/14/08	9254	A9254D2	37	Р	PEICP2
7440-39-3	Barium	25	ND	.5	07/14/08	9254	A9254D2	37	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	.5	07/14/08	9254	A9254D2	37	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	.5	07/14/08	9254	A9254D2	37	Р	PEICP2
7440-70-2	Calcium	1000	ND	.5	07/14/08	9254	A9254D2	37	Р	PEICP2
7440-47-3	Chromium	25	ND	.5	07/14/08	9254	A9254D2	37	Р	PEICP2
7440-48-4	Cobalt	10	ND	.5	07/14/08	9254	A9254D2	37	Р	PEICP2
7440-50-8	Copper	25	ND	.5	07/14/08	9254	A9254D2	37	Р	PEICP2
7439-89-6	Iron	150	ND	· .5	07/14/08	9254	A9254D2	37	Р	PEICP2
7439-92-1	Lead	5.0	ND	.5	07/14/08	9254	A9254D2	37	Р	PEICP2
7439-95-4	Magnesium	1000	• NĎ	.5	07/14/08	9254	A9254D2	37	Р	PEICP2
7439-96-5	Manganese	25	ND	.5	07/14/08	9254	A9254D2	37	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/17/08	9254	H9254A	31	cv	HGCV2
7440-02-0	Nickel	10	ND	.5	07/14/08	9254	A9254D2	37	Р	PEICP2
7440-09-7	Potassium	2500	ND	.5	07/14/08	9254	A9254P2	30	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	.5	07/14/08	9254	A9254D2	37	Р	PEICP2
7440-22-4	Silver	10	ND	.5	07/14/08	9254	A9254D2	37	Р	PEICP2
7440-23-5	Sodium	2500	8000	.≸.5	07/14/08	9254	A9254P2	30	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	.5	07/14/08	9254	A9254D2	37	Р	PEICP2
7440-62-2	Vanadium	25	ND	.5	07/14/08	9254	A9254D2	37	Р	PEICP2
7440-66-6	Zinc	25	ND	.5	07/14/08	9254	A9254D2	37	Р	PEICP2

#### Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Sec.

Sample ID: AC38524-003 Client Id: MW-6D Matrix: AQUEOUS Da Level: LOW

推進

Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Sectio

% Solid: 0 Units: UG/L Date Rec: 7/3/2008 Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

Can No.	Analista	6	0		Analysis	Prep		Seq		1
Cas No.	Analyte	RL	Conc	Dil Fact	Date:	Batch	File:	Num:		Instr
7429-90-5	Aluminum	100	270	.5	07/16/08	9254	A9254G2	38	P	PEICP2
7440-36-0	Antimony	7.5	ND	.5	07/14/08	9254	A9254D2	38	P	PEICP2
7440-38-2	Arsenic	4.0	ND	.5	07/14/08	9254	A9254D2	38	Ρ	PEICP2
7440-39-3	Barium	25	31	T .5	07/14/08	<b>9</b> 254	A9254D2	38	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	.5	07/14/08	9254	A9254D2	38	Р	PEICP2
7440-43-9	Cadmium	2.0	17	.5	07/14/08	9254	A9254D2	38	Р	PEICP2
7440-70-2	Calcium	1000	11000	J.5	07/14/08	9254	A9254D2	38	Р	PEICP2
_, 7440-47-3	Chromium	25	91	Ţ.5	07/14/08	9254	A9254D2	38	P	PEICP2
7440-48-4	Cobalt	10	ND	.5	07/14/08	9254	A9254D2	38	P	PEICP2
7440-50-8	Copper	25	ND	.5	07/14/08	9254	A9254D2	38	P	PEICP2
7439-89-6	Iron	150	640	J.5	07/14/08	9254	A9254D2	38	Р	PEICP2
<b>7439-9</b> 2-1	Lead	5.0	ND	.5	07/14/08	9254	A9254D2	38	Р	PEICP2
7439-95-4	Magnesium	1000	1400	.5	07/14/08	9254	A9254D2	38	Р	PEICP2
7439-96-5	Manganese	25	ND	.5	07/14/08	9254	A9254D2	38	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/17/08	9254	H9254A	32	cv	HGCV2
7440-02-0	Nickel	10	16	.5	07/14/08	9254	A9254D2	38	Р	PEICP2
7440-09-7	Potassium	2500	2500	.5	07/14/08	9254	A9254P2	31	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	.5	07/14/08	9254	A9254D2	38	Р	PEICP2
7440-22-4	Silver	10	ND	.5	07/14/08	9254	A9254D2	38	Р	PEICP2
7440-23-5	Sodium	2500	14000	.5	07/14/08	9254	A9254P2	31	P	PEICPRAD2
7440-28-0	Thallium	5.0	ND	.5	07/14/08	9254	A9254D2	38	Р	PEICP2
7440-62-2	Vanadium	25	ND	.5	07/14/08	9254	A9254D2	38	Р	PEICP2
7440-66-6	Zinc	25	28	.5	07/14/08	9254	A9254D2	38	Р	PEICP2

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Sample ID:	AC38524-004	% Solid:	0	Lab Name:	Veritech	Nras No:
Client Id:	MW-6S	Units:	UG/L	Lab Code:		Sdg No:
Matrix:	AQUEOUS	Date Rec:	7/3/2008	Contract:		Case No:
Level:	LOW					

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	ND	5	07/16/09	0254	1 10	11	- 10 10	PEICP2
7440.36.0	Antimony	7.6			07/10/00	9234	A920402	4   44		
7440-30-0	Anumony	6.1	ND	.5	07/14/08	9254	A9254D2	41	μ	PEICP2
7440-38-2	Arsenic	4.0	ND	.5	07/14/08	9254	A9254D2	41	P	PEICP2
7440-39-3	Barium	25	87	.5	07/14/08	9254	A9254D2	41	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	.5	07/14/08	9254	A9254D2	41	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	.5	07/14/08	9254	A9254D2	41	Р	PEICP2
7440-70-2	Calcium	1000	14000	J.5	07/14/08	9254	A9254D2	41	Р	PEICP2
7440-47-3	Chromium	25	ND	.5	07/14/08	9254	A9254D2	41	Р	PEICP2
7440-48-4	Cobalt	10	ND	.5	07/14/08	925Å	A9254D2	41	Р	PEICP2
7440-50-8	Copper	25	ND	.5	07/14/08	9254	A9254D2	41	Р	PEICP2
7439-89-6	Iron	150	ND	.5	07/14/08	9254	A9254D2	41	Р	PEICP2
7439-92-1	Lead	5.0	ND	.5	07/14/08	9254	A9254D2	41	P	PEICP2
7439-95-4	Magnesium	1000	2300	.5	07/14/08	9254	A9254D2	41	P	PEICP2
7439-96-5	Manganese	25	ND	.5	07/14/08	9254	A9254D2	41	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/17/08	9254	H9254A	35	cv	HGCV2
7440-02-0	Nickel	10	DN	.5	07/14/08	9254	A9254D2	41	Р	PEICP2
7440-09-7	Potassium	2500	2600	.5	07/14/08	9254	A9254P2	32	P	PEICPRAD2
7782-49-2	Selenium	25	ND	.5	07/14/08	<b>92</b> 54	A9254D2	41	Р	PEICP2
7440-22-4	Silver	10	ND	.5	07/14/08	9254	A9254D2	41	P	PEICP2
7440-23-5	Sodium	2500	13000	] .5	07/14/08	9254	A9254P2	32	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	5	07/14/08	9254	A9254D2	41	Р	PEICP2
7440-62-2	Vanadium	25	ND	.50	07/14/08	9254	A9254D2	41	Р	PEICP2
7440-66-6	Zinc	25	ND	.5	07/14/08	9254	A9254D2	41	Ρ	PEICP2

Comments:

初

11.6

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

Street Street

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS Appendix C Support Documentation/Resubmission If Applicable

#### MDL / RL SUMMARY 200.7 PE ICP 2

ELEMENT	MDL (mg/L)	Reporting Limits (mg/L)	IDL (mg/L)
AL	0.036082	0.2	0,00508
SB	0.003599	0.015	0.00217
AS	0.03478	0.008	0.0039
BA	0.00025	0.05	0.000131
BE	0.0000472	0.008	0.0000201
CD	0.00023	0.004	0.000327
CA	0.027025	2	0.0154
CR	0.000493	0.05	0.000268
со	0.000445	0.02	0.000301
CU	0.0045251	0.05	0.00059
FE	0.01976	0.3	0.00396
PB	0.002245	0.01	0.00135
MG	0.032404	2	0.0302
MN	0.000204	0.05	0.000107
МО	0.000925	0.02	0.000571
NI	0.001021	0.02	0.000516
SE	0.010471	0.05	0.00825
AG	0.000315	0.02	0.000363
TL	0.005023	0.01	0.00269
SN	0.002302	0.05	0.00175
TI	0.000327	0.05	0.000115
v	0.00096	0.05	0.000942
ZN	0.007783	0.05	0.000858

Analytical Assurance Associates, Inc.



600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

# ORGANIC & INORGANIC DATA VALIDATION REPORT

# EARTH TECH ANCHOR LITH KEM KO PROJECT

# ANALYZED BY HAMPTON-CLARKE VERITECH LABORATORY LABORATORY CASE No.: 8071005

REVIEWED BY: Analytical Assurance Associates (A³) 600 Rock Raymond Road Downingtown, PA 19335

### EARTH TECH ANCHOR LITH KEM KO PROJECT LABORATORY ID AC38601 CASE NO.: 8071005

### **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from ten groundwater samples including one trip blank, collected on July 8 and 9, 2008. Samples were received by Hampton-Clarke/Veritech laboratory on July 10, 2008 and analyzed for specific volatile organic compounds (VOCs) using EPA Method 624 following the criteria set forth in NYSDEC Category B.

The following samples are evaluated and included in this package review.

PW03-02	PW03-06
PW03-04	PW03-07
PW03-01	PW02-02
PW03-05	PW02-05
PW03-03	<b>TB070908</b>

MS/MSD analysis was performed on samples PW03-01 and PW03-05 from this batch.

# **QUALITY ASSURANCE REVIEW**

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations
- Blanks
- Surrogate Recoveries
- Internal Standards Recovery
- Matrix Spike/Spike Duplicate/Blank Spike Analyses
- Instrument Performance
- Field Duplicate Results
- Sample Results

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8071005

### DATA COMPLETENESS

The reported data was summarized on the similar CLP forms and considered acceptable.

The narrower ranges for percent abundance ratios in tune analysis were reported by laboratory for ions 50, 174 and 175. The data was not impacted since the % abundance ratios were within the method recommended limits.

%Ds in continuing calibrations reported by the laboratory was not calculated based on the calculations recommended by the method. Consequently, some %Ds were above 25%. The %Ds were recalculated by the data reviewer and reported accordingly.

The laboratory indicated that one of three 40-mL bottles for sample (PW03-05) was received broken.

#### HOLDING TIME

Samples were analyzed within 10 day of VTSR. Samples were received by the laboratory in good condition. All samples were preserved at pH < 2 pH unit.

A daily BFB tune analysis was performed by the laboratory. All samples with the exception of sample PW03-05 were analyzed from 2 to 6 hours beyond the 12-hour tune analysis, the frequency required by the CLP VOC SOW and also by SW-846 Method 8260B. However, these samples were analyzed using EPA Method 624, which only requires a tune "at the beginning of each day that analyses are to be performed." As the tune frequency was consistent with the requirements of the method, sample data were accepted since all other criteria met the requirements for the tune analysis.

### CALIBRATION

The response factors (Rfs) for acrolein, t-butyl alcohol and 1,4-dioxane were below data validation requirement of 0.05 in initial and continuing calibrations. These compounds are not considered as TCL compounds and they are known as low response factor compounds. Sample data was not qualified for acrolein and t-butyl alcohol since Rf values were above "0.01" requirements, recommended by the analysis method. However, the reported results and non-detected values for 1,4-dioxane were qualified in accordance with the Region II guidelines

1,4-Dioxane was not detected in the samples and Rfs were below 0.01. The reported nondetected values were contractually rejected "R". Earth Tech Anchor Lith Kem Ko, Site Job No.: 8071005

All %RSDs were within the control limit of "<30%" recommended by the data validation guidelines. The %Ds were within the control limit in two continuing calibrations. The following %D outliers were tabulated under the corresponding calibration:

Compound Name	CC 7-15-08 @ 8:19
Chloromethane	32.0
Bromomethane	52.0
Chloroethane	27.5
Carbon disulfide	48.5
Methyl acetate	50.6
4-Methyl2-pentanone	29.1
2-Hexanone	28.6
1,1,2,2-Tetrachloroethane	31.9
1,2,3-Trichloropropane	30.4
Sample AC38601-	004 to 009

The reported sample results and non-detected values were qualified estimated (J and UJ)

## **BLANKS**

The laboratory method blanks and trip blank were free of target compound. A storage blank was not analyzed with this batch.

### SURROGATE RECOVERIES

Samples were spiked with four surrogate compounds prior to analysis. The recoveries were within the control limits.

### MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

Matrix spike/spike duplicate analysis was performed on samples AC38601-003 & AC38601-04 from this batch for 31 specific volatile compounds. The recoveries and RPDs were with in the control limits with the exception of recoveries for 2-chloroethylvinylether (0.0%) in both sets of MS/MSD samples. The laboratory case narrative indicated that this compound readily decomposes under acidic condition.

In addition, four sets of MS/MSD were collected and analyzed from this specific site and the analysis results were included in separate cover pages. The review of the four sets of QC samples indicated the similar problem. Therefore, it is the data reviewer's opinion that 2-chloroethylvinylether could not be recovered under this specific sampling/analysis procedure and the non-detected values should be considered estimated "UJ".

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8071005

Note: These two samples were not identified as QC samples, (MS/MSD), on the chain of custody record by the sampler.

### INTERNAL STANDARD

The recoveries and retention times were within the control limits.

### FIELD DUPLICATE

Field duplicate analysis was not performed with this batch of samples. Four duplicate samples were collected from this site. The analysis results were reported under separate cover pages.

#### SAMPLE RESULTS

All samples were analyzed at one-fold dilutions. Acetone was detected in the samples at relatively high levels. The reported result in sample PW03-07 was above the CLP VOC SOW and SW846 Method 8260B calibration limits. However, sample data was accepted unqualified because the reported result was within the calibration range standards analyzed for this method. The high concentration of this compound should be investigated since this compound was not reported in the method blank and trip blank.

### **SUMMARY**

The cooler temperature  $(3.0^{\circ}C)$  was reported and considered acceptable.

Up to 31 compounds were listed in the applied analysis method "EPA Test Method 624". However, 65 target compounds were reported for each sample. Please note that the analysis of some specific compounds such as acrolein and acrylonitrile were not recommended by this method.

All data have been validated in accordance with the data quality assurance set forth in NYSDEC ASP for evaluating organic compounds. The Region II Data Validation SOP # HW-6 Revision 14 (September 2006), modified as needed for the specific requirements the analytical used by the laboratory (EPA Method 624), was utilized to review the data completeness and data quality.

Overall, major problems were not encountered during the sample analysis. The minor problems were discussed in the above sections. If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 269-9989.

Sincerely,

Zohreh Hamid, Ph.D Analytical Assurance Associates

# **INORGANIC ANALYSIS**

### EARTH TECH ANCHOR LITH KEM KO PROJECT LABORATORY ID: AC38601 CASE NO.: 8071005

## **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from nine groundwater samples, collected on July 8 and 9, 2008. Samples were received by Hampton-Clarke/Veritech laboratory on July 10, 2008 and analyzed for ICP metals and mercury according to the EPA Methods 200.7 and 245.1 respectively.

The following samples are evaluated and included in this package review.

PW03-02	PW03-06
PW03-04	PW03-07
PW03-01	PW02-02
PW03-05	PW02-05
PW03-03	

MS and MD analyses were not performed on these samples.

The analysis data were reviewed in accordance with the following parameters and all problems encountered during the analysis were summarized in this report.

### **QUALITY ASSURANCE REVIEW**

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations & CRDL Analyses
- Blanks
- ICP Interference Check Sample
- Matrix Spike Analysis
- Matrix Duplicate Analysis
- Laboratory Control Sample Analysis
- ICP Serial Dilution Analysis
- Instrument Detection Limits
- Field Duplicate Results
- Sample Results

### **DATA COMPLETENESS**

The IDLs and MDLs were not included in the data package. The laboratory was contacted. The tabulated IDLs and MDLs were submitted by the laboratory. The IDLs and MDLs for potassium, sodium, and mercury were not listed on the resubmission. The laboratory stated that this form is not required for the applied method.

The serial dilution outliers were not qualified with an "E" qualifier code. The laboratory stated that this code is applied solely to the CLP Method analysis.

The %Ds in the serial dilution sample was not calculated as recommended by the CLP Method. The %Ds was calculated for all detected and non-detected results reported on the raw data. Consequently, many %Ds were reported above 10%. The reporting format did not follow the CLP and the review of the data was very time consuming.

## HOLDING TIME

Samples were digested and analyzed within the holding time requirements established in the corresponding methods.

### **CALIBRATIONS & CRDL ANALYSES**

The recoveries were within the control limits in initial and continuing calibrations analyzed prior and after sample analysis for all metals. The CRDL sample analysis was not performed for ICP metals.

#### **BLANKS**

The preparation blanks, ICBs, and CCBs were free of target analytes at levels above the CRDLs.

### **ICP INTERFERENCE CHECK SAMPLE**

The recoveries for ICSA and ICSB were within the control limit of 80-120% for ICP metals.

#### MATRIX SPIKE ANALYSIS

Matrix spike analysis was not performed on these samples. The results from the other batch (AC38653-004) were included with this batch. The recoveries were within the control limits of 75-125%.

### MATRIX DUPLICATE ANALYSIS

Matrix duplicate analysis was performed on the above sample. The RPDs were within the control limits in all matrix duplicate analyses.

Earth Tech Project No. 8071005

Please note that four samples were collected from this site and assigned as QC samples (MS and MD) by the sampler. The analyses results were reported under separate cover pages. All recoveries were within the control limits.

## LABORATORY CONTROL SAMPLE

The recoveries were within the control limits in this analysis.

## SERIAL DILUTION

This quality control sample was analyzed on sample PW01-06 for ICP metals. The % differences were above 10% for Ca (12%) and Fe (11%). The reported sample results for these two analytes were qualified estimated "J" since both sample results were above 50 times the corresponding MDLs.

### FIELD DUPLICATE ANALYSIS

Field duplicate was not analyzed for this batch. However, four field duplicate samples were collected for this site and the analyses results were reported under separate cover pages. RPDs were within the control limits which indicated a satisfactory reproducibility.

### **SUMMARY**

The cooler temperature  $(3.0 \ ^\circ C)$  was within the acceptable limits. The reported sample data are considered acceptable.

All data have been validated in accordance with the data quality assurance set forth in NYSDEC ASP for Evaluating TAL metals. The USEPA Region II Data Validation SOP # HW-2, Revision 13 (September 2006) was utilized to review the data completeness and data quality. The analysis problems were discussed in the above sections. If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 269-9989.

Sincerely,

Zohreh Hamid, Ph.D Analytical Assurance Associates

Appendix A- Glossary of Data Qualifier
 Appendix B- Laboratory Form I, & Applied Qualifier Codes
 Appendix C- Resubmission ( if applicable)

# Appendix A Glossary of Data Qualifiers

#### **GLOSSARY OF DATA QUALIFIERS**

#### **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- R = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.

N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

#### **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

#### **OTHER CODES**

 $\mathbf{Q}$  = NO ANALYTICAL RESULT.

Appendix B Laboratory Form I and Applied Qualifier Codes

## Sample Number: AC38601-001 Client Id: PW03-02 Data File: 6M28720.D Analysis Date: 07/11/08 22:23 Date Rec/Extracted: 07/10/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

100 May

Cas #

Compound

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

Cas # Compound	<u></u>	Conc	Cas # Compound		-
71-55-6 1,1,1-Trichloroethane	1.0	1.2	75-15-0 Carbon Disulfido	<u> </u>	Conc
79-34-5 1,1,2,2-Tetrachloroethane	1.0	υ	56-23-5 Carbon Tetrachlerida	1.0	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	υ	108-90-7 Chlorobenzono	1.0	Ų
79-00-5 1,1,2-Trichloroethane	1.0	Ū	75-00-3 Chloroothona	1.0	U
75-34-3 1,1-Dichloroethane	1.0	2.3 /	67-66-3 Chloroform	1.0	U
75-35-4 1,1-Dichloroethene	1.0	U I	74-87.3 Chloromathana	1.0	U
87-61-6 1,2,3-Trichlorobenzene	1.0	ŭ		1.0	U
96-18-4 1,2,3-Trichloropropane	1.0	u l	10061 01 5 cin 1 2 Division	1.0	U
120-82-1 1,2,4-Trichlorobenzene	1.0	u j	110 82 7 Ovelakavana	1.0	U
95-63-6 1,2,4-Trimethylbenzene	1.0	U I		1.0	U
96-12-8 1,2-Dibromo-3-Chloropropa	1.0	11	75 71 9 Diable 11	1.0	U
106-93-4 1,2-Dibromoethane	1.0	u U	100 44 4 Etholic	1.0	U
95-50-1 1,2-Dichlorobenzene	1.0	ц Ц	08 82 9 Jacobie 1	1.0	U
107-06-2 1,2-Dichloroethane	0.50		98-82-8 Isopropylbenzene	1.0	U
78-87-5 1,2-Dichloropropane	1.0	U U	1330-20-7 m&p-Xylenes	2.0	U
108-67-8 1,3,5-Trimethylbenzene	10		79-20-9 Methyl Acetate	1.0	U
541-73-1 1,3-Dichlorobenzene	1.0		108-87-2 Methylcyclohexane	1.0	U
142-28-9 1.3-Dichloropropane	1.0		75-09-2 Methylene Chloride	1.0	U
106-46-7 1,4-Dichlorobenzene	1.0	0	1634-04-4 Methyl-t-butyl ether	1.0	U
123-91-1 1,4-Dioxane	50	" R	104-51-8 n-Butylbenzene	1.0	U
78-93-3 2-Butanone	50	011	103-65-1 n-Propylbenzene	1.0	U
110-75-8 2-Chloroethylvinylether	1.0	0	95-47-6 o-Xylene	1.0	U
591-78-6 2-Hexanone	5.0		135-98-8 sec-Butylbenzene	1.0	U
99-87-6 4-Isopropyltoluene	1.0	0	100-42-5 Styrene	1.0	U
108-10-1 4-Methyl-2-Pentanone	1.0		75-65-0 t-Butyl Alcohol	5.0	U
67-64-1 Acetone	50	~/	98-06-6 t-Butylbenzene	1.0	U
107-02-8 Acrolein	5.0	37 -	127-18-4 Tetrachloroethene	1.0	U
107-13-1 Acrylonitrile	1.0	U	108-88-3 Toluene	1.0	U
71-43-2 Benzene	0.50	U	156-60-5 trans-1,2-Dichloroethene	1.0	U
74-97-5 Bromochloromethane	1.50	U	10061-02-6 trans-1,3-Dichloropropene	1.0	U
75-27-4 Bromodichloromethane	1.0	U	79-01-6 Trichloroethene	1.0	Ū
75-25-2 Bromoform	1.0	U	75-69-4 Trichlorofluoromethane	1.0	Ū
74-83-9 Bromomethane	1.0	U	75-01-4 Vinyl Chloride	1.0	Ű
e e e e eremententente	1.0	U			Ŭ

Worksheet #: 88452

# Total Target Concentration 40.5

**R** - Retention Time Out

- Indicates the compound was analyzed but not detected.  $\vec{B}$  - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of ye instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

### Sample Number: AC38601-002 Client Id: PW03-04 Data File: 6M28721.D Analysis Date: 07/11/08 22:41 Date Rec/Extracted: 07/10/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

	Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
	71-55-6	5 1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	U
	79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	υ
<u> </u>	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	U
New York	79-00-5	1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
	75-34-3	1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	Ū
	75-35-4	1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	Ū
	87-61-6	1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	Ŭ
	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5 (	cis-1,3-Dichloropropene	1.0	U
	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7 (	Cyclohexane	1.0	Ū
<b>1</b>	95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
	106-93-4	1,2-Dibromoethane	1.0	U	100 <b>-</b> 41-4 f	Ethylbenzene	1.0	U
	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	sopropylbenzene	1.0	Ū
	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7 r	m&p-Xylenes	2.0	U
	<b>78-</b> 87-5	1,2-Dichloropropane	1.0	U	79-20-9 N	Vethyl Acetate	1.0	Ū
	1 <b>0</b> 8-67 <b>-</b> 8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2 N	Methylene Chloride	1.0	U
	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4 N	Viethyl-t-butyl ether	1.0	U
	106-46-7	1,4-Dichlorobenzene	1.0	U	104 <b>-</b> 51-8 г	n-Butylbenzene	1.0	Ū
83	123-91-1	1,4-Dioxane	50	υ <b>Κ</b>	103-65-1 r	1-Propylbenzene	1.0	Ū
	78-93-3	2-Butanone	5.0	U	95-47-6 c	-Xylene	1.0	Ŭ
167	110-75-8	2-Chloroethylvinylether	1.0	υVJ	135-98-8 s	ec-Butylbenzene	1.0	Ŭ
2050	591-78-6	2-Hexanone	5.0	U	100-42-5 S	Styrene	1.0	Ū
	99-87-6	4-isopropyltoluene	1.0	U	75-65-0 t-	-Butyl Alcohol	5.0	Ū
	108-10-1	4-Methyl-2-Pentanone	1.0	U	98-06-6 t-	Butylbenzene	1.0	Ŭ
	67-64-1	Acetone	5.0	130	127-18-4 T	etrachloroethene	1.0	Ŭ
	107-02-8	Acrolein	5.0	U	108-88-3 T	oluene	1.0	Ŭ
	107-13-1	Acrylonitrile	1.0	U	156-60-5 tr	rans-1,2-Dichloroethene	1.0	บ
	71-43-2	Benzene	0.50	U	10061-02-6 tr	rans-1,3-Dichloropropene	1.0	Ū
3	74-97-5	Bromochloromethane	1.0	U	79-01-6 T	richloroethene	1.0	Ū
	75-27-4	Bromodichloromethane	1.0	U	75-69-4 T	richlorofluoromethane	1.0	Ū
J	75-25-2	Bromoform	1.0	υ	75-01-4 V	inyl Chloride	1.0	Ũ
	74-83-9 i	Bromomethane	1.0	U		-		-

Worksheet #: 88452

STATE OF

Total Target Concentration 130

- Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out
J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

#### Form1

ORGANICS VOLATILE REPORT

Sample Number: AC38601-003
Client Id: PW03-01
Data File: 6M28722.D
Analysis Date: 07/11/08 22:59
Date Rec/Extracted: 07/10/08-NA
Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

	Cas #	Compound	RL	Conc	Cas # Compound	RI	Conc
	71-55	-6 1,1,1-Trichloroethane	1.0	1.5	75-15-0 Carbon Disulfide	1.0	<u> </u>
	79-34	-5 1,1,2,2-Tetrachloroethane	1.0	υj	56-23-5 Carbon Tetrachloride	1.0	U U
Ē	76-13-	1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	Ű
	79-00-	5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	U U
122	75-34-	3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	Ű
	75-35-	4 1,1-Dichloroethene	1.0	U	74-87-3 Chloromethane	1.0	Ŭ
	87-61-	6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	ŭ
	96-18-	4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	Ŭ
	120-82-	1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	Ŭ
	95-63-	6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	ŭ
	96-12-	8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	U
10.17.0	106-93-4	4 1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	U
( <b>111</b> )	95-50-1	1 1,2-Dichlorobenzene	1.0	U	98-82-8 Isopropylbenzene	1.0	ŭ
	107-06-2	2 1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	Ŭ
1979	78-87-	5 1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	- U
	108-67-8	3 1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	Ŭ
	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	Ŭ
) I	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	Ŭ
	106-46-7	7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzene	1.0	Ŭ
<u>نان</u>	123-91-1	1,4-Dioxane	50	υĸ	103-65-1 n-Propylbenzene	1.0	Ŭ
	78-93-3	3 2-Butanone	5.0	U	95-47-6 o-Xylene	1.0	Ū
1200	110-75-8	2-Chloroethylvinylether	1.0	U V J	135-98-8 sec-Butylbenzene	1.0	Ū
<i>50</i> 'a	591-78-6	2-Hexanone	5.0	U	100-42-5 Styrene	1.0	Ū
	99-87-6	4-Isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcohol	5.0	Ŭ
2	108-10-1	4-Methyl-2-Pentanone	1.0	U	98-06-6 t-Butylbenzene	1.0	U
	67-64-1	Acetone	5.0	38	127-18-4 Tetrachloroethene	1.0	- U
<b>劉</b>	107-02-8	Acrolein	5.0	U	108-88-3 Toluene	1.0	U
	107-13-1	Acrylonitrile	1.0	U	156-60-5 trans-1,2-Dichloroethene	1.0	Ŭ
	71-43-2	Benzene	0.50	U	10061-02-6 trans-1,3-Dichloropropene	1.0	Ŭ
澎)	74-97-5	Bromochloromethane	1.0	U	79-01-6 Trichloroethene	1.0	Ū
12	75-27-4	Bromodichloromethane	1.0	U	75-69-4 Trichlorofluoromethane	1.0	Ū
2)	75-25-2	Bromoform	1.0	U	75-01-4 Vinyl Chloride	1.0	Ū
	<b>74-8</b> 3-9	Bromomethane	1.0	U	-		-

Worksheet #: 88452

#### Total Target Concentration 39.5

- Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of ae instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

#### Sample Number: AC38601-004 Client Id: PW03-05 Data File: 8M29628.D Analysis Date: 07/15/08 12:19 Date Rec/Extracted: 07/10/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

Cas # Compound	<u></u>	Conc	Cas # Compound	RL	Conc
71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	UVJ
79-34-5 1,1,2,2-Tetrachloroethane	1.0	υvj	56-23-5 Carbon Tetrachloride	1.0	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	U
79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	U U J
75-34-3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	U _
75-35-4 1,1-Dichloroethene	1.0	U	74-87-3 Chloromethane	1.0	υυŢ
87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	U
96-18-4 1,2,3-Trichloropropane	1.0	U U ]	10061-01-5 cis-1,3-Dichloropropene	1.0	U
120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	U
95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	U
96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	U
106-93-4 1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	U
95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8 Isopropylbenzene	1.0	U
107-06-2 1.2-Dich oroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	U
78-87-5 1,2-Dichloropropane	1.0	υ	79-20-9 Methyl Acetate	1.0	u 03
108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	U ·
541-73-1 1.3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	U
142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	U
106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzene	1.0	U
123-91-1 1,4-Dioxane	50	UR	103-65-1 n-Propylbenzene	1.0	U
78-93-3 2-Butanone	1.0	U	95-47-6 o-Xylene	1.0	U
110-75-8 2-Chloroethylvinylether	1.0	υVJ	135-98-8 sec-Butylbenzene	1.0	U
591-78-6 2-Hexanone	1.0	UŪ	100-42-5 Styrene	1.0	U
99-87-6 4-Isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcohol	5.0	U
108-10-1 4-Methyl-2-Pentanone	1.0	ا ژن ن	98-06-6 t-Butylbenzene	1.0	U
67-64-1 Acetone	5.0	73 /	127-18-4 Tetrachloroethene	1.0	U
107-02-8 Acrolein	5.0	U	108-88-3 Toluene	1.0	U
107-13-1 Acrylonitrile	1.0	U	156-60-5 trans-1,2-Dichloroethene	1.0	Ų
71-43-2 Benzene	0.50	U	10061-02-6 trans-1,3-Dichloropropene	1.0	U
74-97-5 Bromochloromethane	1.0	U	79-01-6 Trichloroethene	1.0	U
75-27-4 Bromodichloromethane	1.0	U	75-69-4 Trichlorofluoromethane	1.0	U
75-25-2 Bromoform	1.0	U	75-01-4 Vinyl Chloride	1.0	U
74-83-9 Bromomethane	1.0	זעט			

Worksheet #: 88452

Total Target Concentration 73

- Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of "re instrument.

R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

#### Sample Number: AC38601-005 Client Id: PW03-03 Data File: 8M29662.D Analysis Date: 07/15/08 22:03 Date Rec/Extracted: 07/10/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

	Cas #	Compound	RL	<u> </u>	Cas #	Compound	<u></u>	Conc
	71-55-6	1,1,1-Trichloroethane	1.0	9.7 1	75-15-0	Carbon Disulfide	1.0	UUJ
	79-34-5	1,1,2,2-Tetrachloroethane	1.0	UVJ	56-23-5	Carbon Tetrachloride	1.0	U
- - 111	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	υ	108-90-7	Chlorobenzene	1.0	U
	7 <del>9</del> -00-5	1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U V]
(£)	75-34-3	1,1-Dichloroethane	1.0	4.6	67-66-3	Chloroform	1.0	U .
	75-35-4	1,1-Dichloroethene	1.0	1.1	74-87-3	Chloromethane	1.0	U V J
顯	87-61-6	1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
	96-18-4	1,2,3-Trichloropropane 🥏 🚽	1.0	U VJ	10061-01-5	cis-1,3-Dichloropropene	1.0	U
	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
8)	95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95) -	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
-	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8 I	Isopropylbenzene	1.0	U
	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7 ı	m&p-Xylenes	2.0	U
	78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	υUJ
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	Ų
A	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4 I	Methyl-t-butyl ether	1.0	U
445f	106-46-7	1,4-Dichlorobenzene	1.0	U	104-51-8 i	n-Butylbenzene	1.0	U
۳ì	123-91-1	1,4-Dioxane	50	υŔ	103-65-1 r	n-Propylbenzene	1.0	U
	78-93-3	2-Butanone	1.0	U	95-47-6 (	o-Xylene	1.0	υ
1	110-75-8	2-Chloroethylvinylether	1.0	UUJ	135-98-8 s	sec-Butylbenzene	1.0	U
	591-78-6	2-Hexanone	1.0	Uv1	100-42-5 \$	Styrene	1.0	U
	99-87-6	4-Isopropyltoluene	1.0	U	75-65-0 t	-Butyl Alcohol	5.0	U
	108-10-1	4-Methyl-2-Pentanone	1.0	u <b>v j</b>	98-06-6 t	-Butylbenzene	1.0	U
	67-64-1	Acetone	5.0	U	127-18-4 1	Tetrachloroethene	1.0	U
1	107-02-8	Acrolein	5.0	U	108-88-3 1	Toluene	1.0	U
	107-13-1	Acrylonitrile	1.0	U	156-60-5 t	trans-1,2-Dichloroethene	1.0	U
	71-43-2	Benzene	0.50	U	10061-02-6 t	trans-1,3-Dichloropropene	1.0	U
51	74-97-5	Bromochloromethane	1.0	U	79-01-6 1	Trichloroethene	1.0	υ
	75-27-4	Bromodichloromethane	1.0	U	75-69-4 1	Trichlorofluoromethane	1.0	U
3	75-25 <b>-</b> 2	Bromoform	1.0	U	75-01-4 \	Vinyl Chloride	1.0	U
	74-83-9	Bromomethane	1.0	υν				

Worksheet #: 88452

and the

#### Total Target Concentration 15.4

**R** - Retention Time Out

Indicates the compound was analyzed but not detected.
 B - Indicates the analyte was found in the blank as well as in the sample.
 E - Indicates the analyte concentration exceeds the calibration range of previous trument.

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

Sample Number: AC38601-006 Client Id: PW03-06 Data File: 8M29663.D Analysis Date: 07/15/08 22:20 Date Rec/Extracted: 07/10/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

,	®) Cas # Compound	<b>.</b>	Units: U	Ig/L		
1	71-55-6 1 1 1-Trichloroothono	<u></u>	Conc	Cas # Compound	RI	Cono
(	79-34-5 1 1 2 2-Tetrachloroethan	1.0	U	75-15-0 Carbon Disulfide	10	
	76-13-1 1 1 2-Trichloro 1 2 2 Avisture	1.0	υvj	56-23-5 Carbon Tetrachloride	1.0	ر <b>ب</b> ا
1000	79-00-5 1 1 2-Trichloroathan	1.0	U	108-90-7 Chlorobenzene	1.0	н
275	75-34-3 1 1-Dichloreethaus	1.0	U	75-00-3 Chloroethane	1.0	U 11 - 134
	75-35-4 1 1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	ر ^ی ں
膥	87-61-6 1 2 3 Triphlamhanna	1.0	U	74-87-3 Chloromethane	1.0	U U1
	96-18-4 1 2 3 Triphterspress	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	
63	120-82-1 1 2 4 Triphersham	1.0	U U]	10061-01-5 cis-1,3-Dichloropropene	1.0	0
<b>5</b> 48	95-63-6 1 2 4 Trimethult	1.0	U	110-82-7 Cyclohexane	1.0	0
	96-12.8 1.2 Dibrows 0.011	1.0	U	124-48-1 Dibromochloromethane	1.0	U
	106 93 4 1 2 Difference at	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	0
		1.0	U	100-41-4 Ethylbenzene	1.0	U
a sa Kiti		1.0	U	98-82-8 Isopropylbenzene	1.0	U
	79 97 5 4 0 Division	0.50	U	1330-20-7 m&p-Xylenes	1.0	U
di cad	109 67 8 1 9 5 T	1.0	U	79-20-9 Methyl Acetate	2.0	U 
NMC.	541 72 4 4 9 Di ti	1.0	U	108-87-2 Methylovclohevane	1.0	ر ۷ ن
	140.00.0 1.0 Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	U
	142-28-9 1,3-Dichloropropane	1.0	υ	1634-04-4 Methyl-t-butyl ether	1.0	U
	100-40-7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzene	1.0	U
ി	123-91-1 1,4-Dioxane	50	υR	103-65-1 n-Propylbenzeno	1.0	U
	78-93-3 2-Butanone	1.0	U	95-47-6 o-Xvlene	1.0	U
	110-75-8 2-Chloroethylvinylether	1.0	UV	135-98-8 sec-Butylbenzono	1.0	U
<b>%</b> 3	591-78-6 2-Hexanone	1.0	U U1	100-42-5 Styrene	1.0	U
	99-87-6 4-Isopropyltoluene	1.0	υÍ	75-65-0 t-Butyl Alcohol	1.0	U
<u>65</u> 5	108-10-1 4-Methyl-2-Pentanone	1.0	U V 1	98-06-6 t-Buty/Action	5.0	U
	67-64-1 Acetone	5.0	200 /	127-18-4 Tetrachloroothona	1.0	U
Ŋ	107-02-8 Acrolein	5.0	U	108-88-3 Tolyono	1.0	U
	107-13-1 Acrylonitrile	1.0	υ	156-60-5 trans 1.2 Disklass at	1.0	U
-	71-43-2 Benzene	0.50	U	10061-02-6 trans 1.2 Dichloroethene	1.0	U
8	74-97-5 Bromochloromethane	1.0	Ū	79-01.6 Trichlaraethau	1.0	U
	75-27-4 Bromodichloromethane	1.0	Ū		1.0	U
	75-25-2 Bromoform	1.0	ŭ	75-03-4 Tricnioronuoromethane	1.0	U
	74-83-9 Bromomethane	1.0	0.01	73-01-4 Vinyi Chloride	1.0	U
9						

Worksheet #: 88452

0.0000

SC SWEDG

Sold and

Total Target Concentration 200

- Indicates the compound was analyzed but not detected.

- Indicates the analyte was found in the blank as well as in the sample. - Indicates the analyte concentration exceeds the calibration range of ie instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

# Sample Number: AC38601-007 Client Id: PW03-07 Data File: 8M29669.D Analysis Date: 07/16/08 00:02 Date Rec/Extracted: 07/10/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Sec.

2011-11-2014 2011-11-2014

でのない

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

(M)	Cas # Compound	-		iyit		
	71-55-6 1 1 1-Trichloroethano		Conc	Cas # Compound	RL	Conc
8	79-34-5 1.1.2.2-Tetrachloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	U.V1
	76-13-1 1.1.2-Trichloro-1.2.2-trifluor	1.0	00)	56-23-5 Carbon Tetrachloride	1.0	U
偏肥	79-00-5 1 1 2-Trichloroethano	1.0	U	108-90-7 Chlorobenzene	1.0	Ū
	75-34-3 1 1-Dichloroethano	1.0	U	75-00-3 Chloroethane	1.0	Ū v1
	75-35-4 1 1-Dichleroothone	1.0	U	67-66-3 Chloroform	1.0	U U
ar.	87-61-6 1 2 3 Tripblorobergan	1.0	U	74-87-3 Chloromethane	1.0	1.01
	96-18-4 1 2 3. Trichloroptenant	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	U U
	120-82-1 1 2 4 Triphlorehamme	1.0	U VJ	10061-01-5 cis-1,3-Dichloropropene	1.0	U U
	95-63 6 1 2 4 Trimethalt av	1.0	U	110-82-7 Cyclohexane	1.0	11
劉	96-12 8, 1 2 Dibrome 2 Oblight	1.0	U	124-48-1 Dibromochloromethane	1.0	U U
1	106 02 4 4 2 Diblomo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	
		1.0	U	100-41-4 Ethylbenzene	1.0	U
2		1.0	U	98-82-8 Isopropylbenzene	1.0	1
P	79.97 F. 4.0 Disku	0.50	U	1330-20-7 m&p-Xylenes	2.0	0
3	100.07.5 1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	U 1/1
	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	
1	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	U
1	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	U
	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butvibenzene	1.0	U
)	123-91-1 1,4-Dioxane	50	υR	103-65-1 p-Propylbenzene	1.0	U
ł	78-93-3 2-Butanone	1.0	U ,	95-47-6 o-Xvlene	1.0	U
1	110-75-8 2-Chloroethylvinylether	1.0	ار ب ن	135-98-8 sec-Butylbonzono	1.0	U
	591-78-6 2-Hexanone	1.0	UVT	100-42-5 Styrong	1.0	U
1	99-87-6 4-Isopropyltoluene	1.0	U	75-65-0 t-Butyl Aleehel	1.0	U
ļ	108-10-1 4-Methyl-2-Pentanone	1.0	บังป		5.0	Ų
	67-64-1 Acetone	5.0	/560		1.0	U
	107-02-8 Acrolein	5.0	U		1.0	∕7.8
	107-13-1 Acrylonitrile	1.0			1.0	U
	71-43-2 Benzene	0.50		10001 op o trans-1,2-Dichloroethene	1.0	U
	74-97-5 Bromochloromethane	10	1	10061-02-6 trans-1,3-Dichloropropene	1.0	U
	75-27-4 Bromodichloromethane	10		79-01-6 Trichloroethene	1.0	U
	75-25-2 Bromoform	10		75-69-4 Trichlorofluoromethane	1.0	U
	74-83-9 Bromomethane	1.0		75-01-4 Vinyl Chloride	1.0	U
		1.0	U U 1			

Worksheet #: 89091

#### Total Target Concentration 567.8

- Indicates the compound was analyzed but not detected.

- Indicates the analyte was found in the blank as well as in the sample. - Indicates the analyte concentration exceeds the calibration range of he instrument.

**R** - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

# Sample Number: AC38601-008 Client Id: PW02-02 Data File: 8M29670.D Analysis Date: 07/16/08 00:19 Date Rec/Extracted: 07/10/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

🔊 Cas # Compound	<b>D</b> .	Units:	ug/L		
71-55-6 1,1,1-Trichloroethane	<u></u>	Conc	Cas # Compound	RI	Const
79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	75-15-0 Carbon Disulfide	10	
76-13-1 1,1,2-Trichloro-1,2,2-trifluc	1.0 Nr 1.0	່ບ່າງ	56-23-5 Carbon Tetrachloride	1.0	ز ن ن
79-00-5 1,1,2-Trichloroethane	1.0	U	108-90-7 Chlorobenzene	1.0	U U
75-34-3 1,1-Dichloroethane	1.0	0	75-00-3 Chloroethane	1.0	11.11
75-35-4 1,1-Dichloroethene	1.0	0	67-66-3 Chloroform	1.0	
87-61-6 1,2,3-Trichlorobenzene	1.0	U	74-87-3 Chloromethane	1.0	й <b>о</b> 1
96-18-4 1,2,3-Trichloropropane	10	11.11	156-59-2 cis-1,2-Dichloroethene	1.0	U - 0
120-82-1 1,2,4-Trichlorobenzene	1.0		10061-01-5 cis-1,3-Dichloropropene	1.0	Ű
95-63-6 1,2,4-Trimethylbenzene	1.0		110-82-7 Cyclohexane	1.0	U U
96-12-8 1,2-Dibromo-3-Chloropropa	1.0	0	124-48-1 Dibromochloromethane	1.0	U U
106-93-4 1,2-Dibromoethane	1.0	0	75-71-8 Dichlorodifluoromethane	1.0	ŭ
95-50-1 1,2-Dichlorobenzene	1.0	0	100-41-4 Ethylbenzene	1.0	ŭ
107-06-2 1,2-Dichloroethane	0.50	0	98-82-8 Isopropylbenzene	1.0	Ū
78-87-5 1,2-Dichloropropane	1.0	U U	1330-20-7 m&p-Xylenes	2.0	U
108-67-8 1,3,5-Trimethylbenzene	1.0		79-20-9 Methyl Acetate	1.0	001
541-73-1 1,3-Dichlorobenzene	1.0	U U	108-87-2 Methylcyclohexane	1.0	υ
142-28-9 1,3-Dichloropropane	1.0	U I	75-09-2 Methylene Chloride	1.0	U
106-46-7 1,4-Dichlorobenzene	1.0		1034-04-4 Methyl-t-butyl ether	1.0	U
123-91-1 1,4-Dioxane	50	ũ R	104-51-8 n-Butylbenzene	1.0	U
78-93-3 2-Butanone	1.0		05-47.0 Wei	1.0	U
110-75-8 2-Chloroethylvinylether	1.0	ũ UJ	95-47-6 0-Xylene	1.0	Ŭ
591-78-6 2-Hexanone	1.0		100 49 5 oc	1.0	U
99-87-6 4-Isopropyltoluene	1.0	U U	700-42-5 Styrene	1.0	U
108-10-1 4-Methyl-2-Pentanone	1.0	นั้นที่	75-65-0 t-Butyl Alcohol	5.0	U
67-64-1 Acetone	5.0	/ 27	127 18 4 Television	1.0	U
107-02-8 Acrolein	5.0		127-10-4 Tetrachloroethene	1.0	U
107-13-1 Acrylonitrile	1.0	u l	156 60 5 to 1 5 to 1 5	1.0	U
71-43-2 Benzene	0.50	U I	10061 02 0 trans-1,2-Dichloroethene	1.0	U
74-97-5 Bromochloromethane	1.0	ŭ	70.01.0 Tais-1,3-Dichloropropene	1.0	U
75-27-4 Bromodichloromethane	1.0	Ū		1.0	U
75-25-2 Bromoform	1.0	U I	75-09-4 Irichlorofluoromethane	1.0	U
74-83-9 Bromomethane	1.0	រ ហា	75-01-4 Vinyi Chloride	1.0	U

Worksheet #: 88452

Total Target Concentration 27

- Indicates the compound was analyzed but not detected. - Indicates the analyte was found in the blank as well as in the sample. - Indicates the analyte concentration exceeds the calibration range of

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

# Form1

ORGANICS VOLATILE REPORT

# Sample Number: AC38601-009 Client Id: PW02-05 Data File: 8M29664.D Analysis Date: 07/15/08 22:37 Date Rec/Extracted: 07/10/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Cas # Compound		Units:	ug/L		
71-55-6 1,1,1-Trichlorgethane	<u></u>	Conc	Cas # Compound	<b>D</b> ,	_
79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	75-15-0 Carbon Disulfide	<u></u>	Conc
76-13-1 1,1,2-Trichloro-1 2 2-triffuor	1.0	UUj	56-23-5 Carbon Tetrachloride	1.0	003
79-00-5 1,1,2-Trichloroethane	1.0	U	108-90-7 Chlorobenzene	1.0	U
75-34-3 1,1-Dichloroethane	1.0	U	75-00-3 Chloroethane	1.0	U
75-35-4 1,1-Dichloroethene	1.0	U	67-66-3 Chloroform	1.0	0.07
87-61-6 1,2,3-Trichlorobenzene	1.0	U	74-87-3 Chloromethane	1.0	U 
96-18-4 1,2,3-Trichloropropage	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	0 0
120-82-1 1,2,4-Trichlorobenzene	1.0	005	10061-01-5 cis-1,3-Dichloropropene	1.0	U
95-63-6 1,2,4-Trimethylbenzene	1.0	U	110-82-7 Cyclohexane	1.0	U
96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1 Dibromochloromethane	1.0	U
106-93-4 1,2-Dibromoethane	1.0	U .	75-71-8 Dichlorodifluoromethane	1.0	U
95-50-1 1,2-Dichlorobenzene	1.0	U	100-41-4 Ethylbenzene	1.0	0
107-06-2 1,2-Dichloroethane	0.50	U	98-82-8 Isopropylbenzene	1.0	0
78-87-5 1,2-Dichloropropane	10	U	1330-20-7 m&p-Xylenes	2.0	
108-67-8 1,3,5-Trimethylbenzene	1.0	0	79-20-9 Methyl Acetate	1.0	<u>и (11</u>
541-73-1 1,3-Dichlorobenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	ر» _ا
142-28-9 1,3-Dichloropropane	1.0	U	75-09-2 Methylene Chloride	1.0	U
106-46-7 1,4-Dichlorobenzene	1.0	0	1634-04-4 Methyl-t-butyl ether	1.0	11
123-91-1 1,4-Dioxane	50		104-51-8 n-Butylbenzene	1.0	U U
78-93-3 2-Butanone	1.0		103-65-1 n-Propylbenzene	1.0	U
110-75-8 2-Chloroethylvinylether	1.0	UT	95-47-6 o-Xylene	1.0	Ŭ
591-78-6 2-Hexanone	1.0	u ví	135-98-8 sec-Butylbenzene	1.0	Ŭ
99-87-6 4-Isopropyitoluene	1.0		100-42-5 Styrene	1.0	Ū
108-10-1 4-Methyl-2-Pentanone	1.0	IUT	75-55-0 t-Butyl Alcohol	5.0	Ū
67-64-1 Acetone	5.0	U U	127 49 4 T-Butylbenzene	1.0	U
107-02-8 Acrolein	5.0	Ŭ I	127-18-4 Tetrachloroethene	1.0	U
107-13-1 Acrylonitrile	1.0	U I		1.0	U
71-43-2 Benzene	0.50	ŭ	10061 03 6 trans-1,2-Dichloroethene	1.0	U
74-97-5 Bromochloromethane	1.0	U	79.01.6 Triable ut	1.0	U
75-27-4 Bromodichloromethane	1.0	Ū		1.0	U
75-25-2 Bromoform	1.0	Ū	75-03-4 Frichlorofluoromethane	1.0	U
ra-63-9 Bromomethane	1.0	UUJ	viny: Chloride	1.0	U

Worksheet #: 88452

Total Target Concentration 0

' - Indicates the compound was analyzed but not detected.

- Indicates the analyte was found in the blank as well as in the sample. - Indicates the analyte concentration exceeds the calibration range of e instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

# Form1

ORGANICS VOLATILE REPORT

# Sample Number: AC38601-010 Client Id: TB070908 Data File: 6M28770.D Analysis Date: 07/14/08 21:20 Date Rec/Extracted: 07/10/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Barris Laboration

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

í.	Cas # Compound	<b>D</b> 1	Units:	ug/L		
and a	71-55-6 1.1.1-Trichloroethane	RL	Conc	Cas # Compound	Ri	Cono
6)	79-34-5 1,1,2,2-Tetrachioroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	
etern.	76-13-1 1.1.2-Trichloro-1 2 2-trifluor	1.0	U	56-23-5 Carbon Tetrachloride	1.0	
	79-00-5 1.1.2-Trichloroethane	1.0	U	108-90-7 Chlorobenzene	1.0	0
	75-34-3 1.1-Dichlorgethane	1.0	U	75-00-3 Chloroethane	1.0	0
	75-35-4 1.1-Dichloroethene	1.0	U	67-66-3 Chloroform	1.0	0
쪫	87-61-6 1.2 3-Trichlorobenzeno	1.0	U	74-87-3 Chloromethane	1.0	U
	96-18-4 1.2.3-Trichloropropage	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	U
100	120-82-1 1 2 4-Trichlorobenzone	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	0
	95-63-6 1 2 4-Trimethylbenzone	1.0	U	110-82-7 Cyclohexane	1.0	U
	96-12-8 1 2-Dibromo-3-Chloropress	1.0	U	124-48-1 Dibromochloromethane	1.0	U
	106-93-4 1.2-Dibromoethane	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	0
	95-50-1 1 2-Dichlorobenzeno	1.0	U	100-41-4 Ethylbenzene	1.0	0
	107-06-2 1 2-Dichloroethano	1.0	U	98-82-8 Isopropylbenzene	1.0	U
5	78-87-5 1.2-Dichloropropage	0.50	U	1330-20-7 m&p-Xylenes	2.0	0
	108-67-8 1 3 5-Trimethylbenzone	1.0	U	79-20-9 Methyl Acetate	1.0	U
3	541-73-1 1 3-Dichlorobenzeno	10	U	108-87-2 Methylcyclohexane	1.0	0
1.	142-28-9 1.3-Dichloropropage	1.0	U	75-09-2 Methylene Chloride	1.0	U
.) -	106-46-7 1 4-Dichlorobenzone	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	U
. 1	23-91-1 1 4-Dioyane	1.0	U _	104-51-8 n-Butylbenzene	1.0	U
1	78-93-3 2-Butanone	50	UN	103-65-1 n-Propylbenzene	1.0	U
ا 1	10-75-8 2-Chloroethylvinylether	5.0	U m	95-47-6 o-Xylene	1.0	0
5	91-78-6 2-Hexanone	1.0	1C0 0	135-98-8 sec-Butylbenzene	1.0	0
}	99-87-6 4-Isopropultations	5.0	U	100-42-5 Styrene	1.0	0
1	08-10-1 4-Methyl-2-Pentonene	1.0	U	75-65-0 t-Butyl Alcohol	5.0	U
(	67-64-1 Acetone	1.0	U	98-06-6 t-Butylbenzene	1.0	U
10	07-02-8 Acrolein	5.0	U	127-18-4 Tetrachloroethene	1.0	U
10	07-13-1 Acrylonitrile	5.0	U	108-88-3 Toluene	1.0	0
7	1-43-2 Benzene	1.0	U	156-60-5 trans-1,2-Dichloroethene	1.0	0
7	4-97-5 Bromochloromethano	0.50	U	10061-02-6 trans-1,3-Dichloropropene	1.0	U
7	5-27-4 Bromodichloromethane	1.0	υ	79-01-6 Trichloroethene	1.0	U
7	5-25-2 Bromoform	1.0	U	75-69-4 Trichlorofluoromethane	1.0	0
7	4-83-9 Bromomethana	1.0	U	75-01-4 Vinyl Chloride	1.0	0
		1.0	U	•	1.0	U

Worksheet #: 88452

#### Total Target Concentration 0

- Indicates the compound was analyzed but not detected.

- Indicates the analyte was found in the blank as well as in the sample.

- Indicates the analyte concentration exceeds the calibration range of e instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

Sample ID: AC38601-001 Client Id:

T

Ê.

Water State

Sector Sector

PW03-02 Matrix: AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/10/2008

Lab Name: Veritech Lab Code: Contract:

Nras No: Sdg No: Case No:

		Į										
	Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date	Prep	<b>F</b> iles	Seq			
1	7429-90-{	5. Aluminum	100	ND		07/17/00	Daton	File:	Num	M	Instr	
	7440-36-0	Antimony	7.5	ND	 -	07/17/06	9282	A9282A	33	P	PEICP1	_
	7440-38-2	Arsenic	4.0		.5	07/17/08	9282	A9282A	33	P	PEICP1	
	7440-39-3	Barium		7.9	.5	07/17/08	9282	A9282A	33	P	PEICP1	ĺ
1	7440-41-7	Bendlium	20	290	.5	07/17/08	9282	A9282A	33	Р	PEICP1	
	7440-43-9	Cadmium	4.0	ND	.5	07/17/08	9282	A9282A	33	Р	PEICP1	j
	7440-70 2	Cadmun	2.0	ND	.5	07/17/08	9282	A9282A	33	р	PEICD1	
	7440 47 0	Calcium	1000	24000	J .50	07/17/08	9282	A9282A	33	В	PEIOP1	ļ
	7440-47-3	Chromium	25	ND	.50	7/17/08	9282	402924	22	г Б	PEICP1	
	7440-48-4	Cobalt	10	ND	.50	7/17/08	0202	A00000	33	Ч	PEICP1	
	7440-50-8	Copper	25	ND	50	7/17/09	92.02	A9282A	33	Р	PEICP1	
	7439-89-6	Iron	150	18000		7/47/00	9282	A9282A	33	Ρ	PEICP1	
	7439-92-1	Lead	5.0		<u>ں</u>	//1//08	9282	A9282A	33	Ρ	PEICP1	
	7439-95-4	Magnesium	1000		.50	7/17/08	9282	A9282A	33	Р	PEICP1	
	7439-96-5	Manganese	1000	3000	.50	7/17/08	9282	A9282A	33	Р	PEICP1	
	7439-97-6	Mercury	25	2700	.5 07	7/17/08	9282	A9282A	33	Р	PEICP1	i
	7440-02-0	Niekal	0.20	ND	1 07	7/18/08	9282	H9282A	25	cv	HGCV/2	
,	7440.00.7	INICKEI	10	ND	.5 07	/17/08	9282	A9282A	33	р.	DELOD4	
	7700 10 -7	Potassium	2500	25000	.5 07	/17/08	9282	A9282B			PEICPT	
1	782-49-2	Selenium	25	ND	.507	/17/08	9282	A02020	20	Р -	PEICPRAD1	
7	440-22-4	Silver	10	ND	507	117/00	9202	A9282A	53	Р	PEICP1	
7	440-23-5	Sodium	2500	54000	507	(17/00	9282	A9282A	33	Р	PEICP1	
7	440-28-0	Thallium	5.0		.507	17/08	9282	A9282B 2	6	Р	PEICPRAD1	
7	440-62-2	Vanadium	25		.5 07/	17/08	9282	A9282A 3	3	P	PE/CP1	
7	440-66-6	Zinc	20	UN	.5 07/	17/08	9282	A9282A 3	3	P	PEICP1	
			20	ND	.5 07/	17/08	9282	A9282A 3	3	P	PEICP1	

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor

MS - ICP-MS

Sample ID: AC38601-002 Matrix:

Client Id: PW03-04 AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/10/2008

Lab Code:

Contract:

Lab Name: Veritech

Nras No: Sdg No: Case No:

		1	1		1	T	· · · · · · · · · · · · · · · · · · ·					
	Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num	: м	Instr	
	7429-90-5	Aluminum	100	210	.5	07/17/08	9282	A9282A	34	P	PEICPI	_
	7440-36-0	Antimony	7.5	ND	.5	07/17/08	9282	A9282A	34		PEIOPA	
	7440-38-2	Arsenic	4.0	ND	.5	07/17/08	9282	A0292A	24	1	FEICPT	
	7440-39-3	Barium	25	ND	5	07/17/08	0202	A0000A	34	P	PEICP1	ļ
	7440-41-7	Beryllium	4.0	ND		07/17/00	9202	A9282A	34	Р	PEICP1	
	7440-43-9	Cadmium	20	ND	 -	07/17/00	9282	A9282A	34	Р	PEICP1	
	7440-70-2	Calcium	1000	12000	с. - г	07/17/08	9282	A9282A	34	Р	PEICP1	-
	7440-47-3	Chromium	1000	13000	5. <b>ز</b>	07/17/08	9282	A9282A	34	Р	PEICP1	
	7440-48-4	Cobalt	23	ND	.5	07/17/08	9282	A9282A	34	Р	PEICP1	
	7440-50-8	Cobran	10	ND	.5	07/17/08	9282	A9282A	34	Ρ	PEICP1	
	7/30 80 6	Copper	25	ND	.5	07/17/08	9282	A9282A	34	Р	PEICP1	ł
	7420.00.4	iron	150	6500	] .50	07/17/08	9282	A9282A	34	Р	PEICP1	-
	7439-92-1	Lead	5.0	ND	.5	7/17/08	9282	A9282A	34	P	PEICP1	
	7439-95-4	Magnesium	1000	2500	.50	7/17/08	9282	A9282A	34		PEIOPI	
	7439-96-5	Manganese	25	800	.50	7/17/08	9282	A0282A	24	г 0	PEICPI	
	7439-97-6	Mercury	0.20	ND	10	7/18/08	0202	H0000A	34	Р 	PEICP1	
	7440-02-0	Nickel	10		50	7/17/00	92.02	H9282A	26	cv	HGCV2	
	7440-09-7	Potassium	2500	ND		7/17/00	9282	A9282A	34	Р	PEICP1	1
	7782-49-2	Selenium	25		.50	//1//08	9282	A9282B	31	P	PEICPRAD1	
	7440-22-4	Silver	10	ND	.50	//1//08	9282	A9282A	34	Р	PEICP1	ł
	7440-23-5	Sodium	10	ND	.50	7/17/08	9282	A9282A	34	Р	PEICP1	
	7440-28-0	Thallium	2500	57000	.5 07	7/17/08	928 <u>2</u>	A9282B	31	Р	PEICPRAD1	
-	7440_62_2	Vanadi	5.0	ND	.5 07	7/17/08	9282	A9282A	34	Р	PEICP1	
-	7440 68 6		25	ND	.5 07	/17/08	9282	A9282A	34	Р	PEICP1	
. '	440-00-0	Zinc	25	ND	.5 07	/17/08	9282	A9282A	34	Р	PEICP1	
			······································					1				

#### Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

the state strategy.

# Form1 Inorganic Analysis Data Sheet

Sample ID: AC38601-003 Client Id: PW03-01

Matrix: AQUEOUS Level: LOW

% Solid: 0

Units: UG/L Date Rec: 7/10/2008 Lab Name: Veritech Lab Code: Contract:

Nras No: Sdg No: Case No:

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
7429-90-5Aluminum100ND $.507/17/08$ 9282A9282A35PPEICP17440-38-0Antimony7.5ND $.507/17/08$ 9282A9282A35PPEICP17440-38-2Arsenic4.0ND $.507/17/08$ 9282A9282A35PPEICP17440-39-3Barium25120 $.507/17/08$ 9282A9282A35PPEICP17440-41-7Beryllium4.0ND $.507/17/08$ 9282A9282A35PPEICP17440-43-9Cadmium2.0ND $.507/17/08$ 9282A9282A35PPEICP17440-47-3Chromium2.0ND $.507/17/08$ 9282A9282A35PPEICP17440-48-4Cobalt100023000 $\int$ $.507/17/08$ 9282A9282A35PPEICP17440-48-4Cobalt1012 $.507/17/08$ 9282A9282A35PPEICP17440-48-4Cobalt1012 $.507/17/08$ 9282A9282A35PPEICP17439-89-6Iron15014000 $\int$ $.507/17/08$ 9282A9282A35PPEICP17439-95-4Magnesium10002800 $.507/17/08$ 9282A9282A35PPEICP17439-97-6Mercury0.20ND $107/18/08$ 9282A9282A35PPEICP17439-97-6Mercury		Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File	Seq			
7440-36-0       Antimony       7.5       ND       .507/17/08       9262       A9282A       35       P       PEICP1         7440-38-2       Arsenic       4.0       ND       .507/17/08       9282       A9282A       35       P       PEICP1         7440-38-3       Barium       25       120       .507/17/08       9282       A9282A       35       P       PEICP1         7440-41-7       Beryllium       4.0       ND       .507/17/08       9282       A9282A       35       P       PEICP1         7440-43-9       Cadmium       2.0       ND       .507/17/08       9282       A9282A       35       P       PEICP1         7440-47-3       Chromium       2.0       ND       .507/17/08       9282       A9282A       35       P       PEICP1         7440-48-4       Cobalt       10       12       .507/17/08       9282       A9282A       35       P       PEICP1         7440-48-4       Cobalt       10       12       .507/17/08       9282       A9282A       35       P       PEICP1         7439-92-1       Lead       5.0       Magnesium       1000       2507/17/08       9282       A9282A       35		7429-90-5	Aluminum	100	ND	.5	07/17/08	0282			. 17	Instr	
7440-38-2       Arsenic       4.0       ND       5.07/17/08       9282       A9282A       35       P       PEICP1         7440-39-3       Barium       25       120       5.07/17/08       9282       A9282A       35       P       PEICP1         7440-41-7       Beryllium       4.0       ND       5.07/17/08       9282       A9282A       35       P       PEICP1         7440-43-9       Cadmium       2.0       ND       5.07/17/08       9282       A9282A       35       P       PEICP1         7440-43-9       Cadmium       2.0       ND       5.07/17/08       9282       A9282A       35       P       PEICP1         7440-47-3       Chromium       25       ND       5.07/17/08       9282       A9282A       35       P       PEICP1         7440-48-4       Cobalt       10       12       .507/17/08       9282       A9282A       35       P       PEICP1         7440-8-6       Copper       25       ND       .507/17/08       9282       A9282A       35       P       PEICP1         7439-95-4       Magnesium       1000       2900       .507/17/08       9282       A9282A       35       P	ļ	7440-36-0	Antimony	7.5	ND	5	07/17/00	0000	A9282/	35	F	PEICP1	I
7440-39-3Barlum25120 $.507/17/08$ 9282A9282A35PPEICP17440-41-7Beryllium4.0ND $.507/17/08$ 9282A9282A35PPEICP17440-43-9Cadmium2.0ND $.507/17/08$ 9282A9282A35PPEICP17440-70-2Calcium100023000 $J$ $.507/17/08$ 9282A9282A35PPEICP17440-47-3Chromium25ND $.507/17/08$ 9282A9282A35PPEICP17440-48-4Cobalt1012 $.507/17/08$ 9282A9282A35PPEICP17440-50-8Copper25ND $.507/17/08$ 9282A9282A35PPEICP17439-89-6Iron15014000 $J$ $.507/17/08$ 9282A9282A35PPEICP17439-95-4Magnesium10002900 $.507/17/08$ 9282A9282A35PPEICP17439-97-6Mercury0.20ND $107/18/08$ 9282A9282A35PPEICP17440-02-0Nickel1013 $.507/17/08$ 9282A9282A35PPEICP17440-03-7Potassium250024000 $.507/17/08$ 9282A9282A35PPEICP17440-02-0Nickel1013 $.507/17/08$ 9282A9282A35PPEICP17440-03-7Potassium <t< td=""><td></td><td>7440-38-2</td><td>Arsenic</td><td>4.0</td><td>ND</td><td> -</td><td>07/17/08</td><td>9282</td><td>A9282A</td><td>35</td><td>P</td><td>PEICP1</td><td></td></t<>		7440-38-2	Arsenic	4.0	ND	 -	07/17/08	9282	A9282A	35	P	PEICP1	
7440-41-7         Beryllium         4.0         ND         .507/17/08         9282         A9282A         35         P         PEICP1           7440-43-9         Cadmium         2.0         ND         .507/17/08         9282         A9282A         35         P         PEICP1           7440-70-2         Catcium         1000         23000         J         .507/17/08         9282         A9282A         35         P         PEICP1           7440-47-3         Chromium         25         ND         .507/17/08         9282         A9282A         35         P         PEICP1           7440-44-4         Cobalt         10         12         .507/17/08         9282         A9282A         35         P         PEICP1           7440-48-4         Cobalt         10         12         .507/17/08         9282         A9282A         35         P         PEICP1           7439-92-1         Lead         5.0         ND         .507/17/08         9282         A9282A         35         P         PEICP1           7439-95-4         Magnesium         1000         2900         .507/17/08         9282         A9282A         35         P         PEICP1           7439-97-		7440-39-3	Barium	25	100	.5	07/17/08	9282	A9282A	35	P	PEICP1	
7440-43-9       Cadmium       2.0       ND       .5 07/17/08       9282       A9282A       35       P       PEICP1         7440-70-2       Calcium       1000       23000       1       .5 07/17/08       9282       A9282A       35       P       PEICP1         7440-47-3       Chromium       25       ND       .5 07/17/08       9282       A9282A       35       P       PEICP1         7440-48-4       Cobalt       10       12       .5 07/17/08       9282       A9282A       35       P       PEICP1         7440-50-8       Copper       25       ND       .5 07/17/08       9282       A9282A       35       P       PEICP1         7439-92-1       Lead       5.0       ND       .5 07/17/08       9282       A9282A       35       P       PEICP1         7439-95-4       Magnesium       1000       2900       .5 07/17/08       9282       A9282A       35       P       PEICP1         7439-97-6       Mercury       0.20       ND       107/18/08       9282       A9282A       35       P       PEICP1         7440-02-0       Nickel       10       13       .5 07/17/08       9282       A9282A       35 <td></td> <td>7440-41-7</td> <td>Bervilium</td> <td>20</td> <td>120</td> <td>.5</td> <td>07/17/08</td> <td>9282</td> <td>A9282A</td> <td>35</td> <td>P</td> <td>PEICP1</td> <td></td>		7440-41-7	Bervilium	20	120	.5	07/17/08	9282	A9282A	35	P	PEICP1	
7440-70-2Calcium100023000 $\int_{-5}^{5} 0^{7/17/08}$ 9282A9282A35PPEICP17440-47-3Chromium25ND $5$ $0^{7/17/08}$ 9282A9282A35PPEICP17440-48-4Cobalt1012 $5$ $0^{7/17/08}$ 9282A9282A35PPEICP17440-50-8Copper25ND $5$ $0^{7/17/08}$ 9282A9282A35PPEICP17439-89-6Iron15014000 $\int_{-5}^{5} 0^{7/17/08}$ 9282A9282A35PPEICP17439-92-1Lead5.0ND $5$ $0^{7/17/08}$ 9282A9282A35PPEICP17439-95-4Magnesium10002900 $5$ $0^{7/17/08}$ 9282A9282A35PPEICP17439-96-5Marganese25440 $5$ $0^{7/17/08}$ 9282A9282A35PPEICP17439-97-6Mercury0.20ND1 $0^{7/17/08}$ 9282A9282A35PPEICP17440-02-0Nickel1013 $5$ $0^{7/17/08}$ 9282A9282A35PPEICP17440-02-7Potassium250024000 $5$ $0^{7/17/08}$ 9282A9282A35PPEICP17440-02-7Nickel1013 $5$ $0^{7/17/08}$ 9282A9282A35PPEICP17440-02-7Steinium25039000<		7440-43-9	Cadmium	4.0	ND	.50	07/17/08	9282	A9282A	35	P	PEICP1	
Transmission       Constraint       1000       23000       J       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-47-3       Chromium       25       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-48-4       Cobalt       10       12       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-50-8       Copper       25       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7439-89-6       Iron       150       14000       J       .5       07/17/08       9282       A9282A       35       P       PEICP1         7439-95-4       Magnesium       1000       2900       .5       07/17/08       9282       A9282A       35       P       PEICP1         7439-95-4       Magnesium       1000       2900       .5       07/17/08       9282       A9282A       35       P       PEICP1         7439-95-5       Marganese       25       440       .5       07/17/08       9282       A9282A       35       P       PEICP1         744		7440-70-2	Calatum	2.0	ND	.5 (	07/17/08	9282	A9282A	35	Р	PEICP1	
Hadd-47-3       Chromium       25       ND       5       07/17/08       9282       A9282A       35       P       PEICP1         7440-48-4       Cobalt       10       12       5       07/17/08       9282       A9282A       35       P       PEICP1         7440-50-8       Copper       25       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7439-89-6       Iron       150       14000       J       .5       07/17/08       9282       A9282A       35       P       PEICP1         7439-92-1       Lead       5.0       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7439-95-4       Magnesium       1000       2900       .5       07/17/08       9282       A9282A       35       P       PEICP1         7439-96-5       Marganese       25       440       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-02-0       Nickel       10       13       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-02-0       Nickel		7440 47 2	Carcium	1000	23000	J .50	07/17/08	9282	A9282A	35	P	PEIOP1	
7440-48-4Cobalit1012 $5$ $07/17/08$ 9282A9282A35PPEICP1 $7440-50-8$ Copper25ND $5$ $07/17/08$ 9282A9282A35PPEICP1 $7439-89-6$ Iron15014000 $J$ $5$ $07/17/08$ 9282A9282A35PPEICP1 $7439-95-4$ Magnesium10002900 $5$ $07/17/08$ 9282A9282A35PPEICP1 $7439-96-5$ Marganese25440 $5$ $07/17/08$ 9282A9282A35PPEICP1 $7439-96-5$ Marganese25440 $5$ $07/17/08$ 9282A9282A35PPEICP1 $7439-96-5$ Marganese25440 $5$ $07/17/08$ 9282A9282A35PPEICP1 $7439-97-6$ Mercury0.20ND1 $07/18/08$ 9282A9282A35PPEICP1 $7440-02-0$ Nickel1013 $5$ $07/17/08$ 9282A9282A35PPEICP1 $7440-02-7$ Potassium250024000 $5$ $07/17/08$ 9282A9282A35PPEICP1 $7440-22-4$ Silver10ND $5$ $07/17/08$ 9282A9282A35PPEICP1 $7440-22-4$ Silver10ND $5$ $07/17/08$ 9282A9282A35PPEICP1 $7440-23-5$ Sodium250039000<		7440-47-3	Chromium	25	ND	.50	7/17/08	9282	A92824	35	- -	PEICPI	
7440-50-8       Copper       25       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7439-89-6       Iron       150       14000       J       .5       07/17/08       9282       A9282A       35       P       PEICP1         7439-92-1       Lead       5.0       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7439-95-4       Magnesium       1000       2900       .5       07/17/08       9282       A9282A       35       P       PEICP1         7439-95-4       Magnesium       1000       2900       .5       07/17/08       9282       A9282A       35       P       PEICP1         7439-97-6       Marganese       25       440       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-02-0       Nickel       10       13       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-09-7       Potassium       2500       24000       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-22-4       Si		7440-48-4	Cobalt	10	12	.50	7/17/08	9282	A0202A	25	Г Г	PEICP1	
7439-89-6Iron15014000J507/17/089282A9282A35PPEICP17439-92-1Lead5.0ND507/17/089282A9282A35PPEICP17439-95-4Magnesium10002900507/17/089282A9282A35PPEICP17439-95-5Manganese25440.507/17/089282A9282A35PPEICP17439-97-6Mercury0.20ND107/18/089282A9282A35PPEICP17440-02-0Nickel1013.507/17/089282A9282A35PPEICP17440-09-7Potassium250024000.507/17/089282A9282B32PPEICP17440-22-4Silver10ND.507/17/089282A9282A35PPEICP17440-23-5Sodium250039000.507/17/089282A9282A35PPEICP17440-23-5Sodium250039000.507/17/089282A9282A35PPEICP17440-23-5Sodium250039000.507/17/089282A9282A35PPEICP17440-23-5Sodium250ND.507/17/089282A9282A35PPEICP17440-23-6Thallium5.0ND.507/17/089282A9282A35PPEICP17440-23-0Thallium5.0ND.507/17/08 <td></td> <td>7440-50-8</td> <td>Copper</td> <td>25</td> <td>ND</td> <td>.50</td> <td>7/17/08</td> <td>0202</td> <td>A0000</td> <td>30</td> <td>۲</td> <td>PEICP1</td> <td></td>		7440-50-8	Copper	25	ND	.50	7/17/08	0202	A0000	30	۲	PEICP1	
7439-92-1       Lead       5.0       ND       5.0       717/08       9282       A9282A       35       P       PEICP1         7439-95-4       Magnesium       1000       2900       .5       07/17/08       9282       A9282A       35       P       PEICP1         7439-95-4       Magnesium       1000       2900       .5       07/17/08       9282       A9282A       35       P       PEICP1         7439-95-5       Manganese       25       440       .5       07/17/08       9282       A9282A       35       P       PEICP1         7439-97-6       Mercury       0.20       ND       1       07/18/08       9282       A9282A       35       P       PEICP1         7440-02-0       Nickel       10       13       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-02-0       Nickel       10       13       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-02-2       Selenium       2500       24000       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-22-4       Silver <td< td=""><td></td><td>7439-89-6</td><td>Iron</td><td>150</td><td>14000 -</td><td>T 50</td><td>7/17/00</td><td>9202</td><td>A9282A</td><td>35</td><td>Р</td><td>PEICP1</td><td></td></td<>		7439-89-6	Iron	150	14000 -	T 50	7/17/00	9202	A9282A	35	Р	PEICP1	
7439-95-4       Magnesium       1000       2900       .507/17/08       9282       A9282A       35       P       PEICP1         7439-96-5       Manganese       25       440       .507/17/08       9282       A9282A       35       P       PEICP1         7439-97-6       Mercury       0.20       ND       107/18/08       9282       A9282A       35       P       PEICP1         7440-02-0       Nickel       10       13       .507/17/08       9282       A9282A       35       P       PEICP1         7440-09-7       Potassium       2500       24000       .507/17/08       9282       A9282A       35       P       PEICP1         7440-22-4       Silver       10       13       .507/17/08       9282       A9282A       35       P       PEICP1         7440-22-4       Silver       10       ND       .507/17/08       9282       A9282A       35       P       PEICP1         7440-22-4       Silver       10       ND       .507/17/08       9282       A9282A       35       P       PEICP1         7440-23-5       Sodium       2500       39000       .507/17/08       9282       A9282A       35       P <td></td> <td>7439-92-1</td> <td>Lead</td> <td>5.0</td> <td>ND</td> <td>)</td> <td>7/17/00</td> <td>9282</td> <td>A9282A</td> <td>35</td> <td>Ρ</td> <td>PEICP1</td> <td>ļ</td>		7439-92-1	Lead	5.0	ND	)	7/17/00	9282	A9282A	35	Ρ	PEICP1	ļ
7439-96-5       Manganese       25       440       .507/17/08       9282       A9282A       35       P       PEICP1         7439-97-6       Mercury       0.20       ND       107/18/08       9282       A9282A       35       P       PEICP1         7440-02-0       Nickel       10       13       .507/17/08       9282       A9282A       35       P       PEICP1         7440-09-7       Potassium       2500       24000       .507/17/08       9282       A9282B       32       P       PEICP1         7440-09-7       Potassium       2500       24000       .507/17/08       9282       A9282B       32       P       PEICP1         7440-22-4       Silver       10       ND       .507/17/08       9282       A9282B       35       P       PEICP1         7440-22-4       Silver       10       ND       .507/17/08       9282       A9282A       35       P       PEICP1         7440-23-5       Sodium       2500       39000       .507/17/08       9282       A9282A       35       P       PEICP1         7440-23-0       Thallium       5.0       ND       .507/17/08       9282       A9282A       35		7439-95-4	Magnesium	1000	2000	.50	//1//08	9282	A9282A	35	Ρ	PEICP1	
7439-97-6       Mercury       0.20       ND       1       07/17/08       9282       A9282A       35       P       PEICP1         7440-02-0       Nickel       10       13       .5       07/17/08       9282       A9282A       27       CV       HGCV2         7440-09-7       Potassium       2500       24000       .5       07/17/08       9282       A9282A       35       P       PEICP1         782-49-2       Selenium       2500       24000       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-23-5       Sodium       2500       39000       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-28-0       Thallium       5.0       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-62-2       Vanadium <t< td=""><td></td><td>7439-96-5</td><td>Manganese</td><td>25</td><td>2900</td><td>.50</td><td>7/17/08</td><td>9282</td><td>A9282A</td><td>35</td><td>Ρ</td><td>PEICP1</td><td></td></t<>		7439-96-5	Manganese	25	2900	.50	7/17/08	9282	A9282A	35	Ρ	PEICP1	
7440-02-0       Nickel       10       10       107/18/08       9282       H9282A       27       CV       HGCV2         7440-09-7       Potassium       2500       24000       .5       07/17/08       9282       A9282B       35       P       PEICP1         7782-49-2       Selenium       250       24000       .5       07/17/08       9282       A9282B       32       P       PEICPRAD1         7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       35       P       PEICPRAD1         7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       35       P       PEICP14         7440-23-5       Sodium       2500       39000       .5       07/17/08       9282       A9282A       35       P       PEICP14         7440-23-5       Sodium       2500       39000       .5       07/17/08       9282       A9282A       35       P       PEICP14         7440-62-2       Vanadium       5.0       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-66-6       Zinc       25		7439-97-6	Mercury	25	440	.507	7/17/08	9282	A9282A	35	P	PEICP1	
Trackel       10       13       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-09-7       Potassium       2500       24000       .5       07/17/08       9282       A9282B       32       P       PEICP1AD1         7782-49-2       Selenium       25       ND       .5       07/17/08       9282       A9282A       35       P       PEICPRAD1         7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1AD1         7440-23-5       Sodium       2500       39000       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-28-0       Thallium       5.0       ND       .5       07/17/08       9282       A9282B       32       P       PEICP1AD1         7440-62-2       Vanadium       5.0       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1AD1         7440-66-6       Zinc       25       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-66-6       Zinc       25 <t< td=""><td></td><td>7440-02-0</td><td>Nickol</td><td>0.20</td><td>ND</td><td>1 07</td><td>7/18/08</td><td>9282</td><td>H9282A</td><td>27</td><td>cv</td><td>HGCV2</td><td></td></t<>		7440-02-0	Nickol	0.20	ND	1 07	7/18/08	9282	H9282A	27	cv	HGCV2	
Potassium       2500       24000       .5       07/17/08       9282       A9282B       32       P       PEICPRAD1         7782-49-2       Selenium       25       ND       .5       07/17/08       9282       A9282B       32       P       PEICPRAD1         7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-23-5       Sodium       2500       39000       .5       07/17/08       9282       A9282B       32       P       PEICP1         7440-28-0       Thallium       5.0       ND       .5       07/17/08       9282       A9282B       32       P       PEICP1         7440-62-2       Vanadium       250       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-66-6       Zinc       25       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-66-6       Zinc       25       130       .5       07/17/08       9282       A9282A       35       P       PEICP1		7440-09-7	Betaal	10	13	.5 07	//17/08	9282	A9282A	35	Р	PEICP1	
7782-49-2       Selenium       25       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-23-5       Sodium       2500       39000       .5       07/17/08       9282       A9282B       32       P       PEICP1         7440-28-0       Thallium       5.0       ND       .5       07/17/08       9282       A9282B       32       P       PEICP1         7440-62-2       Vanadium       25       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-66-6       Zinc       25       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-66-6       Zinc       25       130       .5       07/17/08       9282       A9282A       35       P       PEICP1		7792 40 0	Potassium	2500	24000	.5 07	/17/08	9282	A9282B	32	P	PEICEDADA	
7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-23-5       Sodium       2500       39000       .5       07/17/08       9282       A9282B       32       P       PEICP1         7440-28-0       Thallium       5.0       ND       .5       07/17/08       9282       A9282B       32       P       PEICPRAD1         7440-62-2       Vanadium       25       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-66-6       Zinc       25       130       .5       07/17/08       9282       A9282A       35       P       PEICP1		7440 00 4	Selenium	25	ND	.5 07	/17/08	9282	A9282A	35	, D	I LICERADI	
7440-23-5       Sodium       2500       39000       .5       07/17/08       9282       A9282B       32       P       PEICP1         7440-28-0       Thallium       5.0       ND       .5       07/17/08       9282       A9282B       32       P       PEICPRAD1         7440-62-2       Vanadium       25       ND       .5       07/17/08       9282       A9282A       35       P       PEICP1         7440-66-6       Zinc       25       130       .5       07/17/08       9282       A9282A       35       P       PEICP1	-	440-22-4	Silver	10	ND	.507	/17/08	9282	A0292A	25	г Б	PEICP1	ĺ
7440-28-0         Thallium         5.0         ND         .5         07/17/08         9282         A9282B         32         P         PEICPRAD1           7440-62-2         Vanadium         25         ND         .5         07/17/08         9282         A9282A         35         P         PEICP1           7440-66-6         Zinc         25         130         .5         07/17/08         9282         A9282A         35         P         PEICP1	7	7440-23-5	Sodium	2500	39000	.507	/17/08	0202	A00000	30	P	PEICP1	-
7440-62-2         Vanadium         25         ND         .5         07/17/08         9282         A9282A         35         P         PEICP1           7440-66-6         Zinc         25         ND         .5         07/17/08         9282         A9282A         35         P         PEICP1           7440-66-6         Zinc         25         130         .5         07/17/08         9282         A9282A         35         P         PEICP1	7	/440-28-0	Thallium	5.0	ND	507	17/09	9202	A9282B	32	Ρ	PEICPRAD1	1
7440-66-6         Zinc         25         130         .5         07/17/08         9282         A9282A         35         P         PEICP1           P         PEICP1         .5         .5         07/17/08         9282         A9282A         35         P         PEICP1	7	440-62-2	Vanadium	25	ND	5.07/	17/00	9282	A9282A	35	Р	PEICP1	
20 130 .5U//17/08 9282 A9282A 35 P PEICP1	7	440-66-6	Zinc	25	120	.0077	17/08	9282	A9282A	35	Р	PEICP1	
					130	.507/	17/08	9282	A9282A	35	Р	PEICP1	ļ

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Contraction of the second 

大阪にない

Client Id: PW03-05 Matrix:

Sample ID: AC38601-004 AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/10/2008

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No: Case No:

Cas No.         Analyte         RL         Conc         Dil Fact         Analysis Date         Prep Batch         File:         Num: Num:         M         Instr           7429-90-5         Aluminum         100         ND         .5'07/17/08         9282         A9282A         40         P         PEICP1           7440-36-0         Antimony         7.5         ND         .5'07/17/08         9282         A9282A         40         P         PEICP1           7440-38-2         Arsenic         4.0         ND         .5'07/17/08         9282         A9282A         40         P         PEICP1           7440-39-3         Barium         2.5'         46         .5'07/17/08         9282         A9282A         40         P         PEICP1           7440-43-9         Cadmium         2.0         ND         .5'07/17/08         9282         A9282A         40         P         PEICP1           7440-47-3         Chromium         25         ND         .5'07/17/08         9282         A9282A         40         P         PEICP1           7440-47-3         Chromium         25         ND         .5'07/17/08         9282         A9282A         40         P         PEICP1	ł			1			1						
7429-90-5         Aluminum         100         ND         .5         07/17/08         9282         A9282A         40         P         PEICP1           7440-36-0         Antimony         7.5         ND         .5         07/17/08         9282         A9282A         40         P         PEICP1           7440-38-2         Arsenic         4.0         ND         .5         07/17/08         9282         A9282A         40         P         PEICP1           7440-39-3         Barium         25         46         .5         07/17/08         9282         A9282A         40         P         PEICP1           7440-43-9         Cadmium         2.0         ND         .5         07/17/08         9282         A9282A         40         P         PEICP1           7440-43-9         Cadmium         2.0         ND         .5         07/17/08         9282         A9282A         40         P         PEICP1           7440-43-3         Chromium         25         ND         .5         07/17/08         9282         A9282A         40         P         PEICP1           7440-64-8         Cobatt         10         ND         .5         07/17/08         9282		Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq	м	Instr	
7440-36-0       Antimony       7.5       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7440-38-2       Arsenic       4.0       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7440-39-3       Barium       25       46       .507/17/08       9282       A9282A       40       P       PEICP1         7440-41-7       Beryllium       4.0       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7440-43-9       Cadmium       2.0       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7440-43-9       Cadmium       2.0       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7440-43-4       Cobalt       100       12000       J       .507/17/08       9282       A9282A       40       P       PEICP1         7440-48.4       Cobalt       10       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7439-89.6       Iron       150       3200       J       .507/17/08       9282       A9282A		7429-90-5	Aluminum	100	ND	.5	07/17/08	9282	A0282A	40			
7440-38-2       Arsenic       4.0       ND       .5       07/17/08       9282       A9262A       40       P       PEICP1         7440-39-3       Barium       25       46       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-41-7       Beryllium       4.0       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-43-9       Cadmium       2.0       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-47-3       Chromium       2.0       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-48-4       Cobalt       10       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-850-8       Copper       25       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-89-6       Iron       150       3200       J       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-92-6       Magnesium		7440-36-0	Antimony	7.5	ND	.5	07/17/08	0282	A0202A	40	P	PEICP1	
7440-39-3       Barium       25       46       .507/17/08       9282       A9282A       40       P       PEICP1         7440-41-7       Beryllium       4.0       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7440-43-9       Cadmium       2.0       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7440-47-3       Chromium       2.0       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7440-47-3       Chromium       25       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7440-48-4       Cobalt       10       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7440-50-8       Copper       25       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7439-92-1       Lead       5.0       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7439-95-5       Magnesium       1000       2000       .507/17/08       9282       A9282A       40       P		7440-38-2	Arsenic	4.0	ND	5	07/17/09	0202	ASZOZA	40	Р	PEICP1	
7440-41-7       Beryllium       4.0       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7440-43-9       Cadmium       2.0       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7440-43-9       Cadmium       2.0       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7440-47-3       Chromium       25       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7440-48-4       Cobalt       10       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7440-48-4       Cobalt       10       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7440-48-4       Cobalt       10       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7439-89-6       Iron       150       3200       J       .507/17/08       9282       A9282A       40       P       PEICP1         7439-92-1       Lead       5.0       ND       .507/17/08       9282       A9282A       40       P </td <td></td> <td>7440-39-3</td> <td>Barium</td> <td>25</td> <td>46</td> <td>.0</td> <td>07/17/00</td> <td>9282</td> <td>A9282A</td> <td>40</td> <td>Р</td> <td>PEICP1</td> <td></td>		7440-39-3	Barium	25	46	.0	07/17/00	9282	A9282A	40	Р	PEICP1	
7440-43-9       Cadmium       2.0       ND       50/7/17/08       9282       A9282A       40       P       PEICP1         7440-70-2       Calcium       1000       12000       J       50/7/17/08       9282       A9282A       40       P       PEICP1         7440-47-3       Chromium       25       ND       .50/7/17/08       9282       A9282A       40       P       PEICP1         7440-47-3       Chromium       25       ND       .50/7/17/08       9282       A9282A       40       P       PEICP1         7440-48-4       Cobalt       10       ND       .50/7/17/08       9282       A9282A       40       P       PEICP1         7440-60-8       Copper       25       ND       .50/7/17/08       9282       A9282A       40       P       PEICP1         7439-89-6       Iron       150       3200       J       .50/7/17/08       9282       A9282A       40       P       PEICP1         7439-95-4       Magnesium       1000       2000       .50/7/17/08       9282       A9282A       40       P       PEICP1         7439-97-6       Mercury       0.20       ND       10/7/16/08       9282       A9282A<		7440-41-7	Beryllium	4.0		.5	07/17/08	9282	A9282A	40	Ρ	PEICP1	
7440-70-2       Calcium       1000       12000       J       .507/17/08       9282       A9282A       40       P       PEICP1         7440-47-3       Chromium       25       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7440-48-4       Cobalt       10       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7440-48-4       Cobalt       10       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7440-50-8       Copper       25       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7439-92-1       Lead       5.0       ND       .507/17/08       9282       A9282A       40       P       PEICP1         7439-95-5       Magnesium       1000       2000       .507/17/08       9282       A9282A       40       P       PEICP1         7439-96-5       Marganese       25       130       .507/17/08       9282       A9282A       40       P       PEICP1         7440-02-0       Nickel       10       12       .507/17/08       9282       A9282A       40		7440-43-9	Cadmium	2.0		.5	07/17/08	9282	A9282A	40	Р	PEICP1	
7440-47-3         Chromium         25         ND         .507/17/08         9282         A9282A         40         P         PEICP1           7440-47-3         Chromium         25         ND         .507/17/08         9282         A9282A         40         P         PEICP1           7440-48-4         Cobalt         10         ND         .507/17/08         9282         A9282A         40         P         PEICP1           7440-50-8         Copper         25         ND         .507/17/08         9282         A9282A         40         P         PEICP1           7439-89-6         Iron         150         3200         J         .507/17/08         9282         A9282A         40         P         PEICP1           7439-92-1         Lead         5.0         ND         .507/17/08         9282         A9282A         40         P         PEICP1           7439-95-4         Magnesium         1000         2000         .507/17/08         9282         A9282A         40         P         PEICP1           7439-97-6         Mercury         0.20         ND         107/18/08         9282         A9282A         40         P         PEICP1           7440-02-0		7440-70-2	Calcium	2.0		.5	07/17/08	9282	A9282A	40	Ρ	PEICP1	
7440-48-4         Cobalit         10         ND         .5         07/17/08         9282         A9282A         40         P         PEICP1           7440-48-4         Cobalit         10         ND         .5         07/17/08         9282         A9282A         40         P         PEICP1           7440-50-8         Copper         25         ND         .5         07/17/08         9282         A9282A         40         P         PEICP1           7439-89-6         Iron         150         3200         J         .5         07/17/08         9282         A9282A         40         P         PEICP1           7439-92-1         Lead         5.0         ND         .5         07/17/08         9282         A9282A         40         P         PEICP1           7439-95-4         Magnesium         1000         2000         .5         07/17/08         9282         A9282A         40         P         PEICP1           7439-96-5         Manganese         25         130         .5         07/17/08         9282         A9282A         40         P         PEICP1           7440-02-0         Nickel         10         12         .5         07/17/08 <td< td=""><td></td><td>7440-47-3</td><td>Chromium</td><td>1000</td><td>12000</td><td>5. ر</td><td>07/17/08</td><td>9282</td><td>A9282A</td><td>40</td><td>Ρ</td><td>PEICP1</td><td>ł</td></td<>		7440-47-3	Chromium	1000	12000	5. ر	07/17/08	9282	A9282A	40	Ρ	PEICP1	ł
Triangle       Cobait       10       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-50-8       Copper       25       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-89-6       Iron       150       3200       J       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-92-1       Lead       5.0       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-95-4       Magnesium       1000       2000       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-96-5       Manganese       25       130       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-02-0       Nickel       10       12       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-02-0       Nickel       10       12       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-02-7       Potassium		7440-48-4	Cabalt	25	ND	.50	07/17/08	9282	A9282A	40	Ρ	PEICP1	
1440-30-8       Copper       25       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-89-6       Iron       150       3200       J       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-92-1       Lead       5.0       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-95-4       Magnesium       1000       2000       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-96-5       Magnesium       1000       2000       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-97-6       Mercury       0.20       ND       1       07/18/08       9282       H9282A       28       CV       HGCV2         7440-02-0       Nickel       10       12       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-02-7       Potassium       2500       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-22-4       Silver </td <td></td> <td>7440 50 0</td> <td>Cobait</td> <td>10</td> <td>ND</td> <td>.50</td> <td>07/17/08</td> <td>9282</td> <td>A9282A</td> <td>40</td> <td>P</td> <td>PEICP1</td> <td></td>		7440 50 0	Cobait	10	ND	.50	07/17/08	9282	A9282A	40	P	PEICP1	
7439-89-6       Iron       150       3200       J       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-92-1       Lead       5.0       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-95-4       Magnesium       1000       2000       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-96-5       Manganese       25       130       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-97-6       Mercury       0.20       ND       1       07/18/08       9282       A9282A       40       P       PEICP1         7440-02-0       Nickel       10       12       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-09-7       Potassium       2500       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-23-5       Sodium		7440-50-6	Copper	25	ND	.5 0	7/17/08	9282	A9282A	40	Р	PEICP1	
7439-92-1       Lead       5.0       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-95-4       Magnesium       1000       2000       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-96-5       Manganese       25       130       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-97-6       Mercury       0.20       ND       1       07/17/08       9282       A9282A       40       P       PEICP1         7440-02-0       Nickel       10       12       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-09-7       Potassium       2500       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-22-4       Silver       10       12       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-23-5       Sodium       2500 <td></td> <td>7439-89-6</td> <td>Iron</td> <td>150</td> <td>3200</td> <td>] .50</td> <td>7/17/08</td> <td>9282</td> <td>A9282A</td> <td>40</td> <td>P</td> <td>PEICPI</td> <td></td>		7439-89-6	Iron	150	3200	] .50	7/17/08	9282	A9282A	40	P	PEICPI	
7439-95-4       Magnesium       1000       2000       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-96-5       Manganese       25       130       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-97-6       Mercury       0.20       ND       1       07/17/08       9282       A9282A       40       P       PEICP1         7440-02-0       Nickel       10       12       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-09-7       Potassium       2500       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-02-4       Silver       10       12       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-23-5       Sodium       2500       34000       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-23-0       Thallium <td< td=""><td></td><td>7439-92-1</td><td>Lead</td><td>5.0</td><td>ND</td><td>.50</td><td>7/17/08</td><td>9282</td><td>A9282A</td><td>40</td><td>, D</td><td></td><td></td></td<>		7439-92-1	Lead	5.0	ND	.50	7/17/08	9282	A9282A	40	, D		
7439-96-5       Manganese       25       130       .5       07/17/08       9282       A9282A       40       P       PEICP1         7439-97-6       Mercury       0.20       ND       1       07/17/08       9282       A9282A       40       P       PEICP1         7440-02-0       Nickel       10       12       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-09-7       Potassium       2500       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-09-7       Potassium       2500       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-22-4       Selenium       25       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-23-5       Sodium       2500       34000       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-28-0       Thallium <td< td=""><td></td><td>7439-95-4</td><td>Magnesium</td><td>1000</td><td>2000</td><td>.50</td><td>7/17/08</td><td>9282</td><td>A0292A</td><td>40</td><td>г р</td><td>PEICP1</td><td></td></td<>		7439-95-4	Magnesium	1000	2000	.50	7/17/08	9282	A0292A	40	г р	PEICP1	
7439-97-6       Mercury       0.20       ND       1       07/18/08       9282       H9282A       40       P       PEICP1         7440-02-0       Nickel       10       12       .5       07/17/08       9282       H9282A       28       CV       HGCV2         7440-09-7       Potassium       2500       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7782-49-2       Selenium       250       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       40       P       PEICPRAD1         7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-23-5       Sodium       2500       34000       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-28-0       Thallium       5.0       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-62-2       Vanadium       2		7439-96-5	Manganese	25	130	50	7/17/08	0202	A00004	40	μ.	PEICP1	
7440-02-0       Nickel       10       12       .5       07/17/08       9282       A9282A       28       CV       HGCV2         7440-09-7       Potassium       2500       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7782-49-2       Selenium       250       ND       .5       07/17/08       9282       A9282B       33       P       PEICP1         7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-23-5       Sodium       2500       34000       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-28-0       Thallium       5.0       MD       .5       07/17/08       9282       A9282A       40       P       PEICP10         7440-62-2       Vanadium       25       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-66-6       Zinc       25		7439-97-6	Mercury	0.20	ND	10	7/19/00	9202	A9282A	40	Р	PEICP1	
7440-09-7       Potassium       2500       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7782-49-2       Selenium       25       ND       .5       07/17/08       9282       A9282B       33       P       PEICPRAD1         7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       40       P       PEICPRAD1         7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-23-5       Sodium       2500       34000       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-28-0       Thallium       5.0       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-62-2       Vanadium       25       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-66-6       Zinc       25       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-66-6       Zinc       25 <td></td> <td>7440-02-0</td> <td>Nickel</td> <td>10</td> <td>12</td> <td>50</td> <td></td> <td>9282</td> <td>H9282A</td> <td>28</td> <td>CV</td> <td>HGCV2</td> <td>İ</td>		7440-02-0	Nickel	10	12	50		9282	H9282A	28	CV	HGCV2	İ
7782-49-2       Selenium       25       ND       .5       07/17/08       9282       A9282B       33       P       PEICPRAD1         7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       40       P       PEICPRAD1         7440-23-5       Sodium       2500       34000       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-23-5       Sodium       2500       34000       .5       07/17/08       9282       A9282B       33       P       PEICP1         7440-28-0       Thallium       5.0       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-62-2       Vanadium       250       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-66-6       Zinc       25       29       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-66-6       Zinc       25       29       .5       07/17/08       9282       A9282A       40       P       PEICP1		7440-09-7	Potassium	2500		.50	/////08	9282	A9282A	40	Ρ	PEICP1	Ì
7440-22-4       Silver       10       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-23-5       Sodium       2500       34000       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-23-5       Sodium       2500       34000       .5       07/17/08       9282       A9282B       33       P       PEICP10         7440-28-0       Thallium       5.0       ND       .5       07/17/08       9282       A9282A       40       P       PEICP10         7440-62-2       Vanadium       25       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-66-6       Zinc       25       29       .5       07/17/08       9282       A9282A       40       P       PEICP1		7782-49-2	Selenium	25		.507	//17/08	9282	A9282B	33	Р	PEICPRAD1	l
7440-23-5       Sodium       2500       34000       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-23-5       Sodium       2500       34000       .5       07/17/08       9282       A9282B       33       P       PEICP1         7440-28-0       Thallium       5.0       ND       .5       07/17/08       9282       A9282A       40       P       PEICP10         7440-62-2       Vanadium       25       ND       .5       07/17/08       9282       A9282A       40       P       PEICP1         7440-66-6       Zinc       25       29       .5       07/17/08       9282       A9282A       40       P       PEICP1		7440-22-4	Silver	20	ND	.5 07	7/17/08	9282	A9282A	40	Р	PEICP1	
7440-28-0         Thallium         5.0         ND         .5         07/17/08         9282         A9282B         33         P         PEICPRAD1           7440-62-2         Vanadium         5.0         ND         .5         07/17/08         9282         A9282A         40         P         PEICPRAD1           7440-62-2         Vanadium         25         ND         .5         07/17/08         9282         A9282A         40         P         PEICP1           7440-66-6         Zinc         25         29         .5         07/17/08         9282         A9282A         40         P         PEICP1	,	7440-23-5	Sodium	10	ND	.5 07	7/17/08	9282	A9282A	40	Р	PEICP1	
THAN2000         Thailium         5.0         ND         .5         07/17/08         9282         A9282A         40         P         PEICP1           7440-62-2         Vanadium         25         ND         .5         07/17/08         9282         A9282A         40         P         PEICP1           7440-66-6         Zinc         25         29         .5         07/17/08         9282         A9282A         40         P         PEICP1		7440-28-0	Thelling	2500	34000	.5 07	/17/08	9282	A9282B	33	P	PEICPRAD1	
7440-62-2         Vanadium         25         ND         .5         07/17/08         9282         A9282A         40         P         PEICP1           7440-66-6         Zinc         25         29         .5         07/17/08         9282         A9282A         40         P         PEICP1		7440 62 0	rnailium	5.0	ND	.5 07	/17/08	9282	A9282A	10	P	PEICP1	1
7440-00-0 Zinc 25 29 .5 07/17/08 9282 A9282A 40 P PEICP1	•	440 60 0	vanadium	25	ND	.5 07	/17/08	9282	A9282A	10	P	PEICP1	
	1	440-66-6	Zinc	25	29	.5 07	/17/08	9282	A9282A	10	P	PEICP1	

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

MS - ICP-MS

の語が語い

NAME OF CASE

NONERO SEGN

Sample ID: AC38601-005 Client Id: Matrix:

and the second

(international)

State State

PW03-03 AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/10/2008

Lab Name:

Lab Code:

Contract:

Veritech

Nras No: Sdg No: Case No:

Cas M	lo. Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File	Seq	6.4		
7429-90	0-5 Aluminum	100	ND	.5	07/17/08	0282	400004			Instr	
7440-36	6-0 Antimony	7.5	ли	5	07/17/09	0000	A9282A	41	P	PEICP1	
7440-38	3-2 Arsenic	4.0	ND		07/17/06	9282	A9282A	41	P	PEICP1	
7440-39	-3 Barium	25		.5	07/17/08	9282	A9282A	41	Р	PEICP1	
7440-41	-7 Bervilium	20	ND	.5	07/17/08	9282	A9282A	41	Р	PEICP1	
7440-43	-9 Cadmium	4.0	ND	.5	07/17/08	9282	A9282A	41	Ρ	PEICP1	
7440-70	2 Calainan	2.0	ND	.5	07/17/08	9282	A9282A	41	Р	PEICP1	
7440 47		1000	8800	J .50	07/17/08	9282	A9282A	41	Р	PEICPI	ł
7440.40	-S Chromium	25	ND	.5 0	7/17/08	9282	A9282A	41	Þ	BEIODA	
7440-48-	4 Cobalt	10	ND	.50	7/17/08	9282	492824	11	, ,	PEICPT	
7440-50-	8 Copper	25	ND	.50	7/17/08	0282	A0000A		-	PEICP1	1
7439-89-	6 Iron	150	450	7 50	7/17/08	0202	A920ZA	41	Ρ	PEICP1	
7439-92-	1 Lead	5.0	ND	J .00	7/17/00	9262	A9282A	41	Р	PEICP1	
7439-95-4	4 Magnesium	1000	1200	.50	/////08	9282	A9282A	41	Ρ	PEICP1	
7439-96-8	5 Manganese	25	1300	.50	//17/08	9282	A9282A	41	Р	PEICP1	
7439-97-6	Mercury	0.00	370	.50	7/17/08	9282	A9282A	41	Ρ	PEICP1	
7440-02-0	Nickol	0.20	ND	107	7/18/08	9282	H9282A	29	cv	HGCV2	
7440-09-7	Botossium	10	ND	.5 07	7/17/08	9282	A9282A	41	Р	PEICP1	
7782 40 0	rotassium	2500	ND	.507	//17/08	9282	A9282B	34	Р		
7440.00	Selenium	25	ND	.5 07	/17/08	9282	A9282A	41	D	PEIOP4	
7440-22-4	Silver	10	ND	.5 07	/17/08	9282	A9282A	44		PEICPI	
/440-23-5	Sodium	2500	29000	.5 07	/17/08	9282	A02027		۳ -	PEICP1	
7440-28-0	Thallium	5.0	ND	507	17/09	0202	ASSOLD S	54	Р	PEICPRAD1	
7440-62-2	Vanadium	25	ND	507	17/00	9202	A9282A 4	11	Р	PEICP1	
7440-66-6	Zinc	25	52		17/08	9282	A9282A 4	1	P	PEICP1	
				.507/	1 //08	9282	A9282A 4	1	P	PEICP1	

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor

MS - ICP-MS
Client Id: PW03-06

Sample ID: AC38601-006 Matrix: AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/10/2008

Nras No:

Sdg No:

Case No:

Lab Name: Veritech

Lab Code:

Contract:

			ł	i		1	1			_		
	Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num	: м	Instr	
	7429-90-5	Aluminum	100	120	.5	07/17/08	9282	A9282A	42	P	PEICP1	
	7440-36-0	Antimony	7.5	ND	.5	07/17/08	9282	A9282A	42	P	PEICP1	i
	7440-38-2	Arsenic	4.0	ND	.5	07/17/08	9282	A9282A	42	Р	PEICP1	
ł	7440-39-3	Barium	25	44	.5	07/17/08	9282	A9282A	42	Р	PEICP1	;
	7440-41-7	Beryllium	4.0	ND	.5	07/17/08	9282	A9282A	42	P	PEICP1	
	7440-43-9	Cadmium	2.0	ND	.5	07/17/08	9282	A9282A	12		PEICPT	
	7440-70-2	Calcium	1000	12000	٦ .5	07/17/08	9282	A0282A	12	г В	PEICP1	
	7440-47-3	Chromium	25	ND	5	07/17/08	0282	A0202A	42	r	PEICP1	
	7440-48-4	Cobalt	10	ND	5(	07/17/08	0202	A0000A	42	-	PEICP1	
	7440-50-8	Copper	25	ND	.0.	7/17/00	9202	A9282A	42	Р	PEICP1	ĺ
	7439-89-6	Iron	150	4600		7/17/00	9282	A9282A	42	Ρ	PEICP1	
	7439-92-1	Lead	5.0	ND	ر . ار	80/11/108	9282	A9282A	42	Ρ	PEICP1	
	7439-95-4	Magnesium	1000	2000	.50	07/17/08	9282	A9282A	42	Р	PEICP1	
	7439-96-5	Manganese	25	3000	.50	7/17/08	9282	A9282A	42	Ρ	PEICP1	
	7439-97-6	Mercupy	25	510	.50	7/17/08	9282	A9282A	42	Р	PEICP1	
	7440-02-0	Nickel	0.20	ND	10	7/18/08	9282	H9282A	30	CV	HGCV2	
	7440-09-7	Potaccium	10	ND	.50	7/17/08	9282	A9282A	42	Р	PEICP1	
	7782-49-2	Selenium	2500	ND	.50	7/17/08	9282	A9282B	35	P	PEICPRAD1	
	7440 22 4	Selenium	25	ND	.50	7/17/08	9282	A9282A	42	Р	PEICP1	
	7440-22-4	Silver	10	ND	.5 01	7/17/08	9282	A9282A	42	P	PEICP1	ĺ
	7440-23-5	Sodium	2500	44000	.5 07	7/17/08	9282	A9282B	35	P	PEICPRAD1	
	7440-28-0	Thallium	5.0	ND	.5 07	7/17/08	9282	A9282A	42	Р	PEICP1	1
	7440-62-2	Vanadium	25	ND	.507	7/17/08	9282	A9282A	42	Р	PEICP1	
	7440-66-6	Zinc	25	ND	.5 07	7/17/08	9282	A9282A	42	P		
						i						6

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

With Land Sale of a share as 

South States

Service and

200

1 AL

Stating.

Sample ID: AC38601-007 Client Id: PW03-07

South States

No. of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local divis

NAVASA NO

2005

ななないないである

Matrix: AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/10/2008

Lab Code:

Contract:

Lab Name: Veritech

Nras No:

Sdg No:

Case No:

					1		T					
	Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date	Prep Batch	Filor	Seq			
	7429-90-8	Aluminum	100	320		07/17/09	0000		INUM	. M	Instr	
1	7440-36-0	Antimony	7.5	ND		07/17/00	9282	A9282A	43	P	PEICP1	
	7440-38-2	Arsenic	10		c.	07/17/08	9282	A9282A	43	P	PEICP1	
	7440-39-3	Barium		5.9	.5	07/17/08	9282	A9282A	43	P	PEICP1	
	7440-41-7	Bendlium	20	48	.5	07/17/08	9282	A9282A	43	P	PEICP1	
	7440-43-0	Codmium	4.0	ND	.5	07/17/08	9282	A9282A	43	Р	PEICP1	
	7440 70 0	Caomium	2.0	ND	.5	07/17/08	9282	A9282A	43	p	BEICH	
	7440-70-2	Calcium	1000	19000	3 .50	07/17/08	9282	492824	12	-	PEICPI	j
	/440-47-3	Chromium	25	ND	.50	7/17/08	0282	A00004	43	۳ -	PEICP1	
	7440-48-4	Cobalt	10	ND	50	7/17/00	0000	A9262A	43	Р	PEICP1	
	7440-50-8	Copper	25	ND		7/47/00	9282	A9282A	43	Р	PEICP1	
	7439-89-6	iron	150	35000	ت ا	-//1//08	9282	A9282A	43	Ρ	PEICP1	
	7439-92-1	Lead	5.0	00000	J .50	7/17/08	9282	A9282A	43	Ρ	PEICP1	
	7439-95-4	Magnesium	1000		.50	7/17/08	9282	A9282A	43	Ρ	PEICP1	
	7439-96-5	Manganeso	1000	5400	.50	7/17/08	9282	A9282A	43	Р	PEICP1	
	7439-97-6	Manual	25	370	.5 0	7/17/08	9282	A9282A	43	Р	PEICP1	
	7440.02.0	iviercury	0.20	ND	1 07	7/18/08	9282	H9282A	31	CV		
	7440-02-0	Nickel	10	ND	.5 07	7/17/08	9282	A9282A	42	Б	HGCV2	
	/440-09-7	Potassium	2500	ND	.507	/17/08	0282	A00000	43	۳ -	PEICP1	
2	7782-49-2	Selenium	25	ND	5 07	/17/00	0000	A9262B	36	Р	PEICPRAD1	
7	7440-22-4	Silver	10	ND	507	/17/00	9282	A9282A	43	Р	PEICP1	
7	7440-23-5	Sodium	2500	22000	.507	80/17/	9282	A9282A	43	P	PEICP1	
7	440-28-0	Thallium	5.0	32000	.507	/17/08	9282	A9282B	36	P	PEICPRAD1	
7	440-62-2	Vanadium	5.0	ND	.5 07	17/08	9282	A9282A	3	P	PEICP1	
7	440-66-6	Zino	25	ND	.5 07/	17/08	9282	A9282A 4	13	P	PEICP1	
		2.00	25	ND	.5 07/	17/08	9282	A9282A 4	3	рİ	PEICP1	
						l,			+	- (		1

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor

MS - ICP-MS

Sample ID: AC38601-008 Client Id: Matrix:

. 3

Sales and

No. of Control

State Mar

No. LAN

PW02-02 AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/10/2008

Lab Name:

Lab Code:

Contract:

Veritech

Nras No: Sdg No: Case No:

					1		· · · · · · · · · · · · · · · · · · ·					
	Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date	Prep Batch	File:	Seq Num:	м	Instr	
	7429-90-5	Aluminum	100	150	.5	07/17/08	9282	A9282A	44	P	PEICP1	<u> </u>
	7440-36-0	Antimony	7.5	ND	.5	07/17/08	9282	A9282A	44	Р	PEICP1	
	7440-38-2	Arsenic	4.0	7.0	.5	07/17/08	9282	A9282A	44	p	PEICD1	
	7440-39-3	Barium	25	40	.5	07/17/08	9282	A9282A	11		PEIOPI	
	7440-41-7	Beryllium	4.0	ND	.5	07/17/08	9282	102020			PEICP1	
	7440-43-9	Cadmium	2.0	ND	.5	07/17/08	0282	A0302A	44	~	PEICP1	
	7440-70-2	Calcium	1000	13000	٦ 5	07/17/09	9202	ABZOZA	44	Р	PEICP1	
	7440-47-3	Chromium	25	ND	J .5	07/17/00	9262	A9282A	44	Р	PEICP1	
	7440-48-4	Cobalt	10				9282	A9282A	44	Ρ	PEICP1	
	7440-50-8	Copper	25		.51	5//1//08	9282	A9282A	44	Ρ	PEICP1	
	7439-89-6	Iron	150	NU	J .50	07/17/08	9282	A9282A	44	Ρ	PEICP1	
	7439-92-1	Lead	150	5900	J .50	07/17/08	9282	A9282A	44	Ρ	PEICP1	
	7439-95-4	Magnosium	5.0	ND	.50	07/17/08	9282	A9282A	44	Ρ	PEICP1	
	7/30 06 5	Magnesium	1000	2600	.50	7/17/08	9282	A9282A	44	Р	PEICP1	
	7420.07.0	Manganese	25	150	.50	7/17/08	9282	A9282A	44	Р	PEICP1	
	7439-97-0	Mercury	0.20	ND	10	7/18/08	9282	H9282A	32	cv	HGCV2	
	7440-02-0	Nickel	10	ND	.50	7/17/08	9282	A9282A	44	Р	PEICP1	
	/440-09-7	Potassium	2500	ND	.50	7/17/08	9282	A9282B	37	P	PEICERADI	
	7782-49-2	Selenium	25	ND	.50	7/17/08	9282	A9282A		р	DEIODA	
	7440-22-4	Silver	10	ND	.50	7/17/08	9282	A0202A		r	PEICP1	
	7440-23-5	Sodium	2500	30000	502	7/17/08	0202	A00000	44	Ρ	PEICP1	
	7440-28-0	Thallium	5.0		507	7/17/00	9202	A9282B	37	Р	PEICPRAD1	
7	7440-62-2	Vanadium	25			/////00	9282	A9282A	14	Ρ	PEICP1	
7	7440-66-6	Zinc			.507	80/17/08	9282	A9282A	14	Р	PEICP1	
-			20	IND	.507	/17/08	9282	A9282A	4	P	PEICP1	

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor

MS - ICP-MS

# Form1 Inorganic Analysis Data Sheet

Sample ID: AC38601-009 Client Id: PW02-05

Matrix: AQUEOUS Level: LOW

% Solid: 0

Units: UG/L Date Rec: 7/10/2008 Lab Name: Veritech Lab Code: Contract:

Nras No: Sdg No: Case No:

	1					1						
	Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File	Seq			
I	7429-90-5	Aluminum	100	3800	5	07/17/08	0292	400004		. 1	Instr	
İ	7440-36-0	Antimony	7.5	ND	5	07/17/00	9202	A9282A	45	P	PEICP1	[
	7440-38-2	Arsenic	40	ND		07/17/08	9282	A9282A	45	P	PEICP1	
	7440-39-3	Barium	25		.5	07/17/08	9282	A9282A	45	P	PEICP1	
	7440-41-7	Bervllium	25	57	.5	07/17/08	9282	A9282A	45	Р	PEICP1	
	7440-43-9	Cadmium	4.0	ND	.5	07/17/08	9282	A9282A	45	Р	PEICP1	
	7440 70 2	Caumum	2.0	ND	.5(	07/17/08	9282	A9282A	45	Р	PEICPI	
	7440 47 0	Calcium	1000	18000	J .5 0	7/17/08	9282	A9282A	45	Þ	PEIOD1	
	7440-47-3	Chromium	25	ND	.50	7/17/08	9282	A9282A	45	, ,	PEICP1	
	/440-48-4	Cobait	10	ND	.50	7/17/08	0282	A0202A	40	۳ -	PEICP1	
	7440-50-8	Copper	25	ND	50	7/17/09	0000	A9282A	45	Ρ	PEICP1	
	7439-89-6	Iron	150	6400	τ	7/17/00	9282	A9282A	45	Ρ	PEICP1	
	7439-92-1	Lead	5.0	ND	J .50	//1//08	9282	A9282A	45	Р	PEICP1	
	7439-95-4	Magnesium	1000		.50	7/17/08	9282	A9282A	45	Ρ	PEICP1	
	7439-96-5	Manganese	1000	2700	.50	7/17/08	9282	A9282A	45	Р	PEICP1	
	7439-97-6	Moraum	25	130	.5 07	7/17/08	9282	A9282A	45	Р	PEICP1	
	7440.02.0	Mercury	0.20	ND	1 07	7/18/08	9282	H9282A	35	cv	HGCV2	
	7440-02-0	Nickel	10	15	.507	//17/08	9282	A9282A	15	D	DEIOR1	
	7440-09-7	Potassium	2500	ND	.5 07	/17/08	9282	A02020	20	г Б	PEICP1	
	7782-49-2	Selenium	25	ND	.507	/17/08	0202	A0000	30	٣	PEICPRAD1	
1	7440-22-4	Silver	10	ND	507	/17/00	9202	A9282A	45	Р	PEICP1	
7	7440-23-5	Sodium	2500	29000	507	47/00	9282	A9282A	45	Ρ	PEICP1	1
7	'440-28-0	Thallium	5.0	20000	.507/	17/08	9282	A9282B	38	Р	PEICPRAD1	
7	440-62-2	Vanadium	25		.507/	17/08	9282	A9282A	45	Р	PEICP1	
7	440-66-6	Zinc	20	ND	.5 07/	17/08	9282	A9282A	15	P	PEICP1	
			25	ND	.5 07/	17/08	9282	A9282A	5	P	PEICP1	
									[	1	· =· <del>•</del> · •	1

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

and the second

100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -

Ast. 18

Number of States

100

Appendix C Support Documentation/Resubmission If Applicable

## MDL / RL SUMMARY 200.7 PE ICP 2

ELEMENT	MDL (mg/L)	Reporting Limits (mg/L)	i <b>DL</b> (mg/L)
AL	0.036082	0.2	0.00508
SB	0.003599	0.015	0.00217
AS	0.03478	0.008	0.0039
BA	0.00025	0.05	0.000131
BE	0.0000472	0.008	0.0000201
СD	0.00023	0.004	0.000327
СА	0.027025	2	0.0154
CR	0.000493	0.05	0.000268
со	0.000445	0.02	0.000301
CU	0.0045251	0.05	0.00059
FD	0.01976	0.3	0.00396
PB	0.002245	0.01	0.00135
MG	0.032404	2	0.0302
MN	0.000204	0.05	0.000107
МО	0.000925	0.02	0.000571
NI	0.001021	0.02	0.000516
SE	0.010471	0.05	0.00825
AG	0.000315	0.02	0.000363
TL	0.005023	0.01	0.00269
SN	0.002302	0.05	0.00175
TI	0.000327	0.05	0.000115
v	0.00096	0.05	0.000942
ZN	0.007783	0.05	0.000858



Analytical Assurance Associates, Inc.

600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

# ORGANIC & INORGANIC DATA VALIDATION REPORT

# EARTH TECH ANCHOR LITH KEM KO PROJECT

## ANALYZED BY HAMPTON-CLARKE VERITECH LABORATORY LABORATORY CASE No.: 8071107

REVIEWED BY: Analytical Assurance Associates (A³) 600 Rock Raymond Road Downingtown, PA 19335

## EARTH TECH ANCHOR LITH KEM KO PROJECT LABORATORY ID: AC38637 CASE NO.: 8071107

## **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from five groundwater samples, collected on July 10, 2008. Samples were received by Hampton-Clarke/Veritech laboratory on July 11, 2008 and analyzed for ICP metals and mercury according to the EPA Methods 200.7 and 245.1 respectively.

The following samples are evaluated and included in this package review.

PW02-06 PW02-01 PW02-04 PW02-03 PW02-07

MS and MD analyses were performed on sample PW02-06.

The analysis data were reviewed in accordance with the following parameters and all problems encountered during the analysis were summarized in this report.

## **QUALITY ASSURANCE REVIEW**

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations & CRDL Analyses
- Blanks
- ICP Interference Check Sample
- Matrix Spike Analysis
- Matrix Duplicate Analysis
- Laboratory Control Sample Analysis
- ICP Serial Dilution Analysis
- Instrument Detection Limits
- Field Duplicate Results
- Sample Results

Earth Tech Project No. 8071107

## **DATA COMPLETENESS**

The method detection limits were not included in the data package. The laboratory was contacted. The tabulated IDLs and MDLs were submitted by the laboratory. The IDLs and MDLs for potassium, sodium, and mercury were not listed on the resubmission. The laboratory stated that this form is not required for the applied method.

The serial dilution outliers were not qualified with an "E" qualifier code. The laboratory stated that this code is applied solely to the CLP Method analysis.

The %Ds in the serial dilution sample was not calculated as recommended by the CLP Method. The %Ds was calculated for all detected and non-detected results reported on the raw data. Consequently, many %Ds were reported above 10%. The reporting format did not follow the CLP and the review of the data was very time consuming.

## HOLDING TIME

Samples were digested and analyzed within the holding time requirements established in the corresponding methods.

## CALIBRATIONS & CRDL ANALYSES

The recoveries were within the control limits in initial and continuing calibrations analyzed prior and after sample analysis for all metals. The CRDL sample analysis was not performed for ICP metals.

## **BLANKS**

The preparation blanks, ICBs, and CCBs were free of target analytes at levels above the CRDLs.

## **ICP INTERFERENCE CHECK SAMPLE**

The recoveries for ICSA and ICSB were within the control limit of 80-120% for ICP metals.

## MATRIX SPIKE ANALYSIS

Matrix spike analysis was performed on the PW02-06. The recoveries were within the control limits of 75-125%.

## MATRIX DUPLICATE ANALYSIS

Matrix duplicate analysis was performed on the above sample. The RPDs were within the control limits in for all metals.

Earth Tech Project No. 8071107

## LABORATORY CONTROL SAMPLE

The recoveries were within the control limits in this analysis.

## SERIAL DILUTION

This quality control sample was analyzed on sample PW02-06 for ICP metals. The reported % Differences for all analytes were with the data validation control limits.

## FIELD DUPLICATE ANALYSIS

A field duplicate was not analyzed for this batch. However, four field duplicate samples were collected for this site and the analyses results were reported under separate cover pages. RPDs were within the control limits which indicated a satisfactory reproducibility.

## **SUMMARY**

The cooler temperature  $(3.0^{\circ}C)$  was within the acceptable limits. The reported sample data was considered acceptable.

All data have been validated in accordance with the data quality assurance set forth in NYSDEC ASP for Evaluating TAL metals. The USEPA Region II Data Validation SOP # HW-2, Revision 13 (September 2006) was utilized to review the data completeness and data quality. The analysis problems were discussed in the above sections. If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 269-9989.

Sincerely,

Zohreh Hamid, Ph.D Analytical Assurance Associates

# **INORGANIC ANALYSIS**

## EARTH TECH ANCHOR LITH KEM KO PROJECT LABORATORY ID: AC38637 CASE NO.: 8071107

## **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from five groundwater samples, collected on July 10, 2008. Samples were received by Hampton-Clarke/Veritech laboratory on July 11, 2008 and analyzed for ICP metals and mercury according to the EPA Methods 200.7 and 245.1 respectively.

The following samples are evaluated and included in this package review.

PW02-06 PW02-01 PW02-04 PW02-03 PW02-07

MS and MD analyses were performed on sample PW02-06.

The analysis data were reviewed in accordance with the following parameters and all problems encountered during the analysis were summarized in this report.

## **QUALITY ASSURANCE REVIEW**

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations & CRDL Analyses
- Blanks
- ICP Interference Check Sample
- Matrix Spike Analysis
- Matrix Duplicate Analysis
- Laboratory Control Sample Analysis
- ICP Serial Dilution Analysis
- Instrument Detection Limits
- Field Duplicate Results
- Sample Results

Earth Tech Project No. 8071107

## **DATA COMPLETENESS**

The method detection limits were not included in the data package. The laboratory was contacted. The tabulated IDLs and MDLs were submitted by the laboratory. The IDLs and MDLs for potassium, sodium, and mercury were not listed on the resubmission. The laboratory stated that this form is not required for the applied method.

The serial dilution outliers were not qualified with an "E" qualifier code. The laboratory stated that this code is applied solely to the CLP Method analysis.

The %Ds in the serial dilution sample was not calculated as recommended by the CLP Method. The %Ds was calculated for all detected and non-detected results reported on the raw data. Consequently, many %Ds were reported above 10%. The reporting format did not follow the CLP and the review of the data was very time consuming.

## HOLDING TIME

Samples were digested and analyzed within the holding time requirements established in the corresponding methods.

## CALIBRATIONS & CRDL ANALYSES

The recoveries were within the control limits in initial and continuing calibrations analyzed prior and after sample analysis for all metals. The CRDL sample analysis was not performed for ICP metals.

## **BLANKS**

The preparation blanks, ICBs, and CCBs were free of target analytes at levels above the CRDLs.

## **ICP INTERFERENCE CHECK SAMPLE**

The recoveries for ICSA and ICSB were within the control limit of 80-120% for ICP metals.

## MATRIX SPIKE ANALYSIS

Matrix spike analysis was performed on the PW02-06. The recoveries were within the control limits of 75-125%.

## MATRIX DUPLICATE ANALYSIS

Matrix duplicate analysis was performed on the above sample. The RPDs were within the control limits in for all metals.

Earth Tech Project No. 8071107

## LABORATORY CONTROL SAMPLE

The recoveries were within the control limits in this analysis.

## SERIAL DILUTION

This quality control sample was analyzed on sample PW02-06 for ICP metals. The reported % Differences for all analytes were with the data validation control limits.

## FIELD DUPLICATE ANALYSIS

A field duplicate was not analyzed for this batch. However, four field duplicate samples were collected for this site and the analyses results were reported under separate cover pages. RPDs were within the control limits which indicated a satisfactory reproducibility.

## **SUMMARY**

The cooler temperature  $(3.0^{\circ}C)$  was within the acceptable limits. The reported sample data was considered acceptable.

All data have been validated in accordance with the data quality assurance set forth in NYSDEC ASP for Evaluating TAL metals. The USEPA Region II Data Validation SOP # HW-2, Revision 13 (September 2006) was utilized to review the data completeness and data quality. The analysis problems were discussed in the above sections. If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 269-9989.

Sincerely,

Zohreh Hamid, Ph.D Analytical Assurance Associates 1. Appendix A- Glossary of Data Qualifier

Appendix B- Laboratory Form I, & Applied Qualifier Codes
Appendix C- Resubmission ( if applicable)

# Appendix A Glossary of Data Qualifiers

### **GLOSSARY OF DATA QUALIFIERS**

### **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- U=NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL<br/>REPORTED IN LABORATORY OR FIELD BLANKS.<br/>[Substantially is equivalent to a result less than 10 times the<br/>blank level for common contaminants (methylene chloride,<br/>acetone and 2- butanone in the VOA<br/>analyses, and common phthalates in the BNA analyses, along<br/>with tentatively identified compounds) or less than 5 times the<br/>blank level for other target compounds.]
- R = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.

N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

## CODES RELATING TO QUATITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

### **OTHER CODES**

 $\mathbf{Q} = \mathbf{NO} \mathbf{ANALYTICAL RESULT}.$ 

Appendix B Laboratory Form I and Applied Qualifier Codes Form1 ORGANICS VOLATILE REPORT

## Sample Number: AC38637-001 Client Id: PW02-06 Data File: 3M50876.D Analysis Date: 07/16/08 16:37 Date Rec/Extracted: 07/11/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Section 20

States of

State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

8	Cas # Compound	RL	Conc	Cas # Compound	RI	Conc
	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	
	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	10	
<i></i>	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	U.
	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	10	U U
NTA.	75-34-3 1,1-Dichloroethane	1.0	υ	67-66-3 Chloroform	10	
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3 Chloromethane	1.0	EL EL
	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	U U
	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	0
00024	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	0
2/1	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	0
	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	0
2)	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	0
	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8 isopropylbenzene	1.0	0
23	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xvienes	2.0	0
i S	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	0
	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	0
5	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	0
	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	0
3	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzene	1.0	0
	123-91-1 1,4-Dioxane	50	υŔ	103-65-1 n-Propylbenzene	1.0	U
<u>.</u>	78-93-3 2-Butanone	1.0	U	95-47-6 o-Xviene	1.0	0
ļ	110-75-8 2-Chloroethylvinylether	1.0	υVI	135-98-8 sec-Butylbenzene	1.0	0
	591-78-6 2-Hexanone	1.0	υĺ	100-42-5 Styrene	1.0	0
}	99-87-6 4-Isopropyltoluene	1.0	U	75-65-0 t-Butvi Alcohol	5.0	0 11 10
	108-10-1 4-Methyl-2-Pentanone	1.0	U	98-06-6 t-Butylbenzene	1.0	000
13	67-64-1 Acetone	5.0	# 720	127-18-4 Tetrachloroethene	1.0	20 /
a	107-02-8 Acrolein	5.0	U	108-88-3 Toluene	1.0	3.0 -
	107-13-1 Acrylonitrile	1.0	U	156-60-5 trans-1 2-Dichloroethene	1.0	U
,	71-43-2 Benzene	0.50	U	10061-02-6 trans-1 3-Dichloropropere	1.0	U
	74-97-5 Bromochloromethane	1.0	υ	79-01-6 Trichloroethene	1.0	0
	75-27-4 Bromodichloromethane	1.0	υ	75-69-4 Trichlorofluoromethane	1.0	U
	75-25-2 Bromoform	1.0	U	75-01-4 Vinvi Chloride	1.0	U
	74-83-9 Bromomethane	1.0	U		1.0	U

Worksheet #: 88480

Total Target Concentration 723

- Indicates the compound was analyzed but not detected. - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

### Form1 ORGANICS VOLATILE REPORT

## Sample Number: AC38637-002 Client Id: PW02-01 Data File: 3M50877.D Analysis Date: 07/16/08 16:54 Date Rec/Extracted: 07/11/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

A. 18

11.2015

200

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

	Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
4.52	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	U
45	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	Ū
NGU	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	Ū
	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	U
	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	Ū.
	75-35-4 1,1-Dichloroethene	1.0	υ	74-87-3 Chloromethane	1.0	Ŭ
	87-61-6 1,2,3-Trichlorobenzene	1.0	υļ	156-59-2 cis-1,2-Dichloroethene	1.0	Ŭ
	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	U U
	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	U U
齌	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	U U
	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	11
	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	
	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8 isopropyibenzene	1.0	U U
NU PRO	107-06-2 1,2-Dichloroethane	0.50	υ	1330-20-7 m&p-Xylenes	2.0	0
99 C	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	U U
	108-67-8 1,3,5-Trimethylbenzene	1.0	υļ	108-87-2 Methylcyclohexane	10	Ŭ
3	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	10	U U
1	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	U U
J	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzene	1.0	U U
	123-91-1 1,4-Dioxane	50	υR	103-65-1 n-Propylbenzene	1.0	U U
	78-93-3 2-Butanone	1.0	U	95-47-6 o-Xylene	1.0	U U
	110-75-8 2-Chloroethylvinylether	1.0	U U J	135-98-8 sec-Butylbenzene	1.0	U U
	591-78-6 2-Hexanone	1.0	U	100-42-5 Styrene	10	U U
)	99-87-6 4-Isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcohol	50	й UT
	108-10-1 4-Methyl-2-Pentanone	1.0	υ	98-06-6 t-Butvibenzene	10	j j
9	67-64-1 Acetone	5.0	28 -	127-18-4 Tetrachloroethene	1.0	
3	107-02-8 Acrolein	5.0	U	108-88-3 Toluene	1.0	н
	107-13-1 Acrylonitrile	1.0	U	156-60-5 trans-1.2-Dichloroethene	1.0	1
)	71-43-2 Benzene	0.50	U	10061-02-6 trans-1.3-Dichloropropene	1.0	U U
	74-97-5 Bromochloromethane	1.0	U	79-01-6 Trichloroethene	1.0	
	75-27-4 Bromodichloromethane	1.0	U	75-69-4 Trichlorofluoromethane	1.0	U
	75-25-2 Bromoform	1.0	U	75-01-4 Vinvi Chloride	1.0	U 11
	74-83-9 Bromomethane	1.0	υ		1.0	0

Worksheet #: 88480

## Total Target Concentration 28

Indicates the compound was analyzed but not detected.
Indicates the analyte was found in the blank as well as in the sample.
E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

# 

ORGANICS VOLATILE REPORT

## Sample Number: AC38637-003 Client Id: PW02-04 Data File: 3M50873.D Analysis Date: 07/16/08 15:46 Date Rec/Extracted: 07/11/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

E.	Cas # Compound	RL	Conc	Cas # Compound	R!	Conc
	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	
题)	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	e 1.0	Ŭ
	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	U U
	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	U U
J	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3 Chloromethane	1.0	U U
艱	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroether	ne 1.0	Ŭ
	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloroprope	ene 1.0	U U
528	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	U U
100	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochlorometha	ne 1.0	U U
	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluorometh	ane 1.0	Ŭ
្រ	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	U U
	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8 isopropyibenzene	1.0	U U
	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	U U
1	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	Ц
~	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	Ű
3	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	U U
	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	Ŭ
4	106-46-7 1,4-Dichlorobenzene	1.0	U "	104-51-8 n-Butylbenzene	1.0	U U
	123-91-1 1,4-Dioxane	50	υľ×	103-65-1 n-Propylbenzene	1.0	ü
1	78-93-3 2-Butanone	1.0	· U 🔒	95-47-6 o-Xylene	1.0	Ŭ
1	110-75-8 2-Chloroethylvinylether	1.0	U V U	135-98-8 sec-Butylbenzene	1.0	ŭ
	591-78-6 2-Hexanone	1.0	U	100-42-5 Styrene	1.0	Ŭ
1	99-87-6 4-Isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcohol	5.0	ŭ <i>U</i> 1
	108-10-1 4-Methyl-2-Pentanone	1.0	υ	98-06-6 t-Butylbenzene	1.0	U - U
2	67-64-1 Acetone	5.0	<b>€</b> 230	127-18-4 Tetrachloroethene	1.0	U U
3	107-02-8 Acrolein	5.0	U	108-88-3 Toluene	1.0	Ŭ
1	107-13-1 Acrylonitrile	1.0	U	156-60-5 trans-1.2-Dichloroethe	ene 1.0	U U
)	71-43-2 Benzene	0.50	U	10061-02-6 trans-1,3-Dichloropror	ene 1.0	11
	74-97-5 Bromochloromethane	1.0	U	79-01-6 Trichloroethene	10	
	75-27-4 Bromodichloromethane	1.0	U	75-69-4 Trichlorofluoromethan	e 1.0	
	75-25-2 Bromoform	1.0	U	75-01-4 Vinvl Chloride	1.0	Ц
	74-83-9 Bromomethane	1.0	υΪ			U

Worksheet #: 88480

1910

Total Target Concentration 230

- Indicates the compound was analyzed but not detected. - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

## Form1 ORGANICS VOLATILE REPORT

## Sample Number: AC38637-004 Client Id: PW02-03 Data File: 3M50874.D Analysis Date: 07/16/08 16:03 Date Rec/Extracted: 07/11/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

<u>ع</u>	Cas # Compound	RL	Conc	Cas #	Compound	DI	Cana
	71-55-6 1,1,1-Trichloroethane	1.0	13	75-15-0	Carbon Disulfide	1.0	Conc
Ċ	³ 79-34-5 1,1,2,2-Tetrachloroethane	1.0	υ	56-23-5	Carbon Tetrachloride	1.0	0
	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	0
	79-00-5 1,1,2-Trichloroethane	1.0	υ	75-00-3	Chloroethane	1.0	0
	75-34-3 1,1-Dichloroethane	1.0	9.5	67-66-3	Chloroform	1.0	0
	75-35-4 1,1-Dichloroethene	1.0	2.0	74-87-3	Chloromethane	1.0	0
	87-61-6 1,2,3-Trichlorobenzene	1.0	υ	156-59-2	cis-1.2-Dichloroethene	1.0	0
	96-18-4 1,2,3-Trichloropropane	1.0	υ	10061-01-5	cis-1 3-Dichlorontonene	1.0	0
635	120-82-1 1,2,4-Trichlorobenzene	1.0	υ	110-82-7	Cvclohexane	1.0	0
গৰেনে	95-63-6 1,2,4-Trimethylbenzene	1.0	υ	124-48-1	Dibromochloromethane	1.0	0
	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	0
	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4	Ethvibenzene	1.0	U
	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylhenzene	1.0	0
<u></u>	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7	m&n-Xvienes	2.0	U
	78-87-5 1,2-Dichloropropane	1.0	υ	79-20-9	Methyl Acetate	2.0	U
1 jage	108-67-8 1,3,5-Trimethylbenzene	1.0	υ	108-87-2	Methylcyclohexane	1.0	U
<i>6</i> 765	541-73-1 1,3-Dichlorobenzene	1.0	υ	75-09-2	Methylene Chloride	1.0	0
	142-28-9 1,3-Dichloropropane	1.0	υ	1634-04-4	Methyl-t-hutyl ether	1.0	U
945 <b>}</b>	106-46-7 1,4-Dichlorobenzene	1.0	υ	104-51-8	n-Butvihenzene	1.0	U
	123-91-1 1,4-Dioxane	50	UR	103-65-1	n-Propylbenzene	1.0	0
	78-93-3 2-Butanone	1.0	υ	95-47-6	p-Xviene	1.0	0
	110-75-8 2-Chloroethylvinylether	1.0	UVJ	135-98-8	sec-Butvihenzene	1.0	
	591-78-6 2-Hexanone	1.0	U	100-42-5 \$	Styrene	1.0	0
卿	99-87-6 4-Isopropyltoluene	1.0	U	75-65-0 t	-Butvl Alcohol	5.0	
	108-10-1 4-Methyl-2-Pentanone	1.0	U	98-06-6 t	-Butylbenzene	1.0	ر ت ن
Q.137	67-64-1 Acetone	5.0	30 🗸	127-18-4 1	Fetrachloroethene	1.0	0
awa.	107-02-8 Acrolein	5.0	U	108-88-3 7	Toluene	1.0	0
	107-13-1 Acrylonitrile	1.0	υ	156-60-5 t	rans-1 2-Dichloroethene	1.0	0
	71-43-2 Benzene	0.50	U	10061-02-6 ti	rans-1 3-Dichloropropene	1.0	0
	74-97-5 Bromochloromethane	1.0	U	79-01-6 T	richloroethene	1.0	U U
	75-27-4 Bromodichloromethane	1.0	U	75-69-4 T	richlorofluoromethane	1.0	U
	75-25-2 Bromoform	1.0	U	75-01-4 V	/invl Chloride	1.0	
	74-83-9 Bromomethane	1.0	U	•	,		0

Worksheet #: 88480

**Total Target Concentration** 54.5

] - Indicates the compound was analyzed but not detected. - Indicates the analyte was found in the blank as well as in the sample.  $\frac{1}{2}$  - Indicates the analyte was found in the blank as well as in the sumple. E - Indicates the analyte concentration exceeds the calibration range of

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

### 9815

# Form1

ORGANICS VOLATILE REPORT

## Sample Number: AC38637-005 Client Id: PW02-07 Data File: 3M50875.D Analysis Date: 07/16/08 16:20 Date Rec/Extracted: 07/11/08-NA Column:DB-624 25M 0.200mm ID 1.12um film

1.5.0

Č.

開始を

William State

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

617-7	Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	U
	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	U
	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	U
(M)	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	U
	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	1.8
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3 Chloromethane	1.0	U
翩	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	1.3 -
	96-18-4 1,2,3-Trichloropropane	1.0	υ	10061-01-5 cis-1,3-Dichloropropene	1.0	U
	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	U
	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	U
	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	U
20	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	U
	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8 Isopropylbenzene	1.0	U
	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	U
	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	U
1	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	U
	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	2.1 -
	142-28-9 1,3-Dichloropropane	1.0	υ	1634-04-4 Methyl-t-butyl ether	1.0	U
(Sa.)	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzene	1.0	U
	123-91-1 1,4-Dioxane	50	υR	103-65-1 n-Propylbenzene	1.0	U
	78-93-3 2-Butanone	1.0	U	95-47-6 o-Xylene	1.0	U
	110-75-8 2-Chloroethylvinylether	1.0	υØĴ	135-98-8 sec-Butylbenzene	1.0	U
	591-78-6 2-Hexanone	1.0	U	100-42-5 Styrene	1.0	U
部	99-87-6 4-Isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcohot	5.0	U U]
厕	108-10-1 4-Methyl-2-Pentanone	1.0	U	98-06-6 t-Butylbenzene	1.0	U
	67-64-1 Acetone	5.0	79 🖊	127-18-4 Tetrachloroethene	1.0	82
- hina	107-02-8 Acrolein	5.0	U	108-88-3 Toluene	1.0	U
	107-13-1 Acrylonitrile	1.0	υ	156-60-5 trans-1,2-Dichloroethene	1.0	U
	71-43-2 Benzene	0.50	U	10061-02-6 trans-1,3-Dichloropropene	1.0	U
	74-97-5 Bromochloromethane	1.0	U	79-01-6 Trichloroethene	1.0	2.4 -
影]	75-27-4 Bromodichloromethane	1.0	U	75-69-4 Trichlorofluoromethane	1.0	U
	75-25-2 Bromoform	1.0	U	75-01-4 Vinyl Chloride	1.0	U
	74-83-9 Bromomethane	1.0	U			

Worksheet #: 88480

**Total Target Concentration** 168.6

Indicates the compound was analyzed but not detected. - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

# Form1

ORGANICS VOLATILE REPORT

## Sample Number: AC38637-006 Client Id: TB071008 Data File: 3M50870.D Analysis Date: 07/16/08 14:55 Date Rec/Extracted: 07/11/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

650	Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	U
	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	U
<b>(1</b> )	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
劉	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	U
28A	87-61-6 1,2,3-Trichlorobenzene	1.0	υļ	156-59-2	cis-1,2-Dichloroethene	1.0	U
泛	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
圞	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
્ર	106-93-4 1,2-Dibromoethane	1.0	υ	100-41-4	Ethylbenzene	1.0	U
	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xylenes	2.0	U
	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U
	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
9 <b>83</b>	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
1	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	U
्)	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	U
	123-91-1 1,4-Dioxane	50	UR	103-65-1	n-Propylbenzene	1.0	U
	78-93-3 2-Butanone	1.0	U	95-47-6	o-Xylene	1.0	U
劉	110-75-8 2-Chloroethylvinylether	1.0	υ V <u>J</u>	135-98-8	sec-Butylbenzene	1.0	U
	591-78-6 2-Hexanone	1.0	U	100-42-5	Styrene	1.0	U
	99-87-6 4-Isopropyltoluene	1.0	U	75-65-0	t-Butyl Alcohol	5.0	ູ∪ <i>∪</i> ງ
	108-10-1 4-Methyl-2-Pentanone	1.0	υ	98-06-6	t-Butylbenzene	1.0	U
8 C 10	67-64-1 Acetone	5.0	υ	127-18-4	Tetrachloroethene	1.0	U
	107-02-8 Acrolein	5.0	U	108-88-3	Toluene	1.0	U
	107-13-1 Acrylonitrile	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
	71-43-2 Benzene	0.50	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
	74-97-5 Bromochloromethane	1.0	U	79-01-6	Trichloroethene	1.0	U
	75-27-4 Bromodichloromethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
	75-25-2 Bromoform	1.0	U	75-01-4	Vinyl Chloride	1.0	U
0000	74-83-9 Bromomethane	1.0	U				

Worksheet #: 88480

#### **Total Target Concentration** 0

 $e^{i\omega_{i}^{2}}$ 

[ - Indicates the compound was analyzed but not detected.

- Indicates the analyte was found in the blank as well as in the sample. 3 - Indicates the analyte was journa in the blank is well as a set of E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

Sample ID: AC38637-001 % Solid: 0 Lab Name: Veritech Nras No: Client Id: PW02-06 Units: UG/L Lab Code: Sdg No: Matrix: AQUEOUS Date Rec: 7/11/2008 Contract: Case No: Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	ND	0.5	07/17/08	9284	A9284A	14	Р	PEICP1
7440-36-0	Antimony	7.5	ND	0.5	07/17/08	9284	A9284A	14	Р	PEICP1
7440-38-2	Arsenic	4.0	4.4	0.5	07/17/08	9284	A9284A	14	Р	PEICP1
7440-39-3	Barium	25	75	0.5	07/17/08	9284	A9284A	14	Р	PEICP1
7440-41-7	Beryllium	4.0	ND	0.5	07/17/08	9284	A9284A	14	Р	PEICP1
7440-43-9	Cadmium	2.0	ND	0.5	07/17/08	9284	A9284A	14	Р	PEICP1
7440-70-2	Calcium	1000	19000	0.5	07/17/08	9284	A9284A	14	Р	PEICP1
7440-47-3	Chromium	25	ND	0.5	07/17/08	9284	A9284A	14	Р	PEICP1
7440-48-4	Cobalt	10	ND	0.5	07/17/08	9284	A9284A	14	Р	PEICP1
7440-50-8	Copper	25	ND	0.5	07/17/08	9284	A9284A	14	Р	PEICP1
7439-89-6	Iron	150	10000	0.5	07/17/08	9284	A9284A	14	Р	PEICP1
7439-92-1	Lead	5.0	ND	0.5	07/17/08	9284	A9284A	14	Р	PEICP1
7439-95-4	Magnesium	1000	5300	0.5	07/17/08	9284	A9284A	14	Р	PEICP1
7439-96-5	Manganese	25	380	0.5	07/17/08	9284	A9284A	14	Р	PEICP1
7439-97-6	Mercury	0.20	ND	1	07/17/08	9284	H9284A	14	cv	HGCV2
7440-02-0	Nickel	10	ND	0.5	07/17/08	9284	A9284A	14	Р	PEICP1
7440-09-7	Potassium	2500	2800	0.5	07/18/08	9284	A9284C	13	Р	PEICPRAD1
7782-49-2	Selenium	25	ND	0.5	07/17/08	9284	A9284A	14	Р	PEICP1
7440-22-4	Silver	10	ND	0.5	07/17/08	9284	A9284A	14	P	PEICP1
7440-23-5	Sodium	2500	38000	0.5	07/21/08	9284	A9284E	13	Р	PEICPRAD1
7440-28-0	Thailium	5.0	ND	0.5	07/17/08	9284	A9284A	14	Р	PEICP1
7440-62-2	Vanadium	25	ND	0.50	07/17/08	9284	A9284A	14	Р	PEICP1
7440-66-6	Zinc	25	ND	0.5	07/17/08	<del>9</del> 284	A9284A	14	Р	PEICP1

Comments:

### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

States and

Sample ID: AC38637-002 Client Id:

PW02-01 Matrix: AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/11/2008

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No: Case No:

	1		1	· · · · · · · · · · · · · · · · · · ·						
Cas No.	Analyte	RL	Cond	Dil Faci	Analysis Date	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	410	0.5	507/17/08	9284	A9284A	35	P	PEICP1
7440-36-0	Antimony	7.5	NC	0.5	07/17/08	9284	A9284A	35	P	PEICP1
7440-38-2	Arsenic	4.0	ND	0.5	07/17/08	9284	A9284A	35	Р	PEICP1
7440-39-3	Barium	25	47	0.5	07/17/08	9284	A9284A	35	Р	PEICP1
7440-41-7	Beryllium	4.0	ND	0.5	07/17/08	9284	A9284A	35	P	PEICP1
7440-43-9	Cadmium	2.0	ND	0.5	07/17/08	9284	A9284A	35	Ρ	PEICP1
7440-70-2	Calcium	1000	19000	0.5	07/17/08	9284	A9284A	35	Р	PEICP1
7440-47-3	Chromium	25	ND	0.5	07/17/08	9284	A9284A	35	Р	PEICP1
7440-48-4	Cobalt	10	ND	0.5	07/17/08	9284	A9284A	35	Р	PEICP1
7440-50-8	Copper	25	ND	0.5	07/17/08	9284	A9284A	35	Р	PEICP1
7439-89-6	iron	150	5000	0.5	07/17/08	9284	A9284A	35	Р	PEICP1
7439-92-1	Lead	5.0	ND	0.5	07/17/08	9284	A9284A	35	Р	PEICP1
7439-95-4	Magnesium	1000	3500	0.5	07/17/08	9284	A9284A	35	Р	PEICP1
7439-96-5	Manganese	25	140	0.5	07/17/08	9284	A9284A	35	Р	PEICP1
7439-97-6	Mercury	0.20	ND	1	07/17/08	9284	H9284A	29	ĊV	HGCV2
7440-02-0	Nickel	10	ND	0.5	07/17/08	9284	A9284A	35	Р	PEICP1
7440-09-7	Potassium	2500	ND	0.5	07/18/08	9284	A9284C	34	Р	PEICPRAD1
7782-49-2	Selenium	25	ND	0.5	07/17/08	9284	A9284A	35	Р	PEICP1
7440-22-4	Silver	10	ND	0.5	07/17/08	9284	A9284A	35	Р	PEICP1
7440-23-5	Sodium	2500	5000	0.5	07/21/08	9284	A9284E	35	Р	PEICPRAD1
7440-28-0	Thallium	5.0	ND	0.5	07/17/08	9284	A9284A	35	Р	PEICP1
7440-62-2	Vanadium	25	ND	0.5	07/17/08	<del>9</del> 284	A9284A	35	Ρ	PEICP1
7440-66-6	Zinc	25	ND	0.5	07/17/08	9284	A9284A	35	Ρ	PEICP1
							1			

Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor

MS - ICP-MS

States and a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state

「おんのない

Sample ID: AC38 Client Id: PW02 Matrix: AQUE Level: LOW

1

たからなどが認

相次を見た

AC38637-003 PW02-04 AQUEOUS

-003 S % Solid: 0 Units: UG/L Date Rec: 7/11/2008

08

Lab Name:

Lab Code:

Contract:

Veritech

Nras No: Sdg No: Case No:

Cas No	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-	5 Aluminum	100	360	0.5	07/17/08	9284	A9284A	36	Р	PEICP1
7440-36-0	Antimony	7.5	ND	0.5	07/17/08	9284	A9284A	36	Р	PEICP1
7440-38-2	2 Arsenic	4.0	ND	0.5	07/17/08	9284	A9284A	36	Р	PEICP1
7440-39-3	Barium	25	58	0.5	07/17/08	9284	A9284A	36	Р	PEICP1
7440-41-7	' Beryllium	4.0	ND	0.5	07/17/08	9284	A9284A	36	Р	PEICP1
7440-43-9	Cadmium	2.0	ND	0.5	07/17/08	9284	A9284A	36	Р	PEICP1
7440-70-2	Calcium	1000	17000	0.5	07/17/08	9284	A9284A	36	Р	PEICP1
7440-47-3	Chromium	25	ND	0.5	07/17/08	9284	A9284A	36	Р	PEICP1
7440-48-4	Cobalt	10	ND	0.5	07/17/08	<b>92</b> 84	A9284A	36	Ρ	PEICP1
7440-50-8	Copper	- 25	ND	0.5	07/17/08	9284	A9284A	36	Р	PEICP1
7439-89-6	Iron	150	7600	0.5	07/17/08	9284	A9284A	36	Р	PEICP1
7439-92-1	Lead	5.0	ND	0.5	07/17/08	9284	A9284A	36	Р	PEICP1
7439-95-4	Magnesium	1000	1800	0.5	07/17/08	<b>92</b> 84	A9284A	36	Р	PEICP1
7439- <b>96-</b> 5	Manganese	25	1300	0.5	07/17/08	9284	A9284A	36	Р	PEICP1
7439-97-6	Mercury	0.20	ND	1	07/17/08	9284	H9284A	30	cv	HGCV2
7440-02-0	Nickel	10	ND	0.5	07/17/08	9284	A9284A	36	Р	PEICP1
7440-09-7	Potassium	2500	ND	0.5	07/18/08	9284	A9284C	35	Р	PEICPRAD1
7782-49-2	Selenium	25	ND	0.5	07/17/08	9284	A9284A	36	Р	PEICP1
7440-22-4	Silver	10	ND	0.5	07/17/08	9284	A9284A	36	Р	PEICP1
7440-23-5	Sodium	2500	14000	0.5	07/21/08	9284	A9284E	36	P	PEICPRAD1
7440-28-0	Thallium	5.0	ND	0.5	07/17/08	9284	A9284A	36	Р	PEICP1
7440-62-2	Vanadium	25	ND	0.5	07/17/08	9284	A9284A	36	P	PEICP1
7440-66 <b>-</b> 6	Zinc	25	ND	0.50	07/17/08	9284	A9284A	36	P	PEICP1

#### Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Sample ID: Client Id: Matrix: Level:

AC38637-004 PW02-03 AQUEOUS LOW

% Solid: 0 Units: UG/L Date Rec: 7/11/2008

Lab Code:

Contract:

Lab Name: Veritech

Nras No:

Sdg No:

Case No:

				·						
Cas No.	Analyte	DI	Cono	Dil Ecot	Analysis	Prep	<b>5</b> .1	Seq	••	
7420.00 6	Aluminum	100	Conc	DIFAC	Date:	Batch	riie:	Num:	M	Instr
7429-90-0	Aluminum	100	ND	0.5	07/17/08	9284	A9284A	37	Р	PEICP1
7440-36-0	Antimony	7.5	ND	0.5	07/17/08	9284	A9284A	37	Р	PEICP1
7440-38-2	Arsenic	4.0	ND	0.5	07/17/08	9284	A9284A	37	Р	PEICP1
7440-39-3	Barium	25	190	0.5	07/17/08	9284	A9284A	37	Р	PEICP1
7440-41-7	Beryllium	4.0	ND	0.5	07/17/08	9284	A9284A	37	Р	PEICP1
7440-43-9	Cadmium	2.0	ND	0.5	07/17/08	9284	A9284A	37	Р	PEICP1
7440-70-2	Calcium	1000	14000	0.5	07/17/08	<b>92</b> 84	A9284A	37	Р	PEICP1
7440-47-3	Chromium	25	ND	0.5	07/17/08	9284	A9284A	37	Р	PEICP1
7440-48-4	Cobalt	10	ND	0.5	07/17/08	9284	A9284A	37	Ρ	PEICP1
7440-50-8	Copper	25	· ND	0.5	07/17/08	<b>92</b> 84	A9284A	37	P	PEICP1
7439-89-6	Iron	150	4600	0.5	07/17/08	9284	A9284A	37	Р	PEICP1
7439-92-1	Lead	5.0	ND	0.5	07/17/08	9284	A9284A	37	Ρ	PEICP1
7439-95-4	Magnesium	1000	2900	0.5	07/17/08	9284	A9284A	37	Ρ	PEICP1
7439-96-5	Manganese	25	1200	0.5	07/17/08	9284	A9284A	37	Р	PEICP1
7439-97-6	Mercury	0.20	ND	1	07/17/08	9284	H9284A	31	cv	HGCV2
7440-02-0	Nickel	10	ND	0.5	07/17/08	9284	A9284A	37	Р	PEICP1
7440-09-7	Potassium	2500	ND	0.5	07/18/08	9284	A9284C	36	Р	PEICPRAD1
7782-49-2	Selenium	25	ND	0.5	07/17/08	9284	A9284A	37	Р	PEICP1
7440-22-4	Silver	10	ND	0.5	07/17/08	9284	A9284A	37	Р	PEICP1
7440-23-5	Sodium	2500	52000	0.5	07/21/08	9284	A9284E	37	Р	PEICPRAD1
7440-28-0	Thallium	5.0	ND	0.5	07/17/08	9284	A9284A	37	P	PEICP1
7440-62-2	Vanadium	25	ND	0.5	07/17/08	9284	A9284A	37	P	PEICP1
7440-66-6	Zinc	25	ND	0.5	07/17/08	9284	A9284A	37	Р	PEICP1

Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Constant of 新原語 

(in )

の方法が

NAME AND

AND STORES

No. of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of

のないというである

ALCOLUMN

Client Id:

Sample ID: AC38637-005 PW02-07 Matrix: AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/11/2008

Lab Name: Veritech Lab Code: Contract:

Nras No: Sdg No: Case No:

Cas No.     Analyte     RL     Conc     Dil Fact     Analysis Dil Fact     Prep Batch     File:     Num:     M     Instr       7429-90-5     Aluminum     100     400     0.5     07/17/08     9284     A9284A     38     P     PEICP1       7440-36-0     Antimony     7.5     ND     0.5     07/17/08     9284     A9284A     38     P     PEICP1       7440-36-0     Antimony     7.5     ND     0.5     07/17/08     9284     A9284A     38     P     PEICP1       7440-38-2     Arsenic     4.0     6.8     0.5     07/17/08     9284     A9284A     38     P     PEICP1       7440-41-7     Beryllium     4.0     ND     0.5     07/17/08     9284     A9284A     38     P     PEICP1       7440-41-7     Beryllium     4.0     ND     0.5     07/17/08     9284     A9284A     38     P     PEICP1       7440-43-9     Cadmium     2.0     ND     0.5     07/17			-		1	1		1			
7429-90-5   Aluminum   100   400   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-36-0   Antimony   7.5   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-38-2   Arsenic   4.0   6.8   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-39-3   Barium   25   35   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-41-7   Beryllium   4.0   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-43-9   Cadmium   2.0   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-43-9   Cadmium   2.0   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-43-9   Cadmium   2.0   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-47-3   Chromium	Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7440-36-0Antimony7.5ND0.507/17/089284A9284A38PPEICP17440-38-2Arsenic4.06.80.507/17/089284A9284A38PPEICP17440-39-3Barium25350.507/17/089284A9284A38PPEICP17440-41-7Beryllium4.0ND0.507/17/089284A9284A38PPEICP17440-43-9Cadmium2.0ND0.507/17/089284A9284A38PPEICP17440-70-2Calcium1000170000.507/17/089284A9284A38PPEICP17440-47-3Chromium25ND0.507/17/089284A9284A38PPEICP17440-48-4Cobalt10ND0.507/17/089284A9284A38PPEICP17440-48-4Cobalt10ND0.507/17/089284A9284A38PPEICP17440-48-4Cobalt10ND0.507/17/089284A9284A38PPEICP17440-50-8Copper25ND0.507/17/089284A9284A38PPEICP17439-89-6Iron150180000.507/17/089284A9284A38PPEICP1	7429-90-5	Aluminum	100	400	0.5	07/17/08	9284	A9284A	38	P	PEICP1
7440-38-2   Arsenic   4.0   6.8   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-39-3   Barium   25   35   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-41-7   Beryllium   4.0   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-43-9   Cadmium   2.0   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-70-2   Calcium   1000   17000   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-47-3   Chromium   2.5   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-47-3   Chromium   25   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-48-4   Cobalt   10   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-50-8   Copper	7440-36-0	Antimony	7.5	ND	0.5	07/17/08	9284	A9284A	38	Р	PEICP1
7440-39-3   Barium   25   35   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-41-7   Beryllium   4.0   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-43-9   Cadmium   2.0   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-43-9   Cadmium   2.0   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-70-2   Calcium   1000   17000   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-47-3   Chromium   25   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-48-4   Cobalt   10   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-50-8   Copper   25   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7439-89-6   Iron   15	7440 <b>-</b> 38-2	Arsenic	4.0	6.8	0.5	07/17/08	9284	A9284A	38	Р	PEICP1
7440-41-7   Beryllium   4.0   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-43-9   Cadmium   2.0   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-70-2   Calcium   1000   17000   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-47-3   Chromium   25   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-48-4   Cobalt   10   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-48-4   Cobalt   10   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-50-8   Copper   25   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7439-89-6   Iron   150   18000   0.5   07/17/08   9284   A9284A   38   P   PEICP1	7440-39-3	Barium	25	35	0.5	07/17/08	9284	A9284A	38	Р	PEICP1
7440-43-9   Cadmium   2.0   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-70-2   Calcium   1000   17000   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-47-3   Chromium   25   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-47-3   Chromium   25   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-48-4   Cobalt   10   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-50-8   Copper   25   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7439-89-6   Iron   150   18000   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7430-90.4   Iron   150   18000   0.5   07/17/08   9284   A9284A   38   P   PEICP1	7440-41-7	Beryllium	4.0	ND	0.5	07/17/08	9284	A9284A	38	P	PEICP1
7440-70-2   Calcium   1000   17000   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-47-3   Chromium   25   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-48-4   Cobalt   10   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-50-8   Copper   25   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7439-89-6   Iron   150   18000   0.5   07/17/08   9284   A9284A   38   P   PEICP1	7440-43-9	Cadmium	2.0	ND	0.5	07/17/08	9284	A9284A	38	Р	PEICP1
7440-47-3   Chromium   25   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-48-4   Cobalt   10   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7440-50-8   Copper   25   ND   0.5   07/17/08   9284   A9284A   38   P   PEICP1     7439-89-6   Iron   150   18000   0.5   07/17/08   9284   A9284A   38   P   PEICP1	7440-70 <b>-</b> 2	Calcium	1000	17000	0.5	07/17/08	9284	A9284A	38	Р	PEICP1
7440-48-4     Cobalt     10     ND     0.5     07/17/08     9284     A9284A     38     P     PEICP1       7440-50-8     Copper     25     ND     0.5     07/17/08     9284     A9284A     38     P     PEICP1       7439-89-6     Iron     150     18000     0.5     07/17/08     9284     A9284A     38     P     PEICP1	7440-47-3	Chromium	25	ND	0.5	07/17/08	9284	A9284A	38	Р	PEICP1
7440-50-8     Copper     25     ND     0.5     07/17/08     9284     A9284A     38     P     PEICP1       7439-89-6     Iron     150     18000     0.5     07/17/08     9284     A9284A     38     P     PEICP1       7439-89-6     Iron     150     18000     0.5     07/17/08     9284     A9284A     38     P     PEICP1	7440-48-4	Cobalt	10	ND	0.5	07/17/08	9284	A9284A	38	P	PEICP1
7439-89-6 Iron 150 18000 0.5 07/17/08 9284 A9284A 38 P PEICP1	7440-50-8	Copper	25	ND	0.5	07/17/08	9284	A9284A	38	Р	PEICP1
	7439-89-6	Iron	150	18000	0.5	07/17/08	9284	A9284A	38	Р	PEICP1
7439-92-1 Lead 5.0 ND 0.5 07/17/08 9284 A9284A 38 P PEICP1	7439-92-1	Lead	5.0	ND	0.5	07/17/08	9284	A9284A	38	Р	PEICP1
7439-95-4 Magnesium 1000 5100 0.507/17/08 9284 A9284A 38 P PEICP1	7439-95-4	Magnesium	1000	5100	0.5	07/17/08	9284	A9284A	38	Р	PEICP1
7439-96-5 Manganese 25 53 0.507/17/08 9284 A9284A 38 P PEICP1	7439-96-5	Manganese	25	53	0.5	07/17/08	9284	A9284A	38	Р	PEICP1
7439-97-6 Mercury 0.20 ND 107/17/08 9284 H9284A 32 CV HGCV2	7439-97-6	Mercury	0.20	ND	1	07/17/08	9284	H9284A	32	cv	HGCV2
7440-02-0 Nickel 10 ND 0.5 07/17/08 9284 A9284A 38 P PEICP1	7440-02-0	Nickel	10	ND	0.5	07/17/08	9284	A9284A	38	Р	PEICP1
7440-09-7 Potassium 2500 ND 0.5 07/18/08 9284 A9284C 37 P PEICPRAD1	7440-09-7	Potassium	2500	ND	0.5	07/18/08	9284	A9284C	37	Р	PEICPRAD1
7782-49-2 Selenium 25 ND 0.5 07/17/08 9284 A9284A 38 P PEICP1	7782-49-2	Selenium	25	ND	0.5	07/17/08	9284	A9284A	38	Р	PEICP1
7440-22-4 Silver 10 ND 0.507/17/08 9284 A9284A 38 P PEICP1	7440-22-4	Silver	10	ND	0.50	07/17/08	9284	A9284A	38	Р	PEICP1
7440-23-5 Sodium 2500 58000 0.5 07/21/08 9284 A9284E 38 P PEICPRAD1	7440-23-5	Sodium	2500	58000	0.5	07/21/08	9284	A9284E	38	P	PEICPRAD1
7440-28-0 Thallium 5.0 ND 0.5 07/17/08 9284 A9284A 38 P PEICP1	7440-28-0	Thallium	5.0	ND	0.50	07/17/08	9284	A9284A	38	P	PEICP1
7440-62-2 Vanadium 25 ND 0.5 07/17/08 9284 A9284A 38 P PEICP1	7440-62-2	Vanadium	25	ND	0.5	07/17/08	9284	A9284A	38	Р	PEICP1
7440-66-6 Zinc 25 ND 0.5 07/17/08 9284 A9284A 38 P PEICP1	7440-66-6	Zinc	25	ND	0.50	07/17/08	9284	A9284A	38	P	PEICP1

Comments:

### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

STREET. No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Conces Service Service **Ballin** 

Stration .

100 M

1

Appendix C Support Documentation/Resubmission If Applicable

## MDL / RL SUMMARY 200.7 PE ICP 2

ELEMENT	MDL (mg/L)	Reporting Limits (mg/L)	( <b>DL</b> (mg/L)
AL	0.036082	0.2	0.00508
SB	0.003599	0.015	0.00217
AS	0.03478	0.008	0.0039
BA	0.00025	0.05	0.000131
BE	0.0000472	0.008	0.0000201
CD	0.00023	0.004	0.000327
CA	0.027025	2	0.0154
CR	0.000493	0.05	0.000268
СО	0.000445	0.02	0.000301
CU	0.0045251	0.05	0.00059
FE	0.01976	0.3	0.00396
PB	0.002245	0.01	0.00135
MG	0.032404	2	0.0302
MN	0.000204	0.05	0.000107
МО	0.000925	0.02	0.000571
NI	0.001021	0.02	0.000516
SE	0.010471	0.05	0.00825
AG	0.000315	0.02	0.000363
TL	0.005023	0.01	0.00269
SN	0.002302	0.05	0.00175
TI	0.000327	0.05	0.000115
v	0.00096	0.05	0.000942
ZN	0.007783	0.05	0.000858

Analytical Assurance Associates, Inc.



600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

# ORGANIC & INORGANIC DATA VALIDATION REPORT

# EARTH TECH ANCHOR LITH KEM KO PROJECT

# ANALYZED BY HAMPTON-CLARKE VERITECH LABORATORY LABORATORY CASE No.: 8071123

REVIEWED BY: Analytical Assurance Associates (A³) 600 Rock Raymond Road Downingtown, PA 19335

## EARTH TECH ANCHOR LITH KEM KO PROJECT LABORATORY ID: AC38653 CASE NO.: 8071123

## **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from seven groundwater samples including one duplicate and one trip blank, collected on July 11, 2008. Samples were received by Hampton-Clarke/Veritech laboratory on July 11, 2008 and analyzed for specific volatile organic compounds (VOCs) using EPA Method 624 following the criteria set forth in NYSDEC Category B.

The following samples are evaluated and included in this package review.

PW01-01	PW01-56
PW01-04	PW01-03
PW01-02	<b>TB071108</b>
PW01-06	

MS/MSD analysis was performed on sample PW01-06 from this batch.

The reported analytical data for the above samples were evaluated in accordance with the following parameters and summarized in this report.

## **QUALITY ASSURANCE REVIEW**

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations
- Blanks
- Surrogate Recoveries
- Internal Standards Recovery
- Matrix Spike/Spike Duplicate/Blank Spike Analyses
- Instrument Performance
- Field Duplicate Results
- Sample Results

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8071123

## DATA COMPLETENESS

The reported data was summarized on the similar CLP forms and considered acceptable.

The narrower ranges for percent abundance ratios in tune analysis were reported by laboratory for ions 50, 174, and 175. The data was not impacted since the reported abundance ratios were within the method recommended limits.

%Ds in continuing calibrations reported by the laboratory was not calculated based on the calculations recommended by the method. Consequently, some %Ds were above 25%. The %Ds were recalculated by the data reviewer and reported accordingly.

## HOLDING TIME

Samples were analyzed within 10 days of VTSR with the exception of sample PW01-03. This sample was analyzed within 14 days of collection. The analysis data were accepted since samples were preserved at pH < 2 unit.

A daily tune analysis was performed by the laboratory. Consequently the 12-hour tune analysis was exceeded for all samples except sample PW01-03. Samples were analyzed from 3:45 to 9:37 hours beyond 12-hour tune analysis, the frequency required by the CLP VOC SOW and also by SW-846 Method 8260B. However, these samples were analyzed using EPA Method 624, which only requires a tune "at the beginning of each day that analyses are to be performed." As the tune frequency was consistent with the requirements of the method, sample data were accepted since all other criteria met the requirements for the tune analysis.

## CALIBRATION

The response factors for acrolein (0.048, 0.038, and 0.037), t-butyl alcohol (0.026, 0.019, 0.046, and 0.028), and 1,4-dioxane (0.003, 0.003, 0.004, and 0.005) were below the data Region II data validation requirement of 0.05 in initial and continuing calibrations. These compounds are not considered as TCL compounds and they are known as low response factor compounds. Sample data was not qualified for acrolein and t-butyl alcohol since their Rf values were above "0.01" control limits recommended by the analysis method. However, the reported results and non-detected values for 1,4-dioxane were qualified in accordance with the region II guideline.

1,4-Dioxane was not detected in the samples. The reported non-detected values were contractually rejected "R".

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8071123

> CC CC Compound 7-22-08 @ 10:15 7-16-08 @ 6:46 Dichlorodifluoromethane 31.1 27.2 Bromomethane Vinyl Chloride 29.2 Acrolein 37.0 Acrylonitrile 29.2 Acetone 36.7 Carbon disulfide 34.5 38.5 t-Butvl Alcohol 30.5 Methyl Acetate 40.0 Samples AC38653-008 All samples Except 008

All %RSDs were within the control limits. The "recalculated" %Ds were above 25% in the following continuing calibrations:

The reported sample results and non-detected values were qualified estimated (J and UJ).

## **BLANKS**

The laboratory method blanks and trip blank were free of target compounds. A storage blank was not analyzed with this batch.

## SURROGATE RECOVERIES

Samples were spiked with four surrogate compounds prior to analysis. The recoveries were within the control limits.

## MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

Matrix spike/spike duplicate analysis was performed on sample PW01-06 from this batch and sample AC38765-001 from alternate batch for 31 specific volatile compounds. The percent recoveries and RPDs were with in the control limits with the exception of recoveries for 2-chloroethylvinylether (0.0%) in both sets of MS/MSD samples. The laboratory case narrative indicated that this compound readily decomposes under acidic condition. This compound was not detected in the samples. Therefore, the non-detected values were qualified estimated "UJ" since the recoveries were within the control limits in blank spike samples. The matrix interference is expected.

The RPD for 1,2-dichlorobenzene (23%) exceeded the upper control limit of 20% in PW01-06 MS/MSD. Sample data was not qualified since this compound was not detected in the samples.

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8071123

## **INTERNAL STANDARD**

The recoveries and retention times were within the control limits.

## FIELD DUPLICATE

Field duplicate analysis was performed on the duplicate sample pair PW01-06/PW01-56. Target compounds were not detected in these two samples.

## SAMPLE RESULTS

All samples were analyzed at one-fold dilutions. The reported sample data were accepted with the applied qualifier codes.

## **SUMMARY**

The cooler temperature  $(3.6^{\circ}C)$  was reported and considered acceptable.

Up to 31 compounds were listed in the applied analysis method "EPA Test Method 624". However, 65 target compounds were reported in each sample. Please note that the analysis of some specific compounds such as acrolein and acrylonitrile were not recommended by this method.

All data have been validated in accordance with the data quality assurance set forth in NYSDEC ASP for Evaluating Organic analyses. The USEPA Region II Data Validation SOP # HW-6 Revision 14, (September 2006), modified as needed for the specific requirements the analytical used by the laboratory (EPA 624), was utilized to review the data completeness and data quality. The analysis problems were discussed in the above sections. If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 269-9989.

Sincerely,

Zohreh Hamid, Ph.D Analytical Assurance Associates
# **INORGANIC ANALYSIS**

## EARTH TECH ANCHOR LITH KEM KO PROJECT LABORATORY ID: AC38653 CASE NO.: 8071123

## **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from six groundwater samples including one set of field duplicate, collected on July 11, 2008. Samples were received by Hampton-Clarke/Veritech laboratory on July 11, 2008 and analyzed for ICP metals and mercury according to the EPA Methods 200.7 and 245.1 respectively.

The following samples are evaluated and included in this package review.

PW01-01	PW01-06
PW01-04	PW01-56
PW01-02	PW01-03

MS and MD analyses were performed on sample PW01-06 from this batch.

The analysis data were reviewed in accordance with the following parameters and all problems encountered during the analysis were summarized in this report.

## **QUALITY ASSURANCE REVIEW**

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations & CRDL Analyses
- Blanks
- ICP Interference Check Sample
- Matrix Spike Analysis
- Matrix Duplicate Analysis
- Laboratory Control Sample Analysis
- ICP Serial Dilution Analysis
- Instrument Detection Limits
- Field Duplicate Results
- Sample Results

Earth Tech Project No. 8071123

## **DATA COMPLETENESS**

The method detection limits were not included in the data package. The laboratory was contacted. The tabulated IDLs and MDLs were submitted by the laboratory. The MDLs for potassium, sodium, and mercury were not listed on the resubmission. The laboratory stated that this form is not required for the applied method.

The serial dilution outliers were not qualified with an "E" qualifier code. The laboratory stated that this code is applied solely to the CLP Method analysis.

The %Ds in the serial dilution sample was not calculated as recommended by the CLP Method. The %Ds was calculated for all detected and non-detected results reported on the raw data. Consequently, many %Ds were reported above 10%. The reporting format did not follow the CLP and the review of the data was very time consuming.

## HOLDING TIME

Samples were digested and analyzed within the holding time requirements established in the corresponding methods.

## **CALIBRATIONS & CRDL ANALYSES**

The recoveries were within the control limits in initial and continuing calibrations analyzed prior and after sample analysis for all metals. The CRDL sample analysis was not performed for ICP metals.

## **BLANKS**

The preparation blanks, ICBs, and CCBs were free of target analytes at levels above the CRDLs.

## **ICP INTERFERENCE CHECK SAMPLE**

The recoveries for ICSA and ICSB were within the control limit of 80-120% for ICP metals.

## MATRIX SPIKE ANALYSIS

Matrix spike analysis was performed on sample PW01-06. Recoveries were within 75-125% control limits for all metals.

## MATRIX DUPLICATE ANALYSIS

Matrix duplicate analysis was performed on the above sample. The RPDs were within the control limits established for ground water samples.

Earth Tech Project No. 8071123

## LABORATORY CONTROL SAMPLE

The recoveries were within the control limits in this analysis.

## SERIAL DILUTION

This quality control sample was analyzed on sample PW01-06 for ICP metals. The %Differences were above 10% for Ca (12%) and Fe (11%). The reported sample results for these two analytes were qualified estimated "J" since both sample results were above 50 times the corresponding MDLs.

## FIELD DUPLICATE ANALYSIS

Field duplicate was analyzed on samples PW01-06 and PW01-56. The RPDs were listed on Table I (attached). The reproducibility is satisfactory.

## **SUMMARY**

The cooler temperature (3.6 °C) was within the acceptable limits. The reported sample data was considered acceptable.

All data have been validated in accordance with the data quality assurance set forth in NYSDEC ASP for Evaluating TAL metals. The USEPA Region II Data Validation SOP # HW-2, Revision 13 (September 2006) was utilized to review the data completeness and data quality. The analysis problems were discussed in the above sections. If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 269-9989.

Sincerely,

Zohreh Hamid, Ph.D Analytical Assurance Associates

# Table IField Duplicate PrecisionLaboratory Project No.: 8071123

Analyte	Field Sample PW01-06	Field Dup PW01-56	RPD
Aluminum			
Antimony			
Arsenic			
Barium	72	75	4
Beryllium			
Cadmium			
Calcium	12000	12000	0
Chromium			
Cobalt			
Copper			
Iron	1300	1400	7
Lead			
Magnesium	1600	1600	0
Manganese	130	100	26
Mercury			
Nickel			
Potassium			
Selenium			
Silver			
Sodium	41000	41000	0
Thallium			
Vanadium			
Zinc			

The reproducibility of field duplicate samples is satisfactory.

Appendix A- Glossary of Data Qualifier
Appendix B- Laboratory Form I, & Applied Qualifier Codes
Appendix C- Resubmission ( if applicable)

Appendix A Glossary of Data Qualifiers

#### **GLOSSARY OF DATA QUALIFIERS**

#### **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- R = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

## **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

#### **OTHER CODES**

 $\mathbf{Q} = \mathbf{NO} \mathbf{ANALYTICAL RESULT}.$ 

Appendix B Laboratory Form I and Applied Qualifier Codes

ORGANICS VOLATILE REPORT

## Sample Number: AC38653-001 Client Id: PW01-01 Data File: 3M50897.D Analysis Date: 07/16/08 22:36 Date Rec/Extracted: 07/11/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

	C	Commenced		onna, ug	/ հա			
			RL	Conc	Cas #	Compound	RI	Conc
	70 24 5		1.0	U	75-15-0	Carbon Disulfide	1.0	<u> </u>
	75 12 1	1, 1, 2, 2-1 etrachioroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U U
<u>_</u>	70-10-1	1, 1, 2-1 richloro-1, 2, 2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	Ŭ
	79-00-0	1, 1, 2- I richloroethane	1.0	U U	75-00-3	Chloroethane	1.0	Ű
E)	75-34-3	1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	10	U U
~~~~	/5-35-4	1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	10	1
	87-61-6	1,2,3-1 richlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	10	0
	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	0
	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	0
會	95-63-6	1,2,4-Trimethylbenzene	1.0	υ	124-48-1	Dibromochloromethane	1.0	
	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	0
¢.	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	0
·a	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isonropylhenzene	1.0	U
Name of Street	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7	m&n-Xvienes	1.0	U
ŝ,	78-87-5 [•]	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	2.0	U
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylovclobevano	1.0	U
1	541-73-1 1	1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chlorida	1.0	U
	142-28-9 1	,3-Dichloropropane	1.0	υ	1634-04-4	Methylete Chloride	1.0	U
	106-46-7 1	,4-Dichlorobenzene	1.0	U	104-51-8	Butylbenzono	1.0	U
3	123-91-1 1	,4-Dioxane	50	υŔ	103-65-1		1.0	U
	78-93-3 2	-Butanone	1.0	U	95-47-6	Yvleno	1.0	U
)	110-75-8 2	-Chloroethylvinylether	1.0	ŪV1	135-98-8 6		1.0	U
	591-78-6 2	-Hexanone	1.0	U J	100-42-5 9	Sec-Bulyibenzene	1.0	U
1	99-87-6 4	-isopropyitoluene	1.0	u l	75-65-0 +		1.0	U
	108-10-1 4	-Methyl-2-Pentanone	1.0	u l	98-06-6-+	Butyl Alconol	5.0	00
	67-64-1 A	cetone	5.0		107 19 A T		1.0	U -
	107-02-8 A	crolein	5.0	U I	141-10-4 1		1.0	U
	107-13-1 A	crylonitrile	1.0		156 60 5 4		1.0	U
	71-43-2 B	enzene	0.50		100-00-01	ans-1,2-Dichloroethene	1.0	U
	74-97-5 Bi	romochloromethane	1.0			ans-1,3-Dichloropropene	1.0	U
	75-27-4 Br	omodichloromethane	1.0	ц	79-01-6	richloroethene	1.0	U
	75-25-2 Br	omoform	10	U	75-09-4 1	richlorofluoromethane	1.0	U
	74-83-9 Br	omomethane	1.0	U U	70-01-4 V	inyi Unionde	1.0	U

Worksheet #: 89132

No. of the second second second second second second second second second second second second second second s

#### Total Target Concentration 0

 Indicates the compound was analyzed but not detected.
Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

## Sample Number: AC38653-002 Client Id: PW01-04 Data File: 3M50898.D Analysis Date: 07/16/08 22:53 Date Rec/Extracted: 07/11/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

S.,	Cas # Compound	RL	Conc	Coc #	Compound		_
	71-55-6 1,1,1-Trichloroethane	1.0	<u>U</u>	75-15-0	Compound Carbon Disulfide	<u> </u>	Conc
це.,	79-34-5 1,1,2,2-Tetrachloroethane	1.0	Ŭ	56-23 5	Carbon Totrachlarida	1.0	U
	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	Ű	109 00 7		1.0	U
	79-00-5 1,1,2-Trichloroethane	1.0	U U	75.00.2	Chlorobenzene	1.0	U
	75-34-3 1,1-Dichloroethane	1.0	U U	75-00-5	Chlorofenane	1.0	U
	75-35-4 1,1-Dichloroethene	10		74.97.0	Chlorotorm	1.0	U
7	87-61-6 1,2,3-Trichlorobenzene	1.0	U U	156 50 0	Chloromethane	1.0	U
	96-18-4 1,2,3-Trichloropropane	1.0	U U	10061-04-5	cis-1,2-Dichloroethene	1.0	U
1	120-82-1 1,2,4-Trichlorobenzene	1.0	U 1	10061-01-5	cis-1,3-Dichloropropene	1.0	U
tîn	95-63-6 1,2,4-Trimethylbenzene	1.0	0	110-82-7	Cyclohexane	1.0	U
	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
J	106-93-4 1,2-Dibromoethane	1.0	0	/5-/1-8	Dichlorodifluoromethane	1.0	U
	95-50-1 1.2-Dichlorobenzene	1.0	0	100-41-4	Ethylbenzene	1.0	U
à	107-06-2 1.2-Dichloroethane	0.50	0	98-82-8	isopropylbenzene	1,0	U
10.00	78-87-5 1.2-Dichloropropane	1.0	0	1330-20-7	m&p-Xylenes	2.0	U
4	108-67-8 1.3.5-Trimethylbenzene	1.0	0	79-20-9	Methyl Acetate	1.0	u
3	541-73-1 1.3-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	υ
{	142-28-9 1 3-Dichloropropage	1.0	U	75-09-2	Methylene Chloride	1.0	U
5	106-46-7 1 4-Dichlorobenzene	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	U
	123-91-1 1 4-Diovane	1.0	0	104-51 <b>-</b> 8 r	n-Butyibenzene	1.0	U
1	78-93-3 2-Butanone	50	UK	103-65-1 r	n-Propylbenzene	1.0	U
ļ	110-75-8 2-Chloroethylyinylether	1.0	U	9 <b>5-4</b> 7-6 c	-Xylene	1.0	U
	591-78-6 2-Hevenene	1.0	נייט	135-98-8 s	ec-Butylbenzene	1.0	U
	99-87-6 A loopsonultakusas	1.0	U	100-42-5 8	Styrene	1.0	U
	108-10-1 4 Mothyl 2 Destension	1.0	U	75-65-0 t-	Butyl Alcohol	5.0	U U1
	67-64 4 Acotone	1.0	U	98-06-6 t-	Butylbenzene	1.0	ر ن
		5.0	23	127-18-4 T	etrachloroethene	1.0	Ū
	107-02-0 Acrolem	5.0	U	108-88-3 T	oluene	1.0	Ū
	71 43 2 Particip	1.0	U	156-60-5 tr	ans-1,2-Dichloroethene	1.0	Ű
	74 07 5 Drement langer V	0.50	U	10061-02-6 tr	ans-1,3-Dichloropropene	1.0	ŭ
		1.0	U	79-01-6 T	richloroethene	1.0	Ŭ
	75-27-4 Bromodichloromethane	1.0	U	75-69-4 T	richlorofluoromethane	1.0	ŭ
	75-25-2 Bromotorm	1.0	U	75-01-4 V	inyl Chloride	1.0	U U
	74-63-9 Bromomethane	1.0	υİ		-		U

Worksheet #: 89132

## Total Target Concentration 23

- Indicates the compound was analyzed but not detected. - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

## Sample Number: AC38653-003 Client Id: PW01-02 Data File: 3M50899.D Analysis Date: 07/16/08 23:11 Date Rec/Extracted: 07/11/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

	Coold Company		Units, (	uy/L				
		RL	Conc	Cas #	Compound	RI	Conc	
	79-34-5 1 1 2 2 Totrachland the	1.0	U	75-15-0	Carbon Disulfide	1.0	<u>00110</u>	
		1.0	U	56-23-5	Carbon Tetrachloride	1.0	U	
	70-10-1 1, 1,2-11chloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	Ŭ	
		1.0	υ	75-00-3	Chloroethane	1.0	U U	
257.1	75-34-5 I, I-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	Ű	
900	75-55-4 1, 1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	U U	
C-10-1-1		1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	0	
	96-18-4 1,2,3-1 richloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	10	U U	
	120-82-1 1,2,4-1 richlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	0	
翻	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1	- Dibromochloromethane	1.0		
	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	0	
	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4	Ethvibenzene	1.0	U	
\$	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8	sopropylbenzene	1.0	U	
80.S	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7	m&n-Xvlenes	1.0	0	
V	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	2.0	0	
	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcycloheyane	1.0	U	
)	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U	
	142-28-9 1,3-Dichloropropane	1.0	υΙ	1634-04-4		1.0	U	
	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 r	Butyberzene	1.0	U	
3	123-91-1 1,4-Dioxane	50	υR	103-65-1 r		1.0	U	
1	78-93-3 2-Butanone	1.0	U U	95-47-6	Yvlono	1.0	U	
}	110-75-8 2-Chloroethylvinylether	1.0	0.01	135.08.8		1.0	U	
	591-78-6 2-Hexanone	1.0	U	100 42 5 5	ec-bulyidenzene	1.0	U	
) İ	99-87-6 4-Isopropyltoluene	1.0	1	75 65 0 4	Rutul Alashat	1.0	U	
	108-10-1 4-Methyl-2-Pentanone	1.0	U U	08.06.6.6		5.0	υŰ	1
	67-64-1 Acetone	5.0	U U			1.0	U	5
I	107-02-8 Acrolein	5.0	0	127-10-4	etrachioroethene	1.0	U	
	107-13-1 Acrylonitrile	10	Ú I	108-88-3 1	oluene	1.0	U	
	71-43-2 Benzene	0.50		10004 00 0 tr	ans-1,2-Dichloroethene	1.0	U	
	74-97-5 Bromochloromethane	10		10061-02-6 tr	ans-1,3-Dichloropropene	1.0	U	
	75-27-4 Bromodichloromethane	1.0		79-01-6 T	richloroethene	1.0	U	
	75-25-2 Bromoform	1.0	0	75-69-4 T	richlorofluoromethane	1.0	U	
	74-83-9 Bromomethane	1.0	U	75-01-4 Vi	nyl Chloride	1.0	U	
		4.V	UÍ					

Worksheet #: 89132

1000

#### Total Target Concentration 0

y - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of spe instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

d - Pesticide %Diff>10% between columns due to coelution. Lower concentration used.

## 0009

# Form1

ORGANICS VOLATILE REPORT

## Sample Number: AC38653-004 Client Id: PW01-06 Data File: 3M50900.D Analysis Date: 07/16/08 23:29 Date Rec/Extracted: 07/11/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

	<b>•</b> •• "	<b>A</b>		onito, d	սցլու			
100		Compound	RL	Conc	Cas #	Compound	RI	Conc
	71-00-0	1,1,1-1 richloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	
	79-34-5	1,1,2,2-1 etrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U U
黝	70-13-1	1,1,2-I richloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	U U
	79-00-5	1,1,2-Irichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U U
89) 1991	75-34-3	1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	U U
2073	75-35-4	1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	10	Ű
	87-61-6	1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1.2-Dichloroethene	10	1
	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1.3-Dichloropropene	1.0	
	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cvclohexane	1.0	0
2	95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	0
	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
22	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethvibenzene	1.0	0
89	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopronylbenzene	1.0	0
	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7	m&n-Xvlenes	1.0	U
2	78-87-5 ⁻	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	2.0	U
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclobeyane	1.0	U.
1	541-73-1 1	1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chlorido	1.0	0
	142-28-9 1	,3-Dichloropropane	1.0	U	1634-04-4	Methylate Chichde	1.0	0
~	106-46-7 1	,4-Dichlorobenzene	1.0	Ŭ	104-51-8	Butubenzeno	1.0	U
)	123-91-1 1	4-Dioxane	50	υŔ	103-65-1 r	-Dulyidenzene	1.0	U
ļ	78-93-3 2	-Butanone	1.0	u .	95-47-6 (	-Yvlene	1.0	0
1	110-75-8 2	-Chioroethylvinylether	1.0	0.01	135-98-8 6	ec Butulhonzono	1.0	U
	591-78-6 2	-Hexanone	1.0	U I	100-30-0 \$		1.0	U
	99-87-6 4	-isopropyltoluene	1.0	Ŭ	75-65-0 +	Rubi Aleshal	1.0	0
	108-10-1 4	-Methyl-2-Pentanone	1.0	U I	98-06-6 1	Butylhonnon	5.0	رىن
	67-64-1 A	cetone	5.0	U U	127-18 A T	otrophersethers	1.0	U
	107-02-8 A	crolein	5.0	u -	109.99.3 T		1.0	U
	107-13-1 A	crylonitrile	1.0	ů l	156-60 5 +	oluerie	1.0	U
	71-43-2 B	enzene	0.50	U I	10061.03.6 +-		1.0	U
	74-97-5 Bi	romochloromethane	1.0	ŭ	70_01 C T		1.0	U
	75-27-4 B	romodichloromethane	1.0	1	75-01-01		1.0	U
	75-25-2 Bi	omoform	1.0	u l	70-00-4 (	incritorofluoromethane	1.0	υ
	74-83-9 Br	omomethane	1.0		70-01-4 V	inyi Chioride	1.0	U
				~ /				

Worksheet #: 89132

Service State

## Total Target Concentration 0

Indicates the compound was analyzed but not detected.
Indicates the analyte was found in the blank as well as in the sample.
Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

## Sample Number: AC38653-007 Client Id: PW01-56 Data File: 3M50915 D Analysis Date: 07/17/08 04:11 Date Rec/Extracted: 07/11/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

2	Cas # Compound	RL	Conc	Cas # Compound	Di	0
	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	<u> </u>	Conc
480. Y	79-34-5 1,1,2,2-Tetrachloroethane	1.0	υ	56-23-5 Carbon Tetrachloride	1.0	0
801	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	υ	108-90-7 Chlorobenzene	1.0	0
	79-00-5 1,1,2-Trichloroethane	1.0	υ	75-00-3 Chloroethane	1.0	U
S.)	75-34-3 1,1-Dichloroethane	1.0	υ	67-66-3 Chloroform	1.0	U
	75-35-4 1,1-Dichloroethene	1.0	υ	74-87-3 Chloromethane	1.0	U
	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1 2-Dichloroothono	1.0	U
j,	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1 3-Dichloropropopo	1.0	0
	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclobeyane	1.0	U
1	95-63-6 1,2,4-Trimethylbenzene	1.0	Ū	124-48-1 Dibtomochloromothana	1.0	U
	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U I	75-71-8 Dichlorodifluoremethane	1.0	U
3	106-93-4 1,2-Dibromoethane	1.0	Ū İ	100-41-4 Ethylbenzone	1.0	U
	95-50-1 1,2-Dichlorobenzene	1.0	Ū I		1.0	U
	107-06-2 1,2-Dichloroethane	0.50	Ű	1330-20-7 m2n Xulanas	1.0	U
	78-87-5 1,2-Dichloropropane	1.0	U U	79-20-9 Methyl Acetete	2.0	U
	108-67-8 1,3,5-Trimethylbenzene	1.0	U I	108 87.2 Methylevelaberer	1.0	U
]	541-73-1 1,3-Dichlorobenzene	1.0	Ŭ	75-09.2 Methylene Obleside	1.0	U
	142-28-9 1,3-Dichloropropane	1.0	ŭ l	1634.04.4. Mothylette Chioride	1.0	U
1	106-46-7 1,4-Dichlorobenzene	1.0	U U		1.0	U
	123-91-1 1,4-Dioxane	50	II R		1.0	U
	78-93-3 2-Butanone	1.0			1.0	U
	110-75-8 2-Chloroethylvinylether	1.0	11 01	35-47-0 0-Aylene	1.0	Ŭ
	591-78-6 2-Hexanone	10	رە 0	100 42 5 Character	1.0	U
	99-87-6 4-Isopropyltoluene	1.0	U U	75 65 0 A Deated Aleghan	1.0	U
	108-10-1 4-Methyl-2-Pentanone	10	1		5.0	ر ۷ ں
	67-64-1 Acetone	50		90-00-b t-Butylbenzene	1.0	U
	107-02-8 Acrolein	50		127-10-4 retrachioroethene	1.0	U
	107-13-1 Acrylonitrile	1.0		106-68-3 Toluene	1.0	U
	71-43-2 Benzene	0.50		156-60-5 trans-1,2-Dichloroethene	1.0	U
	74-97-5 Bromochloromethane	1.0	0	10061-02-6 trans-1,3-Dichloropropene	1.0	U
	75-27-4 Bromodichloromethane	10		79-01-6 Irichloroethene	1.0	U
	75-25-2 Bromoform	1.0		75-69-4 Trichlorofluoromethane	1.0	U
	74-83-9 Bromomethane	1.0	0	75-01-4 Vinyl Chloride	1.0	U
		1.0	0			

Worksheet #: 89132

という

2012

120.020

#### Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of she instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

## Sample Number: AC38653-008 Client Id: PW01-03 Data File: 2M32982.D Analysis Date: 07/22/08 13:11 🗸 Date Rec/Extracted: 07/11/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

## Units: ug/L

8	Cas # Compound	RL	Conc	Cas #	Compound		•
	71-55-6 1,1,1-Trichloroethane	1.0	<u> </u>	75-15-0	Compound Carbon Disulfide	<u> </u>	Conc
G.	79-34-5 1,1,2,2-Tetrachloroethane	1.0	Ū	56-23-5	Carbon Disunde	1.0	0 07
<b>5</b> 555	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	u l	108-90-7	Calbon Tetracmonde	1.0	U
	79-00-5 1,1,2-Trichloroethane	1.0	1	75.00.2	Chloropenzene	1.0	U
	75-34-3 1,1-Dichloroethane	1.0	U	70-00-3 67.66 3	Chloroetnane	1.0	U
	75-35-4 1,1-Dichloroethene	1.0	1	74 97 3	Chlorotorm	1.0	U
	87-61-6 1,2,3-Trichlorobenzene	1.0	U U	156 50 0	chioromethane	1.0	U
	96-18-4 1,2,3-Trichloropropane	1.0		100-09-2	cis-1,2-Dichloroethene	1.0	U
	120-82-1 1,2,4-Trichlorobenzene	1.0	U U	110 92 7	Cis-1,3-Dichloropropene	1.0	U
र है।	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124 40 4	Dibromexane	1.0	U
	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	11	75 74 0	Dipromocnioromethane	1.0	U .
	106-93-4 1,2-Dibromoethane	1.0	U	100 41 4		1.0	u v j
	95-50-1 1,2-Dichlorobenzene	1.0	U U	09 83 81		1.0	U
	107-06-2 1,2-Dichloroethane	0.50		90-02-0 : 1220-00-7 -		1.0	U
	78-87-5 1,2-Dichloropropane	10	1	70 20 0 1	m&p-Xylenes	2.0	U
	108-67-8 1,3,5-Trimethylbenzene	1.0	U U	109-20-9	Methyl Acetate	1.0	u V)
ា	541-73-1 1,3-Dichlorobenzene	10		100-07-2	Methylcyclohexane	1.0	U
	142-28-9 1,3-Dichloropropane	1.0		75-09-2 (	Methylene Chloride	1.0	U
2	106-46-7 1,4-Dichlorobenzene	1.0	1	1034-04-4	Methyl-t-butyl ether	1.0	U
c m	123-91-1 1,4-Dioxane	50	<u> </u>	104-51-8 1	1-Butylbenzene	1.0	U
	78-93-3 2-Butanone	10		103-65-1 r	1-Propylbenzene	1.0	U
3	110-75-8 2-Chloroethylvinylether	1.0		95-47-6 0	o-Xylene	1.0	U
	591-78-6 2-Hexanone	1.0	000	135-98-8 s	ec-Butylbenzene	1.0	U
1	99-87-6 4-Isopropyltoluene	1.0		100-42-5 5	styrene	1.0	U
	108-10-1 4-Methyl-2-Pentanone	1.0		75-65-0 t-	-Butyl Alcohol	5.0	u V)
	67-64-1 Acetone	50	U L L	98-06-6 t-	Butylbenzene	1.0	U
τ	107-02-8 Acrolein	5.0		127-18-4 1	etrachloroethene	1.0	U
ļ	107-13-1 Acrylonitrile	1.0		108-88-3	oluene	1.0	U
	71-43-2 Benzene	0.50		156-60-5 tr	ans-1,2-Dichloroethene	1.0	U
	74-97-5 Bromochloromethane	1.0		10061-02-6 tr	ans-1,3-Dichloropropene	1.0	U
	75-27-4 Bromodichloromethane	1.0		79-01-6 T	richloroethene	1.0	U
	75-25-2 Bromoform	1.0		75-69-4 T	richlorofluoromethane	1.0	Ų
	74-83-9 Bromomethane	1.0		75-01-4 V	inyl Chloride	1.0	υUŢ
		1.0	001				<i>,</i>

経営などの

#### Total Target Concentration 0

- Indicates the compound was analyzed but not detected. - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

## Sample Number: AC38653-009 Client Id: TB 071108 Data File: 3M50911.D Analysis Date: 07/17/08 02:59 Date Rec/Extracted: 07/11/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

#### Units: ua/L

8	<u>Cas #</u>	Compound	RI	Conc	g Coc #	Compound		-	
	71-55-6	1,1,1-Trichloroethane	1.0	<u> </u>	75-15.0	Compound Corbon Disulfide	<u></u>	Conc	
ίų.	79-34-5	1,1,2,2-Tetrachloroethane	1.0	U U	56 22 5	Carbon Disunde	1.0	U	
	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	11	109.00.7		1.0	U	
	79-00-5	1,1,2-Trichloroethane	10	0	75.00.0	Chlorobenzene	1.0	U	
	75-34-3	1,1-Dichloroethane	1.0	Ц	75-00-3	Chloroethane	1.0	U	
	75-35-4	1,1-Dichloroethene	1.0		07-00-3	Chioroform	1.0	U	
꼜	87-61-6	1,2,3-Trichlorobenzene	1.0	U U	/4-8/-3	Chloromethane	1.0	U	
	96-18-4	1,2,3-Trichloropropane	1.0	U U	156-59-2	cis-1,2-Dichloroethene	1.0	U	
Sig.	120-82-1	1.2.4-Trichlorobenzene	1.0	0	10061-01-5	cis-1,3-Dichloropropene	1.0	U	
187)	95-63-6	1.2.4-Trimethylbenzene	1.0	0	110-82-7	Cyclohexane	1.0	U	
	96-12-8	1.2-Dibromo-3-Chloroprona	1.0	0	124-48-1	Dibromochloromethane	1.0	U	
5	106-93-4	1.2-Dibromoethane	1.0	U	/5-71-8	Dichlorodifluoromethane	1.0	U	
	95-50-1	1.2-Dichlorobenzene	1.0	0	100-41-4	Ethylbenzene	1.0	U	
×.	107-06-2	1.2-Dichloroethane	1.0	U	98-82-8	Isopropylbenzene	1.0	U	
424	78-87-5	1 2-Dichloropropane	0.50	0	1330-20-7	m&p-Xylenes	2.0	U	
3	108-67-8 1	1.3.5-Trimethylbenzone	1.0	U	79-20-9	Methyl Acetate	1.0	U	
83	541-73-1 1	3-Dichlorobenzeno	1.0	U	108-87-2	Methylcyclohexane	1.0	U	
200 201	142_28_0 1		1.0	U	75-09-2	Methylene Chloride	1.0	U	
	106-46-7 1		1.0	U	1634-04-4	Vethyl-t-butyl ether	1.0	U	
	123-01-1 1		1.0	U J	104-51-8 r	n-Butylbenzene	1.0	U	
	78 03 3 3	-Dioxane	50	υĶ	103-65-1 r	n-Propylbenzene	1.0	U	
	110 75 0 0		1.0	U	95-47-6 c	o-Xylene	1.0	U	
.,	F01 70 C 0	-Chloroethylvinylether	1.0	0 0 0	135-98-8 s	ec-Butylbenzene	1.0	U	
3	00 97 6 4		1.0	U	100-42-5 5	Styrene	1.0	U	
	33-01-0 4		1.0	U	75-65-0 t-	-Butyl Alcohol	5.0	Ū (	11
d	07.04.4	-Methyl-2-Pentanone	1.0	U	98-06-6 t-	Butylbenzene	1.0	Ū	)
	07-04-1 A	cetone	5.0	U	127-18-4 T	etrachloroethene	1.0	ц Ц	
	107-02-8 A	crolein	5.0	U	108-88-3 T	oluene	1.0	Ŭ	
	107-13-1 A	Crylonitrile	1.0	υ	156-60-5 tr	ans-1,2-Dichloroethene	1.0	U U	
	71-43-2 B	enzene	0.50	U	10061-02-6 tr	ans-1,3-Dichloropropene	1.0	U U	
	74-97-5 Bi	romochloromethane	1.0	U	79-01-6 T	richloroethene	1.0	ü	
	75-27-4 Br	romodichloromethane	1.0	υ	75-69 <b>-</b> 4 T	richlorofluoromethane	1.0	U U	
	75-25-2 Br	omoform	1.0	U	75-01-4 V	inyl Chloride	10	11	
	74-83-9 Br	omomethane	1.0	U			1.0	Ū.	

#### Worksheet #: 89132

の語

100 E 100

Total Target Concentration 0

- Indicates the compound was analyzed but not detected. - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Sample ID: AC38653-001 Client Id: Matrix:

10.00

Service of

PW01-01 AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/12/2008

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No: Case No:

		1			1	- p					
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date	Prep Batch	File:	Seq Num:	м	Instr	
7429-90-5	Aluminum	100	ND	.5	07/17/08	9282	A9282A	26	P	PEICP1	_
7440-36-0	Antimony	7.5	ND	.5	07/17/08	9282	A9282A	26	Р	PEICP1	
7440-38-2	Arsenic	4.0	ND	.5	07/17/08	9282	A9282A	26	P	PEICP1	ļ
7440-39-3	Barium	25	93	.5	07/17/08	9282	A9282A	26	P	PEICP1	
7440-41-7	Beryllium	4.0	ND	.5	07/17/08	9282	A9282A	26	Р	PEICP1	
7440-43-9	Cadmium	2.0	ND	.5	07/17/08	9282	A9282A	26	P	PEICP1	
7440-70-2	Calcium	1000	9600	٦.5	07/17/08	9282	A9282A	26	, D	PEICP1	
7440-47-3	Chromium	25	ND	ر ر	07/17/08	9282	A9282A	26	' D	PEICPI	
7440-48-4	Cobalt	10	18	.5	07/17/08	9282	A0202A	20	r D	PEICPI	
7440-50-8	Copper	25	ND		07/17/08	0202	A0202A	20		PEICP1	
7439-89-6	Iron	150	7900	۲ 5	07/17/08	0202	A0202A	20	г р	PEICP1	
7439-92-1	Lead	5.0	ND	• ر	07/17/09	9202	A9202A	20	۲ ٦	PEICP1	
7439-95-4	Magnesium	1000	1700	.5	07/17/00	9202	A9282A	26	P -	PEICP1	
7439-96-5	Manganese	25	2000	.5	07/17/00	9202	A9282A	26	4	PEICP1	
7439-97-6	Mercury	0.20	2000	.0		9282	A9282A	26	Р.	PEICP1	
7440-02-0	Nickel	10				9282	H9282A	18	CV	HGCV2	
7440-09-7	Potassium	2500		.5	37/17/08	9282	A9282A	26	Р	PEICP1	
7782-49-2	Selenium	2000		.51	0//1//08	9282	A9282B	21	Ρ	PEICPRAD1	
7440-22-4	Silver	20	ND	.50	07/17/08	9282	A9282A	26	Ρ	PEICP1	ĺ
7440 22 5	Saver	10	ND	.5	07/17/08	9282	A9282A	26	P	PEICP1	ļ
7440 29 0	Sodium	2500	150000	.5	)7/17/08	9282	A9282B	21	Ρ	PEICPRAD1	l
7440-28-0	Inallium	5.0	ND	.50	7/17/08	9282	A9282A	26	P	PEICP1	
7440-62-2	Vanadium	25	ND	.50	7/17/08	9282	A9282A	26	Р	PEICP1	
/440-66-6	Zinc	25	ND	.50	7/17/08	9282	A9282A	26	Р	PEICP1	
									1		

#### Comments:

#### Flag Codes:

Client Id: Matrix:

Sample ID: AC38653-002 PW01-04 AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/12/2008

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No: Case No:

						T				_		_
	Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date	Prep Batch	File:	Seq Num:	м	Instr	
l	7429-90-5	Aluminum	100	ND	.5	07/17/08	9282	A9282A	29	Р	PEICP1	_
	7440-36-0	Antimony	7.5	ND	.5	07/17/08	9282	A9282A	29	Р	PEICP1	
l	7440-38-2	Arsenic	4.0	ND	.5	07/17/08	9282	A9282A	29	Р	PEICP1	
	7440-39-3	Barium	25	65	.5	07/17/08	9282	A9282A	29	p	PEICP1	
	7440-41-7	Beryllium	4.0	ND	.5	07/17/08	9282	A9282A	29	P	PEICP1	
	7440-43-9	Cadmium	2.0	ND	.5	07/17/08	9282	A9282A	20	, D		
	7440-70-2	Calcium	1000	10000	٦.5	07/17/08	9282	A9282A	20		PEICP1	
	7440-47-3	Chromium	25	ND		07/17/08	9282	A9282A	20	D	PEICPI	
	7440-48-4	Cobalt	10	ND	.5	07/17/08	0282	A0202A	20	г р	PEICPI	
	7440-50-8	Copper	25	ND	5	07/17/08	0202	A0202A	29	г р	PEICP1	
	7439-89-6	Iron	150	7000	 П 5	07/17/00	9202	A9202A	29	۳ -	PEICP1	
	7439-92-1	Lead	5.0		)	07/17/00	9202	A9282A	29	Р	PEICP1	
	7439-95-4	Magnesium	1000	1500	.5	07/17/08	9282	A9282A	29	Р	PEICP1	
	7439-96-5	Mannanese	25	1500	.51	07/17/08	9282	A9282A	29	Р	PEICP1	
	7439-97-6	Mercup	20	1100	.5	07/17/08	9282	A9282A	29	Р	PEICP1	ĺ
	7440-02-0	Nickal	0.20	ND	10	07/18/08	9282	H9282A	19	cv	HGCV2	
	7440.00.7		10	ND	.50	07/17/08	9282	A9282A	29	Р	PEICP1	
	7440-09-7	Potassium	2500	2800	.50	07/17/08	9282	A9282B	22	Р	PEICPRAD1	
	7782-49-2	Selenium	25	ND	.50	07/17/08	9282	A9282A	29	Р	PEICP1	l
	7440-22-4	Silver	10	ND	.50	7/17/08	9282	A9282A	29	Р	PEICP1	
	7440-23-5	Sodium	2500	34000	.5 0	7/17/08	9282	A9282B	22	Р	PEICPRAD1	
	7440-28-0	Thallium	5.0	ND	.50	7/17/08	9282	A9282A	29	P	PEICP1	
	7440-62-2	Vanadium	25	ND	.50	7/17/08	9282	A9282A	29	Р	PEICP1	
	7440-66-6	Zinc	25	ND	.50	7/17/08	9282	A9282A	29	Р	PEICP1	
		•• •• •• •• ••	·i						!	•		

#### Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor

MS - ICP-MS

鬱 

S. Marine B

S. Harris

EN LOS

Sample ID: AC38653-003 Client Id: Matrix: Level: LOW

TING AND

NEWS ST

PW01-02 AQUEOUS

% Solid: 0 Units: UG/L Date Rec: 7/12/2008

Lab Code:

Contract:

Lab Name: Veritech

Nras No:

Sdg No:

Case No:

						1				
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	ND	.5	07/17/08	9282	A9282A	30	Р	PEICP1
7440-36-0	Antimony	7.5	ND	.5	07/17/08	9282	A9282A	30	P	PEICP1
7440-38-2	Arsenic	4.0	ND	.5	07/17/08	9282	A9282A	30	Р	PEICP1
7440-39-3	Barium	25	72	.5	07/17/08	9282	A9282A	30	Р	PEICP1
7440-41-7	Beryllium	4.0	ND	.5	07/17/08	9282	A9282A	30	Р	PEICP1
7440-43-9	Cadmium	2.0	ND	.5	07/17/08	9282	A9282A	30	Þ	PEICP1
7440-70-2	Calcium	1000	14000	5. ۲	07/17/08	9282	A9282A	30	P	PEICP1
7440-47-3	Chromium	25	ND	.5	07/17/08	9282	A9282A	30	Þ	PEICP1
7440-48-4	Cobalt	10	ND	.5	07/17/08	9282	A0282A	30	1 D	BEICH1
7440-50-8	Copper	25	ND	5	07/17/08	9282	A0292A	20		PEICE1
7439-89-6	Iron	150	1200	 ۲ 5	07/17/08	0202	A0202A	20	г р	PEICPT
7439-92-1	Lead	5.0	ND	ه. ر	07/17/00	9202	A0000A	30	۳ -	PEICP1
7439-95-4	Magnesium	1000	1000	.u	07/17/00	9202	A9282A	30	P _	PEICP1
7439-96-5	Manganeso	1000	1900	 -	07/17/08	9282	A9282A	30	Р	PEICP1
7439-97-6	Mercura	20	150	.5	07/17/08	9282	A9282A	30	Ρ	PEICP1
7440.00.0	Wercury	0.20	ND	1	07/18/08	9282	H9282A	20	cv	HGCV2
7440-02-0	Nickel	10	ND	.5	07/17/08	9282	A9282A	30	Р	PEICP1
7440-09-7	Potassium	2500	2900	.5	07/17/08	9282	A9282B	23	Р	PEICPRAD1
7782-49-2	Selenium	25	ND	.5	07/17/08	<b>92</b> 82	A9282A	30	Р	PEICP1
7440-22-4	Silver	10	ND	.50	07/17/08	9282	A9282A	30	P	PEICP1
7440-23-5	Sodium	2500	23000	.50	07/17/08	9282	A9282B	23	Р	PEICPRAD1
7440-28-0	Thailium	5.0	ND	.50	07/17/08	9282	A9282A	30	Р	PEICP1
7440-62-2	Vanadium	25	ND	.50	7/17/08	9282	A9282A	30	P	PEICP1
7440-66-6	Zinc	25	ND	.50	7/17/08	9282	A9282A	30	, p	
							. OLOLA			FEICFI

Comments:

Flag Codes:

Client Id: Matrix:

Service and

**ENTRY** 

Sample ID: AC38653-004 PW01-06 AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/12/2008

Lab Name: Veritech Lab Code: Contract:

Nras No: Sdg No: Case No:

					Analusia	Dress			1	
Cas No.	Analyte	RL	Conc	Dil Fact	Date:	Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	ND	.5	07/17/08	9282	A9282A	20	Р	PEICP1
7440-36-0	Antimony	7.5	ND	.5	07/17/08	9282	A9282A	20	Р	PEICP1
7440-38-2	Arsenic	4.0	ND	.5	07/17/08	9282	A9282A	20	Р	PEICP1
7440-39-3	Barium	25	72	.5	07/17/08	<b>92</b> 82	A9282A	20	Р	PEICP1
7440-41-7	Beryllium	4.0	ND	.5	07/17/08	9282	A9282A	20	P	PEICP1
7440-43-9	Cadmium	2.0	ND	.5	07/17/08	<b>928</b> 2	A9282A	20	P	PEICP1
7440-70-2	Calcium	1000	12000	J.5	07/17/08	9282	A9282A	20	Р	PEICP1
7440-47-3	Chromium	25	ND	.5	07/17/08	9282	A9282A	20	P	PEICP1
7440-48-4	Cobalt	10	ND	.5	07/17/08	9282	A9282A	20	P	PEICP1
7440-50-8	Copper	25	ND	.5	07/17/08	9282	A9282A	20	P	PEICP1
7439-89-6	Iron	150	1300	7 .5	07/17/08	9282	A9282A	20	P	PEICP1
7439-92-1	Lead	5.0	ND	5(	07/17/08	9282	A9282A	20	P	PEICP1
7439-95-4	Magnesium	1000	1600	.50	07/17/08	9282	A9282A	20	P	PEICP1
7439-96-5	Manganese	25	130	.50	07/17/08	9282	A9282A	20	P	PEICP1
7439-97-6	Mercury	0.20	ND	10	07/18/08	9282	H9282A	14	cv	HGCV2
7440-02-0	Nickel	10	ND	.50	07/17/08	9282	A9282A	20	P	PEICP1
7440-09-7	Potassium	2500	ND	.50	07/17/08	9282	A9282B	13	P	PEICPRAD1
7782-49-2	Selenium	25	ND	.50	7/17/08	9282	A9282A	20	P	PEICP1
7440-22-4	Silver	10	ND	.50	7/17/08	9282	A9282A	20	Р	PEICP1
7440-23-5	Sodium	2500	41000	.50	7/17/08	9282	A9282B	13	P	PEICPRAD1
7440-28-0	Thallium	5.0	ND,	.50	7/17/08	9282	A9282A	20	P	PEICP1
7440-62-2	Vanadium	25	ND	.50	7/17/08	9282	A9282A	20	P	PEICP1
7440-66-6	Zinc	25	ND	.50	7/17/08	9282	A9282A	20	P	PEICP1
				······					i i	

Comments:

#### Flag Codes:

Nras No:

Instr

PEICP1

PEICP1

PEICP1

PEICP1

PEICP1

PEICP1

PEICP1

PEICP1

PEICP1

PEICP1

PEICP1

PEICP1

PEICP1

PEICP1

HGCV2

PEICP1

PEICPRAD1

PEICP1

PEICP1

PEICPRAD1

PEICP1

PEICP1

PEICP1

P

Р

Р

CV

Ρ

Ρ

Ρ

Ρ

Ρ

Ρ

Ρ

Р

Form1 Inorganic Analysis Data Sheet

Lab Name: Veritech

Client Ma Le	t Id: PW01-56 trix: AQUEOUS vel: LOW	Date	Units: UG/L e Rec: 7/12/2	2008	Lab C Cont	ract:		C	Sdg N Case N	lo: lo: lo:
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	
7429-90-5	Aluminum	100	ND	.5	07/17/08	9282	A9282A	31	Р	1
7440-36-0	Antimony	7.5	ND	.5	07/17/08	9282	A9282A	31	Р	İ
7440-38-2	Arsenic	4.0	ND	.5	07/17/08	9282	A9282A	31	Р	
7440-39-3	Barium	25	75	.5	07/17/08	9282	A9282A	31	Р	ĺ
7440-41-7	Beryllium	4.0	ND	.5	07/17/08	9282	A9282A	31	Р	
7440-43-9	Cadmium	2.0	ND	.5	07/17/08	9282	A9282A	31	P	
7440-70-2	Calcium	1000	12000	[.] ٦.5	07/17/08	9282	A9282A	31	P	
7440-47-3	Chromium	25	ND	.5	07/17/08	9282	A9282A	31	P	[
7440-48-4	Cobalt	10	ND	.5	07/17/08	9282	A9282A	31	Þ	
7440-50-8	Copper	25	ND		07/17/08	9282	A0282A	31	' D	
7439-89-6	Iron	150	1400	J.5	07/17/08	9282	A9282A	31	P	

ND

1600

100

ND

ND

ND

ND

ND

ND

ND

ND

41000

.5 07/17/08

.5 07/17/08

.5 07/17/08

107/18/08

.5 07/17/08

.5 07/17/08

.507/17/08

.5 07/17/08

.5 07/17/08

.5 07/17/08

.507/17/08

.5 07/17/08

9282

9282

9282

9282

9282

9282

9282

9282

9282

9282

9282

9282

A9282A

A9282A

A9282A

H9282A

A9282A

A9282B

A9282A

A9282A

A9282B

A9282A

A9282A

A9282A

31

31

31

23

31

24

31

31

24

31

31

31

% Solid: 0

5.0

1000

25

0.20

10

25

10

2500

5.0

25

25

2500

Comments:

Sample ID:

7439-92-1

7439-95-4

7439-96-5

7439-97-6

7440-02-0

7440-09-7

7782-49-2

7440-22-4

7440-23-5

7440-28-0

7440-62-2

7440-66-6

Lead

Magnesium

Manganese

Mercury

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Banker (

漢語の意

1000.200

AC38653-007

Flag Codes:

Sample ID: Client Id: Matrix: Level:

AC38653-008 PW01-03 AQUEOUS LOW

% Solid: 0 Units: UG/L Date Rec: 7/12/2008

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No: Case No:

i						1				,		
	Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr	
	7429-90-5	Aluminum	100	370	.5	07/17/08	9282	A9282A	32	Р	PEICP1	
	7440-36-0	Antimony	7.5	ND	.5	07/17/08	9282	A9282A	32	Р	PEICP1	
ĺ	7440-38-2	Arsenic	4.0	7.1	.5	07/17/08	9282	A9282A	32	р	PEICP1	i
	7440-39-3	Barium	25	67	.5	07/17/08	9282	A9282A	32	P	PEICP1	-
	7440-41-7	Beryllium	4.0	ND	.5	07/17/08	9282	A9282A	32	P	PEICP1	Ì
	7440-43-9	Cadmium	2.0	ND	.5	07/17/08	9282	A9282A	32	P	PEICP1	
	7440-70-2	Calcium	1000	10000	٦.5	07/17/08	9282	A9282A	32	P	PEICP1	ĺ
	7440-47-3	Chromium	25	ND	.5	07/17/08	9282	A9282A	32	P	PEICP1	
	7440-48-4	Cobalt	10	ND	.5/	07/17/08	9282	A9282A	32	P	PEICP1	
	7440-50-8	Copper	25	ND	.5	07/17/08	9282	A9282A	32	p	PEICP1	
	7439-89-6	iron	150	6000	٦ .5	07/17/08	9282	A9282A	32	P	PEICP1	
	7439-92-1	Lead	5.0	ND	.5	07/17/08	9282	A9282A	32	P	PEICP1	
	7439-95-4	Magnesium	1000	1500	.50	07/17/08	9282	A9282A	32	P	PEICP1	
	7439-96-5	Manganese	25	880	.50	07/17/08	9282	A9282A	32	P	PEICP1	
	7439-97-6	Mercury	0.20	ND	10	07/18/08	9282	H9282A	24	cv	HGCV2	
	7440-02-0	Nickel	10	ND	.50	7/17/08	9282	A9282A	32	р.	PEICP1	
	7440-09-7	Potassium	2500	2800	.50	7/17/08	9282	A9282B	25	P	PEICPRAD1	
	7782-49-2	Selenium	25	ND	.50	7/17/08	9282	A9282A	32	P	PEICP1	
	7440-22-4	Silver	10	ND	.50	7/17/08	9282	A9282A	32	P	PEICP1	
	7440-23-5	Sodium	2500	27000	.50	7/17/08	9282	A9282B	25	P	PEICPRAD1	ļ
	7440-28-0	Thallium	5.0	ND	.50	7/17/08	9282	A9282A	32	P	PEICP1	
	7440-62-2	Vanadium	25	ND	.5.0	7/17/08	9282	A9282A	32	P	PEICP1	ŀ
	7440-66-6	Zinc	25	ND	.50	7/17/08	9282	A9282A	32	p	PEICP1	ļ
-	i						VLVL			'		

#### Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor

MS - ICP-MS

ŝ. No. Control of the second のない No. 

ELSE AND

States and

約月

Appendix C Support Documentation/Resubmission If Applicable

## MDL / RL SUMMARY 200.7 PE ICP 2

ELEMENT	MDL (mg/L)	Reporting Limits (mg/L)	IDL (mg/L)
AL	0.036082	0.2	0.00508
SB	0.003599	0.015	0.00217
AS	0.03478	0.008	0.0039
BA	0.00025	0.05	0.000131
BE	0.0000472	0.008	0.0000201
CD	0.00023	0.004	0.000327
CA	0.027025	2	0.0154
CR	0.000493	0.05	0.000268
со	0.000445	0.02	0.000301
CU	0.0045251	0.05	0.0005 <b>9</b>
FE	0.01976	0.3	0.00396
PB	0.002245	0.01	0.00135
MG	0.032404	2	0.0302
MN	0.000204	0.05	0.000107
МО	0.000925	0.02	0.000571
NI	0.001021	0.02	0.000516
SE	0.010471	0.05	0.00825
AG	0.000315	0.02	0.000363
TL	0.005023	0.01	0.00269
SN	0.002302	0.05	0.00175
TI	0.000327	0.05	0.000115
v	0.00096	0.05	0.000942
ZN	0.007783	0.05	0.000858

Analytical Assurance Associates, Inc.



600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

# ORGANIC & INORGANIC DATA VALIDATION REPORT

# EARTH TECH ANCHOR LITH KEM KO PROJECT

## ANALYZED BY HAMPTON-CLARKE VERITECH LABORATORY LABORATORY CASE No.: 8071604

REVIEWED BY: Analytical Assurance Associates (A³) 600 Rock Raymond Road Downingtown, PA 19335

## EARTH TECH ANCHOR LITH KEM KO PROJECT LABORATORY ID: AC38711 CASE NO.: 8071604

## **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from ten groundwater samples including one field duplicate, collected on July 14 and 15, 2008. Samples were received by Hampton-Clarke/Veritech laboratory on July 16, 2008 and analyzed for specific volatile organic compounds (VOCs) using EPA Method 624 following the criteria set forth in NYSDEC Category B.

The following samples are evaluated and included in this package review.

PW01-05	PW07-04
PW01-07	PW07-06
PW07-01	PW07-05
PW07-03	PW07-55
PW07-02	PW07-07

MS/MSD analysis was performed on sample PW07-05 from this batch.

## **QUALITY ASSURANCE REVIEW**

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations
- Blanks
- Surrogate Recoveries
- Internal Standards Recovery
- Matrix Spike/Spike Duplicate/Blank Spike Analyses
- Instrument Performance
- Field Duplicate Results
- Sample Results

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8071604

## DATA COMPLETENESS

The received date was inadvertently reported as July 11, 2008 on the case narrative

The reported data was summarized on the similar CLP forms and considered acceptable.

The narrower ranges for percent abundance ratios in tune analysis were reported by laboratory for ions 50, 174, and 175. The data was not impacted since the reported abundance ratios were within the method recommended limits.

%Ds in continuing calibrations reported by the laboratory was not calculated based on the calculations recommended by the method. Consequently, some %Ds were above 25%. The %Ds were recalculated by the data reviewer and reported accordingly.

## HOLDING TIME

Samples were analyzed within 10 days of VTSR. Samples were preserved at pH<2 unit. All samples were received by the laboratory in good condition.

A daily tune analysis was performed by the laboratory. Consequently the 12-hour tune analysis was exceeded for all samples. Samples were analyzed from 1:07 to 4.31 hours beyond the 12-hour tune analysis, the frequency required by the CLP VOC SOW and also by SW-846 Method 8260B. However, these samples were analyzed using EPA Method 624, which only requires a tune "at the beginning of each day that analyses are to be performed." As the tune frequency was consistent with the requirements of the method, sample data were accepted, since all other criteria met the requirements for the tune analysis.

## **CALIBRATION**

The response factors for acrolein (0.048 and 0.032), t-butyl alcohol (0.026 and 0.018), and 1,4dioxane (0.003 and 0.003) were below data validation requirement of 0.05 in initial and continuing calibrations. These compounds are not considered as TCL compounds and they are known as low response factor compounds. Sample data was not qualified for acrolein and tbutyl alcohol since their Rfs were above "0.01" control limits recommended by the method. 1,4-dioxane was not detected in the samples. The reported non-detected values were contractually rejected "R".

All %RSDs were within the control limits. Samples were analyzed under one continuing calibration. The "recalculated" %Ds were also within the control limit of 25% with the exception of acrolein (33%) and t-butyl alcohol (31%). The reported sample results and non-detected values were qualified estimated (J and UJ) in all samples.

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8071604

## **BLANKS**

The laboratory method blank was free of target compounds. No storage blank or trip blank were analyzed with this batch.

## SURROGATE RECOVERIES

Samples were spiked with four surrogate compounds prior to analysis. The recoveries were within the control limits.

## MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

Matrix spike/spike duplicate analysis was performed on sample PW07-05 from this batch. The percent recoveries and RPDs were with in the control limits with the exception of recoveries for 2-chloroethylvinylether (0.0%) in both MS & MSD samples. The laboratory case narrative indicated that this compound readily decomposes under acidic condition. This compound was not detected in the samples. Therefore, the non-detected values were qualified estimated "UJ" since the recoveries were within the control limits in blank spike samples. The matrix interference is expected.

One blank spike sample was analyzed. The recoveries were within the control limits.

## INTERNAL STANDARD

The recoveries and retention times were within the control limits.

## FIELD DUPLICATE

Field duplicate analysis was performed on the sample pair PW07-05/PW07-55. Target compounds were not detected in these two samples with the exception of tetrachloroethene (1.5 and 1.7  $\mu$ g/L) and trichloroethylene (11 and 11  $\mu$ g/L). The RPDs were below 20% which indicated a satisfactory reproducibility.

## SAMPLE RESULTS

All samples were analyzed at one-fold dilutions. The reported sample data were accepted with the applied qualifier codes.

## **SUMMARY**

The cooler temperature (3.9°C) was reported and considered acceptable.

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8071604

Up to 31 compounds were listed in the applied analysis method "EPA Test Method 624". However, 65 target compounds were reported in each sample. Please note that the analysis of some specific compounds such as acrolein and acrylonitrile were not recommended by this method.

All data have been validated in accordance with the data quality assurance set forth in NYSDEC ASP for Evaluating Organic analyses. The USEPA Region II Data Validation SOP # HW-6 Revision 14 (September 2006), modified as needed for the specific requirements the analytical used by the laboratory (EPA Method 624), was utilized to review the data completeness and data quality. The analysis problems were discussed in the above sections. If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 269-9989.

Sincerely,

Zohreh Hamid, Ph.D Analytical Assurance Associates

# **INORGANIC ANALYSIS**

## EARTH TECH ANCHOR LITH KEM KO PROJECT LABORATORY ID: AC38711 CASE NO.: 8071604

## **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from ten groundwater samples including one field duplicate, collected on July 14 and 15, 2008. Samples were received by Hampton-Clarke/Veritech laboratory on July 16, 2008 and analyzed for ICP metals and mercury according to the EPA Methods 200.7 and 245.1 respectively.

The following samples are evaluated and included in this package review.

PW01-05	PW07-04
PW01-07	PW07-06
PW07-01	PW07-05
PW07-03	PW07-55
PW07-02	PW07-07

MS and MD analyses were performed on sample PW07-05 from this batch.

The analysis data were reviewed in accordance with the following parameters and all problems encountered during the analysis were summarized in this report.

## **QUALITY ASSURANCE REVIEW**

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations & CRDL Analyses
- Blanks
- ICP Interference Check Sample
- Matrix Spike Analysis
- Matrix Duplicate Analysis
- Laboratory Control Sample Analysis
- ICP Serial Dilution Analysis
- Instrument Detection Limits
- Field Duplicate Results
- Sample Results

Earth Tech Project No. 8071604

## **DATA COMPLETENESS**

The method detection limits were not included in the data package. The laboratory was contacted. The tabulated IDLs and MDLs were submitted by the laboratory. The MDLs for potassium, sodium, and mercury were not listed on the resubmission. The laboratory stated that this form is not required for the applied method.

The serial dilution outliers were not qualified with an "E" qualifier code. The laboratory stated that this code is applied solely to the CLP Method analysis.

The %Ds in the serial dilution sample was not calculated as recommended by the CLP Method. The %Ds was calculated for all detected and non-detected results reported on the raw data. Consequently, many %Ds were reported above 10%. The reporting format did not follow the CLP and the review of the data was very time consuming.

## HOLDING TIME

Samples were digested and analyzed within the holding time requirements established in the corresponding methods.

## **CALIBRATIONS & CRDL ANALYSES**

The recoveries were within the control limits in initial and continuing calibrations analyzed prior and after sample analysis for all metals. The CRDL sample analysis was not performed for ICP metals.

## **BLANKS**

The preparation blanks, ICBs, and CCBs were free of target analytes at levels above the CRDLs.

## **ICP INTERFERENCE CHECK SAMPLE**

The recoveries for ICSA and ICSB were within the control limit of 80-120% for ICP metals.

## MATRIX SPIKE ANALYSIS

Matrix spike analysis was performed on sample PW07-05. The recoveries were within 75-125% control limits.

## MATRIX DUPLICATE ANALYSIS

Matrix duplicate analysis was performed on the above sample. The RPDs were within the control limits for ground water samples.

Earth Tech Project No. 8071604

## LABORATORY CONTROL SAMPLE

The recoveries were within the control limits in this analysis.

## SERIAL DILUTION

This quality control sample was analyzed on sample PW07-05 for ICP metals. The reported % differences for Ca (11%), K (48%), and Zn (134%) were above 10%. However, the %Ds for potassium and zinc were with the Region II data validation requirements. The reported result for calcium was above 50 x the MDL in serial dilution sample. Therefore, positive sample results were qualified estimated.

## FIELD DUPLICATE ANALYSIS

Field duplicate analysis was performed on the sample pair PW07-05/PW07-55; the results are presented on Table 1 (attached). Zinc was detected in the field duplicate at a level below the reporting limits. However, this analyte was not detected in the corresponding field sample. Consequently, the RPD reported as 200%. Sample data was not impacted since the field duplicate result was below 5x the reporting limits.

## **SUMMARY**

The cooler temperature  $(3.9 \ ^\circ C)$  was within the acceptable limits. The reported sample data was considered acceptable.

All data have been validated in accordance with the data quality assurance set forth in NYSDEC ASP for Evaluating TAL metals. The USEPA Region II Data Validation SOP # HW-2, Revision 13 (September 2006) was utilized to review the data completeness and data quality. The analysis problems were discussed in the above sections. If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 269-9989.

Sincerely,

Zohreh Hamid, Ph.D Analytical Assurance Associates

# Table IField Duplicate PrecisionLaboratory Project No.: 8071604

*Result is less than 5 x the reporting limits.

The RPDs were within the Region II data validation requirements

Appendix A- Glossary of Data Qualifier
Appendix B- Laboratory Form I, & Applied Qualifier Codes
Appendix C- Resubmission ( if applicable)

## Appendix A Glossary of Data Qualifiers
### **GLOSSARY OF DATA QUALIFIERS**

### **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- R = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

### **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

### **OTHER CODES**

 $\mathbf{Q} = \mathbf{NO} \mathbf{ANALYTICAL RESULT}.$ 

Appendix B Laboratory Form I and Applied Qualifier Codes

# Sample Number: AC38711-001 Client Id: PW01-05 Data File: 3M51032.D Analysis Date: 07/18/08 21:43 Date Rec/Extracted: 07/16/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

	<b>~</b>	<b>^</b>						
8	<u>Cas #</u>	Compound	RL	Conc	<u> </u>	Compound	RL	Conc
	71-55-6	1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	U
20 <b>.</b> ]	79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
~^	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	U
	79-00-5	1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
J	75-34-3	1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
	75-35-4	1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	U
	87-61-6	1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
-	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
1	95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	Ū
	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U ·
3	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	Ū
	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	Ū
	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xylenes	2.0	Ŭ
0	78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	Ū
ł	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	Ū
	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	U
	106 <b>-46</b> -7	1,4-Dichlorobenzene	1.0	U _	104-51-8	n-Butylbenzene	1.0	Ū
	123-91-1	1,4-Dioxane	50	чĸ	103-65-1	n-Propylbenzene	1.0	Ū
	78-93-3 2	2-Butanone	1.0	U .	95-47-6	o-Xylene	1.0	Ŭ
	110-75-8 2	2-Chloroethylvinylether	1.0	セの]	135-98-8	sec-Butylbenzene	1.0	Ū
	591-78-6 2	2-Hexanone	1.0	U	100-42-5	Styrene	1.0	Ū
	99-87-6 4	I-isopropyltoluene	1.0	U	75-65-0 1	-Butyl Alcohol	5.0	$_{\rm U}$ $_{\rm U}$
	108-10-1 4	I-Methyl-2-Pentanone	1.0	U	98-06-6 t	-Butylbenzene	1.0	U
	67-64-1 A	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	U
	107-02-8 A	Acrolein	5.0	υV)	108-88-3	Toluene	1.0	Ū
	107-13-1 A	Crylonitrile	1.0	U	156-60-5 t	rans-1,2-Dichloroethene	1.0	Ū
	71-43-2 E	Benzene	0.50	U	10061-02-6 t	rans-1,3-Dichloropropene	1.0	Ū
	74-97-5 E	Bromochloromethane	1.0	U	79-01-6 7	Frichloroethene	1.0	Ū
	75-27 <b>-</b> 4 B	Iromodichloromethane	1.0	U	75-69-4 1	Frichlorofluoromethane	1.0	Ŭ
	75-25-2 B	Bromoform	1.0	U	75-01-4 \	/inyl Chloride	1.0	Ŭ
	74-83-9 B	iromomethane	1.0	U		-		-

Worksheet #: 89624

LANGE AND

#### **Total Target Concentration** 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

# Sample Number: AC38711-002 Client Id: PW01-07 Data File: 3M51033.D Analysis Date: 07/18/08 22:00 Date Rec/Extracted: 07/16/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

7	Cas # Compound	RL	Conc	Cas # Compound	RI	Conc
	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	U
24	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	- U
··· ,	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	Ū
1	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	- U
J	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	Ŭ
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3 Chloromethane	1.0	Ŭ
ŋ	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	Ű
	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	Ŭ
	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	Ű
a	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	Ū
l	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	Ŭ
)	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	Ŭ
	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8 Isopropylbenzene	1.0	Ū
	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	Ŭ
	78-87-5 1,2-Dichloropropane	1.0	υ [	79-20-9 Methyl Acetate	1.0	ŭ
	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	Ū
	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	- U
	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	ŭ
	106-46-7 1,4-Dichlorobenzene	1.0	υ	104-51-8 n-Butylbenzene	1.0	Ŭ
	123-91-1 1,4-Dioxane	50	υ K	103-65-1 n-Propylbenzene	1.0	U
	78-93-3 2-Butanone	1.0	U	95-47-6 o-Xylene	1.0	Ŭ
	110-75-8 2-Chloroethylvinylether	1.0	υVJ	135-98-8 sec-Butylbenzene	1.0	Ŭ
	591-78-6 2-Hexanone	1.0	U	100-42-5 Styrene	1.0	Ŭ
	99-87-6 4-Isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcohol	5.0	Ū U1
	108-10-1 4-Methyl-2-Pentanone	1.0	U	98-06-6 t-Butylbenzene	1.0	U U
	67-64-1 Acetone	5.0	U	127-18-4 Tetrachloroethene	1.0	Ŭ
	107-02-8 Acrolein	5.0	υVI	108-88-3 Toluene	1.0	U U
	107-13-1 Acrylonitrile	1.0	υŰ	156-60-5 trans-1,2-Dichloroethene	1.0	ŭ
	71-43-2 Benzene	0.50	U	10061-02-6 trans-1,3-Dichloropropene	1.0	Ŭ
	74-97-5 Bromochloromethane	1.0	U	79-01-6 Trichloroethene	1.0	Ű
	75-27-4 Bromodichloromethane	1.0	U	75-69-4 Trichlorofluoromethane	1.0	Ű
	75-25-2 Bromoform	1.0	U	75-01-4 Vinyl Chloride	1.0	Ŭ
	74-83-9 Bromomethane	1.0	U			-

Worksheet #: 89624

the instrument.

Street,

#### Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

Sample Number: AC38711-003 Client Id: PW07-01 Data File: 3M51044.D Analysis Date: 07/19/08 01:07 Date Rec/Extracted: 07/16/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

1	Cas #	Compound	RL	Conc	Cas # Compound	RL	Conc
	71-55-6	1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	U
-090	79-34-5	1,1,2,2-Tetrachloroethane	1.0	υ	56-23-5 Carbon Tetrachloride	1.0	U
100	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	Ū
	79-00-5	1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	Ŭ
	75-34-3	1,1-Dichloroethane	1.0	3.1	67-66-3 Chloroform	1.0	- U
	75-35-4	1,1-Dichloroethene	1.0	3.6	74-87-3 Chloromethane	1.0	Ŭ
	87-61-6	1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	Ŭ
劉	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	- U
-	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	Ŭ
993)	95-63-6	1,2,4-Trimethylbenzene	1.0	υļ	124-48-1 Dibromochloromethane	1.0	Ŭ
	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	Ŭ
)	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	Ŭ
	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8 isopropylbenzene	1.0	ŭ
	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	Ű
	78-87-5	1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	Ŭ
	108 <b>-</b> 67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	Ŭ
ŝ	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	U U
	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	Ŭ
en.	106-46-7	1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzene	1.0	Ŭ
95 <b>3</b>	123-91-1	1,4-Dioxane	50	υĶ	103-65-1 n-Propylbenzene	1.0	Ŭ
ŝ	78-93-3	2-Butanone	1.0	U	95-47-6 o-Xylene	1.0	Ŭ
	110-75-8	2-Chloroethylvinylether	1.0	UUS	135-98-8 sec-Butylbenzene	1.0	U
	591-78-6 2	2-Hexanone	1.0	υŰ	100-42-5 Styrene	1.0	Ŭ
	99-87-6 4	4-isopropyltoluene	1.0	υ	75-65-0 t-Butyl Alcohol	5.0	มัยชา
	108-10-1 4	4-Methyl-2-Pentanone	1.0	U	98-06-6 t-Butylbenzene	1.0	U VJ
-	67-64-1 /	Acetone	5.0	210	127-18-4 Tetrachloroethene	1.0	т Ц
3	107-02-8 /	Acrolein	5.0	0 01	108-88-3 Toluene	1.0	U U
	107-13-1 A	Acrylonitrile	1.0	υJ	156-60-5 trans-1.2-Dichloroethene	1.0	Ű
3	71-43-2 E	Benzene	0.50	U	10061-02-6 trans-1.3-Dichloropropene	1.0	U U
	74-97-5 E	Bromochloromethane	1.0	U	79-01-6 Trichloroethene	1.0	3.2 /
	75-27-4 E	Bromodichloromethane	1.0	U	75-69-4 Trichlorofluoromethane	1.0	U
	75-25-2 E	Bromoform	1.0	υ	75-01-4 Vinyl Chloride	1.0	ŭ
	74-83-9 B	Bromomethane	1.0	υ	•		2

Worksheet #: 89624

the instrument.

### Total Target Concentration 219.9

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

# 

# ORGANICS VOLATILE REPORT

# Sample Number: AC38711-004 Client Id: PW07-03 Data File: 3M51034.D Analysis Date: 07/18/08 22:17 Date Rec/Extracted: 07/16/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

STATISTICS.

SPARAGE SPA

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

	0#	0		Unita, t	IY/L				
1	<u></u> 71 55 6		RL	Conc	Cas #	Compound	RL	Conc	
	70 24 6		1.0	U	75-15-0	Carbon Disulfide	1.0	U	
	75-34-3	1,1,2,2-1 etrachioroethane	1.0	U	<b>56-2</b> 3-5	Carbon Tetrachloride	1.0	Ū	
a	70-13-1	1, 1,2-1 richloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	U	
1	79-00-5	1, 1, 2- I richloroethane	1.0	U	75 <b>-0</b> 0-3	Chloroethane	1.0	- U	
្ង	70-34-3	1,1-Dichloroethane	1.0	U	67-66 <b>-</b> 3	Chloroform	1.0	Ű	
	/0-35-4	1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	U U	
1	87-61-6	1,2,3-1 richlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	Ц	
3	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U	
	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	10	ů.	
3	95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	10	И	
Į	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U U	
3	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethvibenzene	1.0	U U	
	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U U	
ĥ	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xvlenes	2.0		
ļ	78-87-5 ·	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0		
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcvclohexane	1.0	Ų U	
•	541-73-1	1.3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0		
	142-28-9 1	I,3-Dichloropropane	1.0	υ	1634-04-4	Vethyl-t-butyl ether	1.0		
	106-46-7 1	1,4-Dichlorobenzene	1.0	U	104-51-8	-Butvibenzene	1.0	0	
	123-91-1 1	4-Dioxane	50	υR	103-65-1 r	1-Propylhenzene	1.0	0	
	78-93-3 2	2-Butanone	1.0	υ	95-47-6 c	-Xviene	1.0	0	
	110-75-8 2	-Chloroethylvinylether	1.0	บบา	135-98-8 s	ec-Butvibenzene	1.0	0	
	591-78-6 2	-Hexanone	1.0	U	100-42-5 5	Styrone	1.0	0	
	99-87-6 4	-isopropyltoluene	1.0	U	75-65-0 t	-Butyl Alcohol	1.0	0	117
	108-10-1 4	-Methyl-2-Pentanone	1.0	υ	98-06-6 t	Butylhenzene	5.0	U .	رە
	67-64-1 A	cetone	5.0	77	127-18-4 T	etrachloroethene	1.0	U	
	107-02-8 A	crolein	5.0	UTT	108-88-3 T	oluene	1.0	U	
	107-13-1 A	crylonitrile	1.0	U U	156-60-5 #	ans 1.2 Dichloraethan	1.0	U	
	71-43-2 B	enzene	0.50	Ū I	10061-02 6 tr	ans-1,2-Dichlessesses	1.0	U	
	74-97-5 B	romochloromethane	1.0	Ū	79_01_6 T	richloroethono	1.0	U	
	75-27-4 Bi	romodichloromethane	1.0	Ū I	75-69-4 T	richlorofluoromothene	1.0	U	
	75-25-2 Bi	romoform	1.0	U I	75-01-4 1		1.0	U	
	74-83-9 Br	romomethane	1.0	Ū I	70-01-4 V		1.0	U	
				-					

Worksheet #: 89624

# Total Target Concentration 77

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

# Sample Number: AC38711-005 Client Id: PW07-02 Data File: 3M51035.D Analysis Date: 07/18/08 22:34 Date Rec/Extracted: 07/16/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

	Coo # Compound		Units, u	9, L		
5		RL	Conc	Cas # Compound	RL	Conc
	70 24 5 1 4 2 2 Televill	1.0	2.0 /	75-15-0 Carbon Disulfide	1.0	U
	79-34-5 1, 1, 2, 2-1 etrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	U
24	70-13-1 1, 1,2-1 richloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	U
1	79-00-5 1,1,2-1 richloroethane	1.0	U	75-00-3 Chloroethane	1.0	U
ļ	75-34-3 1,1-Dichloroethane	1.0	1.3	67-66-3 Chloroform	1.0	Ŭ
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3 Chloromethane	1.0	Ŭ
1	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	U U
1	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	10	U U
	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	Ŭ
þ	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	10	0
ĺ	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	0
J	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	1
	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8 Isopropylbenzene	1.0	0
	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xvlenes	2.0	0
	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	· U
	108-67-8 1,3,5-Trimethylbenzene	1.0	υ	108-87-2 Methylovciohexane	1.0	0
ŀ	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	U
	142-28-9 1,3-Dichloropropane	1.0	υ	1634-04-4 Methylchutyl ether	1.0	U
	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylenzene	1.0	U
	123-91-1 1,4-Dioxane	50	UR	103-65-1 p-Propylbenzene	1.0	U
	78-93-3 2-Butanone	1.0	U	95-47-6 o-Xvlene	1.0	U
	110-75-8 2-Chloroethylvinylether	1.0	1001	135-98-8 sec-But/benzone	1.0	0
	591-78-6 2-Hexanone	1.0	U J	100-42-5 Styreps	1.0	U
	99-87-6 4-isopropyltoluene	1.0	Ū	75-65-0 t-Butyl Aleebal	1.0	U U1
	108-10-1 4-Methyl-2-Pentanone	1.0	U I	98-06-6 t-Butyl Alcohor	5.0	່ບັ∨ງ
	67-64-1 Acetone	5.0	u l		1.0	0
	107-02-8 Acrolein	5.0	Ŭ V1		1.0	U
	107-13-1 Acrylonitrile	1.0	1		1.0	U
	71-43-2 Benzene	0.50	U I	10061 03 6 trans 1,2-Dichloroethene	1.0	U
	74-97-5 Bromochloromethane	1.0			1.0	U
	75-27-4 Bromodichloromethane	1.0	1	75-01-0 Trichloroftussemett	1.0	U
	75-25-2 Bromoform	1.0	ŭ l	75-01 4 Visul Chlorida	1.0	U
	74-83-9 Bromomethane	1.0		73-01-4 Vinyi Chionae	1.0	U
			<b>v</b> 1			

Worksheet #: 89624

# Total Target Concentration 3.3

U - Indicates the compound was analyzed but not detected.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

**B** - Indicates the analyte was found in the blank as well as in the sample. **E** - Indicates the analyte concentration exceeds the calibration range of the instrument.

# Sample Number: AC38711-006 Client Id: PW07-04 Data File: 3M51041.D Analysis Date: 07/19/08 00:16 Date Rec/Extracted: 07/16/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Ê

Strates.

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

ി-	Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
2	71-55-6	1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	U
1	79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
- 1	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	U
	79-00-5	1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	υ
1	75 <b>-</b> 34-3	1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
	75-35-4	1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	U
)	87-61 <b>-</b> 6	1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
4	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
1	95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
)	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
	95-50-1	1,2-Dichlorobenzene	1.0	υ	98-82-8	Isopropylbenzene	1.0	U
	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xylenes	2.0	U
ı	78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	3.7 -
	106-46-7	1,4-Dichlorobenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	U
	123-91-1	1,4-Dioxane	50	υK	103-65-1	n-Propylbenzene	1.0	U
	78-93-3	2-Butanone	1.0	U	95-47-6	o-Xylene	1.0	U
	110-75-8	2-Chloroethylvinylether	1.0	υ ^ν )	135-98-8	sec-Butylbenzene	1.0	U
	591-78-6	2-Hexanone	1.0	U	100-42-5	Styrene	1.0	U
	99-87 <b>-</b> 6	4-Isopropyltoluene	1.0	U	75-65-0	t-Butyl Alcohol	5.0	υUJ
	108-10-1	4-Methyl-2-Pentanone	1.0	U	98-06-6	t-Butylbenzene	1.0	U
	67-64-1	Acetone	5.0	20 -	127-18-4	Tetrachloroethene	1.0	U
	107-02-8	Acrolein	5.0	υUΣ	108-88-3	Toluene	1.0	U
	107-13-1	Acrylonitrile	1.0	ບັ	156-60-5	trans-1,2-Dichloroethene	1.0	U
	71-43-2	Benzene	0.50	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
	74-97-5	Bromochloromethane	1.0	U	7 <b>9-</b> 01-6	Trichloroethene	1.0	U
	75-27-4 (	Bromodichloromethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
	75-25-2	Bromoform	1.0	U	75-01-4	Vinyl Chloride	1.0	υ .
	74-83-9	Bromomethane	1.0	U				

Worksheet #: 89624

### Total Target Concentration 23.7

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

# Sample Number: AC38711-007 Client Id: PW07-06 Data File: 3M51042.D Analysis Date: 07/19/08 00:33 Date Rec/Extracted: 07/16/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

٥ŋ	<u>    Cas #</u>	Compound	RL	Conc	Cas #	Compound	Ы	Cono
	71-55-6	1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	10	
9	79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U U
<b>67</b> -1	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	0
}	79-00-5	1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	0
	75-34-3	1,1-Dichloroethane	1.0	υ	67-66-3	Chloroform	1.0	1
	75-35-4	1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	
5	87-61-6	1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1.2-Dichloroethene	1.0	U U
ļ	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1.3-Dichloropropene	1.0	
	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	
č	95 <b>-</b> 63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U U
Ĩ	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	11
ļ	106-93-4	1,2-Dibromoethane	1.0	, U	100-41-4	Ethvibenzene	1.0	
	95-50-1	1,2-Dichlorobenzene	1.0	υ	98-82-8	isopropylbenzene	1.0	0
	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xvlenes	20	U U
	78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	Ű
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	11
I	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	10	U U
	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	U U
	106-46-7	1,4-Dichlorobenzene	1.0	U	104-51-8	n-Butvibenzene	1.0	
	123-91-1	1,4-Dioxane	50	υR	103-65-1	n-Propylbenzene	1.0	0
	78-93-3	2-Butanone	1.0	U	95-47-6	o-Xviene	1.0	0
	110-75-8	2-Chloroethylvinylether	1.0	υυς	135-98-8	sec-Butvibenzene	1.0	
	591-78-6 2	2-Hexanone	1.0	ر _ا د ا	100-42-5	Styrene	1.0	U U
	99-87-6 4	4-isopropyltoluene	1.0	U	75-65-0 t	t-Butvi Alcohol	50	μŬ1
	108-10-1 4	4-Methyl-2-Pentanone	1.0	U	98-06-6 1	-Butvibenzene	1.0	J J
	67-64-1 /	Acetone	5.0	78 -	127-18-4	Tetrachloroethene	10	Ü
	107-02-8 A	Acrolein	5.0	U U (	108-88-3 1	Toluene	10	
	107-13-1 A	Acrylonitrile	1.0	U	156-60-5 t	rans-1.2-Dichloroethene	10	U U
	71-43-2 E	Benzene	0.50	υ	10061-02-6 t	rans-1.3-Dichloropropene	1.0	U U
	74-97-5 E	Bromochloromethane	1.0	U	79-01-6 1	Frichloroethene	1.0	U U
	75-27-4 E	Bromodichloromethane	1.0	υ	75-69-4 1	Frichlorofluoromethane	1.0	U U
	75-25-2 B	Bromoform	1.0	U	75-01-4 \	/invl Chloride	1.0	U U
	74-83-9 B	Iromomethane	1.0	υİ				0

Worksheet #: 89624

PERSONAL PROPERTY AND INC.

Base of the second

### Total Target Concentration 78

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

E - Indicates the analyte concentration exceeds the calibration range of spitche instrument.

# Sample Number: AC38711-008 Client Id: PW07-05 Data File: 3M51036.D Analysis Date: 07/18/08 22:51 Date Rec/Extracted: 07/16/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

	Cas # Compound	RL	Conc	Cas # Compound	RI	Conc
	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	U
274-1	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	U
	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	U
	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	Ŭ
(j.)	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	Ū .
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3 Chloromethane	1.0	Ŭ
鰳	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	Ŭ
	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	U U
42,678	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	Ŭ
27A	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	Ŭ
	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	ŭ
33) 33)	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	U
	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8 Isopropylbenzene	1.0	Ŭ
	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	11
	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	Ŭ
•	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	U
1	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	U U
	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	ŭ
649 -	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzene	1.0	U
63.	123-91-1 1,4-Dioxane	50	υĸ	103-65-1 n-Propylbenzene	1.0	ŭ
	78-93-3 2-Butanone	1.0	U	95-47-6 o-Xvlene	1.0	U U
J	110-75-8 2-Chloroethylvinylether	1.0	UV1	135-98-8 sec-Butvibenzene	1.0	U U
	591-78-6 2-Hexanone	1.0	υ	100-42-5 Styrene	10	Ŭ
)	99-87-6 4-Isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcohol	50	ΠUΓ
	108-10-1 4-Methyl-2-Pentanone	1.0	U	98-06-6 t-Butylbenzene	1.0	ر - ت ا
~	67-64-1 Acetone	5.0	U	127-18-4 Tetrachioroethene	1.0	15 -
4	107-02-8 Acrolein	5.0	リング	108-88-3 Toluene	1.0	1.5 ×
	107-13-1 Acrylonitrile	1.0	ر ا	156-60-5 trans-1.2-Dichloroethene	1.0	U
}	71-43-2 Benzene	0.50	U	10061-02-6 trans-1.3-Dichloropropene	10	11
	74-97-5 Bromochloromethane	1.0	U	79-01-6 Trichloroethene	1.0	11 -
	75-27-4 Bromodichloromethane	1.0	U	75-69-4 Trichlorofluoromethane	10	11
	75-25-2 Bromoform	1.0	U	75-01-4 Vinvl Chloride	10	Ц
	74-83-9 Bromomethane	1.0	U	······································		0
			1			

Worksheet #: 89624

#### **Total Target Concentration** 12.5

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

# Form1

ORGANICS VOLATILE REPORT

# Sample Number: AC38711-011 Client Id: PW07-55 Data File: 3M51040.D Analysis Date: 07/19/08 00:00 Date Rec/Extracted: 07/16/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

State Sold

100

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

	Constitution of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec		Units.	uy/L		
	Cas # Compound	RL	Conc	Cas # Compound	RI	Cono
	71-55-6 1,1,1-1 richloroethane	1.0	U	75-15-0 Carbon Disulfide	10	
12.1	⁴ 79-34-5 1,1,2,2-1 etrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	0
<i>1</i> 97	76-13-1 1,1,2-1 richloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	U U
	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	0
123	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	0
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3 Chloromethane	1.0	· 0
劉	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	U
3	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1.3-Dichloropropene	1.0	0
	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclobexane	1.0	U
<b>(</b> 7)	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	U .
1	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	0
89 89	106-93-4 1,2-Dibromoethane	1.0	υ	100-41-4 Ethylbenzene	1.0	U
	95-50-1 1,2-Dichlorobenzene	1.0	υ	98-82-8 isopronylbenzeno	1.0	U
	107-06-2 1,2-Dichloroethane	0.50	υί	1330-20-7 m&n-Yylenes	1.0	U
	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetato	2.0	U
	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methyloveleboxene	1.0	U
ា	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 Methylone Chloride	1.0	U
	142-28-9 1,3-Dichloropropane	1.0	Ū	1634-04-4 Methylene Chionde	1.0	U
99	106-46-7 1,4-Dichlorobenzene	1.0	Ū	104-51-8 n Butylbonnene	1.0	U
in in	123-91-1 1,4-Dioxane	50	UR		1.0	U
1	78-93-3 2-Butanone	1.0	U I	95-47-6 o Yvlong	1.0	U
J	110-75-8 2-Chloroethylvinylether	1.0	U U1		1.0	U
	591-78-6 2-Hexanone	1.0		100-42.5 Styrone	1.0	U
}	99-87-6 4-isopropyltoluene	1.0	U L		1.0	U ,, -
[	108-10-1 4-Methyl-2-Pentanone	1.0	U U		5.0	0 0 5
·	67-64-1 Acetone	5.0	U I		1.0	U
	107-02-8 Acrolein	5.0	ŭΨΤ	109 99 2 Toluces	1.0	1.7 🦟
	107-13-1 Acrylonitrile	1.0			1.0	U
	71-43-2 Benzene	0.50	U U	10061 02 6 trans-1,2-Dichloroethene	1.0	U
	74-97-5 Bromochloromethane	1.0	U U	70 04 6 Triable of	1.0	U
	75-27-4 Bromodichloromethane	1.0			1.0	11 -
	75-25-2 Bromoform	1.0		75-05-4 Inchloronuoromethane	1.0	U
	74-83-9 Bromomethane	1.0		75-01-4 Vinyi Chioride	1.0	U
			V			

Worksheet #: 89624

-----

#### Total Target Concentration 12.7

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Sample Number: AC38711-012 Client Id: PW07-07 Data File: 3M51043.D Analysis Date: 07/19/08 00:50 Date Rec/Extracted: 07/16/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

No.

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

<u>, Cas #</u>	Compound	<u>RL</u>	Conc	Cas # (	Compound	RL	Conc	
71-55	i-6 1,1,1-Trichloroethane	1.0	U	75-15-0 (	Carbon Disulfide	1.0	U	
79-34	-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 (	Carbon Tetrachloride	1.0	U	
76-13	-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	υ	108-90-7 (	Chlorobenzene	1.0	U	
79-00	-5 1,1,2-Trichloroethane	1.0	U	75-00-3 (	Chloroethane	1.0	Ų	
75-34	-3 1,1-Dichloroethane	1.0	U	67 <b>-</b> 66-3 (	Chloroform	1.0	U	
75-35	-4 1,1-Dichloroethene	1.0	U	74-87-3 C	Chloromethane	1.0	U	
87-61	-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 c	cis-1,2-Dichloroethene	1.0	U	
96-18	-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 c	cis-1,3-Dichloropropene	1.0	υ	
120-82	-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 0	Cyclohexane	1.0	U	
95-63	-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 E	Dibromochloromethane	1.0	U	
96-12-	-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 E	Dichlorodifluoromethane	1.0	U	
106-93-	4 1,2-Dibromoethane	1.0	U	100-41-4 E	Ethylbenzene	1.0	U	
95-50-	-1 1,2-Dichlorobenzene	1.0	U	98-82-8 Is	sopropylbenzene	1.0	U	
107-06-	2 1,2-Dichloroethane	0.50	U	1330-20-7 m	n&p-Xylenes	2.0	U	
78-87-	5 1,2-Dichloropropane	1.0	U	79-20-9 N	Nethyl Acetate	1.0	U	
108-67-	8 1,3,5-Trimethylbenzene	1.0	U	108-87-2 N	Aethylcyclohexane	1.0	U	
541-73-	1 1,3-Dichlorobenzene	1.0	U	75-09-2 N	lethylene Chloride	1.0	U	
142-28-	9 1,3-Dichloropropane	1.0	U	1634-04-4 N	Nethyl-t-butyl ether	1.0	U	
106-46-	7 1,4-Dichlorobenzene	1.0	U	104-51-8 n	Butylbenzene	1.0	U	
<b>123-91-</b>	1 1,4-Dioxane	50	υRI	103-65-1 n	-Propylbenzene	1.0	U	
78-93-	3 2-Butanone	1.0	U	95-47-6 o	-Xylene	1.0	U	
110-75-	8 2-Chloroethylvinylether	1.0	υνι	135-98-8 s	ec-Butylbenzene	1.0	U	
591-78-	6 2-Hexanone	1.0	ر ن	100-42-5 S	ityrene	1.0	U	
99-87-6	6 4-Isopropyltoluene	1.0	U	75-65-0 t-	Butyl Alcohol	5.0	U	υŢ
108-10-	1 4-Methyl-2-Pentanone	1.0	U	98-06-6 t-	Butylbenzene	1.0	U	J
67-64-'	1 Acetone	5.0	39 -	127-18-4 T	etrachioroethene	1.0	υ	
107-02-8	8 Acrolein	5.0	υÜĴ	108-88-3 T	oluene	1.0	U	
107-13-1	1 Acrylonitrile	1.0	U	156-60-5 tra	ans-1,2-Dichloroethene	1.0	U	
71-43-2	2 Benzene	0.50	U	10061-02-6 tra	ans-1,3-Dichloropropene	1.0	υ	
74-97-5	5 Bromochloromethane	1.0	U	79-01-6 TI	richloroethene	1.0	1.6 ~	-
75-27-4	Bromodichloromethane	1.0	U	75-69-4 T	richlorofluoromethane	1.0	U	
75-25-2	2 Bromoform	1.0	U	75-01-4 Vi	inyl Chloride	1.0	Ū	
74-83-9	Bromomethane	1.0	υ		-		-	

Worksheet #: 89624

Total Target Concentration 40.6

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

Sample ID: AC38711-001 Client Id: PW01-05 Matrix: AQUEOUS Level:

LOW

% Solid: 0 Units: UG/L Date Rec: 7/16/2008

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No: Case No:

			1					1		
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	200	.5	07/25/08	9292	A9292A2	22	P	PEICP2
7440-36-0	Antimony	7.5	ND	.5	07/29/08	9292	A9292T2	22	P	PEICP2
7440-38-2	Arsenic	4.0	ND	.5	07/25/08	9292	A9292A2	22	Р	PEICP2
7440-39-3	Barium	25	76	.5	07/25/08	9292	A9292A2	22	P	PEICP2
7440-41-7	Beryllium	4.0	ND	.5	07/25/08	9292	A9292A2	22	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	.5	07/25/08	9292	A9292A2	22	Р	PEICP2
7440-70-2	Calcium	1000	9800	1.5	07/25/08	9292	A9292A2	22	Р	PEICP2
7440-47-3	Chromium	25	ND	· .5	07/25/08	9292	A9292A2	22	Р	PEICP2
7440-48-4	Cobalt	10	ND	.5	07/25/08	9292	A9292A2	22	Р	PEICP2
7440-50-8	Copper	25	ND	.5	07/25/08	9292	A9292A2	22	P	PEICP2
7439-89-6	Iron	150	2600	.5	07/25/08	9292	A9292A2	22	Р	PEICP2
7439-92-1	Lead	5.0	ND	.5	07/25/08	9292	A9292A2	22	Р	PEICP2
7439-95-4	Magnesium	1000	1500	.5	07/25/08	9292	A9292A2	22	Р	PEICP2
7439-96-5	Manganese	25	340	.5	07/25/08	9292	A9292A2	22	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/25/08	9292	H9292A	18	cv	HGCV2
7440-02-0	Nickel	10	ND	.5	07/25/08	9292	A9292A2	22	P	PEICP2
7440-09-7	Potassium	2500	2700	.5	07/28/08	9292	A9292P2	21	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	.5	07/25/08	<del>9</del> 292	A9292A2	22	Р	PEICP2
7440-22-4	Silver	10	ND	.5	07/25/08	9292	A9292A2	22	Р	PEICP2
7440-23-5	Sodium	2500	24000	.5	07/28/08	9292	A9292P2	21	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	.5	07/25/08	9292	A9292A2	22	Р	PEICP2
7440-62-2	Vanadium	25	ND	.5	07/25/08	9292	A9292A2	22	Р	PEICP2
7440-66-6	Zinc	25	130	.5	07/25/08	9292	A9292A2	22	P	PEICP2

Comments:

### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

のないための

ALC: UNKNOW

and the second 100

Sample ID: AC38711-002 Client Id: PW01-07 Matrix: AQUEOUS

Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/16/2008

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No: Case No:

Cas No.	Analyte	BI	Conc	Dil Fact	Analysis Date:	Prep	File	Seq	м	instr
7429-90-5	Aluminum	100	ND	Diraci	07/05/00	Datur	1-116.	Num.	11/1	DELODO
7440.26.0	Antimanu	100		.5	07725/06	9292	A9292A2	23		PEICP2
7440-30-0	Anumony	/.5		.5	07/29/08	9292	A9292T2	23	P	PEICP2
7440-38-2	Arsenic	4.0	4.2	.5	07/25/08	9292	A9292A2	23	Р	PEICP2
7440-39-3	Barium	25	91	.5	07/25/08	9292	A9292A2	23	Ρ	PEICP2
7440-41-7	Beryllium	4.0	ND	.5	07/25/08	9292	A9292A2	23	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	.5	07/25/08	9292	A9292A2	23	Р	PEICP2
7440-70-2	Calcium	1000	13000	J .5	07/25/08	9292	A9292A2	23	Р	PEICP2
7440-47-3	Chromium	25	ND	.5	07/25/08	9292	A9292A2	23	Р	PEICP2
7440-48-4	Cobalt	10	ND	.5	07/25/08	9292	A9292A2	23	Р	PEICP2
7440-50-8	Copper	25	ND	.5	07/25/08	9292	A9292A2	23	Р	PEICP2
7439-89-6	Iron	150	3000	.5	07/25/08	9292	A9292A2	23	Р	PEICP2
7439-92-1	Lead	5.0	ND	.5	07/25/08	9292	A9292A2	23	Р	PEICP2
7439-95-4	Magnesium	1000	1700	.5	07/25/08	9292	A9292A2	23	Р	PEICP2
7439-96-5	Manganese	25	71	.5	07/25/08	9292	A9292A2	23	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/25/08	9292	H9292A	19	cv	HGCV2
7440-02-0	Nickel	10	ND	.5	07/25/08	9292	A9292A2	23	Р	PEICP2
7440-09-7	Potassium	2500	ND	.5	07/28/08	9292	A9292P2	22	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	.5	07/25/08	9292	A9292A2	23	Р	PEICP2
7440-22-4	Silver	10	ND	.5	07/25/08	9292	A9292A2	23	Р	PEICP2
7440-23-5	Sodium	2500	50000	.5	07/28/08	9292	A9292P2	22	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	.5	07/25/08	9292	A9292A2	23	P	PEICP2
7440-62-2	Vanadium	25	ND	.5	07/25/08	9292	A9292A2	23	Р	PEICP2
7440-66-6	Zinc	25	49	.5	07/25/08	9292	A9292A2	23	Ρ	PEICP2

Comments:

### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

1938 - Se

Sample ID: AC38711-003 Client Id: PW07-01

Matrix: AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/16/2008

Lab Code:

Contract:

Lab Name: Veritech

Nras No: Sdg No: Case No:

							]			
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Batch	File:	Seq Num:	М	Instr
7429-90-5	Aluminum	100	ND	.5	07/25/08	9292	A9292A2	24	Р	PEICP2
7440-36-0	Antimony	7.5	ND	.5	07/29/08	9292	A9292T2	24	Р	PEICP2
7440-38-2	Arsenic	4.0	9.0	.5	07/25/08	9292	A9292A2	24	Р	PEICP2
7440-39-3	Barium	25	86	.5	07/25/08	9292	A9292A2	24	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	.5	07/25/08	9292	A9292A2	24	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	.5	07/25/08	9292	A9292A2	24	Р	PEICP2
7440-70-2	Calcium	1000	34000	J.5	07/25/08	9292	A9292A2	24	Р	PEICP2
7440-47-3	Chromium	25	ND	.5	07/25/08	9292	A9292A2	24	Р	PEICP2
7440-48-4	Cobalt	10	52	.5	07/25/08	9292	A9292A2	24	Р	PEICP2
7440-50-8	Copper	25	ND	.5	07/25/08	9292	A9292A2	24	Р	PEICP2
7439-89-6	Iron	150	74000	.5	07/25/08	9292	A9292A2	24	Р	PEICP2
7439-92-1	Lead	5.0	ND	.5	07/25/08	9292	A9292A2	24	Р	PEICP2
7439-95-4	Magnesium	1000	11000	.5	07/25/08	9292	A9292A2	24	P	PEICP2
7439-96-5	Manganese	25	6600	.5	07/25/08	9292	A9292A2	24	P	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/25/08	9292	H9292A	20	cv	HGCV2
7440-02-0	Nickel	10	ND	.5	07/25/08	9292	A9292A2	24	Р	PEICP2
7440-09-7	Potassium	2500	5900	.5	07/28/08	9292	A9292P2	23	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	.5	07/25/08	9292	A9292A2	24	Р	PEICP2
7440-22-4	Silver	10	ND	.5	07/25/08	9292	A9292A2	24	Ρ	PEICP2
7440-23-5	Sodium	2500	13000	.5	07/28/08	9292	A9292P2	23	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	.5	07/25/08	9292	A9292A2	24	Р	PEICP2
7440-62-2	Vanadium	25	ND	.5	07/25/08	9292	A9292A2	24	Ρ	PEICP2
7440-66-6	Zinc	25	ND	.5	07/25/08	9292	A9292A2	24	Ρ	PEICP2

Comments:

### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Case:

A STREET

Sample ID: AC38711-004 Client Id: PW07-03 Matrix: AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/16/2008

Lab Name: Veritech Lab Code: Contract:

Nras No: Sdg No: Case No:

					Analysis	Pren		Sea		
Cas No.	Analyte	RL	Conc	Dil Fact	Date:	Batch	File:	Num:	М	Instr
7429-90-5	Aluminum	100	ND	.5	07/25/08	9292	A9292A2	25	Р	PEICP2
7440-36-0	Antimony	7.5	ND	.5	07/29/08	9292	A9292T2	25	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	.5	07/25/08	9292	A9292A2	25	Р	PEICP2
7440-39-3	Barium	25	73	.5	07/25/08	<del>9</del> 292	A9292A2	25	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	.5	07/25/08	9292	A9292A2	25	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	.5	07/25/08	9292	A9292A2	25	Р	PEICP2
7440-70-2	Calcium	1000	13000	.5 .5	07/25/08	9292	A9292A2	25	Р	PEICP2
7440-47-3	Chromium	25	ND	.5	07/25/08	<del>9</del> 292	A9292A2	25	Р	PEICP2
7440-48-4	Cobalt	10	ND	.5	07/25/08	9292	A9292A2	25	Р	PEICP2
7440-50-8	Copper	25	· ND	.5	07/25/08	9292	A9292A2	25	Р	PEICP2
7439-89-6	iron	150	1900	.5	07/25/08	9292	A9292A2	25	Р	PEICP2
7439-92-1	Lead	5.0	ND	.5	07/25/08	9292	A9292A2	25	Р	PEICP2
7439-95-4	Magnesium	1000	3300	.5	07/25/08	9292	A9292A2	25	Р	PEICP2
7439-96-5	Manganese	25	110	.5	07/25/08	9292	A9292A2	25	P	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/25/08	9292	H9292A	23	cv	HGCV2
7440-02-0	Nickel	10	ND	.5	07/25/08	9292	A9292A2	25	Ρ	PEICP2
7440-09-7	Potassium	2500	ND	.5	07/28/08	9292	A9292P2	24	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	.5	07/25/08	9292	A9292A2	25	Р	PEICP2
7440-22-4	Silver	10	ND	.5	07/25/08	9292	A9292A2	25	Р	PEICP2
7440-23-5	Sodium	2500	31000	.5	07/28/08	9292	A9292P2	24	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	.5	07/25/08	9292	A9292A2	25	Р	PEICP2
7440-62-2	Vanadium	25	ND	.5	07/25/08	9292	A9292A2	25	Р	PEICP2
7440-66-6	Zinc	25	36	.5	07/25/08	9292	A9292A2	25	P	PEICP2

Comments:

### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

語言の言葉

STREET STREET

CONTRACTOR OF THE

Sample ID: AC38711-005 Client Id: PW07-02 Matrix: AQUEOUS

Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/16/2008 Lab Name: Veritech Lab Code:

Contract:

Nras No: Sdg No: Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	ND	.5	07/25/08	9292	A9292A2	26	P	PEICP2
7440-36-0	Antimony	7.5	ND	.5	07/29/08	9292	A9292T2	26	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	.5	07/25/08	9292	A9292A2	26	Р	PEICP2
7440-39-3	Barium	25	57	.5	07/25/08	9292	A9292A2	26	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	.5	07/25/08	9292	A9292A2	26	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	.5	07/25/08	9292	A9292A2	26	Р	PEICP2
7440-70-2	Calcium	1000	11000	J.5	07/25/08	9292	A9292A2	26	Р	PEICP2
7440-47-3	Chromium	25	ND	.5	07/25/08	9292	A9292A2	26	Р	PEICP2
7440-48-4	Cobalt	10	ND	.5	07/25/08	9292	A9292A2	26	Р	PEICP2
7440-50-8	Copper	25	ND	.5	07/25/08	9292	A9292A2	26	Р	PEICP2
7439-89-6	Iron	150	1300	.5	07/25/08	9292	A9292A2	26	Р	PEICP2
7439-92-1	Lead	5.0	ND	.5	07/25/08	9292	A9292A2	26	Р	PEICP2
7439-95-4	Magnesium	1000	1400	.5	07/25/08	9292	A9292A2	26	P	PEICP2
7439-96-5	Manganese	25	100	.5	07/25/08	9292	A9292A2	26	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/25/08	9292	H9292A	24	cv	HGCV2
7440-02-0	Nickel	10	ND	.5	07/25/08	9292	A9292A2	26	Р	PEICP2
7440-09-7	Potassium	2500	2600	.5	07/28/08	9292	A9292P2	25	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	.5	07/25/08	9292	A9292A2	26	Р	PEICP2
7440-22-4	Silver	10	ND	.5	07/25/08	9292	A9292A2	26	Ρ	PEICP2
7440-23-5	Sodium	2500	25000	.5	07/28/08	9292	A9292P2	25	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	.5	07/25/08	9292	A9292A2	26	Р	PEICP2
7440-62-2	Vanadium	25	ND	.5	07/25/08	9292	A9292A2	26	Р	PEICP2
7440-66-6	Zinc	25	31	.5	07/25/08	9292	A9292A2	26	Р	PEICP2

Comments:

SULVER DE

の話でのようながら

STATES AND

### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Sample ID: AC38711-006 Client Id: Matrix:

PW07-04 AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/16/2008 Lab Name: Veritech Lab Code: Contract:

Nras No: Sdg No: Case No:

						-		_		
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	ND	.5	07/28/08	9292	A9292B2	11	Р	PEICP2
7440-36-0	Antimony	7.5	ND	.5	07/29/08	9292	A9292U2	11	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	.5	07/28/08	9292	A9292C2	11	Р	PEICP2
7440-39-3	Barium	25	29	.5	07/28/08	9292	A9292B2	11	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	.5	07/28/08	9292	A9292B2	11	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	.5	07/28/08	9292	A9292B2	11	Р	PEICP2
7440-70-2	Calcium	1000	6100	J .5	07/28/08	9292	A9292B2	11	Р	PEICP2
7440-47-3	Chromium	25	ND	.5	07/28/08	9292	A9292B2	11	Р	PEICP2
7440-48-4	Cobalt	10	ND	.5	07/28/08	9292	A9292B2	11	Р	PEICP2
7440-50-8	Copper	25	ND	.5	07/28/08	9292	A9292B2	11	Ρ	PEICP2
7439-89-6	Iron	150	3300	.5	07/28/08	9292	A9292B2	11	Р	PEICP2
7439-92-1	Lead	5.0	ND	.5	07/28/08	9292	A9292B2	11	Р	PEICP2
7439-95-4	Magnesium	1000	1300	.5	07/28/08	9292	A9292B2	11	P	PEICP2
7439-96-5	Manganese	25	48	.5	07/28/08	9292	A9292B2	11	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/25/08	9292	H9292A	25	cv	HGCV2
7440-02-0	Nickel	10	ND	.5	07/28/08	9292	A9292B2	11	Р	PEICP2
7440-09-7	Potassium	2500	ND	.5	07/28/08	9292	A9292P2	30	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	.5	07/28/08	9292	A9292B2	11	Р	PEICP2
7440-22-4	Silver	. 10	ND	.5	07/28/08	9292	A9292B2	11	P	PEICP2
7440-23-5	Sodium	2500	29000	.50	07/28/08	9292	A9292P2	30	P	PEICPRAD2
7440-28-0	Thallium	5.0	ND	.50	07/28/08	9292	A9292B2	11	Р	PEICP2
7440-62-2	Vanadium	25	ND	.5	07/28/08	9292	A9292B2	11	Р	PEICP2
7440-66-6	Zinc	25	34	.50	07/28/08	9292	A9292B2	11	P	PEICP2

Comments:

### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

観然を送る

Sample ID: AC38711-007 Client Id: PW07-06 Matrix: AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/16/2008

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No: Case No:

				1	Analysis	Pren		Sea		
Cas No.	Analyte	RL	Conc	Dil Fact	Date:	Batch	File:	Num:	м	Instr
7429-90-5	Aluminum	100	ND	.5	07/28/08	9292	A9292B2	12	Р	PEICP2
7440-36-0	Antimony	7.5	ND	.5	07/29/08	9292	A9292U2	12	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	.5	07/28/08	9292	A9292C2	12	Р	PEICP2
7440-39-3	Barium	25	ND	.5	07/28/08	9292	A9292B2	12	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	.5	07/28/08	9292	A9292B2	12	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	.5	07/28/08	9292	A9292B2	12	Р	PEICP2
7440-70-2	Calcium	1000	4200	·] .5	07/28/08	9292	A9292B2	12	Р	PEICP2
7440-47-3	Chromium	25	ND	.5	07/28/08	9292	A9292B2	12	Р	PEICP2
7440-48-4	Cobalt	10	ND	.5	07/28/08	9292	A9292B2	12	Р	PEICP2
7440-50-8	Copper	25	ND	.5	07/28/08	9292	A9292B2	12	Р	PEICP2
7439-89-6	Iron	150	3600	.5	07/28/08	9292	A9292B2	12	Р	PEICP2
7439-92-1	Lead	5.0	ND	.5	07/28/08	9292	A9292B2	12	Р	PEICP2
7439-95-4	Magnesium	1000	1200	.5	07/28/08	9292	A9292B2	12	Р	PEICP2
7439-96-5	Manganese	25	38	.5	07/28/08	9292	A9292B2	12	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/25/08	9292	H9292A	26	cv	HGCV2
7440-02-0	Nickel	10	ND	.5	07/28/08	9292	A9292B2	12	Р	PEICP2
7440-09-7	Potassium	2500	ND	.5	07/28/08	9292	A9292P2	31	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	.5	07/28/08	9292	A9292B2	12	Р	PEICP2
7440-22-4	Silver	10	ND	.5	07/28/08	9292	A9292B2	12	Р	PEICP2
7440-23-5	Sodium	2500	50000	.5	07/28/08	9292	A9292P2	31	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	.5	07/28/08	9292	A9292B2	12	P	PEICP2
7440-62-2	Vanadium	25	ND	.5	07/28/08	9292	A9292B2	12	Р	PEICP2
7440-66-6	Zinc	25	49	.5	07/28/08	9292	A9292B2	12	P	PEICP2
ka										

#### Comments:

### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Service states でない dan d

Sample ID:AC38711-008% Solid:0Lab Name:VeritechNras No:Client Id:PW07-05Units:UG/LLab Code:Sdg No:Matrix:AQUEOUSDate Rec:7/16/2008Contract:Case No:Level:LOWLowLowLowLab Name:Lab Name:

					Analysis	Prep		Seq		
Cas No.	Analyte	RL	Conc	Dil Fact	Date:	Batch	File:	Num:	М	Instr
7429-90-5	Aluminum	100	ND	.5	07/25/08	9292	A9292A2	14	Р	PEICP2
7440-36-0	Antimony	7.5	ND	.5	07/29/08	9292	A9292T2	14	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	.5	07/25/08	9292	A9292A2	14	Р	PEICP2
7440-39-3	Barium	25	30	.5	07/25/08	9292	A9292A2	14	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	.5	07/25/08	9292	A9292A2	14	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	.5	07/25/08	9292	A9292A2	14	Р	PEICP2
7440-70-2	Calcium	1000	11000	5. آ	07/25/08	9292	A9292A2	14	Р	PEICP2
7440-47-3	Chromium	25	ND	.5	07/25/08	9292	A9292A2	14	Р	PEICP2
7440-48-4	Cobalt	10	ND	.5	07/25/08	9292	A9292A2	14	Р	PEICP2
7440-50-8	Copper	25	ND	.5	07/25/08	9292	A9292A2	14	Р	PEICP2
7439-89-6	Iron	150	1800	.5	07/25/08	9292	A9292A2	14	Р	PEICP2
7439-92-1	Lead	5.0	ND	.5	07/25/08	9292	A9292A2	14	Р	PEICP2
7439-95-4	Magnesium	1000	3300	.5	07/25/08	9292	A9292A2	14	Р	PEICP2
7439-96-5	Manganese	25	ND	.5	07/25/08	9292	A9292A2	14	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/25/08	9292	H9292A	14	cv	HGCV2
7440-02-0	Nickel	10	ND	.5	07/25/08	9292	A9292A2	14	Р	PEICP2
7440-09-7	Potassium	2500	ND	.5	07/28/08	9292	A9292P2	13	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	.5	07/25/08	9292	A9292A2	14	Р	PEICP2
7440-22-4	Silver	10	ND	.5	07/25/08	9292	A9292A2	14	Р	PEICP2
7440-23-5	Sodium	2500	23000	.5	07/28/08	9292	A9292P2	13	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	.5	07/25/08	9292	A9292A2	14	Р	PEICP2
7440-62-2	Vanadium	25	ND	.5	07/25/08	9292	A9292A2	14	P	PEICP2
7440-66-6	Zinc	25	ND	.5	07/25/08	9292	A9292A2	14	P	PEICP2

Comments:

### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

1

Sample ID: AC38711-011 Client Id: PW07-55 Matrix:

AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/16/2008

Lab Name: Veritech Lab Code: Contract:

Nras No: Sdg No: Case No:

					1	ľ		1	1	·····
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	ND	.5	07/28/08	9292	A9292B2	13	Р	PEICP2
7440-36-0	Antimony	7.5	ND	.5	07/29/08	9292	A9292U2	13	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	.5	07/28/08	9292	A9292C2	13	Р	PEICP2
7440-39-3	Barium	25	31	.5	07/28/08	9292	A9292B2	13	P	PEICP2
7440-41-7	Beryllium	4.0	ND	.5	07/28/08	9292	A9292B2	13	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	.5	07/28/08	9292	A9292B2	13	Р	PEICP2
7440-70-2	Calcium	1000	11000	] .5	07/28/08	9292	A9292B2	13	Р	PEICP2
7440-47-3	Chromium	25	ND	.5	07/28/08	9292	A9292B2	13	Р	PEICP2
7440-48-4	Cobalt	10	ND	.5	07/28/08	9292	A9292B2	13	Р	PEICP2
7440-50-8	Copper	25	ND	.5	07/28/08	9292	A9292B2	13	Р	PEICP2
7439-89-6	iron	150	2400	.5	07/28/08	9292	A9292B2	13	Р	PEICP2
7439-92-1	Lead	5.0	ND	.5	07/28/08	9292	A9292B2	13	P	PEICP2
7439-95-4	Magnesium	1000	3300	.5	07/28/08	9292	A9292B2	13	Р	PEICP2
7439-96-5	Manganese	25	ND	.5	07/28/08	9292	A9292B2	13	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/25/08	9292	H9292A	27	cv	HGCV2
7440-02-0	Nickel	10	ND	.5	07/28/08	9292	A9292B2	13	Р	PEICP2
7440-09-7	Potassium	2500	ND	.5	07/28/08	9292	A9292P2	32	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	.5	07/28/08	9292	A9292B2	13	Р	PEICP2
7440-22-4	Silver	10	ND	.5	07/28/08	9292	A9292B2	13	Р	PEICP2
7440-23-5	Sodium	2500	22000	.5	07/28/08	9292	A9292P2	32	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	.5	07/28/08	9292	A9292B2	13	P	PEICP2
7440-62-2	Vanadium	25	ND	.5	07/28/08	9292	A9292B2	13	Р	PEICP2
7440-66-6	Zinc	25	44	.5,0	07/28/08	9292	A9292B2	13	Р	PEICP2
							1	I		

Comments:

### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

No. State

Sample ID: AC38711-012 Client Id:

PW07-07 Matrix: AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/16/2008

Lab Name: Veritech Lab Code: Contract:

Nras No: Sdg No: Case No:

					Analysis	Prep		Sea		
Cas No.	Analyte	RL	Conc	Dil Fact	Date	Batch	File:	Num:	м	Instr
7429-90-5	Aluminum	100	ND	.5	07/28/08	9292	A9292B2	14	Р	PEICP2
7440-36-0	Antimony	7.5	ND	.5	07/29/08	9292	A9292U2	14	Р	PEICP2
7440-38-2	Arsenic	4.0	4.5	.5	07/28/08	9292	A9292C2	14	Р	PEICP2
7440-39-3	Barium	25	ND	.5	07/28/08	9292	A9292B2	14	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	.5	07/28/08	9292	A9292B2	14	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	.5	07/28/08	9292	A9292B2	14	Р	PEICP2
7440-70-2	Calcium	1000	5600	5. [	07/28/08	9292	A9292B2	14	Р	PEICP2
7440-47-3	Chromium	25	ND	.5	07/28/08	9292	A9292B2	14	Р	PEICP2
7440-48-4	Cobalt	10	ND	.5	07/28/08	9292	A9292B2	14	Р	PEICP2
7440-50-8	Copper	25	ND	.5	07/28/08	9292	A9292B2	14	P	PEICP2
7439-89-6	iron	150	6100	.5	07/28/08	9292	A9292B2	14	Р	PEICP2
7439-92-1	Lead	5.0	ND	.5	07/28/08	9292	A9292B2	14	Р	PEICP2
7439-95-4	Magnesium	1 <b>0</b> 00	1600	.5	07/28/08	<del>9</del> 292	A9292B2	14	Р	PEICP2
7439-96-5	Manganese	25	34	.5	07/28/08	<b>92</b> 92	A9292B2	14	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/25/08	9292	H9292A	28	cv	HGCV2
7440-02-0	Nickel	10	ND	.5	07/28/08	9292	A9292B2	14	Р	PEICP2
7440-09-7	Potassium	2500	ND	.5	07/28/08	9292	A9292P2	33	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	.5	07/28/08	9292	A9292B2	14	P	PEICP2
7440-22-4	Silver	10	ND	.5	07/28/08	9292	A9292B2	14	Р	PEICP2
7440-23-5	Sodium	2500	54000	.50	07/28/08	9292	A9292P2	33	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	['] .50	7/28/08	9292	A9292B2	14	P	PEICP2
7440-62-2	Vanadium	25	ND	.50	7/28/08	9292	A9292B2	14	Р	PEICP2
7440-66-6	Zinc	25	180	.50	7/28/08	9292	A9292B2	14	Р	PEICP2

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Contraction of

Solution of

REAL PROPERTY.

**建設設設** 

Status -

Appendix C Support Documentation/Resubmission If Applicable

### MDL / RL SUMMARY 200.7 PE ICP 2

ELEMENT	MDL (mg/L)	Reporting Limits (mg/L)	<b>IDL</b> (mg/L)
AL	0.036082	0.2	0.00508
SB	0.003599	0.015	0.00217
AS	0.03478	0.008	0.0039
BA	0.00025	0.05	0.000131
BE	0.0000472	0.008	0.0000201
CD	0.00023	0.004	0.000327
CA	0.027025	2	0.0154
CR	0.000493	0.05	0.000268
со	0.000445	0.02	0.000301
CU	0.0045251	0.05	0.00059
FE	0.01976	0.3	0.00396
PB	0.002245	0.01	0.00135
MG	0.032404	2	0.0302
MN	0.000204	0.05	0.000107
МО	0.000925	0.02	0.000571
NI	0.001021	0.02	0.000516
SE	0.010471	0.05	0.00825
AG	0.000315	0.02	0.000363
TL	0.005023	0.01	0.00269
SN	0.002302	0.05	0.00175
TI	0.000327	0.05	0.000115
v	0.00096	0.05	0.000942
ZN	0.007783	0.05	0.000858

Analytical Assurance Associates, Inc.



600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

# ORGANIC & INORGANIC DATA VALIDATION REPORT

# EARTH TECH ANCHOR LITH KEM KO PROJECT

# ANALYZED BY HAMPTON-CLARKE VERITECH LABORATORY LABORATORY CASE No.: 8071707

REVIEWED BY: Analytical Assurance Associates (A³) 600 Rock Raymond Road Downingtown, PA 19335

# EARTH TECH ANCHOR LITH KEM KO PROJECT LABORATORY ID: AC38739 CASE NO.: 8071707

# **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from12 groundwater samples including one field blank and one trip blank, collected on July 15 and 16, 2008. Samples were received by Hampton-Clarke/Veritech laboratory on July 17, 2008 and analyzed for specific volatile organic compounds (VOCs) using EPA Method 624 following the criteria set forth in NYSDEC Category B.

The following samples are evaluated and included in this package review.

PW04-01	<b>TB071608</b>
PW04-03	PW04-07
PW04-02	PW04-05
FBGW071608	PW06-01
PW04-04	PW06-03
PW04-06	PW06-02

MS/MSD analysis was not performed on the above samples.

The reported analytical data for the above samples were evaluated in accordance with the following parameters and summarized in this report.

# **QUALITY ASSURANCE REVIEW**

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations
- Blanks
- Surrogate Recoveries
- Internal Standards Recovery
- Matrix Spike/Spike Duplicate/Blank Spike Analyses
- Instrument Performance
- Field Duplicate Results
- Sample Results

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8071707

# DATA COMPLETENESS

The reported data was summarized on the similar CLP forms and considered acceptable.

The narrower ranges for percent abundance ratios in tune analysis were reported by laboratory for ions 50, 174, and 175. The data was not impacted since the reported abundance ratios were within the method recommended limits.

%Ds in continuing calibrations reported by the laboratory was not calculated based on the calculations recommended by the method. Consequently, some %Ds were reported above 25%. The %Ds were recalculated by the data reviewer and reported accordingly.

# HOLDING TIME

Samples were analyzed within 10 days of VTSR. Samples were preserved at pH <2 unit.

A daily tune analysis was performed by the laboratory. Consequently the 12-hour tune analysis was exceeded for all samples except sample PW04-05. Samples were analyzed from 1:21 to 4:11 hours beyond the 12-hour tune analysis, the frequency required by the CLP VOC SOW and also by SW-846 Method 8260B. However, these samples were analyzed using EPA Method 624, which only requires a tune "at the beginning of each day that analyses are to be performed." As the tune frequency was consistent with the requirements of the method, sample data were accepted since all other criteria met the requirements for the tune analysis.

# CALIBRATION

All %RSDs were within the control limits. The "recalculated" %Ds were above 25% in the following continuing calibrations:

Compound	CC	CC
	7-22-08 @ 10:15	7-21-08 @ 8-:07
Dichlorodifluoromethane	31.1	
Bromomethane	27.2	
Vinyl Chloride	29.2	
Acrolein	37.0	
Acrylonitrile	29.2	
Acetone	36.7	
Carbon disulfide	34.5	40.4
t-Butyl Alcohol	38.5	36.6
Methyl Acetate	40.0	
Samples AC38739-	009	All Samples Except 009

The reported sample results and non-detected values were qualified estimated (J and UJ).

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8071707

The response factors for acrolein (0.035, 0.037, and 0.028), t-butyl alcohol (0.045, 0.028, and 0.046), and 1,4-dioxane (0.008, 0.005, 0.004, and 0.007) were below the data validation requirement of 0.05 in initial and continuing calibrations. These compounds are not considered as TCL compounds and they are known as low response factor compounds. Sample data were not qualified for acrolein and t-butyl alcohol since their Rf values were above "0.01" control limits recommended by the analysis method. However, the reported results and non-detected values for 1,4-dioxane were qualified in accordance with the Region II guidelines.

1,4-Dioxane was not detected in the samples. The reported non-detected values were contractually rejected "R".

# **BLANKS**

The laboratory method blanks and trip blank were free of target compound. Field blank has methylene chloride (66  $\mu$ g/L), chloroform (77  $\mu$ g/L), and bromodichloromethane (20  $\mu$ g/L) at relatively high levels. These compounds were not detected in field samples. Therefore, sample data was not impacted. A storage blank was not analyzed with this batch.

# SURROGATE RECOVERIES

Samples were spiked with four surrogate compounds prior to analysis. The recoveries were within the control limits.

# MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

Matrix spike/spike duplicate analysis was performed on samples AC38736-007 and AC 38765-002 from alternate batches for 31 specific volatile compounds. The percent recoveries and RPDs were with in the control limits with the exception of recoveries of 2-chloroethylvinylether (0.0%) in both sets of MS/MSD analyses. The laboratory case narrative indicated that this compound readily decomposes under acidic condition. This compound was not detected in the samples.

Four sets of MS/MSD were analyzed from this specific site and the analysis results were included in separate cover pages. The review of the four sets of QC samples indicated the similar problem. Therefore, it is the data reviewer's opinion that 2-chloroethylvinylether could not be recovered under this specific sampling/analysis procedure and the non-detected values should be considered estimated "UJ".

# INTERNAL STANDARD

The recoveries and retention times were within the control limits.

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8071707

# FIELD DUPLICATE

Field duplicate analysis was not performed with this batch of samples. Four sets of field duplicate samples were collected from this site and the analysis results were reported under separate cover pages. The calculated RPDs indicated a satisfactory reproducibility.

# SAMPLE RESULTS

All samples were analyzed at one-fold dilutions. Sample data were accepted with the applied qualifier codes.

# **SUMMARY**

The cooler temperature  $(3.0^{\circ}C)$  was reported and considered acceptable.

Up to 31 compounds were listed in the applied analysis method "EPA Test Method 624". However, up to 65 target compounds were reported in each sample. Please note that the analysis of some specific compounds such as acrolein and acrylonitrile were not recommended by this method.

All data have been validated in accordance with the data quality assurance set forth in NYSDEC ASP for Evaluating Organic analyses. The USEPA Region II Data Validation SOP # HW-6 Revision 14 (September 2006), modified as needed for the specific requirements the analytical used by the laboratory (EPA Method 624), was utilized to review the data completeness and data quality. The analysis problems were discussed in the above sections. If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 269-9989.

Sincerely,

Zohreh Hamid, Ph.D Analytical Assurance Associates **INORGANIC ANALYSIS** 

# EARTH TECH ANCHOR LITH KEM KO PROJECT LABORATORY ID: AC38739 CASE NO.: 80711707

# **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from 11 ground water samples including one field blank, collected on July 15 and 16, 2008. Samples were received by Hampton-Clarke/Veritech laboratory on July 17, 2008 and analyzed for ICP metals and mercury according to the EPA Methods 200.7 and 245.1 respectively.

The following samples are evaluated and included in this package review.

PW04-01	PW04-07
PW04-03	PW04-05
PW04-02	PW06-01
FBGW071608	PW06-03
PW04-04	PW06-02
PW04-06	

MS and MD analyses were performed on sample PW04-01.

The analysis data were reviewed in accordance with the following parameters and all problems encountered during the analysis were summarized in this report.

# **QUALITY ASSURANCE REVIEW**

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations & CRDL Analyses
- Blanks
- ICP Interference Check Sample
- Matrix Spike Analysis
- Matrix Duplicate Analysis
- Laboratory Control Sample Analysis
- ICP Serial Dilution Analysis
- Instrument Detection Limits
- Field Duplicate Results
- Sample Result

# **DATA COMPLETENESS**

The method detection limits were not included in the data package. The laboratory was contacted. The tabulated IDLs were submitted by the laboratory. The IDLs for potassium, sodium, and mercury were not listed on the resubmission. The laboratory stated that this form is not required for the applied method.

The serial dilution outliers were not qualified with an "E" qualifier code. The laboratory stated that this code is applied solely to the CLP Method analysis.

The %Ds in the serial dilution sample was not calculated as recommended by the CLP Method. The %Ds was calculated for all detected and non-detected results reported on the raw data. Consequently, many %Ds were reported above 10%. The reporting format did not follow the CLP and the review of the data was very time consuming.

# HOLDING TIME

Samples were digested and analyzed within the holding time requirements established in the corresponding methods.

# CALIBRATIONS & CRDL ANALYSES

The recoveries were within the control limits in initial and continuing calibrations analyzed prior and after sample analysis for all metals. The CRDL sample analysis was not performed for ICP metals.

# **BLANKS**

The preparation blanks, ICBs, CCBs, and field blank were free of target analytes at levels above the CRDLs.

# **ICP INTERFERENCE CHECK SAMPLE**

The recoveries for ICSA and ICSB were within the control limit of 80-120% for ICP metals.

# MATRIX SPIKE ANALYSIS

Matrix spike analysis was performed on the PW04-01. The recoveries were within the control limits of 75-125%.

# MATRIX DUPLICATE ANALYSIS

Matrix duplicate analysis was performed on the above sample. The RPDs were within the control limits in all matrix duplicate analyses.

Earth Tech Project No. 8071707

# LABORATORY CONTROL SAMPLE

The recoveries were within the control limits in this analysis.

# SERIAL DILUTION

This quality control sample was analyzed on sample PW04-01 for ICP metals. The reported % differences for all analytes were with the data validation control limits.

# FIELD DUPLICATE ANALYSIS

A field duplicate was not analyzed for this batch. However, four field duplicate samples were collected for this site and analyses results were reported under separate cover pages. RPDs were within the control limits which indicated a satisfactory reproducibility.

# **SUMMARY**

The cooler temperature  $(3.0^{\circ}C)$  was within the acceptable limits. The reported sample data was considered acceptable.

All data have been validated in accordance with the data quality assurance set forth in NYSDEC ASP for Evaluating TAL metals. The USEPA Region II Data Validation SOP # HW-2, Revision 13 (September 2006) was utilized to review the data completeness and data quality. The analysis problems were discussed in the above section. If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 269-9989.

Sincerely,

Zohreh Hamid, Ph.D Analytical Assurance Associates

Appendix A- Glossary of Data Qualifier
Appendix B- Laboratory Form I, & Applied Qualifier Codes
Appendix C- Resubmission ( if applicable)

Appendix A Glossary of Data Qualifiers

.

### **GLOSSARY OF DATA QUALIFIERS**

### **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- U=NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL<br/>REPORTED IN LABORATORY OR FIELD BLANKS.<br/>[Substantially is equivalent to a result less than 10 times the<br/>blank level for common contaminants (methylene chloride,<br/>acetone and 2- butanone in the VOA<br/>analyses, and common phthalates in the BNA analyses, along<br/>with tentatively identified compounds) or less than 5 times the<br/>blank level for other target compounds.]
- R = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.

N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

### **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

### **OTHER CODES**

 $\mathbf{Q} = \mathbf{NO} \mathbf{ANALYTICAL RESULT}.$
Appendix B Laboratory Form I and Applied Qualifier Codes

# Sample Number: AC38739-001 Client Id: PW04-01 Data File: 8M29935.D Analysis Date: 07/21/08 21:51 Date Rec/Extracted: 07/17/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

1	Cas # Compour	nd	<u>RL C</u>	onc	Cas #	Compound	RI	Conc
Nº 10	71-55-6 1,1,1-Trich	loroethane	1.0	2.5	75-15-0	Carbon Disulfide	1.0	
£.,	79-34-5 1,1,2,2-Tet	rachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	с ° ј
	76-13-1 1,1,2-Trich	oro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	U U
	79-00-5 1,1,2-Trichl	oroethane	1.0	U	75-00-3	Chloroethane	1.0	Ŭ U
	75-34-3 1,1-Dichloi	roethane	1.0	1.1	67-66-3	Chloroform	10	Ŭ
	75-35-4 1,1-Dichlore	pethene	1.0	υ [	74-87-3	Chloromethane	1.0	Ű
(8) (8)	87-61-6 1,2,3-Trichl	orobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U U
湯	96-18-4 1,2,3-Trichl	oropropane	1.0	U	10061-01-5	cis-1.3-Dichloropropene	10	1
023	120-82-1 1,2,4-Trichl	orobenzene	1.0	U - U	110-82-7	Cyclohexane	1.0	0
1975	95-63-6 1,2,4-Trime	thylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	
衙	96-12-8 1,2-Dibrom	-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	
<u>s</u> )	106-93-4 1,2-Dibrom	bethane	1.0	U	100-41-4	Ethylbenzene	1.0	Ц
	95-50-1 1,2-Dichloro	benzene	1.0	U	98-82-8	Isopropylbenzene	1.0	11
8	107-06-2 1,2-Dichloro	ethane	0.50	υ	1330-20-7	m&p-Xvlenes	20	0
	78-87-5 1,2-Dichloro	propane	1.0	υ	79-20-9	Methyl Acetate	1.0	0
	108-67-8 1,3,5-Trimet	hylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U U
193	541-73-1 1,3-Dichloro	benzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
1	142-28-9 1,3-Dichloro	propane	1.0	บ	1634-04-4	Methyl-t-butyl ether	1.0	U
3	106-46-7 1,4-Dichloro	benzene	1.0	U	104-51-8	n-Butylbenzene	1.0	0
	123-91-1 1,4-Dioxane		50	ΨR	103-65-1	n-Propylbenzene	1.0	1
	78-93-3 2-Butanone		1.0	υ']	95-47-6	o-Xvlene	1.0	0
5	110-75-8 2-Chloroethy	/ivinylether	1.0	чVI	135-98-8	sec_Butylbenzene	1.0	0
	591-78-6 2-Hexanone		1.0	υ	100-42-5	Styrene	1.0	0
3	99-87-6 4-isopropylto	luene	1.0	U	75-65-0 t	-Butyl Alcohol	5.0	0 11 UT
	108-10-1 4-Methyl-2-P	entanone	1.0	U	98-06-6 t	-Butylhenzene	1.0	ر~ 0
137	67-64-1 Acetone		5.0	U	127-18-4 1	Tetrachloroethene	1.0	U 11
<b>t</b> A	107-02-8 Acrolein		5.0	υ	108-88-3 1	Folgene	1.0	0
	107-13-1 Acrylonitrile		1.0	U	156-60-5 t	rans-1 2-Dichloroethene	1.0	0
	71-43-2 Benzene	C	.50	U	10061-02-6 t	rans-1.3-Dichloropropana	1.0	U
	74-97-5 Bromochloro	methane	1.0	Ŭ İ	79-01-6 1	Frichloroethene	1.0	0
	75-27-4 Bromodichio	omethane	1.0	U I	75-69-4 1	Trichlorofluoromethano	1.0	U
	75-25-2 Bromoform		1.0	u l	75-01.4 \		1.0	U
æ	74-83-9 Bromometha	ne	1.0	- U	10-01-4		1.0	U
				-				

Worksheet #: 89932

Total Target Concentration 3.6

I - Indicates the combound was analyzed but not detected. S - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

# 

ORGANICS VOLATILE REPORT

# Sample Number: AC38739-002 Client Id: PW04-03 Data File: 8M29936.D Analysis Date: 07/21/08 22:08 Date Rec/Extracted: 07/17/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

S:h	Cas #	Compound	RL	Conc	Cas #	Compound	RI	Conc
	71-55-6	1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	
3.J	79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U U
	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	U U
	79-00-5	1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U U
	75-34-3	1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	ů Ú
	75-35-4	1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	U U
*	87-61-6	1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	· Ū
	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	Ŭ
21	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	ŭ
7 <b>1</b> 3	95-63 <b>-</b> 6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	Ū
	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	ŭ
ģ	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	Ū
	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	Ū
	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7 i	m&p-Xylenes	2.0	Ŭ
100	78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	ŭ
·	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	Ū
3	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	Ŭ
	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4 M	Vethyl-t-butyl ether	1.0	Ŭ
9	106-46-7	1,4-Dichlorobenzene	1.0	U	104-51-8 r	n-Butylbenzene	1.0	Ū
,	123-91-1	1,4-Dioxane	50	чK	103-65-1 r	n-Propylbenzene	1.0	Ŭ
	78-93-3 2	2-Butanone	1.0	U,	95-47-6 c	-Xylene	1.0	Ŭ
)	110-75-8	2-Chloroethylvinylether	1.0	₽V)	135-98-8 s	ec-Butylbenzene	1.0	Ū
	591-78-6 2	2-Hexanone	1.0	U	100-42-5 8	Styrene	1.0	Ŭ
)	99-87-6 4	4-isopropyltoluene	1.0	U	75-65-0 t-	-Butyl Alcohol	5.0	υVJ
	108-10-1 4	1-Methyl-2-Pentanone	1.0	U	98-06-6 t-	Butylbenzene	1.0	U
	67-64-1 A	Acetone	5.0	U	127-18-4 T	etrachioroethene	1.0	Ū
	107-02-8	Acrolein	5.0	U	108-88-3 T	oluene	1.0	U
	107-13-1 A	Acrylonitrile	1.0	U	156-60-5 tr	rans-1,2-Dichloroethene	1.0	Ŭ
)	71-43-2 E	Benzene	0.50	U	10061-02-6 tr	rans-1,3-Dichloropropene	1.0	Ŭ
	74-97-5 E	Bromochloromethane	1.0	U	79-01-6 T	richloroethene	1.0	Ū
I	75-27-4 E	Bromodichloromethane	1.0	U	75-69-4 T	richlorofluoromethane	1.0	Ū
	75-25-2 E	Bromoform	1.0	U	75-01-4 V	inyl Chloride	1.0	Ū
	74-83-9 E	Bromomethane	1.0	U				_

Worksheet #: 89932

のないの

### Total Target Concentration 0

Indicates the compound was analyzed but not detected.
Indicates the analyte was found in the blank as well as in the sample.
Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

# Sample Number: AC38739-003 Client Id: PW04-02 Data File: 8M29937.D Analysis Date: 07/21/08 22:25 Date Rec/Extracted: 07/17/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

e.	<u>, _Cas #</u>	Compound	RL	Conc	Cas #	Compound	RI	Conc
	71-55-6	5 1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	
C.	79-34-5	5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U U
	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	U U
	79-00-5	5 1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	Ŭ
	75-34-3	1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	U U
	75-35-4	1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	Ŭ
(internet) (internet)	87-61-6	1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	ů Ú
	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	Ŭ
*-32	120-82 <b>-</b> 1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U U
A1973	95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	- Dibromochloromethane	1.0	Ŭ
	96 <b>-</b> 12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	Ŭ
	106-93-4	1,2-Dibromoethane	1.0	υļ	100-41-4	Ethylbenzene	1.0	Ŭ
	95-50-1	1,2-Dichlorobenzene	1.0	υ	98-82-8	isopropylbenzene	1.0	Ŭ
	107-06-2	1,2-Dichloroethane	0.50	υ	1330-20-7	m&p-Xylenes	2.0	ŭ
1	78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	ŭ
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	- U
<i>8</i> 10)	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	Ŭ
	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	U
Sec. 1	106-46-7	1,4-Dichlorobenzene	1.0	U a	104-51-8	n-Butylbenzene	1.0	Ŭ
27/2 <b>4</b>	123-91-1	1,4-Dioxane	50	y K	103-65-1	n-Propylbenzene	1.0	Ű
	78-93-3	2-Butanone	1.0	U	95-47-6	o-Xylene	1.0	Ŭ
	110-75-8	2-Chloroethylvinylether	1.0	r nì	135-98-8	sec-Butylbenzene	1.0	U
	591-78-6	2-Hexanone	1.0	υ	100-42-5	Styrene	1.0	Ŭ
	99-87-6	4-Isopropyltoluene	1.0	U	75-65-0	t-Butyl Alcohol	5.0	UUT
	108-10-1	4-Methyl-2-Pentanone	1.0	U	<b>98-06-6</b> 1	t-Butylbenzene	1.0	U J
	67-64-1	Acetone	5.0	U	127-18-4	- Tetrachloroethene	1.0	U U
<i>6</i> 70	107-02-8	Acrolein	5.0	U	108-88-3	Toluene	1.0	Ŭ
	107-13-1	Acrylonitrile	1.0	U	156-60-5 t	trans-1,2-Dichloroethene	1.0	Ŭ
61)	71-43-2	Benzene	0.50	U	10061-02-6 t	trans-1,3-Dichloropropene	1.0	U U
	74-97-5	Bromochloromethane	1.0	U	79-01-6	Trichloroethene	1.0	Ŭ
	75-27-4 1	Bromodichloromethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	Ŭ
	75-25 <b>-</b> 2	Bromoform	1.0	U	75-01-4	Vinyl Chloride	1.0	ŭ
	74-83-9 E	Bromomethane	1.0	U				Ũ

Worksheet #: 89932

Total Target Concentration 0

Indicates the compound was analyzed but not detected.
Indicates the analyte was found in the blank as well as in the sample.
E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

# 

# ORGANICS VOLATILE REPORT

# Sample Number: AC38739-004 Client Id: FBGW071608 Data File: 8M29933.D Analysis Date: 07/21/08 21:17 Date Rec/Extracted: 07/17/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

20	_Cas #_	Compound	RL	Conc	Cas #	Compound	RI	Conc
	71-55-6	1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	
	79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	u - 1
	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	U U
22)	79-00-5	1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U U
	75-34-3	1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	77
	75-35-4	1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	 U
鐗	87-61-6	1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	Ű
Ц.,	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	Ű
	95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U U
	96-12-8	1,2-Dibromo-3-Chioropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	Ц
	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U U
	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	Ŭ
	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xylenes	2.0	U U
la la	78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
3	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	66
1	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	U
)	106-46-7	1,4-Dichlorobenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	U U
	123-91-1	1,4-Dioxane	50	ΨK	103-65-1	n-Propylbenzene	1.0	U U
	78-93-3 2	2-Butanone	1.0	U	95-47-6	o-Xylene	1.0	ů
J	110-75-8 2	2-Chloroethylvinylether	1.0	чIJ	135-98-8	sec-Butylbenzene	1.0	U U
	591-78-6 2	2-Hexanone	1.0	U	100-42-5	Styrene	1.0	Ű
)	99-87-6 4	1-Isopropyltoluene	1.0	U	75-65-0	- I-Butyl Alcohol	5.0	Ŭ
	108-10-1 4	1-Methyl-2-Pentanone	1.0	U	98-06-6 1	-Butylbenzene	1.0	ŭVτ
	67-64-1 A	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	ŭ
	107-02-8 A	Acrolein	5.0	U	108-88-3	Toluene	1.0	Ŭ Ŭ
	107-13-1 A	Acrylonitrile	1.0	U	156-60-5 t	rans-1,2-Dichloroethene	1.0	Ŭ
)	71-43-2 E	Benzene	0.50	U	10061-02-6 t	rans-1,3-Dichloropropene	1.0	Ŭ
	74-97-5 E	Bromochloromethane	1.0	U	79-01-6 1	Frichloroethene	1.0	U
	75-27-4 B	Bromodichloromethane	1.0	20	75-69-4	Trichlorofluoromethane	1.0	Ŭ
	75-25-2 B	Bromoform	1.0	U	75-01-4 \	/inyl Chloride	1.0	- U
	74-83-9 B	Bromomethane	1.0	U				-

Worksheet #: 89932

Total Target Concentration 163

Indicates the compound was analyzed but not detected.
Indicates the analyte was found in the blank as well as in the sample.
Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

# 

ORGANICS VOLATILE REPORT

# Sample Number: AC38739-005 Client Id: PW04-04 Data File: 8M29938.D Analysis Date: 07/21/08 22:42 Date Rec/Extracted: 07/17/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

es:	Cas # Compound	<u></u>	Conc	Cas # Compound	RI	Conc
1.4	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	10 U
	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	- ງ ປ
	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	Ŭ
92 24	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	Ū
	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	Ŭ
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3 Chloromethane	1.0	Ŭ
)	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	- U
	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	Ŭ
÷.	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	u U
80.°A	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	Ŭ
10	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	ũ
	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	u U
	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8 Isopropylbenzene	1.0	Ű
	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	U
192	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	
	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	Ŭ
3	541-73-1 1,3-Dichlorobenzene	1.0	υ	75-09-2 Methylene Chloride	1.0	U U
	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	ŭ
្រ	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzene	1.0	U U
	123-91-1 1,4-Dioxane	50	σK	103-65-1 n-Propylbenzene	1.0	ŭ
1	78-93-3 2-Butanone	1.0	U	95-47-6 o-Xvlene	1.0	Ŭ
J	110-75-8 2-Chloroethylvinylether	1.0	UJ	135-98-8 sec-Butvibenzene	1.0	U U
	591-78-6 2-Hexanone	1.0	U	100-42-5 Styrene	1.0	U U
9	99-87-6 4-Isopropyitoluene	1.0	U	75-65-0 t-Butyl Alcohol	50	u UT
	108-10-1 4-Methyl-2-Pentanone	1.0	U	98-06-6 t-Butvibenzene	1.0	
4	67-64-1 Acetone	5.0	υ	127-18-4 Tetrachloroethene	10	U U
z	107-02-8 Acrolein	5.0	U	108-88-3 Toluene	10	U U
	107-13-1 Acrylonitrile	1.0	U	156-60-5 trans-1.2-Dichloroethene	10	U U
	71-43-2 Benzene	0.50	U	10061-02-6 trans-1.3-Dichloropropene	1.0	ŭ
	74-97-5 Bromochloromethane	1.0	U	79-01-6 Trichloroethene	1.0	Ŭ
1	75-27-4 Bromodichloromethane	1.0	U	75-69-4 Trichlorofluoromethane	1.0	Ü
}	75-25-2 Bromoform	1.0	U	75-01-4 Vinyl Chloride	10	U U
	74-83-9 Bromomethane	1.0	U	· · · · · · · · · · · · · · · · · · ·	··•	0

Worksheet #: 89932

#### Total Target Concentration 0

- Indicates the compound was analyzed but not detected.

Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. **R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

# Sample Number: AC38739-006 Client Id: PW04-06 Data File: 8M29939.D Analysis Date: 07/21/08 22:59 Date Rec/Extracted: 07/17/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

(A)	Cas # Compound	<u></u>	Conc	Cas # Compound	RI	Conc
	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	
63	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	U - 5
	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	U
	79-00-5 1,1,2-Trichloroethane	1.0	υ	75-00-3 Chloroethane	10	U
	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	U U
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3 Chloromethane	1.0	U U
	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1.2-Dichloroethene	1.0	U U
	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	U
1230 I	120-82-1 1,2,4-Trichlorobenzene	1.0	υ	110-82-7 Cvclohexane	1.0	0
<i>0</i> 1855	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	10	Ŭ
	96-12-8 1,2-Dibromo-3-Chioropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	U U
S	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4 Ethvibenzene	1.0	0
	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8 Isopropylbenzene	1.0	0
	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xvienes	20	
	78-87-5 1,2-Dichloropropane	1.0	υ	79-20-9 Methyl Acetate	1.0	
1	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	0
<i>6</i> 194	541-73-1 1,3-Dichlorobenzene	1.0	υ	75-09-2 Methylene Chloride	1.0	U U
	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	0
1000	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butvibenzene	1.0	0
. 1 . 1000	123-91-1 1,4-Dioxane	50	ΨR	103-65-1 n-Propylbenzene	1.0	U
	78-93-3 2-Butanone	1.0	U	95-47-6 o-Xviene	1.0	
	110-75-8 2-Chloroethylvinylether	1.0	UUS	135-98-8 sec-Butvibenzene	1.0	U U
	591-78-6 2-Hexanone	1.0	U	100-42-5 Styrene	1.0	1
(i)	99-87-6 4-Isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcohol	50	л UT
	108-10-1 4-Methyl-2-Pentanone	1.0	U	98-06-6 t-Butv/benzene	10	ر <b>- 0</b>
	67-64-1 Acetone	5.0	17	127-18-4 Tetrachloroethene	1.0	П
48A	107-02-8 Acrolein	5.0	U	108-88-3 Toluene	1.0	Ű
	107-13-1 Acrylonitrile	1.0	U	156-60-5 trans-1.2-Dichloroethene	1.0	Ц
89)	71-43-2 Benzene	0.50	U	10061-02-6 trans-1.3-Dichloropropene	1.0	U
1	74-97-5 Bromochloromethane	1.0	U	79-01-6 Trichloroethene	1.0	
	75-27-4 Bromodichloromethane	1.0	U	75-69-4 Trichlorofluoromethane	1.0	н
	75-25-2 Bromoform	1.0	U	75-01-4 Vinvi Chloride	1.0	
	74-83-9 Bromomethane	1.0	υ	and a surger contained		0

Worksheet #: 89932

Second Second

Total Target Concentration 17

/ - Indicates the compound was analyzed but not detected. - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

# Form1

ORGANICS VOLATILE REPORT

# Sample Number: AC38739-007 Client Id: TB071608 Data File: 8M29934.D Analysis Date: 07/21/08 21:34 Date Rec/Extracted: 07/17/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

œ۳	<u>Cas #</u>	Compound	RL	Conc	Cas #	Compound	RI	Conc
の定義	71-55-6	1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	
×.	79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U - J
	76-13 <b>-</b> 1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	Ŭ
	79-00-5	1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U U
	75-34-3	1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	U U
	75-35-4	1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	U U
彩)	87-61-6	1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	Ű
	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	1
616-7 -	120-82-1	1,2,4-Trichlorobenzene	1.0	υ	110-82-7	Cyclohexane	1.0	U U
สา	95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	Ŭ
2)	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	ŭ
	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	ŭ
	107-06-2	1,2-Dichloroethane	0.50	υ	1330-20-7	m&p-Xylenes	2.0	Ŭ
Siyes	78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	Ŭ
	108-67-8	1,3,5-Trimethylbenzene	1.0	Ū	108-87-2	Methylcyclohexane	1.0	U
۲į	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	Ŭ
	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	U U
59	106-46-7	1,4-Dichlorobenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	U U
-	123-91-1	1,4-Dioxane	50	ъK	103-65-1	n-Propylbenzene	1.0	U U
	78-93-3 2	2-Butanone	1.0	υ	95-47-6	o-Xylene	1.0	Ŭ
ļ	110-75-8 2	2-Chloroethylvinylether	1.0	U U	135-98-8	sec-Butylbenzene	1.0	ŭ
	591-78-6 2	2-Hexanone	1.0	U	100-42-5	Styrene	1.0	Ŭ
)	99-87-6 4	4-Isopropyltoluene	1.0	U	<b>75-65-0</b> 1	-Butyl Alcohol	5.0	ũ try
	108-10-1 4	I-Methyl-2-Pentanone	1.0	U	98-06-6	t-Butylbenzene	1.0	U U
•	67-64-1 A	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	ŭ
à	107-02-8 A	Acrolein	5.0	U	108-88-3	Toluene	1.0	Ŭ
{	107-13-1 A	Acrylonitrile	1.0	U	156-60-5 t	rans-1,2-Dichloroethene	1.0	Ŭ
1	71-43-2 E	Benzene	0.50	U [	10061-02-6 t	rans-1,3-Dichloropropene	1.0	ŭ
_	74-97-5 E	Bromochloromethane	1.0	U	79-01-6	Trichloroethene	1.0	Ű
	75-27 <b>-</b> 4 B	Bromodichloromethane	1.0	U	75-69-4 1	Trichlorofluoromethane	1.0	Ŭ
}	75-25-2 B	Bromoform	1.0	U	75-01-4 \	/inyl Chloride	1.0	Ŭ
	74-83-9 B	fromomethane	1.0	U		-		-

Worksheet #: 89932

2000

(Carlow)

#### **Total Target Concentration** 0

- Indicates the compound was analyzed but not detected. - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

# Form1

ORGANICS VOLATILE REPORT

Sample Number: AC38739-008 Client Id: PW04-07 Data File: 8M29940.D Analysis Date: 07/21/08 23:16 Date Rec/Extracted: 07/17/08-NA Column: DB-624 25M 0.200mm ID 1.12um film Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

<b>8</b> 10	<u>Cas #</u>	Compound	RL	Conc	Cas #	Compound	RI	Conc
	71-55-6	5 1,1,1-Trichloroethane	1.0	2.5	75-15-0	Carbon Disulfide	1.0	
عنظن	79-34-5	5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	- ~) U
	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	Ŭ
	79-00-5	1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	ŭ
	75-34-3	1,1-Dichloroethane	1.0	1.0	67-66-3	Chloroform	1.0	Ŭ
	75-35-4	1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	U U
酮	87-61-6	1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	Ŭ
	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	Ŭ
si de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de la calendaria de	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	Ū
407a	95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	Ū
	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	<b>7</b> 5-71 <b>-</b> 8	Dichlorodifluoromethane	1.0	Ŭ
(iii)	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	Ū
	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropyibenzene	1.0	Ū
	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xylenes	2.0	Ū
	78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U
******	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
29) 	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	Ŭ
×1	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	Ū
1629 1	106-46-7	1,4-Dichlorobenzene	1.0	U _	104-51-8	n-Butylbenzene	1.0	U
-10a	123-91-1	1,4-Dioxane	50	ΨK	103-65-1	n-Propylbenzene	1.0	Ŭ
	78-93-3	2-Butanone	1.0	U	95-47-6	o-Xylene	1.0	U
	110-75-8	2-Chloroethylvinylether	1.0	UV J	135-98-8	sec-Butylbenzene	1.0	U
	591-78-6	2-Hexanone	1.0	U	100-42-5	Styrene	1.0	Ŭ
<b>(</b> )	99-87-6	4-Isopropyltoluene	1.0	U	<b>75-65-0</b> 1	t-Butyl Alcohol	5.0	υUT
	108-10-1	4-Methyl-2-Pentanone	1.0	U	<b>98-06-6</b> 1	t-Butylbenzene	1.0	U
	67-64-1	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	U
34	107-02-8	Acrolein	5.0	U	108-88-3	Toluene	1.0	U
	107-13-1	Acrylonitrile	1.0	U	156-60-5 (	trans-1,2-Dichloroethene	1.0	U
20	71-43-2	Benzene	0.50	U	10061-02-6 t	trans-1,3-Dichloropropene	1.0	U
	74-97-5	Bromochloromethane	1.0	U	79-01-6	Trichloroethene	1.0	U
	75-27-4	Bromodichloromethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
<u></u>	75-25-2	Bromoform	1.0	U	75-01-4	Vinyl Chloride	1.0	U
<b>)</b>	74-83-9	Bromomethane	1.0	U				-

Worksheet #: 89932

#### Total Target Concentration 3.5

I - Indicates the compound was analyzed but not detected. Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

# 

ORGANICS VOLATILE REPORT

Sample Number: AC38739-009 Client Id: PW04-05 Data File: 2M32992.D Analysis Date: 07/22/08 15:56 Date Rec/Extracted: 07/17/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

<b>с</b> .,	Cas # Compound	RL	Conc	Cas # Compound	RI	Conc
e an Ser	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	<u> </u>
ŝ.	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	u j
	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	U U
	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	Ŭ
	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	- U
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3 Chloromethane	1.0	Ŭ
9	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	Ŭ
	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	Ŭ
i a i	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	Ŭ
in ال	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	Ū
1	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	υVT
)	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	U J
	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8 Isopropylbenzene	1.0	Ū
12	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	Ŭ
1. S. S. S.	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	υUŢ
	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	Ŭ
9	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	Ŭ
	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	U
;	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzene	1.0	Ŭ
3	123-91-1 1,4-Dioxane	50	.v- K	103-65-1 n-Propylbenzene	1.0	Ŭ
	78-93-3 2-Butanone	1.0	U "	95-47-6 o-Xylene	1.0	Ŭ
)	110-75-8 2-Chloroethylvinylether	1.0	ዲ (ህ	135-98-8 sec-Butylbenzene	1.0	Ū
	591-78-6 2-Hexanone	1.0	U	100-42-5 Styrene	1.0	Ŭ
)	99-87-6 4-isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcohol	5.0	υUJ
	108-10-1 4-Methyl-2-Pentanone	1.0	U 🚽	98-06-6 t-Butylbenzene	1.0	U
	67-64-1 Acetone	5.0	96 U	127-18-4 Tetrachloroethene	1.0	U
1	107-02-8 Acrolein	5.0	UUI	108-88-3 Toluene	1.0	U
	107-13-1 Acrylonitrile	1.0	U US	156-60-5 trans-1,2-Dichloroethene	1.0	U
	71-43-2 Benzene	0.50	U	10061-02-6 trans-1,3-Dichloropropene	1.0	U
	74-97-5 Bromochloromethane	1.0	υ	79-01-6 Trichloroethene	1.0	Ū
	75-27-4 Bromodichloromethane	1.0	U	75-69-4 Trichlorofluoromethane	1.0	U
	75-25-2 Bromoform	1.0	υ	75-01-4 Vinyl Chloride	1.0	U <i>U</i> î
	74-83-9 Bromomethane	1.0	UUT			J
			<i>4</i> ·			

Worksheet #: 89932

#### Total Target Concentration 96

Indicates the compound was analyzed but not detected.
Indicates the analyte was found in the blank as well as in the sample.
Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

# Sample Number: AC38739-010 Client Id: PW06-01 Data File: 8M29941.D Analysis Date: 07/21/08 23:33 Date Rec/Extracted: 07/17/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

8	<u>Cas #</u> (	Compound	RL	Conc	Cas #	Compound	RI	Conc
	71-55-6 1	1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	
	79-34-5 1	1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U - J
	76-13-1 1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	0
	79-00-5 1	1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U U
	75-34-3 1	,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
	75-35-4 1	,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	U
혧	87-61-6 1	,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1.2-Dichloroethene	1.0	U U
圖	96-18-4 1	,2,3-Trichloropropane	1.0	υ	10061-01-5	cis-1,3-Dichloropropene	1.0	U U
45 I	120-82-1 1	,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
61852m	95-63-6 1,	,2,4-Trimethylbenzene	1.0	υ	124-48-1	Dibromochloromethane	1.0	U U
	96-12-8 1,	,2-Dibromo-3-Chioropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	Ű
\$1 <b>)</b>	106-93-4 1,	,2-Dibromoethane	1.0	υ	100-41-4	Ethylbenzene	1.0	0
	95-50-1 1,	,2-Dichlorobenzene	1.0	U	98-82-8	Isopropvibenzene	1.0	ŭ
<b>\$</b>	107-06-2 1,	,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xvlenes	2.0	Ű
	78-87-5 1,	2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U U
	108-67-8 1,	3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U U
3 <b>6</b> 3	541-73-1 1,	3-Dichlorobenzene	1.0	υ	75-09-2	Methylene Chloride	1.0	Ŭ
	142-28-9 1,	3-Dichloropropane	1.0	U	1634-04-4 (	Methyl-t-butyl ether	1.0	U U
100	106-46-7 1,4	4-Dichlorobenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	U
	123-91-1 1,4	4-Dioxane	50	¥ K	103-65-1 r	n-Propylbenzene	· 1.0	U U
	78-93-3 2-1	Butanone	1.0	U	95-47-6 0	o-Xylene	1.0	Ű
3)	110-75-8 2-0	Chloroethylvinylether	1.0	UUJ	135-98-8 s	sec-Butvlbenzene	1.0	U U
	591-78-6 2-1	Hexanone	1.0	U	100-42-5 \$	Styrene	1.0	Ű
<b>)</b>	99-87-6 4-1	Isopropyltoluene	1.0	U	75-65-0 t	-Butyl Alcohol	5.0	μŬΙ
	108-10-1 4-1	Methyl-2-Pentanone	1.0	U	98-06-6 t	-Butylbenzene	1.0	U U
	67-64-1 Ac	etone	5.0	U	127-18-4 T	Fetrachloroethene	1.0	U U
<b>3</b> 24	107-02-8 Ac	rolein	5.0	U	108-88-3 T	oluene	1.0	U
	107-13-1 Ac	rylonitrile	1.0	U	156-60-5 ti	rans-1,2-Dichloroethene	1.0	Ŭ
8 <b>9</b>	71-43-2 Be	nzene	0.50	U	10061-02-6 tr	rans-1,3-Dichloropropene	1.0	Ŭ
	74-97-5 Bro	omochloromethane	1.0	U	79-01-6 T	richloroethene	1.0	Ű
<u></u>	75-27-4 Bro	omodichloromethane	1.0	U	75-69-4 T	richlorofluoromethane	1.0	Ŭ
	75-25-2 Bro	omoform	1.0	U	75-01-4 V	/inyl Chloride	1.0	Ŭ
	74-83-9 Bro	omomethane	1.0	U		-		U

Worksheet #: 89932

#### **Total Target Concentration** 0

U - Indicates the compound was analyzed but not detected. - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

Sample Number: AC38739-011 Client Id: PW06-03 Data File: 8M29942.D Analysis Date: 07/21/08 23:50 Date Rec/Extracted: 07/17/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

æ	<u>Cas #</u>	Compound	RL	Conc	Cas #	Compound	RI	Conc
	71-55-6	5 1,1,1-Trichloroethane	1.0	3.5	75-15-0	Carbon Disulfide	1.0	
	79-34-5	5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U J
	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	Ū
	79-00-5	5 1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	Ŭ
	75-34-3	1,1-Dichloroethane	1.0	1.7	67-66-3	Chloroform	1.0	Ŭ
	75-35-4	1,1-Dichloroethene	1.0	1.8	74-87-3	Chloromethane	1.0	Ŭ
<b>5</b>	87-61-6	i 1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	Ŭ
時代に	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	Ŭ
926 <b>1</b>	120-82-1	1,2,4-Trichlorobenzene	1.0	υ	110-82-7	Cyclohexane	1.0	Ű
認為	95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	Ŭ
5	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	Ŭ
<b>(</b> )	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	Ŭ
	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	Ŭ
11	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xylenes	2.0	Ū
6 C. 1	7 <b>8-</b> 87-5	1,2-Dichloropropane	1.0	υ	79-20-9	Methyl Acetate	1.0	Ŭ
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	Ŭ
3	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	- U
	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	Ŭ
	106-46-7	1,4-Dichlorobenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	Ŭ
	123-91-1	1,4-Dioxane	50	-4- K	103-65-1	n-Propylbenzene	1.0	U U
	<b>78-9</b> 3-3	2-Butanone	1.0	U	95-47-6	o-Xylene	1.0	Ŭ
J	110-75-8	2-Chloroethylvinylether	1.0	UUI	135-98-8	sec-Butylbenzene	1.0	Ŭ
	591-78-6	2-Hexanone	1.0	U	100-42-5	Styrene	1.0	Ū
Ì	99-87-6	4-isopropyitoluene	1.0	U	75-65-0 (	-Butyl Alcohol	5.0	มับโ
	108-10-1	4-Methyl-2-Pentanone	1.0	U	98-06-6 (	-Butylbenzene	1.0	U U
	67-64-1	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	Ŭ
3	107-02-8	Acrolein	5.0	U	108-88-3	Toluene	1.0	Ŭ
[	107-13-1	Acrylonitrile	1.0	U	156-60-5 t	rans-1,2-Dichloroethene	1.0	Ū
9	71-43-2	Benzene	0.50	U	10061-02-6 t	rans-1,3-Dichloropropene	1.0	Ŭ
	74-97-5	Bromochloromethane	1.0	U	79-01-6 1	Frichloroethene	1.0	2.6
	75-27-4	Bromodichloromethane	1.0	υ	75-69-4 1	Frichlorofluoromethane	1.0	 U
S	75-25-2	Bromoform	1.0	U	75-01-4 \	/inyl Chloride	1.0	Ŭ
	74-83-9	Bromomethane	1.0	υ				-

Worksheet #: 89932

BE SHARE

Street and

Total Target Concentration 9.6

J - Indicates the compound was analyzed but not detected.
B - Indicates the analyte was found in the blank as well as in the sample.
E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

# Sample Number: AC38739-012 Client Id: PW06-02 Data File: 8M29943.D Analysis Date: 07/22/08 00:07 Date Rec/Extracted: 07/17/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

Œ	<u>Cas # (</u>	Compound	RL	Conc	Cas #	Compound	RI	Conc
	71-55-6 1	1,1,1-Trichloroethane	1.0	4.2	75-15-0	Carbon Disulfide	1.0	
155	79-34-5 1	1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U U
	76-13-1 1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	Ŭ
	79-00-5 1	1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
	75-34-3 1	1,1-Dichloroethane	1.0	7.2	67-66-3	Chloroform	1.0	Ŭ
	75-35-4 1	I,1-Dichloroethene	1.0	2.3	74-87-3	Chloromethane	1.0	U U
	87-61-6 1	1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	Ű
	96-18-4 1	,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	Ű
100	120-82-1 1	,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	Ű
<b>6</b> 553	95-63-6 1	,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	Ŭ
	96-12-8 1	,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	Ű
(靈)	106-93-4 1	,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	ŭ
	95-50-1 1	,2-Dichlorobenzene	1.0	u	98-82-8	Isopropylbenzene	1.0	U U
	107-06-2 1	,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xylenes	2.0	Ŭ
	78-87-5 1,	,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U U
(·	108-67-8 1,	,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U U
<b>3</b> 3)	541-73-1 1,	,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	Ű
	142-28-9 1,	,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	10	U U
000	106-46-7 1,	4-Dichlorobenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	<u>-</u>
	123-91-1 1,	4-Dioxane	50	H K	103-65-1	n-Propvibenzene	1.0	Ű
	78-93-3 2-	Butanone	1.0	U	95-47-6	o-Xylene	1.0	ů.
()	110-75-8 2-	Chloroethylvinylether	1.0	AVI	135-98-8	sec-Butylbenzene	1.0	Ű
	591-78-6 2-	Hexanone	1.0	U	100-42-5	Styrene	1.0	U U
鬭	99-87-6 4-	Isopropyltoluene	1.0	U	75-65-0	t-Butyl Alcohol	5.0	UUT
	108-10-1 4-	Methyl-2-Pentanone	1.0	υ	98-06-6 1	t-Butylbenzene	1.0	U J
50.0	67-64-1 Ac	cetone	5.0	20	127-18-4	Tetrachloroethene	1.0	U U
-8 <b>2</b> 9	107-02-8 Ac	crolein	5.0	U	108-88-3	Toluene	1.0	Ŭ
	107-13-1 Ac	crylonitrile	1.0	U	156-60-5 t	trans-1,2-Dichloroethene	1.0	Ŭ
<u>9</u> 0	71-43-2 Be	enzene	0.50	U	10061-02-6 t	rans-1.3-Dichloropropene	1.0	U U
	74-97-5 Br	omochloromethane	1.0	U	79-01-6	Trichloroethene	1.0	ŭ
	75-27-4 Br	omodichloromethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	Ŭ
	75-25-2 Bro	omoform	1.0	U	75-01-4 \	Vinyl Chloride	1.0	ŭ
	74-83-9 Bro	omomethane	1.0	U				Ū

Worksheet #: 89932

Constraints

1

Total Target Concentration 33.7

Indicates the compound was analyzed but not detected.
Indicates the analyte was found in the blank as well as in the sample.
Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

Sample ID: AC38739-001 Client Id: Matrix: Level: LOW

PW04-01 AQUEOUS

% Solid: 0 Units: UG/L Date Rec: 7/17/2008

Case No:

Nras No:

Sdg No:

Lab Name: Veritech

Lab Code:

Contract:

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis	Prep	File:	Seq	M	Incia
7429-90-5	Aluminum	100	ND	0.5				iNum:		Instr
7440-36-0	Antimony	7.5		0.5	07/24/06	9298	A9324A2	31	Р –	PEICP2
7440-38.2	Araania	1.5		0.5	07/24/08	9298	A9324A2	31	Р	PEICP2
7440.00 0	Aisenic	4.0	5.1	0.5	07/24/08	9298	A9324A2	31	Р	PEICP2
7440-39-3	Barium	25	120	0.5	07/24/08	9298	A9324A2	31	Ρ	PEICP2
7440-41-7	Beryllium	4.0	ND	0.5	07/24/08	9298	A9324A2	31	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	0.5	07/24/08	9298	A9324A2	31	Р	PEICP2
7440-70-2	Calcium	1000	12000	0.5	07/24/08	9298	A9324A2	31	Р	PEICP2
7440-47-3	Chromium	25	ND	0.5	07/24/08	9298	A9324A2	31	Р	PEICP2
7440-48-4	Cobalt	10	ND	0.5	07/24/08	9298	A9324A2	31	Р	PEICP2
7440-50-8	Copper	25	ND	0.5	07/24/08	9298	A9324A2	31	Р	PEICP2
7439-89-6	Iron	150	3300	0.5	07/24/08	9298	A9324A2	31	P	PEICP2
7439-92-1	Lead	5.0	ND	0.5	07/24/08	9298	A9324A2	31	Р	PEICP2
7439-95-4	Magnesium	1000	2300	0.5	07/24/08	9298	A9324A2	31	Р	PEICP2
7439-96-5	Manganese	25	550	0.5	07/24/08	9298	A9324A2	31	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/25/08	9298	H9298A	14	cv	HGCV2
7440-02-0	Nickel	10	11	0.5	07/24/08	9298	A9324A2	31	Р	PEICP2
7440-09-7	Potassium	2500	7500	.5	07/25/08	9298	A9298D2	13	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	0.5	07/24/08	9298	A9324A2	31	Р	PEICP2
7440-22-4	Silver	10	ND	0.5	07/24/08	9298	A9324A2	31	Р	PEICP2
7440-23-5	Sodium	2500	42000	.5	07/25/08	9298	A9298D2	13	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	0.5	07/24/08	9298	A9324A2	31	Р	PEICP2
7440-62-2	Vanadium	25	ND	0.5	07/24/08	9298	A9324A2	31	P	PEICP2
7440-66-6	Zinc	25	ND	0.5	07/24/08	9298	A9324A2	31	Р	PEICP2

#### Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Se .]

Station of the second

a second

STATES AND

RELEAS

Sample ID: Client Id:

AC38739-002 PW04-03 Matrix: AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/17/2008

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No: Case No:

		-		1	1	1				
Cas No.	Analyte	RL	Cond	Dil Faci	Analysis Date	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	NC	0.5	507/24/08	9298	A9324A2	52	P	PEICP2
7440-36-0	Antimony	7.5	ND	0.5	07/24/08	9298	A9324A2	52	P	PEICP2
7440-38-2	Arsenic	4.0	ND	0.5	07/24/08	9298	A9324A2	52	Р	PEICP2
7440-39-3	Barium	25	75	0.5	07/24/08	9298	A9324A2	52	P	PEICP2
7440-41-7	Beryllium	4.0	ND	0.5	07/24/08	9298	A9324A2	52	Р	PEICP2
7440-43- <del>9</del>	Cadmium	2.0	ND	0.5	07/24/08	9298	A9324A2	52	Р	PEICP2
7440-70-2	Calcium	1000	9600	0.5	07/24/08	9298	A9324A2	52	Р	PEICP2
7440-47-3	Chromium	25	ND	0.5	07/24/08	9298	A9324A2	52	Р	PEICP2
7440-48-4	Cobalt	10	ND	0.5	07/24/08	9298	A9324A2	52	Р	PEICP2
7440-50-8	Copper	25	ND	0.5	07/24/08	9298	A9324A2	52	Р	PEICP2
7439-89-6	iron	150	220	0.5	07/24/08	9298	A9324A2	52	Р	PEICP2
7439-92-1	Lead	5.0	ND	0.5	07/24/08	9298	A9324A2	52	Р	PEICP2
7439-95-4	Magnesium	1000	1500	0.5	07/24/08	9298	A9324A2	52	P	PEICP2
7439-96-5	Manganese	25	65	0.5	07/24/08	9298	A9324A2	52	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/25/08	9298	H9298A	29	cv	HGCV2
7440-02-0	Nickel	10	ND	0.5	07/24/08	9298	A9324A2	52	Р	PEICP2
7440-09-7	Potassium	2500	ND	.5	07/28/08	9298	A9298L2	14	P	PEICPRAD2
7782-49-2	Selenium	25	ND	0.5	07/24/08	9298	A9324A2	52	Р	PEICP2
7440-22-4	Silver	10	ND	0.5	07/24/08	9298	A9324A2	52	Р	PEICP2
7440-23-5	Sodium	2500	25000	.5	07/28/08	9298	A9298L2	14	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	0.5	07/24/08	9298	A9324A2	52	Р	PEICP2
7440-62-2	Vanadium	25	ND	0.5	07/24/08	9298	A9324A2	52	Р	PEICP2
7440-66-6	Zinc	25	ND	0.5	07/24/08	9298	A9324A2	52	Р	PEICP2
	·				I			•		

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

販売 

ALL SEA

Section and

No. of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of

Sample ID: Client Id: Matrix: Level: LOW

AC38739-003 PW04-02 AQUEOUS

% Solid: 0 Units: UG/L Date Rec: 7/17/2008

Lab Code:

Contract:

Lab Name: Veritech

Nras No: Sdg No: Case No:

					Analysis	Brop		Con		
Cas No.	Analyte	RL	Conc	Dil Fact	Date	Batch	File:	Num:	м	Instr
7429-90-5	Aluminum	100	ND	0.5	07/24/08	9298	A9324A2	53	Р	PEICP2
7440-36-0	Antimony	7.5	ND	0.5	07/24/08	9298	A9324A2	53	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	0.5	07/24/08	9298	A9324A2	53	Р	PEICP2
7440-39-3	Barium	25	85	0.5	07/24/08	9298	A9324A2	53	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	0.5	07/24/08	9298	A9324A2	53	P	PEICP2
7440-43-9	Cadmium	2.0	ND	0.5	07/24/08	9298	A9324A2	53	Р	PEICP2
7440-70-2	Calcium	1000	13000	0.5	07/24/08	9298	A9324A2	53	P	PEICP2
7440-47-3	Chromium	25	ND	0.5	07/24/08	9298	A9324A2	53	Р	PEICP2
7440-48-4	Cobalt	10	ND	0.5	07/24/08	9298	A9324A2	53	Р	PEICP2
7440-50-8	Copper	25	ND	0.5	07/24/08	9298	A9324A2	53	P	PEICP2
7439-89-6	Iron	150	7100	0.5	07/24/08	9298	A9324A2	53	Р	PEICP2
7439-92-1	Lead	5.0	ND	0.5	07/24/08	9298	A9324A2	53	P	PEICP2
7439-95-4	Magnesium	1000	2800	0.5	07/24/08	9298	A9324A2	53	Р	PEICP2
7439-96-5	Manganese	25	310	0.5	07/24/08	9298	A9324A2	53	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/25/08	9298	H9298A	30	cv	HGCV2
7440-02-0	Nickel	10	ND	0.5	07/24/08	9298	A9324A2	53	Р	PEICP2
7440-09-7	Potassium	2500	ND	.5	07/28/08	9298	A9298L2	15	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	0.5	07/24/08	9298	A9324A2	53	Р	PEICP2
7440-22-4	Silver	10	ND	0.5	07/24/08	9298	A9324A2	53	P	PEICP2
7440-23-5	Sodium	2500	38000	.5	07/28/08	9298	A9298L2	15	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	0.5	07/24/08	9298	A9324A2	53	Ρ	PEICP2
7440-62-2	Vanadium	25	ND	0.5	07/24/08	9298	A9324A2	53	Р	PEICP2
7440-66-6	Zinc	25	ND	0.5	07/24/08	9298	A9324A2	53	P	PEICP2

Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

- 10 M State of the second Section Section 

Sold and a

ECCLERICIES IN STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET,

WARD NEW

820202G

3  Sample ID: AC38739-004 Client Id: FBGW071608 Matrix: AQUEOUS

Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/17/2008

Lab Name: Veritech Lab Code: Contract:

Nras No: Sdg No: Case No:

	<b>.</b>				Analysis	Prep		Seq		
Cas No.	Analyte	RL	Conc	Dil Fact	Date	Batch	File:	Num:	М	Instr
7429-90-5	Aluminum	100	NE	0.5	07/24/08	9298	A9324A2	54	Р	PEICP2
7440-36-0	Antimony	7.5	ND	0.5	07/24/08	9298	A9324A2	54	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	0.5	07/24/08	9298	A9324A2	54	Р	PEICP2
7440-39-3	Barium	25	ND	0.5	07/24/08	9298	A9324A2	54	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	0.5	07/24/08	9298	A9324A2	54	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	0.5	07/24/08	9298	A9324A2	54	Р	PEICP2
7440-70-2	Calcium	1000	ND	0.5	07/24/08	9298	A9324A2	54	Р	PEICP2
7440-47-3	Chromium	25	ND	0.5	07/24/08	9298	A9324A2	54	Ρ	PEICP2
7440-48-4	Cobalt	10	ND	0.5	07/24/08	9298	A9324A2	54	Р	PEICP2
7440-50-8	Copper	25	ND	0.5	07/24/08	9298	A9324A2	54	Р	PEICP2
7439-89-6	Iron	150	ND	0.5	07/24/08	9298	A9324A2	54	Р	PEICP2
7439-92-1	Lead	5.0	ND	0.5	07/24/08	9298	A9324A2	54	P	PEICP2
7439-95-4	Magnesium	1000	ND	0.5	07/24/08	9298	A9324A2	54	Р	PEICP2
7439-96-5	Manganese	25	ND	0.5	07/24/08	9298	A9324A2	54	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/25/08	9298	H9298A	31	cv	HGCV2
7440-02-0	Nickel	10	ND	0.5	07/24/08	9298	A9324A2	54	Р	PEICP2
7440-09-7	Potassium	2500	ND	.5	07/28/08	9298	A9298L2	18	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	0.5	07/24/08	9298	A9324A2	54	Р	PEICP2
7440-22-4	Silver	10	ND	0.5	07/24/08	9298	A9324A2	54	Р	PEICP2
7440-23-5	Sodium	2500	ND	.5	07/28/08	9298	A9298L2	18	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	0.5	07/24/08	9298	A9324A2	54	Р	PEICP2
7440-62-2	Vanadium	25	ND	0.5	07/24/08	9298	A9324A2	54	Р	PEICP2
7440-66-6	Zinc	25	ND	0.5	07/24/08	9298	A9324A2	54	Р	PEICP2

#### Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

A.L.A. 

States and a state of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the stat

0.2012.00

Sec. 1

Sample ID: AC38739-005 Client Id: Matrix:

Sec.

626

**MARKS** 

No. of Concession, Name

記録を通知

A CONTRACTOR

PW04-04 AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/17/2008

Lab Name: Veritech Lab Code: Contract:

Nras No: Sdg No: Case No:

					Τ	1	1			
Cas No.	Analyte	RL	Сопс	Dil Fac	Analysis Date	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	230	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2
7440-36-0	Antimony	7.5	ND	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2
7440-39-3	Barium	25	ND	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2
7440-70-2	Calcium	1000	7100	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2
7440-47-3	Chromium	25	ND	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2
7440-48-4	Cobalt	10	ND	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2
7440-50-8	Copper	25	ND	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2
7439-89-6	Iron	150	650	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2
7439-92-1	Lead	5.0	ND	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2
7439 <b>-9</b> 5-4	Magnesium	1000	1200	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2
7439-96-5	Manganese	25	26	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/25/08	9298	H9298A	32	cv	HGCV2
7440-02-0	Nickel	10	ND	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2
7440-09-7	Potassium	2500	ND	.5	07/28/08	9298	A9298L2	19	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2
7440-22-4	Silver	10	ND	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2
7440-23-5	Sodium	2500	39000	.5	07/28/08	9298	A9298L2	19	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2
7440-62-2	Vanadium	25	ND	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2
7440-66-6	Zinc	25	ND	0.5	07/24/08	9298	A9324A2	55	Р	PEICP2

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Sample ID: AC38739-006 Client Id: PW04-06 Matrix: AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/17/2008

Lab Name: Veritech Lab Code: Contract:

Nras No: Sdg No: Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	1200	0.5	07/24/08	9298	A9324A2	56	Р	PEICP2
7440-36-0	Antimony	7.5	ND	0.5	07/24/08	9298	A9324A2	56	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	0.5	07/24/08	9298	A9324A2	56	Р	PEICP2
7440-39-3	Barium	25	ND	0.5	07/24/08	9298	A9324A2	56	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	0.5	07/24/08	9298	A9324A2	56	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	0.5	07/24/08	9298	A9324A2	56	Р	PEICP2
7440-70-2	Calcium	1000	5200	0.5	07/24/08	9298	A9324A2	56	Р	PEICP2
7440-47-3	Chromium	25	ND	0.5	07/24/08	9298	A9324A2	56	Р	PEICP2
7440-48-4	Cobalt	· 10	ND	0.5	07/24/08	9298	A9324A2	56	Р	PEICP2
7440-50-8	Copper	25	ND	0.5	07/24/08	9298	A9324A2	56	Р	PEICP2
7439-89-6	Iron	150	4400	0.5	07/24/08	9298	A9324A2	56	Р	PEICP2
7439-92-1	Lead	5.0	ND	0.5	07/24/08	9298	A9324A2	56	Р	PEICP2
7439-95-4	Magnesium	1000	ND	0.5	07/24/08	9298	A9324A2	56	Р	PEICP2
7439-96-5	Manganese	. 25	62	0.5	07/24/08	9298	A9324A2	56	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/25/08	9298	H9298A	35	cv	HGCV2
7440-02-0	Nickel	10	ND	0.5	07/24/08	9298	A9324A2	56	P	PEICP2
7440-09-7	Potassium	2500	ND	.5	07/28/08	9298	A9298L2	20	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	0.5	07/24/08	9298	A9324A2	56	Р	PEICP2
7440-22-4	Silver	10	ND	0.5	07/24/08	9298	A9324A2	56	Р	PEICP2
7440-23-5	Sodium	2500	36000	.5	07/28/08	9298	A9298L2	20	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	0.5	07/24/08	9298	A9324A2	56	P	PEICP2
7440-62-2	Vanadium	25	ND	0.5	07/24/08	9298	A9324A2	56	Р	PEICP2
7440-66-6	Zinc	25	ND	0.5	07/24/08	9298	A9324A2	56	Ρ	PEICP2

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

新たなど、

10.25(1)25(0)

SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SC

Sample ID: AC38739-008 Client Id: Matrix:

PW04-07 AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/17/2008

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No: Case No:

1							1	1	ľ	
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429 <b>-</b> 90-5	Aluminum	100	ND	0.5	07/24/08	9298	A9324A2	57	Р	PEICP2
7440-36-0	Antimony	7.5	ND	0.5	07/24/08	9298	A9324A2	57	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	0.5	07/24/08	9298	A9324A2	57	Р	PEICP2
7440-39-3	Barium	25	120	0.5	07/24/08	9298	A9324A2	57	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	0.5	07/24/08	9298	A9324A2	57	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	0.5	07/24/08	9298	A9324A2	57	Р	PEICP2
7440-70-2	Calcium	1000	12000	0.5	07/24/08	9298	A9324A2	57	P	PEICP2
7440-47-3	Chromium	25	ND	0.5	07/24/08	9298	A9324A2	57	Р	PEICP2
7440-48-4	Cobalt	10	15	0.5	07/24/08	9298	A9324A2	57	Р	PEICP2
7440-50-8	Copper	25	ND	0.5	07/24/08	9298	A9324A2	57	Р	PEICP2
7439-89-6	Iron	150	4600	0.5	07/24/08	9298	A9324A2	57	Р	PEICP2
7439-92-1	Lead	5.0	ND	0.5	07/24/08	9298	A9324A2	57	Р	PEICP2
7439-95-4	Magnesium	1000	2100	0.5	07/24/08	9298	A9324A2	57	Р	PEICP2
7439-96-5	Manganese	25	490	0.5	07/24/08	9298	A9324A2	57	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/25/08	9298	H9298A	36	сν	HGCV2
7440-02-0	Nickel	10	13	0.5	07/24/08	9298	A9324A2	57	Р	PEICP2
7440-09-7	Potassium	2500	8200	.5	07/28/08	9298	A9298L2	21	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	0.5	07/24/08	9298	A9324A2	57	Р	PEICP2
7440-22-4	Silver	10	ND	0.5	07/24/08	9298	A9324A2	57	Р	PEICP2
7440-23-5	Sodium	2500	44000	.5	07/28/08	9298	A9298L2	21	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	0.5	07/24/08	9298	A9324A2	57	Р	PEICP2
7440-62-2	Vanadium	25	ND	0.5	07/24/08	9298	A9324A2	57	Р	PEICP2
7440-66-6	Zinc	25	ND	0.5	07/24/08	9298	A9324A2	57	Р	PEICP2
						1	1			

Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

100

No.

Contraction of the

60.255.65

Sample ID: Client Id: Matrix: Level:

AC38739-009 PW04-05 AQUEOUS LOW

% Solid: 0 Units: UG/L Date Rec: 7/17/2008

Lab Code:

Contract:

Lab Name: Veritech

Nras No:

Sdg No:

Case No:

Cas No.	Analyte	RL	Conc	Dil Faci	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr	
7429-90-5	Aluminum	100	ND	0.5	07/24/08	9298	A9324A2	58	Р	PEICP2	
7440-36-0	Antimony	7.5	ND	0.5	07/24/08	9298	A9324A2	58	Р	PEICP2	
7440-38-2	Arsenic	4.0	6.7	0.5	07/24/08	9298	A9324A2	58	P	PEICP2	
7440-39-3	Barium	25	35	0.5	07/24/08	9298	A9324A2	58	Р	PEICP2	
7440-41-7	Beryllium	4.0	ND	0.5	07/24/08	9298	A9324A2	58	Р	PEICP2	
7440-43-9	Cadmium	2.0	ND	0.5	07/24/08	9298	A9324A2	58	Р	PEICP2	
7440-70-2	Calcium	1000	12000	0.5	07/24/08	9298	A9324A2	58	Р	PEICP2	
7440-47-3	Chromium	25	ND	0.5	07/24/08	9298	A9324A2	58	Р	PEICP2	
7440-48-4	Cobalt	10	ND	0.5	07/24/08	9298	A9324A2	58	P	PEICP2	
7440-50-8	Copper	25	ND	0.5	07/24/08	9298	A9324A2	58	Р	PEICP2	
7439-89-6	iron	150	12000	0.5	07/24/08	9298	A9324A2	58	Р	PEICP2	İ
7439-92-1	Lead	5.0	ND	0.5	07/24/08	9298	A9324A2	58	Р	PEICP2	
7439-95-4	Magnesium	1000	2000	0.5	07/24/08	9298	A9324A2	58	Р	PEICP2	ļ
7439-96-5	Manganese	25	320	0.5	07/24/08	9298	A9324A2	58	P	PEICP2	i
7439-97-6	Mercury.	0.20	ND	1	07/25/08	9298	H9298A	37	cv	HGCV2	
7440-02-0	Nickel	10	ND	0.5	07/24/08	9298	A9324A2	58	Р	PEICP2	
7440-09-7	Potassium	2500	ND	.5	07/28/08	9298	A9298L2	22	Р	PEICPRAD2	
7782-49-2	Selenium	25	ND	0.5	07/24/08	9298	A9324A2	58	Р	PEICP2	
7440-22-4	Silver	10	ND	0.5	07/24/08	9298	A9324A2	58	Р	PEICP2	
7440-23-5	Sodium	2500	35000	.5	07/28/08	9298	A9298L2	22	Р	PEICPRAD2	
7440-28-0	Thallium	5.0	ND	0.5	07/24/08	9298	A9324A2	58	Р	PEICP2	
7440-62-2	Vanadium	25	ND	0.5	07/24/08	9298	A9324A2	58	Р	PEICP2	
7440-66-6	Zinc	25	ND	0.5	07/24/08	9298	A9324A2	58	Р	PEICP2	
		,	,								

Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

(Area) 

CONSTRACTOR OF STATE

12000000

STATES IN

2000 1000

Sample ID: AC38739-010 Client Id:

81

100

0.0

A STREET

100100

COMP.

変形が高

SCOOL SECTION

052230723

2007220-360

Sale of the

and a

PW06-01 Matrix: AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/17/2008

Lab Code:

Contract:

Lab Name: Veritech

Nras No: Sdg No: Case No:

				1		")		1		
Cas No.	Analyte	RL	Cond	Dil Fact	Analysis Date	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	740	0.5	07/24/08	9298	A9324A2	61	Р	PEICP2
7440-36-0	Antimony	7.5	NC	0.5	07/24/08	9298	A9324A2	61	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	0.5	07/24/08	9298	A9324A2	61	Р	PEICP2
7440-39-3	Barium	25	35	0.5	07/24/08	9298	A9324A2	61	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	0.5	07/24/08	9298	A9324A2	61	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	0.5	07/24/08	9298	A9324A2	61	P	PEICP2
7440-70-2	Calcium	1000	9500	0.5	07/24/08	9298	A9324A2	61	Р	PEICP2
7440-47-3	Chromium	25	ND	0.5	07/24/08	9298	A9324A2	61	Р	PEICP2
7440-48-4	Cobalt	10	ND	0.5	07/24/08	9298	A9324A2	61	P	PEICP2
7440-50-8	Copper	25	ND	0.5	07/24/08	9298	A9324A2	61	P	PEICP2
7439-89-6	Iron	150	420	0.5	07/24/08	9298	A9324A2	61	Р	PEICP2
7439-92-1	Lead	5.0	ND	0.5	07/24/08	9298	A9324A2	61	Р	PEICP2
7439-95-4	Magnesium	1000	1200	0.5	07/24/08	9298	A9324A2	61	Р	PEICP2
7439-96-5	Manganese	25	310	0.5	07/24/08	9298	A9324A2	61	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/25/08	9298	H9298A	38	cv	HGCV2
7440-02-0	Nickel	10	ND	0.5	07/24/08	9298	A9324A2	61	P	PEICP2
7440-09-7	Potassium	2500	6000	.5	07/28/08	9298	A9298L2	23	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	0.5	07/24/08	9298	A9324A2	61	Р	PEICP2
7440-22-4	Silver	10	ND	0.5	07/24/08	9298	A9324A2	61	Р	PEICP2
7440-23-5	Sodium	2500	23000	.5	07/28/08	9298	A9298L2	23	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	0.5	07/24/08	9298	A9324A2	61	P	PEICP2
7440-62-2	Vanadium	25	ND	0.5	07/24/08	9298	A9324A2	61	Ρ	PEICP2
7440-66-6	Zinc	25	ND	0.5	07/24/08	9298	A9324A2	61	Р	PEICP2
			· · · ·	·						L

Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Sample ID: AC38739-011 Client Id: Matrix: Level: LOW

PW06-03 AQUEOUS

% Solid: 0 Units: UG/L Date Rec: 7/17/2008

Lab Name: Veritech Lab Code: Contract:

Nras No: Sdg No: Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	220	0.5	07/24/08	9298	A9324A2	62	Р	PEICP2
7440-36-0	Antimony	7.5	ND	0.5	07/24/08	9298	A9324A2	62	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	0.5	07/24/08	9298	A9324A2	62	Р	PEICP2
7440-39-3	Barium	25	83	0.5	07/24/08	9298	A9324A2	62	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	0.5	07/24/08	9298	A9324A2	62	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	0.5	07/24/08	9298	A9324A2	62	Р	PEICP2
7440-70-2	Calcium	1000	15000	0.5	07/24/08	9298	A9324A2	62	Р	PEICP2
7440-47-3	Chromium	25	ND	0.5	07/24/08	9298	A9324A2	62	Р	PEICP2
7440-48-4	Cobalt	10	ND	0.5	07/24/08	9298	A9324A2	62	Р	PEICP2
7440-50-8	Copper	25	ND	0.5	07/24/08	9298	A9324A2	62	Р	PEICP2
7439-89-6	iron	150	1200	0.5	07/24/08	9298	A9324A2	62	Р	PEICP2
7439-92-1	Lead	5.0	ND	0.5	07/24/08	9298	A9324A2	62	Р	PEICP2
7439-95-4	Magnesium	1000	6200	0.5	07/24/08	9298	A9324A2	62	Р	PEICP2
7439-96-5	Manganese	25	51	0.5	07/24/08	9298	A9324A2	62	P	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/25/08	9298	H9298A	39	cv	HGCV2
7440-02-0	Nickel	10	ND	0.5	07/24/08	9298	A9324A2	62	P	PEICP2
7440-09-7	Potassium	2500	ND	.5	07/28/08	9298	A9298L2	24	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	0.5	07/24/08	9298	A9324A2	62	Р	PEICP2
7440-22-4	Silver	10	ND	0.5	07/24/08	9298	A9324A2	62	Р	PEICP2
7440-23-5	Sodium	2500	19000	.5	07/28/08	9298	A9298L2	24	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	0.5	07/24/08	9298	A9324A2	62	Р	PEICP2
7440-62-2	Vanadium	25	ND	0.5	07/24/08	9298	A9324A2	62	Р	PEICP2
7440-66-6	Zinc	25	ND	0.5	07/24/08	9298	A9324A2	62	P	PEICP2

Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Contraction of the second Section 2

の日本の語

の市内の大学

STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET

1022520

----

Sample ID: AC38739-012 Client Id: Matrix:

Salare C

時代にある

Sections:

1000 633N

No. of Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Street, or Stre

PW06-02 AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/17/2008

Lab Name: Veritech Lab Code: Contract:

Nras No: Sdg No: Case No:

1					1	1	· · · · · · · · · · · · · · · · · · ·			-		_
	Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date	Prep Batch	File:	Seq Num:	м	Instr	
	7429-90-5	Aluminum	100	320	0.5	07/24/08	9298	A9324A2	63	Р	PEICP2	-
	7440-36-0	Antimony	7.5	ND	0.5	07/24/08	9298	A9324A2	63	Р	PEICP2	
	7440-38-2	Arsenic	4.0	5.9	0.5	07/24/08	9298	A9324A2	63	P	PEICP2	
	7440-39-3	Barium	25	36	0.5	07/24/08	9298	A9324A2	63	P	PEICP2	
1	7440-41-7	Beryllium	4.0	ND	0.5	07/24/08	9298	A9324A2	63	P	PEICP2	
	7440-43-9	Cadmium	2.0	ND	0.5	07/24/08	9298	A9324A2	63	Р	PEICP2	
	7440-70-2	Calcium	1000	20000	0.5	07/24/08	9298	A9324A2	63	Р	PEICP2	
	7440-47-3	Chromium	25	42	0.5	07/24/08	9298	A9324A2	63	P	PEICP2	
	7440-48-4	Cobalt	10	11	0.5	07/24/08	9298	A9324A2	63	P	PEICP2	
	7440-50-8	Copper	25	ND	0.5	07/24/08	9298	A9324A2	63	P	PEICP2	
	7439-89-6	Iron	150	29000	0.5	07/24/08	9298	A9324A2	63	P	PEICP2	
	7439-92-1	Lead	5.0	ND	0.5	07/24/08	9298	A9324A2	63	P	PEICP2	
	7439-95-4	Magnesium	1000	2700	0.5	07/24/08	9298	A9324A2	63	, P	PEICP2	
	7439-96-5	Manganese	25	1800	0.5	07/24/08	9298	A9324A2	63	P	PEICP2	
	7439-97-6	Mercury	0.20	ND	1	07/25/08	9298	H9298A	40	cv	HGCV2	
	7440-02-0	Nickel	10	ND	0.5	07/24/08	9298	A9324A2	63	P	PEICP2	
	7440-09-7	Potassium	2500	4500	.5	07/28/08	9298	A9298I 2	25	P		
	7782-49-2	Selenium	25	ND	0.5	07/24/08	9298	A9324A2	63	' P	PEICP2	
	7440-22-4	Silver	10	ND	0.5	07/24/08	9298	A9324A2	63	P	PEICP2	1
	7440-23-5	Sodium	2500	86000	.5	07/28/08	9298	A9298I 2	25	Þ	PEICERADO	
	7440-28-0	Thallium	5.0	ND	0.5	07/24/08	9298	A9324A2	63	p		
	7440-62-2	Vanadium	25	ND	0.50	7/24/08	9298	A0324A2	62	r D		
	7440-66-6	Zinc	25		0.50	7/24/09	9290	10024MZ	03   69	r	PEICP2	
					0.5	11/24/00	9290	N9324HZ	03	۲	PEICP2	

Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Appendix C Support Documentation/Resubmission If Applicable

### MDL / RL SUMMARY 200.7 PE ICP 2

ELEMENT	MDL (mg/L)	Reporting Limits (mg/L)	<b>(DL</b> (mg/L)
AL	0.036082	0.2	0.00508
SB	0.003599	0.015	0.00217
AS	0.03478	0.008	0.0039
BA	0.00025	0.05	0.000131
BE	0.0000472	0.008	0.0000201
CD	0.00023	0.004	0.000327
CA	0.027025	2	0.0154
CR	0.000493	0.05	0.000268
со	0.000445	0.02	0.000301
CU	0.0045251	0.05	0.00059
FE	0.01976	0.3	0.00396
PB	0.002245	0.01	0.00135
MG	0.032404	2	0.0302
MIN	0.000204	0.05	0.000107
МО	0.000925	0.02	0.000571
NI	0.001021	0.02	0.000516
SE	0.010471	0.05	0.00825
AG	0.000315	0.02	0.000363
TL	0.005023	0.01	0.00269
SN	0.002302	0.05	0.00175
TI	0.000327	0.05	0.000115
v	0.00096	0.05	0.000942
ZN	0.007783	0.05	0.000858

Analytical Assurance Associates, Inc.



600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

# ORGANIC & INORGANIC DATA VALIDATION REPORT

# EARTH TECH ANCHOR LITH KEM KO PROJECT

# ANALYZED BY HAMPTON-CLARKE VERITECH LABORATORY LABORATORY CASE No.: 8071803

REVIEWED BY: Analytical Assurance Associates (A³) 600 Rock Raymond Road Downingtown, PA 19335

# EARTH TECH ANCHOR LITH KEM KO PROJECT LABORATORY ID: AC38771 CASE NO.: 8071803

# **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from seven groundwater samples including one trip blank, collected on 7-17-2008. Samples were received by Hampton-Clarke/Veritech laboratory on 7-18-2008 and analyzed for specific volatile organic compounds (VOCs) using EPA Method 624 following the criteria set forth in NYSDEC Category B.

The following samples are evaluated and included in this package review.

PW06-06	<b>TB071708</b>
PW06-04	PW05-01
PW06-05	PW05-03
PW06-07	

MS/MSD analysis was not performed on the above samples.

The analysis data were reviewed in accordance with the following parameters and all problems encountered during the analysis were summarized in this report.

# **QUALITY ASSURANCE REVIEW**

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations
- Blanks
- Surrogate Recoveries
- Internal Standards Recovery
- Matrix Spike/Spike Duplicate/Blank Spike Analyses
- Instrument Performance
- Field Duplicate Results
- Sample Results

# **DATA COMPLETENESS**

The reported data was summarized on similar CLP forms and considered acceptable.

The narrower ranges for percent abundance ratios in tune analysis were reported by laboratory for ions 50, 174, and 175. The data was not impacted since the reported abundance ratios were within the method recommended limits.

%Ds in continuing calibrations reported by the laboratory was not calculated based on the calculations recommended by the method. Consequently, some %Ds were above 25%. The %Ds were recalculated by the data reviewer and reported accordingly.

# HOLDING TIME

Samples were analyzed within 10 days of VTSR. The laboratory case narrative stated that the samples were not preserved correctly. The review of the data showed that samples PW06-06 and PW-06-04 were preserved at pH = 4 unit. Sample data were accepted unqualified since this sample was analyzed within 7 days of collection and the cooler temperature was within the control limits.

A daily tune analysis was performed by the laboratory. Consequently the 12-hour tune analysis was exceeded for samples PW05-01 and PW05-03. These two samples were analyzed 21 and 37 minutes beyond the 12-hour tune analysis, the frequency required by the CLP VOC SOW and also by SW-846 Method 8260B. However, these samples were analyzed using EPA Method 624, which only requires a tune "at the beginning of each day that analyses are to be performed." As the tune frequency was consistent with the requirements of the method, sample data were accepted, since all other criteria met the requirements for the tune analysis.

# CALIBRATION

The response factors for acrolein (0.035, 0.037, and 0.026), t-butyl alcohol (0.046, 0.028, and 0.040), and 1,4-dioxane (0.008, 0.005, 0.004, and 0.006) were below data validation requirement of 0.05 in initial and continuing calibrations. These compounds are not considered as TCL compounds and they are known as low response factor compounds. Sample data was not qualified for acrolein and t-butyl alcohol since their Rfs were above "0.01" control limits recommended by the method. However, the reported results and non-detected values for 1,4-dioxane were qualified in accordance with the Region II guidelines.

1,4-Dioxane was not detected in the samples. The reported non-detected values were contractually rejected "R".

All %RSDs were within the control limits with the exception of %RSD for carbon disulfide (31%) in initial calibration analyzed on 7-18-08. %RSD was recalculated using five calibration standards (1 ppb, 10 ppb, 20 ppb, 50 ppb, and 100 ppb). The RSD was within the control limit. Therefore, sample data was not qualified based on this outlier.

Compound	CC	СС
	7-22-08 @ 10:15	7-23-08 @ 7:21
Dichlorodifluoromethane	31.1	
Bromomethane	27.2	
Vinyl Chloride	29.2	
Acrolein	37.0	25.7
Acrylonitrile	29.2	29.6
Acetone	36.7	34.0
Carbon disulfide	34.5	44.0
t-Butyl Alcohol	38.5	37.6
Methyl Acetate	40.0	34.6
2-Hexanone		31.7
Samples AC38771-	005	001
_	006	002
	007	003
		004

The "recalculated" %Ds were above 25% in the following continuing calibrations:

The reported sample results and non-detected values were qualified estimated (J and UJ).

# **BLANKS**

The laboratory method blanks and trip blank were free of target compounds. A storage blank was not analyzed with this batch.

# SURROGATE RECOVERIES

Samples were spiked with four surrogate compounds prior to analysis. The recoveries were within the control limits.

# MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

Matrix spike/spike duplicate analysis was performed on samples AC38736-005 and AC 38765-003 from alternate batches for 31 specific volatile compounds. The percent recoveries and RPDs were with in the control limits with the exception of recoveries for 2-chloroethylvinylether

(0.0%) in both sets of MS/MSD samples. The laboratory case narrative indicated that this compound readily decomposes under acidic condition.

Four sets of MS/MSDs were analyzed from this specific site and the analysis results were included in separate cover pages. The review of the four sets of QC samples indicated the similar problem. Therefore, it is the data reviewer's opinion that 2-chloroethylvinylether could not be recovered under this specific sampling/analysis procedures and the non-detected values should be considered estimated "UJ".

# INTERNAL STANDARD

The recoveries and retention times were within the control limits.

# FIELD DUPLICATE

Field duplicate analysis was not performed with this batch of samples. Four duplicate samples were collected from this site. The analysis results were reported under separate cover page.

# SAMPLE RESULTS

All samples were analyzed at one-fold dilutions with the exception of sample PW06-07. This sample was reported at a 5-fold dilution. Sample data was accepted unqualified.

The target analyte peaks and standard peaks in the field sample chromatograms were suppressed by an intensive peak detected at RT = 4.85. This peak could not be identified since the TICs were not searched. Sample data was not qualified since the surrogates and internal standard recoveries were within the control limits.

Acetone was detected in three samples at relatively high levels. The method blank and trip blank were free of this target compound. The source of acetone in samples PW06-06, PW06-04 and PW06-05 should be investigated if this compound is not expected as a background contamination.

Note: The above samples were initially analyzed at 50-fold and 20-fold dilutions. However, the diluted samples were not reported.

# **SUMMARY**

The cooler temperature  $(3.0^{\circ}C)$  was reported and considered acceptable.

Up to 31 compounds were listed in the applied analysis method "EPA Test Method 624". However, 65 target compounds were reported in each sample. Please note that the analysis of some specific compounds such as acrolein and acrylonitrile were not recommended by this method.

All data have been validated in accordance with the data quality assurance set forth in NYSDEC ASP for Evaluating Organic analyses. The EPA Region II Data Validation SOP # HW-6 Revision 14 (September 2006), modified as needed for the specific requirements the analytical used by the laboratory (EPA Method 624), was utilized to review the data completeness and data quality. The analysis problems were discussed in the above sections. If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 269-9989.

Sincerely,

Zohreh Hamid, Ph.D Analytical Assurance Associates

# **INORGANIC ANALYSIS**

# EARTH TECH ANCHOR LITH KEM KO PROJECT LABORATORY ID: AC38771 CASE NO.: 8071803

# **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from six ground water samples, collected on July 17, 2008. Samples were received by Hampton-Clarke/Veritech laboratory on July 18, 2008 and analyzed for ICP metals and mercury according to the EPA Methods 200.7 and 245.1 respectively.

The following samples are evaluated and included in this package review.

PW06-06 PW06-04 PW06-05 PW06-07 PW05-01 PW05-03

MS and MD analyses were not performed on these samples.

The analysis data were reviewed in accordance with the following parameters and all problems encountered during the analysis were summarized in this report.

# **QUALITY ASSURANCE REVIEW**

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations & CRDL Analyses
- Blanks
- ICP Interference Check Sample
- Matrix Spike Analysis
- Matrix Duplicate Analysis
- Laboratory Control Sample Analysis
- ICP Serial Dilution Analysis
- Instrument Detection Limits
- Field Duplicate Results
- Sample Results

Earth Tech Project No. 8071707

# **DATA COMPLETENESS**

The method detection limits were not included in the data package. The laboratory was contacted. The tabulated IDLs were submitted by the laboratory. The IDLs for potassium, sodium, and mercury were not listed on the resubmission. The laboratory stated that this form is not required for the applied method.

The serial dilution outliers were not qualified with an "E" qualifier code. The laboratory stated that this code is applied solely to the CLP Method analysis.

The %Ds in the serial dilution sample was not calculated as recommended by the CLP Method. The %Ds was calculated for all detected and non-detected results reported on the raw data. Consequently, many %Ds were reported above 10%. The reporting format did not follow the CLP and the review of the data was very time consuming.

# HOLDING TIME

Samples were digested and analyzed within the holding time requirements established in the corresponding methods.

# CALIBRATIONS & CRDL ANALYSES

The recoveries were within the control limits in initial and continuing calibrations analyzed prior and after sample analysis for all metals. The CRDL sample analysis was not performed for ICP metals.

# **BLANKS**

The preparation blanks, ICBs, and CCBs were free of target analytes at levels above the CRDLs.

# **ICP INTERFERENCE CHECK SAMPLE**

The recoveries for ICSA and ICSB were within the control limit of 80-120% for ICP metals.

# MATRIX SPIKE ANALYSIS

Matrix spike analysis was not performed on these samples. The results from other batch (AC38794-002) were included with this batch. The recoveries were within the control limits of 75-125%.

# MATRIX DUPLICATE ANALYSIS

Matrix duplicate analysis was performed on the above sample. The RPDs were within the control limits in all matrix duplicate analyses.

Please note that four samples were collected from this site and assigned as QC samples (MS and MD) by the sampler. The analyses results were reported under separate cover pages. All recoveries were within the control limits.

# LABORATORY CONTROL SAMPLE

The recoveries were within the control limits in this analysis.

# SERIAL DILUTION

This quality control sample was analyzed on sample from the other batch (AC38794-002) for ICP metals. The reported % differences for all analytes were with the data validation control limits.

# FIELD DUPLICATE ANALYSIS

A field duplicate was not analyzed for this batch. However, four field duplicate samples were collected for this site and the analyses results were reported under separate cover pages. RPDs were within the control limits which indicated a satisfactory reproducibility.

# **SUMMARY**

The cooler temperature  $(3.0 \,^{\circ}C)$  was within the acceptable limits. The reported sample data are considered acceptable.

All data have been validated in accordance with the data quality assurance set forth in NYSDEC ASP for Evaluating TAL metals. The USEPA Region II Data Validation SOP # HW-2, Revision 13 (September 2006) was utilized to review the data completeness and data quality. The analysis problems were discussed in the above sections. If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 269-9989.

Sincerely,

Zohreh Hamid, Ph.D Analytical Assurance Associates
1. Appendix A- Glossary of Data Qualifier

Appendix B- Laboratory Form I, & Applied Qualifier Codes
Appendix C- Resubmission ( if applicable)

## Appendix A Glossary of Data Qualifiers

#### **GLOSSARY OF DATA QUALIFIERS**

#### **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- R = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.

N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

#### CODES RELATING TO QUATITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

#### **OTHER CODES**

 $\mathbf{Q} = \mathbf{NO} \mathbf{ANALYTICAL RESULT}.$ 

### Sample Number: AC38771-001 Client Id: PW06-06 Data File: 8M30043.D Analysis Date: 07/23/08 11:09 Date Rec/Extracted: 07/18/08-NA Column:DB-624 25M 0.200mm ID 1.12um film

1.16

E State

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

Ŋ.,	Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	ሆ ሀ
9	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	U
~~	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	U
Ţ	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	U
	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	U
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3 Chloromethane	1.0	U
7	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	U
1	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	U
	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	U
7	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	U
1	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	IJ
)	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	U
	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8 Isopropylbenzene	1.0	U
	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	U
	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	8-VJ
	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	U
)	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	U
	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	U
,	106-46-7 1,4-Dichlorobenzene	1.0	U _0	104-51-8 n-Butylbenzene	1.0	U
	123-91-1 1,4-Dioxane	50	Jer K	103-65-1 n-Propylbenzene	1.0	U
	78-93-3 2-Butanone	1.0	42	95-47-6 o-Xylene	1.0	U
)	110-75-8 2-Chloroethylvinylether	1.0	₽~ J	135-98-8 sec-Butylbenzene	1.0	U
	591-78-6 2-Hexanone	1.0	U UI	100-42-5 Styrene	1.0	U
	99-87-6 4-Isopropyltoluene	1.0	υĺ	75-65-0 t-Butyi Alcohol	5.0	⊌- ⁽ /]
	108-10-1 4-Methyl-2-Pentanone	1.0	υ	98-06-6 t-Butylbenzene	1.0	U
	67-64-1 Acetone	5.0	360 1 ]	127-18-4 Tetrachloroethene	1.0	1.1
	107-02-8 Acrolein	5.0	UUJ	108-88-3 Toluene	1.0	U
	107-13-1 Acrylonitrile	1.0	UVJ	156-60-5 trans-1,2-Dichloroethene	1.0	U
	71-43-2 Benzene	0.50	U	10061-02-6 trans-1,3-Dichloropropene	1.0	U
	74-97-5 Bromochloromethane	1.0	U	79-01-6 Trichloroethene	1.0	U
	75-27-4 Bromodichloromethane	1.0	U	75-69-4 Trichlorofluoromethane	1.0	U
	75-25-2 Bromoform	1.0	υ	75-01-4 Vinyl Chloride	1.0	· <del>[]</del>
	74-83-9 Bromomethane	1.0	υ I	-		
			1			

Worksheet #: 90152

Section of

**Total Target Concentration** 403.1

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

### Sample Number: AC38771-002 Client Id: PW06-04 Data File: 8M30042.D Analysis Date: 07/23/08 10:52 Date Rec/Extracted: 07/18/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

200

の思想

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

Ъ_	Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	H VJ
9	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	U
	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	U
]	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	U
1	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	2.3 🧹
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3 Chloromethane	1.0	U
ĵ	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	U
	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	U
9	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	U
	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	U
	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	υ	75-71-8 Dichlorodifluoromethane	1.0	U
)	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	U
	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8 Isopropylbenzene	1.0	U
	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	U
	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	υŰŢ
	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	U
\$	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	U
ĺ	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	U
ł	106-46-7 1,4-Dichlorobenzene	1.0	U a	104-51-8 n-Butylbenzene	1.0	U
	123-91-1 1,4-Dioxane	50	ΨK	103-65-1 n-Propylbenzene	1.0	U
	78-93-3 2-Butanone	1.0	64	95-47-6 o-Xylene	1.0	U
	110-75-8 2-Chloroethylvinylether	1.0	υVJ	135-98-8 sec-Butylbenzene	1.0	U
	591-78-6 2-Hexanone	1.0	υUJ	100-42-5 Styrene	1.0	U
ł	99-87-6 4-Isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcohol	5.0	υUJ
	108-10-1 4-Methyl-2-Pentanone	1.0	U _	98-06-6 t-Butylbenzene	1.0	U
'	67-64-1 Acetone	5.0	300 - J	127-18-4 Tetrachloroethene	1.0	U
	107-02-8 Acrolein	5.0	⊌UJ	108-88-3 Toluene	1.0	U
	107-13-1 Acrylonitrile	1.0	UUJ	156-60-5 trans-1,2-Dichloroethene	1.0	U
I	71-43-2 Benzene	0.50	U	10061-02-6 trans-1,3-Dichloropropene	1.0	U
	74-97-5 Bromochloromethane	1.0	U	79-01-6 Trichloroethene	1.0	U
	75-27-4 Bromodichloromethane	1.0	υ	75-69-4 Trichlorofluoromethane	1.0	U
	75-25-2 Bromoform	1.0	υ	75-01-4 Vinyl Chloride	1.0	U
	74-83-9 Bromomethane	1.0	υ	-		

Worksheet #: 90152

Actions

Total Target Concentration 366.3

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as

**B** - Indicates the analyte was found in the blank as well as in the sample. **E** - Indicates the analyte concentration exceeds the calibration range of the instrument. **R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

### Sample Number: AC38771-003 Client Id: PW06-05 Data File: 8M30041.D Analysis Date: 07/23/08 10:35 Date Rec/Extracted: 07/18/08-NA Column:DB-624 25M 0.200mm ID 1.12um film

の変換

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

ä.,	Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
ł	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	U V T
J	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	υĺ
	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	U
]	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	U
)	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
1	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
	95-63-6 1,2,4-Trimethylbenzene	1.0	υ	124-48-1	Dibromochloromethane	1.0	U
ľ	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
)	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
•	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xylenes	2.0	U
	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U U J
	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
ł	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	U
	106-46-7 1,4-Dichlorobenzene	1.0	υρ	104-51-8	n-Butylbenzene	1.0	U
	123-91-1 1,4-Dioxane	50	4 N	103-65-1	n-Propylbenzene	1.0	U
	78-93-3 2-Butanone	1.0	31 🧹	95-47-6	o-Xylene	1.0	U
	110-75-8 2-Chloroethylvinylether	1.0	∫∨∪	135-98-8	sec-Butylbenzene	1.0	U
	591-78-6 2-Hexanone	1.0	UVJ	100-42-5	Styrene	1.0	U
	99-87-6 4-IsopropyItoluene	1.0	υ [	75-65-0	t-Butyl Alcohol	5.0	U UJ
	108-10-1 4-Methyl-2-Pentanone	1.0	U	98-06-6	t-Butylbenzene	1.0	U
	67-64-1 Acetone	5.0	320 🗸 J	127-18-4	Tetrachloroethene	1.0	U
	107-02-8 Acrolein	5.0	U V J	108-88-3	Toluene	1.0	U
	107-13-1 Acrylonitrile	1.0	υVJ	156-60-5	trans-1,2-Dichloroethene	1.0	U
	71-43-2 Benzene	0.50	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
	74-97-5 Bromochloromethane	1.0	U	79-01-6	Trichloroethene	1.0	U
	75-27-4 Bromodichloromethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
	75-25-2 Bromoform	1.0	U	75-01-4	Vinyl Chloride	1.0	U
	74-83-9 Bromomethane	1.0	U				

Worksheet #: 90152

#### **Total Target Concentration** 351

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

# Form1

#### ORGANICS VOLATILE REPORT

### Sample Number: AC38771-004(5X) Client Id: PW06-07 Data File: 8M30044.D Analysis Date: 07/23/08 11:30 Date Rec/Extracted: 07/18/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

de Maria

がたた

Contraction of the second

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution 5 Solids: 0

Units: ug/L

8_	Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
ļ	71-55-6 1,1,1-Trichloroethane	5.0	U	75-15-0	Carbon Disulfide	5.0	U U J
J	79-34-5 1,1,2,2-Tetrachloroethane	5.0	U	56-23-5	Carbon Tetrachloride	5.0	U
	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	5.0	U	108-90-7	Chlorobenzene	5.0	U
1	79-00-5 1,1,2-Trichloroethane	5.0	U	75-00-3	Chloroethane	5.0	U
ļ	75-34-3 1,1-Dichloroethane	5.0	U	67-66-3	Chloroform	5.0	U
	75-35-4 1,1-Dichloroethene	5.0	U	74-87-3	Chloromethane	5.0	U
1	87-61-6 1,2,3-Trichlorobenzene	5.0	U	156-59-2	cis-1,2-Dichloroethene	5.0	U
ł	96-18-4 1,2,3-Trichloropropane	5.0	U	10061-01-5	cis-1,3-Dichloropropene	5.0	U
ş	120-82-1 1,2,4-Trichlorobenzene	5.0	U	110-82-7	Cyclohexane	5.0	U
	95-63-6 1,2,4-Trimethylbenzene	5.0	U	124-48-1	Dibromochloromethane	5.0	U
	96-12-8 1,2-Dibromo-3-Chloropropa	5.0	U	75-71-8	Dichlorodifluoromethane	5.0	U
}	106-93-4 1,2-Dibromoethane	5.0	υ	100-41-4	Ethylbenzene	5.0	U
	95-50-1 1,2-Dichlorobenzene	5.0	U	98-82-8	Isopropylbenzene	5.0	U
}	107-06-2 1,2-Dichloroethane	2.5	U	1330-20-7	m&p-Xylenes	10	U
	78-87-5 1,2-Dichloropropane	5.0	U	79-20-9	Methyl Acetate	5.0	υVĭ
	108-67-8 1,3,5-Trimethylbenzene	5.0	U	108-87-2	Methylcyclohexane	5.0	U
•	541-73-1 1,3-Dichlorobenzene	5.0	U	75-09-2	Methylene Chloride	5.0	U
	142-28-9 1,3-Dichloropropane	5.0	U	1634-04-4	Methyl-t-butyl ether	5.0	U
	106-46-7 1,4-Dichlorobenzene	5.0	Un	104-51-8	n-Butylbenzene	5.0	U
	123-91-1 1,4-Dioxane	250	f K	103-65-1	n-Propylbenzene	5.0	U
	78-93-3 2-Butanone	5.0	<b>U</b> ,	95-47-6	o-Xylene	5.0	U
ł	110-75-8 2-Chloroethylvinylether	5.0	u√j	135-98-8	sec-Butylbenzene	5.0	U
	591-78-6 2-Hexanone	5.0	UVJ	100-42-5	Styrene	5.0	U
	99-87-6 4-Isopropyltoluene	5.0	υÍ	75-65-0	t-Butyl Alcohol	25	υŰĴ
	108-10-1 4-Methyl-2-Pentanone	5.0	U	98-06-6	t-Butylbenzene	5.0	U
	67-64-1 Acetone	25	υVJ	127-18-4	Tetrachloroethene	5.0	130 🦯
	107-02-8 Acrolein	25	UUJ	108-88-3	Toluene	5.0	U
	107-13-1 Acrylonitrile	5.0	UUT	156-60-5	trans-1,2-Dichloroethene	5.0	U
	71-43-2 Benzene	2.5	υÍ	10061-02-6	trans-1,3-Dichloropropene	5.0	U
	74-97-5 Bromochloromethane	5.0	U	79-01-6	Trichloroethene	5.0	U
	75-27-4 Bromodichloromethane	5.0	U	75-69-4	Trichlorofluoromethane	5.0	U
	75-25-2 Bromoform	5.0	U	75-01-4	Vinyl Chloride	5.0	U
	74-83-9 Bromomethane	5.0	U				

Worksheet #: 90152

#### Total Target Concentration 130

.

U - Indicates the compound was analyzed but not detected.

**B** - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. **R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

Sample Number: AC38771-005 Client Id: TB071708 Data File: 2M33008.D

Analysis Date: 07/22/08 20:28 Date Rec/Extracted: 07/18/08-NA Column:DB-624 25M 0.200mm ID 1.12um film

Section 1

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

)_	Cas #	Compound	<u></u>	Conc	Cas #	Compound	RL	Conc
	71-55-6	1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	UUJ
	79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	ບ້
	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	U
	79-00-5	1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
	75-34-3	1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
	75-35-4	1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	U
	87-61-6	1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
	95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	υVJ
	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xylenes	2.0	U
	78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U UJ
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	U
	106-46-7	1,4-Dichlorobenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	U
	123-91-1	1,4-Dioxane	50	ΨK	103-65-1	n-Propylbenzene	1.0	U
	78-93-3	2-Butanone	1.0	U	95-47-6	o-Xylene	1.0	U
	110-75-8	2-Chloroethylvinylether	1.0	UUJ	135-98-8	sec-Butylbenzene	1.0	U
	591-78-6	2-Hexanone	1.0	U	100-42-5	Styrene	1.0	U
	99-87-6	4-Isopropyltoluene	1.0	U	75-65-0	t-Butyi Alcohoi	5.0	υUJ
	108-10-1	4-Methyl-2-Pentanone	1.0	U	98-06-6	t-Butylbenzene	1.0	U
	67-64-1	Acetone	5.0	υVζ	127-18-4	Tetrachloroethene	1.0	U
	107-02-8	Acrolein	5.0	υVj	108-88-3	Toluene	1.0	U
	107-13-1	Acrylonitrile	1.0	UVT	156-60-5	trans-1,2-Dichloroethene	1.0	U
	71-43-2	Benzene	0.50	υŰ	10061-02-6	trans-1,3-Dichloropropene	1.0	U
	74-97-5	Bromochloromethane	1.0	U	79-01-6	Trichloroethene	1.0	U
	75-27-4	Bromodichloromethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
	75-25-2	Bromoform	1.0	υ	75-01-4	Vinyl Chloride	1.0	υU
	74-83-9	Bromomethane	1.0	UUJ				2
				ا مي				

Worksheet #: 90152

#### **Total Target Concentration** 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

### Sample Number: AC38771-006 Client Id: PW05-01 Data File: 2M33011.D Analysis Date: 07/22/08 21:18 Date Rec/Extracted: 07/18/08-NA Column:DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids:0

Units: ug/L

).	<u>Cas # C</u>	Compound	RL	Conc	Cas # Compound	RL	Conc
ļ	71-55-6 1,	,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	υυζ
ļ	79-34-5 1,	,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	U
	76-13-1 1,	1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	U
	79-00-5 1,	1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	U
)	75-34-3 1,	1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	U
	75-35-4 1,	1-Dichloroethene	1.0	U	74-87-3 Chloromethane	1.0	U
)	87-61-6 1,	2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	U
	96-18-4 1,3	2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	U
ł	120-82-1 1,	2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	U
	95-63-6 1,3	2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochioromethane	1.0	U
	96-12-8 1,2	2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	U V5
	106-93-4 1,2	2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	U
	95-50-1 1,2	2-Dichlorobenzene	1.0	U	98-82-8 Isopropylbenzene	1.0	U
	107-06-2 1,2	2-Dichloroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	U
	78-87-5 1,2	2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	υ∪∫
	108-67-8 1,3	3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	U
	541-73-1 1,3	3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	U
	142-28-9 1,3	3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	U
	106-46-7 1,4	4-Dichlorobenzene	1.0	U a	104-51-8 n-Butylbenzene	1.0	U
	123-91-1 1,4	4-Dioxane	50	4K	103-65-1 n-Propylbenzene	1.0	U
	78-93-3 2-1	Butanone	1.0	U	95-47-6 o-Xylene	1.0	U
	110-75-8 2-0	Chloroethylvinylether	1.0	Ur VJ	135-98-8 sec-Butylbenzene	1.0	U
	591-78-6 2-1	Hexanone	1.0	υĭ	100-42-5 Styrene	1.0	U
	99-87-6 4-1	Isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcohol	5.0	<u> </u>
	108-10-1 4-1	Methyl-2-Pentanone	1.0	U	98-06-6 t-Butylbenzene	1.0	UU
	67-64-1 Ac	etone	5.0	υV	127-18-4 Tetrachloroethene	1.0	U
	107-02-8 Ac	rolein	5.0	υVŢ	108-88-3 Toluene	1.0	U
	107-13-1 Ac	crylonitrile	1.0	υU	156-60-5 trans-1,2-Dichloroethene	1.0	U
	71-43-2 Be	enzene	0.50	U	10061-02-6 trans-1,3-Dichloropropene	1.0	U
	74-97-5 Bro	omochloromethane	1.0	U	79-01-6 Trichloroethene	1.0	U
	75-27-4 Bro	omodichloromethane	1.0	U	75-69-4 Trichlorofluoromethane	1.0	υ
	75-25-2 Bro	omoform	1.0	U	75-01-4 Vinyl Chloride	1.0	U 03
	74-83-9 Bro	omomethane	1.0	υντ			
				, r			

Worksheet #: 90152

P.

#### **Total Target Concentration** 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

#### Form1

ORGANICS VOLATILE REPORT

### Sample Number: AC38771-007 Client Id: PW05-03 Data File: 2M33012.D Analysis Date: 07/22/08 21:34 Date Rec/Extracted: 07/18/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

23

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA **Dilution:1** Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas # Compound	RL	Conc
71-55-6	3 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	ս Սյ
79-34-5	5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	U
79-00-5	5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	U
75-34-3	3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	74-87-3 Chloromethane	1.0	U
87-61-6	3 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	UC
95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	U∫U∫
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	-0
106-93-4	1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	<u>U</u>
95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8 Isopropylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	U
78-87-5	1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	υUJ
108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	UA	104-51-8 n-Butylbenzene	1.0	U
123-91-1	1,4-Dioxane	50	σR	103-65-1 n-Propylbenzene	1.0	U
78-93-3	2-Butanone	1.0	U	95-47-6 o-Xylene	1.0	U
110-75-8	2-Chloroethylvinylether	1.0	R nj	135-98-8 sec-Butylbenzene	1.0	U
591-78-6	2-Hexanone	1.0	U	100-42-5 Styrene	1.0	U .
99-87-6	4-Isopropyitoluene	1.0	U	75-65-0 t-Butyl Alcohol	5.0	υU)
108-10-1	4-Methyl-2-Pentanone	1.0	U	98-06-6 t-Butylbenzene	1.0	U
67-64-1	Acetone	5.0	UUJ	127-18-4 Tetrachloroethene	1.0	U
107-02-8	Acrolein	5.0	UVS	108-88-3 Toluene	1.0	U
107-13-1	Acrylonitrile	1.0	υυζ	156-60-5 trans-1,2-Dichloroethene	1.0	U
71-43-2	Benzene	0.50	u /	10061-02-6 trans-1,3-Dichloropropene	1.0	U
74-97-5	Bromochloromethane	1.0	U	79-01-6 Trichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	75-69-4 Trichlorofluoromethane	1.0	U
75-25-2	Bromoform	1.0	υ	75-01-4 Vinyl Chloride	1.0	υďζ
74-83-9	Bromomethane	1.0	UVJ	· · · · · · · · · · · · · · · · · · ·		r

Worksheet #: 90152

1

#### **Total Target Concentration** 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of

the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

### Form1 Inorganic Analysis Data Sheet

Sample ID: AC38771-001 Client Id: PW06-06 Matrix: AQUEOUS Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/18/2008

Lab Name: Veritech Lab Code: Contract:

Nras No: Sdg No: Case No:

					Analysis	Prep		Seq		
Cas No.	Analyte	RL	Conc	Dil Fact	Date:	Batch	File:	Num:	М	Instr
7429-90-5	Aluminum	100	1300	0.5	07/25/08	9307	A9307A2	24	Р	PEICP2
7440-36-0	Antimony	7.5	ND	0.5	07/25/08	9307	A9307A2	24	P	PEICP2
7440-38-2	Arsenic	4.0	9.3	0.5	07/25/08	9307	A9307A2	24	Р	PEICP2
7440-39-3	Barium	25	120	0.5	07/25/08	9307	A9307A2	24	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	0.5	07/25/08	9307	A9307A2	24	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	0.5	07/25/08	9307	A9307A2	24	Р	PEICP2
7440-70-2	Calcium	1000	23000	0.5	07/25/08	9307	A9307A2	24	Р	PEICP2
7440-47-3	Chromium	25	ND	0.5	07/25/08	9307	A9307A2	24	Р	PEICP2
7440-48-4	Cobalt	10	160	0.5	07/25/08	9307	A9307A2	24	Р	PEICP2
7440-50-8	Copper	25	ND	0.5	07/25/08	9307	A9307A2	24	Р	PEICP2
7439-89-6	iron	150	51000	0.5	07/25/08	9307	A9307A2	24	Р	PEICP2
7439-92-1	Lead	5.0	ND	0.5	07/25/08	9307	A9307A2	24	Р	PEICP2
7439-95-4	Magnesium	1000	7400	0.5	07/25/08	9307	A9307A2	24	P	PEICP2
7439-96-5	Manganese	25	710	0.5	07/25/08	9307	A9307A2	24	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/24/08	9307	H9307A	20	cv	HGCV2
7440-02-0	Nickel	10	87	0.5	07/25/08	9307	A9307A2	24	Р	PEICP2
7440-09-7	Potassium	2500	12000	0.5	07/28/08	9307	A9307C2	23	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	0.5	07/25/08	9307	A9307A2	24	Р	PEICP2
7440-22-4	Silver	10	ND	0.5	07/25/08	9307	A9307A2	24	Р	PEICP2
7440-23-5	Sodium	2500	65000	0.5	07/28/08	9307	A9307C2	23	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	0.5	07/25/08	9307	A9307A2	24	Р	PEICP2
7440-62-2	Vanadium	25	ND	0.5	07/25/08	9307	A9307A2	24	Р	PEICP2
7440-66-6	Zinc	25	470	0.5	07/25/08	9307	A9307A2	24	P	PEICP2

Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Salara Salara

8.1

## Form1 Inorganic Analysis Data Sheet

Sample ID:	AC38771-002	% Solid:	0	Lab Name:	Veritech	Nras No:
Client Id:	PW06-04	Units:	UG/L	Lab Code:		Sdg No:
Matrix: Level:	AQUEOUS LOW	Date Rec:	7/18/2008	Contract:		Case No:

					Analysis	Prep		Seq			
Cas No.	Analyte	RL	Conc	Dil Fact	Date:	Batch	File:	Num:	М	Instr	
7429-90-5	Aluminum	100	2500	0.5	07/25/08	9307	A9307A2	25	Ρ	PEICP2	
7440-36-0	Antimony	7.5	ND	0.5	07/25/08	9307	A9307A2	25	Р	PEICP2	
7440-38-2	Arsenic	4.0	5.8	0.5	07/25/08	9307	A9307A2	25	Р	PEICP2	
7440-39-3	Barium	25	160	0.5	07/25/08	9307	A9307A2	25	Р	PEICP2	
7440-41-7	Beryllium	4.0	ND	0.5	07/25/08	9307	A9307A2	25	Р	PEICP2	1
7440-43-9	Cadmium	2.0	ND	0.5	07/25/08	9307	A9307A2	25	Ρ	PEICP2	İ
7440-70 <b>-</b> 2	Calcium	1000	33000	0.5	07/25/08	9307	A9307A2	25	Р	PEICP2	
7440-47-3	Chromium	25	160	0.5	07/25/08	9307	A9307A2	25	Ρ	PEICP2	
7440-48-4	Cobalt	10	71	0.5	07/25/08	9307	A9307A2	25	Р	PEICP2	
7440-50-8	Copper	25	ND	0.5	07/25/08	9307	A9307A2	25	Р	PEICP2	
7439-89-6	Iron	150	110000	0.5	07/25/08	9307	A9307A2	25	Р	PEICP2	
7439-92-1	Lead	5.0	ND	0.5	07/25/08	<del>9</del> 307	A9307A2	25	Р	PEICP2	
7439-95-4	Magnesium	1000	8600	0.5	07/25/08	9307	A9307A2	25	Р	PEICP2	
7439-96-5	Manganese	25	1500	0.5	07/25/08	9307	A9307A2	25	Р	PEICP2	
7439-97-6	Mercury	0.20	ND	1	07/24/08	9307	H9307A	23	с٧	HGCV2	
7440-02-0	Nickel	10	91	0.5	07/25/08	9307	A9307A2	25	P	PEICP2	l
7440-09-7	Potassium	2500	10000	0.5	07/28/08	9307	A9307C2	24	Р	PEICPRAD2	
7782-49-2	Selenium	25	ND	0.5	07/25/08	<del>9</del> 307	A9307A2	25	Р	PEICP2	ļ
7440-22-4	Silver	10	ND	0.5	07/25/08	9307	A9307A2	25	Р	PEICP2	
7440-23-5	Sodium	2500	150000	0.5	07/28/08	<del>9</del> 307	A9307C2	24	Р	PEICPRAD2	
7440-28-0	Thallium	5.0	ND	0.5	07/25/08	9307	A9307A2	25	Р	PEICP2	
7440-62-2	Vanadium	25	ND	0.5	07/25/08	9307	A9307A2	25	Р	PEICP2	
7440-66-6	Zinc	25	330	0.5	07/25/08	9307	A9307A2	25	P -	PEICP2	-

Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

States of

Instr

PEICP2

## Form1 Inorganic Analysis Data Sheet

Sample I Client Matr Lev	D: AC38771-003 ld: PW06-05 ix: AQUEOUS el: LOW	% So Uni Date Ro	olid: 0 Lab Name: Veritec nits: UG/L Lab Code: Rec: 7/18/2008 Contract:		ech	Nras No Sdg No Case No				
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Γ
7429-90-5	Aluminum	100	1000	0.5	07/25/08	9307	A9307A2	26	Р	Γ
7440-36-0	Antimony	7.5	ND	0.5	07/25/08	9307	A9307A2	26	Р	
7440-38-2	Arsenic	4 0	5.6	0.5	07/25/08	9307	A9307A2	26	Р	

7440-36-0	Antimony	7.5	ND	0.507/25/08	9307	A9307A2	26	Ρ	PEICP2
7440-38-2	Arsenic	4.0	5.6	0.5 07/25/08	9307	A9307A2	26	Р	PEICP2
7440-39-3	Barium	25	150	0.5 07/25/08	9307	A9307A2	26	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	0.507/25/08	9307	A9307A2	26	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	0.5 07/25/08	9307	A9307A2	26	Р	PEICP2
7440-70-2	Calcium	1000	24000	0.5 07/25/08	9307	A9307A2	26	P	PEICP2
7440-47-3	Chromium	25	ND	0.5 07/25/08	9307	A9307A2	26	Ρ	PEICP2
7440-48-4	Cobalt	10	49	0.5 07/25/08	9307	A9307A2	26	P	PEICP2
7440-50-8	Copper	25	ND	0.507/25/08	9307	A9307A2	26	Р	PEICP2
7439-89-6	Iron	150	34000	0.5 07/25/08	9307	A9307A2	26	Р	PEICP2
7439- <del>9</del> 2-1	Lead	5.0	ND	0.5 07/25/08	9307	A9307A2	26	Р	PEICP2
7439-95-4	Magnesium	1000	6900	0.507/25/08	9307	A9307A2	26	Р	PEICP2
7439-96-5	Manganese	25	590	0.5 07/25/08	9307	A9307A2	26	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1 07/24/08	9307	H9307A	24	cv	HGCV2
7440-02-0	Nickel	10	49	0.507/25/08	9307	A9307A2	26	Р	PEICP2
7440-09-7	Potassium	2500	10000	0.507/28/08	9307	A9307C2	25	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	0.507/25/08	9307	A9307A2	26	Р	PEICP2
7440-22-4	Silver	10	ND	0.5 07/25/08	9307	A9307A2	26	Р	PEICP2
7440-23-5	Sodium	2500	91000	0.507/28/08	9307	A9307C2	25	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	0.5 07/25/08	9307	A9307A2	26	Р	PEICP2
7440-62-2	Vanadium	25	ND	0.5 07/25/08	9307	A9307A2	26	Р	PEICP2
7440-66-6	Zinc	25	200	0.5 07/25/08	9307	A9307A2	26	Р	PEICP2

Comments:

が思い

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

No:

No:

No:

## Form1 Inorganic Analysis Data Sheet

Sample ID: Client Id: Matrix: Level:	AC38771-004 PW06-07 AQUEOUS LOW	% Solid: Units: Date Rec:	0 UG/L 7/18/2008	Lab Name: Lab Code: Contract:	Veritech	N S Ci	ras Sdg ase
				Analysis F	Prep	Seq	

Cas No.	Analyte	RL	Conc	Dil Fact	Date:	Batch	File:	Num:	М	Instr
7429-90-5	Aluminum	100	1400	0.5	07/25/08	9307	A9307A2	31	Р	PEICP2
7440-36-0	Antimony	7.5	ND	0.5	07/25/08	9307	A9307A2	31	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	0.5	07/25/08	9307	A9307A2	31	P	PEICP2
7440-39-3	Barium	25	44	0.5	07/25/08	9307	A9307A2	31	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	0.5	07/25/08	9307	A9307A2	31	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	0.5	07/25/08	9307	A9307A2	31	Р	PEICP2
7440-70-2	Calcium	1000	12000	0.5	07/25/08	9307	A9307A2	31	Р	PEICP2
7440-47-3	Chromium	25	ND	0.5	07/25/08	9307	A9307A2	31	Р	PEICP2
7440-48-4	Cobalt	10	15	0.5	07/25/08	9307	A9307A2	31	Р	PEICP2
7440-50-8	Copper	25	ND	0.5	07/25/08	9307	A9307A2	31	Р	PEICP2
7439-89-6	Iron	150	6100	0.5	07/25/08	9307	A9307A2	31	Р	PEICP2
7439-92-1	Lead	5.0	ND	0.5	07/25/08	9307	A9307A2	31	Р	PEICP2
7439-95-4	Magnesium	1000	3900	0.5	07/25/08	9307	A9307A2	31	Р	PEICP2
7439-96-5	Manganese	25	120	0.5	07/25/08	9307	A9307A2	31	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/24/08	9307	H9307A	25	cv	HGCV2
7440-02-0	Nickel	10	12	0.5	07/25/08	9307	A9307A2	31	Р	PEICP2
7440-09-7	Potassium	2500	2900	0.5	07/28/08	9307	A9307C2	30	Ρ	PEICPRAD2
7782-49-2	Selenium	25	ND	0.5	07/25/08	9307	A9307A2	31	Р	PEICP2
7440-22-4	Silver	10	ND	0.5	07/25/08	9307	A9307A2	31	Р	PEICP2
7440-23-5	Sodium	2500	38000	0.5	07/28/08	9307	A9307C2	30	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	0.5	07/25/08	9307	A9307A2	31	Р	PEICP2
7440-62-2	Vanadium	25	ND	0.5	07/25/08	9307	A9307A2	31	Р	PEICP2
7440-66-6	Zinc	25	42	0.5	07/25/08	9307	A9307A2	31	Р	PEICP2

Comments:

1

(Janeta)

200 A 100

Sec.

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

## Form1 Inorganic Analysis Data Sheet

Client Id: PW05-01 Units: UG/L Lab Code: Sdg I   Matrix: AQUEOUS Date Rec: 7/18/2008 Contract: Case I   Level: LOW	Sample ID: Client Id: Matrix: Level:	AC38771-006 PW05-01 AQUEOUS LOW	% Solid: Units: Date Rec:	0 UG/L 7/18/2008	Lab Name: Lab Code: Contract:	Veritech	Nras No Sdg No Case No
--------------------------------------------------------------------------------------------------------------------	-----------------------------------------------	------------------------------------------	---------------------------------	------------------------	-------------------------------------	----------	------------------------------

Cas No.	Analyte	RL	Conc	Analysis Dil Fact Date	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	140	0.5 07/25/08	9307	A9307A2	32	Р	PEICP2
7440-36-0	Antimony	7.5	ND	0.507/25/08	9307	A9307A2	32	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	0.507/25/08	9307	A9307A2	32	Р	PEICP2
7440-39-3	Barium	25	36	0.507/25/08	9307	A9307A2	32	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	0.5 07/25/08	9307	A9307A2	32	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	0.507/25/08	9307	A9307A2	32	Р	PEICP2
7440-70-2	Calcium	1000	17000	0.5 07/25/08	9307	A9307A2	32	Р	PEICP2
7440-47-3	Chromium	25	ND	0.507/25/08	9307	A9307A2	32	Р	PEICP2
7440-48-4	Cobalt	10	22	0.507/25/08	9307	A9307A2	32	P	PEICP2
7440-50-8	Соррег	25	ND	0.5 07/25/08	9307	A9307A2	32	Р	PEICP2
7439-89-6	Iron	150	6400	0.507/25/08	9307	A9307A2	32	. P	PEICP2
7439-92-1	Lead	5.0	ND	0.507/25/08	9307	A9307A2	32	Р	PEICP2
7439-95-4	Magnesium	1000	4300	0.507/25/08	9307	A9307A2	32	Р	PEICP2
7439-96-5	Manganese	25	790	0.5 07/25/08	9307	A9307A2	32	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1 07/24/08	9307	H9307A	26	cv	HGCV2
7440-02-0	Nickel	10	15	0.507/25/08	9307	A9307A2	32	Р	PEICP2
7440-09-7	Potassium	2500	ND	0.507/28/08	9307	A9307C2	31	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	0.507/25/08	9307	A9307A2	32	Р	PEICP2
7440-22-4	Silver	10	ND	0.5 07/25/08	9307	A9307A2	32	Р	PEICP2
7440-23-5	Sodium	2500	16000	0.5 07/28/08	9307	A9307C2	31	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	0.507/25/08	9307	A9307A2	32	Р	PEICP2
7440-62-2	Vanadium	25	ND	0.507/25/08	9307	A9307A2	32	Р	PEICP2
7440-66-6	Zinc	25	ND	0.5 07/25/08	9307	A9307A2	32	Р	PEICP2

Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

### Form1 Inorganic Analysis Data Sheet

Sample ID: AC38771-007 Client Id: PW05-03 Matrix: AQUEOUS

Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/18/2008

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No: Case No:

							-			
Cas No.	Analyte	RL	Cone	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	260	0.5	07/25/08	9307	A9307A2	33	Р	PEICP2
7440-36-0	Antimony	7.5	i NE	0.5	07/25/08	9307	A9307A2	33	Р	PEICP2
7440-38-2	Arsenic	4.0	5.4	0.5	07/25/08	9307	A9307A2	33	Р	PEICP2
7440-39-3	Barium	25	43	0.5	07/25/08	9307	A9307A2	33	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	0.5	07/25/08	9307	A9307A2	33	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	0.5	07/25/08	9307	A9307A2	33	Р	PEICP2
7440-70-2	Calcium	1000	11000	0.5	07/25/08	9307	A9307A2	33	Р	PEICP2
7440-47-3	Chromium	25	ND	0.5	07/25/08	9307	A9307A2	33	Р	PEICP2
7440-48-4	Cobalt	10	ND	0.5	07/25/08	9307	A9307A2	33	Р	PEICP2
7440-50-8	Copper	25	ND	0.5	07/25/08	9307	A9307A2	33	P	PEICP2
7439-89-6	Iron	150	29000	0.5	07/25/08	9307	A9307A2	33	Р	PEICP2
7439-92-1	Lead	5.0	ND	0.5	07/25/08	9307	A9307A2	33	Р	PEICP2
7439-95-4	Magnesium	1000	2000	0.5	07/25/08	9307	A9307A2	33	P	PEICP2
7439-96-5	Manganese	25	1800	0.5	07/25/08	9307	A9307A2	33	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/24/08	9307	H9307A	27	cv	HGCV2
7440-02-0	Nickel	10	ND	0.5	07/25/08	9307	A9307A2	33	Р	PEICP2
7440-09-7	Potassium	2500	ND	0.5	07/28/08	9307	A9307C2	32	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	0.5	07/25/08	9307	A9307A2	33	P	PEICP2
7440-22-4	Silver	10	ND	0.5	07/25/08	9307	A9307A2	33	P	PEICP2
7440-23-5	Sodium	2500	38000	0.5	07/28/08	9307	A9307C2	32	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	0.5	07/25/08	9307	A9307A2	33	P	PEICP2
7440-62-2	Vanadium	25	ND	0.5	07/25/08	9307	A9307A2	33	P	PEICP2
7440-66-6	Zinc	25	ND	0.5	07/25/08	9307	A9307A2	33	Р	PEICP2

Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

100000 

Bica 4855

REPORTED A

Brindballer, B

Party. 100 £.,

5

優日 20

Appendix B Laboratory Form I and Applied Qualifier Codes

#### MDL / RL SUMMARY 200.7 PE ICP 2

ELEMENT	MDL (mg/L)	Reporting Limits (mg/L)	( <b>DL</b> (mg/L)
AL	0.036082	0.2	0.00508
SB	0.003599	0.015	0.00217
AS	0.03478	0.008	0.003 <del>9</del>
BA	0.00025	0.05	0.000131
BE	0.0000472	0.008	0.0000201
СФ	0.00023	0.004	0.000327
CA	0.027025	2	0.0154
CR	0.000493	0.05	0.000268
со	0.000445	0.02	0.000301
CU	0.0045251	0.05	0.00059
FE	0.01976	0.3	0.00396
PB	0.002245	0.01	0.00135
MG	0.032404	2	0.0302
MIN	0.000204	0.05	0.000107
МО	0.000925	0.02	0.000571
NI	0.001021	0.02	0.000516
SE	0.010471	0.05	0.00825
AG	0.000315	0.02	0.000363
TL	0.005023	0.01	0.00269
SN	0.002302	0.05	0.00175
TI	0.000327	0.05	0.000115
v	0.00096	0.05	0.000942
ZN	0.007783	0.05	0.000858

Appendix C Support Documentation/Resubmission If Applicable Analytical Assurance Associates, Inc.



600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

# ORGANIC & INORGANIC DATA VALIDATION REPORT

# EARTH TECH ANCHOR LITH KEM KO PROJECT

## ANALYZED BY HAMPTON-CLARKE VERITECH LABORATORY LABORATORY CASE No.: 8071826

REVIEWED BY: Analytical Assurance Associates (A³) 600 Rock Raymond Road Downingtown, PA 19335

### EARTH TECH ANCHOR LITH KEM KO PROJECT LABORATORY ID: AC38794 CASE NO.: 8071826

### **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from seven (7) groundwater samples including one field duplicate and one trip blank, collected on 7-18-2008. Samples were received by Hampton-Clarke/Veritech laboratory on 7-18-2008 and analyzed for specific volatile organic compounds (VOCs) using EPA Method 624 following the criteria set forth in NYSDEC Category B.

The following samples are evaluated and included in this package review.

PW05-02	PW05-05
PW05-04	PW05-06
PW05-54	<b>TB071808</b>
PW05-07	

MS/MSD analysis was performed on sample PW05-04 from this batch.

The reported analytical data for the above samples were evaluated in accordance with the following parameters and summarized in this report.

### **QUALITY ASSURANCE REVIEW**

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations
- Blanks
- Surrogate Recoveries
- Internal Standards Recovery
- Matrix Spike/Spike Duplicate/Blank Spike Analyses
- Instrument Performance
- Field Duplicate Results
- Sample Results

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8071826

### DATA COMPLETENESS

The reported data was summarized on similar CLP forms and considered acceptable.

The narrower ranges for percent abundance ratios in tune analysis were reported by laboratory for ions 50, 174, and 175. The data was not impacted since the reported abundance ratios were within the method recommended limits.

%Ds in continuing calibrations reported by the laboratory was not calculated based on the calculations recommended by the method. Consequently some %Ds were above 25%. The %Ds were recalculated by the data reviewer and reported accordingly.

### HOLDING TIME

Samples were analyzed within 10-day from the VTSR. The laboratory stated that "sample was preserved incorrectly." The review of the data showed that sample PW05-07 was preserved at pH=4 unit. Sample data was accepted unqualified since it was analyzed within 7 days off collection and the cooler temperature was within the control limits.

A daily tune analysis was performed by the laboratory. Consequently the 12-hour tune analysis was exceeded for all samples except sample PW05-02. Samples were analyzed from 15 minutes to 2:48 hours beyond the 12-hour tune analysis, the frequency required by the CLP VOC SOW and also by SW-846 Method 8260B. However, these samples were analyzed using EPA Method 624, which only requires a tune "at the beginning of each day that analyses are to be performed." As the tune frequency was consistent with the requirements of the method, sample data were accepted, since all other criteria met the requirements for the tune analysis.

#### **CALIBRATION**

The response factors for acrolein (0.035 & 0.024), t-butyl alcohol (0.036), and 1,4-dioxane (0.008 & 0.006) were below data validation requirement of 0.05 in the initial and continuing calibrations. These compounds are not considered as TCL compounds and they are known as low response factor compounds. Sample data was not qualified for acrolein and t-butyl alcohol since their Rf values were above "0.01" control limits recommended by the method. However, the reported sample results and non-detected values for 1,4-dioxane were qualified in accordance with the Region II guidelines.

1,4-Dioxane was not detected in the samples. The reported non-detected values were contractually rejected "R".

All %RSDs were within the control limits with the exception of bromomethane (31%), carbon disulfide (31%), and tetrachloroethene (32%). Sample data were not qualified based on these

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8071826

outliers since the correlation coefficients were within 0.995 which considered acceptable.

The "recalculated" %Ds were above 25% in the following continuing calibrations:

Compound	CC
	7-22-08 @ 7:24
Acrolein	31.4
Acrylonitrile	33.1
Acetone	26
Carbon disulfide	37.3
t-Butyl Alcohol	49.2
Methyl Acetate	49.6
2-Chloroethylvinylether	27.4
2-Hexanone	38.5
4-Methyl 2-pentanone	41.3
Samples	All

The reported sample results and non-detected values were qualified estimated (J & UJ).

### **BLANKS**

The laboratory method blanks and trip blank were free of target compounds. A storage blank was not analyzed with this batch.

#### SURROGATE RECOVERIES

Samples were spiked with four surrogate compounds prior to analysis. The recoveries were within the control limits.

#### MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

Matrix spike/spike duplicate analysis was performed on sample PW05-04 from this batch. The recoveries and RPDs were with in the control limits with the exception of percent recoveries for 2-chloroethylvinylether (0.0%) in both MS & MSD samples. The laboratory case narrative indicated that this compound readily decomposes under acidic condition. This compound was not detected in the samples. Therefore, the non-detected values were qualified estimated "UJ" since the recoveries were within the control limits in blank spike samples. The matrix interference is expected.

#### **INTERNAL STANDARD**

The recoveries and retention times were within the control limits.

Earth Tech Anchor Lith Kem Ko, Site Job No.: 8071826

### FIELD DUPLICATE

Field duplicate analysis was performed on samples PW05-04 and PW05-54. Target compounds were not detected in these two samples with the exception of tetrachloroethene in the field sample PW5-04 (1.8  $\mu$ g/L). The reported sample data was not impacted since the field sample result was below 2x the reporting limits.

### SAMPLE RESULTS

All samples were analyzed at one-fold dilutions.

Low mass peaks were detected in tetrachloroethene GC/MS spectra for all reported results which indicated a possible contamination. The reported results for this compound were accepted without the qualifier codes since major peaks were not obscured and the main peaks were identified correctly.

### **SUMMARY**

The cooler temperature (3.1°C) was reported and considered acceptable.

Up to thirty-one (31) compounds were listed in the applied analysis method "EPA Test Method 624". However, up to 65 target compounds were reported in each sample. Please note that the analysis of some specific compounds such as acrolein and acrylonitrile were not recommended by this method.

All data have been validated in accordance with the data quality assurance set forth in NYSDEC ASP for Evaluating Organic analyses. The USEPS Region II Data Validation SOP # HW-6 Revision 14, (September 2006), modified as needed for the specific requirements the analytical used by the laboratory (EPA Method 624), was utilized to review the data completeness and data quality. The analysis problems were discussed in the above sections. If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 269-9989.

Sincerely,

Zohreh Hamid, Ph.D Analytical Assurance Associates

## **INORGANIC ANALYSIS**

### EARTH TECH ANCHOR LITH KEM KO PROJECT LABORATORY ID: AC38794 CASE NO.: 8071826

### **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from six ground water samples including one set of field duplicate, collected on July 18, 2008. Samples were received by Hampton-Clarke/Veritech laboratory on July 18, 2008 and analyzed for ICP Metals and mercury according to the EPA Methods 200.7 and 245.1, respectively.

The following samples are evaluated and included in this package review.

PW05-02	PW05-07
PW05-04	PW05-05
PW05-54	PW05-06

MS and MD analyses were performed on sample PW05-04 from this batch.

The analysis data were reviewed in accordance with the following parameters and all problems encountered during the analysis were summarized in this report.

### **QUALITY ASSURANCE REVIEW**

The findings offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations & CRDL Analyses
- Blanks
- ICP Interference Check Sample
- Matrix Spike Analysis
- Matrix Duplicate Analysis
- Laboratory Control Sample Analysis
- ICP Serial Dilution Analysis
- Instrument Detection Limits
- Field Duplicate Results
- Sample Results

#### **DATA COMPLETENESS**

The method detection limits were not included in the data package. The laboratory was contacted. The tabulated IDLs were submitted by the laboratory. The IDLs for potassium, sodium, and mercury were not listed on the resubmission. The laboratory stated that this form is not required for the applied method.

The serial dilution outliers were not qualified with an "E" qualifier code. The laboratory stated that this code is applied solely to the CLP Method analysis.

The %Ds in the serial dilution sample was not calculated as recommended by the CLP Method. The %Ds was calculated for all detected and non-detected results reported on the raw data. Consequently, many %Ds were reported above 10%. The reporting format did not follow the CLP and the review of the data was very time consuming.

### HOLDING TIME

Samples were digested and analyzed within the holding time requirements established in the corresponding methods.

#### **CALIBRATIONS & CRDL ANALYSES**

The recoveries were within the control limits in initial and continuing calibrations analyzed prior and after sample analysis for all metals. The CRDL sample analysis was not performed for ICP metals.

#### **BLANKS**

The preparation blanks, ICBs, and CCBs were free of target analytes at levels above the CRDLs.

#### **ICP INTERFERENCE CHECK SAMPLE**

The recoveries for ICSA and ICSB were within the control limit of 80-120% for ICP metals.

#### MATRIX SPIKE ANALYSIS

Matrix spike analysis was performed on sample PW05-04. The recoveries were within 75-125% control limits with the exception of Mn (175%). Sample data were not impacted since the field sample result was above four times (4x) the amount of spike added to this QC sample.

#### MATRIX DUPLICATE ANALYSIS

Matrix duplicate analysis was performed on the above sample. The RPDs were within the control limits for ground water samples.

Earth Tech Project No. 8071826

## LABORATORY CONTROL SAMPLE

The recoveries were within the control limits in this analysis.

### SERIAL DILUTION

This quality control sample was analyzed on sample PW05-04 for ICP metals. The % Differences for Al (59%) and K (16%) were above 10%. Sample data were not impacted since the results in the field sample and the corresponding serial dilution sample were below 50 times the corresponding MDL and reporting limits respectively.

### FIELD DUPLICATE ANALYSIS

Field duplicate was analyzed on the sample PW05-04 and PW05-54. The results and RPDs were listed on Table I. The reproducibility is satisfactory.

### **SUMMARY**

The cooler temperature  $(3.1 \ ^{\circ}C)$  was within the acceptable limits. The reported sample data are considered acceptable.

All data have been validated in accordance with the data quality assurance set forth in NYSDEC ASP for Evaluating TAL metals. The USEPA Region II Data Validation SOP # HW-2, Revision 13, (September 2006) was utilized to review the data completeness and data quality. The analysis problems were discussed in the above section. If you have any questions or comments on this data review, please contact Zohreh Hamid at (610) 269-9989.

Sincerely,

Zohreh Hamid, Ph.D Analytical Assurance Associates

Analyte	Field Sample	Field Dup	RPD
	PW05-4	PW05-54	
Aluminum	350	320	9
Antimony			
Arsenic	6	5.3	12
Barium	32	30	6
Beryllium			
Cadmium			
Calcium	15000	14000	7
Chromium			
Cobalt			
Copper			
Iron	22000	22000	0
Lead			
Magnesium	1800	1800	0
Manganese	3600	3600	0
Mercury			
Nickel			
Potassium			
Selenium			
Silver			
Sodium	36000	35000	3
Thallium			
Vanadium			
Zinc			

## Field Duplicate Precision Laboratory Project No.: 8071826

The reported RPDs were within the control limits.

Appendix A- Glossary of Data Qualifier
Appendix B- Laboratory Form I, & Applied Qualifier Codes
Appendix C- Resubmission ( if applicable)

# Appendix A Glossary of Data Qualifiers

#### **GLOSSARY OF DATA QUALIFIERS**

#### **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- U=NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL<br/>REPORTED IN LABORATORY OR FIELD BLANKS.<br/>[Substantially is equivalent to a result less than 10 times the<br/>blank level for common contaminants (methylene chloride,<br/>acctone and 2- butanone in the VOA<br/>analyses, and common phthalates in the BNA analyses, along<br/>with tentatively identified compounds) or less than 5 times the<br/>blank level for other target compounds.]
- R = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.

N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

#### **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

#### **OTHER CODES**

Q = NO ANALYTICAL RESULT.

Appendix B Laboratory Form I and Applied Qualifier Codes

# Form1

ORGANICS VOLATILE REPORT

### Sample Number: AC38794-001 Client Id: PW05-02 Data File: 8M29997.D Analysis Date: 07/22/08 19:05 Date Rec/Extracted: 07/18/08-NA Column:DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA **Dilution:1** Solids: 0

Units: ug/L

ስ	Cas # Compound	RL	Conc	Cas #	Compound	Ri 🧠	Conc
	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0 4	+r V1
4	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	u Ű
	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	Ŭ
1	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	Ŭ
1	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	Ŭ
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	ŭ
7	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	ŭ
	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	Ŭ
	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	Ŭ
3	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	Ŭ
	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U U
3	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	Ŭ
	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	Ŭ
	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xylenes	2.0	U U
	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	# UT
	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U J
	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	Ŭ
	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	Ŭ
•	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	Ŭ
	123-91-1 1,4-Dioxane	50	_ K ملا	103-65-1	n-Propylbenzene	1.0	Ū
	78-93-3 2-Butanone	1.0	U ]	95-47-6	o-Xylene	1.0	Ū
	110-75-8 2-Chloroethylvinylether	1.0	Jer UJ	135-98-8	sec-Butylbenzene	1.0	Ŭ
	591-78-6 2-Hexanone	1.0	4-01	100-42-5	Styrene	1.0	Ŭ
	99-87-6 4-Isopropyltoluene	1.0	U	75-65-0	t-Butyl Alcohol	5.0	Ū-U]
	108-10-1 4-Methyl-2-Pentanone	1.0	6V)	98-06-6	t-Butylbenzene	1.0	Ū
	67-64-1 Acetone	5.0	⊎`0]	127-18-4	Tetrachloroethene	1.0	Ū
	107-02-8 Acrolein	5.0	UV1	108-88-3	Toluene	1.0	Ŭ
	107-13-1 Acrylonitrile	1.0	15 VI	156-60-5	trans-1,2-Dichloroethene	1.0	Ŭ
	71-43-2 Benzene	0.50	U	10061-02-6	trans-1,3-Dichloropropene	1.0	u U
	74-97-5 Bromochloromethane	1.0	U	79-01-6	Trichloroethene	1.0	Ū
	75-27-4 Bromodichloromethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	Ŭ
	75-25-2 Bromoform	1.0	U	75-01-4	Vinyl Chloride	1.0	Ŭ
	74-83-9 Bromomethane	1.0	υ		-		-

Worksheet #: 90188

and the second

a and a second

Å

#### **Total Target Concentration** 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. T - distant the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

### Sample Number: AC38794-002 Client Id: PW05-04 Data File: 8M29998.D Analysis Date: 07/22/08 19:22 Date Rec/Extracted: 07/18/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

and the second

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

3-	Cas #	Compound	RL	Conc	<u> </u>	Compound	RL	Conc
ł	71-55-6	5 1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	10 4
J	79-34-5	5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	UŰ
	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	U
	<b>79-00-</b> 5	5 1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
ļ	75-34-3	1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	υ
	75-35-4	1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	U
į	87-61-6	1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
	95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xylenes	2.0	U,
	78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	Jr VJ
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4	Methyi-t-butyl ether	1.0	U
	106-46-7	1,4-Dichlorobenzene	1.0	U n	104-51-8	n-Butylbenzene	1.0	U
	123-91-1	1,4-Dioxane	50	ΨK	103-65-1	n-Propylbenzene	1.0	U
	78-93-3	2-Butanone	1.0	U _{LI}	95-47-6	o-Xylene	1.0	U
	110-75-8	2-Chloroethylvinylether	1.0	JE VJ	135-98-8	sec-Butylbenzene	1.0	U
	591-78-6	2-Hexanone	1.0	₩ V]	100-42-5	Styrene	1.0	U _ 17
	99-87-6	4-Isopropyltoluene	1.0	υ	75-65-0	t-Butyl Alcohol	5.0	
	108-10-1	4-Methyl-2-Pentanone	1.0	5 05	98-06-6	t-Butylbenzene	1.0	U
	67- <del>6</del> 4-1	Acetone	5.0	U VI	127-18-4	Tetrachloroethene	1.0	√ 1.8
	107-02-8	Acrolein	5.0	415	108-88-3	Toluene	1.0	U
	107-13-1	Acrylonitrile	1.0	₽VJ	156-60-5	trans-1,2-Dichloroethene	1.0	U
	71-43-2	Benzene	0.50	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
	74-97-5	Bromochloromethane	1.0	U	79-01-6	Trichloroethene	1.0	U
	75-27-4	Bromodichloromethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
	75-25-2	Bromoform	1.0	υ	75-01-4	Vinyl Chloride	1.0	U
	74-83-9	Bromomethane	1.0	υ				

Worksheet #: 90188

1.5

#### Total Target Concentration 1.8

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. **R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

### Sample Number: AC38794-005 Client Id: PW05-54 Data File: 8M30001.D Analysis Date: 07/22/08 20:13 Date Rec/Extracted: 07/18/08-NA Column:DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution:1 Solids: 0

Units: ug/L

3-	<u>Cas #</u>	Compound	RL	Conc	Cas #	Compound	RL	Conc
	71-55-6	6 1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	[ل⊶لا
J	79-34-5	5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
	76-13-1	1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	U
ļ	79-00-5	5 1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
1	75-34-3	3 1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
	75-35-4	1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	U
	87-61-6	3 1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
	95-63-6	5 1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
	107-06-2	1,2-Dichloroethane	0.50	υ	1330-20-7	m&p-Xylenes	2.0	U
	78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	ы [,] V}
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
	541-73-1	1,3-Dichlorobenzene	1.0	υ	75-09-2	Methylene Chloride	1.0	U
	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	U
	106-46-7	1,4-Dichlorobenzene	1.0	U a	104-51-8	n-Butylbenzene	1.0	U
	123-91-1	1,4-Dioxane	50	۲ <del>۱</del>	103-65-1	n-Propylbenzene	1.0	U
	78-93-3	2-Butanone	1.0	U	95-47-6	o-Xylene	1.0	U
	110-75-8	2-Chloroethylvinylether	1.0	F 13	135-98-8	sec-Butylbenzene	1.0	U
	591-78-6	2-Hexanone	1.0	u-vj∣	100-42-5	Styrene	1.0	U
	99-87-6	4-isopropyitoluene	1.0	U	75-65-0	t-Butyl Alcohol	5.0	fr (1)
	108-10-1	4-Methyl-2-Pentanone	1.0	601	98-06-6	t-Butylbenzene	1.0	U
	67-64-1	Acetone	5.0	4 V]	127-18-4	Tetrachloroethene	1.0	U
	107-02-8	Acrolein	5.0	10 U	108-88-3	Toluene	1.0	U
	107-13-1	Acrylonitrile	1.0	10-01	156-60-5	trans-1,2-Dichloroethene	1.0	U
	71-43-2	Benzene	0.50	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
	74-97-5	Bromochloromethane	1.0	U	79-01-6	Trichloroethene	1.0	U
	75-27-4	Bromodichloromethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
	75-25-2	Bromoform	1.0	U	75-01-4	Vinyl Chloride	1.0	U
	74-83-9	Bromomethane	1.0	U		-		

Worksheet #: 90188

**Total Target Concentration** 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
#### Form1 ORGANICS VOLATILE REPORT

### Sample Number: AC38794-006 Client Id: PW05-07 Data File: 8M30002.D Analysis Date: 07/22/08 20:30 Date Rec/Extracted: 07/18/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

<u>]</u> -	Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
	71-55-6 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	U UI
9	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	ບັ
	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	U
	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	U
	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	U
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3 Chioromethane	1.0	U
1	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	U
	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	U
,	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	U
	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	U
ĺ	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	U
1	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	Ū
	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8 isopropylbenzene	1.0	Ŭ
	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	Ū
	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	t VJ
	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	U
	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	Ŭ
	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	Ŭ
	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzene	1.0	Ű
	123-91-1 1,4-Dioxane	50	JA R	103-65-1 n-Propylbenzene	1.0	Ŭ
	78-93-3 2-Butanone	1.0	U	95-47-6 o-Xylene	1.0	Ū
	110-75-8 2-Chloroethylvinylether	1.0	ur VJ	135-98-8 sec-Butylbenzene	1.0	Ū
	591-78-6 2-Hexanone	1.0	U-UJ	100-42-5 Styrene	1.0	Ŭ
	99-87-6 4-Isopropyltoluene	1.0	U	75-65-0 t-Butvl Alcohol	5.0	114 T
	108-10-1 4-Methyl-2-Pentanone	1.0	R ( )	98-06-6 t-Butylbenzene	1.0	U U
	67-64-1 Acetone	5.0	J 94 J	127-18-4 Tetrachloroethene	1.0	./1.4
	107-02-8 Acrolein	5.0	_ ک U LL	108-88-3 Toluene	1.0	U
	107-13-1 Acrylonitrile	1.0	4U ( )	156-60-5 trans-1.2-Dichloroethene	1.0	Ŭ
	71-43-2 Benzene	0.50	υĺ	10061-02-6 trans-1.3-Dichloropropene	10	
	74-97-5 Bromochloromethane	1.0	U	79-01-6 Trichloroethene	1.0	Ŭ
	75-27-4 Bromodichloromethane	1.0	U	75-69-4 Trichlorofluoromethane	1.0	ũ
	75-25-2 Bromoform	1.0	υ	75-01-4 Vinvl Chloride	10	ŭ
	74-83-9 Bromomethane	1.0	U		,	v
			- 1			

Worksheet #: 90188

AND AND AND

の行動である

ALC: NO

#### Total Target Concentration 109.4

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. **R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

### $\underset{i \in \mathcal{I}}{\overset{\mathcal{H}}{\longrightarrow}} \; \underset{i \in \mathcal{H}}{\overset{\mathcal{H}}{\longrightarrow}} \; \underset{i \in \mathcal{H}}{\overset{\mathcal{H}}{\longrightarrow}} \; \underset{i \in \mathcal{H}}{\overset{\mathcal{H}}{\longrightarrow}} \; \underset{i \in \mathcal{H}}{\overset{\mathcal{H}}{\longrightarrow}} \;$

# 

ORGANICS VOLATILE REPORT

### Sample Number: AC38794-007 Client Id: PW05-05 Data File: 8M30003.D Analysis Date: 07/22/08 20:47 Date Rec/Extracted: 07/18/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

22

Sec.

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

v	Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
Į	71-55-6 1,1,1-Trichloroethane	1.0	υ	75-15-0 Carbon Disulfide	1.0	+ VI
J	79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	U
	76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	U
Ì	79-00-5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	U
	75-34-3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	U
	75-35-4 1,1-Dichloroethene	1.0	U	74-87-3 Chloromethane	1.0	U
	87-61-6 1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	U
	96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	U
	120-82-1 1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	U
	95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	U
	96-12-8 1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	Ŭ
	106-93-4 1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	· U
	95-50-1 1,2-Dichlorobenzene	1.0	U	98-82-8 Isopropylbenzene	1.0	Ŭ
	107-06-2 1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	ŭ
	78-87-5 1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	H UI
	108-67-8 1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	u j
	541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	Ŭ
	142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	Ŭ
	106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzene	1.0	Ŭ
	123-91-1 1,4-Dioxane	50	ъR	103-65-1 n-Propylbenzene	1.0	U U
	78-93-3 2-Butanone	1.0	ΰ	95-47-6 o-Xvlene	1.0	Ŭ
	110-75-8 2-Chloroethylvinylether	1.0	r v)	135-98-8 sec-Butvibenzene	1.0	Ŭ
	591-78-6 2-Hexanone	1.0	JU V}	100-42-5 Styrene	1.0	U U
	99-87-6 4-Isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcohol	5.0	H-VI
	108-10-1 4-Methyl-2-Pentanone	1.0	JUL	98-06-6 t-Butylbenzene	1.0	U U
	67-64-1 Acetone	5.0	JUL	127-18-4 Tetrachloroethene	1.0	112
	107-02-8 Acrolein	5.0	-H VI	108-88-3 Toluene	1.0	·
	107-13-1 Acrylonitrile	1.0	401	156-60-5 trans-1.2-Dichloroethene	1.0	U U
	71-43-2 Benzene	0.50	U	10061-02-6 trans-1.3-Dichloropronene	1.0	U
	74-97-5 Bromochloromethane	1.0	Ū İ	79-01-6 Trichioroethene	1.0	11
	75-27-4 Bromodichloromethane	1.0	Ū I	75-69-4 Trichlorofluoromethane	1.0	
	75-25-2 Bromoform	1.0	Ū	75-01-4 Vinvl Chloride	1.0	
	74-83-9 Bromomethane	1.0	Ū			0

Worksheet #: 90188

100000

**Total Target Concentration** 1.2

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. **R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

#### Form1 ORGANICS VOLATILE REPORT

### Sample Number: AC38794-008 Client Id: PW05-06 Data File: 8M30004.D Analysis Date: 07/22/08 21:04 Date Rec/Extracted: 07/18/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

sn-	<u>Cas #</u>	Compound	RL	Conc	Cas # Compound	RI	Conc
	71-55-6	5 1,1,1-Trichloroethane	1.0	U	75-15-0 Carbon Disulfide	1.0	<u> </u>
)	79 <b>-</b> 34-8	5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	U
	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7 Chlorobenzene	1.0	Ū
1	79-00-5	5 1,1,2-Trichloroethane	1.0	U	75-00-3 Chloroethane	1.0	Ŭ
J	75-34-3	3 1,1-Dichloroethane	1.0	U	67-66-3 Chloroform	1.0	U
	75-35-4	1,1-Dichloroethene	1.0	U	74-87-3 Chloromethane	1.0	Ū
)	87-61-6	1,2,3-Trichlorobenzene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	U
	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	Ū
J	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7 Cyclohexane	1.0	Ŭ
,	95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	บ
	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	Ū
)	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4 Ethylbenzene	1.0	Ŭ
	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8 Isopropylbenzene	1.0	Ŭ
	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7 m&p-Xylenes	2.0	Ū
	78-87-5	1,2-Dichloropropane	1.0	U	79-20-9 Methyl Acetate	1.0	y-VJ
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2 Methylcyclohexane	1.0	Ű
	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	Ū
	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	1.0	Ū
	106-46-7	1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzene	1.0	Ū
	123-91-1	1,4-Dioxane	50	σK	103-65-1 n-Propylbenzene	1.0	Ŭ
	78-93-3	2-Butanone	1.0	υ',	95-47-6 o-Xylene	1.0	Ŭ
	110-75-8	2-Chloroethylvinylether	1.0	-57)	135-98-8 sec-Butylbenzene	1.0	Ū
	591-78-6	2-Hexanone	1.0	v 16 🐧	100-42-5 Styrene	1.0	Ū,
	99-87 <b>-</b> 6	4-Isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcohol	5.0	1 16 J
	108-10-1	4-Methyl-2-Pentanone	1.0	R()	98-06-6 t-Butylbenzene	1.0	້ບັ
	67-64-1	Acetone	5.0	V130 J	127-18-4 Tetrachloroethene	1.0	U
	107-02-8	Acrolein	5.0	U V1	108-88-3 Toluene	1.0	U
	107-13-1	Acrylonitrile	1.0	UUJ	156-60-5 trans-1,2-Dichloroethene	1.0	U
	71-43-2	Benzene	0.50	U	10061-02-6 trans-1,3-Dichloropropene	1.0	U
	74-97-5	Bromochloromethane	1.0	U	79-01-6 Trichloroethene	1.0	U
	75-27-4	Bromodichloromethane	1.0	ប	75-69-4 Trichlorofluoromethane	1.0	Ŭ
	75-25-2	Bromoform	1.0	υ	75-01-4 Vinyl Chloride	1.0	U
	74-83-9	Bromomethane	1.0	υ	·		-

Worksheet #: 90188

Section 2

Total Target Concentration 162

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

# Form1

ORGANICS VOLATILE REPORT

### Sample Number: AC38794-009 Client Id: TB071808 Data File: 8M30007.D Analysis Date: 07/22/08 21:55 Date Rec/Extracted: 07/18/08-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1 Solids: 0

Units: ug/L

<u>ه</u> -	Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
	71-55-6	5 1,1,1-Trichloroethane	1.0	U	75-15-0	Carbon Disulfide	1.0	U-US
)	79-34-5	5 1,1,2,2-Tetrachloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	108-90-7	Chlorobenzene	1.0	U
	79-00-5	5 1,1,2-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
1	75-34-3	3 1,1-Dichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
	75-35-4	1,1-Dichloroethene	1.0	U	74-87-3	Chloromethane	1.0	U
\$	87-61-6	1,2,3-Trichlorobenzene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
į	96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
2	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
•	95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
Ì	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
)	106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
	95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
	107-06-2	1,2-Dichloroethane	0.50	U	1330-20-7	m&p-Xylenes	2.0	U ,
	78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	J - U
	108-67-8	1,3,5-Trimethylbenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
	541-73-1	1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
	142-28-9	1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	1.0	Ũ
i	106-46-7	1,4-Dichlorobenzene	1.0	υ	104-51-8	n-Butylbenzene	1.0	U
	123-91-1	1,4-Dioxane	50	Jr K	103-65-1	n-Propylbenzene	1.0	U
	78-93-3	2-Butanone	1.0	U	95-47-6	o-Xylene	1.0	U
	110-75-8	2-Chloroethylvinylether	1.0	50	135-98-8	sec-Butylbenzene	1.0	U
	591-78-6	2-Hexanone	1.0	¥U3	100-42-5	Styrene	1.0	U
	99-87-6	4-Isopropyitoluene	1.0	U	75-65-0	t-Butyl Alcohol	5.0	ъUĮ
	108-10-1	4-Methyl-2-Pentanone	1.0	5 U J	98-06-6	t-Butylbenzene	1.0	U
	67-64-1	Acetone	5.0	403	127-18-4	Tetrachloroethene	1.0	U
	107-02-8	Acrolein	5.0	10.1	108-88-3	Toluene	1.0	U
	107-13-1	Acrylonitrile	1.0	J V]	156-60-5	trans-1,2-Dichloroethene	1.0	U
	71-43-2	Benzene	0.50	υ	10061-02-6	trans-1,3-Dichloropropene	1.0	U
	74-97-5	Bromochloromethane	1.0	U	79-01-6	Trichloroethene	1.0	U
	75-27-4	Bromodichloromethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
	75-25-2	Bromoform	1.0	U	75-01-4	Vinyl Chloride	1.0	U
	74-83-9	Bromomethane	1.0	U				

Worksheet #: 90188

NUMBER OF

and the second

10000

#### **Total Target Concentration** 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

# Form1 Inorganic Analysis Data Sheet

Sample ID: AC38794-001 Client Id: Matrix: AQUEOUS

PW05-02 Level: LOW

% Solid: 0 Units: UG/L Date Rec: 7/19/2008

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No: Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	ND	0.5	07/25/08	9307	A9307A2	34	P	PEICP2
7440-36-0	Antimony	7.5	ND	0.5	07/25/08	9307	A9307A2	34	Р	PEICP2
7440-38-2	Arsenic	4.0	ND	0.5	07/25/08	9307	A9307A2	34	Р	PEICP2
7440-39-3	Barium	25	77	0.5	07/25/08	9307	A9307A2	34	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	0.5	07/25/08	9307	A9307A2	34	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	0.5	07/25/08	9307	A9307A2	34	Р	PEICP2
7440-70-2	Calcium	1000	18000	0.5	07/25/08	9307	A9307A2	34	Р	PEICP2
7440-47-3	Chromium	25	ND	0.5	07/25/08	9307	A9307A2	34	Р	PEICP2
7440-48-4	Cobalt	10	ND	0.5	07/25/08	9307	A9307A2	34	Р	PEICP2
7440-50-8	Copper	25	ND	0.5	07/25/08	9307	A9307A2	34	Ρ.	PEICP2
7439-89-6	Iron	150	8500	0.5	07/25/08	9307	A9307A2	34	Р	PEICP2
7439-92-1	Lead	5.0	ND	0.5	07/25/08	9307	A9307A2	34	Р	PEICP2
7439-95-4	Magnesium	1000	3500	0.5	07/25/08	9307	A9307A2	34	Р	PEICP2
7439-96-5	Manganese	25	460	0.5	07/25/08	9307	A9307A2	34	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/24/08	9307	H9307A	28	cv	HGCV2
7440-02-0	Nickel	10	ND	0.5	07/25/08	9307	A9307A2	34	Р	PEICP2
7440-09-7	Potassium	2500	ND	0.5	07/28/08	9307	A9307C2	33	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	0.5	07/25/08	9307	A9307A2	34	Р	PEICP2
7440-22-4	Silver	10	ND	0.5	07/25/08	9307	A9307A2	34	Р	PEICP2
7440-23-5	Sodium	2500	57000	0.5	07/28/08	9307	A9307C2	33	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	0.5	07/25/08	9307	A9307A2	34	Р	PEICP2
7440-62-2	Vanadium	25	ND	0.5	07/25/08	9307	A9307A2	34	Р	PEICP2
7440-66-6	Zinc	25	26	0.5	07/25/08	9307	A9307A2	34	P	PEICP2

Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

States and 

1

ANA ANA

Ì.

# Form1 Inorganic Analysis Data Sheet

Sample ID:AC38794-002% Solid:0Lab Name:VeritechNras No:Client Id:PW05-04Units:UG/LLab Code:Sdg No:Matrix:AQUEOUSDate Rec:7/19/2008Contract:Case No:Level:LOWLOWLowLowLow

					Analysis	Prep		Seq		
Cas No.	Analyte	RL	Conc	Dil Fact	Date:	Batch	File:	Num:	М	Instr
7429-90-5	Aluminum	100	350	0.5	07/25/08	9307	A9307A2	14	Р	PEICP2
7440-36-0	Antimony	7.5	ND	0.5	07/25/08	9307	A9307A2	14	Р	PEICP2
7440-38-2	Arsenic	4.0	6.0	0.5	07/25/08	9307	A9307A2	14	Р	PEICP2
7440-39-3	Barium	25	32	0.5	07/25/08	9307	A9307A2	14	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	0.5	07/25/08	9307	A9307A2	14	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	0.5	07/25/08	9307	A9307A2	14	Р	PEICP2
7440-70-2	Calcium	1000	15000	0.5	07/25/08	9307	A9307A2	14	Р	PEICP2
7440-47-3	Chromium	25	ND	0.5	07/25/08	9307	A9307A2	14	Р	PEICP2
7440-48-4	Cobalt	10	ND	0.5	07/25/08	9307	A9307A2	14	. P	PEICP2
7440-50-8	Copper	25	ND	0.5	07/25/08	9307	A9307A2	14	Р	PEICP2
7439-89-6	Iron	150	22000	0.5	07/25/08	9307	A9307A2	14	Р	PEICP2
7439-92-1	Lead	5.0	ND	0.5	07/25/08	9307	A9307A2	14	Р	PEICP2
7439-95-4	Magnesium	1000	1800	0.5	07/25/08	9307	A9307A2	14	Р	PEICP2
7439-96-5	Manganese	25	3600	0.5	07/25/08	9307	A9307A2	14	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/24/08	9307	H9307A	14	cv	HGCV2
7440-02-0	Nickel	10	ND	0.5	07/25/08	9307	A9307A2	14	Р	PEICP2
7440-09-7	Potassium	2500	ND	0.5	07/28/08	9307	A9307C2	13	Р	PEICPRAD2
7782-49 <b>-</b> 2	Selenium	25	ND	0.5	07/25/08	9307	A9307A2	14	Р	PEICP2
7440-22-4	Silver	10	ND	0.5	07/25/08	9307	A9307A2	14	Р	PEICP2
7440-23-5	Sodium	2500	36000	0.5	07/28/08	9307	A9307C2	13	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	0.5	07/25/08	9307	A9307A2	14	Р	PEICP2
7440-62-2	Vanadium	25	ND	0.5	07/25/08	9307	A9307A2	14	Р	PEICP2
7440-66-6	Zinc	25	ND	0.5	07/25/08	9307	A9307A2	14	Р	PEICP2

Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

## Form1 Inorganic Analysis Data Sheet

Sample ID: AC38794-005 % Solid: 0 Lab Name: Veritech Nras No: Client Id: PW05-54 Units: UG/L Lab Code: Sdg No: Matrix: AQUEOUS Date Rec: 7/19/2008 Contract: Case No: Level: LOW Analysis le ~

Cas No	. Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-	5 Aluminum	100	320	0.5	07/25/08	9307	A9307A2	35	Р	PEICP2
7440-36-	O Antimony	7.5	ND	0.5	07/25/08	9307	A9307A2	35	Р	PEICP2
7440-38-2	2 Arsenic	4.0	5.3	0.5	07/25/08	9307	A9307A2	35	Р	PEICP2
7440-39-3	3 Barium	25	30	0.5	07/25/08	9307	A9307A2	35	P	PEICP2
7440-41-7	7 Beryllium	4.0	ND	0.5	07/25/08	9307	A9307A2	35	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	0.5	07/25/08	9307	A9307A2	35	Р	PEICP2
7440-70-2	2 Calcium	1000	14000	0.5	07/25/08	9307	A9307A2	35	Р	PEICP2
7440-47-3	Chromium	25	ND	0.5	07/25/08	9307	A9307A2	35	Р	PEICP2
7440-48-4	Cobalt	10	ND	0.5	07/25/08	9307	A9307A2	35	Р	PEICP2
7440-50-8	Copper	25	ND	0.5	07/25/08	9307	A9307A2	35	Р	PEICP2
7439-89-6	lron	150	22000	0.5	07/25/08	9307	A9307A2	35	Р	PEICP2
7439-92-1	Lead	5.0	ND	0.5	07/25/08	9307	A9307A2	35	Р	PEICP2
7439-95-4	Magnesium	1000	1800	0.5	07/25/08	9307	A9307A2	35	Р	PEICP2
7439-96-5	Manganese	25	3600	0.5	07/25/08	9307	A9307A2	35	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/24/08	9307	H9307A	29	cv	HGCV2
7440-02-0	Nickel	10	ND	0.5	07/25/08	9307	A9307A2	35	Р	PEICP2
7440-09-7	Potassium	2500	ND	0.5	07/28/08	9307	A9307C2	34	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	0.5	07/25/08	9307	A9307A2	35	Р	PEICP2
7440-22-4	Silver	10	· ND	0.5	07/25/08	9307	A9307A2	35	P	PEICP2
7440-23-5	Sodium	2500	35000	0.5	07/28/08	9307	A9307C2	34	P	PEICPRAD2
7440-28-0	Thailium	5.0	ND	0.5	07/25/08	9307	A9307A2	35	Р	PEICP2
7440-62-2	Vanadium	25	ND	0.5	07/25/08	9307	A9307A2	35	Р	PEICP2
7440-66-6	Zinc	25	ND	0.5	07/25/08	9307	A9307A2	35	Ρ	PEICP2

Comments:

1000

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

# Form1 Inorganic Analysis Data Sheet

Sample ID:	AC38794-006	% Solid:	0	Lab Name:	Veritech	Nras No:
Client Id:	PW05-07	Units:	UG/L	Lab Code:		Sdg No:
Matrix:	AQUEOUS	Date Rec:	7/19/2008	Contract:		Case No:
Level:	LOW					

							1			
Cas No.	Analyte	RL	Сопс	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	500	78000	2.5	07/25/08	9307	A9307A2	36	Р	PEICP2
7440-36-0	Antimony	38	ND	2.5	07/25/08	9307	A9307A2	36	Р	PEICP2
7440-38-2	Arsenic	20	280	2.5	07/25/08	9307	A9307A2	36	P	PEICP2
7440-39-3	Barium	120	720	2.5	07/25/08	9307	A9307A2	36	Р	PEICP2
7440-41-7	Beryllium	20	ND	2.5	07/25/08	9307	A9307A2	36	Р	PEICP2
7440-43-9	Cadmium	10	ND	2.5	07/25/08	9307	A9307A2	36	Р	PEICP2
7440-70-2	Calcium	5000	34000	2.5	07/25/08	9307	A9307A2	36	Р	PEICP2
7440-47-3	Chromium	120	400	2.5	07/25/08	<del>9</del> 307	A9307A2	36	Р	PEICP2
7440-48-4	Cobalt	50	300	2.5	07/25/08	9307	A9307A2	36	Р	PEICP2
7440-50-8	Copper	120	660	2.5	07/25/08	9307	A9307A2	36	Р	PEICP2
7439-89-6	Iron	750	230000	2.5	07/25/08	9307	A9307A2	36	Р	PEICP2
7439-92-1	Lead	25	290	2.5	07/25/08	9307	A9307A2	36	Р	PEICP2
7439-95-4	Magnesium	5000	9400	2.5	07/25/08	9307	A9307A2	36	Р	PEICP2
7439-96-5	Manganese	120	470	2.5	07/25/08	9307	A9307A2	36	Р	PEICP2
7439-97 <b>-</b> 6	Mercury	0.20	0.66	1	07/24/08	9307	H9307A	30	сν	HGCV2
7440-02-0	Nickel	50	390	2.5	07/25/08	9307	A9307A2	36	Р	PEICP2
7440-09-7	Potassium	12000	14000	2.5	07/28/08	9307	A9307C2	35	Ρ	PEICPRAD2
7782-49-2	Selenium	120	ND	2.5	07/25/08	9307	A9307A2	36	Р	PEICP2
7440-22-4	Silver	50	ND	2.5	07/25/08	9307	A9307A2	36	Р	PEICP2
7440-23-5	Sodium	12000	190000	2.5	07/28/08	9307	A9307C2	35	Ρ	PEICPRAD2
7440-28-0	Thallium	25	ND	2.5	07/25/08	9307	A9307A2	36	Р	PEICP2
7440-62-2	Vanadium	120	540	2.5	07/25/08	9307	A9307A2	36	Р	PEICP2
7440-66-6	Zinc	120	1100	2.5	07/25/08	9307	A9307A2	36	Р	PEICP2

Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

ALC: NO.

Salar Salar

Form1 Inorganic Analysis Data Sheet

Sample ID:	AC38794-007	% Solid:	0	Lab Name:	Veritech	Nras No:
Client Id:	PW05-05	Units:	UG/L	Lab Code:		Sdg No:
Matrix:	AQUEOUS	Date Rec:	7/19/2008	Contract:		Case No:
Level:	LOW					

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	100	1900	0.5	07/25/08	9307	A9307A2	37	Р	PEICP2
7440-36-0	Antimony	7.5	ND	0.5	07/25/08	9307	A9307A2	37	P	PEICP2
7440-38-2	Arsenic	4.0	5.5	0.5	07/25/08	9307	A9307A2	37	Р	PEICP2
7440-39-3	Barium	25	63	0.5	07/25/08	9307	A9307A2	37	Р	PEICP2
7440-41-7	Beryllium	4.0	ND	0.5	07/25/08	9307	A9307A2	37	Р	PEICP2
7440-43-9	Cadmium	2.0	ND	0.5	07/25/08	9307	A9307A2	37	Ρ	PEICP2
7440-70-2	Calcium	1000	8700	0.5	07/25/08	9307	A9307A2	37	Р	PEICP2
7440-47-3	Chromium	25	ND	0.5	07/25/08	9307	A9307A2	37	Р	PEICP2
7440-48-4	Cobait	10	: 18	0.5	07/25/08	9307	A9307A2	37	Р	PEICP2
7440-50-8	Copper	25	ND	0.5	07/25/08	9307	A9307A2	37	Р	PEICP2
7439-89-6	Iron	150	4800	0.5	07/25/08	9307	A9307A2	37	P	PEICP2
7439-92-1	Lead	5.0	ND	0.5	07/25/08	9307	A9307A2	37	Р	PEICP2
7439-95-4	Magnesium	1000	1300	0.5	07/25/08	9307	A9307A2	37	Р	PEICP2
7439-96-5	Manganese	25	4800	0.5	07/25/08	9307	A9307A2	37	Р	PEICP2
7439-97-6	Mercury	0.20	ND	1	07/24/08	9307	H9307A	31	сν	HGCV2
7440-02-0	Nickel	10	120	0.5	07/25/08	9307	A9307A2	37	Р	PEICP2
7440-09-7	Potassium	2500	ND	0.5	07/28/08	9307	A9307C2	36	Р	PEICPRAD2
7782-49-2	Selenium	25	ND	0.5	07/25/08	9307	A9307A2	37	Р	PEICP2
7440-22-4	Silver	10	ND	0.5	07/25/08	9307	A9307A2	37	Р	PEICP2
7440-23-5	Sodium	2500	29000	0.5	07/28/08	9307	A9307C2	36	Р	PEICPRAD2
7440-28-0	Thallium	5.0	ND	0.5	07/25/08	9307	A9307A2	37	Р	PEICP2
7440-62-2	Vanadium	25	ND	0.5	07/25/08	9307	A9307A2	37	Р	PEICP2
7440-66-6	Zinc	25	27	0.5	07/25/08	9307	A9307A2	37	Ρ	PEICP2

Comments:

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

の言語

「二十二」

Nras No:

# Form1 Inorganic Analysis Data Sheet

Lab Name: Veritech

% Solid: 0

Clien Ma Le	t Id: PW05-06 trix: AQUEOUS evel: LOW	Dat	Units: UG/L e Rec: 7/19/2	008	Lab C Cont	ode: ract:	Sdg No Case No			<b>):</b> ):	
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr	
7429-90-5	Aluminum	500	150000	2.5	07/25/08	9307	A9307A2	38	Р	PEICP2	
7440-36-0	Antimony	38	ND	2.5	07/25/08	9307	A9307A2	38	Р	PEICP2	
7440-38-2	Arsenic	20	170	2.5	07/25/08	9307	A9307A2	38	Р	PEICP2	
7440-39-3	Barium	120	1600	2.5	07/25/08	9307	A9307A2	38	Р	PEICP2	
7440-41-7	Beryllium	20	ND	2.5	07/25/08	9307	A9307A2	38	Р	PEICP2	
7440-43-9	Cadmium	10	ND	2.5	07/25/08	9307	A9307A2	38	Р	PEICP2	
7440-70-2	Calcium	5000	35000	2.5	07/25/08	9307	A9307A2	38	Р	PEICP2	
7440-47-3	Chromium	120	440	2.5	07/25/08	9307	A9307A2	38	Р	PEICP2	
7440-48-4	Cobalt	50	430	2.5	07/25/08	<del>9</del> 307	A9307A2	38	Р	PEICP2	
7440-50-8	Copper	120	810	2.5	07/25/08	9307	A9307A2	38	Р	PEICP2	
7439-89-6	Iron	750	99000	2.5	07/25/08	9307	A9307A2	38	Р	PEICP2	
7439-92-1	Lead	25	<b>40</b> 0	2.5	07/25/08	9307	A9307A2	38	Р	PEICP2	
7439-95-4	Magnesium	5000	13000	2.5	07/25/08	9307	A9307A2	38	Р	PEICP2	
7439-96-5	Manganese	120	350	2.5	07/25/08	9307	A9307A2	38	Р	PEICP2	
7439-97-6	Mercury	0.20	0.58	1	07/24/08	9307	H9307A	32	cv	HGCV2	
7440-02-0	Nickel	50	490	2.5	07/25/08	9307	A9307A2	38	Р	PEICP2	
7440-09-7	Potassium	12000	17000	2.5	07/28/08	9307	A9307C2	37	Р	PEICPRAD2	
7782-49-2	Selenium	120	ND	2.5	07/25/08	9307	A9307A2	38	Р	PEICP2	
7440-22-4	Silver	50	ND	2.5	07/25/08	9307	A9307A2	38	Р	PEICP2	
7440-23-5	Sodium	12000	160000	2.5	07/28/08	<del>9</del> 307	A9307C2	37	Р	PEICPRAD2	
7440-28-0	Thailium	25	ND	2.5	07/25/08	9307	A9307A2	38	Р	PEICP2	
7440-62-2	Vanadium	120	640	2.5	07/25/08	9307	A9307A2	38	Р	PEICP2	
7440-66-6	Zinc	120	620	2.5	07/25/08	9307	A9307A2	38	Р	PEICP2	

Comments:

Sample ID: AC38794-008

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

States of B

Appendix C Support Documentation/Resubmission If Applicable

### MDL / RL SUMMARY 200.7 PE ICP 2

ELEMENT	MDL (mg/L)	Reporting Limits (mg/L)	i <b>DL</b> (mg/L)
AL	0.036082	0.2	0.00508
SB	0.003599	0.015	0.00217
AS	0.03478	0.008	0.0039
BA	0.00025	0.05	0.000131
BE	0.0000472	0.008	0.0000201
CD	0.00023	0.004	0.000327
CA	0.027025	2	0.0154
CR	0.000493	0.05	0.000268
CO	0.000445	0.02	0.000301
CU	0.0045251	0.05	0.00059
FE	0.01976	0.3	0.00396
PB	0.002245	0.01	0.00135
MG	0.032404	2	0.0302
MN	0.000204	0.05	0.000107
МО	0.000925	0.02	0.000571
NI	0.001021	0.02	0.000516
SE	0.010471	0.05	0.00825
AG	0.000315	0.02	0.000363
TL	0.005023	0.01	0.00269
SN	0.002302	0.05	0.00175
TI	0.000327	0.05	0.000115
v	0.00096	0.05	0.000942
ZN	0.007783	0.05	0.000858

.