DEPARTMENT OF PUBLIC WORKS

Nassau County

Long Island, New York

ANNUAL OPERATIONS AND ENVIRONMENTAL MONITORING SUMMARY

PETER GERBASI, P.E. COMMISSIONER

Fireman's Training Center Groundwater Remediation Annual Operations Monitoring Summary For Operating Year 2002

Table of Contents

Section 1	2002 Treatment Plant Operations	Page
1.1	2002 Treatment Systems Configuration	1
1.2	Significant 2002 Operations Events	1
Section 2	Treatment Plant Operations Monitoring Results	
2.1	Total Flow and On-Line Performance	2
2.2	Influent Water Quality Results	4
2.2.1	On-Site Influent Water Quality Results	4
2.2.2	Off-Site Influent Water Quality Results	4
2.3	Recovery Well Data	9
2.4	Petroleum Product Recovery Results	12
2.5	Effluent Water Quality Results	12
2.6	Air Emissions Monitoring Results	12
Section 3	2002 Environmental Monitoring Program	
3.1	2002 Environmental Monitoring Dates, Wells and Parameters	14
3.1.2	2002 Environmental Monitoring Special Notes	14
5.1.2		
Section 4	2002 Environmental Monitoring Results	
		14
Section 4	2002 Environmental Monitoring Results	
Section 4 4.1	2002 Environmental Monitoring Results On-Site Quarterly and Annual Sampling Results	14
Section 4 4.1 4.1.1	2002 Environmental Monitoring Results On-Site Quarterly and Annual Sampling Results On-Site Volatile and Semi-Volatile Organic Sampling Results	14 14
Section 4 4.1 4.1.1 4.1.2	2002 Environmental Monitoring Results On-Site Quarterly and Annual Sampling Results On-Site Volatile and Semi-Volatile Organic Sampling Results On-Site Inorganic Sampling Results	14 14 23
4.1 4.1.1 4.1.2 4.2	2002 Environmental Monitoring Results On-Site Quarterly and Annual Sampling Results On-Site Volatile and Semi-Volatile Organic Sampling Results On-Site Inorganic Sampling Results Off-Site Quarterly and Annual Sampling Results	14 14 23 23
Section 4 4.1 4.1.1 4.1.2 4.2 4.2.1	2002 Environmental Monitoring Results On-Site Quarterly and Annual Sampling Results On-Site Volatile and Semi-Volatile Organic Sampling Results On-Site Inorganic Sampling Results Off-Site Quarterly and Annual Sampling Results Off-Site Volatile and Semi-Volatile Organic Sampling Results	14 14 23 23 23
Section 4 4.1 4.1.1 4.1.2 4.2 4.2.1 4.2.2	2002 Environmental Monitoring Results On-Site Quarterly and Annual Sampling Results On-Site Volatile and Semi-Volatile Organic Sampling Results On-Site Inorganic Sampling Results Off-Site Quarterly and Annual Sampling Results Off-Site Volatile and Semi-Volatile Organic Sampling Results Off-Site Inorganic Sampling Results	14 14 23 23 23 36
4.1 4.1.1 4.1.2 4.2 4.2.1 4.2.2 4.3	2002 Environmental Monitoring Results On-Site Quarterly and Annual Sampling Results On-Site Volatile and Semi-Volatile Organic Sampling Results On-Site Inorganic Sampling Results Off-Site Quarterly and Annual Sampling Results Off-Site Volatile and Semi-Volatile Organic Sampling Results Off-Site Inorganic Sampling Results Off-Site Inorganic Sampling Results Quarterly and Annual Hydraulic Monitoring Effects	14 14 23 23 23 36 36

List of Figures

		Page
1	FTC Site – Combined Influent Flow – 2002	3
2	FTC Site – On-site Plume Influent 2002– TVOCs	5
3	FTC Site – On-site Plume Influent 2002– VOCs	6
4	FTC Site – Off-site Plume Influent 2002 – VOC's	7
5	FTC Site – Off-site Plume Influent 2002 – TVOC's	8
6	Temporal Variations in Off-site Recovery Well TVOCs	11
7	Historical On-site Product Recovery	13
8	FTC Site – Air Discharge 2002 – Benzene	15
9	FTC Site – Air Discharge 2002 – Tetrachloroethene	16
10	FTC Site – Air Discharge 2002 – Vinyl Chloride	17
11	On-Site Area Map	18
12	Off-Site Area Map	19
13	FTC-W-31 VOC Concentrations	24
14	FTC-W-32 VOC Concentrations	25
15	FTC-W-35 VOC Concentrations	26
16	BP-4B VOC Concentrations	32
17	BP-9B VOC Concentrations	33
18	BP-12B VOC Concentrations	34
19	BP-14B VOC Concentrations	35
20	On-site Water Level Contours (November 30,1998)	38

List of Tables

Page

1	Off-site Recovery Well Volatile Organic Concentrations	10
2	Onsite Groundwater Sampling Results	20,21,22
3	Offsite Groundwater Sampling Results	27,28,29,30,31

Appendices

- A Plant Operating Efficiency Monthly Reports
- B Monthly Influent Water Quality Reports
- C Monthly Effluent Water Quality Reports

1.0 2002 Treatment Plant Operations

1.1 2002 Treatment Systems Configuration

The Firemen's Training Center Groundwater Remediation Facility (FTCGRF) was constructed to extract contaminated groundwater from three (3) on-site and seven (7) off-site recovery wells, treat the water to meet the State's required standards, and discharge the treated water to a County recharge basin and/or three (3) groundwater injection wells. For Operating Year (OY) 2002 (January 1, 2002 to December 31, 2002), the FTCGRF recovered water from both the on-site and off-site recovery well systems. The off-site recovery well system operated for the entire OY 2002 and the on-site recovery well system operated essentially for two (2) distinct periods, the first sixteen (16) weeks of OY 2002 and for fourteen (14) weeks in the Fall of OY 2002.

Recovered groundwater from both on-site and off-site well locations was pumped via force mains to the FTCGRF located on the Fire Service Academy property on Winding Road. Once within the treatment facility, recovered water proceeded through the respective on-site or off-site metals removal systems without the addition of any chemicals to enhance precipitation. No chemicals were added to either the on-site or the off-site systems due to the low levels (<1.0 ppm) of Iron and Manganese present in the raw waters. Recovered water then proceeded through the facility's dual media sand filtration system to remove any suspended solids prior to air stripping treatment. The final step of treatment was air stripping, with a typical air to water ratio of 70 to 1. After air stripping, treated water was pumped from the facility's effluent wet well to a County recharge basin and/or to the site's three (3) groundwater injection wells.

1.2 Significant 2002 Operations Events

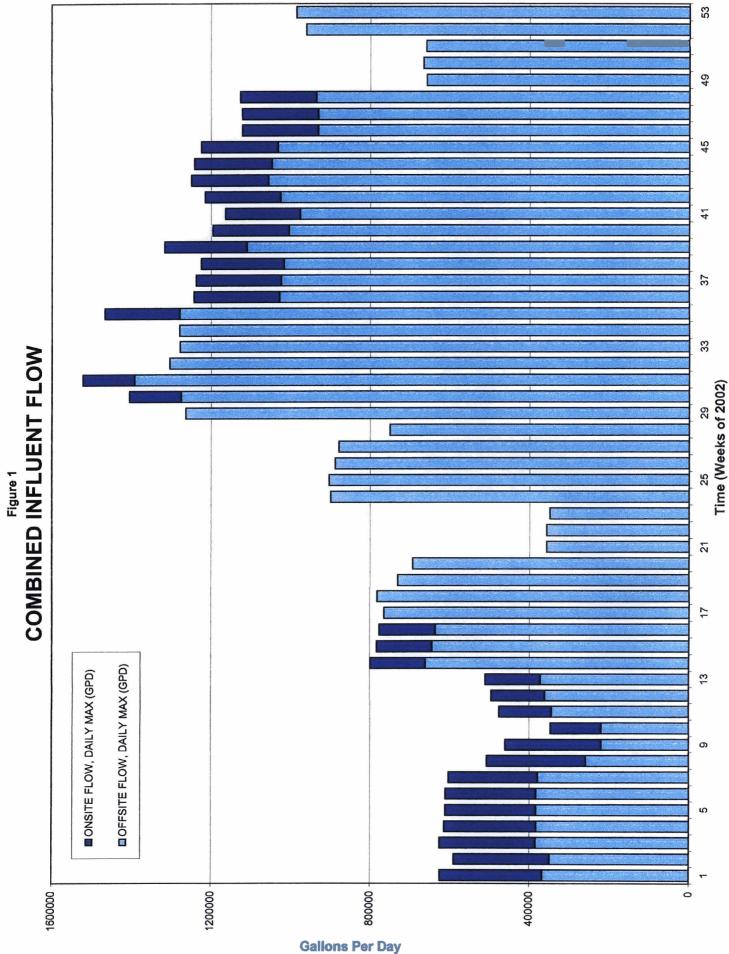
Two significant operations events occurred in OY 2002: an intensive re-development of the three, (3) groundwater injection wells in May, and the failure and replacement of off-site recovery well (ORW-5) in December. Neither of the two events caused a complete shutdown of the remediation, but resulted in temporary periods of reduced flow. The May re-development took six (6) weeks to complete. Due to the injection well re-development, overall recharge capacity was reduced and limited to using only the recharge basin. The number of wells used in off-site recovery was also reduced to using only lead edge recovery wells ORW-6 and ORW-7. The replacement of ORW-5 took five (5) weeks to complete, during which time the remediation system remained in operation.

2.0 Treatment Plant Operations Monitoring Results

2.1 Total Flow and On-Line Performance

The FTC Groundwater Remediation Facility (FTCGRF) pumped and treated a total of 298,742,833 gallons of contaminated groundwater in OY 2002. A total of 39,175,900 gallons was recovered from the on-site system and a total of 259,566,933 gallons from the off-site system. Figure 1 shows typical daily flow rates for each week of OY 2002. Detailed monthly summaries of flow are presented below:

٠


MONTH	ON-SITE	OFF-SITE	TOTAL
JANUARY	7,060,800	10,134,700	17,195,500
FEBRUARY	5,747,600	7,748,400	13,496,000
MARCH	4,068,367	11,497,800	15,566,167
APRIL	2,646,433	18,703,600	21,350,033
MAY	0	13,005,200	13,005,200
JUNE	0	21,964,733	21,964,733
JULY	1,615,600	33,395,900	35,011,500
AUGUST	1,373,000	37,041,550	38,414,550
SEPTEMBER	5,966,800	28,310,950	34,277,750
OCTOBER	5,640,300	29,303,200	34,943,500
NOVEMBER	5,056,400	25,535,350	30,591,750
DECEMBER	600	22,925,550	22,926,150
TOTAL	39,175,900	259,566,933	298,742,833

2002

At the conclusion of OY 2002, the FTCGRF had treated 298,742,833 gallons of contaminated groundwater for a cumulative total of 852,599,783 gallons of groundwater during the 3.5 years of the remediation. A summary for each operating year is provided below:

YEAR	ON-SITE FLOW	OFF-SITE FLOW	ANNUAL TOTAL	CUMULATIVE TOTAL
2000	42,028,828	118,174,125	160,202,953	160,202,953
2001	27,345,799	366,308,198	393,653,997	553,856,950
2002	39,175,900	259,566,933	298,742,833	852,599,783

The FTCGTF operated a total of 8576 hours out of a possible 8,760 hours during OY 2002. This resulted in an overall on-line performance of 97.90 % for OY 2002. The majority of the system's downtime was due to weather related shutdowns, power loss from thunderstorms or effluent discharge shutdowns due to high recharge basin water levels as a result of heavy rain events. Detailed monthly summaries of on-line performance are presented in Appendix A.

2.2 Influent Water Quality Results

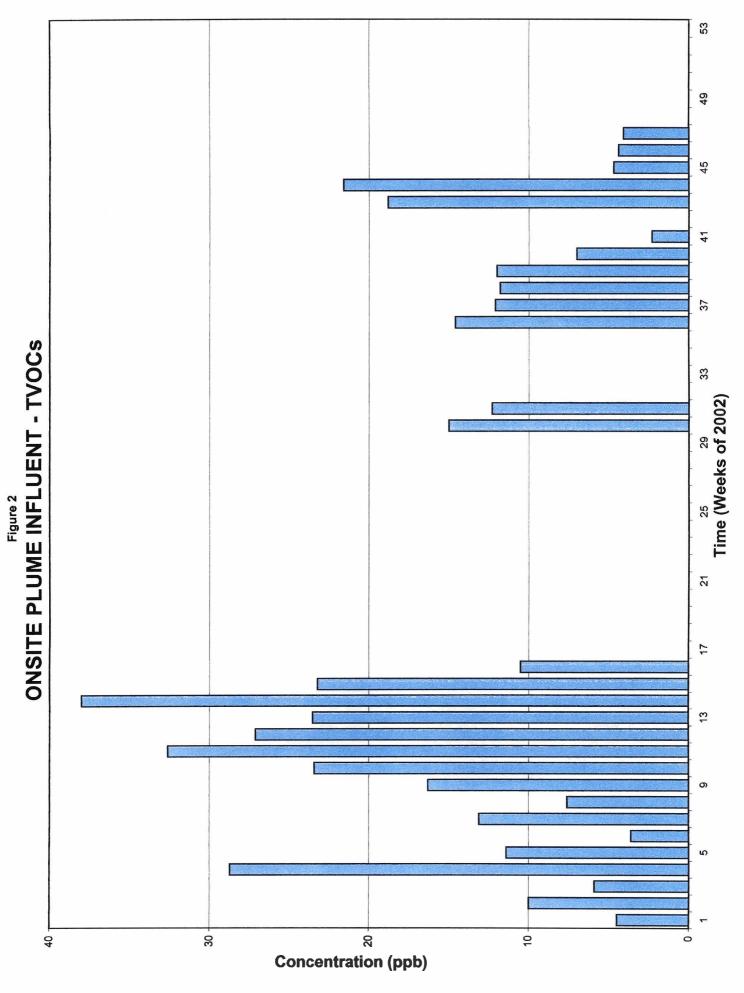
2.2.1 On-Site Influent Water Quality Results

On-site influent water quality samples were collected on a weekly basis. The samples were analyzed for volatile organic compounds (VOC's), semi-volatile organic compounds (SVOC's) and metals. Detailed monthly data summaries are presented in Appendix B.

The on-site recovery system was operated to treat onsite groundwater and depress the water table to enhance the recovery of floating petroleum product (no. 2 fuel oil) in the proximity of one of two known petroleum spill areas. The on-site influent concentrations of total volatile organic compounds (TVOC's) ranged from 38 parts per billion (ppb) to below detection limits (BDL), see Figure 2. The extremely low TVOC levels were typically comprised of four constituents: Benzene, Cis-1,2-Dichloroethene, Naphthalene and O-Xylene, see Figure 3

The FTCGRF is required by the State to monitor seven SVOC's: Phenanthrene, Fluorene, Pyrene, Bis(2-ethylhexyl)phthalate, Di-N-octyl Phthalate, Dimethyl Phthalate and Diethyl Phthalate. There were only three sampling events in OY 2002 where a SVOC was detected in the on-site influent; on March 5, 2002, 1.1 ppb of fluorene and on July 23, 2002 and September 24, 2002, 1.1 ppb of Bis(2-ethylhexyl)phthalate were detected in the influent.

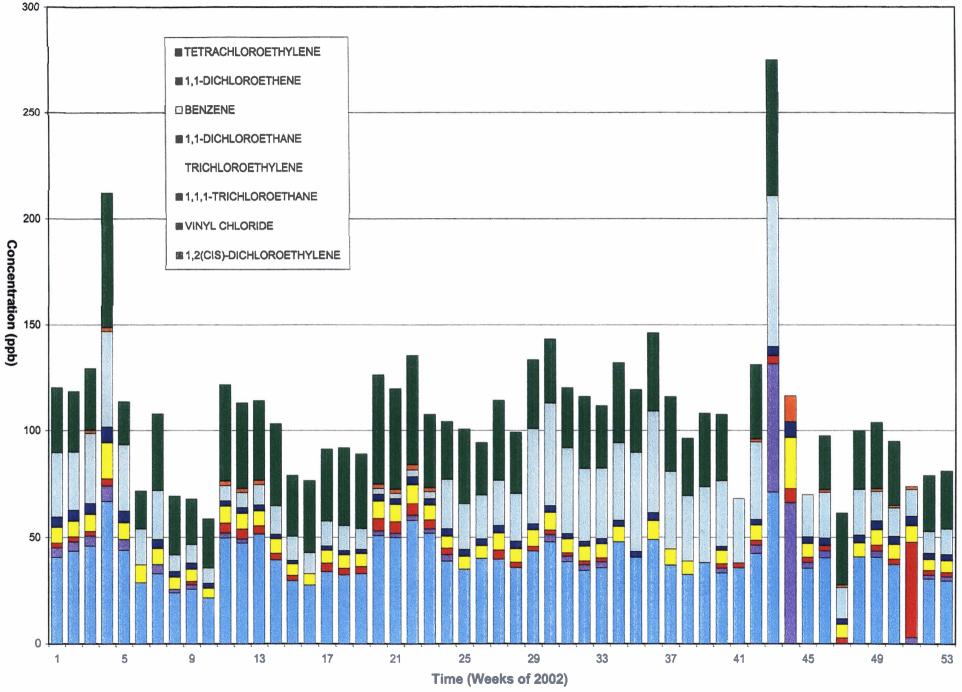
The FTCGRF is also required by the State to monitor six metals: iron, manganese, nickel, arsenic, aluminum and chromium. Iron and manganese are naturally occurring metals in the soils and groundwater of Long Island. During OY 2002 the average influent concentration for iron was 1318 ppb, and the average concentration for manganese was 7227 ppb. These levels are elevated relative to native groundwater, however, they reflect typical concentrations encountered at other Long Island groundwater remediation sites, especially those impacted by landfill leachate.

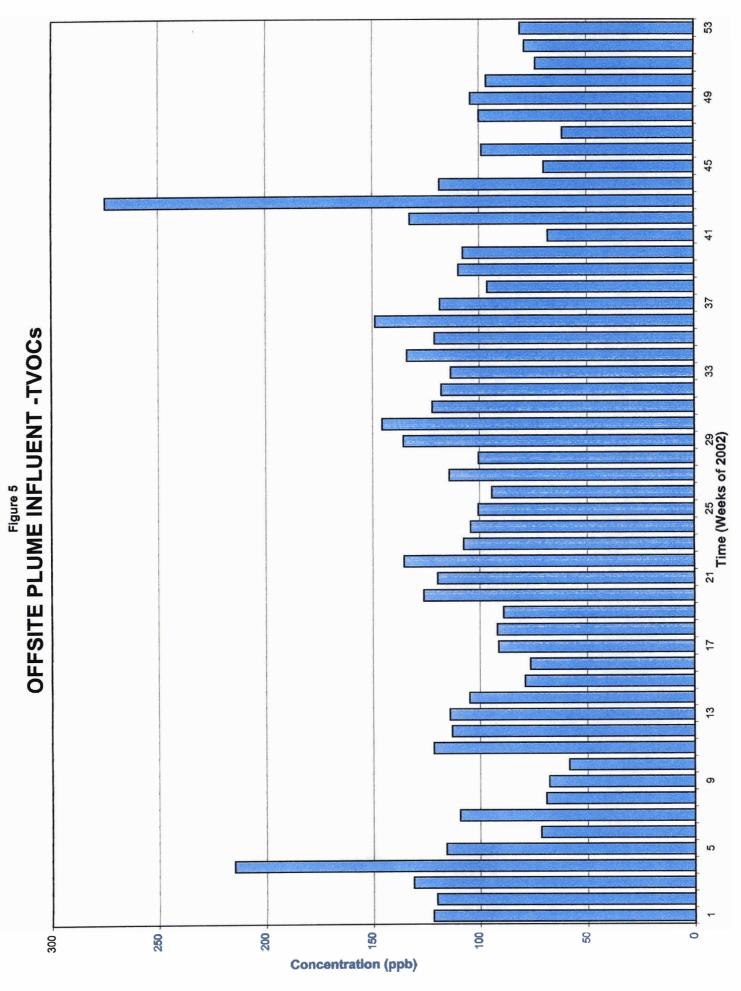

Nickel was consistently observed in the on-site influent samples with levels ranging from 9 ppb to BDL. Aluminum and chromium were detected sporadically in the on-site influent. The highest level detected for aluminum was 17 ppb and for chromium 9 ppb. Both levels were well below the facility's discharge limits that are 2,000 ppb and 50 ppb, respectively.

2.2.2 Off-Site Influent Water Quality Results

Off-site influent water quality samples were collected on a weekly basis. The samples were analyzed for VOC's, SVOC's and metals. Detailed monthly summaries of the off-site influent quality results are presented in Appendix B.

Halogenated organics including; Tetrachloroethene, 1,2 (Cis)-Dichloroethene and Benzene were the major contaminants observed in the off-site influent, see Figure 4. Weekly TVOC results are presented in Figure 5. The influent TVOC average for OY 2002 was 109 ppb. This is significantly less than the off-site TVOC's average concentration of 317.8 ppb for the first year of operation. More detail on the quality of the off-site groundwater can be found in Section 2.3, Recovery Well Data.


No Semi-volatile organics (SVOC's) were detected in the off-site influent during OY 2002.



NAPHTHALENE m,p-XYLENE **TOLUENE TETRACHLOROETHYLENE** 1,1-DICHLOROETHENE BENZENE 1,1-DICHLOROETHANE TRICHLOROETHYLENE ■ 1,1,1-TRICHLOROETHANE VINYL CHLORIDE 20 20 1,2(CIS)-DICHLOROETHYLENE 25 29 Time (Weeks of 2002)

Figure 3
ONSITE PLUME INFLUENT - VOCs

Figure 4
OFFSITE PLUME INFLUENT - VOCs

Iron and manganese were consistently detected in the off-site influent. Iron averaged 263 ppb and manganese averaged 102 ppb during OY 2002. Nickel was also consistently detected in the off-site influent, its concentration ranged from 7 ppb to BDL.

2.3 Recovery Well Data

Both the on-site and off-site recovery well systems were operated in OY 2002. Table 1 and Figure 6 present weekly summaries of the system's operation. In OY 2002 the on-site recovery well system was operated during two (2) distinct periods, January through April and July through November. During these two (2) periods on-site recovery well RW-3 was operated in order to treat onsite groundwater and depress the water table to enhance product recovery in the proximity of the site's Mock-up Building. Although a significant amount of petroleum product was recovered during the on-site system's operation, see section 2.4 for details on product recovery. Recovered groundwater from RW-3 exhibited consistently low levels of contamination, typically 20 ppb to 30 ppb of TVOC's. The low levels of TVOC's are consistent with the type of the petroleum product present in the vicinity of RW-3. No. 2 fuel oil does not contribute a significant dissolved fraction to the groundwater.

During OY 2002, the off-site recovery well system was operated on a continuous basis. Off-site recovery wells ORW 5, ORW-6 and ORW-7, the wells located at the leading edge of the contaminant plume, were typically operated in paired tandems in order to maintain hydraulic control of the plume. The TVOC's observed during the operation of the lead edge recovery wells typically ranged from 50 ppb to 150 ppb. Recovery wells ORW-1 and ORW-2 were generally operated for short periods of four (4) to eight (8) weeks, in order to exercise the well pumps and to observe any changes in influent contaminant concentrations. ORW-1 consistently showed low TVOC's in the 50 ppb range. ORW-2 showed TVOC's ranging from 85 ppb to 354 ppb and was operated more frequently than ORW-1. Recovery well ORW-3 was operated for 20 weeks during OY 2002, and it's influent TVOC's ranged from 111 ppb to 489 ppb. Recovery well ORW-4 was operated for 36 weeks during OY 2002, and it's TVOC's ranged from 145 ppb to 934 ppb.

From July 29, 2002 to November 6, 2002, the off-site recovery well system consistently operated at a pumping rate in excess of 1 million gallons per day. During this 17-week period of high groundwater recovery a steady level of contamination, from 100 ppb to 150 ppb of TVOC's, was observed in the facility's influent. However, towards the end of this high recovery period a significant increase in contamination was detected. Closer review of the operating data indicates that recovery well ORW-4 was the major source of the increased level of contamination observed in the plant influent. ORW-4's TVOCs increased from approximately 200 ppb before October to 250 ppb on October 15, 664 ppb on October 22 and 934 ppb on October 29. During this period, two (2) compounds, Vinyl Chloride and Dichlorodifluoromethane, showed increased concentrations that were never observed during the entire course of the remediation. Vinyl Chloride, typically present at concentrations below 10 ppb, increased to 173 ppb on October 15 and was 139 ppb on October 29. Dichlorodifluoromethane, a compound that was never detected on the FTC site, went from a level of less than 5 ppb before October to 37.7 ppb on October 22 and 27.5 ppb on October 29. The cumulative effect of the selected offsite recovery wells operating at a high recovery rate, appear to have increased levels of total contamination and elevated the concentrations of Vinyl Chloride and Dichlorodifluoromethane. It appears likely that recovery well ORW-4 could have been impacted by contamination from a source other than the FTC site.

Table 1 OFFSITE RECOVERY WELL VOLATILE ORGANIC CONCENTRATIONS

WELL No.	1/2/02	1/8/02	1/15/02	1/22/02	1/28/02	2/4/02	2/11/02	2/19/02	2/26/02	3/5/02	3/12/02	3/19/02	3/25/02	4/1/02	4/8/02	4/16/02	4/23/02
ORW -1	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	53 ppb	49 ppb	40 ppb	56 ppb
ORW -2	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
ORW -3	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
ORW -4	234ppb	217ppb	145ppb	315ppb	230ppb	194ppb	209ppb	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
ORW-5	51ppb	47ppb	44ppb	85ppb	50ppb	51ppb	50ppb	52ppb	40ppb	48ppb	51ppb	52ppb	57ppb	66 ppb	52 ppb	48 ppb	OFF
ORW-6	100ppb	106ppb	110ppb	196ppb	101ppb	96ppb	95ppb	93ppb	88ppb	92ppb	103ppb	106ppb	114ppb	123 ppb	105 ppb	93 ppb	95 ppb
ORW -7	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	194ppb	181ppb	172ppb	196 ppb	141 ppb	143 ppb	169 ppb
RW-1	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
RW-2	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
RW-3	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	41 ppb	33 ppb	OFF	OFF
WELL No.	5/1/02	5/14/02	5/21/02	5/28/02	6/4/02	6/18/02	6/25/02	7/2/02	7/9/02	7/16/02	7/23/02	7/29/02	8/6/02	8/13/02	8/20/02	8/27/02	9/3/02
ORW -1	46 ppb	OFF	OFF	OFF	OFF	36 ppb	35 ppb	36 ppb	32 ppb	32 ppb	OFF	OFF	OFF	OFF	OFF	OFF	OFF
ORW -2	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	138 ppb	131 ppb	133 ppb	120 ppb	117 ppb	132 ppb	OFF
ORW -3	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	245 ppb	215 ppb	180 ppb	157 ppb	146 ppb	144 ppb	153 ppb	' 154 ppb
ORW -4	OFF	OFF	OFF	OFF	OFF	164 ppb	191 ppb	217 ppb	202 ppb	218 ppb	197 ppb	190 ppb	238 ppb	163 ppb	219 ppb	218 ppb	205 ppb
ORW-5	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
ORW-6	108 ppb	95 ppb	91 ppb	120 ppb	101 ppb	94 ppb	90 ppb	100 ppb	87 ppb	93 ppb	89 ppb	85 ppb	90 ppb	88 ppb	79 ppb	OFF	OFF
ORW -7	160 ppb	139 ppb	134 ppb	142 ppb	127 ppb	148 ppb	136 ppb	153 ppb	129 ppb	127 ppb	120 ppb	118 ppb	141 ppb	185 ppb	143 ppb	OFF	OFF
RW-1	OFF	OFF	ÖFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
RW-2	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
RW-3	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	22 ppb	24 ppb	OFF	OFF	OFF	587 ppb	59 ppb
WELL No.	9/10/02	9/17/02	9/24/02	10/1/02	10/8/02	10/15/02	10/22/02	10/29/02	11/4/02	11/12/02	11/19/02	11/26/02	12/3/02	12/10/02	12/17/02	12/23/02	12/30/02
ORW -1	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
ORW -2	116 ppb	98 ppb	88 ppb	85 ppb	87 ppb	101 ppb	197 ppb	354 ppb	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
ORW -3	120 ppb	111 ppb	124 ppb	111 ppb	114 ppb	143 ppb	274 ppb	489 ppb	109 ppb	121 ppb	124 ppb	124 ppb	OFF	OFF	OFF	OFF	OFF
ORW -4	230 ppb	180 ppb	190 ppb	186 ppb	214 ppb	253 ppb	664 ppb	934 ppb	187 ppb	205 ppb	181 ppb	211 ppb	177 ppb	201 ppb	209 ppb	259 ppb	187 ppb
ORW-5	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	87 ppb	OFF	OFF	OFF	OFF	15 ppb	28 ppb
ORW-6	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	68 ppb	71 ppb	OFF	65 ppb	66 ppb	73 ppb	85 ppb	70 ppb	53 ppb
ORW -7	OFF	115 ppb	112 ppb	108 ppb	108 ppb	139 ppb	256 ppb	437 ppb	98 ppb	106 ppb	120 ppb	104 ppb	94 ppb	106 ppb	108 ppb	115 ppb	118 ppb
RW-1	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
RW-2	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
RW-3	43 ppb	24 ppb	34 ppb	24 ppb	357 ppb	30 ppb	41 ppb	22 ppb	13 ppb	76 ppb	10 ppb	11 ppb	OFF	OFF	OFF	OFF	OFF

Temporal Variations in Offsite Recovery Well TVOCs (ppb) 2002 1000 -ORW-2 -ORW-3 -ORW-4 750 ----- ORW-6 Parts Per Billion 500 250 0

Figure 6

11

1/1/02

1/14/02

1/27/02

2/9/02

2/22/02

3/7/02

3/20/02

4/2/02

4/15/02

4/28/02

5/11/02

5/24/02

Date

7/2/02

7/15/02

7/28/02

8/10/02

8/23/02

9/5/02

9/18/02

10/1/02

10/14/02

10/27/02

11/9/02

11/22/02

12/5/02

12/18/02

12/31/02

6/6/02

6/19/02

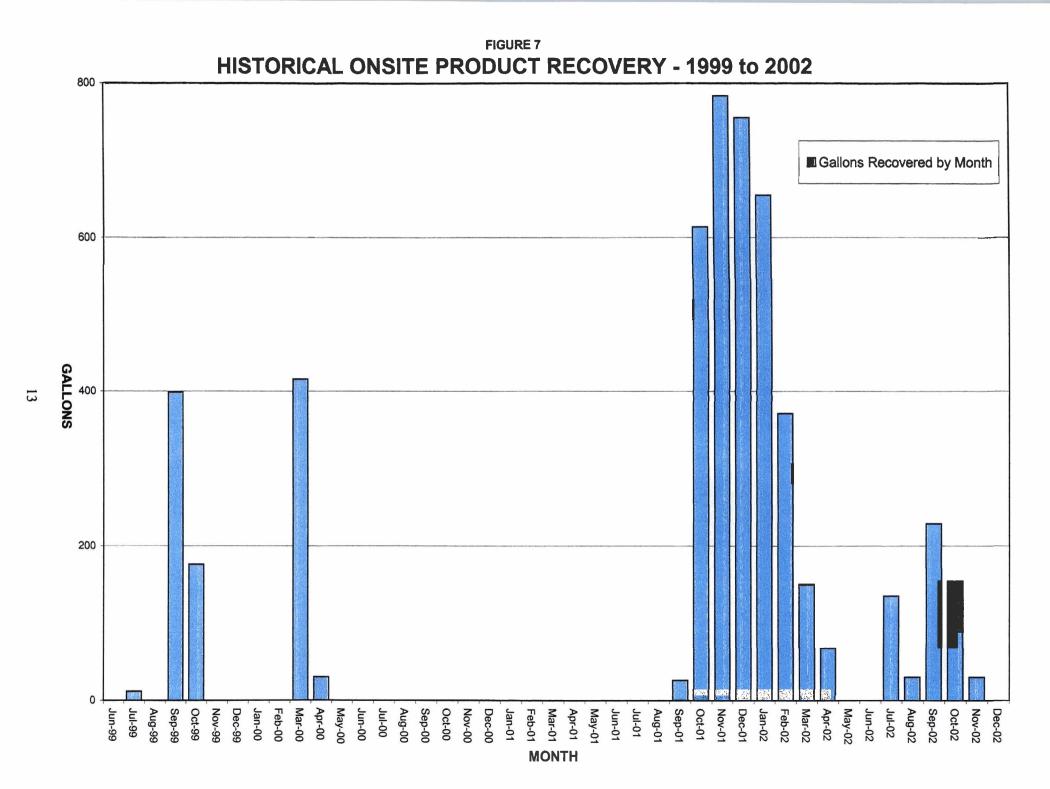
2.4 Petroleum Product Recovery Results

Petroleum product recovery continued to be recovered on-site during OY 2002. There were two (2) distinct periods during OY 2002 when product was recovered, January through April and July through November. During OY 2002, a total of 1,821 gallons of petroleum product was recovered bringing the total cumulative amount of product recovered for the remediation (1999 through 2002) to 5,032 gallons. Figure 7 graphically presents the historical monthly product recovery for the entire remediation.

2.5 Effluent Water Quality Results

Effluent water quality samples were collected on a weekly basis. The samples were analyzed for VOC's, SVOC's and metals. Detailed monthly summaries of the effluent quality results are presented in Appendix B.

All samples analyzed during OY 2002 for VOC's were below the detection limits (BDL) for the constituents being monitored.


All samples analyzed during OY 2002 for SVOC's were below their detection limits (BDL) for the constituents being monitored, with the exception of two samples taken on July 2, 2002 and July 7, 2002, when 1.5 ppb and 1.3 ppb of Diethyl Phthalate were detected in effluent. The 1.5 ppb and 1.3 ppb levels were still below the parameter's effluent discharge criteria of 50 ppb.

Iron and manganese were the two metals that were consistently detected in the facility's effluent. Both metals have an individual discharge limit of 600 ppb and a combined discharge limit of 1,000 ppb. For the first sixteen weeks and for fourteen weeks from September through November of OY 2002, the FTCGRF exceeded the manganese and combined iron and manganese discharge limits. The discharge limits were exceeded due to high manganese levels (4000 to 8500 ppb) in water collected from the on-site recovery well RW-3. These high levels were reduced during treatment, however, between 1300 ppb and 3200 ppb still remained in the effluent, which exceeded its discharge limits.

The only other metal that exceeded its discharge limit in OY 2002 was arsenic. There were three events, February 11 and 19 and March 19, when arsenic ranged from 62 ppb to 144 ppb, which was above its discharge limit of 50 ppb. The only other metal that was consistently detected in the facility's effluent was nickel. The highest detected value for nickel was 11 ppb, well below the discharge limit of 2,000 ppb.

2.6 Air Emissions Monitoring Results

Three compounds: benzene, vinyl chloride and tetrachloroethene were identified by the State as potential air contaminant sources resulting from the operation of the FTCGRF. No direct air emissions sampling is required at the FTCGRF; instead, air emissions rates are calculated based on a specific day's influent contaminant concentration and its associated fluid flow rate. The calculation assumes that 100% of the measured compound is removed by the air strippers and discharged to the atmosphere.

During OY 2002 the highest calculated emission rate for benzene was 0.630 pounds per day (lbs/d), which represents approximately 7 % of the maximum allowable emission rate of 9.49 lbs/d. The highest emissions rate calculated for vinyl chloride was 0.578 lbs/d and for tetrachloroethene was 0.562 lbs/d. These emissions were approximately 39 % of the facility's maximum allowable rate for vinyl chloride (1.50 lbs/d) and less than 1 % for Tetrachloroethene (93.96 lbs/d). Basically 100 % of the air emissions of Benzene, Vinyl Chloride and Tetrachloroethene resulted from recovered off-site contamination. The weekly air emissions data for the monitored compounds are presented graphically in Figures 8, 9 and 10.

3.0 2002 Environmental Monitoring Program

3.1 2002 Environmental Monitoring Dates, Wells and Parameters

In compliance with the Fireman's Training Center Groundwater Remediation Project's (FTCGRP) Remediation Monitoring Plan (RMP), the County conducted four (4) sampling events in Monitoring Year (MY) 2002 (January 1, 2002 to December 31, 2002). The four (4) sampling events were comprised of three (3) Quarterly (March, September and December) and one (1) Annual (June). Quarterly sampling events analyzed groundwater for volatile organic compounds (VOC's) and semi-volatile organic compounds (SVOC's). The Annual sampling event included an expanded list of parameters comparable to the baseline sampling round, which included alkalinity, BOD, COD, hardness, nitrate/nitrite, phosphorus, sodium, TKN/ammonia, sulfate, chloride, TDS, TSS, pH, conductivity and metals.

Both the on-site and off-site groundwater for the FTCGRP was sampled during MY 2002. The on-site monitoring well network consisted of eleven (11) Annual / eight (8) Quarterly wells (Figure 11). The off-site network consisted of fifteen (15) Annual / fourteen (14) Quarterly wells (Figure 12). All on-site and off-site monitoring wells are equipped with dedicated sampling devices (Grundfos Redi-flo 2 submersible pump) (Appendix D).

3.1.2 2002 Environmental Monitoring Special Notes

During MY 2002, there were several occasions when specific monitoring wells were not sampled. On-site monitoring well W-7A was not sampled for two (2) Quarterly sampling rounds in March and September due to a low water level condition. Off-site monitoring well U-6A was not sampled during an Annual sampling round in June due to equipment failure. Off-site monitoring well BP-9C was not sampled for a Quarterly round in March due to equipment failure.

4.0 Environmental Monitoring Results

4.1 On-Site Quarterly and Annual Sampling Results

4.1.1 On-Site Volatile and Semi-Volatile Organic Sampling Results

Groundwater samples were collected from eleven (11) monitoring wells for the one (1) Annual sampling event and from eight (8) monitoring wells for the three (3) Quarterly sampling events. The results of the Quarterly and Annual sampling analyses are presented in Table 2.

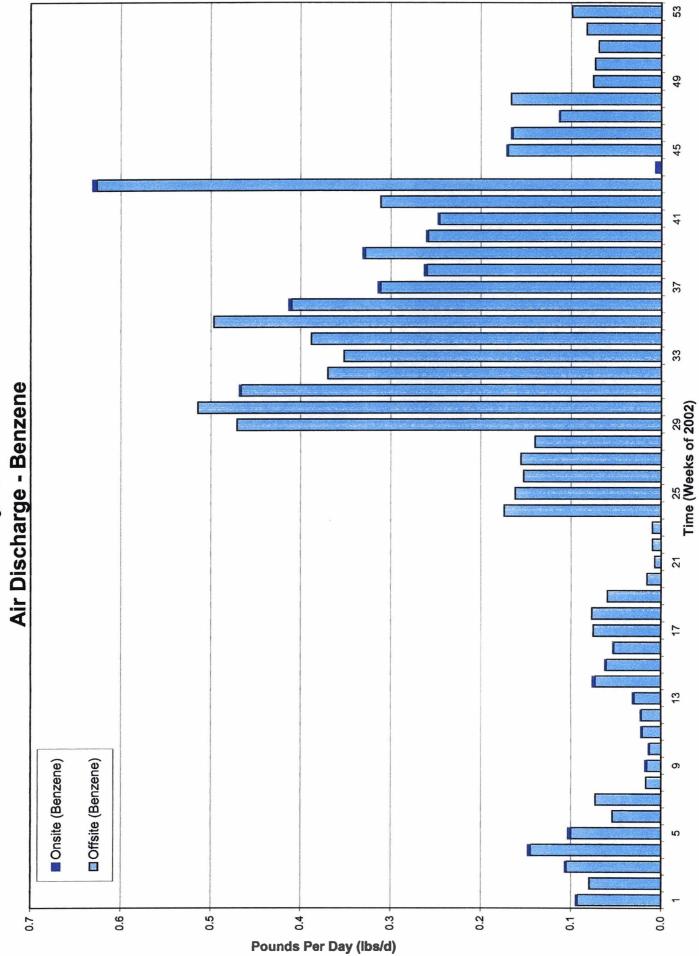
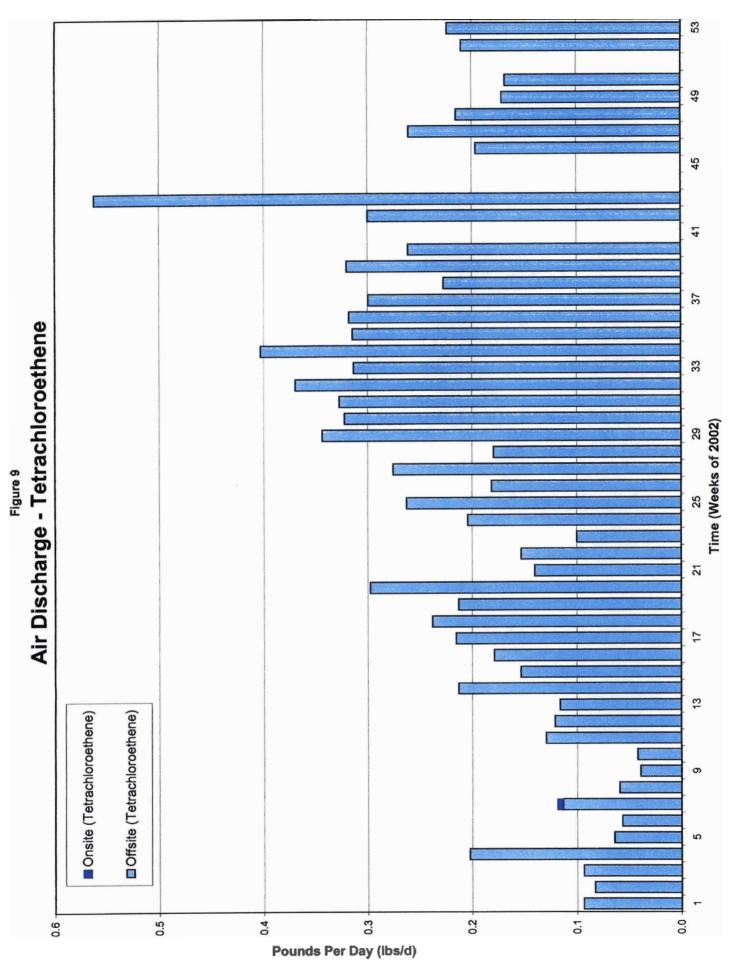
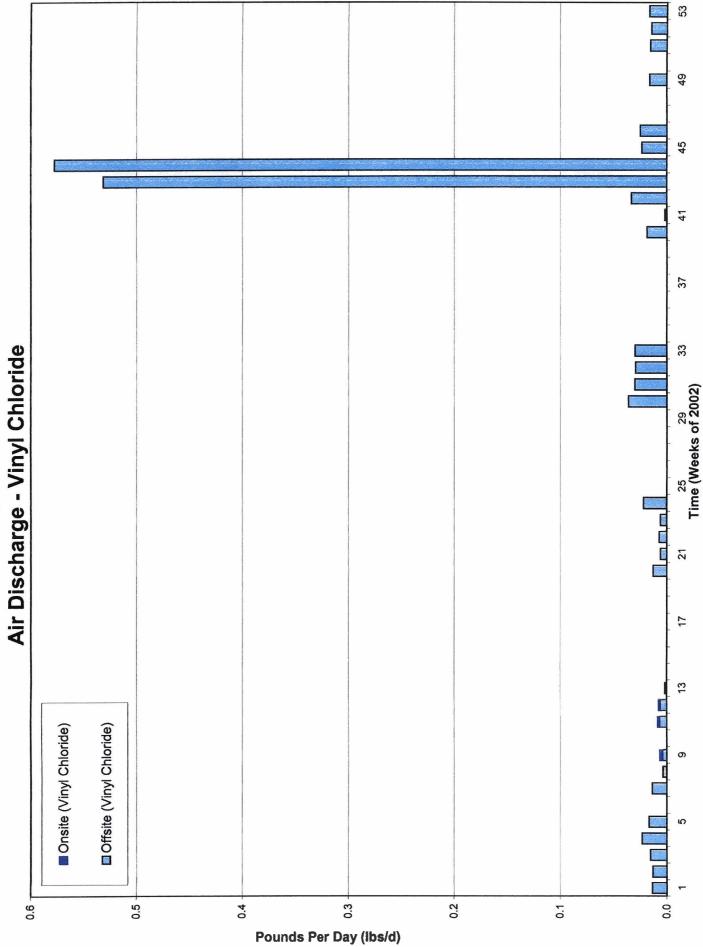




Figure 8

17

Figure 10

Figure 11

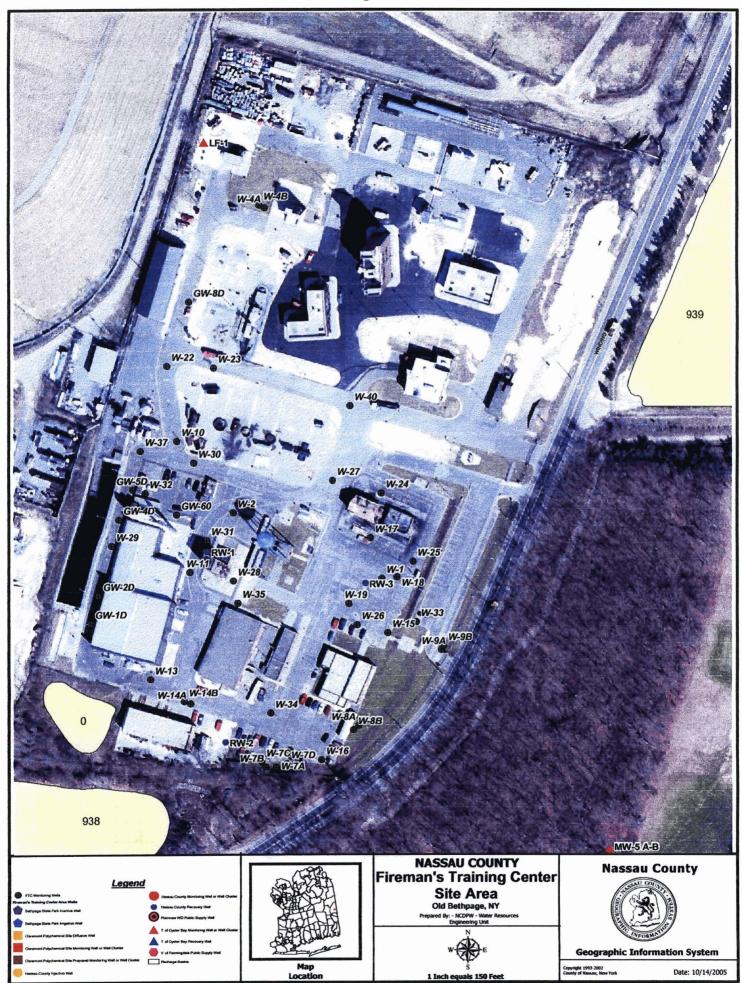
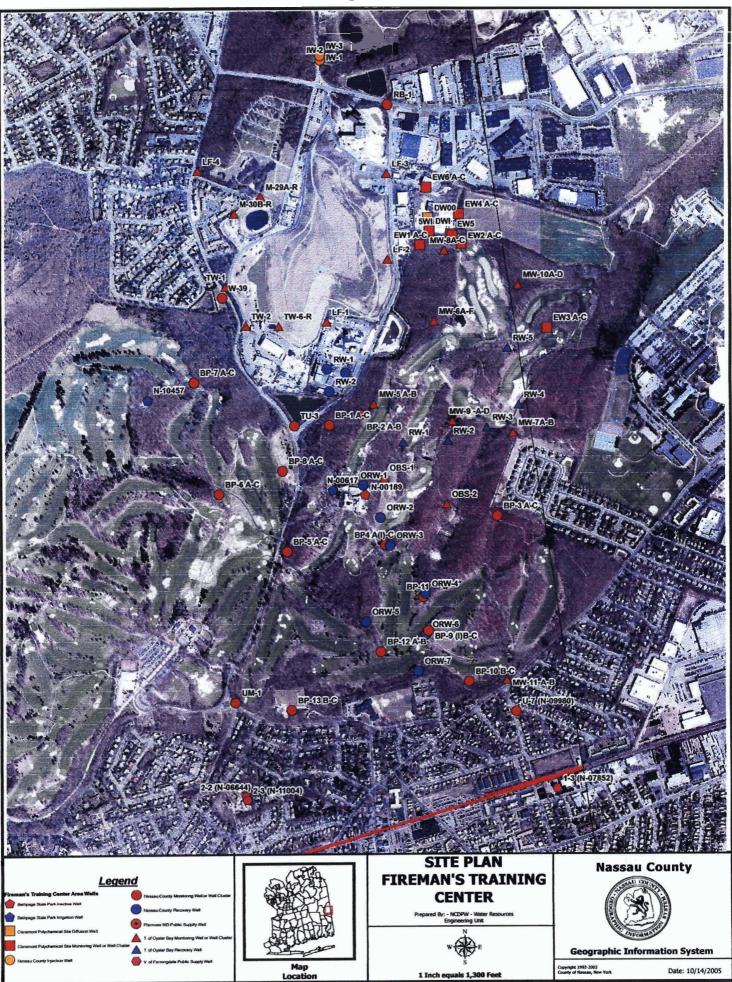



Figure 12

Table 2a 2002 ONSITE GROUNDWATER SAMPLING RESULTS

Baseline Cuality Baseline Cuality Distantial Cuality Distantial Cuality Baseline Cuality Baseline Cuality Distantial Cuality Baseline Cuality Distantial Cuality Distantial Cuality <thdistantial Cuality <thdistantial Cuality<</thdistantial </thdistantial 		FTC-	W-4A		F	TC-W-4	B		FTC-	W-7A	[F	TC-W-7	В	
Object County County<		Baseline		Baseline					Baseline		Baseline				
VOLATILE ORGANICS COMPOUNDS e10099 22002 67102 19702 197002															
Vinv Chorde BD. BD. <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
1.1:Dichlorosithene BDL															
1.1-Dickloroethene BDL															
c1_2_2_ichlorogethene BDL Warby Weilby ERL BDL B															
C1_22_DCIDIO/Detreme BoL										Well Dov					
Toluene Box,															
Induce BoL BoL<										Sample					
Chirobenzene BDL L1.8 2.1 BDL <															
Einyl Benzene BDL <													1220000		
mp.Zylene BDL B															
o-Xig/lene BOL															
Isoproyleberzene BDL															
n-Propylberzene Box															
13.5-Trimetrylbenzene Box															
1.2.4-Trimethylbenzene BoL															
sec_Butyl Benzene BDL															
p-Isopropylolulene BDL															
1.4-Dichlorobenzene BOL T.2 6.1 BDL															
1.2-Dichlorobenzene Box 2.1 Box Box<						-									
Hexachlorobutadiene BDL					UPCOL O										
Naphthalene BDL BDL <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
1.2.3-Trichlorobenzene BDL															
Methyl I-Butylether (MTBE) BOL BOL </td <td></td>															
Acenaphthene BOL BOL <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
Acenaphthene BOL BOL <t< td=""><td>SEMI-VOLATILE ORGANIC COMPOUN</td><td>DS</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	SEMI-VOLATILE ORGANIC COMPOUN	DS													
Nitrobenzene BDL BDL <t< td=""><td></td><td></td><td></td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td></td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td></t<>				BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
1,3-Dichlorobenzene BDL				BDL		BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
Phenanthrene BDL BDL <t< td=""><td>1,2-Dichlorobenzene</td><td>BDL</td><td></td><td>2.3</td><td>BDL.</td><td>2.1</td><td>BDL</td><td>5.5</td><td>BDL</td><td></td><td>BDL</td><td>1.7</td><td>BDL</td><td>BDL</td><td>1.7</td></t<>	1,2-Dichlorobenzene	BDL		2.3	BDL.	2.1	BDL	5.5	BDL		BDL	1.7	BDL	BDL	1.7
2,4-Dinitrotoluene BDL	1,3-Dichlorobenzene	BDL		BDL	BDL	BDL	BDL	1.4	BDL			BDL	1.6	BDL	BDL
Fluorence BDL NA NA BOL A NA BDL NA NA BDL NA NA BDL NA		BDL			BDL	BDL	BDL	BDL	BDL			BDL	BDL	BDL	BDL
Naphthalene BDL Ann NA S5.57 6.51 NA 6.63 NA NA Specific Conductance 264 1460 NA 1050 NA NA 16 158 NA 182 NA NA Alkalinity as Calcium Carbonate BDL 414 NA 222 NA NA 16 158 NA 182 NA NA Chemical Oxygen Demand BDL 60 NA 33 NA NA 165 NA NA NA NA Total Phosphorus as P BDL BDL BDL															
INORGANIC PARAMETERS 6.73 7.02 NA 6.74 NA NA 5.57 6.51 NA 6.63 NA NA Specific Conductance 264 1460 NA 1050 NA NA 263 698 NA 8263 NA 8263 NA 8263 NA 8263 NA 8263 NA 826 NA NA Alkalinity as Calcium Carbonate BDL 414 NA 222 NA NA 16 158 NA 826 NA NA B.O.D. BDL 3 NA BOL NA NA BDL 3 NA BDL NA NA Chemical Oxygen Demand BDL 60 NA 33.4 NA NA 55.3 87.7 NA 42.3 NA NA Nitrate as N 18.48 1.02 NA 0.08 NA NA 16.9 BDL NA NA Sodium, Total 14.															
ph 6.73 7.02 NA 6.74 NA NA 5.57 6.51 NA 6.63 NA NA Specific Conductance 264 1460 NA 1050 NA NA 263 698 NA 826 NA NA Alkalinity as Calcium Carbonate BDL 414 NA 222 NA NA 16 158 NA 826 NA NA B.O.D. BDL 3 NA BOL NA NA BOL 3 NA BOL NA NA BOL NA BOL NA NA BOL NA NA SO 161 NA 162 NA NA<		BDL		BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
Specific Conductance 264 1460 NA 1050 NA NA 263 698 NA 826 NA NA Alkalinity as Calcium Carbonate BDL 414 NA 222 NA NA 16 158 NA 182 NA NA BOL BDL 3 NA BDL NA NA BDL 3 NA BDL NA NA BDL 3 NA BDL NA NA BDL NA NA BDL NA BDL NA NA BDL 3 NA BDL NA NA SO So So So So NA BDL NA NA SO										-					
BDL BDL 414 NA 222 NA NA 16 158 NA 182 NA NA BOL BDL 3 NA BDL NA NA BDL 3 NA BDL 3 NA BDL NA NA NA BDL 3 NA BDL NA NA NA BDL 3 NA BDL NA NA NA NA BDL 3 NA BDL NA NA Chemical Oxygen Demand BDL 79.5 151 NA 105 NA NA S3.4 NA BDL 42.3 NA NA Nitrate as N 18.48 1.02 NA 0.08 NA NA BDL 0.09 NA BDL NA NA Total Phosphorus as P BDL BDL BDL NA 77.4 NA NA 0.21 8.84 NA 19 NA NA <															
B.O.D. BDL 3 NA NA NA NA BDL 3 NA BDL NA NA NA NA BDL 45 NA BDL NA NA Chemical Oxygen Demand BDL 79.5 151 NA 105 NA NA 55.3 87.7 NA 42.3 NA NA Nitrate as N 18.48 1.02 NA 0.19 NA NA 16.9 BDL NA NA Total Phosphorus as P BDL BDL NA 77.4 NA NA 21.9 61.6 NA 87.8 NA NA Sodium, Total 0.33 45.1 NA 26.8 NA NA 21.9 61.6 NA 87.8 NA NA Sulfate															
Chemical Oxygen Demand BDL 60 NA 33.4 NA NA BDL 45 NA BDL NA NA Hardness, Total 79.5 151 NA 105 NA NA 55.3 87.7 NA 42.3 NA NA Nitrate as N 18.48 1.02 NA 0.19 NA NA 169 BDL NA BDL NA NA Total Phosphorus as P BDL BDL NA 0.08 NA NA BDL NA NA Sodium, Total 14.5 142 NA 77.4 NA NA 21.9 61.6 NA 87.8 NA NA Total Kjeldahl 0.33 45.1 NA 26.8 NA NA 29 31.5 NA 14 NA NA Sulfate 32.7 29.5 NA 27.5 NA NA 137 310 NA 360 NA NA															
Hardness, Total 79.5 151 NA 105 NA NA 55.3 87.7 NA 42.3 NA NA Nitrate as N 18.48 1.02 NA 0.19 NA NA 169 BDL NA BDL NA NA 169 BDL NA NA NA NA NA BDL NA NA NA 169 BDL NA															
Nitrate as N 18.48 1.02 NA 0.19 NA NA 1.69 BDL NA BDL NA NA Total Phosphorus as P BDL BDL BDL NA 0.08 NA NA BDL 0.09 NA BDL NA NA Sodium, Total 14.5 142 NA 77.4 NA NA 21.9 61.6 NA 87.8 NA NA Total Kjeldahl 0.33 45.1 NA 26.8 NA NA 0.21 8.84 NA 19 NA NA Ammonia as N BDL 35.3 NA 17.1 NA NA 29 31.5 NA 14 NA NA Sulfate 32.7 29.5 NA 27.5 NA NA 37.5 95 NA 105 NA NA Total Dissolved Solids 190 630 NA 434 NA NA 137 310															
Total Phosphorus as P BDL BDL NA 0.08 NA NA BDL 0.09 NA BDL NA NA Sodium, Total 14.5 142 NA 77.4 NA NA 21.9 61.6 NA 87.8 NA NA Total Kjeldahl 0.33 45.1 NA 26.8 NA NA 0.21 8.84 NA 19 NA NA Ammonia as N BDL 35.3 NA 17.1 NA NA BDL 8.84 NA 14 NA NA Sulfate 32.7 29.5 NA 27.5 NA NA 37.5 95 NA 105 NA NA Chloride 5 162 NA 158 NA NA 137 310 NA 360 NA NA Total Dissolved Solids BDL 5.5 NA 22 NA NA BDL 44 NA 0.011									55.3						
Sodium, Total 14.5 142 NA 77.4 NA NA 21.9 61.6 NA 87.8 NA NA Total Kjeldahl 0.33 45.1 NA 26.8 NA NA 0.21 8.84 NA 19 NA NA Ammonia as N BDL 35.3 NA 17.1 NA NA BDL 8.84 NA 14 NA NA Sulfate 32.7 29.5 NA 27.5 NA NA 29 31.5 NA 38 NA NA Chloride 5 162 NA 158 NA NA 37.5 95 NA 105 NA NA Total Dissolved Solids 190 630 NA 434 NA NA 137 310 NA 360 NA NA Total Suspended Solids BDL BDL BDL NA 145 NA NA 80.1 NA 10.011															
Total Kjeldahi 0.33 45.1 NA 26.8 NA NA 0.21 8.84 NA 19 NA NA Ammonia as N BDL 35.3 NA 17.1 NA NA BDL 8.84 NA 14 NA NA Sulfate 32.7 29.5 NA 27.5 NA NA 29 31.5 NA 38 NA NA Chloride 5 162 NA 158 NA NA 37.5 95 NA 105 NA NA Total Dissolved Solids 190 630 NA 434 NA NA 137 310 NA 360 NA NA Total Suspended Solids BDL 5.5 NA 22 NA NA BDL 44 NA 26 NA NA Iron, Total BDL BDL NA 8.14 NA NA 0.0011 NA NA M															
Ammonia as N BDL 35.3 NA 17.1 NA NA BDL 8.84 NA 14 NA NA Sulfate 32.7 29.5 NA 27.5 NA NA 29 31.5 NA 38 NA NA Chloride 5 162 NA 158 NA NA 37.5 95 NA 105 NA NA Total Dissolved Solids 190 630 NA 434 NA NA 137 310 NA 360 NA NA Total Dissolved Solids BDL 5.5 NA 22 NA NA 137 310 NA 360 NA NA Aluminum, Total BDL 5.5 NA 22 NA NA BDL 44 NA 26 NA NA Iron, Total BDL BDL NA 0.145 NA NA BDL BDL NA NA <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>															
Sulfate 32.7 29.5 NA 27.5 NA NA 29 31.5 NA 38 NA NA Chloride 5 162 NA 158 NA NA 37.5 95 NA 105 NA NA Total Dissolved Solids 190 630 NA 434 NA NA 137 310 NA 360 NA NA Total Suspended Solids BDL 5.5 NA 22 NA NA 137 310 NA 360 NA NA Aluminum, Total BDL 5.5 NA 22 NA NA BDL 44 NA 26 NA NA Iron, Total BDL BDL NA 0.145 NA NA BDL BDL NA 0.005 31.3 NA 13.8 NA NA Iron, Total 0.034 3.09 NA 2.64 NA NA 0.003 <															
Chloride 5 162 NA 158 NA NA 37.5 95 NA 105 NA NA Total Dissolved Solids 190 630 NA 434 NA NA 137 310 NA 360 NA NA Total Suspended Solids BDL 5.5 NA 22 NA NA BDL 44 NA 26 NA NA Aluminum, Total BDL BDL NA 0.145 NA NA BDL BDL BDL NA 0.015 31.3 NA 0.011 NA NA Iron, Total 0.052 2.4 NA 8.14 NA NA 0.005 31.3 NA 13.8 NA NA Manganese, Total 0.034 3.09 NA 2.64 NA NA 0.012 0.008 NA 0.006 NA NA									20		31.5		38		
Total Dissolved Solids 190 630 NA 434 NA NA 137 310 NA 360 NA NA Total Suspended Solids BDL 5.5 NA 22 NA NA BDL 44 NA 26 NA NA Aluminum, Total BDL BDL NA 0.145 NA NA BDL BDL NA NA NA NA 0.011 NA NA NA Iron, Total 0.052 2.4 NA 8.14 NA NA 0.005 31.3 NA 13.8 NA NA Manganese, Total 0.034 3.09 NA 2.64 NA NA 0.003 3.1 NA 2.49 NA Nickel, Total 0.010 0.022 NA 0.014 NA 0.012 0.008 NA 0.006 NA NA													105		
Total Suspended Solids BDL 5.5 NA 22 NA NA BDL 44 NA 26 NA NA Aluminum, Total BDL BDL NA 0.145 NA NA BDL BDL NA NA NA BDL NA							-						360		
Aluminum, Total BDL BDL NA 0.145 NA NA BDL BDL NA 0.011 NA NA Iron, Total 0.052 2.4 NA 8.14 NA NA 0.005 31.3 NA 13.8 NA NA Manganese, Total 0.034 3.09 NA 2.64 NA NA 0.003 3.1 NA 2.49 NA Nickel, Total 0.010 0.022 NA 0.014 NA 0.012 0.008 NA 0.006 NA NA															
Iron, Total 0.052 2.4 NA 8.14 NA NA 0.005 31.3 NA 13.8 NA NA Manganese, Total 0.034 3.09 NA 2.64 NA NA 0.003 3.1 NA 2.49 NA NA Nickel, Total 0.010 0.022 NA 0.014 NA NA 0.012 0.008 NA 0.006 NA NA						0.145									
Manganese, Total 0.034 3.09 NA 2.64 NA NA 0.003 3.1 NA 2.49 NA NA Nickel, Total 0.010 0.022 NA 0.014 NA NA 0.012 0.008 NA 0.006 NA NA						8.14									
Nickel, Total 0.010 0.022 NA 0.014 NA NA 0.012 0.008 NA 0.006 NA NA															
	Chromium, Total	BDL		0.002	NA	0.002	NA	NA	BDL		0.009	NA	BDL	NA	NA

Table 2b 2002 ONSITE GROUNDWATER SAMPLING RESULTS

		F	TC-W-7	С		F	TC-W-7	D	FTC-	W-9A		F	TC-W-9	В			F	rc-w-14	A	
	Baseline					Baseline			Baseline		Baseline					Baseline				
	Water Quality		DATES	AMPLED		Water Quality	DATES	AMPLED	Water Quality		Water Quality		DATES	AMPLED		Water Quality		DATES	AMPLED	
VOLATILE ORGANICS COMPOUNDS	6/8/99	3/29/02	6/21/02	10/7/02	1/9/03	6/8/99	6/21/02	AMPLED	6/10/99		6/10/99	3/28/02	6/21/02	10/7/02	12/30/02	6/10/99	3/28/02	6/21/02	10/8/02	12/30/02
Vinyl Chloride	1.2	2.5	BDL	BDL	BDL	2.4	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1-Dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1-Dichloroethane	1.6	1.7	BDL	BDL	BDL	1.3	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
c-1.2-Dichloroethene	4.7	5.1	BDL	1.9	1.6	3.6	BDL	- Annual Sample	BDL	Well Dry	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Benzene	3.2	0.8	BDL	BDL	1.1	BDL	BDL	Only	BDL	No Samples	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Toluene	BDL	BDL	BDL	BDL	1.2	BDL	BDL	l í	BDL	Samples	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Tetrachloroethene	1.4	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chlorobenzene	1.2	2.3	BDL	BDL	1.5	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL *	BDL	BDL
Ethyl Benzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
m,p-Xylene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
o-Xylene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BOL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Isopropylbenzene	3.0	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
n-Propylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1.3.5-Trimethylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2,4-Trimethylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
sec-Butyl Benzene	1.3	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
p-lsopropyltoluene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1.4-Dichlorobenzene	2.2	5.4	BDL	BDL	2.8	1.4	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1.2-Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Hexachlorobutadiene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Naphthalene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2,3-Trichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Methyl t-Butylether (MTBE)	5.7	BDL	BDL	BDL	BOL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
SEMI-VOLATILE ORGANIC COMPOUND				000		000	000				000	000	000	000	000	000	000	000	DOL	UDL
Acenaphthene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	. BDL	BDL	BDL
Nitrobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2-Dichlorobenzene	1.0	5.5	4.3	BDL	BDL	BDL	BDL		BDL		BDL	BDL	1.1	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,3-Dichlorobenzene	BDL	1.5	1.1	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Phenanthrene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
2.4-Dinitrotoluene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Fluorene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Naphthalene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
INORGANIC PARAMETERS	BDL	BUL	BOL	BDL	DUL	BUL	DDL		BUL		BUL	DDL	DDL	BDL	DUL	DUL	BUL	BUL	BUL	BUL
ph	5.71	NA	6.2	NA		5.17	5.79		6.28		6.65	NA	6.42		NA	6.42	NA	6.03		
Specific Conductance	781	NA	815	NA	NA NA	486	260		324	<u> </u>	564	NA	926	NA NA	NA	158	NA	352	NA NA	NA
	59		140			14	200		88		40	-	156			46		41		NA
Alkalinity as Calcium Carbonate B.O.D.	2	NA		NA	NA	2	BDL		BDL		BDL	NA NA		NA NA	NA		NA		NA	NA
Chemical Oxygen Demand	Z BDL	NA	BDL	NA	NA	BDL	BDL		BDL		BDL BDL	NA	BDL 97.9		NA	BDL BDL	NA	BDL	NA	NA
Hardness, Total	BDL 181	NA NA	BDL 146	NA NA	NA NA	68.2	32.9		95.7		61.5	NA	188	NA NA	NA NA	47.5	NA NA	BDL 7.8	NA NA	NA
	0.23					1.57	2.42		0.6							0.44		2.8		NA
Nitrate as N		NA	BDL	NA	NA	0			0.05		BDL*	NA	BDL	NA	NA	0.44	NA		NA	NA
Total Phosphorus as P Sodium, Total	BDL 60.4	NA	BDL 72.9	NA	NA	BDL 57.7	BDL 22.9		125		BDL 65.2	NA	BDL 82.7	NA	NA	11.4	NA	BDL 2.83	NA	NA
	5.86	NA	10.2	NA	NA	1.15	22.9		0.62		4.74		6.34	NA	NA	0.4	NA	0.32	NA	NA
Total Kjeldahl		NA		NA	NA							NA		NA	NA		NA		NA	NA
Ammonia as N	5.86	NA	8.45 72	NA	NA	0.88	2.67 8.93		0.35		4.26	NA	5.61 75.2	NA	NA	0.15	NA	BDL	NA	NA
Sulfate	185	NA		NA	NA	49.4						NA		NA	NA		NA	35.6	NA	NA
Chloride	70	NA	110	NA	NA	80	50		22.5		120	NA	140	NA	NA	7.5	NA	42.5	NA	NA
Total Dissolved Solids	425	NA	405	NA	NA	248	120		164		264	NA	476	NA	NA	92	NA	181	NA	NA
Total Suspended Solids	BDL	NA	2	NA	NA	BDL	1 0.049		6		BDL	NA	BDL	NA	NA	20	NA	19	NA	NA
Aluminum, Total	BDL 0.023	NA	0.049	NA	NA	BDL 0.013	0.049		BDL 0.638		BDL 0.013	NA	0.008	NA	NA	BDL 0.38	NA	0.087	NA	NA
Iron, Total			4	NA	NA	0.104			0.565		2.84		9.67		NA	0.38		0.3	NA	NA
Manganese, Total Nickel, Total	4.46	NA NA	4	NA NA	NA	0.104	0.072 BDL		0.023		2.84 BDL	NA NA	0.004	NA NA	NA	0.59	NA NA	0.005	NA NA	NA
Chromium, Total	0.694 BDL	NA	0.027	NA NA	NA	BDL	BDL		BDL		BDL	NA	0.004	NA	NA NA	0.005	NA NA	0.005	NA NA	NA NA
	BUL	NA	0.004	NA	NA	BDL	BOL		BDL	L	BUL	NA	0.001	NA	NA	0.008	NA	0.007	NA	NA

LABORATORY: Nassau County DPW Special Projects Laboratory Ceder Creek S.T.P., Wantagh, New York NOTE: All results ug/l

Table 2c 2002 ONSITE GROUNDWATER SAMPLING RESULTS

		F	C-W-14	в		F	TC-W-2	3	F	TC-W-3	1	1	F	TC-W-3	2			F	TC-W-3	5	
	Baseline				a such detrait	Baseline		and the second second	Baseline			Baseline					Baseline				
	Water					Water			Water	CHARGE		Water					Water				
	Quality		DATE S			Quality		AMPLED	Quality		AMPLED	Quality			AMPLED		Quality		DATE S		
VOLATILE ORGANICS COMPOUNDS	6/10/99	3/28/02	6/21/02	10/8/02	12/30/02	6/8/99	7/2/02		6/11/99	7/2/02		6/15/00	3/29/02	7/2/02	10/8/02	12/30/02	6/11/99	3/29/02	7/2/02	10/8/02	12/30/02
Vinyl Chloride	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1-Dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1-Dichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	Annual	8DL	BDL	Annual	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
c-1,2-Dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	Sample	BDL	BDL	Sample	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Benzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	Only	BDL	BDL	Only	17.4	4.7	5.3	3.3	3.1	BDL	BDL	BDL	BDL	BDL
Toluene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL		2.7	BDL	1.8	BDL	BDL	392	BDL	1.3	19.5	BDL
Tetrachloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chlorobenzene	BDL	BDL	BDL,	BDL	BDL	BDL	BDL		BDL	BDL		BDL.	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BOL	1.6
Ethyl Benzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		112	BDL		13.3	31.5	3.7	BDL	BDL	311	2.8	34.9	101	BDL
m,p-Xylene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		415	BDL		33.8	62.5	2.5	BDL	BDL	823	3.7	4.9	42.3	BDL
o-Xylene	BOL	BDL	BDL	BOL	BDL	BDL	BDL		194	BDL		10.1	21.2	BDL	BDL	BDL	457	BDL	5.1	21.3	BDL
Isopropylbenzene	BOL	BDL	BDL	BDL	BDL	BDL	BDL		23.1	BDL		17.0	7.2	9.5	BDL	BDL	BDL	BDL	3.8	19.7	BDL
n-Propylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		65.7	BDL		39.9	12.4	11.8	BDL	BDL	62.2	BDL	5.6	36.2	BDL
1,3,5-Trimethylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		169	5.2		70.9	20.3	3	BDL	2.2	126	BDL	2.7	25.3	BDL
1,2,4-Trimethylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		548	3.9		209	65.6	13.9	1.7	3.5	465	2.5	9.2	121.0	BDL
sec-Butyl Benzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	4.5	BDL
p-Isopropyltoluene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		21.8	2.9		12.7	1.8	BDL	BDL	BDL	7.3	BDL	BDL	1.5	BDL
1,4-Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BOL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2-Dichlorobenzene	BDL	BDL	BDL	BDL	BDL.	BDL	BDL		BOL	BDL		BDL	BDL	BDL	BDL	BDL	BOL	BDL	BDL	BDL	3.9
Hexachlorobutadiene	BDL.	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Naphthalene	BDL	BDL	BDL	BDL	BDL	BDL	BDL.		106	BDL		BDL	24.2	BDL	BDL	BDL.	140	BDL	BOL	20.6	BDL
1,2,3-Trichlorobenzene	BDL	BDL	BDL	BDL	BOL	BDL	BDL		BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Methyl t-Butylether (MTBE)	BOL	BDL	BDL	BOL	BDL	BDL	BDL		BDL	BDL		3.2	BDL	BDL	5.7	BDL	BDL	BDL	BDL	BDL	BDL
SEMI-VOLATILE ORGANIC COMPOL	INDS																				
Acenaphthene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		1.3	1.4		BDL	6.2	9.3	3.3	1.0	BDL	BDL	BDL	BDL	BDL
Nitrobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL		BDL	BDL	4.1	BDL	BDL	BDL	BDL	BDL	7.8	1.8
1.2-Dichlorobenzene	BDL	BDL	BDL	BDL	1.0	BDL	BDL		BDL	BDL		BDL	BDL	BDL	BDL.	BDL	BDL	3.8	3.1	BDL	3.9
1,3-Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BOL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	1.8	BDL	1.0
Phenanthrene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BOL	BDL		BDL	1.8	4.4	BDL	BDL	BDL	BDL	BOL	BOL	BDL
2,4-Dinitrotoluene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		3.9	BDL		1.8	BDL	1.3	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Fluorene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		2.0	1.5		1.8	10.1	12.5	8.2	2.4	BDL	BDL	BDL	BDL	BDL
Naphthalene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		61.8	BDL		BDL	BDL	BDL	BDL	BDL	85.8	BDL	BDL	20.6	BDL
INORGANIC PARAMETERS																					
ph	6.17	NA	6.24	NA	NA	6.99	7.03		6.48	6.5		6.64	NA	6.48	NA	NA	5.83	NA	6.67	NA	NA
Specific Conductance	568	NA	681	NA	NA	832	577		632	727		776	NA	732	NA	NA	260	NA	859	NA	NA
Alkalinity as Calcium Carbonate	60	NA	84	NA	NA	182	126		71	140		179	NA	300	NA	NA	56	NA	244	NA	NA
B.O.D.	BDL	NA	BDL	NA	NA	BDL	BDL		7	BDL		5.2	NA	BDL	NA	NA	6	NA	BDL	NA	NA
Chemical Oxygen Demand	BOL	NA	BDL	NA	NA	BDL	BDL		36	50.1		54.9	NA	74	NA	NA	BDL	NA	40.6	NA	NA
Hardness, Total	190	NA	265	NA	NA	52.6	51.5		50.8	110		108	NA	237	NA	NA	45	NA	105	NA	NA
Nitrate as N	2.59	NA	1.25	NA	NA	4.07	11	-	BDL*	0.16		BDL	NA	BDL	NA	NA	1.72	NA	BDL	NA	NA
Total Phosphorus as P	BOL	NA	BDL	NA	NA	BDL	BDL		0.05	0.1		0.06	NA	0.1	NA	NA	BDL	NA	BDL	NA	NA
Sodium, Total	23.9	NA	23.1	NA	NA	106	44.3		80.5	61.6		56.7	NA	33.5	NA	NA	16.4	NA	77.5	NA	NA
Total Kjeldahl	0.42	NA	0.82	NA	NA	16.9	19.3		6.23	10.6		2.70	NA	4.92	NA	NA	0.99	NA	21.6	NA	NA
Ammonia as N	BDL	NA	0.43	NA	NA	16.9	18.9		6.24	10.4		2.69	NA	3.55	NA	NA	0.76	NA	21.0	NA	NA
Sulfate	158	NA	160	NA	NA	24.9	32		33.4	26.6		48.1	NA	11.6	NA	NA	26	NA	14.2	NA	NA
Chloride	20	NA	50	NA	NA	100	35		80	92.5		90.0	NA	25	NA	NA	20	NA	95	NA	NA
Total Dissolved Solids	347	NA	440	NA	NA	384	266		306	343		377	NA	376	NA	NA	140	NA	384	NA	NA
Total Suspended Solids	1	NA	BDL	NA	NA	1	200		40	68		102	NA	80	NA	NA	8	NA	8	NA	NA NA
Aluminum, Total	BDL	NA	0.01	NA	NA	BDL	0.135		BDL	BOL		0.012	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA
Iron, Total	0.422	NA	0.039	NA	NA	0.013	0.135		24.3	42.3		64.9	NA	45.1		NA	20.4		80L 4.41		
	4.37		1.03			0.013	2.76		24.3	42.3		5.39		45.1	NA		3.25	NA		NA	NA
Manganese, Total		NA	0.001	NA	NA	0.277	0.001		0.006	0.006		0.002	NA	4.29	NA	NA	0.008	NA	2.09	NA	NA
Nickel, Total	BDL 0.002	NA	0.001 BDL	NA	NA NA	0.014 BDL	BDL			0.006		0.002 BDL	NA NA	0.002 BDL	NA	NA	0.008	NA	0.005	NA	NA
Chromium, Total	0.002	NA	BOL	NA		LBOL	BOL		0.000	0.001		BUL	NA	BOL	NA	NA	0.005	NA	BDL	NA	NA

LABORATORY: Nassau County DPW Special Projects Laboratory Ceder Creek S.T.P., Wantagh, New York

NOTE: All results ug/I

3/3

During MY 2002 there was a significant drop in VOC contamination observed in all on-site monitoring wells. Figures 13, 14 and 15 show the steep decreases in VOC contamination for the three (3) most highly contaminated wells observed at the start of the remediation in 1999. Monitoring well FTC-W-31 (Fig. 13) has gone from a TVOC level of approximately 1600 ppb in 1999 to approximately 10 ppb in 2002. Similar decreases were observed in FTC-W-32 (Fig. 14) and FTC-W-35 (Fig. 15).

Eight (8) on-site monitoring wells contained measurable levels of SVOC's during MY 2002. The observed SVOC concentrations were at or below the site's clean-up criteria.

Review of the VOC and SVOC results observed during MY 2002, appears to indicate that on-site groundwater has reached the remediation's clean-up goals.

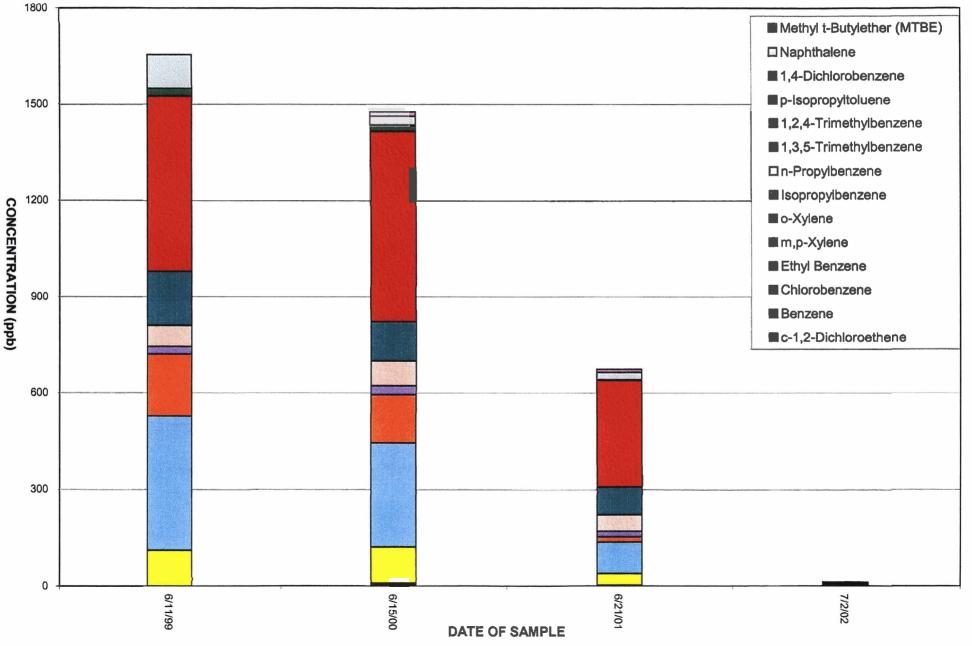
4.1.2 On-Site Inorganic Sampling Results

Metals and other inorganic parameters were also examined as part of the on-site sampling program even though they are not part of the State mandated FTCGRP. The results of the inorganic analyses can be found in Table 2.

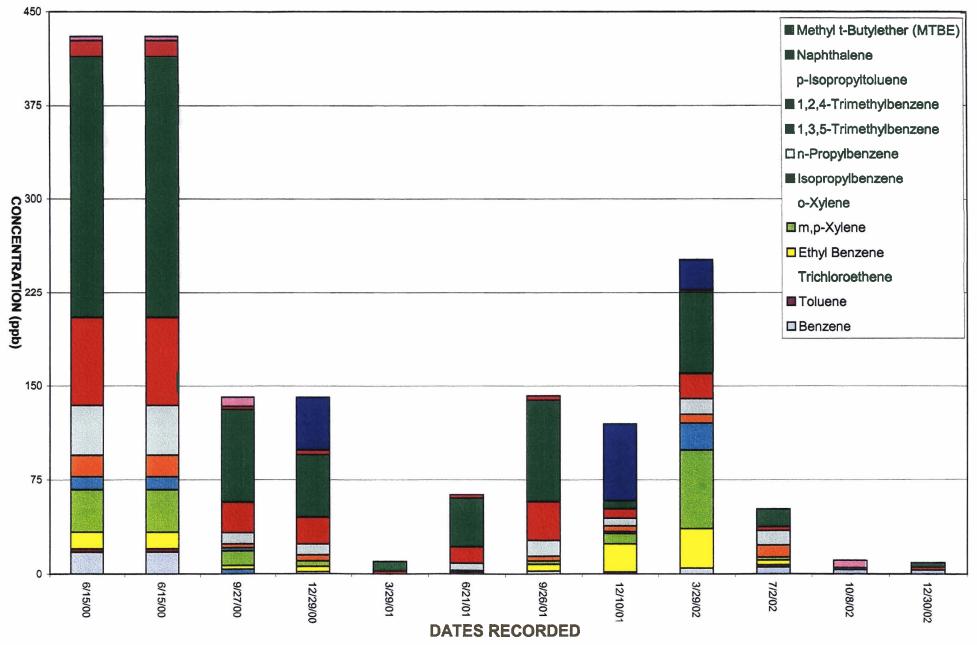
On-site groundwater was found to have elevated concentrations of Sodium, Ammonia, Iron and Manganese. All four (4) species are typical of landfill leachate and would be expected due to the site's close proximnity to the Town of Oyster Bay Landfill.

4.2 Off-site Quarterly and Annual Sampling Results

4.2.1 Off-Site Volatile and Semi-Volatile Organic Sampling Results


Groundwater samples were collected from fifteen (15) off-site monitoring wells for the one (1) Annual sampling round and from fourteen (14) off-site wells for the three (3) Quarterly rounds. The results of the Quarterly and Annual sampling analyses are presented in Table 3.

From information collected during the Remedial Investigation (RI) phase of the FTCGRP it was determined that four (4) hydrogeologic zones can be delineated and used to evaluate water quality off-site. The four (4) zones are the "A" (water table) – approximately 40 to 80 feet below grade (fbg), "B" – approximately 180 to 200 fbg, "C" – approximately 280 to 300 fbg and the "D" – approximately 380 to 400 fbg. Following the review of the offsite data, it was determined by the County and the NYSDEC that the majority of FTCGRP's off-site contamination exists in the "B" hydrogeologic zone.


B Zone Water Quality

During MY 2002 the majority of the off-site contamination continued to be detected in four (4) monitoring wells located in the site's designated "B" hydrogeologic zone (-80 ft. to -100 ft. msl). These wells, BP-4B, BP-9B, BP-12B and BP-14B, predominately detected halogenated VOCs, which included: Tetrachloroethene, Trichloroethene, C-1,2- Dichloroethene, 1, 1- Dichloroethane and Vinyl Chloride. Figures 16, 17, 18 and 19 show the historical VOC analytical results for each of the four (4) monitoring wells.

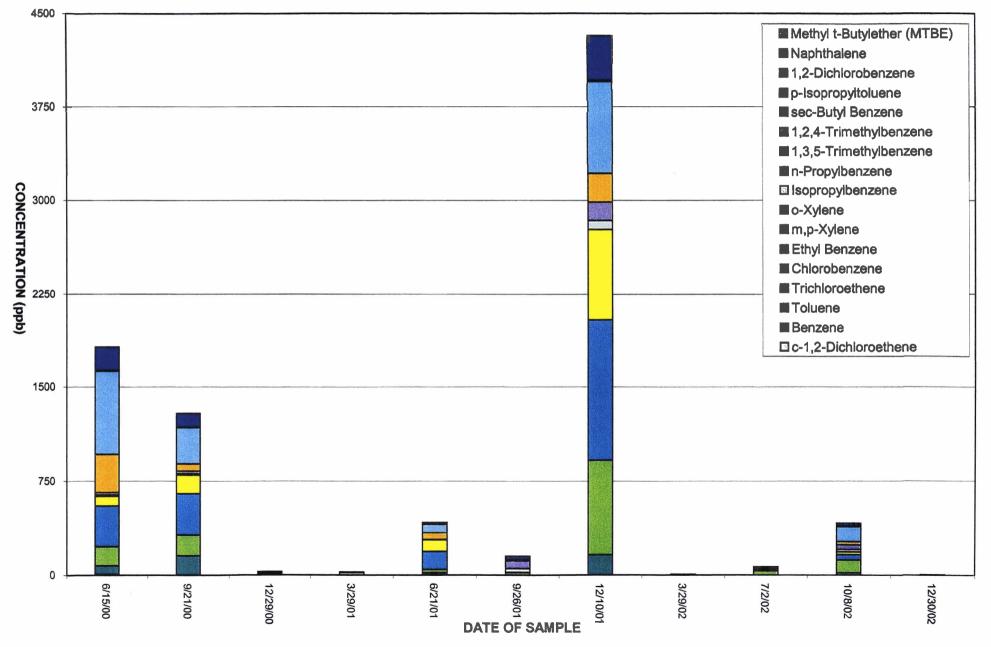

Figure 13 FTC-W-31 VOC CONCENTRATIONS 1999 to 2002

Figure14 FTC-W-32 VOC CONCENTRATIONS 1999 to 2002

Figure15 FTC-W-35 VOC CONCENTRATIONS 1999 to 2002

2002 OFFSITE GROUNDWATER SAMPLING RESULTS

		BP-2A				BP-2B			BP	-3B	BP	-3C			BP-4B		
	Baseline			Baseline					Baseline		Baseline		Baseline				
	Water			Water					Water		Water		Water				
VOLATILE ORGANICS COMPOUNDS	Quality 6/8/99	7/10/02	AMPLED	Quality 6/8/99	3/25/02	7/10/02	AMPLED 10/1/02	12/17/02	Quality 11/00/90		Quality 11/00/90		Quality	0/05/00	DATE S. 6/25/02		40/47/00
	BDL	BDL		8/8/99 BDL	3/25/02 BDL	8DL	BDL	BDL	BDL		BDL		6/8/99	3/25/02 BDL	6/25/02 BDL	10/3/02	12/17/02 BDL
Vinyl Chloride 1.1-Dichloroethene	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL		BDL		10.6	BDL	BDL	1.3 BDL	BDL
1,1-Dichloroethane	BDL	BDL	Annual	BDL	BDL	BDL	BDL	BDL	BDL	Site Not	0.9	Site Not	4.4	2.1	BDL	BDL	BDL
Methylene Chloride	BDL	BDL	Sample Only	BDL	BDL	BDL	BDL	BDL	BDL	Accessable No Sample	NA NA	Accessable No Sample	BDL	Z.I BDL	BDL	2.0	BDL
t -1,2-Dichloroethene	BDL	BDL		BDL	BDL	BDL	BDL	BDL	NA		BDL		BDL	BDL	BDL	BDL	1.2
c-1,2-Dichloroethene	BDL	BDL		BDL	BDL	BDL	BDL	BDL	NA		11.0		117.0	135.6	96.8	33.3	36.8
1.2-Dichloroethene	BDL	BDL		BDL	BDL	BDL	BDL	BDL	NA		NA NA		BDL	BDL	BDL	BDL	BDL
Benzene	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL		BDL		8.5	228.3	149	31.3	35.1
Toluene	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL		BDL		32.1	BDL	BDL	BDL	BDL
Chloroform	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL		BDL		BDL	BDL	BDL	BDL	BDL
Tetrachloroethene	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL		12.0		597.0	85.1	63.9	57.9	48.9
Chlorobenzene	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL		BDL		26.2	BDL	BDL.	BDL	BDL
Ethyl Benzene	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL		BDL		155.0	BDL	BDL	BDL	BDL
m,p-Xylene	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL		NA		4.6	BDL	BDL	BDL	BDL
o-Xylene	BDL	BDL		BDL	BDL	BDL	BDL	BDL	2.0		BDL		37.3	9.5	4.4	BDL	BDL
Isopropylbenzene	BDL	BDL		BDL	BDL	BDL	BDL	BDL	NA		NA		9.8	7.6	4.6	BDL	BDL
2,2 Dichloropropane & cis-1,2-Dichloroethene	BDL	BDL		BDL	BDL	BDL	BDL	BDL	NA		NA		8DL	BDL	BDL	BDL	BDL
Dichlorodifluoromethane	BDL	BDL		BDL	BDL	BDL	BDL	BDL	NA		NA		BDL	BDL	BDL	BDL	BDL
1,1,1 Trichloroethane	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL		2.0		BDL	BDL	BDL	BDL	BDL
1,1,2 Trichloroethane	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL		NA		BDL	BDL	BDL	BDL	BDL
1,2 Dichloroethane	BDL	BDL		BDL	BDL	BDL	BDL	BDL	NA		BDL		BDL	BDL	BDL	BDL	1.8
1,2 Dibromoethane	BDL	BDL		BDL	BDL	BDL	BDL	BDL	NA		BDL		BDL	BDL	BDL	BDL	BDL
1,4-Dichlorobenzene	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL		NA		BDL	BDL	BDL	BDL	BDL
1,2-Dichlorobenzene	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL		NA		BDL	BDL	BDL	BDL	BDL
Trichloroethene	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL		3.0		BDL	30.4	23.7	11.8	13.3
1,2,4-Trimethylbenzene	BDL	BDL		BDL	BDL	BDL	BDL	BDL	NA		BDL		BDL	BDL	9.5	BDL	1.4
Naphthalene	BDL BDL	BDL BDL		BDL BDL	BDL	BDL BDL	BDL	BDL	BDL BDL		BDL BDL		20.0	11.9	BDL	BDL	BDL
1,1,1-Trichloromethane Methyl t-Butylether (MTBE)	BDL	BDL		BDL	BDL BDL	BDL	BDL BDL	BDL BDL	BDL		BDL		BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL
		BUL		BUL	BDL	BUL	BUL	BUL	BUL		BUL		5.7	BUL	BDL	BDL	BDL
SEMI-VOLATILE ORGANIC COMPOUND	BDL	BDL		0.0	NA	BDL	NA	NA					BDL	NA	BDL		
1,2-Dichlorobenzene	BDL	BDL		2.3 BDL	NA	BDL	NA	NA	BDL		BDL		BDL	NA		NA	NA
2,4-Dinitrotoluene	BDL	BDL		BDL	NA	BDL	NA	NA	BDL		BDL		BDL	NA	BDL BDL	NA NA	NA NA
Fluorene Naphthalene	BDL	BDL		BDL	NA	BDL	NA	NA	BDL BDL		BDL BDL		BDL	NA	BDL	NA	NA
INORGANIC PARAMETERS	DUL	UUC		DDL	114	DUL	NA	NA	BUL		BUL		BUL	INA	BUL	INA	NA
ph	6.32	6.25		6.68	NA	6.54	NA	NA	5.03		5.64		4.00	NA	4.00	NA	NA
Specific Conductance	471	363		608	NA	562	NA	NA	81.8		30.0		4.96	NA	4.90 331	NA	NA
Alkalinity as Calcium Carbonate	29	33		68	NA	502	NA	NA	BDL		BDL		9	NA	9.0	NA	NA
B.O.D.	BDL	BDL		BDL	NA	BDL	NA	NA	BDL		1.0		BDL	NA	BDL	NA	NA
Chemical Oxygen Demand	BDL	BDL		BDL	NA	BDL	NA	NA	BDL		40.6		BDL	NA	BDL	NA	NA
Hardness, Total	30.9	64.6		37	NA	32.2	NA	NA	14.9		1.9		49.8	NA	63.7	NA	NA
Nitrate as N	1.97	2.54		BDL	NA	BDL	NA	NA	4.15		BDL		0.53	NA	0.60	NA	NA
Total Phosphorus as P	BDL	BDL		BDL	NA	BDL	NA	NA	BDL		BDL		BDL	NA	BDL	NA	NA
Sodium, Total	49.3	34.0		60.9	NA	64.8	NA	NA	6.30		1.91		23.4	NA	21.9	NA	NA
Total Kjeldahl	7.58	0.51		16.1	NA	10.3	NA	NA	0.24		0.16		0.16	NA	0.32	NA	NA
Ammonia as N	7.58	0.15		16.1	NA	11.1	NA	NA	BDL		BDL.		BDL	NA	BDL	NA	NA
Sulfate Chloride	15.8 90	16.4 68		15.8 110	NA NA	20.4	NA NA	NA NA	BDL 10.0		<u>6.4</u> 5.0		40.8 30	NA NA	46.2 52.5	NA NA	NA NA
Total Dissolved Solids	196	208		237	NA	246	NA	NA	92		47		132	NA NA	178	NA	NA
Total Suspended Solids	BDL	1.0		BDL	NA	BDL	NA	NA	BDL		1.0		BDL	NA	BDL	NA	NA
Aluminum, Total	BDL	0.016		BDL	NA	BDL	NA	NA	BDL		0.045		BDL	NA	BDL	NA	NA
Iron, Total	0.007	0.017		0.021	NA	0.030	NA	NA	0.106		1.39		0.015	NA	0.009	NA	NA
Manganese, Total	0.275	0.311		0.846	NA	0.625	NA	NA	0.011		0.006		0.13	NA	0.231	NA	NA
Nickel, Total	0.009	0.002		BDL	NA	0.003	NA	NA	BDL		BDL		0.020	NA	0.011	NA	NA
Chromium, Total	BDL	0.001		BDL	NA	0.002	NA	NA	BDL		BDL		BDL	NA	BDL	NA	NA

LABORATORY: Nassau County DPW Special Projects Laboratory

Table 3b 2002 OFFSITE GROUNDWATER SAMPLING RESULTS

			BP-4C					BP-9B				BP	-9C				BP-10B		
	Baseline					Baseline					Baseline				Baseline				
	Water Quality		DATES	AMPLED		Water Quality		DATES	AMPLED		Water Quality				Water Quality		DATES	AMPLED	
VOLATILE ORGANICS COMPOUNDS	6/8/99	3/25/02	6/25/02	10/3/02	1	6/4/99	3/25/02	6/27/02	10/1/02	12/16/02	7/27/99	3/25/02	6/27/02		6/4/99	3/25/02	7/2/02	10/1/02	12/16/02
Vinvl Chloride	5.0	8.3	6.2	5		BDL	1.2	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
1,1-Dichloroethene	4.0	2.4	BDL	1.6		3.6	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
1,1-Dichloroethane	3.3	4.4	3.8	3	Equipment	6.4	7.4	BDL	3.6	5.2	BDL	BDL	BDL	Equipment	BOL	BDL	BDL	BDL	BDL
Methylene Chloride	BDL	BDL	BDL	2	Equipment Failure No Sample	BDL	BDL	2.0	BDL	BDL	BDL	BDL	BDL	Failure	BDL	BDL	BDL	BDL	BDL
t -1,2-Dichloroethene	BDL	BDL	BDL	BDL	rie Sampie	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	Samples	BDL	BDL	BDL	BDL	BDL
c-1,2-Dichloroethene	152.0	145.6	124	89.8		106.0	47.6	BDL	12.4	17.4	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
1,2-Dichloroethene	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
Benzene	9.0	43.6	37.9	24.9		BDL	2.0	BDL	BDL	1.2	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
Toluene	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
Chloroform	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
Tetrachloroethene	30.4	143	138	182.1		98.9	18.8	BDL	5.9	9.4	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
Chlorobenzene	34.4	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
Ethyl Benzene	206.0	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
m,p-Xylene	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
o-Xylene	1.4	8.8	7.0	4.6		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
Isopropylbenzene	BDL	1.7	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
2,2 Dichloropropane & cis-1,2-Dichloroethene	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
Dichlorodifluoromethane	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	1.2	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
1,1,1 Trichloroethane	BDL	4.4	4.6	4.6		BDL	1.6	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
1,1,2 Trichloroethane	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
1,2 Dichloroethane	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	1	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
1,2 Dibromoethane	BDL	BDL	BDL	BDL		BDL	BDL	BDL	8DL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
1,4-Dichlorobenzene	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
1,2-Dichlorobenzene	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
Trichloroethene	BDL	27.7	25	19.9		BDL	6.4	BDL	2.5	3.3	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
1,2,4-Trimethylbenzene	BDL	BDL	4.2	2.6		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
Naphthalene	BDL	BDL.	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	'BDL	BDL ¹	BDL
1,1,1-Trichloromethane	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
Methyl t-Butylether (MTBE)	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL
SEMI-VOLATILE ORGANIC COMPOUND						L													
1,2-Dichlorobenzene	BDL	NA	BDL	NA		BDL	NA	BDL	NA	NA	NA	NA	BDL		BDL	NA	BDL	NA	NA
2,4-Dinitrotoluene	3.9	NA	BDL	NA		BDL	NA	BDL	NA	NA	NA	NA	BDL BDL		BDL	NA	BDL	NA	NA
Fluorene	BDL	NA	BDL	NA		BDL BDL	NA	BDL BDL	NA	NA	NA	NA	BDL		BDL. BDL	NA NA	BDL BDL	NA	NA
Naphthalene	BDL	NA	BDL	NA		BDL	NA	BDL	NA	NA	NA	NA	BDL		BDL	NA	BDL	NA	NA
INORGANIC PARAMETERS	5.00		4.07	NA		4.07	NA	E 45	NA	NA	NA	NA	0.07		E 04	NA	5.40		
ph	5.08	NA NA	4.87	NA		4.97		5.15	NA	NA	NA NA	NA	6.27		5.21	NA	5.46	NA	NA
Specific Conductance	119	NA	250 10	NA		89.6 5	NA NA	93 BDL	NA	NA	NA	NA	76 18		48.1 BDL	NA	48 BDL	NA NA	NA NA
Alkalinity as Calcium Carbonate	8 BDL	NA	BDL	NA		BDL	NA	BDL	NA	NA	NA	NA	BDL		BDL	NA	BDL	NA	NA
B.O.D. Chemical Oxygen Demand	BDL	NA	BDL	NA		BDL	NA	BDL	NA	NA	NA	NA	BDL		BDL	NA	BDL	NA	NA
Hardness, Total	24.1	NA	60.9	NA		16.2	NA	15.8	NA	NA	NA	NA	22.8		8.8	NA	8.8	NA	NA
Nitrate as N	2.3	NA	4.37	NA		3.62	NA	3.16	NA	NA	NA	NA	1.43		1.73	NA	1.91	NA	NA
Total Phosphorus as P	BDL	NA	BDL	NA		BDL	NA	BDL	NA	NA	NA	NA	BDL		BDL	NA	0.28	NA	NA
	10.3	NA	14.5	NA	<u> </u>	L/A	NA	8.06	NA	NA	NA	NA	3.88		LA	NA	4.22	NA	NA
Sodium, Total Total Kjeldahl	BDL	NA	0.31	NA		0.13	NA	BDL	NA	NA	NA	NA	BDL		BDL	NA	0.1	NA	NA
Ammonia as N	BDL	NA	BDL	NA		BDL	NA	BDL	NA	NA	NA	NA	BDL		BDL	NA	BDL	NA	NA
Sulfate	5.06	NA	16.6	NA		BDL	NA	9.81	NA	NA	NA	NA	6.4		BDL	NA	BDL	NA	NA
Chloride	15	NA	40	NA		12.5	NA	15	NA	NA	NA	NA	5		7.5	NA	BDL	NA	NA
Total Dissolved Solids	64	NA	138	NA		48	NA	56	NA	NA	NA	NA	46		25	NA	46.0	NA	NA
Total Suspended Solids	BDL	NA	BDL	NA		BDL	NA	BDL	NA	NA	NA	NA	BDL		2.5	NA	2.0	NA	NA
Aluminum, Total	BDL	NA	0.084	NA		BDL	NA	0.055	NA	NA	NA	NA	0.034		BDL	NA	0.093	NA	NA
Iron. Total	0.003	NA	0.037	NA		BDL	NA	BDL	NA	NA	NA	NA	0.012		BDL	NA	0.039	NA	NA
Manganese, Total	0.005	NA	0.031	NA		0.003	NA	0.008	NA	NA	NA	NA	0.004		0.001	NA	0.002	NA	NA
Nickel, Total	0.019	NA	0.008	NA		0.005	NA	0.003	NA	NA	NA	NA	BDL		0.005	NA	BDL	NA	NA
Chromium, Total	BDL	NA	BDL	NA		BDL	NA	BDL	NA	NA	NA	NA	BDL		BDL	NA	0.001	NA	NA
eta				-	the second se	-	and the second s								Lange of the land	and the second se	0.001		

LABORATORY: Nassau County DPW Special Projects Laboratory

NOTE: All results ug/l

Table 3c 2002 OFFSITE GROUNDWATER SAMPLING RESULTS

			BP-10C	;				BP-12A				All search and	BP-12B		
	Baseline					Baseline					Baseline				
	Water Quality		DATE S	AMPLED		Water Quality		DATE S	AMPLED		Water Quality		DATES	AMPLED	
VOLATILE ORGANICS COMPOUNDS	6/4/99	3/25/02	7/2/02	10/1/02	12/16/02	6/4/99	3/26/02	6/25/02	10/3/02	12/17/02	6/4/99	3/26/02	6/25/02	10/3/02	12/17/02
Vinyl Chloride	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1.1-Dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1-Dichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	9.2	7.6	5.1	5.4	5.3
Methylene Chloride	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	2.3	BDL
t -1,2-Dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1.4
c-1,2-Dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	78.9	40.5	28.1	31.2	26.7
1,2-Dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Benzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	6.0	3.0
Toluene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chloroform	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Tetrachloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	30.7	10.8	9.9	7.3	12.3
Chlorobenzene	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL	BDL	BDL
Ethyl Benzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			BDL	BDL	BDL BDL
m,p-Xylene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL BDL	BDL BDL	BDL	BDL BDL	BDL
o-Xylene Isopropylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
2,2 Dichloropropane & cis-1,2-Dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Dichlorodifluoromethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	3.1	1.4
1.1.1 Trichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1,2 Trichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2 Dichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1.7	BDL	BDL	1.3
1.2 Dibromoethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,4-Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2-Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Trichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	19.8	8.5	6.9	7.1	7
1,2,4-Trimethylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Naphthalene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1,1-Trichloromethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	3.3	BDL	BDL	BDL	BDL
Methyl t-Butylether (MTBE)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL.	BDL	BDL	BDL	BDL	BDL	BDL
SEMI-VOLATILE ORGANIC COMPOUND															
1,2-Dichlorobenzene	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA
2,4-Dinitrotoluene	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA
Fluorene	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA
Naphthalene	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA
INORGANIC PARAMETERS								4 100							
ph	5	NA	5.11	NA	NA	5.2	NA	4.79	NA	NA	4.86	NA	4.79	NA	NA
Specific Conductance	44.2 BDL	NA NA	51.0 BDL	NA NA	NA NA	89 BDL	NA NA	505	NA NA	NA NA	454 BDL	NA	505	NA	NA
Alkalinity as Calcium Carbonate	BDL	NA	BDL BDL	NA	NA NA	BDL	NA	BDL BDL	NA	NA	BDL	NA	BDL BDL	NA	NA NA
B.O.D.	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA
Chemical Oxygen Demand Hardness, Total	6.7	NA	8.3	NA	NA	15.8	NA	37.8	NA	NA	41.2	NA	37.8	NA	NA
Nitrate as N	1.8	NA	2.31	NA	NA	2.77	NA	3.22	NA	NA	3.53	NA	3.22	NA	NA
Total Phosphorus as P	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA
Sodium, Total	L/A	NA	4.37	NA	NA	L/A	NA	70.2	NA	NA	L/A	NA	70.2	NA	NA
Total Kjeldahl	BDL	NA	BDL	NA	NA	BDL	NA	0.19	NA	NA	BDL	NA	0.19	NA	NA
Ammonia as N	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA
Sulfate	BDL	NA	25.6	NA	NA	6.1	NA	17.4	NA	NA	23.2	NA	17.4	NA	NA
Chloride	7.5	NA	5.0	NA	NA	15	NA	118	NA	NA	95	NA	118	NA	NA
Total Dissolved Solids	16	NA	41.0	NA	NA	42	NA	245	NA	NA	223	NA	245	NA	NA
Total Suspended Solids	BDL	NA	BDL	NA	NA	2	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA
Aluminum, Total	BDL	NA	BDL	NA	NA	BDL	NA	0.078	NA	NA	BDL	NA	0.078	NA	NA
Iron, Total	BDL	NA	0.008	NA	NA	0.098	NA	0.011	NA	NA	BDL	NA	0.011	NA	NA
Manganese, Total	0.001	NA	0.002	NA	NA	0.063	NA	0.027	NA	NA	0.015	NA	0.027	NA	NA
Nickel, Total	BDL	NA	0.002	NA	NA	0.113	NA	0.008	NA	NA	0.011	NA	0.008	NA	NA
Chromium, Total	BDL	NA	BDL	NA	NA	0.006	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA

LABORATORY: Nassau County DPW Special Projects Laboratory

NOTE: All results ug/l

Table 3d 2002 OFFSITE GROUNDWATER SAMPLING RESULTS

		BP-12C						BP-13B			BP-13C					
	Baseline					Baseline					Baseline					
	Water Quality		DATE S	AMPLED		Water Quality			AMPLED		Water Quality		DATES	AMPLED		
VOLATILE ORGANICS COMPOUNDS	6/15/00				6/19/00	3/28/02	6/27/02	10/4/02	12/19/02	6/19/00				12/19/02		
Vinvl Chloride	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
1,1-Dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
1,1-Dichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
Methylene Chloride	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
t -1.2-Dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
c-1,2-Dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
1,2-Dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
Benzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
Toluene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL.	BDL	
Chloroform	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
Tetrachloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
Chlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
Ethyl Benzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
m,p-Xylene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
o-Xylene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
Isopropylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
2,2 Dichloropropane & cis-1,2-Dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
Dichlorodifluoromethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BOL	BDL	BDL	BDL	BDL	
1,1,1 Trichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
1,1,2 Trichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL.	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
1,2 Dichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
1,2 Dibromoethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
1,4-Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
1,2-Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
Trichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
1,2,4-Trimethylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
Naphthalene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
1,1,1-Trichloromethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
Methyl t-Butylether (MTBE)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
SEMI-VOLATILE ORGANIC COMPOUND	S NA	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	
1,2-Dichlorobenzene 2,4-Dinitrotoluene	NA	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA NA	
Fluorene	NA	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	
Naphthalene	NA	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	
INORGANIC PARAMETERS		100	DDL			DUL	NA	DUL		NA	BUL	NA	BUL	INA		
ph		NA	4.99	NA	NA	5.03	NA	5.17	NA	NA	5.64	NA	4.52	NA	NA	
Specific Conductance	4.93	NA	39.0	NA	NA	81.8	NA	88	NA	NA	30.0	NA	27	NA	NA	
Alkalinity as Calcium Carbonate	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	
B.O.D.	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	1.0	NA	BDL	NA	NA	
Chemical Oxygen Demand	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	40.6	NA	BDL	NA	NA	
Hardness, Total	3.8	NA	5.5	NA	NA	14.9	NA	15.8	NA	NA	1.9	NA	1.6	NA	NA	
Nitrate as N	1.02	NA	1.94	NA	NA	4.15	NA	4.14	NA	NA	BDL	NA	1.7	NA	NA	
Total Phosphorus as P	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	
Sodium, Total	2.85	NA	3.72	NA	NA	6.30	NA	7.15	NA	NA	1.91	NA	2.57	NA	NA	
Total Kjeldahl	0.11	NA	0.11	NA	NA	0.24	NA	BDL	NA	NA	0.16	NA	0.11	NA	NA	
Ammonia as N	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	
Sulfate	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	6.4	NA	BDL	NA	NA	
Chloride	BDL	NA	5.0	NA	NA	10.0	NA	12.5	NA	NA	5.0	NA	BDL	NA	NA	
Total Dissolved Solids	43	NA	23.0	NA	NA	92	NA	65.0	NA	NA	47	NA	20	NA	NA	
Total Suspended Solids	BDL	NA	11.0	NA	NA	BDL	NA	BDL	NA	NA	1.0	NA	BDL	NA	NA	
Aluminum, Total	0.074	NA	0.082	NA	NA	BDL	NA	BDL	NA	NA	0.045	NA	0.015	NA	NA	
Iron, Total	0.002	NA	0.039	NA	NA	0.106	NA	0.018	NA	NA	1.39	NA	0.077	NA	NA	
Manganese, Total	0.001	NA	0.001	NA	NA	0.011	NA	0.006	NA	NA	0.006	NA	0.003	NA	NA	
Nickel, Total	0.001	NA	0.004	NA	NA	BDL	NA	0.002	NA	NA	BDL	NA	0.004	NA	NA	
Chromium, Total	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	BDL	NA	BDL	NA	NA	

LABORATORY: Nassau County DPW Special Projects Laboratory

NOTE: All results ug/l

4/5

^{Table 3e} 2002 OFFSITE GROUNDWATER SAMPLING RESULTS

2

	when well?	BP-14B				BP-14C				U-6A			RB-1		
North and in (Baseline				Baseline				Baseline			Baseline		
	of the way	Water Quality		ATE SAMPL	ED	Water Quality	D	ATE SAMPI	ED	Water Quality			Water Quality		
	VOLATILE ORGANICS COMPOUNDS	4/11/02	8/8/02	10/30/02	12/16/02	4/11/02	8/8/02	10/3/02	12/16/02	6/8/99	7/2/02		6/8/99	7/2/02	
	Vinvl Chloride	9.2	8.7	10.5	8.3	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	
	1,1-Dichloroethene	25	36.4	36.7	39.8	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	Annual
\sim	1,1-Dichloroethane	5.1	5.1	4.8	5.6	BDL	BDL	BDL	BDL	BDL	BDL	Annual Sample	BDL	BDL	Sample
, 0.	Methylene Chloride	BDL	BDL	3.4	BDL	BDL	BDL	BDL	BDL	BDL	BDL	Only	BDL	BDL	Only
·+	t -1,2-Dichloroethene	BDL	1.5	1.6	4	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	
0	c-1,2-Dichloroethene	244	264	262	319	BDL	BDL	BDL	1.6	BDL	BDL		BDL BDL	BDL	
Mo pic.	1,2-Dichloroethene Benzene	BDL 83.7	BDL 87.5	BDL 78.9	BDL 91.2	BDL BDL	BDL BDL	BDL	BDL BDL	BDL BDL	BDL BDL		BDL	BDL BDL	
5 0	Toluene	BDL	BDL	BDL	BDL	BDL	BDL	BDL BDL	BDL	BDL	BDL		BDL	BDL	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Chloroform	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	
No O'	Tetrachloroethene	375	733	1090	761	BDL	BDL	4.6	2.6	5.8	BDL		BDL	BDL	
N N V	Chlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	
0120	Ethyl Benzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	
0	m,p-Xylene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	
	o-Xylene	4.3	5.3	5.3	6.5	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	
	Isopropylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	
	2,2 Dichloropropane & cis-1,2-Dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	
	Dichlorodifluoromethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL BDL	BDL BDL		BDL BDL	BDL BDL	
	1,1,1 Trichloroethane	50.6 BDL	63.6	74.5 BDL	77.9 BDL	BDL BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	
	1,1,2 Trichloroethane	BDL	9.2 12.9	BDL	16.7	BDL	BDL BDL	BDL BDL	BDL BDL	BDL	BDL	-	BDL	BDL	
	1,2 Dibromoethane	15.4	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	
	1.4-Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	
	1.2-Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	
	Trichloroethene	40.8	49.3	50.4	57.2	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	
	1,2,4-Trimethylbenzene	1.4	1.3	BDL	1.9	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	
	Naphthalene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	
	1,1,1-Trichloromethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	
	Methyl t-Butylether (MTBE)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	L
	SEMI-VOLATILE ORGANIC COMPOUNDS														
	1,2-Dichlorobenzene	BDL	NA	BDL	NA	NA	BDL	NA	NA	BDL	BDL		BDL	BDL	
	2,4-Dinitrotoluene	BDL	NA	BDL	NA	NA	BDL	NA	NA	BDL BDL	BDL BDL		BDL BDL	BDL BDL	
	Fluorene	BDL BDL	NA NA	BDL BDL	NA NA	NA NA	BDL BDL	NA NA	NA NA	BDL	BDL		BDL	BDL	
	Naphthalene INORGANIC PARAMETERS	BUL	NA	BUL	NA	NA	BUL	NA	NA	BUL	BUL		BUL	BDL	
	ph	5.03	NA	5.14	NA	NA	5.05	NA	NA	5.58	6.49		5.58	6.42	
	Specific Conductance	81.8	NA	114	NA	NA	50.0	NA	NA	5103	449		5103	365	
	Alkalinity as Calcium Carbonate	BDL	NA	9.0	NA	NA	BDL	NA	NA	17	17		17	47	
	B.O.D.	BDL	NA	2.4	NA	NA	BDL	NA	NA	BDL	3.8		BDL	BDL	
	Chemical Oxygen Demand	BDL	NA	BDL	NA	NA	7.7	NA	NA	BDL	BDL		BDL	BDL	
	Hardness, Total	14.9	NA	24.3	NA	NA	BDL	NA	NA	423	48.5		423	68.9	
	Nitrate as N	4.15	NA	1.93	NA	NA	2.34	NA	NA	3.77	3.12		3.77	2.77	
	Total Phosphorus as P	BDL	NA	BDL	NA	NA	BDL	NA	NA	BDL	0.12		BDL	BDL	
	Sodium, Total	6.30	NA	8.62	NA	NA	4.62	NA	NA	807	59.1		807	36.6	
	Total Kjeldahl	0.24	NA	0.17	NA	NA	0.17	NA	NA	0.1	1.61		0.1	0.14	
	Ammonia as N	BDL	NA	BDL	NA	NA	BDL	NA	NA	BDL	BDL		BDL	BDL	
	Sulfate	BDL	NA	11.1	NA	NA	5.5	NA	NA	BDL	17.4		BDL	24.2	
	Chloride	10.0	NA	15.0	NA	NA NA	5.0	NA	NA	1574	100		1574	50	
	Total Dissolved Solids	92 BDL	NA	67.0 2.0	NA	NA NA	<u>31.0</u> 1.0	NA	NA	2888 BDL	276		2888 BDL	211 BDL	
	Total Suspended Solids Aluminum, Total	BDL	NA NA	0.380	NA NA	NA NA	0.014	NA NA	NA NA	BDL	0.191		BDL	0.017	
	Iron, Total	0.106	NA	0.044	NA NA	NA	0.014	NA	NA	0.008	7.14		0.008	0.017	
	Manganese, Total	0.001	NA	0.004	NA	NA	0.002	NA	NA	0.000	0.319		0.000	BDL.	
	Nickel, Total	BDL	NA	0.003	NA	NA	0.002	NA	NA	BDL	0.009		BDL	0.001	
	Chromium, Total	BDL	NA	0.001	NA	NA	BDL	NA	NA		0.006		BDL	0.002	
											0.000				the state of the state of the

LABORATORY: Nassau County DPW Special Projects Laboratory Ceder Creek S.T.P., Wantagh, New York NOTE: All results ug/l

5/5

Figure 16 BP-4B VOC CONCENTRATIONS 1999 to 2002

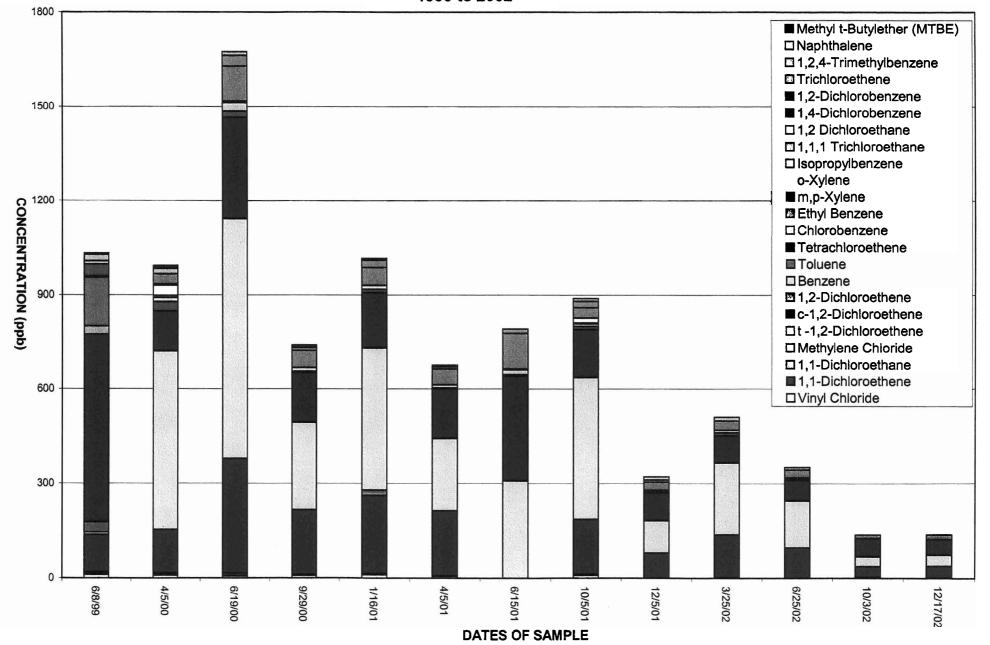
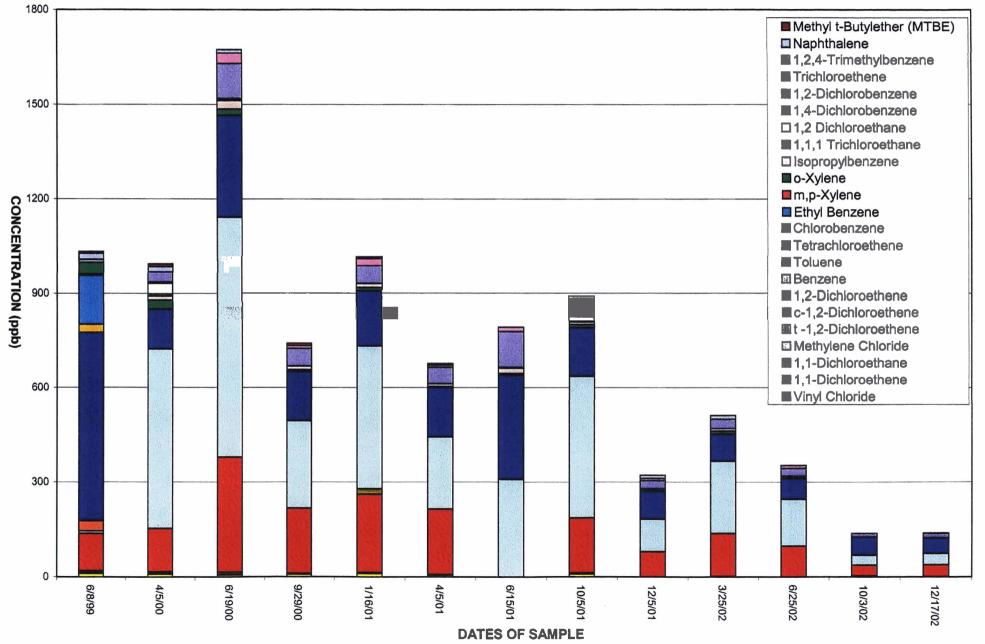





Figure 16 BP-4B VOC CONCENTRATIONS 1999 to 2002



32

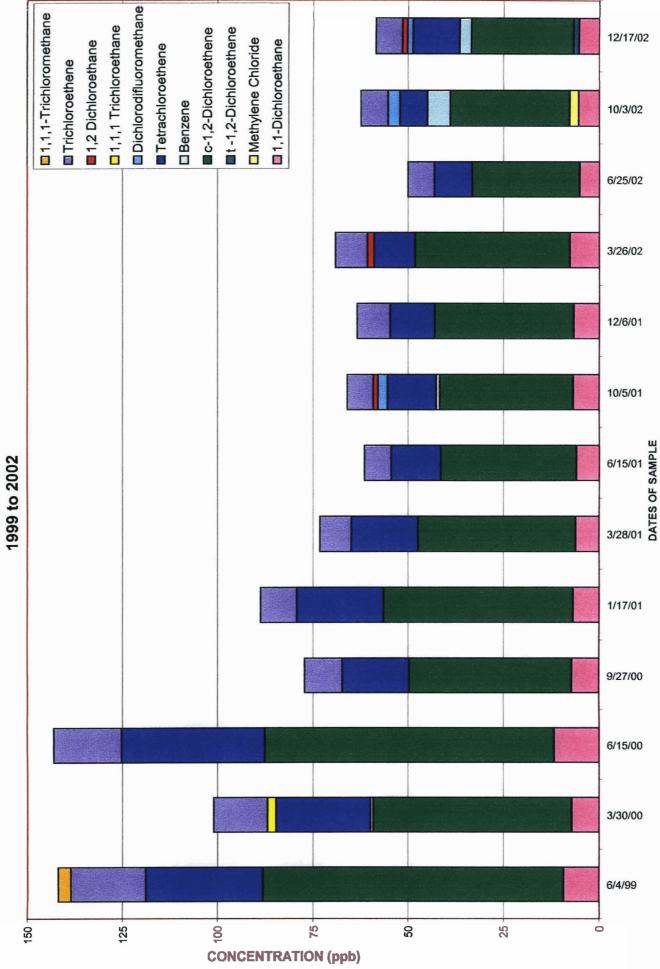
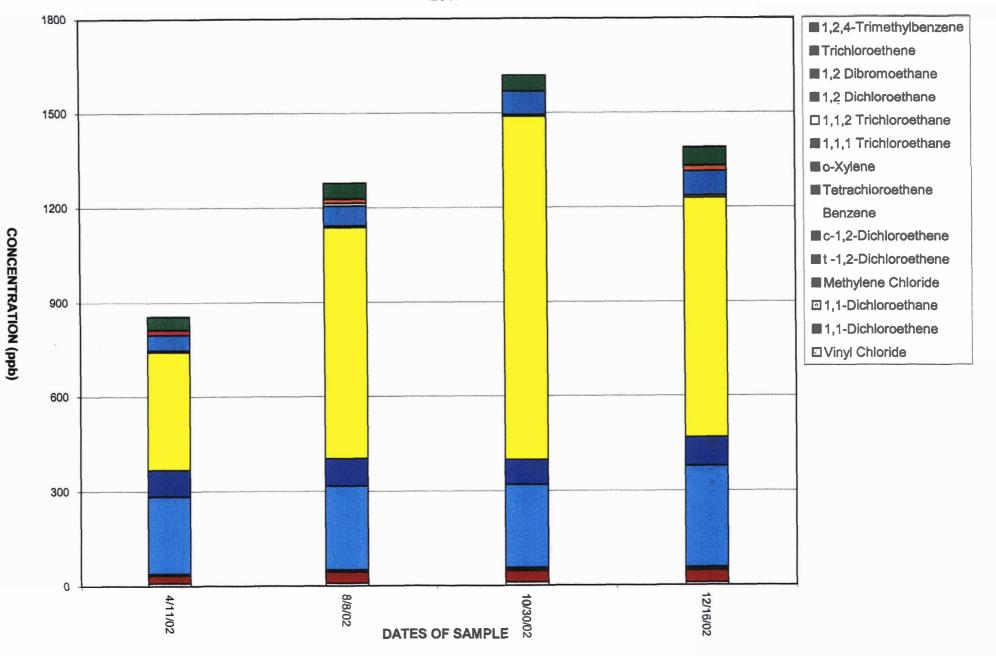
Figure 17 BP-9B VOC CONCENTRATIONS 1999 to 2002

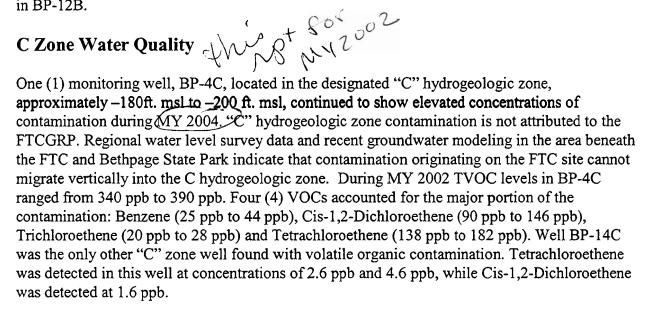


33

DATE OF SAMPLE





Figure 19 BP-14B VOC CONCENTRATIONS 2002



35

Monitoring wells BP-4B (fig. 16) and BP-9B (fig. 17) had their highest level of contamination for the year, during the first Quarterly sampling event in March. Both wells showed decreasing levels for the remainder of MY 2002. TVOC levels for MY 2002 observed in BP-4B were highest in March at 511 ppb and leveled off at 138 ppb and 139 ppb for the last two (2) sampling events in October and December. In MY 2002 Monitoring well BP-12B, located farther downgradient of the site showed consistent TVOC levels ranging from approximately 50 ppb to 70 ppb.

Monitoring well BP-14B was installed in December 2001 to better define the local contamination downgradient of BP-4B and near off-site recovery wells ORW-4, ORW-5 and ORW-6. BP-14B was sampled four (4) times in MY 2002, results from all four (4) sampling events detected significant concentrations of VOC's (Figure 19). TVOC levels in groundwater collected from BP-14B ranged from 855 ppb to 1618 ppb. The major portion of the contamination found in BP-14B is from two (2) VOC's: Cis-1,2-Dichloroethene (244 ppb to 319 ppb) and Tetrachloroethene (375 ppb to 1090 ppb). In addition to high contaminant concentrations, samples collected from BP-14B in MY 2002 also detected many more individual compounds compared to other "B" zone wells. BP-14B detected between eleven (11) and thirteen (13) compounds, compared to six (6) to eight (8) in BP-4B, one (1) to seven (7) in BP-9B and four (4) to eight (8) in BP-12B.



#### 4.2.2 Off-Site Inorganic Sampling Results

The inorganic groundwater sampling results are presented in Table 3. No inorganic parameters are included in the FTCGRP's remedial action, as described in the site's Record of Decision. Concentrations of all inorganic parameters analyzed for in MY 2002 were consistent with levels found in natural groundwater beneath Long Island.

#### Quarterly and Annual Hydraulic Monitoring Effects 4.3

#### 4.3.1 On-Site Hydraulic Effects

During periods of active product recovery additional petroleum product enters each of the impacted monitoring wells further depressing the water table. The change in water levels caused by the presence of petroleum product increases the observed drawdown created by the recovery system alone.

Therefore, the only way to accurately determine the product recovery systems effect is to measure water levels in those monitoring wells that do not contain measurable amounts of petroleum product.

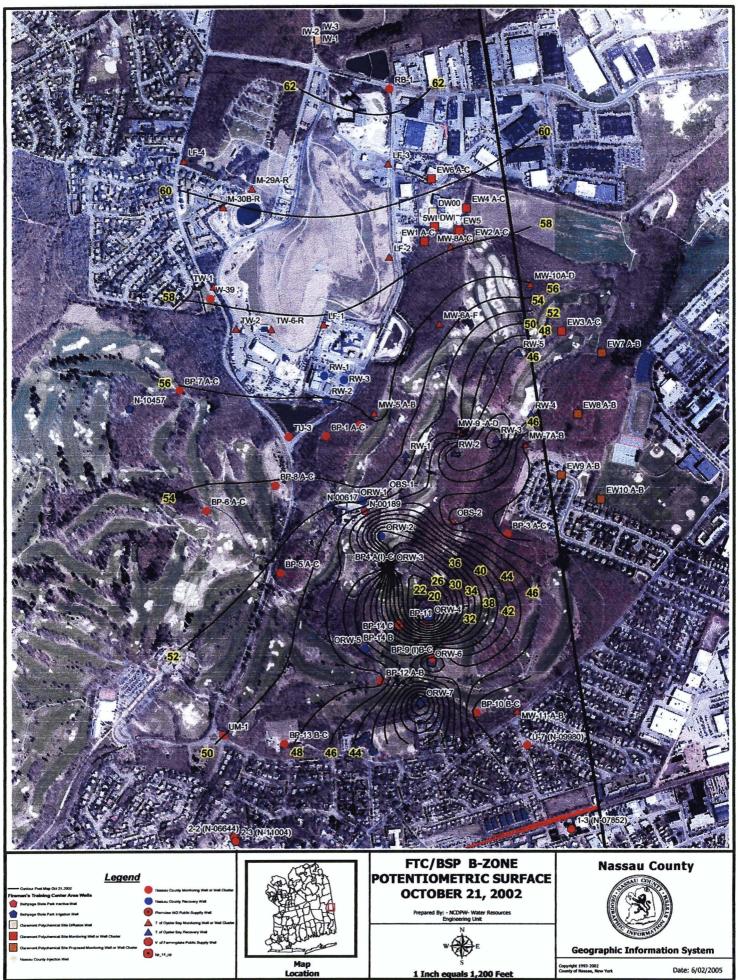
Review of the existing petroleum product monitoring well locations indicates that they are not distributed evenly around the site. The majority of the wells exist in and around the three onsite petroleum product bodies. The available monitoring wells without petroleum product (12) are located around the perimeter of the site, which does not provide enough interior data points to measure and plot the onsite hydraulic effects.

#### 4.3.2 Off-Site Hydraulic Effects

Offsite hydraulic conditions are monitored quarterly to ensure that all operating recovery wells are effectively controlling offsite contamination. In an effort to understand the interaction of the two major offsite treatment systems, (FTCGRP) and the Town of Oyster Bay's (TOBAY) recovery operation, Town and County personnel conduct comprehensive synoptic water level rounds in January, April, July and October of each year.

Physical limitations on the amount of treated water which can be effectively recharged to the aquifer system via the recharge basin and the (3) offsite injection wells located along Bethpage-Sweethollow Road result in occasional reductions in total flowrate and changes in the number and configuration of operating Offsite Recovery Wells (ORW) throughout the year.

During Monitoring Year (MY) 2002, the offsite treatment system operated in five different recovery configurations. During the winter and early spring ORW-1, 5, 6 and 7 were operated at a combined flowrate of 470 gpm. During the summer two recovery modes were employed. In the early summer ORW-1, 4, 6 and 7 were pumped at a combined rate of 605 gpm. In the late summer ORW-2, 3, 4, 6 and 7 were pumped at a combined flowrate of 910 gpm. The increase in flowrate was due to a localized drought condition that provided additional recharge capacity.


In the early fall ORW-2, 3, 4 and 7 were pumped at 765 gpm. In the late fall ORW-2, 3, 4 and 7 were operated at a combined flowrate of 665 gpm.

Offsite recovery well ORW-7 is operated in all five configurations to maintain hydraulic influence on the lead edge of the known contamination.

All groundwater collection and treatment being conducted by Nassau County and the Town of Oyster Bay occurs in the B hydrogeologic zone.

Offsite pumping conditions in the B-zone can be examined in detail by comparing water level data collected during each of the comprehensive synoptic water level rounds. Water level contours produced from the October 21, 2002 synoptic round are presented in figure 20.

Figure 20



Examination of the potentiometric surface prepared for the B hydrogeologic zone on this date indicates that the overall regional flow direction is from north-northwest to south-southeast. Elevations range from 62 ft. msl. to 16 ft. msl. beneath Bethpage State Park. The regional groundwater contours are modified in the vicinity of both operating recovery systems.

The Town of Oyster Bay operated three of five recovery wells producing a "kidney-shaped" depression with observed recovery wellhead elevations between 46 and 50 ft. msl.

A large depression formed in the vicinity of County recovery wells ORW-2, 3, and 4 which pumped at a combined flowrate of 595 gpm. A separate, nearly circular depression formed around recovery well ORW-7 that was pumped at 150 gpm.

Regional contours are modified at the 50 ft. msl. level creating a northeast to southwest direction of groundwater flow between the two operating systems. The lowest elevation is observed at offsite recovery well ORW-4 (16 ft. msl.).

## APPENDIX A PLANT EFFICIENCY REPORTS 2002

## January 2002

DATE	HOURS OF	EFFICIENCY OF OPERATION	REASON FOR OUTAGE
1	24	100.0%	
2	24	100.0%	
3	24	100.0%	
4	24	100.0%	
5	24	100.0%	
6	21.45	89.4%	Heavy Rain - High East Basin Level
7	12	50.0%	High East Basin Level
8	24	100.0%	
9	24	100.0%	
10	24	100.0%	
11	24	100.0%	
12	24	100.0%	
13	24	100.0%	
14	24	100.0%	
15	24	100.0%	
16	24	100.0%	
17	24	100.0%	
18	24	100.0%	
19	24	100.0%	
20	24	100.0%	
21	24	100.0%	
22	24	100.0%	
23	24	100.0%	
24	24	100.0%	
25	24	100.0%	
26	24	100.0%	
27	24	100.0%	
28	24	100.0%	
29	24	100.0%	
30	24	100.0%	
31	24	100.0%	
TOTAL HOURS IN THE MONTH	TOTAL HOURS OF OPERATION	EFFICIENCY OF MONTHLY OPERATION	
744	729.45	98.0%	

## FEBRUARY 2002

DATE	HOURS OF	EFFICIENCY OF OPERATION	REASON FOR OUTAGE
1	24	100.0%	
2	24	100.0%	
3	24	100.0%	
4	24	100.0%	
5	24	100.0%	
6	24	100.0%	
7	24	100.0%	
8	24	100.0%	
9	24	100.0%	
10	24	100.0%	
11	24	100.0%	
12	24	100.0%	
13	24	100.0%	
14	24	100.0%	
15	24	100.0%	
16	24	100.0%	
17	24	100.0%	
18	24	100.0%	
19	24	100.0%	
20	24	100.0%	
21	24	100.0%	
22	24	100.0%	
23	24	100.0%	
24	24	100.0%	
25	24	100.0%	
26	24	100.0%	
27	24	100.0%	
28	24	100.0%	
TOTAL HOURS IN THE MONTH	TOTAL HOURS OF OPERATION	EFFICIENCY OF MONTHLY OPERATION	
672	672	100.0%	

	Р		FICIENCY
		MARCH	1 2002
DATE	HOURS OF OPERATION	EFFICIENCY OF OPERATION	REASON FOR OUTAGE
1	24	100.0%	
2	24	100.0%	
3	24	100.0%	
4	24	100.0%	
5	24	100.0%	
6	24	100.0%	
7	24	100.0%	
8	24	100.0%	
9	24	100.0%	
10	24	100.0%	
11	24	100.0%	
12	24	100.0%	
13	24	100.0%	
14	24	100.0%	
15	24	100.0%	
16	23.5	97.9%	Power Outage
17	24	100.0%	
18	24	100.0%	
19	23.75	99.0%	Power Outage
20	24	100.0%	
21	24	100.0%	
22	24	100.0%	
23	24	100.0%	
24	23.5	97.9%	Power Outage
25	23.75	99.0%	Power Outage
26	23.75	99.0%	Power Outage
27	23.75	99.0%	Power Outage
28	24	100.0%	
29	24	100.0%	
30	23.25	96.9%	Power Outage
31	24	100.0%	
TOTAL HOURS IN THE MONTH	TOTAL HOURS OF OPERATION	EFFICIENCY OF MONTHLY OPERATION	
744	741.25	99.6%	

	PLANT EFFICIENCY		
		APRIL	2002
DATE	HOURS OF	EFFICIENCY OF OPERATION	REASON FOR OUTAGE
1	24	100.0%	
2	24	100.0%	
3	24	100.0%	
4	24	100.0%	
5	24	100.0%	
6	24	100.0%	
7	24	100.0%	
8	24	100.0%	
9	24	100.0%	
10	24	100.0%	
11	24	100.0%	
12	24	100.0%	
13	24	100.0%	
14	24	100.0%	
15	24	100.0%	
16	24	100.0%	
17	24	100.0%	
18	24	100.0%	
19	24	100.0%	
20	24	100.0%	
21	23	95.8%	High Eff. Wet Well
22	24	100.0%	
23	24	100.0%	
24	24	100.0%	
25	24	100.0%	
26	24	100.0%	
27	24	100.0%	
28	11	45.8%	Heavy Rain - High East Basin Level
29	0	0.0%	High East Basin Level
30	16.75	69.8%	High East Basin Level / Power Outage
TOTAL HOURS IN THE MONTH	TOTAL HOURS OF OPERATION	EFFICIENCY OF MONTHLY OPERATION	
720	674.75	93.7%	

PLANT EFFICIENCY			
		MAY	2002
DATE	HOURS OF	EFFICIENCY OF OPERATION	REASON FOR OUTAGE
1	24	100.0%	
2	24	100.0%	
3	24	100.0%	
4	24	100.0%	
5	24	100.0%	
6	24	100.0%	
7	24	100.0%	
8	24	100.0%	
9	24	100.0%	
10	24	100.0%	
11	24	100.0%	
12	23	95.8%	Power Outage
13	24	100.0%	
14	23	95.8%	Power Outage
15	20.25	84.4%	Power Outage
16	24	100.0%	
17	24	100.0%	
18	7.5	31.3%	Heavy Rain - High East Basin Level
19	0	0.0%	High East Basin Level
20	17.5	72.9%	High East Basin Level
21	24	100.0%	
22	23.75	99.0%	Power Outage
23	24	100.0%	
24	24	100.0%	
25	24	100.0%	
26	24	100.0%	
27	23.5	97.9%	Power Outage
28	24	100.0%	
29	24	100.0%	
30	24	100.0%	
31	24	100.0%	
TOTAL HOURS IN THE MONTH	TOTAL HOURS OF OPERATION	EFFICIENCY OF MONTHLY OPERATION	
744	690.5	92.8%	

	PLANT EFFICIENCY		
		JUNE	2002
DATE	HOURS OF OPERATION	EFFICIENCY OF OPERATION	REASON FOR OUTAGE
1	24	100.0%	
2	24	100.0%	
3	24	100.0%	
4	24	100.0%	
5	24	100.0%	
6	24	100.0%	
7	21	87.5%	Heavy Rain - High East Basin Level
8	22.5	93.8%	Power Outage
9	24	100.0%	
10	24	100.0%	
11	24	100.0%	
12	24	100.0%	
13	24	100.0%	
14	24	100.0%	
15	24	100.0%	
16	24	100.0%	
17	23.75	99.0%	
18	24	100.0%	
19	24	100.0%	
20	24	100.0%	
21	23.75	99.0%	
22	24	100.0%	
23	24	100.0%	
24	24	100.0%	
25	24	100.0%	
26	21.5	89.6%	Power Outage
27	24	100.0%	
28	24	100.0%	
29	24	100.0%	
30	24	100.0%	
TOTAL HOURS IN THE MONTH	TOTAL HOURS OF OPERATION	EFFICIENCY OF MONTHLY OPERATION	
720	712.5	99.0%	ļ

PLANT EFFICIENCY			
		July	2002
DATE	HOURS OF	EFFICIENCY OF OPERATION	REASON FOR OUTAGE
1	24	100.0%	
2	24	100.0%	
3	24	100.0%	
4	24	100.0%	
5	24	100.0%	
6	24	100.0%	
7	24	100.0%	
8	24	100.0%	
9	24	100.0%	
10	20	83.3%	Replacing leaking gasket in SAB-1
11	24	100.0%	
12	24	100.0%	
13	24	100.0%	
14	24	100.0%	
15	24	100.0%	
16	24	100.0%	
17	24	100.0%	
18	24	100.0%	
19	24	100.0%	
20	24	100.0%	
21	24	100.0%	
22	24	100.0%	
23	24	100.0%	
24	24	100.0%	
25	24	100.0%	
26	24	100.0%	
27	24	100.0%	
28	24	100.0%	
29	24	100.0%	
30	24	100.0%	
31	24	100.0%	
TOTAL HOURS IN THE MONTH	TOTAL HOURS OF OPERATION	EFFICIENCY OF MONTHLY OPERATION	
744	740	99.5%	

т

	P	LANT EF	FICIENCY
		AUGUS	Т 2002
DATE	HOURS OF OPERATION	EFFICIENCY OF OPERATION	REASON FOR OUTAGE
1	24	100.0%	
2	23	95.8%	T-storm - Power outage
3	23	95.8%	Power outage
4	24	100.0%	
5	24	100.0%	
6	24	100.0%	
7	24	100.0%	
8	24	100.0%	
9	24	100.0%	
10	24	100.0%	
11	24	100.0%	
12	24	100.0%	
13	24	100.0%	
14	24	100.0%	
15	24	100.0%	
16	24	100.0%	
17	24	100.0%	
18	24	100.0%	
19	24	100.0%	
20	24	100.0%	
21	24	100.0%	
22	24	100.0%	
23	24	100.0%	
24	22.5	93.8%	Power outages (X2)
25	24	100.0%	
26	24	100.0%	
27	24	100.0%	
28	24	100.0%	
29	17.5	72.9%	High Basin Levels
30	16.45	68.5%	High Basin Levels
31	24	100.0%	
TOTAL HOURS IN THE MONTH	TOTAL HOURS OF OPERATION	EFFICIENCY OF MONTHLY OPERATION	
744	726.45	97.6%	

## **SEPTEMBER 2002**

DATE	HOURS OF	EFFICIENCY OF OPERATION	REASON FOR OUTAGE
1	24	100.0%	
2	24	100.0%	
3	24	100.0%	
4	24	100.0%	
5	24	100.0%	
6	24	100.0%	
7	24	100.0%	
8	24	100.0%	
9	24	100.0%	
10	24	100.0%	
11	23	95.8%	Power outage
12	24	100.0%	
13	24	100.0%	
14	24	100.0%	
15	24	100.0%	
16	23	95.8%	Power outage
17	24	100.0%	
18	24	100.0%	
19	24	100.0%	
20	24	100.0%	
21	24	100.0%	
22	23.5	97.9%	Power outage
23	24	100.0%	
24	24	100.0%	
25	24	100.0%	
26	24	100.0%	
27	24	100.0%	
28	24	100.0%	
29	24	100.0%	
30	24	100.0%	
TOTAL HOURS IN THE MONTH	TOTAL HOURS OF OPERATION	EFFICIENCY OF MONTHLY OPERATION	
720	717.5	99.7%	

## OCTOBER 2002

DATE	HOURS OF	EFFICIENCY OF OPERATION	REASON FOR OUTAGE
1	24	100.0%	
2	24	100.0%	
3	24	100.0%	
4	24	100.0%	
5	24	100.0%	
6	23.5	97.9%	Power outage
7	24	100.0%	
8	24	100.0%	
9	24	100.0%	
10	24	100.0%	
11	24	100.0%	
12	24	100.0%	
13	6	25.0%	High Basin levels
14	17	70.8%	High Basin levels
15	24	100.0%	
16	21.75	90.6%	Power outages (X2)
17	24	100.0%	
18	24	100.0%	
19	24	100.0%	
20	24	100.0%	
21	23	95.8%	Power outage
22	23.75	99.0%	Power outage
23	24	100.0%	
24	24	100.0%	
25	24	100.0%	
26	24	100.0%	
27	24	100.0%	
28	24	100.0%	
29	24	100.0%	
30	24	100.0%	
31	24	100.0%	
TOTAL HOURS IN THE MONTH	TOTAL HOURS OF OPERATION	EFFICIENCY OF MONTHLY OPERATION	
744	715	96.1%	

	Р	LANT EF	FICIENCY
		NOVEMB	ER 2002
DATE	HOURS OF OPERATION	EFFICIENCY OF OPERATION	REASON FOR OUTAGE
1	24	100.0%	
2	24	100.0%	
3	24	100.0%	
4	24	100.0%	
5	23.5	97.9%	Power outage
6	24	100.0%	
7	24	100.0%	
8	24	100.0%	
9	24	100.0%	
10	24	100.0%	
11	24	100.0%	
12	24	100.0%	
13	24	100.0%	
14	24	100.0%	
15	24	100.0%	
16	24	100.0%	
17	24	100.0%	
18	17.5	72.9%	Replacement of air valve for AS-1
19	24	100.0%	
20	24	100.0%	
21	24	100.0%	
22	24	100.0%	
23	24	100.0%	
24	24	100.0%	
25	24	100.0%	
26	24	100.0%	
27	24	100.0%	
28	24	100.0%	
29	24	100.0%	
30	24	100.0%	
TOTAL HOURS IN THE MONTH	TOTAL HOURS OF OPERATION	EFFICIENCY OF MONTHLY OPERATION	
720	713	99.0%	]

## **DECEMBER 2002**

DATE	HOURS OF OPERATION	EFFICIENCY OF OPERATION	REASON FOR OUTAGE
1	24	100.0%	
2	24	100.0%	
3	24	100.0%	
4	24	100.0%	
5	24	100.0%	
6	24	100.0%	
7	24	100.0%	
8	24	100.0%	
9	24	100.0%	
10	24	100.0%	
11	24	100.0%	
12	24	100.0%	
13	24	100.0%	
14	24	100.0%	
15	24	100.0%	
16	24	100.0%	
17	24	100.0%	
18	24	100.0%	
19	24	100.0%	
20	24	100.0%	
21	24	100.0%	
22	24	100.0%	
23	24	100.0%	
24	24	100.0%	
25	24	100.0%	
26	24	100.0%	
27	24	100.0%	
28	24	100.0%	
29	24	100.0%	
30	24	100.0%	
31	24	100.0%	
OTAL HOURS IN THE MONTH	TOTAL HOURS OF OPERATION	EFFICIENCY OF MONTHLY OPERATION	YEARLY TOTALS:

TOTAL HOURS IN THE YEAR8760TOTAL HOURS OF OPERATION8576EFFICIENCY OF OPERATION FOR 200297.9%

## **APPENDIX B**

# MONTHLY INFLUENT MONITORING REPORTS 2002

#### **JANUARY 2002**

INFLUENT	UNITS	OFFSITE 1A		OFFSITE 1A			I			OFFSITE 1A	ONSITE 1B
PARAMETER		01/02/02	01/02/02	01/08/02	01/08/02	01/15/02	01/15/02	01/22/02	01/22/02	01/29/02	01/29/02
FLOW, DAILY AVG	GPD	301814	252086	319033	215600	313600	233657	378343	227286	268086	225586
FLOW, DAILY MAX	GPD	367850	256400	349200	240000	384500	240300	383200	230000	383400	227000
VINYL CHLORIDE	μ <b>g</b> /l	4.4	BDL	4.5	BDL	4.8	BDL	7.2	BDL	5.2	BDL
1,1-DICHLOROETHANE	μg/l	4.7	BDL	5.0	BDL	5.2	BDL	7.3	BDL	5.4	BDL
1,2(TRANS)-DICHLOROETHYLENE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2(CIS)-DICHLOROETHYLENE	μg/i	40.6	3.7	43.3	6.5	45.7	5.2	66.8	7.4	43.7	6.2
1,1,1-TRICHLOROETHANE	μg/l	2.3	BDL	2.3	BDL	2.1	BDL	3.3	BDL	BDL	BDL
TRICHLOROETHYLENE	μg/l	7.4	BDL	7.4	BDL	8.0	BDL	17.0	5.6	7.8	BDL
BENZENE	μg/l	30.3	0.8	27.4	BDL	32.8	0.7	45.3	1.4	31.3	1.6
TETRACHLOROETHYLENE	μg/1	30.6	BDL	28.5	BDL	29.2	BDL	63.3	BDL	20.2	BDL
TOLUENE	μg/l	BDL	BDL	BDL	1.7	BDL	BDL	BDL	BDL	BDL	BDL
m,p-XYLENE	μg/I	BDL	BDL	BDL	1.8	BDL	BDL	BDL	4.6	BDL	3.6
o-XYLENE	μg/l	1.6	BDL	1.8	BDL	1.9	BDL	2.7	BDL	2.2	BDL
1,1-DICHLOROETHENE	μg/l	BDL	BDL	BDL	BDL	1.5	BDL	1.8	BDL	BDL	BDL
METHYL ETHYL KEYTONE	μg/ł	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
ACETONE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
CHLOROFORM	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DICHLOROBROMOMETHANE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DIBROMOCHLOROMETHANE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
NAPHTHALENE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	9.7	BDL	BDL
TOTAL VOCs	μg/l	121.9	4.5	120.2	10.0	131.2	5.9	214.7	19.0	115.8	11.4
PHENANTHRENE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
FLUORENE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
PYRENE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
BIS(2-ETHLHEXYL)PHTHALATE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DI-N-OCTYL PHTHALATE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DIMETHYL PHTHALATE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DIETHYL PHTHALATE	μ <u>g/</u> Ι	BDL	BDL	1.6	BDL	1.2	BDL	1.4	BDL	1.6	BDL
IRON, TOTAL	μg/l	333.0	4260.0	291.0	3760.0	248.0	4540.0	264.0	4290.0	313.0	4270.0
MANGANESE, TOTAL	μg/I	47.0	5530.0	50.0	5640.0	48.0	5510.0	49.0	5960.0	49.0	5980.0
SUM IRON & MANGANESE	μg/l	380.0	9790.0	341.0	9400.0	296.0	10050.0	313.0	10250.0	362.0	10250.0
NICKEL, TOTAL	μg/l	4.0	3.0	4.0	3.0	4.0	3.0	4.0	4.0	4.0	4.0
ARSENIC, TOTAL	μg/l	BDL	BDL	11.0	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	μg/l	BDL	BDL	BDL	BDL.	BDL	BDL	BDL	BDL	BDL	BDL
CHROMIUM, TOTAL	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

FEBRUARY 2002

INFLUENT	UNITS	OFFSITE 1A	ONSITE 1B						
PARAMETER		02/05/02	02/05/02	02/11/02	02/11/02	02/19/02	02/19/02	02/26/02	02/26/02
FLOW, DAILY AVG	GPD	379329	223686	352967	220600	223313	229238	217657	175043
FLOW, DAILY MAX	GPD	383300	226600	_379000	_223400	258300	248300	219500	240100
VINYL CHLORIDE	μ g/l	BDL	BDL.	4.3	BDL	1.7	BDL	2.1	1.3
1,1-DICHLOROETHANE	μg/l	BDL	BDL	4.3	BDL	2.6	BDL	2.9	BDL
1,2(TRANS)-DICHLOROETHYLENE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2(CIS)-DICHLOROETHYLENE	μg/l	28.6	3.6	32.8	5.4	23.8	5.2	25.5	8.2
1,1,1-TRICHLOROETHANE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	1.6	BDL
TRICHLOROETHYLENE	μg/l	8.4	BDL	7.5	2.1	5.8	BDL	5.7	BDL
BENZENE	μg/l	16.9	BDL	23.1	BDL	7.7	BDL	8.6	1.1
TETRACHLOROETHYLENE	μg/l	17.8	BDL	35.9	2.8	27.7	BDL	21.5	BDL
TOLUENE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
m,p-XYLENE	μg/l	BDL	BDL	BDL	2.8	BDL	2.4	BDL	5.7
o-XYLENE	μ g/l	BDL	BDL	1.6	BDL	BDL	BDĻ	BDL	BDL
1,1-DICHLOROETHENE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
METHYL ETHYL KEYTONE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
ACETONE	μ g/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
CHLOROFORM	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DICHLOROBROMOMETHANE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DIBROMOCHLOROMETHANE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
NAPHTHALENE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
TOTAL VOCs	<u>μg/l</u>	71.7	3.6	109.5	13.1	69.3	7.6	67.9	16.3
PHENANTHRENE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1.1
FLUORENE	μ g/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
PYRENE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
BIS(2-ETHLHEXYL)PHTHALATE	μg/i	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DI-N-OCTYL PHTHALATE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DIMETHYL PHTHALATE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DIETHYL PHTHALATE	<u>μg/l</u>	1.8	BDL	1.8	BDL	BDL	BDL	BDL	BDL
IRON, TOTAL	μg/l	325.0	3670.0	1460.0	3030.0	259.0	3850.0	230.0	805.0
MANGANESE, TOTAL	μg/l	48.0	5800.0	52.0	4040.0	32.0	5860.0	34.0	8600.0
SUM IRON & MANGANESE	μg/l	373.0	9470.0	1512.0	7070.0	291.0	9710.0	264.0	9405.0
NICKEL, TOTAL	μg/l	4.0	2.0	3.0	9.0	2.0	5.0	4.0	BDL
ARSENIC, TOTAL	μg/l	BDL	BDL	BDL	75.0	BDL	75.0	BDL	94.0
ALUMINUM, TOTAL	μ g/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
CHROMIUM, TOTAL	μg/l	BDL	BDL	BDL	9.0	BDL	5.0	BDL	BDL

**MARCH 2002** 

INFLUENT	UNITS	OFFSITE 1A	ONSITE 1B	OFFSITE 1A		OFFSITE 1A	ONSITE 1B	OFFSITE 1A	ONSITE 1B
PARAMETER		03/05/02	03/05/02	03/12/02	03/12/02	03/19/02	03/19/02	03/25/02	03/25/02
FLOW, DAILY AVG	GPD	214243	124943	287143	129600	341743	129600	366650	134000
FLOW, DAILY MAX	GPD	219400	126700	343600	131200	361000	134000	372300	137300
VINYL CHLORIDE	μ g/l	BDL	BDL	2.3	1.7	2.0	1.4	BDL	1.3
1,1-DICHLOROETHANE	μg/l	2.4	BDL	2.5	BDL	2.6	BDL	2.7	BDL
1,2(TRANS)-DICHLOROETHYLENE		BDL	BDL						
1,2(CIS)-DICHLOROETHYLENE	μg/l	21.5	6.8	49.6	8.1	47.1	8.0	51.5	BDL
1,1,1-TRICHLOROETHANE	μg/l	BDL	BDL	4.6	BDL	4.6	BDL	3.7	BDL
TRICHLOROETHYLENE	μg/I	4.5	BDL	8.0	BDL	7.4	BDL	7.1	BDL
BENZENE	μg/l	7.1	0.9	7.2	1.3	7.2	1.2	9.6	1.4
TETRACHLOROETHYLENE	μg/I	23.0	BDL	45.2	BDL	40.2	BDL	37.4	BDL
TOLUENE	μg/l	BDL	BDL						
m,p-XYLENE	μg/l	BDL	4.6	BDL	7.1	BDL	4.3	BDL	4.7
o-XYLENE	μg/I	BDL	BDL						
1,1-DICHLOROETHENE	μg/I	BDL	BDL	2.2	BDL	2.0	BDL	2.1	BDL
METHYL ETHYL KEYTONE	μg/l	BDL	BDL						
ACETONE	μg/l	BDL	BDL						
CHLOROFORM	μg/l	BDL	BDL						
DICHLOROBROMOMETHANE	μg/I	BDL	BDL						
DIBROMOCHLOROMETHANE	μg/I	BDL	BDL						
NAPHTHALENE	μ g/l	BDL	11.1	BDL	14.4	BDL	12.2	BDL	16.1
TOTAL VOCs	μg/l	58.5	23.4	121.6	32.6	113.1	27.1	114.1	23.5
PHENANTHRENE	μg/l	BDL	BDL						
FLUORENE	μg/l	BDL	1.1	BDL	BDL	BDL	BDL	BDL	BDL
PYRENE	μg/l	BDL	BDL						
BIS(2-ETHLHEXYL)PHTHALATE	μg/l	BDL	BDL						
DI-N-OCTYL PHTHALATE	μg/I	BDL	BDL						
DIMETHYL PHTHALATE	μg/l	BDL	BDL						
DIETHYL PHTHALATE	μg/l	BDL	BDL						
IRON, TOTAL	μg/I	251.0	709.0	227.0	1120.0	169.0	427.0	243.0	730.0
MANGANESE, TOTAL	μg/l	33.0	8670.0	23.0	8370.0	24.0	8910.0	25.0	8340.0
SUM IRON & MANGANESE	μg/I	284.0	9379.0	250.0	9490.0	193.0	9337.0	268.0	9070.0
NICKEL, TOTAL	μg/l	2.0	3.0	3.0	4.0	4.0	4.0	3.0	5.0
ARSENIC, TOTAL	μg/l	11.0	BDL	BDL	BDL	BDL	BDL	BDL	BDL
ALUMINUM, TOTAL CHROMIUM, TOTAL	μg/l	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL	BDL BDL	BDL	BDL
	μg/l					BDL		BDL	BDL

**APRIL 2002** 

INFLUENT	UNITS	OFFSITE 1A	ONSITE 1B		ONSITE 1B	OFFSITE 1A	ONSITE 1B	OFFSITE 1A	ONSITE 1B
PARAMETER		04/01/02	04/01/02	04/08/02	04/08/02	04/16/02	04/16/02	04/23/02	
FLOW, DAILY AVG	GPD	637457	137028	632200	137814	616025	139225	676629	
FLOW, DAILY MAX	GPD	660300	138500	643300	139500	635000	141600	764400	
VINYL CHLORIDE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
1,1-DICHLOROETHANE	μg/l	2.0	BDL	1.6	BDL	BDL	BDL	1.9	
1,2(TRANS)-DICHLOROETHYLENE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
1,2(CIS)-DICHLOROETHYLENE	μg/l	39.3	14.5	29.6	7.8	27.4	6.1	33.8	
1,1,1-TRICHLOROETHANE	μg/I	3.0	BDL	2.5	BDL	BDL	BDL	4.0	
TRICHLOROETHYLENE	μg/i	7.0	BDL	5.4	BDL	5.4	BDL	6.0	
BENZENE	μg/l	13.3	2.4	11.3	1.3	9.9	0.9	11.8	
TETRACHLOROETHYLENE	μg/I	38.7	BDL	28.6	BDL	33.8	BDL	33.8	
TOLUENE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
m,p-XYLENE	μg/l	BDL	8.8	BDL	3.8	BDL	3.5	BDL	
o-XYLENE	μg/l	1.6	BDL	BDL	BDL	BDL	BDL	BDL	
1,1-DICHLOROETHENE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
METHYL ETHYL KEYTONE	μg/l	BDL	BDL	BDL	BDL.	BDL	BDL	BDL	
ACETONE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
CHLOROFORM	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
DICHLOROBROMOMETHANE	μg/1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
DIBROMOCHLOROMETHANE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
NAPHTHALENE	μg/l	BDL	12.3	BDL	10.3	BDL	BDL	BDL	
TOTAL VOCs	μ_g/l	104.9	38.0	79.0	23.2	76.5	10.5	91.3	
PHENANTHRENE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
FLUORENE	μg/1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
PYRENE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
BIS(2-ETHLHEXYL)PHTHALATE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
	μg/1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
	μ g/l	BDL	BDL 812.0	BDL	BDL	BDL	BDL 015.0	BDL	
IRON, TOTAL	μg/l	248.0	812.0	240.0	695.0 8460.0	254.0 240.0	915.0 7880.0	130.0	
MANGANESE, TOTAL	μg/l	214.0	8490.0	217.0	8460.0			240.0	
SUM IRON & MANGANESE	μg/l	462.0	9302.0	457.0	9155.0	494.0	8795.0 BDL	370.0 6.0	
	μg/l	5.0	4.0 BDL	4.0	3.0 BDL	5.0 BDL	146.0	BDL	
	μg/l	BDL	BDL	BDL 13.0	11.0	BDL	BDL	13.0	
	μg/l	BDL BDL	BDL	BDL	BDL	BDL	BDL	BDL	
CHROMIUM, TOTAL	μg/l								

#### MAY 2002

PARAMETER         05/01/02         05/01/02         05/01/02         05/21/02         05/28/02           FLOW, DAILY MAX         GPD         590288         722550         3956507         241343         347114           FLOW, DAILY MAX         GPD         781700         730300         693300         356700         34700           VIINTL CHLORDET MANE         µ g/l         BDL         2.2         2.0         3.1         2.8           1,10EHLOROETHANE         µ g/l         BDL         BDL         BDL         BDL         1.4           1,2(TSP).OICHOROETHVLENE         µ g/l         3.0         3.3         5.8         5.4         1.4           1,1,1-TRICHLOROETHVLENE         µ g/l         3.0         3.3         5.8         5.4         1.4           TRICHLOROETHYLENE         µ g/l         36.5         35.0         5.5         47.2         1.4           TOLUENE         µ g/l         BDL         BDL         BDL         BDL         BDL         9.0         1.4           0-XYLENE         µ g/l         BDL         BDL         BDL         BDL         BDL         47.2         1.4           0-XYLENE         µ g/l         BDL         BDL         BDL	INFLUENT	UNITS	OFFSITE 1A	ONSITE 1B	OFFSITE 1A				ONSITE 1B	OFFSITE 1A	ONSITE 1B
FLOW DAILY MAX         GPD         781700         730300         693300         356600         356700           VINV CHORIDE         μ g/l         2.0         BDL         B2.2         2.0         3.1         2.8           1,2/CIRANS,DICHLOROETHYLENE         μ g/l         BDL         BDL         BDL         BDL         BDL         1.4           1,2/CIS,DICHLOROETHYLENE         μ g/l         3.2.4         22.9         50.7         49.8         1.4           1,1,1-RICHLOROETHYLENE         μ g/l         3.0         3.3         5.8         5.4         1.4           TRICHLOROETHYLENE         μ g/l         3.6.5         35.0         51.5         47.2         1.4           TETRACHLOROETHYLENE         μ g/l         BDL         BDL         BDL         BDL         BDL         47.2           TOLUENE         μ g/l         BDL         BDL         BDL         BDL         BDL         47.2         1.4           -X1LENE         μ g/l         BDL         BDL         BDL         BDL         BDL         47.2         1.4           -X1LENE         μ g/l         BDL         BDL         BDL         BDL         BDL         1.1         1.0         1.4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td></t<>								 			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
1.1-DICHLORQETHANE       µ g/l       2.0       3.1       2.8         1.2(TRANS)-DICHLORQETHYLENE       µ g/l       8DL       BDL       BDL         1.2(TRANS)-DICHLORQETHYLENE       µ g/l       32.4       32.9       50.7       49.8         1.1,1-TRICHLORQETHYLENE       µ g/l       3.0       3.3       5.8       5.4         TRICHLORQETHYLENE       µ g/l       6.2       6.0       8.3       8.1         BENZENE       µ g/l       80.1       BDL       BDL       BDL       BDL         mp/l       80.1       BDL       BDL       BDL       BDL       BDL       BDL         o_XVLENE       µ g/l       BDL       BDL       BDL       BDL       BDL       BDL         o_XVLENE       µ g/l       BDL       BDL       BDL       BDL       BDL       BDL         o_XVLENE       µ g/l       BDL       BDL       BDL       BDL       BDL       BDL         o_XVLENE       µ g/l       BDL       BDL       BDL       BDL       BDL       BDL       BDL       BDL         o_XVLENE       µ g/l       BDL       BDL       BDL       BDL       BDL       BDL       BDL       BDL <t< td=""><td></td><td></td><td></td><td>L</td><td></td><td></td><td></td><td></td><td></td><td>356700</td><td></td></t<>				L						356700	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
1,1,1-TRICHLOROETHANE       µ 9/1       3.0       3.3       5.8       5.4         TRICHLOROETHYLENE       µ 9/1       6.2       6.0       8.3       8.1         BENZENE       µ 9/1       36.5       35.0       51.5       47.2         TETRACHLOROETHYLENE       µ 9/1       80.1       BDL       BDL       BDL         mp-XYLENE       µ 9/1       B0L       BDL       BDL       BDL         oryxLENE       µ 9/1       BDL       BDL       BDL       BDL         oryxLENC       µ 9/1       BDL       BDL       BDL       BDL       BDL         oryxLENC       µ 9/1       BDL       BDL       BDL       BDL       BDL       BDL         oryxLENC       µ 9/1       BDL       BDL       BDL       BDL       BDL       BDL       BDL       BDL         DICHLOROETHALENE											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
TETRACHLOROETHYLENE         µ g/l         36.5         35.0         51.5         47.2           TOLUENE         µ g/l         BDL         BDL         BDL         BDL         BDL         BDL           m.pXYLENE         µ g/l         BDL         BDL         BDL         BDL         BDL         BDL           o-XYLENE         µ g/l         BDL											
TOLUENE $\mu \circ g'l$ BDLBDLBDLBDLBDLm.p.XYLENE $\mu \circ g'l$ BDLBDLBDLBDLBDLo-XYLENE $\mu \circ g'l$ BDLBDLBDLBDLBDLo-XYLENE $\mu \circ g'l$ BDLBDLBDLBDLBDLo-XYLENE $\mu \circ g'l$ BDLBDLBDLBDLBDLMETHYL ETHYL KEYTONE $\mu \circ g'l$ BDLBDLBDLBDLBDLACETONE $\mu \circ g'l$ BDLBDLBDLBDLBDLCHLOROFORM $\mu \circ g'l$ BDLBDLBDLBDLBDLDICHLOROBROMOMETHANE $\mu \circ g'l$ BDLBDLBDLBDLBDLDIFNONCHLOROMETHANE $\mu \circ g'l$ BDLBDLBDLBDLBDLDIENAMITHRENE $\mu \circ g'l$ BDLBDLBDLBDLBDLDIN-OCTYL PHTHALATE $\mu $											
m.p.XYLENE $\mu g/l$ BDLBDLBDLBDLBDLo-XYLENE $\mu g/l$ BDLBDLBDLBDLBDL1,1-DICHLOROETHENE $\mu g/l$ BDLBDLBDLBDLBDLMETHYL ETHYL KEYTONE $\mu g/l$ BDLBDLBDLBDLBDLACETONE $\mu g/l$ BDLBDLBDLBDLBDLCHLOROFORM $\mu g/l$ BDLBDLBDLBDLBDLDICHLOROBROMOMETHANE $\mu g/l$ BDLBDLBDLBDLDIGHLOROBROMOMETHANE $\mu g/l$ BDLBDLBDLBDLDIGHLOROS $\mu g/l$ BDLBDLBDLBDLDIGHLOROS $\mu g/l$ BDLBDLBDLBDLDIANTHRENE $\mu g/l$ BDLBDLBDLBDLFLUORENE $\mu g/l$ BDLBDLBDLBDLDIS(2-ETHLHEXYL)PHTHALATE $\mu g/l$ BDLBDLBDLDIMETHYL PHTHALATE $\mu g/l$ BDLBDLBDLDIMETHYL PHTHALATE $\mu g/l$ BDLBDLBDLDIMETHYL PHTHALATE $\mu g/l$ BDLBDLBDLDIMETHYL PHTHALATE $\mu g/l$ BDLBD											
$o$ -XYLENE $\mu g n$ BDLBDLBDLBDLBDLConstraint of the second secon											
1,1-DICHLOROETHENE $\mu g/l$ BDLBDLBDLBDLBDLBDLMETHYL ETHYL KEYTONE $\mu g/l$ BDLBDLBDLBDLBDLACETONE $\mu g/l$ BDLBDLBDLBDLBDLCHLOROFORM $\mu g/l$ BDLBDLBDLBDLDICHLOROBROMOMETHANE $\mu g/l$ BDLBDLBDLBDLDIGHLOROBROMOCHLOROMETHANE $\mu g/l$ BDLBDLBDLBDLDIBROMOCHLOROMETHANE $\mu g/l$ BDLBDLBDLBDLNAPHTHALENE $\mu g/l$ BDLBDLBDLBDLNAPHTHALENE $\mu g/l$ BDLBDLBDLBDLPHENANTHRENE $\mu g/l$ BDLBDLBDLBDLFLUORENE $\mu g/l$ BDLBDLBDLBDLDIS(2-ETHLHEXYL)PHTHALATE $\mu g/l$ BDLBDLBDLDIN-OCTYL PHTHALATE $\mu g/l$ BDLBDLBDLDIMETHYL PHTHALATE $\mu g/l$ BDLBDLBDLDIGON, TOTAL $\mu g/l$		μg/l									
METHYL ETHYL KEYTONE $\mu g'I$ BDLBDLBDLBDLBDLBDLACETONE $\mu g'I$ BDLBDLBDLBDLBDLBDLBDLCHLOROFORM $\mu g'I$ BDLBDLBDLBDLBDLBDLDICHLOROBROMOMETHANE $\mu g'I$ BDLBDLBDLBDLBDLDIBROMOCHLOROMETHANE $\mu g'I$ BDLBDLBDLBDLBDLDIBROMOCHLOROMETHANE $\mu g'I$ BDLBDLBDLBDLBDLNAPHTHALENE $\mu g'I$ BDLBDLBDLBDLBDLTOTAL VOCs $\mu g'I$ BDLBDLBDLBDLBDLFLUORENE $\mu g'I$ BDLBDLBDLBDLBDLPYRENE $\mu g'I$ BDLBDLBDLBDLBDLDIS/2-ETHLHEXYLPHTHALATE $\mu g'I$ BDLBDLBDLBDLDIN-OCTYL PHTHALATE $\mu g'I$ BDLBDLBDLBDLDIMETHYL PHTHALATE $\mu g'I$ BDLBDLBDLBDLNICKEL, TOTAL $\mu g'I$ 6.0BDL2.02.0NICKEL,											
ACETONE $\mu g/l$ BDL $\mu g/l$ BDLBDLBDLBDLBDLCHLOROFORM $\mu g/l$ BDLBDLBDLBDLBDLBDLDIGROMOCHLOROMETHANE $\mu g/l$ BDLBDLBDLBDLBDLDIBROMOCHLOROMETHANE $\mu g/l$ BDLBDLBDLBDLBDLDIBROMOCHLOROMETHANE $\mu g/l$ BDLBDLBDLBDLBDLNAPHTHALENE $\mu g/l$ BDLBDLBDLBDLBDLTOTAL VOCs $\mu g/l$ BDLBDLBDLBDLBDLFLUORENE $\mu g/l$ BDLBDLBDLBDLBDLPYRENE $\mu g/l$ BDLBDLBDLBDLBDLDIN-OCTYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLDIETHYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLJIRON, TOTAL $\mu g/l$ 381.051.0346.0122.0NICKEL, TOTAL $\mu g/l$ BDLBDL2.02.0ARSENIC, TOTAL $\mu g/l$ BDLBDL193.0BDLARSENIC, TOTAL $\mu g/l$ BDLBDL32.0BDLALUMINUM, TOTAL $\mu g/l$ 9.0<											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
DICHLOROBROMOMETHANE $\mu g/l$ BDLBDLBDLBDLBDLDIBROMOCHLOROMETHANE $\mu g/l$ BDLBDLBDLBDLBDLBDLNAPHTHALENE $\mu g/l$ BDLBDLBDLBDLBDLBDLTOTAL VOCs $\mu g/l$ 91.989.0126.3119.7PHENANTHRENE $\mu g/l$ BDLBDLBDLBDLFLUORENE $\mu g/l$ BDLBDLBDLBDLPYRENE $\mu g/l$ BDLBDLBDLBDLBIS(2-ETHLHEXYL)PHTHALATE $\mu g/l$ BDLBDLBDLBDLDIMETHYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLDIRTHYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLDIRTHYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLDIRTHYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLDIRTHYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLDICTOTAL $\mu g/l$ 147.027.0269.0111.0MANGANESE, TOTAL $\mu g/l$ 234.024.077.011.0SUM IRON & MANGANESE $\mu g/l$ 381.051.0346.0122.0NICKEL, TOTAL $\mu g/l$ BDLBDL193.0BDLARSENIC, TOTAL $\mu g/l$ BDLBDL193.0BDLARSENIC, TOTAL $\mu g/l$ BDLBDL193.0BDLALUMINUM, TOTAL $\mu g/l$ BDLBDL32.0BDL <td></td>											
DIBROMOCHLOROMETHANE $\mu g/l$ BDL $\mu g/l$ BDLBDLBDLBDLBDLNAPHTHALENE $\mu g/l$ BDL $\mu g/l$ BDLBDLBDLBDLBDLBDLTOTAL VOCs $\mu g/l$ 91.989.0126.3119.7PHENANTHRENE $\mu g/l$ BDLBDLBDLBDLBDLFLUORENE $\mu g/l$ BDLBDLBDLBDLPYRENE $\mu g/l$ BDLBDLBDLBDLBIS(2-ETHLHEXYL)PHTHALATE $\mu g/l$ BDLBDLBDLDI-N-OCTYL PHTHALATE $\mu g/l$ BDLBDLBDLDI-N-OCTYL PHTHALATE $\mu g/l$ BDLBDLBDLDIETHYL PHTHALATE $\mu g/l$ BDLBDLBDLDIN-TOTAL $\mu g/l$ 147.027.0269.0111.0IRON, TOTAL $\mu g/l$ 381.051.0346.0122.0NICKEL, TOTAL $\mu g/l$ 8DLBDL2.02.0NICKEL, TOTAL $\mu g/l$ BDLBDL2.02.0ARSENIC, TOTAL $\mu g/l$ 9.0BDL32.0BDL											
NAPHTHALENE $\mu g/l$ BDLBDLBDLBDLBDLBDLTOTAL VOCs $\mu g/l$ 91.989.0126.3119.7PHENANTHRENE $\mu g/l$ BDLBDLBDLBDLFLUORENE $\mu g/l$ BDLBDLBDLBDLPYRENE $\mu g/l$ BDLBDLBDLBDLBIS(2-ETHLHEXYL)PHTHALATE $\mu g/l$ BDLBDLBDLDI-N-OCTYL PHTHALATE $\mu g/l$ BDLBDLBDLDI-N-OCTYL PHTHALATE $\mu g/l$ BDLBDLBDLDIETHYL PHTHALATE $\mu g/l$ BDLBDLBDLDIETHYL PHTHALATE $\mu g/l$ BDLBDLBDLDINTOTAL $\mu g/l$ BDLBDLBDLDIRTHYL PHTHALATE $\mu g/l$ 80.180.1DIRTHYL PHTHALATE $\mu g/l$ 80.180.1DIRTHYL PHTHALATE $\mu g/l$ 80.180.1DINTON & MANGANESE $\mu g/l$ 81.027.0SUM IRON & MANGANESE $\mu g/l$ 381.051.0NICKEL, TOTAL $\mu g/l$ 6.080.1ARSENC, TOTAL $\mu g/l$ 80.180.1ALUMINUM, TOTAL $\mu g/l$ 9.080.1BDL32.080.1											
TOTAL VOCs $\mu g/l$ 91.989.0126.3119.7PHENANTHRENE $\mu g/l$ BDLBDLBDLBDLBDLBDLFLUORENE $\mu g/l$ BDLBDLBDLBDLBDLBDLPYRENE $\mu g/l$ BDLBDLBDLBDLBDLBDLBIS(2-ETHLHEXYL)PHTHALATE $\mu g/l$ BDLBDLBDLBDLBDLDI-N-OCTYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLBDLDIMETHYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLBDLDIETHYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLBDLDIRTHYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLBDLDIRTHYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLBDLDIRTHYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLBDLDIRTHYL PHTHALATE $\mu g/l$ BDL27.0269.0111.0IRON, TOTAL $\mu g/l$ 381.051.0346.0122.0NICKEL, TOTAL $\mu g/l$ 6.0BDL2.02.0NICKEL, TOTAL $\mu g/l$ BDLBDL193.0BDLALUMINUM, TOTAL $\mu g/l$ 9.0BDL32.0BDL											
PHENANTHRENEμ g/lBDLBDLBDLBDLBDLFLUORENEμ g/lBDLBDLBDLBDLBDLPYRENEμ g/lBDLBDLBDLBDLBDLBIS(2-ETHLHEXYL)PHTHALATEμ g/lBDLBDLBDLBDLDI-N-OCTYL PHTHALATEμ g/lBDLBDLBDLBDLDIMETHYL PHTHALATEμ g/lBDLBDLBDLBDLDIMETHYL PHTHALATEμ g/lBDLBDLBDLBDLDIMETHYL PHTHALATEμ g/lBDLBDLBDLBDLDIMETHYL PHTHALATEμ g/lBDLBDLBDLBDLDIMETHYL PHTHALATEμ g/l81.027.0269.0111.0IRON, TOTALμ g/l234.024.077.0111.0SUM IRON & MANGANESEμ g/l381.051.0346.0122.0NICKEL, TOTALμ g/lBDLBDL2.02.0ARSENIC, TOTALμ g/lBDLBDL193.0BDLALUMINUM, TOTALμ g/l9.0BDL32.0BDL	NAPHTHALENE	μg/l									
FLUORENE PYRENE $\mu g/l$ BDLBDLBDLBDLBDLBIS(2-ETHLHEXYL)PHTHALATE DI-N-OCTYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLDI-N-OCTYL PHTHALATE DIMETHYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLDIMETHYL PHTHALATE 	TOTAL VOCs	μg/I									
PYRENE $\mu g/l$ BDLBDLBDLBDLBDLBDLBIS(2-ETHLHEXYL)PHTHALATE $\mu g/l$ BDLBDLBDLBDLBDLBDLDI-N-OCTYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLBDLBDLDIMETHYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLBDLBDLDIETHYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLBDLBDLIRON, TOTAL $\mu g/l$ 147.027.0269.0111.0SUM IRON & MANGANESE $\mu g/l$ 234.024.077.011.0SUM IRON & MANGANESE $\mu g/l$ 381.051.0346.0122.0NICKEL, TOTAL $\mu g/l$ 6.0BDL2.02.02.0ARSENIC, TOTAL $\mu g/l$ BDLBDLBDL193.0BDLALUMINUM, TOTAL $\mu g/l$ 9.0BDL32.0BDL0	PHENANTHRENE	μg/l									
BIS(2-ETHLHEXYL)PHTHALATE $\mu g/l$ BDLBDLBDLBDLBDLBDLDI-N-OCTYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLBDLBDLDIMETHYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLBDLBDLDIETHYL PHTHALATE $\mu g/l$ BDLBDLBDLBDLBDLBDLDIETHYL PHTHALATE $\mu g/l$ 147.027.0269.0111.0EDLMANGANESE, TOTAL $\mu g/l$ 234.024.077.011.0SUM IRON & MANGANESE $\mu g/l$ 381.051.0346.0122.0NICKEL, TOTAL $\mu g/l$ 6.0BDL2.02.02.0ARSENIC, TOTAL $\mu g/l$ BDLBDLBDL193.0BDLALUMINUM, TOTAL $\mu g/l$ 9.0BDL32.0BDLBDL	FLUORENE	μg/l									
BIS(2-ETHLHEXYL)PHTHALATE $\mu$ g/lBDLBDLBDLBDLBDLBDLDI-N-OCTYL PHTHALATE $\mu$ g/lBDLBDLBDLBDLBDLBDLBDLDIMETHYL PHTHALATE $\mu$ g/lBDLBDLBDLBDLBDLBDLBDLDIETHYL PHTHALATE $\mu$ g/lBDLBDLBDLBDLBDLBDLBDLIRON, TOTAL $\mu$ g/l147.027.0269.0111.011.0SUM IRON & MANGANESE $\mu$ g/l381.051.0346.0122.011.0NICKEL, TOTAL $\mu$ g/l6.0BDL51.0346.0122.011.0ARSENIC, TOTAL $\mu$ g/lBDLBDLBDLBDL0.00.00.0ALUMINUM, TOTAL $\mu$ g/l9.0BDL32.0BDL0.00.0	PYRENE	μg/I	BDL		BDL		BDL	BDL			
DI-N-OCTYL PHTHALATE $\mu$ g/lBDLBDLBDLBDLBDLDIMETHYL PHTHALATE $\mu$ g/lBDLBDLBDLBDLBDLBDLDIETHYL PHTHALATE $\mu$ g/lBDLBDLBDLBDLBDLBDLIRON, TOTAL $\mu$ g/l147.027.0269.0111.0MANGANESE, TOTAL $\mu$ g/l234.024.077.011.0SUM IRON & MANGANESE $\mu$ g/l381.051.0346.0122.0NICKEL, TOTAL $\mu$ g/l6.0BDL2.02.0ARSENIC, TOTAL $\mu$ g/lBDLBDLBDLBDLALUMINUM, TOTAL $\mu$ g/l9.0BDL32.0BDL	BIS(2-ETHLHEXYL)PHTHALATE	μg/I	BDL		BDL		BDL	BDL			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DI-N-OCTYL PHTHALATE		BDL		BDL		BDL	BDL			
DIETHYL PHTHALATE $\mu$ g/lBDLBDLBDLBDLBDLIRON, TOTAL $\mu$ g/l147.027.0269.0111.0MANGANESE, TOTAL $\mu$ g/l234.024.077.011.0SUM IRON & MANGANESE $\mu$ g/l381.051.0346.0122.0NICKEL, TOTAL $\mu$ g/l6.0BDL2.02.0ARSENIC, TOTAL $\mu$ g/lBDLBDL193.0BDLALUMINUM, TOTAL $\mu$ g/l9.0BDL32.0BDL	DIMETHYL PHTHALATE		BDL		BDL		BDL	BDL			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			BDL		BDL		BDL	BDL			
MANGANESE, TOTAL       μ g/l       234.0       24.0       77.0       11.0         SUM IRON & MANGANESE       μ g/l       381.0       51.0       346.0       122.0         NICKEL, TOTAL       μ g/l       6.0       BDL       2.0       2.0         ARSENIC, TOTAL       μ g/l       BDL       193.0       BDL         ALUMINUM, TOTAL       μ g/l       9.0       BDL       32.0       BDL			147.0		27.0		269.0	 111.0		) 	
SUM IRON & MANGANESE         μ g/l         381.0         51.0         346.0         122.0           NICKEL, TOTAL         μ g/l         6.0         BDL         2.0         2.0           ARSENIC, TOTAL         μ g/l         BDL         193.0         BDL           ALUMINUM, TOTAL         μ g/l         9.0         BDL         32.0         BDL											
NICKEL, TOTAL         μ g/l         6.0         BDL         2.0         2.0           ARSENIC, TOTAL         μ g/l         BDL         BDL         193.0         BDL           ALUMINUM, TOTAL         μ g/l         9.0         BDL         32.0         BDL											
ARSENIC, TOTAL         μ g/l         BDL         BDL         193.0         BDL           ALUMINUM, TOTAL         μ g/l         9.0         BDL         32.0         BDL											
ALUMINUM, TOTAL µ g/l 9.0 BDL 32.0 BDL											
	CHROMIUM, TOTAL	μg/	BDL		BDL		BDL	BDL			

**JUNE 2002** 

INFLUENT PARAMETER	UNITS	OFFSITE 1A 06/04/02	ONSITE 1B	OFFSITE 1A 06/11/02	ONSITE 1B	OFFSITE 1A 06/18/02	ONSITE 1B	OFFSITE 1A 06/25/02	ONSITE 1B
FLOW, DAILY AVG	GPD	346000		640257 899000		884843 903200		877567 887800	
	GPD	348700							ļ
VINYL CHLORIDE	μ g/l	2.0		2.9		BDL		BDL	
	μ g/l	3.0		3.4		3.2		3.3	
1,2(TRANS)-DICHLOROETHYLENE		BDL		BDL		BDL		BDL	1
1,2(CIS)-DICHLOROETHYLENE	μg/l	51.8		38.8		35.0		40.0	
1,1,1-TRICHLOROETHANE	μg/l	4.2		3.1		BDL		BDL	
TRICHLOROETHYLENE	μg/\	7.0		5.7		6.0		5.9	1 1
BENZENE	μg/l	3.3		23.2		21.5		20.6	
TETRACHLOROETHYLENE	μg/l	34.4		27.2		34.9		24.5	
TOLUENE	μg/l	BDL		BDL		BDL		BDL	
m,p-XYLENE	μg/l	BDL		BDL		BDL		BDL	
o-XYLENE	μg/l	BDL		BDL		BDL		BDL	
1,1-DICHLOROETHENE	μg/l	1.9		BDL		BDL		BDL	
METHYL ETHYL KEYTONE	μg/l	BDL		BDL		BDL		BDL	
ACETONE	μg/l	BDL		BDL		BDL		BDL	
CHLOROFORM	μg/l	BDL		BDL		BDL		BDL	
DICHLOROBROMOMETHANE	μg/l	BDL		BDL		BDL		BDL	
DIBROMOCHLOROMETHANE	μg/l	BDL		BDL		BDL		BDL	
NAPHTHALENE	μg/l	BDL		BDL		BDL		BDL	
TOTAL VOCs	μg/l	107.6		104.3		100.6		94.3	
PHENANTHRENE	μ <u>g/</u> Ι	BDL		BDL		BDL		BDL	
FLUORENE	μg/l	BDL		BDL		BDL		BDL	
PYRENE	μg/l	BDL		BDL		BDL		BDL	
BIS(2-ETHLHEXYL)PHTHALATE	μg/l	BDL		BDL		BDL		BDL	
DI-N-OCTYL PHTHALATE	μg/l	BDL		BDL		BDL		BDL	
DIMETHYL PHTHALATE	μg/l	BDL		BDL		BDL		BDL	
DIETHYL PHTHALATE	μg/l	BDL		BDL		BDL		BDL	
IRON, TOTAL	μ <u>g</u> /l	138.0		203.0		143.0		151.0	<u>}</u> }
MANGANESE, TOTAL	μg/l	12.0		170.0		167.0		161.0	
SUM IRON & MANGANESE	μg/1	150.0		373.0		310.0		312.0	
NICKEL, TOTAL	μg/l	4.0		5.0		6.0		5.0	
ARSENIC, TOTAL	μg/l	15.0		20.0		BDL		12.0	
ALUMINUM, TOTAL	μg/l	BDL		9.0		BDL		12.0	
CHROMIUM, TOTAL	μg/l	BDL		BDL		BDL		BDL	

#### **JULY 2002**

INFLUENT	UNITS		ONSITE 1B			OFFSITE 1A				OFFSITE 1A	
PARAMETER		07/02/02	07/02/02		07/09/02	07/16/02	07/16/02	07/23/02	07/23/02	07/29/02	07/29/02
FLOW, DAILY AVG	GPD	753681	0	746272	0	1145172	0	1235386	74057	1387000	129600
FLOW, DAILY MAX	GPD	878867	0	749950	0	1263900	0			1392167	129600
VINYL CHLORIDE	μg/I	BDL		BDL		BDL		3.4	BDL	2.6	BDL
1,1-DICHLOROETHANE	μg/l	3.4		3.6		2.7		3.0	BDL	2.4	BDL
1,2(TRANS)-DICHLOROETHYLENE	μg/l	BDL		BDL		BDL		BDL	BDL	BDL	BDL
1,2(CIS)-DICHLOROETHYLENE	μg/l	39.6		35.8		43.4		47.8	12.1	38.5	10.6
1,1,1-TRICHLOROETHANE	μg/l	4.2		2.4		2.1		2.1	BDL	1.5	BDL
TRICHLOROETHYLENE	μg/l	8.2	1	6.3		7.9		8.3	BDL	6.7	BDL
BENZENE	μg/l	21.2		22.4		44.7		48.4	BDL	40.2	1.7
TETRACHLOROETHYLENE	μg/i	37.6		28.7		32.6		30.3	BDL	28.2	BDL
TOLUENE	μg/l	BDL		BDL		BDL		BDL	1.6	BDL	BDL
m,p-XYLENE	μg/I	BDL		BDL		BDL		BDL	1.3	BDL	BDL
o-XYLENE	μg/l	BDL		1.3		2.2		2.3	BDL	1.9	BDL
1,1-DICHLOROETHENE	μg/l	BDL		BDL		BDL		BDL	BDL	BDL	BDL
METHYL ETHYL KEYTONE	μg/l	BDL		BDL		BDL		BDL	BDL	BDL	BDL
ACETONE	μg/l	BDL		BDL		BDL		BDL	BDL	BDL	BDL
CHLOROFORM	μg/l	BDL		BDL		BDL		BDL	BDL	BDL	BDL
DICHLOROBROMOMETHANE	μg/l	BDL		BDL		BDL		BDL	BDL	BDL	BDL
DIBROMOCHLOROMETHANE	μg/l	BDL		BDL		BDL		BDL	BDL	BDL	BDL
NAPHTHALENE	μg/l	BDL		BDL		BDL		BDL	BDL	BDL	BDL
TOTAL VOCs	μg/I	114.2		100.5		135.6		145.6	15.0	122.0	12.3
PHENANTHRENE	μg/l	BDL		BDL		BDL		BDL	BDL	BDL	BDL
FLUORENE	μg/l	BDL		BDL		BDL		BDL	BDL	BDL	BDL.
PYRENE	μg/l	BDL		BDL		BDL		BDL	BDL	BDL	BDL
BIS(2-ETHLHEXYL)PHTHALATE	μg/l	BDL		BDL		BDL		BDL	1.1	BDL	BDL
DI-N-OCTYL PHTHALATE	μg/i	BDL		BDL		BDL		BDL	BDL	BDL	BDL
DIMETHYL PHTHALATE	μg/l	BDL		BDL		BDL		BDL	BDL	BDL	BDL
DIETHYL PHTHALATE	μg/l	1.5		1.2		BDL		BDL	BDL	BDL	BDL
IRON, TOTAL	μg/l	210.0		191.0		174.0		203.0	782.0	244.0	592.0
MANGANESE, TOTAL	μg/I	188.0		182.0		193.0		118.0	9050.0	155.0	
SUM IRON & MANGANESE	μg/l	398.0		373.0		367.0		321.0	9832.0	399.0	9542.0
NICKEL, TOTAL	μg/1	7.0		6.0		6.0		3.0	5.0	6.0	
ARSENIC, TOTAL	μg/l	BDL		BDL		BDL		BDL	BDL	BDL	BDL
ALUMINUM, TOTAL	μg/I	BDL		BDL		9.0		BDL	BDL	12.0	BDL
CHROMIUM, TOTAL	μg/l	BDL		BDL		BDL		BDL	BDL	BDL	BDL

AUGUST 2002

INFLUENT PARAMETER		OFFSITE 1A 08/06/02	ONSITE 1B 08/06/02	OFFSITE 1A 08/13/02	ONSITE 1B 08/13/02	OFFSITE 1A 08/20/02	ONSITE 1B 08/20/02	0FFSITE 1A 08/27/02	ONSITE 1B 08/27/02
FLOW, DAILY AVG FLOW, DAILY MAX	GPD GPD	1250225 1303700		1262228 1278133		1274657 1278700		1235757 1278133	
VINYL CHLORIDE	μ g/l	2.7		2.8		BDL		BDL	
1,1-DICHLOROETHANE	μ g/l	2.4		2.5		2.8		2.6	
1,2(TRANS)-DICHLOROETHYLENE	µ g/l	BDL		BDL		BDL		BDL	
1,2(CIS)-DICHLOROETHYLENE	μ g/l	34.3		35.5		47.8		40.5	
1,1,1-TRICHLOROETHANE	μ g/l	1.8		1.8		BDL		BDL	
TRICHLOROETHYLENE	μ g/l	6.9		6.7		7.2		BDL	
BENZENE	μ g/l	34.0		33.0		36.4		46.6	
TETRACHLOROETHYLENE	μ g/l	34.0		29.4		37.8		29.5	
TOLUENE	μ g/l	BDL		BDL		BDL		BDL	
m,p-XYLENE	μ g/l	BDL		BDL		BDL		BDL	
o-XYLENE	μ g/l	1.7		1.7		1.9		1.7	
1,1-DICHLOROETHENE	μ g/l	BDL		BDL		BDL		BDL	
METHYL ETHYL KEYTONE	μ g/l	BDL		BDL		BDL		BDL	
ACETONE	μ g/l	BDL		BDL		BDL		BDL	
CHLOROFORM	μ g/l	BDL		BDL		BDL		BDL	
DICHLOROBROMOMETHANE	μ g/l	BDL		BDL		BDL		BDL	
DIBROMOCHLOROMETHANE	μ g/l	BDL		BDL		BDL		BDL	
NAPHTHALENE	μ g/l	BDL		BDL		BDL		BDL	
TOTAL VOCS	μ g/l	117.8		113.4		133.9		120.9	
PHENANTHRENE	μ g/l	BDL		BDL		BDL		BDL	
FLUORENE	μ g/l	BDL		BDL		BDL		BDL	
PYRENE	μ g/l	BDL		BDL		BDL		BDL	
BIS(2-ETHLHEXYL)PHTHALATE	μ g/l	BDL		BDL		BDL		BDL	
DI-N-OCTYL PHTHALATE	μ g/l	BDL		BDL		BDL		BDL	
DIMETHYL PHTHALATE	μ g/l	BDL		BDL		BDL		BDL	
DIETHYL PHTHALATE	μ g/l	BDL		BDL		BDL		BDL	
IRON, TOTAL	μ g/l	525.0		600.0		214.0		219.0	
MANGANESE, TOTAL	μ g/l	154.0		150.0		144.0		176.0	
SUM IRON & MANGANESE	μ g/l	679.0		750.0		358.0		395.0	
NICKEL, TOTAL	μ g/l	6.0		7.0		5.0		6.0	
ARSENIC, TOTAL	μ g/l	BDL		BDL		BDL		BDL	
ALUMINUM, TOTAL	µ g/l	20.0		18.0		0.0		14.0	
CHRUMIUM, IOTAL	μ g/i	BUL		BUL		BUL		BUL	

INFLUENT	UNITS					OFFSITE 1A		OFFSITE 1A	
PARAMETER			09/03/02		09/10/02		09/17/02	09/24/02	09/24/02
FLOW, DAILY AVG	GPD	741663	194650	1017443	211428	924057	192214	1141067	194914
FLOW, DAILY MAX	GPD	1026900	215400	1023200	213200	1016100	208267	1109300	206900
VINYL CHLORIDE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1-DICHLOROETHANE	μg/l	3.6	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2(TRANS)-DICHLOROETHYLENE		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2(CIS)-DICHLOROETHYLENE	μg/i	48.8	8.5	36.9	7.3	32.6	7.1	38.1	7.1
1,1,1-TRICHLOROETHANE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
TRICHLOROETHYLENE	μg/l	8.9	BDL	7.4	BDL	6.2	BDL	BDL	BDL
BENZENE	μg/l	47.9	1.7	36.5	1.6	30.7	1.5	35.5	1.4
TETRACHLOROETHYLENE	μg/l	37.1	BDL	35.1	BDL	26.8	BDL	34.6	BDL
TOLUENE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
m,p-XYLENE	μg/l	BDL	4.4	BDL	3.2	BDL	3.2	BDL	3.5
o-XYLENE	μg/l	2.4	BDL	2.4	BDL	BDL	BDL	1.6	BDL
1,1-DICHLOROETHENE	μg/1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
METHYL ETHYL KEYTONE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
ACETONE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
CHLOROFORM	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DICHLOROBROMOMETHANE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DIBROMOCHLOROMETHANE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
NAPHTHALENE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
TOTAL VOCs	μg/I	148.7	14.6	118.3	12.1	96.3	11.8	109.8	12.0
PHENANTHRENE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
FLUORENE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
PYRENE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
BIS(2-ETHLHEXYL)PHTHALATE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1.1
DI-N-OCTYL PHTHALATE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DIMETHYL PHTHALATE	μ g/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DIETHYL PHTHALATE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
IRON, TOTAL	μg/l	237.0	385.0	215.0	438.0	250.0	354.0	316.0	226.0
MANGANESE, TOTAL	μg/l	105.0	9250.0	172.0	8780.0	142.0	8140.0	123.0	8210.0
SUM IRON & MANGANESE	μg/l	342.0	9635.0	387.0	9218.0	392.0	8494.0	439.0	8436.0
NICKEL, TOTAL	μg/l	5.0	5.0	5.0	4.0	5.0	4.0	4.0	5.0
ARSENIC, TOTAL	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
ALUMINUM, TOTAL	μg/I	9.0	BDL	11.0	BDL	BDL	BDL	8.0	BDL
CHROMIUM, TOTAL	μg/l	BDL	BDL	BDL	BDL	BDL	1.0	BDL	2.0

#### OCTOBER 2002

INFLUENT	UNITS					OFFSITE 1A				OFFSITE 1A	1 1
PARAMETER			10/01/02			10/15/02		10/22/02	10/22/02	10/29/02	10/29/02
FLOW, DAILY AVG	GPD	991128	189086	957929	186457	824871	155571	961914	188086	1003800	193629
FLOW, DAILY MAX	GPD	1003800	191700	975800	188400	1024500	190200	1054900	193800	1046200	194867
VINYL CHLORIDE	μg/l	2.2	BDL	BDL	1,1	3.9	1.5	60.4	BDL	66.2	BDL
1,1-DICHLOROETHANE	μg/l	1.8	BDL	BDL	BDL	2.5	BDL	4.4	BDL	7.4	BDL
1,2(TRANS)-DICHLOROETHYLENE	μg/l	BDL	BDL	BDL.	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2(CIS)-DICHLOROETHYLENE	μg/l	33.3	5.9	35.7	BDL	42.2	6.0	71.1	10.6	BDL	13.7
1,1,1-TRICHLOROETHANE	μg/l	2.1	BDL	2.2	BDL	2.4	BDL	3.8	BDL	6.5	BDL
TRICHLOROETHYLENE	μg/l	6.2	BDL	BDL	BDL	7.2	BDL	BDL	BDL	24.1	BDL
BENZENE	μg/l	30.9	1.1	30.2	1.2	36.4	1.2	71.2	2.7	BDL	4.2
TETRACHLOROETHYLENE	μg/l	31.2	BDL	BDL	BDL	35.1	BDL	63.9	BDL	BDL	BDL
TOLUENE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
m,p-XYLENE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	5.5	BDL	3.7
o-XYLENE	μg/I	BDL	BDL	BDL	BDL	1.4	BDL	BDL	BDL	2.1	BDL
1,1-DICHLOROETHENE	μg/l	BDL	BDL	BDL	BDL	1.4	BDL	BDL	BDL	12.2	BDL
METHYL ETHYL KEYTONE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
ACETONE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
CHLOROFORM	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DICHLOROBROMOMETHANE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DIBROMOCHLOROMETHANE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
NAPHTHALENE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
TOTAL VOCs	μg/I	107.7	7.0	68.1	2.3	<u>132.5</u>	8.7	274.8	18.8	118.5	21.6
PHENANTHRENE	μg/l	BDL	BDL.	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
FLUORENE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
PYRENE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
BIS(2-ETHLHEXYL)PHTHALATE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DI-N-OCTYL PHTHALATE	μg/I	BDL,	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DIMETHYL PHTHALATE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DIETHYL PHTHALATE	<u>μg/l</u>	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
IRON, TOTAL	μ g/l	283.0	376.0	166.0	219.0	295.0	338.0	294.0	317.0	237.0	445.0
MANGANESE, TOTAL	μg/l	128.0	8430.0	102.0	6760.0	134.0	8010.0	135.0	8070.0	126.0	7290.0
SUM IRON & MANGANESE	μg/l	411.0	8806.0	268.0	6979.0	429.0	8348.0	429.0	8387.0	363.0	7735.0
NICKEL, TOTAL	μg/I	5.0	5.0	4.0	5.0	5.0	5.0	5.0	5.0	6.0	6.0
ARSENIC, TOTAL	μg/l	BDL	BDL	BDL	BDL	BDL	NA	BDL	BDL	BDL	BDL
ALUMINUM, TOTAL	μg/l	BDL	BDL	BDL	BDL	27.0	NA	26.0	12.0	20.0	BDL
CHROMIUM, TOTAL	μg/l	BDL	BDL	BDL	BDL	BDL	2.0	BDL	1.0	1.0	BDL

**NOVEMBER 2002** 

INFLUENT	UNITS	OFFSITE 1A	ONSITE 1B						
PARAMETER		11/06/02	11/06/02	11/12/02	11/12/02	11/19/02	11/19/02	11/26/02	11/26/02
FLOW, DAILY AVG	GPD	962913	185900	924667	190500	804657	185400	867729	189986
FLOW, DAILY MAX	GPD	1031000	192700	929900	191100	929900	191367	934600	191200
VINYL CHLORIDE	μg/I	2.7	BDL	3.2	BDL	BDL	BDL	BDL	BDL
1,1-DICHLOROETHANE	μg/l	3.1	BDL	3.6	BDL	2.7	BDL	3.6	BDL
1,2(TRANS)-DICHLOROETHYLENE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2(CIS)-DICHLOROETHYLENE	μg/l	35.4	3.8	40.3	3.5	BDL	3.4	40.7	BDL
1,1,1-TRICHLOROETHANE	μ <b>g/l</b>	2.4	BDL	2.5	BDL	2.6	BDL	BDL	BDL
TRICHLOROETHYLENE	μg/I	6.5	BDL	BDL	BDL	6.5	BDL	6.7	BDL
BENZENE	μg/l	19.8	0.9	21.3	0.9	14.5	0.7	21.4	BDL
TETRACHLOROETHYLENE	μg/l	BDL	BDL	25.3	BDL	33.6	BDL	27.6	BDL
TOLUENE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
m,p-XYLENE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
o-XYLENE	μg/l	BDL	BDL	1.3	BDL	BDL	BDL	BDL	BDL
1,1-DICHLOROETHENE	μg/l	BDL	BDL	1.3	BDL	1.3	BDL	BDL	BDL
METHYL ETHYL KEYTONE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
ACETONE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
CHLOROFORM	μ <b>g/I</b>	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DICHLOROBROMOMETHANE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DIBROMOCHLOROMETHANE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
NAPHTHALENE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
TOTAL VOCs	μg/i	69.9	4.7	98.8	4.4	61.2	4.1	100.0	0.0
PHENANTHRENE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
FLUORENE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
PYRENE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
BIS(2-ETHLHEXYL)PHTHALATE	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DI-N-OCTYL PHTHALATE	μ <b>g/</b> Ι	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DIMETHYL PHTHALATE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
DIETHYL PHTHALATE	μg/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
IRON, TOTAL	μg/l	348.0	558.0	218.0	416.0	282.0	407.0	288.0	416.0
MANGANESE, TOTAL	μg/l	65.0	6950.0	61.0	7170.0	75.0	6840.0	72.0	6420.0
SUM IRON & MANGANESE	μg/l	413.0	7508.0	279.0	7586.0	357.0	7247.0	360.0	6836.0
NICKEL, TOTAL	μg/l	6.0	6.0	5.0	6.0	5.0	6.0	5.0	5.0
ARSENIC, TOTAL	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	μg/I	16.0	BDL	12.0	11.0	14.0	17.0	13.0	8.0
CHROMIUM, TOTAL	μg/l	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

#### DECEMBER 2002

INFLUENT	UNITS		ONSITE 1B				ONSITE 1B			OFFSITE 1A	
PARAMETER		12/03/02	12/03/02	12/10/02	12/10/02	12/17/02	12/17/02	12/23/02	12/23/02	12/31/02	12/31/02
FLOW, DAILY AVG	GPD	658685		657143		638786		837550		856963	
FLOW, DAILY MAX	GPD	657883		666600		659200		960900		985467	
VINYL CHLORIDE	μg/I	2.9		BDL		2.8		1.8		2.0	
1,1-DICHLOROETHANE	μg/l	4.1		3.9		4.3		2.9		2.9	
1,2(TRANS)-DICHLOROETHYLENE		BDL		1.6		BDL		BDL		BDL	
1,2(CIS)-DICHLOROETHYLENE	μg/l	40.5		37.1		BDL		30.4		29.5	
1,1,1-TRICHLOROETHANE	μg/l	2.8		2.6		44.8		2.2		1.9	
TRICHLOROETHYLENE	μg/l	7.3		6.8		7.8		5.1		5.5	
BENZENE	μg/l	13.8		13.2		12.6		10.3		12.0	
TETRACHLOROETHYLENE	μg/l	31.2		30.2		BDL		26.2		27.2	
TOLUENE	μg/l	BDL		BDL		BDL		BDL		BDL	
m,p-XYLENE	μg/l	BDL		BDL		BDL		BDL		BDL	
o-XYLENE	μg/l	BDL		BDL		BDL		BDL		BDL	
1,1-DICHLOROETHENE	μg/l	1.3		1.2		1.4		BDL		BDL	
METHYL ETHYL KEYTONE	μg/l	BDL		BDL		BDL		BDL		BDL	
ACETONE	μg/l	BDL		BDL		BDL		BDL		BDL	
CHLOROFORM	μg/l	BDL		BDL		BDL		BDL		BDL	
DICHLOROBROMOMETHANE	μg/l	BDL		BDL		BDL		BDL		BDL	
DIBROMOCHLOROMETHANE	μg/l	BDL		BDL		BDL		BDL		BDL	
NAPHTHALENE	μg/l	BDL		BDL		BDL		BDL		BDL	
TOTAL VOCs	μ g/l	103.9		96.6		73.7		78.9		81.0	
PHENANTHRENE	μg/l	BDL		BDL		BDL		BDL		BDL	
FLUORENE	μg/l	BDL		BDL		BDL		BDL		BDL	
PYRENE	μg/l	BDL		BDL		BDL		BDL		BDL	
BIS(2-ETHLHEXYL)PHTHALATE	μg/l	BDL		BDL		BDL		BDL		BDL	
DI-N-OCTYL PHTHALATE	μ g/l	BDL		BDL		BDL		BDL		BDL	
DIMETHYL PHTHALATE	μg/l	BDL		BDL		BDL		BDL		BDL	
DIETHYL PHTHALATE	μg/l	1.4		1.2		1.3		BDL		1.0	
IRON, TOTAL	μ g/l	181.0		240.0		203.0		277.0		315.0	
MANGANESE, TOTAL	μ g/l	29.0		30.0		30.0		40.0		40.0	
SUM IRON & MANGANESE	μ g/l	210.0		270.0		233.0		317.0		355.0	
NICKEL, TOTAL	μ g/l	4.0		4.0		4.0		4.0		4.0	
ARSENIC, TOTAL	μ g/l	BDL		BDL		BDL		BDL		BDL	
ALUMINUM, TOTAL	μ g/l	11.0				9.0		BDL		24.0	
CHROMIUM, TOTAL	μg/l	BDL		BDL		BDL		BDL	L	BDL	

## **APPENDIX C**

# MONTHLY EFFLUENT MONITORING REPORTS 2002

#### **JANUARY 2002**

EFFLUENT	DISCHARGE	UNITS	COMP'T	WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5
PARAMETER	LIMITATIONS		MDL	01/02/02			01/22/02	
FLOW, DAILY AVG	MONITOR	GPD	NA	624250	534633	547257	605629	507387
FLOW, DAILY MAX	MONITOR	GPD	NA	624250	589200	624800	613200	607400
VINYL CHLORIDE	5	μg/I	1.1	BDL.	BDL	BDL	BDL	BDL
1,1-DICHLOROETHANE	5	μg/I	1.1	BDL	BDL	BDL	BDL	BDL
1,2(TRANS)-DICHLOROETHENE	5	μg/i	1.1	BDL	BDL	BDL	BDL	BDL
1,2(CIS)-DICHLOROETHENE	5	μg/1	1.0	BDL	BDL	BDL	5.8	7.7
1,1,1-TRICHLOROETHANE	5	μg/I	1.4	BDL	BDL	BDL	BDL	BDL
TRICHLOROETHENE	10	μg/l	1.7	BDL	BDL.	BDL	BDL	BDL
BENZENE	0.7	μg/	0.7	BDL	BDL	BDL	BDL	BDL
TETRACHLOROETHENE	5	μ <b>g/l</b>	1.2	BDL	BDL	BDL	BDL	BDL
TOLUENE	5	μg/1	1.2	BDL.	BDL	BDL.	BDL	BDL
m,p-XYLENE	5	μg/t	2.4	BDL.	BDL	BDL	BDL	BDL
o-XYLENE	5	μg/1	1.3	BDL.	BDL	BDL	BDL	BDL
1,1-DICHLOROETHENE	5	μg/l	1.2	BDL	BDL	BDL	BDL	BDL
METHYL ETHYL KEYTONE	50	μg/I	10.0	BDL	BDL	BDL	BDL	BDL
ACETONE	50	μg/I	10.0	BDL	BDL	BDL	BDL	BDL
CHLOROFORM	7	μg/l	1.1	BDL	BDL	BDL	BDL	BDL
DICHLOROBROMOMETHANE	50	μg/l	0.9	BDL	BDL	BDL.	BDL	BDL
DIBROMOCHLOROMETHANE	50	μg/1	0.7	BDL	BDL	BDL	BDL	BDL
NAPHTHALENE	10	μg/1	1.7	BDL	BDL	BDL	BDL	BDL
TOTAL VOCs		μg/l	0.0	0.0	0.0	0.0	0.0	0.0
PHENANTHRENE	50	μg/l	1.0	BDL	BDL	BDL	BDL	BDL
FLUORENE	50	μg/l	1.0	BDL	BDL	BDL	BDL	BDL
PYRENE	50	μg/l	1.0	BDL	BDL	BDL	BDL	BDL
BIS(2-ETHLHEXYL)PHTHALATE	4.3	μg/I	1.0	BDL	BDL	BDL	BDL	BDL
DI-N-OCTYL PHTHALATE	50	μg/I	1.0	BDL	BDL	BDL	BDL	BDL
DIMETHYL PHTHALATE	50	μg/I	1.0	BDL	BDL	BDL	BDL	BDL
DIETHYL PHTHALATE	50	μg/I	1.0	BDL	BDL	BDL	BDL	BDL
IRON, TOTAL	600	μg/I	2.0	66.0	87.0	63.0	63.0	49.0
MANGANESE, TOTAL	600	μg/I	1.0	2070.0	1890.0	1870.0	1990.0	2030.0
SUM IRON & MANGANESE	1000	μg/1	NA	2136.0	1977.0	1933.0	2053.0	2079.0
NICKEL, TOTAL	2000	μg/t	5.0	4.0	4.0	4.0	4.0	3.0
ARSENIC, TOTAL	50	μg/I	48.0	BDL	BDL	BDL	BDL	BDL
ALUMINUM, TOTAL	2000	μg/I	40.0	BDL	BDL	BDL	BDL	BDL
CHROMIUM, TOTAL	50	μg/I	2.0	BDL	BDL	BDL	BDL	BDL

#### FEBRUARY 2002

EFFLUENT	DISCHARGE	UNITS	COMP'T	WEEK 1	WEEK 2	WEEK 3	WEEK 4
PARAMETER	LIMITATIONS		MDL	02/05/02	02/11/02		02/26/02
FLOW, DAILY AVG	MONITOR	GPD	NA	603033	573567	452550	392700
FLOW, DAILY MAX	MONITOR	GPD	NA	609900	598200	506600	458700
VINYL CHLORIDE	5	μ g/l	1.1	BDL	BDL	BDL	BDL
1,1-DICHLOROETHANE	5	μg/l	1.1	BDL	BDL	BDL	BDL
1,2(TRANS)-DICHLOROETHENE	5	μg/l	1.1	BDL	BDL	BDL	BDL
1,2(CIS)-DICHLOROETHENE	5	μg/l	1.0	BDL	BDL	BDL	5.8
1,1,1-TRICHLOROETHANE	5	μg/l	1.4	BDL	BDL	BDL	BDL
TRICHLOROETHENE	10	μg/l	1.7	BDL	BDL	BDL	BDL
BENZENE	0.7	μg/I	0.7	BDL	BDL	BDL	BDL
TETRACHLOROETHENE	5	μg/l	1.2	BDL	BDL	BDL	BDL
TOLUENE	5	μg/l	1.2	BDL	BDL	BDL	BDL
m,p-XYLENE	5	μ g/l	2.4	BDL	BDL	BDL	BDL
o-XYLENE	5	μg/l	1.3	BDL	BDL	BDL	BDL
1,1-DICHLOROETHENE	5	μg/l	1.2	BDL	BDL	BDL	BDL
METHYL ETHYL KEYTONE	50	μg/l	10.0	BDL	BDL	BDL	BDL
ACETONE	50	μg/l	10.0	BDL	BDL	BDL	BDL
CHLOROFORM	7	μg/l	1.1	BDL	BDL	BDL	BDL
DICHLOROBROMOMETHANE	50	μg/l	0.9	BDL	BDL	BDL	BDL
DIBROMOCHLOROMETHANE	50	μg/l	0.7	BDL	BDL	BDL	BDL
NAPHTHALENE	10	μg/I	1.7	BDL	BDL	BDL	BDL
TOTAL VOCs		μg/l	0.0	0.0	0.0	0.0	0.0
PHENANTHRENE	50	μg/l	1.0	BDL	BDL	BDL	BDL
FLUORENE	50	μg/I	1.0	BDL	BDL	BDL	BDL
PYRENE	50	μg/1	1.0	BDL	BDL	BDL	BDL
BIS(2-ETHLHEXYL)PHTHALATE	4.3	μg/l	1.0	BDL	BDL	BDL	BDL
DI-N-OCTYL PHTHALATE	50	μg/l	1.0	BDL	BDL	BDL	BDL
DIMETHYL PHTHALATE	50	μg/l	1.0	BDL	BDL	BDL	BDL
DIETHYL PHTHALATE	50	μg/l	1.0	BDL	BDL	BDL	BDL
IRON, TOTAL	600	μg/l	2.0	50.0	46.0	47.0	52.0
MANGANESE, TOTAL	600	μg/l	1.0	2020.0	2700.0	2750.0	2890.0
SUM IRON & MANGANESE	1000	μg/I	NA	2070.0	2746.0	2797.0	2942.0
NICKEL, TOTAL	2000	μg/I	5.0	2.0	1.0	BDL	BDL
ARSENIC, TOTAL	50	μg/I	48.0	BDL	62.0	114.0	BDL
ALUMINUM, TOTAL	2000	μg/1	40.0	BDL	BDL	BDL	BDL
CHROMIUM, TOTAL	50	μg/I	2.0	BDL	1.0	4.0	BDL

#### **MARCH 2002**

EFFLUENT	DISCHARGE	UNITS	COMP'T	WEEK 1	WEEK 2	WEEK 3	WEEK 4
PARAMETER	LIMITATIONS		MDL	03/05/02	03/12/02	03/19/02	03/26/02
FLOW, DAILY AVG	MONITOR	GPD	NA	339186	416743	471343	
FLOW, DAILY MAX	MONITOR	GPD	NA	346100	474000	495000	
VINYL CHLORIDE	5	μ g/l	1.1	BDL	BDL	BDL.	BDL
1,1-DICHLOROETHANE	5	μg/I	1.1	BDL	BDL	BDL	BDL
1,2(TRANS)-DICHLOROETHENE	5	μg/l	1.1	BDL	BDL	BDL	BDL
1,2(CIS)-DICHLOROETHENE	5	μg/I	1.0	BDL	BDL	BDL	5.8
1,1,1-TRICHLOROETHANE	5	μg/l	1.4	BDL	BDL	BDL	BDL
TRICHLOROETHENE	10	μg/I	1.7	BDL	BDL	BDL	BDL
BENZENE	0.7	μg/I	0.7	BDL	BDL	BDL	BDL
TETRACHLOROETHENE	5	μg/l	1.2	BDL	BDL	BDL	BDL
TOLUENE	5	μg/I	1.2	BDL	BDL	BDL	BDL
m,p-XYLENE		μg/l	2.4	BDL	BDL	BDL	BDL
o-XYLENE	5 5	μg/l	1.3	BDL	BDL	BDL	BDL
1,1-DICHLOROETHENE	5	μg/1	1.2	BDL	BDL	BDL	BDL
METHYL ETHYL KEYTONE	50	μg/I	10.0	BDL	BDL	BDL	BDL
ACETONE	50	μg/I	10.0	BDL	BDL	BDL	BDL
CHLOROFORM	7	μg/l	1.1	BDL	BDL	BDL	BDL
DICHLOROBROMOMETHANE	50	μg/I	0.9	BDL	BDL	BDL	BDL
DIBROMOCHLOROMETHANE	50	μg/l	0.7	BDL	BDL	BDL	BDL
NAPHTHALENE	10	μg/l	1.7	BDL	BDL	BDL	BDL
TOTAL VOCs		μg/I	0.0	0.0	0.0	0.0	0.0
PHENANTHRENE	50	μg/I	1.0	BDL	BDL	BDL	BDL
FLUORENE	50	μg/l	1.0	BDL	BDL	BDL	BDL
PYRENE	50	μg/I	1.0	BDL	BDL	BDL	BDL
BIS(2-ETHLHEXYL)PHTHALATE	4.3	μg/I	1.0	BDL	BDL	BDL	BDL
DI-N-OCTYL PHTHALATE	50	μg/1	1.0	BDL	BDL	BDL	BDL
DIMETHYL PHTHALATE	50	μg/l	1.0	BDL	BDL	BDL	BDL
DIETHYL PHTHALATE	50	μg/l	1.0	BDL	BDL	BDL	BDL
IRON, TOTAL	600	μg/l	2.0	42.0	48.0	62.0	42.0
MANGANESE, TOTAL	600	μg/l	1.0	3120.0	1990.0	1440.0	1920.0
SUM IRON & MANGANESE	1000	μg/l	NA	3162.0	2038.0	1502.0	1962.0
NICKEL, TOTAL	2000	μg/I	5.0	3.0	3.0	11.0	3.0
ARSENIC, TOTAL	50	μg/l	48.0	BDL	BDL	144.0	BDL
ALUMINUM, TOTAL	2000	μg/I	40.0	BDL	BDL	BDL	BDL
CHROMIUM, TOTAL	50	μg/l	2.0	BDL	BDL	6.0	BDL

#### **APRIL 2002**

EFFLUENT	DISCHARGE	UNITS	COMP'T	WEEK 1	WEEK 2	WEEK 3	WEEK 4
PARAMETER	LIMITATIONS		MDL				04/23/02
FLOW, DAILY AVG	MONITOR	GPD	NA	777633	770014	755250	738314
FLOW, DAILY AVG	MONITOR	GPD	NA	798800	779100	776600	784267
VINYL CHLORIDE	5	μg/l	1.1	BDL	BDL	BDL	BDL
1,1-DICHLOROETHANE	5	μg/I μg/I	1.1	BDL	BDL	BDL	BDL
1,2(TRANS)-DICHLOROETHENE	5	μg/I	1.1	BDL	BDL	BDL	BDL
1,2(CIS)-DICHLOROETHENE	5	μg/l	1.0	BDL	BDL	BDL	BDL
1,1,1-TRICHLOROETHANE	5	μg/I	1.4	BDL	BDL	BDL	BDL
TRICHLOROETHENE	10	μg/l	1.7	BDL	BDL	BDL	BDL
BENZENE	0.7	μg/l	0.7	BDL	BDL	BDL	BDL
TETRACHLOROETHENE	5	μg/I	1.2	BDL	BDL	BDL	BDL
TOLUENE	5	μ <b>g/</b> Ι	1.2	BDL	BDL	BDL	BDL
m,p-XYLENE	5	μg/l	2.4	BDL	BDL	BDL	BDL
o-XYLENE	5	μg/I	1.3	BDL	BDL	BDL	BDL
1,1-DICHLOROETHENE	5	μg/I	1.2	BDL	BDL	BDL	BDL.
METHYL ETHYL KEYTONE	50	μg/l	10.0	BDL	BDL	BDL	BDL
ACETONE	50	μg/I	10.0	BDL	BDL	BDL	BDL
CHLOROFORM	7	μg/I	1.1	BDL	BDL	BDL	BDL
DICHLOROBROMOMETHANE	50	μg/I	0.9	BDL	BDL	BDL	BDL
DIBROMOCHLOROMETHANE	50	μg/i	0.7	BDL	BDL	BDL	BDL
NAPHTHALENE	10	μg/l	1.7	BDL	BDL	BDL	BDL
TOTAL VOCs		μg/l	0.0	0.0	0.0	0.0	0.0
PHENANTHRENE	50	μg/I	1.0	BDL	BDL	BDL	BDL
FLUORENE	50	μg/1	1.0	BDL	BDL	BDL	BDL
PYRENE	50	μg/l	1.0	BDL	BDL	BDL	BDL
BIS(2-ETHLHEXYL)PHTHALATE	4.3	μg/l	1.0	BDL	BDL	BDL	BDL
DI-N-OCTYL PHTHALATE	50	μg/l	1.0	BDL	BDL	BDL	BDL
DIMETHYL PHTHALATE	50	μg/	1.0	BDL	BDL	BDL	BDL
DIETHYL PHTHALATE	50	μ g/l	1.0	BDL	BDL	BDL	BDL
IRON, TOTAL	600	μg/I	2.0	19.0	31.0	15.0	24.0
MANGANESE, TOTAL	600	μ <b>g/I</b>	1.0	1410.0	1370.0	1430.0	259.0
SUM IRON & MANGANESE	1000	μg/l	NA	1429.0	1401.0	1445.0	283.0
NICKEL, TOTAL	2000	μg/I	5.0	4.0	2.0	5.0	4.0
ARSENIC, TOTAL	50	μg/1	48.0	BDL	BDL	BDL	BDL
ALUMINUM, TOTAL	2000	μg/l	40.0	10.0	BDL	BDL	BDL
CHROMIUM, TOTAL	50	μg/l	2.0	BDL	BDL	BDL	BDL

**MAY 2002** 

EFFLUENT	DISCHARGE	UNITS	COMP'T	WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5
PARAMETER	LIMITATIONS		MDL	05/01/02	05/07/02	05/14/02	05/21/02	05/28/02
FLOW, DAILY AVG	MONITOR	GPD	NA	590288	722550	395057	241343	347114
FLOW, DAILY MAX	MONITOR	GPD	NA	781700	730300	693300	356600	356700
VINYL CHLORIDE	5	μ g/l	1.1	BDL	BDL	BDL	BDL	BDL
1,1-DICHLOROETHANE	5	μg/1	1.1	BDL	BDL	BDL	BDL	BDL
1,2(TRANS)-DICHLOROETHENE	5	μg/l	1.1	BDL	BDL	BDL	BDL	BDL
1,2(CIS)-DICHLOROETHENE	5	μg/I	1.0	BDL	BDL	BDL	BDL	BDL
1,1,1-TRICHLOROETHANE	5	μg/l	1.4	BDL	BDL	BDL	BDL	BDL
TRICHLOROETHENE	10	μg/l	1.7	BDL	BDL	BDL	BDL	BDL
BENZENE	0.7	μg/I	0.7	BDL	BDL	BDL	BDL	BDL
TETRACHLOROETHENE	5	μg/l	1.2	BDL	BDL	BDL	BDL	BDL
TOLUENE	5	μg/l	1.2	BDL	BDL	BDL	BDL	BDL
m,p-XYLENE	5	μg/l	2.4	BDL	BDL	BDL	BDL	BDL
o-XYLENE	5	μg/l	1.3	BDL	BDL	BDL	BDL	BDL
1,1-DICHLOROETHENE	5	μg/l	1.2	BDL	BDL	BDL	BDL	BDL
METHYL ETHYL KEYTONE	50	μg/l	10.0	BDL	BDL	BDL	BDL	BDL
ACETONE	50	μg/l	10.0	BDL	BDL	BDL	BDL	BDL
CHLOROFORM	7	μg/l	1.1	BDL	BDL	BDL	BDL	BDL
DICHLOROBROMOMETHANE	50	μg/l	0.9	BDL	BDL	BDL	BDL	BDL
DIBROMOCHLOROMETHANE	50	μg/1	0.7	BDL	BDL	BDL	BDL	BDL
NAPHTHALENE	10	μg/l	1.7	BDL	BDL	BDL	BDL	BDL
TOTAL VOCs		μg/l	0.0	0.0	0.0	0.0	0.0	
PHENANTHRENE	50	μ g/1	1.0	BDL	BDL	BDL	BDL	BDL
FLUORENE	50	μg/i	1.0	BDL	BDL	BDL	BDL	BDL
PYRENE	50	μg/l	1.0	BDL	BDL	BDL	BDL	BDL
BIS(2-ETHLHEXYL)PHTHALATE	4.3	μg/l	1.0	BDL	BDL	BDL	BDL	BDL
DI-N-OCTYL PHTHALATE	50	μg/l	1.0	BDL	BDL	BDL	BDL	BDL
DIMETHYL PHTHALATE	50	μg/l	1.0	BDL	BDL	BDL	BDL	BDL
DIETHYL PHTHALATE	50	μ <u>g</u> /l	1.0	BDL	BDL	BDL	BDL	BDL
IRON, TOTAL	600	μ g/l	2.0	30.0	25.0	32.0	33.0	46.0
MANGANESE, TOTAL	600	μg/l	1.0	244.0	235.0	29.0	30.0	23.0
SUM IRON & MANGANESE	1000	μg/l	NA	274.0	260.0	61.0	63.0	69.0
NICKEL, TOTAL	2000	μg/l	5.0	6.0	5.0	3.0	2.0	3.0
ARSENIC, TOTAL	50	μ g/l	48.0	BDL	BDL	13.0	BDL	12.0
ALUMINUM, TOTAL	2000	μg/I	40.0	BDL	BDL	BDL	BDL	BDL
CHROMIUM, TOTAL	50	μg/l	2.0	BDL	BDL	BDL	BDL	BDL

#### **JUNE 2002**

EFFLUENT	DISCHARGE	UNITS	COMP'T	WEEK 1	WEEK 2	WEEK 3	WEEK 4
PARAMETER	LIMITATIONS		MDL	06/04/02	06/11/02	06/18/02	06/25/02
FLOW, DAILY AVG	MONITOR	GPD	NA	346000	640257	884843	877567
FLOW, DAILY MAX	MONITOR	GPD	NA	348700	899000	903200	887800
VINYL CHLORIDE	5	μg/I	1.1	BDL	BDL	BDL	BDL
1,1-DICHLOROETHANE	5	μg/I	1.1	BDL	BDL	BDL	BDL
1,2(TRANS)-DICHLOROETHENE	5 5	μg/I	1.1	BDL	BDL	BDL	BDL
1,2(CIS)-DICHLOROETHENE		μg/l	1.0	BDL	BDL	BDL	BDL
1,1,1-TRICHLOROETHANE	5	μg/1	1.4	BDL	BDL	BDL	BDL
TRICHLOROETHENE	10	μg/I	1.7	BDL	BDL	BDL	BDL
BENZENE	0.7	μg/l	0.7	BDL	BDL	BDL	BDL
TETRACHLOROETHENE	5	μg/l	1.2	BDL	BDL	BDL	BDL
TOLUENE	5	μg/i	1.2	BDL	BDL	BDL	BDL
m,p-XYLENE	5	μg/l	2.4	BDL	BDL	BDL	BDL
o-XYLENE	5	μg/1	1.3	BDL	BDL	BDL	BDL
1,1-DICHLOROETHENE	5	μg/I	1.2	BDL	BDL	BDL	BDL
METHYL ETHYL KEYTONE	50	μg/I	10.0	BDL	BDL	BDL	BDL
ACETONE	50	μg/I	10.0	BDL	BDL	BDL	BDL
	7	μg/I	1.1	BDL	BDL	BDL	BDL
DICHLOROBROMOMETHANE	50	μg/1	0.9	BDL	BDL	BDL	BDL
DIBROMOCHLOROMETHANE	50	μg/l	0.7	BDL	BDL	BDL	BDL
NAPHTHALENE	10	μg/I	1.7	BDL	BDL	BDL	BDL
TOTAL VOCs		μg/I	0.0	0.0	0.0	0.0	0.0
PHENANTHRENE	50	μ g/l	1.0	BDL	BDL	BDL	BDL
FLUORENE	50	μg/I	1.0	BDL	BDL	BDL	BDL
PYRENE	50	μg/l	1.0	BDL	BDL	BDL	BDL
BIS(2-ETHLHEXYL)PHTHALATE	4.3	μg/l	1.0	BDL	BDL	BDL	BDL
DI-N-OCTYL PHTHALATE	50	μg/l	1.0	BDL	BDL	BDL	BDL
DIMETHYL PHTHALATE	50	μg/l	1.0	BDL	BDL	BDL	BDL
DIETHYL PHTHALATE	50	μg/l	1.0	BDL	BDL	BDL	BDL
IRON, TOTAL	600	μ g/l	2.0	91.0	30.0	40.0	44.0
MANGANESE, TOTAL	600	μg/l	1.0	28.0	161.0	169.0	163.0
SUM IRON & MANGANESE	1000	μg/I	NA	119.0	191.0	209.0	207.0
NICKEL, TOTAL	2000	μg/l	5.0	2.0	4.0	BDL	4.0
ARSENIC, TOTAL	50	μg/1	48.0	BDL	20.0	BDL	20.0
ALUMINUM, TOTAL	2000	μg/l	40.0	BDL	BDL	BDL	BDL
CHROMIUM, TOTAL	50	μ g/l	2.0	BDL	BDL	BDL	BDL

#### **JULY 2002**

EFFLUENT	DISCHARGE	UNITS	COMP'T	WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5
PARAMETER	LIMITATIONS		MDL	07/02/02	07/09/02	07/16/02	07/23/02	07/29/02
FLOW, DAILY AVG	MONITOR	GPD	NA	753681	746272	1145172	1245667	1245443
FLOW, DAILY MAX	MONITOR	GPD	NA	878867	749950	1263900	1275100	1262567
VINYL CHLORIDE	5	μg/I	1.1	BDL	BDL	BDL	BDL.	BDL
1,1-DICHLOROETHANE	5	μg/l	1.1	BDL	BDL	BDL	BDL	BDL
1,2(TRANS)-DICHLOROETHENE	5	μg/I	1.1	BDL	BDL	BDL	BDL	BDL
1,2(CIS)-DICHLOROETHENE	5	μġ/l	1.0	BDL	BDL	BDL	BDL	BDL
1,1,1-TRICHLOROETHANE	5	μg/l	1.4	BDL	BDL	BDL	BDL	BDL
TRICHLOROETHENE	10	μg/l	1.7	BDL	BDL	BDL	BDL	BDL
BENZENE	0.7	μg/I	0.7	BDL	BDL	BDL	BDL	BDL
TETRACHLOROETHENE	5	μg/l	1.2	BDL	BDL	BDL	BDL	BDL
TOLUENE	5	μg/l	1.2	BDL	BDL	BDL	BDL	BDL
m,p-XYLENE	5	μg/I	2.4	BDL	BDL	BDL	BDL	BDL
o-XYLENE	5	μg/l	1.3	BDL	BDL	BDL	BDL	BDL
1,1-DICHLOROETHENE	5	μg/l	1.2	BDL	BDL	BDL	BDL	BDL
METHYL ETHYL KEYTONE	50	μg/I	10.0	BDL	BDL	BDL	BDL	BDL
ACETONE	50	μg/l	10.0	BDL	BDL	BDL	BDL	BDL
CHLOROFORM	7	μg/l	1.1	BDL	BDL	BDL	BDL	BDL
DICHLOROBROMOMETHANE	50	μg/l	0.9	BDL	BDL	BDL	BDL	BDL
DIBROMOCHLOROMETHANE	50	μ <b>g/</b> Ι	0.7	BDL	BDL	BDL	BDL	BDL
NAPHTHALENE	10	μg/I	1.7	BDL	BDL	BDL	BDL	BDL
TOTAL VOCs		μg/l	0.0	0.0	0.0	0.0	0.0	0.0
PHENANTHRENE	50	μ <u>g</u> /l	1.0	BDL	BDL	BDL	BDL	BDL
FLUORENE	50	μg/I	1.0	BDL	BDL	BDL	BDL	BDL
PYRENE	50	μg/l	1.0	BDL	BDL	BDL	BDL	BDL
BIS(2-ETHLHEXYL)PHTHALATE	4.3	μg/I	1.0	BDL	BDL	BDL	BDL	BDL
DI-N-OCTYL PHTHALATE	50	μg/l	1.0	BDL	BDL	BDL	BDL	BDL
DIMETHYL PHTHALATE	50	μg/1	1.0	BDL	BDL	BDL	BDL	BDL
DIETHYL PHTHALATE	50	μg/I	1.0	1.5	1.3	BDL	BDL	BDL
IRON, TOTAL	600	μ g/l	2.0	27.0	26.0	32.0	52.0	40.0
MANGANESE, TOTAL	600	μg/l	1.0	185.0	184.0	193.0	751.0	717.0
SUM IRON & MANGANESE	1000	μg/I	NA	212.0	210.0	225.0	803.0	757.0
NICKEL, TOTAL	2000	μg/l	5.0	5.0	6.0	5.0	4.0	5.0
ARSENIC, TOTAL	50	μg/i	48.0	13.0	BDL	BDL	BDL	BDL
ALUMINUM, TOTAL	2000	μg/l	40.0	BDL	BDL	BDL	BDL	BDL
CHROMIUM, TOTAL	50	μg/i	2.0	BDL	BDL	BDL	BDL	BDL

**AUGUST 2002** 

EFFLUENT	DISCHARGE	UNITS	COMP'T	WEEK 1	WEEK 2	WEEK 3	WEEK 4
PARAMETER	LIMITATIONS		MDL	08/06/02	08/13/02	08/20/02	08/27/02
FLOW, DAILY AVG	MONITOR	GPD	NA	1311613	1270560	1274657	1262628
FLOW, DAILY MAX	MONITOR	GPD	NA	1462300	1278133	1278700	1278133
VINYL CHLORIDE	5	μ g/l	1.1	BDL	BDL	BDL	BDL.
1,1-DICHLOROETHANE	5	μg/l	1.1	BDL	BDL	BDL	BDL
1,2(TRANS)-DICHLOROETHENE	5	μg/I	1.1	BDL	BDL	BDL	BDL
1,2(CIS)-DICHLOROETHENE	5	μg/l	1.0	BDL	BDL	BDL	BDL
1,1,1-TRICHLOROETHANE	5	μg/l	1.4	BDL	BDL	BDL	BDL
TRICHLOROETHENE	10	μg/l	1.7	BDL	BDL	BDL	BDL
BENZENE	0.7	μg/l	0.7	BDL	BDL	BDL	BDL
TETRACHLOROETHENE	5	μ <b>g/I</b>	1.2	BDL	BDL	BDL	BDL
TOLUENE	5 5	μg/l	1.2	BDL	BDL	BDL	BDL
m,p-XYLENE	5	μg/l	2.4	BDL	BDL	BDL	BDL
0-XYLENE	5	μg/l	1.3	BDL	BDL	BDL	BDL
1,1-DICHLOROETHENE	5	μ g/l	1.2	BDL	BDL	BDL	BDL
METHYL ETHYL KEYTONE	50	μg/l	10.0	BDL	BDL	BDL	BDL
ACETONE	50	μg/I	10.0	BDL	BDL	BDL	BDL
CHLOROFORM	7	μg/l	1.1	BDL	BDL	BDL	BDL
DICHLOROBROMOMETHANE	50	μg/l	0.9	BDL	BDL	BDL	BDL
DIBROMOCHLOROMETHANE	50	μg/l	0.7	BDL	BDL	BDL	BDL
NAPHTHALENE	10	μg/I	1.7	BDL	BDL	BDL	BDL
TOTAL VOCs		μg/l	0.0	0.0	0.0	0.0	0.0
PHENANTHRENE	50	μg/l	1.0	BDL	BDL	BDL	BDL
FLUORENE	50	μg/I	1.0	BDL	BDL	BDL	BDL
PYRENE	50	μg/l	1.0	BDL	BDL	BDL	BDL
BIS(2-ETHLHEXYL)PHTHALATE	4.3	μg/i	1.0	BDL	BDL	BDL	BDL
DI-N-OCTYL PHTHALATE	50	μg/l	1.0	BDL	BDL	BDL	BDL.
DIMETHYL PHTHALATE	50	μg/1	1.0	BDL	BDL	BDL	BDL
DIETHYL PHTHALATE	50	μg/I	1.0	BDL	BDL	BDL	BDL
IRON, TOTAL	600	μg/l	2.0	65.0	105.0	58.0	138.0
MANGANESE, TOTAL	600	μg/1	1.0	154.0	159.0	153.0	1170.0
SUM IRON & MANGANESE	1000	μg/l	NA	219.0	264.0	211.0	1308.0
NICKEL, TOTAL	2000	μg/l	5.0	6.0	6.0	5.0	5.0
ARSENIC, TOTAL	50	μg/l	48.0	BDL	11.0	BDL	BDL
	2000	μg/l	40.0	13.0	BDL	10.0	BDL
CHROMIUM, TOTAL	50	μg/I	2.0	BDL	BDL	BDL	BDL

EFFLUENT	DISCHARGE	UNITS	COMP'T	WEEK 1	WEEK 2	WEEK 3	WEEK 4
PARAMETER	LIMITATIONS		MDL	9/3/2002		09/17/02	09/24/02
FLOW, DAILY AVG	MONITOR	GPD	NA	841367	1228872	1116271	1189686
FLOW, DAILY MAX	MONITOR	GPD	NA	1213100	1228900	1226300	1316000
VINYL CHLORIDE	5	μg/I	1.1	BDL	BDL	BDL	BDL
1,1-DICHLOROETHANE	5	μg/l	1.1	BDL	BDL	BDL	BDL
1,2(TRANS)-DICHLOROETHENE	5	μg/l	1.1	BDL	BDL	BDL	BDL
1,2(CIS)-DICHLOROETHENE	5	μg/I	1.0	BDL	BDL	BDL	BDL
1,1,1-TRICHLOROETHANE	5	μg/I	1.4	BDL	BDL	BDL	BDL
TRICHLOROETHENE	10	μg/l	1.7	BDL	BDL	BDL	BDL
BENZENE	0.7	μg/l	0.7	BDL	BDL	BDL	BDL
TETRACHLOROETHENE	5	μg/I	1.2	BDL	BDL	BDL	BDL
TOLUENE	5	μg/l	1.2	BDL	BDL	BDL	BDL
m,p-XYLENE	5	μg/I	2.4	BDL	BDL	BDL	BDL
o-XYLENE	5	μg/l	1.3	BDL	BDL	BDL	BDL
1,1-DICHLOROETHENE	5	μg/l	1.2	BDL	BDL	BDL	BDL
METHYL ETHYL KEYTONE	50	μg/i	10.0	BDL	BDL	BDL	BDL
ACETONE	50	μg/I	10.0	BDL	BDL	BDL	BDL
CHLOROFORM	7	μg/I	1.1	BDL	BDL	BDL	BDL
DICHLOROBROMOMETHANE	50	μg/I	0.9	BDL	BDL	BDL.	BDL
DIBROMOCHLOROMETHANE	50	μg/I	0.7	BDL	BDL	BDL	BDL
NAPHTHALENE	10	μg/l	1.7	BDL	BDL	BDL	BDL
TOTAL VOCs		μg/I	0.0	0.0	0.0	0.0	0.0
PHENANTHRENE	50	μg/l	1.0	BDL	BDL	BDL	BDL
FLUORENE	50	μg/I	1.0	BDL	BDL	BDL	BDL
PYRENE	50	μg/I	1.0	BDL	BDL	BDL	BDL
BIS(2-ETHLHEXYL)PHTHALATE	4.3	μg/l	1.0	BDL	BDL	BDL	BDL
DI-N-OCTYL PHTHALATE	50	μg/I	1.0	BDL	BDL	BDL	BDL
DIMETHYL PHTHALATE	50	μg/I	1.0	BDL	BDL	BDL	BDL
DIETHYL PHTHALATE	50	μg/l	1.0	BDL	BDL	BDL	BDL
IRON, TOTAL	600	μg/I	2.0	23.0	73.0	71.0	43.0
MANGANESE, TOTAL	600	μg/1	1.0	1800.0	1230.0	1070.0	1030.0
SUM IRON & MANGANESE	1000	μg/l	NA	1823.0	1303.0	1141.0	1073.0
NICKEL, TOTAL	2000	μg/l	5.0	5.0	5.0	4.0	3.0
ARSENIC, TOTAL	50	μg/1	48.0	BDL	BDL	BDL	BDL
ALUMINUM, TOTAL	2000	μg/I	40.0	BDL	BDL	BDL	BDL
CHROMIUM, TOTAL	50	μg/l	2.0	BDL	BDL	BDL	BDL

#### **OCTOBER 2002**

EFFLUENT	DISCHARGE	UNITS	COMP'T	WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5
PARAMETER	LIMITATIONS			10/1/2002		10/15/02	10/22/02	10/29/02
FLOW, DAILY AVG	MONITOR	GPD	NA	1180214	1144386	980442	1150000	1197429
FLOW, DAILY MAX	MONITOR	GPD	NA	1195500	1162200	1213000	1248700	1241000
VINYL CHLORIDE	5	μg/1	1.1	BDL	BDL	BDL	BDL	BDL
1,1-DICHLOROETHANE	5	μg/I	1.1	BDL	BDL.	BDL	BDL	BDL
1,2(TRANS)-DICHLOROETHENE	5	μg/l	1.1	BDL	BDL	BDL	BDL.	BDL
1,2(CIS)-DICHLOROETHENE	5	μg/i	1.0	BDL	BDL	BDL	BDL	BDL
1,1,1-TRICHLOROETHANE	5	μg/l	1.4	BDL	BDL	BDL	BDL	BDL
TRICHLOROETHENE	10	μg/l	1.7	BDL	BDL	BDL	BDL	BDL
BENZENE	0.7	μg/l	0.7	BDL	BDL	BDL	BDL	BDL
TETRACHLOROETHENE	5	μg/l	1.2	BDL	BDL	BDL	BDL	BDL
TOLUENE	5	μg/l	1.2	BDL	BDL	BDL	BDL	BDL
m,p-XYLENE	5	μg/I	2.4	BDL	BDL	BDL	BDL	BDL
o-XYLENE	5	μg/l	1.3	BDL	BDL	BDL	BDL	BDL
1,1-DICHLOROETHENE	5	μg/I	1.2	BDL	BDL	BDL	BDL	BDL
METHYL ETHYL KEYTONE	50	μg/l	10.0	BDL	BDL	BDL	BDL	BDL
ACETONE	50	μg/I	10.0	BDL	BDL	BDL	BDL	BDL
CHLOROFORM	7	μg/I	1.1	BDL	BDL	BDL	BDL	BDL.
DICHLOROBROMOMETHANE	50	μg/l	0.9	BDL	BDL	BDL	BDL	BDL
DIBROMOCHLOROMETHANE	50	μg/I	0.7	BDL	BDL	BDL	BDL	BDL
NAPHTHALENE	10	μg/I	1.7	BDL	BDL	BDL	BDL	BDL
TOTAL VOCs		μg/l	0.0	0.0	0.0	0.0	0.0	0.0
PHENANTHRENE	50	μg/l	1.0	BDL	BDL	BDL	BDL	BDL
FLUORENE	50	μg/l	1.0	BDL	BDL	BDL	BDL	BDL
PYRENE	50	μg/l	1.0	BDL	BDL	BDL	BDL	BDL
BIS(2-ETHLHEXYL)PHTHALATE	4.3	μg/I	1.0	BDL	BDL	BDL	BDL	BDL
DI-N-OCTYL PHTHALATE	50	μg/i	1.0	BDL	BDL	BDL	BDL	BDL
DIMETHYL PHTHALATE	50	μg/l	1.0	BDL	BDL	BDL	BDL	BDL
DIETHYL PHTHALATE	50	μg/l	1.0	BDL	BDL	BDL	BDL	BDL
IRON, TOTAL	600	μ g/l	2.0	66.0	64.0	49.0	31.0	45.0
MANGANESE, TOTAL	600	μ g/l	1.0	1080.0	952.0	1020.0	1060.0	893.0
SUM IRON & MANGANESE	1000	μ g/l	NA	1146.0	1016.0	1069.0	1091.0	938.0
NICKEL, TOTAL	2000	μg/l	5.0	4.0	4.0	6.0	5.0	6.0
ARSENIC, TOTAL	50	μg/I	48.0	7.0	BDL	BDL	BDL	BDL
ALUMINUM, TOTAL	2000	μ g/l	40.0	BDL	BDL	22.0	BDL	13.0
CHROMIUM, TOTAL	50	μg/I	2.0	BDL	BDL	BDL	BDL	1.0

**EFFLUENT** DISCHARGE UNITS COMP'T WEEK 1 WEEK 2 WEEK 3 WEEK 4 LIMITATIONS PARAMETER MDL 11/6/2002 11/12/02 11/19/02 11/26/02 1124717 11115167 990057 FLOW, DAILY AVG MONITOR GPD 1017614 NA 1195533 FLOW. DAILY MAX GPD NA 1117125 1118100 1105800 MONITOR VINYL CHLORIDE 5 μ g/l 1.1 BDL BDL BDL BDL 5 1.1 **1.1-DICHLOROETHANE** μg/I BDL BDL BDL BDL 5 BDL BDL 1,2(TRANS)-DICHLOROETHENE μg/l 1.1 BDL BDL 5 1,2(CIS)-DICHLOROETHENE μg/l 1.0 BDL BDL BDL BDL 1.1.1-TRICHLOROETHANE 5 μg/l 1.4 BDL BDL. BDL BDL TRICHLOROETHENE 10 μg/I 1.7 BDL BDL BDL BDL 0.7 BENZENE μg/l 0.7 BDL BDL BDL BDL **TETRACHLOROETHENE** 5 1.2 μg/l BDL BDL BDL BDL 5 TOLUENE μg/I 1.2 BDL BDL BDL BDL 5 m.p-XYLENE 2.4 BDL BDL BDL BDL μg/l 5 1.3 BDL BDL BDL o-XYLENE μ g/l BDL 5 1.2 BDL **1,1-DICHLOROETHENE** μg/1 BDL BDL BDL 50 METHYL ETHYL KEYTONE μg/l 10.0 BDL BDL BDL BDL ACETONE 50 μg/l 10.0 BDL BDL BDL BDL 7 1.1 BDL BDL BDL BDL CHLOROFORM μ g/l 50 0.9 DICHLOROBROMOMETHANE μg/l BDL BDL BDL BDL 50 μg/I 0.7 BDL BDL BDL BDL DIBROMOCHLOROMETHANE NAPHTHALENE 10 μg/l 1.7 BDL BDL BDL BDL μg/l 0.0 0.0 0.0 **TOTAL VOCs** 0.0 0.0 50 PHENANTHRENE 1.0 BDL BDL BDL BDL μ g/l FLUORENE 50 μg/I 1.0 BDL BDL BDL BDL PYRENE 50 1.0 BDL BDL BDL BDL μg/l **BIS(2-ETHLHEXYL)PHTHALATE** 4.3 μg/l 1.0 BDL BDL BDL BDL 50 DI-N-OCTYL PHTHALATE μg/I 1.0 BDL BDL BDL BDL 50 1.0 BDL DIMETHYL PHTHALATE μg/l BDL BDL BDL 50 DIETHYL PHTHALATE 1.0 BDL **BDL** BDL BDL μg/l 600 2.0 35.0 IRON, TOTAL μ q/l 25.0 87.0 57.0 MANGANESE, TOTAL 600 1.0 923.0 884.0 1060.0 843.0 μg/l **SUM IRON & MANGANESE** 1000 μg/I NA 948.0 919.0 1147.0 900.0 NICKEL, TOTAL 2000 μg/I 5.0 6.0 4.0 4.0 4.0 ARSENIC, TOTAL 50 μg/l 48.0 BDL BDL BDL BDL μg/l ALUMINUM, TOTAL 2000 40.0 BDL BDL BDL 13.0 CHROMIUM, TOTAL 50 2.0 BDL BDL BDL BDL μg/l

#### **DECEMBER 2002**

EFFLUENT	DISCHARGE	UNITS	COMP'T	WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5
PARAMETER	LIMITATIONS	00	MDL	12/3/2002		12/17/02	12/23/02	12/30/02
FLOW, DAILY AVG	MONITOR	GPD	NA	657833	657143	638786	837550	837686
FLOW, DAILY MAX	MONITOR	GPD	NA	657833	666600	659200	960900	985467
VINYL CHLORIDE	5	μ g/l	1.1	BDL	BDL	BDL	BDL	BDL
1.1-DICHLOROETHANE	5	μg/I	1.1	BDL	BDL	BDL	BDL	BDL
1,2(TRANS)-DICHLOROETHENE	5	μ <u>g</u> /Ι	1.1	BDL	BDL	BDL	BDL	BDL
1,2(CIS)-DICHLOROETHENE	5	μg/l	1.0	BDL	BDL	BDL	BDL	BDL
1,1,1-TRICHLOROETHANE	5	μg/l	1.4	BDL	BDL	BDL	BDL	BDL
TRICHLOROETHENE	10	μg/1	1.7	BDL	BDL	BDL	BDL ·	BDL
BENZENE	0.7	μg/l	0.7	BDL	BDL	BDL	BDL	BDL
TETRACHLOROETHENE	5	μg/l	1.2	BDL	BDL	BDL	BDL	BDL.
TOLUENE	5	μ <u>g</u> /l	1.2	BDL	BDL	BDL	BDL.	BDL
m,p-XYLENE	5	μg/1	2.4	BDL	BDL	BDL	BDL	BDL
o-XYLENE	5	μg/l	1.3	BDL	BDL	BDL	BDL	BDL
1,1-DICHLOROETHENE	5	μg/l	1.2	BDL	BDL	BDL	BDL	BDL
METHYL ETHYL KEYTONE	50	μg/l	10.0	BDL	BDL	BDL	BDL	BDL
ACETONE	50	μg/l	10.0	BDL	BDL	BDL	BDL	BDL
CHLOROFORM	7	μg/l	1.1	BDL	BDL	BDL	BDL	BDL
DICHLOROBROMOMETHANE	50	μ <b>g/</b> Ι	0.9	BDL	BDL	BDL	BDL	BDL
DIBROMOCHLOROMETHANE	50	μg/1	0.7	BDL	BDL	BDL	BDL	BDL
NAPHTHALENE	10	μg/l	1.7	BDL	BDL	BDL	BDL	BDL
TOTAL VOCs		μ <u>g</u> /Ι	0.0	0.0	0.0	0.0	0.0	0.0
PHENANTHRENE	50	μ g/l	1.0	BDL	BDL	BDL	BDL	BDL
FLUORENE	50	μg/1	1.0	BDL	BDL	BDL	BDL	BDL
PYRENE	50	μġ/l	1.0	BDL	BDL	BDL	BDL	BDL
BIS(2-ETHLHEXYL)PHTHALATE	4.3	μg/l	1.0	BDL	BDL	BDL	BDL	BDL
DI-N-OCTYL PHTHALATE	50	μg/l	1.0	BDL	BDL	BDL	BDL	BDL
DIMETHYL PHTHALATE	50	μg/I	1.0	BDL	BDL	BDL	BDL	BDL
DIETHYL PHTHALATE	50	μg/l	1.0	BDL	BDL	BDL	BDL	BDL
IRON, TOTAL	600	μ g/l	2.0	61.0	50.0	31.0	70.0	53.0
MANGANESE, TOTAL	600	μg/I	1.0	62.0	47.0	47.0	55.0	49.0
SUM IRON & MANGANESE	1000	μg/l	NA	123.0	97.0	78.0	125.0	102.0
NICKEL, TOTAL	2000	μg/l	5.0	3.0	3.0	4.0	4.0	4.0
ARSENIC, TOTAL	50	μg/I	48.0	BDL	BDL	BDL	BDL	BDL
ALUMINUM, TOTAL	2000	μg/1	40.0	BDL	BDL	9.0	4.0	19.0
CHROMIUM, TOTAL	50	μg/l	2.0	BDL	BDL	BDL	BDL	BDL

## **APPENDIX D**

# GOUNDWATER MONITORING REQUIREMENTS 2002

#### Appendix D

#### **GROUNDWATER MONITORING REQUIREMENTS**

# 1.0 Quarterly and Annual Groundwater Monitoring Well Sampling and Testing Procedures

#### **1.1 Sampling Equipment:**

- o Grundfos Redi-flo Variable Performance Pump installed in well.
- o BMI/MP1 115V Converter with a motor lead extension cable.
- o Generator or power source that provides 115 volts
- o Solinst water level meter
- o Discharge hose stored in the port opening of the well cap
- o Discharge hose stand
- o Stop watch and a bucket with a known volume.
- o Disposable latex or vinyl sampling gloves.
- o Cooler with ice packs.
- o Sample containers with labels.
- o Field book and pen.

#### **1.2 Sampling Procedures:**

- Open the well cover, unscrew and remove the discharge hose from the port opening. Confirm the well number on the metal tag or label.
- Take the depth to water reading through the port opening. Measure from the top edge of the well cover. Use well records to obtain the total depth of the well and calculate the fluid volume in the casing.
- o Start the generator and allow it to idle until it runs smoothly. Connect the converter to power source.
- Connect the converter to the well cover receptacle using the motor lead extension cable. Connect the discharge hose to the well cover and position it in the desired direction of flow using the discharge hose stand.
- Select RF2M with the mode selection knob on the converter. The frequency display should read 0.0 (zero). Set the VFD speed dial to the midpoint (12 o'clock position) or approximately 220 Hz.
- o Start the pump by moving the start/stop switch to the start position.

- Adjust the flow rate by turning the speed dial until the desired performance is attained. (48 Hz for minimum pumping to 400 Hz for maximum pumping)
- Use a stopwatch and a bucket of known volume to measure the rate of discharge in gallons per minute.
- Calculate the minimum pumping time by multiplying the fluid volume in the casing by three to obtain the volume to be purged and dividing by the flow rate. While purging continues measure the flow rate several times to insure the discharge rate is stable. All pertinent information must be recorded in the field book.
- Once the required volume is purged, label the sample containers. Decrease the flow rate to an
  appropriate sampling flow. Put on disposal latex or vinyl sampling gloves and fill the containers as per
  laboratory requirements. Place the samples in a cooler with ice packs.
- To stop the pump move the start/stop switch on the converter box to stop. Unplug all connections and then stop the generator. Return the discharge hose to the port, recap the connections and lock the well cover in place.

#### **1.3** Quarterly and Annual Analytical Tests and Methodologies

All laboratory analyses to monitor the groundwater conditions for the FTC remediation project were conducted at the Nassau County Department of Public Works, Special Projects Laboratory located at Cedar Creek Waste Water Treatment Facility in Wantagh, New York (NCDPW-Lab). The NCDPW-Lab is a New York State Department of Health, Environmental Laboratory Approval Program (ELAP) certified laboratory for all of the analytical tests performed for the monitoring program.

Analysis of collected groundwater samples for the groundwater monitoring program included:

- VOCs (EPA 601/602); detailed list of parameters found in Table 1
- Semi-VOCs (625); detailed list of parameters found in Table 1
- Metals (EPA 200.7, 206.2, 239.2)
- Field parameters (pH, conductivity and temperature)
- Water quality parameters (alkalinity, biochemical oxygen demand [BOD], chemical oxygen demand [COD], hardness, nitrite, nitrate, phosphorus, sodium, total kjeldahl nitrogen [TKN], ammonia sulfate, chlorides, total organic carbon [TOC], total dissolved solids [TDS], and total suspended solids [TSS]).

#### 1.4 Quarterly and Annual Floating Product Wells and Monitoring Procedures

All groundwater monitoring wells that have historically been impacted by floating petroleum product (No. 2 fuel oil, gasoline) have been included in the monitoring program. Product, if present, is measured in each well using the following procedures:

- o Each well is located and identified on a site map.
- The well is opened at the surface and the self-sealing plug is removed.
- An electronic interface probe is introduced into the well and slowly lowered to the oil/water interface.
- Product is identified by an audible solid tone; the depth to product is then measured from the top of the casing to an accuracy of (+/-) .01 feet.
- The interface probe is then slowly lowered until an audible beeping tone is detected. The depth to water is then measured from the top of the casing to an accuracy of (+/-) .01 feet.
- The measurements are repeated to assure accuracy and the interface probe is removed.
- The self sealing cap is replaced and the well is closed.

#### 1.5 Quarterly and Annual Hydraulic Control Monitoring

In addition to the recovery of volatile organic contamination within the FTC plume, an equally important factor is the hydraulic containment of the site's plume. In order to monitor the hydraulic containment of the FTC plume, the measurement of water levels are necessary to establish the groundwater flow direction(s) and gradient(s). From this information, the remediation's recovery well system can be monitored to confirm the effectiveness of the hydraulic containment under various conditions and to adjust and modify the recovery well system pumping to maintain hydraulic plume containment until remediation termination criteria are met.

Water levels were measured using a steel tape and chalk or with an electronic water level meter. All water level measurements are referenced to msl, as an elevation in feet (ft). The water level elevations are plotted on a site base map, according to depth. Contour lines, indicating areas of equal elevation are then drawn, from which groundwater flow direction(s) and gradient(s) can be established.

#### 1.6 Groundwater Cleanup Criteria

The FTC Record of Decision (ROD) established the Groundwater Cleanup Criteria that need to be met for the FTC site to be deemed remediated. The FTC Site's specific list of compounds and their required concentrations to achieve the remediation's goals can be found in Table 2.

### Table 1 Volatile Organic Compound Analysis (EPA Method 524) List Of Analytes

Dichlorodifluoromethane	] [	1,2-D
Chloromethane	] [	Chlor
Vinyl Chloride	1 [	1,1,1,
Bromomethane	1 [	Ethyl
Chloroethane	1 [	m,p-X
Trichlorofluoromethane	1 [	o-Xyl
1,1-Dichloroethene	ן ר	Styre
Methylene Chloride	1 [	Isopro
t-1,2-Dichloroethene	1 [	Brom
1,1-Dichloroethane	1 [	1,1,2,
2,2-Dichloropropane	1 [	1,2,3-
c-1,2-Dichloroethene	1 [	n-Pro
Chloroform	1 [	Brom
Bromochloromethane	1 [	1,3,5-
1,1,1-Trichloroethane	1 [	2-Chl
1,1-Dichloropropene	1 [	4-Chl
Carbon Tetrachloride	1 [	t-Buty
1,2-Dichloroethane	1 [	1,2,4-
Benzene	1 [	sec-B
Trichloroethene	1 [	p-lso
1,2-Dichloropropane	1 [	1,3-D
Bromodichloromethane	] [	1,4-D
Dibromomethane	] [	n-But
c-1,3-Dichloropropene	] [	1,2-D
Toluene	] [	1,2-D
t-1,3-Dichloropropene	] [	1,2,4
1,1,2-Trichloroethane	] [	Hexa
1,3-Dichloropropane		Naph
Tetrachloroethene	] [	1,2,3
Dibromochloromethane		Meth

_	
	1,2-Dibromoethane
	Chlorobenzene
	1,1,1,2-Tetrachloroethane
	Ethyl Benzene
	m,p-Xylene
	o-Xylene
	Styrene
	lsopropylbenzene
	Bromoform
	1,1,2,2-Tetrachloroethane
	1,2,3-Trichloropropane
	n-Propylbenzene
	Bromobenzene
	1,3,5-Trimethylbenzene
	2-Chlorotoluene
	4-Chlorotoluene
	t-Butylbenzene
	1,2,4-Trimethylbenzene
	sec-Butylbenzene
	p-Isopropyltoluene
	1,3-Dichlorobenzene
	1,4-Dichlorobenzene
	n-Butylbenzene
	1,2-Dichlorobenzene
	1,2-Dibromo-3-Chloropropane
	1,2,4-Trichlorobenzene
	Hexachlorobutadiene
	Naphthalene
	1,2,3-Trichlorobenzene
	Methyl tertiary-Butyl-Ether (MTBE)

Analyses conducted by NCDPW Environmental Laboratory

Table 2	
NASSAU COUNTY FTC	
GROUNDWATER CLEANUP CRITERIA	
Constituents Identified In Risk Assessment	NYS State Groundwater Standards 6 NYCRR 703.5 (ug/l)
Volatile Compounds	
Benzene Toluene Ethyl Benzene Xylenes (each Isomer) Acetone Methyl Ethyl Ketone Carbon Disulfide	0.7 5 5 5 50* 50* 50* 50*
Vinyl Chloride Methylene Chloride 1,1-dichloroethene 1,1-dichloroethane trans-1,2-dichloroethene 1,1,1-trichloroethane Trichloroethene Tetrachloroethene 2-hexanone Total Volatiles	2 5 5 5 5 5 5 5 5 50 50
Semi-Volatile Compounds	
Phenanthrene Fluorene Naphthalene di-n-octyl phthalate 2-methylnaphthalene	50* 50* 50* 50* 50*

* - NYS Drinking Water Standards 10 NYCRR 5-1 (ug/l)