ANNUAL REPORT SEPTEMBER 2001 THROUGH JULY 2002

OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM

NEW CASSEL INDUSTRIAL AREA (SITE NO. 1-30-043) NEW CASSEL, NEW YORK

Prepared for

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

By

DVIRKA AND BARTILUCCI CONSULTING ENGINEERS WOODBURY, NEW YORK

JUNE 2003

◆1898\F0409302.doc(R05)

ANNUAL REPORT SEPTEMBER 2001 THROUGH JULY 2002 OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM NEW CASSEL INDUSTRIAL AREA

TABLE OF CONTENTS

Section	Title	Page
1.0	INTRODUCTION	1-1
2.0	SITE LOCATION AND BACKGROUND	2-1
	2.1 Site Location and Description2.2 Previous Investigations	
3.0	SCOPE OF THE MONITORING AND ASSESS	MENT PROGRAM3-1
	 3.1 Groundwater Monitoring Well Construction 3.2 Groundwater Sampling 3.3 Data Validation and Reporting 	
4.0	GROUNDWATER MONITORING RESULTS	4-1
	 4.1 Groundwater Levels 4.2 Groundwater Quality Results	4-1 4-3 4-3 4-4 4-4 4-7 ct Supply Wells4-12
5.0	EVALUATION OF NATURAL ATTENUATION THE VOLATILE ORGANIC COMPOUND PL	N OF UME5-1
	5.1 Breakdown of Ethanes and Ethenes5.2 Natural Attenuation Parameters	
6.0	CONCLUSIONS	6-1
7.0	RECOMMENDATIONS	7-1

TABLE OF CONTENTS (continued)

List of Appendices

۳,

Summary of Sample Field Parameter ValuesA
Early Warning Well and Off-site Monitoring Well Volatile Organic Compound ResultsB
Historic Concentration Graphs for Early Warning Wells and Off-site Monitoring Wells - Total Volatile Organic CompoundsC
Early Warning Well and Off-site Monitoring Well Natural Attenuation Monitoring Parameter ResultsD
Historic Concentration Graph for Bowling Green Estates Water District Supply Wells (1988-2002) - Total Volatile Organic CompoundsE
RI/FS Well Sampling Groundwater Data Summary RI/FS Report Figures (2000)F

List of Figures

2-1	Site Location Map	2-2
2-2	Location of Class 2 Sites in the New Cassel Industrial Area	2-4
3-1	Well Location Map	3-2
4-1	Location of Cross Section A-A'	4-9
4-2	Cross Section A-A' Showing Total VOC Concentrations	4-10
5-1	Average Percentages of Ethane Constituents in Groundwater	5-7
5-2	Average Percentages of Ethene Constituents in Groundwater	5-8
5-3	Locations of On-site Groundwater Monitoring Wells	5-10

List of Tables

3-1	Summary of Monitoring Well Construction Details
4-1	Summary of Water Level Data
4-2	Early Warning Well and Off-site Monitoring Well
	Total Volatile Organic Compound Sample Results4-5
4-3	Concentration Ranges for Natural Attenuation Monitoring Parameters4-8

+1898\F0409302.doc(R06)

TABLE OF CONTENTS (continued)

List of Tables (continued)

4-4	Bowling Green Estates Water District Supply Wells - Historic Total Volatile Organic Compound Results	4-13
4-5	Bowling Green Estates Water District Supply Wells -	
	Summary of Selected Volatile Organic Compound Results -	
	1999 through 2002	4-15
5-1	Off-site VOC Constituent Percentages in Groundwater	5-2
5-2	On-site VOC Constituent Percentages in Groundwater	5-9
5-3	Natural Attenuation Parameter Monitoring Results - July 2002	

Section 1 -Ŀ

1.0 INTRODUCTION

As part of New York State's program to investigate and remediate hazardous waste sites, the New York State Department of Environmental Conservation (NYSDEC) issued a work assignment to Dvirka and Bartilucci Consulting Engineers (D&B) of Woodbury, New York. The work assignment was issued under the Superfund Standby Contract between D&B and the NYSDEC, and involves conducting off-site groundwater monitoring and assessment for the New Cassel Industrial Area (NCIA) located in the Town of North Hempstead, Nassau County, New York. The off-site groundwater investigation is being conducted with funds allocated under the New York State Superfund Program.

The approach for this investigation was to construct monitoring wells at locations off-site and downgradient of the NCIA, and collect groundwater samples from the newly installed wells and previously existing early warning wells for the nearby Bowling Green Estates Water District supply wells.

The objectives of this investigation are to:

- Characterize and evaluate off-site groundwater quality downgradient of the NCIA;
- Determine to what extent the Bowling Green Estates Water District supply wells have been impacted; and
- Determine whether the existing treatment system for the Bowling Green Estates Water District supply wells will continue to provide protection of human health.

This annual report provides the results of the quarterly monitoring events conducted in September/November 2001 and January, April and July 2002. Note that for the first sampling event, the existing early warning wells were sampled in September 2001, and the off-site monitoring wells, which were constructed in October 2001, were not sampled until November 2001.

+1898\A0313302.doc(R06)

This report provides a description of the study area location, a summary of the site history and previous investigations at the NCIA, and activities conducted as part of this off-site groundwater monitoring and assessment program. These program activities comprised drilling, well construction, groundwater sampling, data validation and reporting. This report also includes an evaluation of the groundwater analytical results obtained during the first year of this program and a comparison of the results to New York State groundwater quality standards and guidance values. In addition, an evaluation of the nature and extent of groundwater contamination and a groundwater quality assessment are provided. Based on the findings of the groundwater monitoring and assessment program, recommendations regarding future monitoring activities are presented.

Section 2 - AND Ì. S. S. Stand

2.0 SITE LOCATION AND BACKGROUND

2.1 Site Location and Description

The New Cassel Industrial Area (NCIA) is located in the Town of Hempstead, Nassau County, New York (see Figure 2-1). The NCIA is approximately 170 acres in size and is bounded by Long Island Rail Road tracks on the north, Old Country Road on the south, Frost Street on the east and Grand Boulevard on the west. Regional groundwater flow is reported to be toward the southwest, although the flow direction may vary locally due to the pumping of the nearby Bowling Green Estates Water District supply wells.

According to information provided by the NYSDEC, the NCIA was developed in the early 1950s. There are approximately 200 properties in the NCIA which are used for industrial and commercial purposes.

The Bowling Green Estates Water District well field, which is owned and operated by the Town of Hempstead, is located approximately 1/4 mile south of the NCIA (see Figure 2-1). The well field is comprised of two public water supply wells, BGE-1 and BGE-2. BGE-1 is screened from 478 feet to 528 feet below ground surface and BGE-2 is screened from 524 feet to 584 feet below ground surface. Each well is permitted to pump at a rate of 1,400 gallons per minute. Extracted water is treated for removal of volatile organic compounds (VOCs) using air stripping and carbon filtration prior to distribution. The drawdown near the well head during pumping is reported to be approximately 50 feet.

2.2 **Previous Investigations**

In 1986, the NCIA was identified by the Nassau County Department of Health as an area with widespread contamination of groundwater by VOCs. As a result, the entire NCIA was listed as a Class 2 site on the Registry of Inactive Hazardous Waste Disposal Sites (Registry) by the NYSDEC in 1988. A Class 2 site is one that poses a significant threat to public health and/or the environment, and for which remedial action is required.

In order to identify specific contaminant sources within the NCIA, preliminary site assessments were conducted by NYSDEC consultants between 1994 and 1996. Soil and groundwater samples were also collected at several properties in 1998 and 1999. Based on the site assessments and sampling activities, 17 individual properties within the NCIA were listed on the Registry as Class 2 sites between 1995 and 1999. To date, three of these sites have been delisted from the Registry and one has been reclassified as a Class 4 site (on-going monitoring required), leaving 13 Class 2 sites remaining within the NCIA (see Figure 2-2).

Sampling of monitoring wells in and around the NCIA was conducted on behalf of the NYSDEC in April 1999, August 1999 and January 2000. Additional Hydropunch groundwater samples were collected at four locations south of the NCIA in January and February 2000 to evaluate the vertical distribution of contamination downgradient of the NCIA. The results of these activities were described in the September 2000 Remedial Investigation/Feasibility Study (RI/FS) Report. The RI/FS Report identified three separate VOC plumes in groundwater beneath the NCIA.

The eastern plume is the smallest and is comprised primarily of tetrachloroethene (PCE) and its breakdown products, trichloroethene (TCE) and 1,2-dichloroethene (1,2-DCE). The concentrations of total VOCs (TVOCs) within this plume increase with depth to approximately 100 feet below ground surface, then decrease from 100 feet to the deepest horizon sampled (200 feet below ground surface).

The central plume is the most areally extensive of the identified plumes and is comprised primarily of PCE, TCE, 1,1,1-trichloroethane (TCA) and the TCA breakdown product 1,1-dichloroethane (1,1-DCA). Data collected during the RI/FS show that TVOC concentrations above 1,000 micrograms per liter (ug/l) associated with the central plume are present at depth of 100 to 200 feet below ground surface. This plume extends from the NCIA toward the Bowling Green Estates Water District well field. According to the RI/FS Report, data collected during the construction of early warning wells upgradient of the Bowling Green Estates Water District well

2-3

field indicate that the VOC concentrations tend to decrease significantly below a depth of 150 feet.

According to the RI/FS Report, the western plume is located in the western section of the industrial area and extends from the Long Island Rail Road to just south of Old Country Road. The primary contaminants in the western plume are TCE, PCE and TCA. Total VOC concentrations in shallow groundwater in this area exceeded 1,000 ug/l. The western plume area reaches its maximum apparent extent in the shallow groundwater with lesser concentrations detected in deeper wells.

In 1992, VOC contamination was detected in the Bowling Green Estates Water District supply wells. The identified contamination in both wells was primarily TCE, with lower concentrations of PCE, 1,2-DCE, 1,1-dichloroethene (1,1-DCE), TCA and carbon tetrachloride. The TVOC concentrations in BGE-1 are generally greater than those detected in BGE-2, and for both wells, the total VOC concentrations have been generally increasing since 1988. A treatment system for these wells, designed and constructed to address the detected VOCs, has been in operation since 1996. Extracted water is treated by air stripping followed by activated carbon filtration, if necessary, prior to distribution.

Public concerns regarding the migration of contaminated groundwater from the NCIA resulted in the construction of four early warning wells between the Bowling Green Estates Water District well field and the NCIA in 1997. The early warning wells were constructed as two 2-well clusters. The first well cluster consisted of wells EW-1B (screened 154 to 164 feet below ground surface) and EW-1C (screened 506 to 516 feet below ground surface). The second well cluster consisted of wells EW-2B (screened 132 to 142 feet below ground surface) and EW-2C (screened 504 to 514 feet below ground surface). These wells have been periodically sampled since 1997.

♦1898\A0313303.doc(R07)

2-5

. . **Section 3**

3.0 SCOPE OF THE MONITORING AND ASSESSMENT PROGRAM

The approach for this program was to construct and sample monitoring wells in order to characterize off-site groundwater quality downgradient of the NCIA. This was accomplished by construction of nine new monitoring wells and collection of quarterly groundwater samples from the new wells and the four existing early warning wells. The activities related to construction of the new wells, groundwater sampling, data validation and reporting are provided below.

3.1 Groundwater Monitoring Well Construction

The initial scope of work for this program included the installation, development and surveying of eight monitoring wells (MW-1 through MW-8). These wells were constructed in a residential area downgradient of the NCIA. The well locations and depths of the wells were selected by the NYSDEC to supplement the existing NCIA monitoring well and off-site early warning well network. The eight monitoring wells were constructed as two 2-well clusters and one 4-well cluster. The locations of the eight monitoring wells and four existing early warning wells (EW-1B, EW-1C, EW-2B and EW-2C), as well as the Bowling Green Estates Water District supply wells (BGE-1 and BGE-2), are illustrated on Figure 3-1.

Table 3-1 summarizes the well construction details for the off-site monitoring wells. Seven of the eight boreholes (MW-1 through MW-3 and MW-5 through MW-8) were drilled using the hollow stem auger drilling method. MW-4 was drilled using the mud rotary method.

Specific activities related to the eight monitoring wells, including drilling, logging, well construction, well development, and cuttings disposal are contained in the monitoring well construction letter report, dated December 17, 2001.

Based on the analytical results from the initial sampling event (November 2001), the work assignment was modified. At the request of the NYSDEC, an additional monitoring well

♦1898\A0417301.doc(R05)

•

Table 3-1

.

1

NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS

Well ID	Diameter and Material	Outer Casing Length*	Screen Zone*	Sand Pack*	Bentonite Seal*	Top of PVC Elevation**	Ground Elevation**
MW-1	2-inch PVC		90-110	87-110	84-87	115.11	115.44
MW-2	2-inch PVC		110-130	107-130	104-107	115.14	115.40
MW-3	2-inch PVC		130-150	127-150	51-127	115.13	115.35
MW-4	4-inch PVC		180-200	175-200	30-175	115.24	115.49
MW-5	2-inch PVC		90-110	87-110	84-87	117.11	117.38
MW-6	2-inch PVC		110-130	107-130	75-107	117.14	117.37
MW-7	2-inch PVC		90-110	86-110	83-86	107.05	107.34
MW-8	2-inch PVC		119-139	116-139	55-116	106.98	107.22
MW-9	4-inch PVC ⁽¹⁾	0-280	305-315	295-315	265-295	111.29	111.63

*Feet below ground surface.

**Feet above mean sea level.

⁽¹⁾Outer casing is 8-inch diameter carbon steel with welded joints.

(MW-9) was installed in the residential area, southeast of the existing four-well cluster (MW-1 through MW-4). The location for MW-9 (see Figure 3-1) was selected by the NYSDEC to supplement the existing off-site monitoring well network.

The borehole for MW-9 was drilled using the mud rotary method. The initial scope of work for MW-9 included drilling, geophysical logging and Hydropunch groundwater sampling to a depth of 300 feet below ground surface. However, due to significant clay layers encountered between 200 feet and 300 feet, the borehole was extended to 320 feet below ground surface with concurrence from the NYSDEC.

Hydropunch groundwater samples were collected from the MW-9 borehole to aid in selection of an appropriate screen zone. Samples were collected at depths of 80 feet, 100 feet, 120 feet, 140 feet, 180 feet, 200 feet and 260 feet below ground surface. The Hydropunch samples were analyzed for VOCs. Only two VOCs, acetone and chloroform, were detected in the Hydropunch samples, at concentrations ranging from nondetect to 33 ug/l. These compounds are typical laboratory contaminants.

Because the screen zone for MW-9 was to be installed in the zone with the highest TVOC concentration below 200 feet and no worst-case horizon was identified, it was determined by the NYSDEC that MW-9 would be screened from 305 feet to 315 feet below ground surface.

Well MW-9 was constructed as a double-cased well. The outer casing is comprised of 8-inch diameter carbon steel with welded joints and the well is constructed of 4-inch diameter PVC casing and screen. The well construction details for MW-9 are included in Table 3-1.

Specific activities related to MW-9, including drilling, logging, well construction, Hydropunch sampling, well development, containment and disposal of drill cuttings, and well surveying are contained in the Drilling Report for MW-9 dated September 16, 2002.

3.2 Groundwater Sampling

During the first three quarterly groundwater sampling events (September/November 2001, January and April 2002), the four early warning wells and eight off-site monitoring wells (MW-1 through MW-8) were sampled. The fourth quarter sampling event (July 2002) comprised these same wells, and MW-9 after it was installed.

Groundwater sampling for the four early warning wells and nine off-site monitoring wells was conducted in accordance with the NYSDEC approved work plan, dated May 2001. Specific groundwater sampling procedures, field parameter measurements collected during purging of the wells, quality assurance/quality control (QA/QC) and decontamination of equipment have been provided in the four quarterly sampling reports submitted to the NYSDEC.

The analytical and field parameter results for the four quarterly sampling events (September 2001 through July 2002) are discussed in Section 4.0.

3.3 Data Validation and Reporting

For each of the four quarterly reports, the data packages submitted by the laboratories (CompuChem and Southwest Laboratories of Oklahoma, Inc.) were validated in accordance with NYSDEC ASP requirements and a data usability summary report (DUSR) was prepared. The DUSR for each sampling event was included in the sampling report for that event. The results (VOCs and natural attenuation monitoring parameters) provided in the data tables in Appendices B and D of this report reflect the findings of the data validation.

3-5

Section 4 1 -Š. ۱. Ì ĥ

4.0 GROUNDWATER MONITORING RESULTS

This section presents the water level data and analytical results for groundwater samples collected from September 2001 through July 2002 as part of the Off-site Groundwater Monitoring and Assessment Program, and describes the location, nature and significance of contamination found off-site and downgradient of the New Cassel Industrial Area.

For review and interpretation, the analytical results are compared to NYSDEC Technical and Operational Guidance Series (TOGS) (1.1.1), Ambient Water Quality Standards and Guidance Values (1998). The water quality standards and guidance values provide ambient contaminant concentrations developed to protect New York State groundwater based on its best classified usage. Analytical results obtained for groundwater samples are compared to Class GA standards for which the best use is potable water supply. The Class GA standards and guidance values are also included in the data tables.

4.1 Groundwater Levels

As part of the four quarterly sampling events, groundwater level measurements were obtained from off-site monitoring wells MW-1 through MW-9. Groundwater contour maps were not prepared as part of the Off-site Groundwater Monitoring and Assessment Program due to the linear orientation of the monitoring wells. The depth to water measurements and hydraulic head elevations for the off-site monitoring wells are presented in Table 4-1.

The average depth to groundwater measured in the off-site wells during the period, November 2001 through July 2002, is approximately 60 feet below ground surface. For each of the monitoring periods, the water levels were highest in the northernmost wells (MW-5 and 6) and lowest in the southernmost wells (MW-7 and 8), which is consistent with the reported regional southwestern groundwater flow direction.

+1898\F0409303.doc(R09)

Table 4-1

NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM SUMMARY OF WATER LEVEL DATA

	Measuring	1st Quarter November 2001		Juarter 2nd Quarter Iber 2001 January 2002		3rd Quarter April 2002		4th Quarter July 2002	
Well	Point Elevation*	DTW	Hydraulic Head	DTW	Hydraulic Head	DTW	Hydraulic Head	DTW	Hydraulic Head
									<u> </u>
MW-1	115.11	50.69	64.42	51.81	63.30	53.11	62.00	54.13	60. 98
MW-2	115.14	50.81	64.33	51.99	63.15	53.18	61.96	54.21	60.93
MW-3	115.13	50.79	64.34	51.85	63.28	53.20	61.93	54.27	60.86
MW-4	115.24	51.12	64.12	52.10	63.14	53.51	61.73	54.66	60.58
MW-5	117.11	52.37	64.74	53.41	63.70	54.71	62.40	55.77	61.34
MW-6	117.14	52.43	64.71	53.46	63.68	54.71	62.43	55.84	61.30
MW-7	107.05	45.00	62.05	46.10	60.95	47 30	59.75	48 18	58 87
MW-8	106.98	45.16	61.82	46.18	60.80	47.47	59.51	48.45	58.53
MW-9	111.29	N1		NI		NI		52.25	60.04

Notes:

* - Relative to mean sea level

DTW - Depth to water in feet below Measuring Point

NI - Well not installed

-- - Not established

◆1898\F0409303.doc(R09)

In general, the groundwater levels measured during the four quarters fluctuated approximately 3 feet. Water levels were highest during November 2001 (First Quarter) and lowest during July 2002 (Fourth Quarter). Data collected from wells MW-1 through MW-8 show that groundwater flow generally has a downward component. The relative July 2002 hydraulic head elevations are typical for the 2001/2002 monitoring period for the well clusters, and from north to south, ranged from 61.34 feet (MW-5) to 61.30 feet (MW-6), 60.98 feet (MW-1) to 60.58 feet (MW-4) and 58.87 (MW-7) to 58.53 feet (MW-8), see Table 4-1.

4.2 Groundwater Quality Results

The groundwater samples from the early warning wells and the off-site monitoring wells were analyzed for VOCs, total iron, total organic carbon (TOC), alkalinity, chloride, nitrate, sulfate, carbon dioxide and methane. In addition, groundwater samples were monitored in the field for pH, temperature, specific conductance, dissolved oxygen, Eh and turbidity.

Historic VOC results for the early warning wells from June 1997 to March 2001 are incorporated into the following discussion. In addition, historic VOC results for the Bowling Green Estates Water District supply wells from 1988 through 2002 are discussed. The VOC results for the supply wells were provided by the Town of Hempstead Department of Water.

4.2.1 Field Parameters

A summary of the sample field parameter values measured at the time of sample collection for the sampling events from September/November 2001 through July 2002 is provided in Appendix A. Ranges for the field parameter values for the early warning wells and monitoring wells are provided below.

Levels of pH ranged from 4.73 in well MW-1 to 6.09 in well MW-8. An elevated pH level of 10.00 was detected at well MW-9 (July 2002). Temperatures ranged from 12.2°C in well EW-1C to 18.7°C in well MW-1. Specific conductance values ranged from 0.061 millisiemens per centimeter (ms/cm) in well EW-2C to 0.548 ms/cm in well MW-6. Turbidity levels ranged

+1898\F0409303.doc(R09)

from 0 Nephelometric Turbidity Units (NTUs) in well EW-2B to 26 NTUs in well EW-2C. Dissolved oxygen levels ranged from 1.16 milligrams per liter (mg/l) in well MW-6 to 12.32 mg/l in well MW-5. An anomalous high dissolved oxygen reading of 16.06 mg/l was recorded in well EW-2C (July 2002). Eh levels ranged from 8 millivolts (mv) in well MW-8 to 413 mv in well MW-7. For each well, the values were generally consistent between sampling events.

4.2.2 Early Warning Wells

The locations of the four early warning wells are shown on Figure 3-1. These wells constitute two clusters, each containing a shallow and deep well screened in the Magothy aquifer.

Volatile Organic Compounds

The results of the individual VOC analyses and comparison to NYSDEC Class GA groundwater standards and guidance values are presented in Appendix B. Graphs illustrating historic TVOC concentrations for the early warning wells are presented in Appendix C. Table 4-2 presents the four quarterly 2001/2002 sample results for TVOCs, the trends of these results and historic TVOC concentration trends.

The sample results show that wells EW-1B and EW-2B (screened in the shallow Magothy aquifer) contained elevated concentrations of VOCs in excess of the Class GA groundwater standards. TVOCs for well EW-1B (screened 154 to 164 feet below ground surface) ranged from 839.2 micrograms per liter (ug/l) to 1,337 ug/l. The results show several individual compounds exceeding the NYSDEC Class GA groundwater standards, including PCE, TCE, cis-1,2-DCE, 1,1-DCE, TCA, 1,1-DCA and methylene chloride (Appendix B). Among these compounds, PCE exhibited the highest concentrations, ranging from 630 ug/l to 1,000 ug/l.

Table 4-2

NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM EARLY WARNING WELL AND OFF-SITE MONITORING WELL TOTAL VOLATILE ORGANIC COMPOUNDS RESULTS

Well No.	Screen Zone (feet below ground surface)	1st Quarter (Sept./ Nov. 2001) ⁽¹⁾	2nd Quarter (Jan. 2002)	3rd Quarter (Apr. 2002)	4th Quarter (July 2002)	Trend (Sept. 2001 to July 2002)	Historic Trend (June 1997 to July 2002)
Early Warning Wells							
EW-1B	154-164	839.2	1,337	1,037.1	840.7	Little Change	Slight Decrease
EW-1C	506-516	12	13.6	20	13	Consistent	Slight Increase
EW-2B	132-142	532.2	261	209.5	181	Decrease	Fairly Consistent
EW-2C	504-514	ND	ND	ND	1	Consistent	Consistent
Off-site Monitoring Wells							
MW-1	90-110	53.3	34	105	106	Slight Increase	**
MW-2	110-130	1,597.8	1,393	1,382	552	Decrease	**
MW-3	130-150	2,822.2	2,490	1,273	2,190	Slight Decrease	**
MW-4	180-200	3,015.4	2,301	1,576	1,498	Decrease	**
MW-5	90-110	33.7	45.5	36.1	31	Consistent	**
MW-6	110-130	761.2	301	351	330	Decrease	**
MW-7	90-110	30.9	29	24.3	40	Consistent	**
MW-8	120-140	5.9	9.1	6.7	5.1	Consistent	**
MW-9	305-315	NI	NI	NI	19.8	*	**

Notes: All results reported in ug/l

ND - Not detected

NI - Not installed

* - Insufficient data to establish a trend

** - No historic data

Historic VOC graphs are presented in Appendix C

⁽¹⁾Early warning wells were sampled in September 2001 and the off-site monitoring wells were sampled in November 2001

TVOCs in well EW-2B (screened from 132 to 142 feet below ground surface) ranged from 181 ug/l to 532.2 ug/l. Well EW-2B contained several individual compounds with concentrations exceeding the NYSDEC Class GA groundwater standards. These compounds were the same as identified in EW-1B, with the addition of 1,2-DCA, vinyl chloride (VC), chloroethane and 1,2,3-trichloropropane. Among these compounds, TCE and 1,1-DCA exhibited the highest concentrations, ranging from 84 ug/l to 140 ug/l and from 5 ug/l to 150 ug/l, respectively.

During the four quarters, TVOC concentrations in well EW-1B showed little overall change and TVOC concentrations in well EW-2B showed a decreasing trend (see Appendix C and Table 4-2). With regard to historic TVOC trends (June 1997 to July 2002), well EW-1B showed a slight decreasing trend. Well EW-2B has showed a fairly consistent trend; however, from March 2001, a steadily decreasing trend in TVOC concentrations is apparent in this well (refer to Appendix C).

A comparison of the four quarterly sample results for early warning wells EW-1C and EW-2C (screened in the deep Magothy aquifer) show little change (10 ug/l or less) in concentrations of TVOCs. TVOCs for well EW-1C (screened 506 to 516 feet below ground surface) ranged from 12 ug/l to 20 ug/l. For well EW-1C, TCE was the only compound that exceeded the NYSDEC Class GA groundwater standard at concentrations ranging from 12 ug/l to 15 ug/l. TVOCs for well EW-2C (screened 504 to 514 feet below ground surface) ranged from nondetect to 1 ug/l. TVOC concentrations for wells EW-1C and EW-2C remained consistent during the September 2001 through July 2002 period.

With regard to historic TVOC trends (June 1997 to July 2002), well EW-1C showed a slight increase. However, during this period, TVOCs have not exceeded 20 ug/l in any sample from EW-1C. For well EW-2C, historical TVOCs remained consistent and TVOCs did not exceed 2 ug/l.

+1898\F0409303.doc(R09)

4-6

Natural Attenuation Monitoring Parameters

The concentrations of natural attenuation monitoring parameters for the four 2001/2002 sampling quarters, and groundwater standards and guidance values are presented in Appendix D.

Table 4-3 presents concentration ranges for the natural attenuation monitoring parameters for the four quarterly sample results. The four early warning wells showed concentrations of TOC, alkalinity, chloride, nitrate, sulfate, carbon dioxide and methane to have remained fairly consistent in each well. Total iron concentrations varied in wells EW-1B, EW-1C and EW-2C and remained nondetect in EW-2B. Total iron was the only parameter detected above the groundwater standard of 0.3 mg/l in wells EW-1B, EW-1C and EW-2C on one or more occasions.

4.2.3 Off-site Monitoring Wells

The topography in the area of the off-site wells is relatively flat and the ground surface elevations at the nine well locations do not vary by more than 10 feet. Based on geologic information obtained during this investigation and existing geologic information provided by the NYSDEC, wells MW-1 through MW-9 are all screened within the Magothy aquifer.

Figure 4-1 shows the location of cross section A-A'. The screen zones for selected offsite wells in addition to selected monitoring wells from the RI/FS are illustrated in cross section on Figure 4-2. The cross section is oriented northeast to southwest, approximately parallel to the regional groundwater flow direction.

TVOC concentrations are presented on the cross section in Figure 4-2. TVOC concentrations for the selected wells are from data collected during the RI/FS (April 1999 through January 2000) and represent the maximum TVOC concentrations detected in the wells. For the early warning wells and the off-site monitoring program wells, TVOC concentrations are representative of the July 2002 contaminant levels.

Table 4-3

NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM CONCENTRATION RANGES FOR NATURAL ATTENUATION MONITORING PARAMETERS

	MW-1	MW-2		MW-4	MW-5	MW-6	MW-7	MW-8	MW-9
Iron (Total)	U	U - 0.474	U - 7.58	U - 0.5	U - 0.618	U - 0.04	U - 0.07	U - 18.2	0.027
тос	U - 4.1	U - 3.5	2.3 - 6.3	2.4 - 6.3	U - 4.1	U - 4.4	U - 3.4	2.2 - 12.2	1.9
Alkalinity	U - 11	22 - 27	15 – 27	19 - 22	13 - 18	24 - 32	U	14 - 53	24
Chloride	38.8 - 59.7	33.5 - 37.5	35.7 - 39.9	45.7 - 47.4	43.6 - 66.7	99 - 117	18.8 - 22.7	22.9 - 26.1	101
Nitrate	4.1 - 5.3	5.1 - 7	4.4 - 6.5	8.1 - 9.2	3.7 - 4.9	4.7 - 5.2	5.6 - 6.3	1.7 - 5.0	5.2
Sulfate	24.4 - 29.4	18.9 - 22.8	12.4 - 21.1	U - 4.4	20.5 - 29.2	21.3 - 30.9	28.4 - 33.8	19.6 - 32.7	21.3
Carbon Dioxide	U - 78	62 - 408	71 - 369	71 - 466	31 - 53.1	53 - 392	U - 158	U - 56.2	62
Methane	U - 0.004	U - 0.13	0.097 - 1.2	U - 0.013	U - 0.009	U - 0.007	U - 0.007	U - 0.22	U

	EW-1B	EW-1C	EW-2B	EW-2C
Iron (Total)	U - 0.445	U - 0.316	U	U - 0.858
тос	U - 2.7	U - 1.4	U - 2	U - 1.4
Alkalinity	18 - 20.6	10 - 12	13 - 15	10 - 10.6
Chloride	26.9 - 33.5	9.8 - 13.7	30.3 - 36.8	4.1 - 7
Nitrate	6 - 6.4	5.6 - 6.3	2.1 - 2.3	1.7 - 1.9
Sulfate	21.9 - 23.5	U - 2.3	9.5 - 17.1	U - 2.7
Carbon Dioxide	U - 79.8	13 - 72.9	56 - 67	10 - 17.4
Methane	U - 0.005	U - 0.009	0.004 - 0.11	U - 0.074

Notes:

Concentrations in mg/l U: Undetected Ranges are for 9/01-11/01, 1/02, 4/02 and 7/02 quarterly sampling events

F:\1898\1898-2.dwg, 06/18/03 12:40:12 PM, DCortes

Volatile Organic Compounds

The following discussion presents the four quarterly sample results for TVOCs for the off-site monitoring wells and the trends of these results. The VOC results and NYSDEC Class GA groundwater standards and guidance values are presented in Appendix B. Graphs illustrating TVOC concentrations for the monitoring wells for the November 2001 through July 2002 monitoring period are presented in Appendix C.

A comparison of sample results from the three well clusters shows that the shallower wells in each cluster (MW-1, MW-5 and MW-7) exhibited low TVOC concentrations. TVOCs in well MW-1 ranged from 34 ug/l to 106 ug/l, TVOCs in MW-5 ranged from 31 ug/l to 45.5 ug/l, and TVOCs in MW-7 ranged from 24.3 ug/l to 40 ug/l. MW-1 contained several individual VOCs at concentrations exceeding NYSDEC Class GA standards, which comprised PCE, TCE, 1,1-DCE and TCA. Among these compounds, TCE exhibited the highest concentrations ranging from 16 ug/l to 55 ug/l. Class GA standards for PCE, cis-1,2-DCE, 1,1-DCE and TCA were exceeded in MW-5, and MW-7 contained PCE, TCE and cis-1,2-DCE at concentrations exceeding NYSDEC Class GA standards. For MW-5, PCE exhibited the highest concentrations, ranging from 3.7 ug/l to 25 ug/l, and for MW-7, cis-1,2-DCE exhibited the highest concentrations.

Deeper wells MW-2, MW-3, MW-4 and MW-6 show elevated TVOC concentrations. The maximum TVOC concentration for each of these wells was 1,597.8 ug/l, 2,822.2 ug/l, 3,015.4 ug/l and 761.2 ug/l, respectively. In each of these wells, PCE, TCE, cis-1,2-DCE, 1,1-DCE, TCA, 1,2-DCA, 1,1-DCA and 1,1,2-trichloroethane were detected at concentrations exceeding Class GA standards. Methylene chloride was also detected in wells MW-3 and MW-4 at concentrations exceeding Class GA standards. In MW-2, MW-3 and MW-4, the compounds detected at the highest concentrations were TCE and 1,1-DCE. In MW-2 the maximum detected concentration was 580 ug/l for TCE and 540 ug/l for 1,1-DCE, in MW-3 the maximum detected concentration was 1,200 ug/l for TCE and 900 ug/l for 1,1-DCE. In MW-4 the maximum detected concentration was 1,000 ug/l for TCE and 1,100 ug/l for 1,1-DCE. In MW-6, 1,1-DCE and TCA were detected at the highest concentrations, at concentrations up to 270 ug/l and

240 ug/l, respectively. The deeper well in the southwesternmost cluster (MW-8) contained only trace levels of VOCs, with TVOCs ranging from 5.1 ug/l to 9.1 ug/l and no individual VOCs detected at a concentration exceeding Class GA standards.

As shown in Table 4-2, wells MW-1 showed a slightly increasing trend, and wells MW-2, MW-3, MW-4 and MW-6 showed slightly decreasing or decreasing trends. The remaining three wells (MW-5, MW-7 and MW-8) showed consistent trends.

During the period covered by this report, MW-9 was sampled only once, in July 2002. At that time, the TVOC concentration in MW-9 was 19.8 ug/l and TCE was detected at a concentration exceeding the Class GA standard.

Natural Attenuation Monitoring Parameters

The following presents the natural attenuation monitoring parameter results for off-site monitoring wells between November 2001 through July 2002. The concentrations of the individual monitoring parameters and Class GA groundwater standards are presented in Appendix D. The ranges of concentrations for the wells are provided in Table 4-3.

In general, a comparison of the four quarterly sample results for wells MW-1 through MW-8 showed concentrations of TOC, alkalinity, chloride, nitrate, sulfate, carbon dioxide and methane to have remained fairly consistent. Total iron was the only parameter detected above the groundwater standard of 0.3 ug/l. The exceedances were sporadic and occurred in most of the wells. Well MW-9, sampled in July 2002, generally showed low concentrations of these parameters.

4.2.4 Bowling Green Estates Water District Supply Wells

Table 4-4 presents the historic TVOC concentrations from 1988 through 2002 for BGE-1 and BGE-2. A graph showing the historic TVOC concentrations during this period for the supply wells is included in Appendix E. In addition, Table 4-5 presents the concentration of the most

Table 4-4

NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM BOWLING GREEN ESTATES WATER DISTRICT SUPPLY WELLS HISTORIC TOTAL VOLATILE ORGANIC COMPOUND RESULTS

DATE	BGE-1	BGE-2
Feb-88	3	1
May-88	3	0
Aug-88	1	0
Nov-88	2	0
Feb-89	3.2	3
May-89	3	2
Aug-89	13.5	2
Nov-89	1	1
Feb-90	1	0
May-90	1	1
Aug-90	2.5	1
Nov-90	0	0
Feb-91	2	2
May-91	4	2
Aug-91	5	4
Nov-91	3	2
Feb-92	2.5	6.5
May-92	20	0.5
Aug-92	3	9
Nov-92	4	1
Feb-93	1	11.5
May-93	6.5	10.5
Aug-93	3	9
Feb-94	10.5	8.5
May-94	15	4
Aug-94	11	14.5
Nov-94	26.5	7
Feb-95	35.5	9
May-95	44	9
Aug-95	20.5	23
Nov-95	1	18.5
Feb-96	9	4
May-96	44.5	15

◆1898\F0409303.doc(R09)

Table 4-4 (continued)

NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM BOWLING GREEN ESTATES WATER DISTRICT SUPPLY WELLS HISTORIC TOTAL VOLATILE ORGANIC COMPOUND RESULTS

DATE	BGE-1	BGE-2
Aug-96	52	25.5
Nov-96	46	10
Feb-97	27	28
May-97	39	23
Aug-97	54	24.5
Nov-97	61	5
Feb-98	32	27
May-98	49	26.5
Aug-98	66	33
Nov-98	58	47.5
Feb-99	65	14.5
May-99	77	34
Aug-99	86	40
Nov-99	22.5	39
Feb-00	76	11.5
May-00	63	39
Aug-00	88	38
Nov-00	69	32
Feb-01	85	50
May-01	86	14
Aug-01	84	45
Nov-01	88	56
Feb-02	91	56
May-02	98	61
Sep-02	88	58

Source: Town of Hempstead Department of Water

Notes:

Results reported in ug/l BGE-1 – screened 478 to 528 feet bgs BGE-2 – screened 524 to 584 feet bgs

+1898\F0409303.doc(R09)

Table 4-5

NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM BOWLING GREEN ESTATES WATER DISTRICT SUPPLY WELLS SUMMARY OF SELECTED VOLATILE ORGANIC COMPOUNDS RESULTS – 1999 THROUGH 2002

	BGE-1 (screened from 478 to 528 feet below ground surface)						BGE-2 (screened from 524 to 584 feet below ground surface)					
DATE	PCE	TCE	1,2-DCE	1,1-DCE	TCA	1,1-DCA	PCE	TCE	1,2-DCE	1,1-DCE	TCA	1,1-DCA
Feb. 1999	7	30	1	6	8	2	1	13	U	U	0.5	U
May 1999	6	46	1	6	7	2	3	27	1	1	2	U
Aug. 1999	7	51	2	6	7	2	4	31	1	1	2	U
Nov. 1999	3	5	0.5	3	4	1	4	33	U	1	1	U
Feb. 2000	9	43	1	6	6	2	0.5	11	U	U	U	U
May 2000	7	37	1	4	5	1	3	34	U	1	1	U
Aug. 2000	14	40	1	8	7	2	5	29	1	1	2	U
Nov. 2000	10	38	1	4	5	2	4	26	U	1	1	U
Feb. 2001	13	45	1	6	6	2	5	41	1	1	2	U
May 2001	15	48	1	6	5	2	1	13	U	U	U	U
Sept. 2001	15	47	1	5	4	2	5	35	U	2	2	1
Nov. 2001	17	45	1	5	5	2	7	45	U	1	2	1
Feb. 2002	18	46	1	5	5	2	7	44	1	2	2	U
May 2002	24	47	1	5	5	2	9	47	1	2	2	U
Sept. 2002	24	44	1	4	4	0.5	9	44	1	2	2	U

Source: Data provided by Town of Hempstead Department of Water.

Note: All results are reported in ug/l.

Abbreviations:

PCE:TetrachloroetheneTCE:Trichloroethene1,2-DCE:1,2 Dichloroethene1,1-DCE:1,1-DichloroetheneTCA:1,1,1-Trichloroethane1,1-DCA:1,1-DichloroethaneU:Undetected

+1898\F0409303.doc(R09)

predominant VOCs detected in wells BGE-1 and BGE-2 from February 1999 through September 2002. This period and selected VOC concentrations are presented to provide additional evaluation of the contamination in the supply wells.

During the period between February 1988 and September 2002, TVOCs in well BGE-1 ranged from nondetect to 98 ug/l and TVOCs in well BGE-2 ranged from nondetect to 61 ug/l. The maximum concentration in both wells was detected in May 2002. The predominant compounds detected in both wells are PCE and TCE, with lower concentrations of 1,2-DCE, 1,1-DCE, TCA and 1,1-DCA. Between February 1999 and September 2002, well BGE-1 showed concentrations of PCE and TCE ranging from 3 ug/l to 24 ug/l and 5 ug/l to 48 ug/l, respectively. During the same time period, similar concentrations of PCE ranging from 0.5 ug/l to 9 ug/l, and TCE ranging from 11 ug/l to 47 ug/l, were detected in well BGE-2.

In general, historic TVOC trends in wells BGE-1 and BGE-2 exhibit a generally increasing trend in total VOC concentrations (refer to Appendix E for historical graph).

5.0 EVALUATION OF NATURAL ATTENUATION OF THE VOLATILE ORGANIC COMPOUND PLUME

An evaluation was conducted to determine if natural attenuation was occurring in the chlorinated VOC plume migrating from the New Cassel Industrial Area (NCIA). This task included an evaluation of the breakdown or transformation of the chlorinated VOCs, as well as the occurrence and changes in natural attenuation monitoring parameters within the plume.

5.1 Breakdown of Ethanes and Ethenes

A review of the chlorinated VOCs detected at and downgradient of the NCIA reveals that the compounds comprise two general suites of parent and degradation (daughter) products, ethanes and ethenes. These suites showing the general degradation pathways for these are as follows:

- 1. TCA \rightarrow 1,1-DCA and/or 1,2-DCA
- 2. PCE \rightarrow TCE \rightarrow cis-1,2-DCE and/or trans-1,2-DCE and/or 1,1-DCE \rightarrow VC

TCA: 1,1,1-Trichloroethane	PCE: Tetrachloroethene
1,1-DCA: 1,1-Dichloroethane	TCE: Trichloroethene
1,2-DCA: 1,2-Dichloroethane	cis-1,2-DCE: cis-1,2-Dichloroethene
	trans-1,2-DCE: trans-1,2-Dichloroethene
	1,1-DCE: 1,1- Dichloroethene
	VC: Vinyl Chloride

Table 5-1 shows the chlorinated VOCs organized into these ethane and ethene suites. This table also provides the total VOC (TVOC) concentrations and relative percentages for the ethanes and ethenes for the four groundwater monitoring events discussed in this report.

Evaluation of the degradation of the ethane and ethene suite compounds is provided below. The percentages of ethane and ethene compounds relative to the TVOC concentrations for the July 2002 sampling event for each of the degradation suites are provided in cross section

NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM OFF-SITE VOC CONSTITUENT PERCENTAGES IN GROUNDWATER

	T			MW	/-1							M	W-2			
(Nover	nber 2001	Janu	arv 2002	Apr	il 2002	Jul	y 2002	Nover	nber 2001	Janu	ary 2002	Ар	ril 2002	Jul	y 2002
Contract	Concen-		Concen-	N -5720C	Concen-	W STUDE	Concen-	W ASTVOC	Canaon	% of TVOC	Concen-	% of TVOC	Concen-	% of TVOC	Concen- tration	% of TVOC
Constituent	tration	% of TYOC	cration	70 01 1 VOC	1 4000	76011400	11 41101	70011700	Concen.	70011000	ti atton	1 /0011100		/ /////////////////////////////////////	(Lation	
Ethene Suite																
PCE	4.1	9.7	3	10.7	9	10.0	1	1.2	49	4.0	53	5.2	52	5.1	26	6.1
TCE	21	49.8	16	57.1	52	57.8	55	66.3	580	47.7	500	48.6	450	43.9	190	44.9
c-DCE	1.1	2,6	1	3.6	3	3.3	3	3.6	48	3.9	35	3.4	42	4.1	17	4.0
t-DCE																
1,1-DCE	16	37.9	8	28.6	26	28.9	24	28.9	540	44.4	440	42.8	480	46.9	190	44.9
vc						1										
TOTAL	42.2	100	28	100	90	32	83	100	1217	100	1028	100	1024	100	423	100
Ethane Suite																
TCA	7.8	73.6	4	66.7	10	66.7	10	71.4	230	61.5	220	60.8	210	59.7	75	59.1
1,1-DCA	2.8	26.4	2	33.3	5	33.3	4	28.6	140	37.5	140	38.7	140	39.8	52	40.9
1,2-DCA									2.2	0.6			2	0.6		
1,1,2-TCA		ļ							1.5	0.4	2	0.6				
TOTAL	10.6	100	6	100	15	100	14	100	373.7	100	362	100	352	100	127	100

	1			MW	/-3							М	W-4			
-	Nove	mber 2001	Janu	ary 2002	Apr	il 2002	Ju	y 2002	Nover	nber 2001	Janu	ary 2002	Ар	ril 2002	Jul	y 2002
	Concen-	1	Concen-		Concen-											
Constituent	tration	% of TVOC	tration	<u> % of TVOC</u>	tration	% of TVOC										
Ethene Suite															1	
PCE	67	3.0	74	3.9	28	3.0	70	4.1	150	6.4	130	7.5	38	3.3	77	6.9
TCE	1200	54.0	1000	53.1	490	52.5	920	54.1	1000	42.9	790	45.6	550	47.4	480	43.0
c-DCE	54	2.4	40	2.1	25	2.7	40	2.4	82	3.5	64	3.7	43	3.7	38	3.4
t-DCE	0.5	0.0							0.8	0.0						
1,1-DCE	900	40,5	770	40.9	390	41.8	670	39.4	1100	47.2	750	43.3	530	45.7	520	46.6
vc																
TOTAL	2221.5	100	1884	100	933	100	1700	100	2332.8	100	1734	100	1161	100	1115	100
Ethane Suite	1	1			Τ									T]
TCA	350	59.6	350	58.1	160	55.2	270	56.0	350	52.2	280	49.7	180	50.0	170	49.4
1,1-DCA	230	39.2	250	41.5	130	44.8	210	43.6	310	46.2	280	49.7	180	50.0	170	49.4
1,2-DCA	5,1	0.9							7	1.0						
1,1,2-TCA	2.1	0.4	2	0.3			2	0.4	3.6	0.5	3	0.5			4	1.2
TOTAL	587.2	100	602	100	290	100	482	100	670.6	100	563	100	360	100	344	100

NOTES

1. Units are in micrograms per liter

2. Total VOC concentrations are for chlorinated VOCs listed

--: Not detected

ABBREVIATIONS

PCE: Tetrachloroethene TCE: Trichloroethene c-DCE: cis-1,2-Dichloroethene t-DCE: trans-1,2-Dichloroethene 1,1-DCE: 1,1-Drichloroethene VC: Vinyl Chloride

NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM OFF-SITE VOC CONSTITUENT PERCENTAGES IN GROUNDWATER

1				MW	/-5							M	W-6			
1	Nove	mber 2001	Janu	ary 2002	Арі	ril 2002	Jul	y 2002	Noven	1ber 2001	Janu	ary 2002	Ар	ril 2002	Jul	y 2002
-	Concen-															
Constituent	tration	% of TVOC														
Ethene Suite																
PCE	3.7	21.5	16	56.1	25	80.6	19	67.9	80	17.2	37	21.0	68	30.9	47	22.8
TCE	2.5	14.5	2	7.0	2	6.5	1	3.6	93	20.0	54	30.7	43	19.5	51	24.8
c-DCE			0.5	1.8	1	3.2	6	21.4	22	4.7	13	7.4	9	4.1	9	4.4
t-DCE								1								
1,1-DCE	11	64.0	10	35.1	3	9.7	2	7.1	270	58.1	72	40.9	100	45.5	99	48.1
vc	~															
TOTAL	17.2	100	28.5	100	31.0	100	28.0	100	465.0	100	176.0	100	220.0	100	206.0	100
Ethane Suite	[1					[
TCA	15	90.9	15	88.2	4	83.3	3	100.0	240	82.0	89	71.2	96	74.4	90	75.6
1,1-DCA	1.5	9.1	2	11.8	0.8	16.7			52	17.8	36	28.8	33	25.6	29	24.4
1,2-DCA									0.8	0.3						
1,1,2-TCA										1						1
TOTAL	16.5	100	17	100	4.8	100	3	100	292.8	100	125	100	129	100	119	100

				МЖ	/-7							М	W-8			
	Nove	mber 2001	Janua	ary 2002	Apr	il 2002	Jul	y 2002	Noven	nber 2001	Janu	ary 2002	Ар	ril 2002	Jul	y 2002
	Concen-		Concen-		Concen-		Concen-		Concen-	1	Concen-		Concen-		Concen-	
Constituent	tration	% of TVOC														
Ethene Suite																
PCE	5.2	17.2	6	21.8	4	17.6	6	17.6	1.1	28.2	1	17.2	1	25.6	0.8	19.5
TCE	2	6.6	3	10.9	3	13.2	8	23.5	1.1	28.2	2	34.5	0	0.0	0.8	19.5
c-DCE	23	76.2	18	65.5	15	66.1	18	52.9	1.7	43.6	2	34.5	2	51.3	2	48.8
t-DCE											+		0.9	23.1		
1,1-DCE			0.5	1.8	0,7	3.1	2	5.9			0.8	13.8			0.5	12.2
VC														1		
TOTAL	30.2	100	27.5	100	22.7	100	34	100	3.9	100	5.8	100	3.9	100	4.1	100
Ethane Suite	ľ		[
TCA			0.5	33.3	0.6	37.5	2	50.0	0.7	35.0	0.7	25.9	0.8	28.6		
1,1-DCA	0.7	100.0	1	66.7	1	62.5	2	50.0	1.3	65.0	2	74.1	2	71.4	1	100.0
1,2-DCA								3								
1,1,2-TCA																
TOTAL	0.7	100	1.5	100	1.6	100	4	100	2	100	2.7	100	2.8	100	1	100

NOTES

1. Units are in micrograms per liter

2. Total VOC concentrations are for chlorinated VOCs listed

--: Not detected

ABBREVIATIONS

PCE: Tetrachloroethene TCE: Trichloroethene c-DCE: cis-1,2-Dichloroethene t-DCE: trans-1,2-Dichloroethene 1,1-DCE: 1,1-Drichloroethene VC: Vinyl Chloride

NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM OFF-SITE VOC CONSTITUENT PERCENTAGES IN GROUNDWATER

				MW	-9							EV	V-1B			
	Noven	nber 2001	Janua	ry 2002	Apr	il 2002	Jul	y 2002	Noven	nber 2001	Janu	ary 2002	Арі	ril 2002	Jul	y 2002
	Concen-		Concen-		Concen-		Concen-		Concen-		Concen-	ĺ	Concen-		Concen-	
Constituent	tration	% of TVOC														
Ethene Suite																
PCE		1					1	5.6	630	79.4	1000	79.9	780	80.1	640	81.0
TCE							15	84.3	66	8.3	120	9.6	91	9.3	67	8.5
c-DCE							0.8	4.5	58	7.3	87	6.9	64	6.6	44	5.6
t-DCE	NOT	SAMPLED	NOT	SAMPLED	NOT	SAMPLED			0.6	0.1					0.8	0.1
1,1-DCE							1	5.6	39	4.9	45	3.6	39	4.0	38	4.8
vc														Ì		
TOTAL							17.8	100	793.6	100	1252	100	974	100	789.8	100
Ethane Suite																
TCA							2	100.0	40	91.3	59	100.0	52	83.9	41	85.4
1.1-DCA									3.8	8.7			10	16.1	7	14.6
1.2-DCA																
1,1,2-TCA								1				1				-
TOTAL							2	100	43.8	100	59	100	62	100	48	100

				EW-	10							EV	V-2B			
	Noven	nber 2001	Janua	ary 2002	Apri	1 2002	Jul	y 2002	Noven	nber 2001	Janu	ary 2002	Арг	ril 2002	Jul	y 2002
	Concen-		Concen-		Concen-		Concen-		Concen-		Concen-		Concen-		Concen-	
Constituent	tration	% of TVOC														
Ethene Suite												}				
PCE			0.6	4.4	5	25.0			20	6.9	21	9.6	17	10.1	21	13.8
TCE	12	100.0	13	95.6	15	75.0	13	100.0	140	48.3	130	59.6	100	59.5	84	55.3
c-DCE									36	12.4	25	11.5	19	11.3	18	11.8
t-DCE																
1,1-DCE									43	14.8	10	4.6	8	4.8		
VC						ļ			51	17.6	32	14.7	24	14.3	29	19.1
TOTAL	12	100	13.6	100	20	100	13	100	290	100	218	100	168	100	152	100
Ethane Suite																1
TCA	-+							1	85	36.1	16	40.0	8	45.7	5	50.0
1,1-DCA									150	63.6	24	60.0	9	51.4	5	50.0
1,2-DCA									0.7	0.3			0.5	2.9		1
1,1,2-DCA																
TOTAL									235.7	100	40	100	17.5	100	10	100

NOTES

1. Units are in micrograms per liter

2. Total VOC concentrations are for chlorinated VOCs listed

--: Not detected

ABBREVIATIONS

PCE: Tetrachloroethene TCE: Trichloroethene c-DCE: cis-1,2-Dichloroethene t-DCE: trans-1,2-Dichloroethene 1,1-DCE: 1,1-Drichloroethene VC: Vinyl Chloride

NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM OFF-SITE VOC CONSTITUENT PERCENTAGES IN GROUNDWATER

				EW-	2C							BC	GE-1			
	Nover	nber 2001	Janu	ary 2002	Apr	il 2002	Jul	y 2002	Noven	nber 2001	Janu	ary 2002	Ар	ril 2002	Jul	y 2002
	Concen-		Concen-		Concen-		Concen-		Concen-		Concen-		Concen-		Concen-	
Constituent	tration	% of TVOC														
Ethene Suite								{								
PCE							l	100.0	17	25.0	18	25.7	24	31.2	24	32.9
TCE								-	45	66.2	46	65.7	47	61.0	44	60.3
c-DCE				5					1	1.5	1	1.4	1 1	1.3	1	1.4
t-DCE					-+									i ·		
1,1-DCE				1				İ	5	7.4	5	7.1	5	6.5	4	5.5
vc	-															
TOTAL							1	100	68	100	70	100	77	100	73	100
Ethane Suite	ſ										[İ		
TCA	-								5	62.5	5	62.5	5	62.5	4	80.0
1,1-DCA									2	25.0	2	25.0	2	25.0	0.5	10.0
1,2-DCA	-		-						1	12.5	1	12.5	1	12.5	0.5	10.0
1,1,2-DCA																
TOTAL									8	100	8	100	8	100	5	100

				BGE	-2			
	Noven	nber 2001	Janu	ary 2002	Apr	il 2002	Jul	y 2002
	Concen-		Concen-		Concen-		Concen-	
Constituent	tration	% of TVOC	tration	% of TVOC	tration	% of TVOC	tration	% of TVOC
Ethene Suite								
PCE ·	7	13.0	7	13.0	9	15.3	9	16.1
TCE	45	83.3	44	81.5	47	79.7	44	78.6
c-DCE	1	1.9	1	1.9	1	1.7	1	1.8
t-DCE								
1,1-DCE	ī	1.9	2	3.7	2	3.4	2	3.6
vc								
TOTAL	54	100	54	100	59	100	56	100
Ethane Suite								
TCA	2	66.7	2	100.0	2	100.0	2	100.0
1,1-DCA	1	33.3						
1,2-DCA			•					
1,1,2-DCA								
TOTAL	3	100	2	100	2	100	2	100

NOTES

1. Units are in micrograms per liter

2. Total VOC concentrations are for chlorinated VOCs listed in the table

--: Not detected

ABBREVIATIONS

PCE: Tetrachloroethene TCE: Trichloroethene c-DCE: cis-1,2-Dichloroethene t-DCE: trans-1,2-Dichloroethene 1,1-DCE: 1,1-Drichloroethene VC: Vinyl Chloride

on Figures 5-1 and 5-2, respectively. The cross sections also include the TVOC concentration contours for the July 2002 sampling event.

To provide data on the VOCs detected in groundwater upgradient of the study area, groundwater quality results from the eight most-impacted monitoring wells within the NCIA, as reported in the September 2000 NCIA RI/FS Report were evaluated. These data are the most recent results in the 2000 RI/FS Report (from April 1999, August, 1999 and January, 2000). The data for three of these wells are present on the cross section in Figures 5-1 and 5-2, and summarized in Table 5-2. The locations of the RI/FS wells within the NCIA are shown on Figure 5-3. On-site groundwater quality data were summarized on figures from the RI/FS Report, which are included in Appendix F.

Ethane Compound Suite

The occurrence and distribution of ethane compounds in the VOC plume indicate that degradation is occurring. The parent compound TCA is the primary ethane species constituent detected in on-site wells, accounting for between 91.6 percent and 98.5 percent of the total ethane concentrations in the three wells with highest TVOC concentrations (N11855, N10328 and N10470), as shown on Table 5-2 and Figure 5-1. Breakdown daughter product 1,1-DCA accounted for between approximately 1.5 percent and 8.4 percent of the total ethane concentrations in these wells within the NCIA. In off-site groundwater, the relative percentage of TCA and the relative percentage of 1,1-DCA generally increase relative to the on-site wells, indicating the degradation of TCA to 1,1-DCA. This is shown on Figure 5-1 which presents the results from the July 2002 sampling event for the off-site wells.

Ethene Compound Suite

Degradation of the ethene compounds within the plume is not as apparent as with the ethanes. The predominant ethene compounds detected in on-site wells are breakdown products 1,1-DCE and 1,2-DCE at relative concentrations up to 98.6 percent to 94 percent, respectively

F:\1898\1898-5-1.dwg, 06/23/03 10:26:38 AM, DCortes

F:\1898\1898-5-2.dwg, 06/23/03 10:27:19

č

1

6

18

NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM ON-SITE VOC CONSTITUENT PERCENTAGES IN GROUNDWATER

			N-1	0328					N-1	0470					N-11	1855		
	Apr	r-99	Au	g-99	Jan	-00	Арі	-99	Aug	g-99	Jan	1-00	Арг	-99	Aug	g-99	Jan	-00
	Concen-	% of	Concen-	% of	Concen-	% of	Concen-	% of	Concen-	% of	Concen-	% of	Concen-	% of	Concen-	% of	Concen-	% of
Constituent	tration	TVOC	tration	TVOC	tration	TVOC	tration	TVOC	tration	TVOC	tration	TVOC	tration	TVOC	tration	TVOC	tration	TVOC
Ethene Suite																		
PCE		0.0	2	3.2		3.2	51	10.3	27	1.9	29	15.3					12	1.1
TCE	4	6.0	2	3.2	2	3.2	8	1.6	7	0.5	10	5.3			2	9.1	4	0.4
1,1-DCE			58	93.5	60	93.5	420	84.5	1400	96.8	150	79.4	13	100.0	20	90.9	1100	98.6
1,2-DCE	63	94.0					18	3.6	13	0.9								
VC																		
TOTAL	67	100	62	100	62	100	497	100	1447	100	189	100	13	100	22	100	1116	100
Ethane Suite																		
TCA	540	93.8	320	92.0	290	92.0	9600	95.4	26000	93.9	1500	94.1	190	97.9	320	98.5	24000	91.6
1,1-DCA	36	6.3	28	8.0	27	8.0	460	4.6	1700	6.1	94	5.9	4	2.1	5	1.5	2200	8.4
TOTAL	576	100	348	100	317	100	10060	100	27700	100	1594	100	194	100	325	100	26200	100

NOTES

1. Units are in ug/l

2. Total VOC concentrations are for chlorinated VOCs listed

--: Not detected

ABBREVIATIONS

PCE: Tetrachloroethene

TCE: Trichloroethene

1,1-DCE: 1,1-Dichloroethene

1,2-DCE: 1,2-Dichloroethene (comprised of cis and trans isomers)

VC: Vinyl Chloride

(see Table 5-2 and Figure 5-2). Parent products PCE and TCE were present at maximum percentages of 15.3 percent and 9.1 percent, respectively.

In the offsite downgradient wells (Table 5-1), PCE and TCE are the predominant ethene compounds detected with relative percentages up to 80.6 percent and 84.3 percent, respectively. Relative to the on-site wells, percentages of 1,1-DCE are lower in the offsite downgradient wells varying between 1.8 percent and 64 percent.

An indication of the degradation of ethene suite compounds is the presence of breakdown products cis-1,2-DCE and VC. Breakdown product cis-1,2-DCE is present in the downgradient off-site wells at percentages ranging from 1.8 percent to 76.2 percent. Breakdown product VC is present only in early warning monitoring well EW-2B at percentages between 14.3 and 19.1 of the total ethene concentration.

The varying occurrence and distribution of the parent and breakdown ethene compounds between the NCIA and the downgradient wells may be the result of the many contaminant sources in the NCIA, different periods and amounts of contaminant releases and/or overlapping plumes.

5.2 Natural Attenuation Parameters

A list of parameters to be monitored to evaluate natural attenuation (NA) was presented in the RI/FS Report. These parameters were analyzed during the 2001/2002 monitoring program and included laboratory analysis of iron, total organic carbon (TOC), alkalinity, chloride, nitrate, sulfate, carbon dioxide and methane, and field measurement of pH, dissolved oxygen and Eh.

Due to the limited historic data available for the natural attenuation parameters in the onsite wells, the relative variation for these parameters was evaluated for the off-site monitoring wells only. Table 5-3 presents the values of the NA monitoring parameters for the July 2002 sampling event for the early warning wells and off-site monitoring wells. This table also includes the TVOC concentrations in the wells for the same sampling period.

♦1898\A0617301.doc(R01)

NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM NATURAL ATTENUATION PARAMETER MONITORING RESULTS - JULY 2002

Sample Identification	EW-1B	EW-1C	EW-2B	EW-2C
Sample Depth, ft	154-164	506-516	132-142	504-514
Date of Collection	07/19/02	07/19/02	07/19/02	07/19/02
Laboratory Results				
Total Iron	0.038	0.316	U	U
Total Organic Carbon	2.7	1.4	2	U
Alkalinity	18	11	13	10
Chloride	31.2	13.7	36.8	6.8
Nitrate	6.4	6.3	2.3	1.9
Sulfate	21.9	U	9.5	U
Carbon Dioxide	64	17	67	14
Methane	U	U	0.056	U
pH	5.59	5.98	5.49	5.88
Dissolved Oxygen	1.42	11.07	1.74	16.06
Eh	305	263	330	267
TVOC	837.8	13	162	1

Sample Identification	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9
Sample Depth, ft	130-150	110-130	130-150	180-200	90-110	110-130	90-110	120-140	305-315
Date of Collection	07/16/02	07/16/02	07/16/02	07/16/02	07/17/02	07/17/02	07/16/02	07/17/02	07/17/02
Laboratory Results									
Total Iron	U	0.254	3.95	U	U U	0.061	U	13.2	0.027
Total Organic Carbon	2.1	2.6	2.3	2.4	1.8	1.9	1.4	2.2	1.9
Alkalinity	U	27	15	19	17	24	U	42	24
Chloride	59.7	36.6	37.6	46.9	66.7	101	22.7	24.7	101
Nitrate	5.3	5.1	5.1	9.2	4.9	5.2	6.3	1.7	5.2
Sulfate	29.4	18.9	18.9	4.4	20.5	21.3	31.1	19.6	21.3
Carbon Dioxide	U	83	83	71	49	62	U	52	62
Methane	U	0.042	0.14	0.002	U U	U U	U	0.16	U
Field Measurements	1				<u> </u>	[
pH	4.73	5.47	5.09	5.41	5.68	5.87	5.05	5.99	10.00
Dissolved Oxygen	4.99	1.3	2.86	1.75	12.32	1.16	7.77	6.05	6.81
Eh	358	231	146	233	370	280	413	51	207
TVOC	105	550	2182	1459	31	325	38	5.1	19.8

NOTES:

1. Units are mg/l for laboratory results and dissolved oxygen, millivolts for pH, and ug/l for TVOC

ABBREVIATIONS:

U: Compound analyzed for but not detected

TVOC: Total volatile organic compounds

101: Value varies at least one order-of-magnitude from average value of well sample results

Unlike the relationships between parent and daughter compounds, the distribution and relative variation of NA parameters within the off-site VOC plume do not indicate that significant NA was occurring during 2001/2002. However, some relationships between parameters that were identified are described below and shown in Table 5-3.

NA parameters which were detected at an order-of-magnitude above the average concentration for all wells included chloride, iron, methane and dissolved oxygen. Values for these parameters for the July 2002 sampling event are shown in bold font in Table 5-3, and are discussed below.

Chloride values were elevated (101 mg/l) in wells MW-6 and MW-9 which had relatively low TVOC concentrations of 325 ug/l and 19.8 ug/l, respectively. Chloride is an end product of chlorinated VOC degradation. In wells MW-3 and MW-8, iron was elevated (3.95 mg/l and 13.2 mg/l, respectively) and methane concentrations in these wells were elevated 0.14 mg/l and 0.16 mg/l, respectively. The average concentrations for these parameters in the off-site wells were 45 mg/l, 1.3 mg/l and 0.03 mg/l, respectively. TVOC concentrations in these wells were highly varied with concentrations of 2,182 ug/l and 5.1 ug/l, respectively.

Of the natural attenuation parameters, the concentrations and distribution of dissolved oxygen provide the most definitive pattern in the groundwater. The dissolved oxygen results for the July 2002 sampling event are shown on Figures 5-1 and 5-2. Lower dissolved oxygen concentrations (between 1.16 mg/l and 2.86 mg/l) were associated with wells where TVOC concentrations were above 500 ug/l.

The United States Environmental Protection Agency (USEPA) 1998 document entitled, <u>Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water</u>, was used to aid in determining whether conditions that could support NA processes are present within the off-site plume. Based on information in this document, it appears that significant biodegradation of chlorinated VOCs is not occurring in the off-site plume for the following reasons:

- The groundwater downgradient of the NCIA is aerobic as defined by the USEPA (dissolved oxygen greater than 0.5 mg/l) and reductive dechlorination is most likely to occur in anaerobic environments;
- The NCIA chlorinated VOC plume exhibits Type 3 plume behavior, which is defined by the USEPA as a plume where the most significant natural attenuation mechanisms for PCE, TCE, 1,1-DCE and 1,2-DCE are advection, dispersion and sorption rather than biodegradation; and
- Detected chloride concentrations are not consistent with the TVOC concentrations, since elevated chloride concentrations are typically associated with reductive dechlorination of ethenes and ethanes, yet elevated chloride concentrations were detected in wells with relatively low TVOC concentrations.

Section 6 È. Ŀ

1

6.0 CONCLUSIONS

The conclusions resulting from the September 2001 through July 2002 Off-site Groundwater Monitoring and Assessment Program for the New Cassel Industrial Area (NCIA) are provided below.

Groundwater Quality

- Groundwater south of the NCIA continues to be impacted by VOCs, primarily chlorinated VOCs migrating from the NCIA.
- Plume depth increases with distance from the NCIA due to downward flow gradients and influences of pumping of the Bowling Green Estates Water District supply wells, as well as the densities of the VOCs of concern which are greater than water.
- The most highly contaminated portion of the plume (depth of 110 to 200 feet below ground surface and approximately 700 feet downgradient of the NCIA) is showing improvement in groundwater quality.
- The downgradient extent of the plume has not been delineated.
- The Bowling Green Estates Water District supply wells have historically been and continue to be impacted by VOCs from the NCIA. Both supply wells show generally increasing trends in TVOCs. However, concentrations during September 2001 through July 2002 remained stable.
- The TVOC concentrations currently detected in the Bowling Green Estates Water District supply wells (less than 100 ug/l in each well) are significantly less than the maximum influent concentration for the treatment system of 1,200 ug/l.

Degradation of the VOC Plume

• Several plumes with multiple sources complicate the evaluation of natural attenuation.

♦1898\A0617302.DOC

Ethane Compound Suite

• The lower concentrations of TCA and increased concentrations of degradation product 1,1-DCA in the off-site downgradient wells as compared to on-site concentrations indicate that TCA is being degraded.

Ethene Compound Suite

• The presence of breakdown products cis-1,2-DCE and vinyl chloride indicate that breakdown of PCE and TCE is likely occurring in off-site groundwater, at least locally.

Section 7

7.0 **RECOMMENDATIONS**

Based on an assessment of the groundwater sampling results from the four early warning wells and the nine off-site monitoring wells for the period of September 2001 through July 2002, the following recommendations are made for future monitoring and evaluation of groundwater quality downgradient of the New Cassel Industrial Area (NCIA).

- The existing four early warning wells (EW-1B, EW-1C, EW-2B and EW-2C) and the existing off-site monitoring wells (MW-1 through MW-9) should continue to be sampled on a quarterly basis to provide early detection of VOC contamination upgradient of the Bowling Green Estates Water District supply wells and provide groundwater quality and assessment of VOC contamination downgradient of the NCIA. The wells should continue to be analyzed for VOCs and natural attenuation monitoring parameters as defined in the current Off-site Groundwater Monitoring and Assessment Program.
- After another year of monitoring, the natural attenuation list of parameters should be evaluated for reduction.
- Construction and sampling of vertical profile temporary and/or permanent wells should be considered to delineate the off-site downgradient extent of VOC contamination present in the deeper wells of the central off-site well cluster (MW-1 through MW-4).

Appendix A È. ĺ.

APPENDIX A

SUMMARY OF SAMPLE FIELD PARAMETER VALUES

+1898\F0409302.doc(R04)

APPENDIX A

NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM SUMMARY OF SAMPLE FIELD PARAMETER VALUES

Well		pH (standard	Temperature	Specific Conductance	Turbidity	Dissolved Oxygen	Eh
Number	- Dates	units)	C°	(ms/cm)	(NTU)	(mg/l)	(mv)
EW-1B	9/01	5.36	17.0	0.253	2.5	1.38	283
	1/02	5.19	14.2	0.253	5	4.43	274
	4/02	5.30	15.3	0.267	6	3.01	220
	7/02	5.59	17.4	0.252	3.9	1.42	305
EW-1C	9/01	5.35	12.6	0.120	2	7.22	286
-	1/02	5.54	12.2	0.123	2	9.71	252
	4/02	5.61	12.5	0.127	2.5	7.80	194
	7/02	5.98	14.0	0.126	13.2	11.07	263
EW-2B	9/01	5.42	17.1	0.209	2.2	3.50	250
	1/02	5.10	15.0	0.196	9	4.52	258
	4/02	5.19	14.8	0.204	0	2.95	240
	7/02	5.49	16.8	0.205	3.4	1.74	330
EW-2C	9/01	5.61	13.0	0.061	10	5.71	240
_	1/02	5.67	12.9	0.061	2	9.40	208
-	4/02	5.71	12.7	0.063	7	7.11	169
	7/02	5.88	14.3	0.064	26	16.06	267
MW-1	11/01	4.99	16.7	0.272	2	4.93	346
	1/02	4.82	15.3	0.275	5.8	6.17	298
	4/02	5.24	16.8	0.298	9.6	4.69	268
# [7/02	4.73	18.7	0.339	1	4.99	358
MW-2	11/01	5.35	17.2	0.296	4.7	2.68	203
	1/02	5.28	15.8	0.281	3	3.65	179
•	4/02	5.53	16.7	0.294	5	3.70	135
	7/02	5.47	17.1	0.288	2	1.30	231
	11/01	5.16	17.2	0.270	3	3.31	63
	1/02	5.26	15.9	0.246	5	3.41	86
	4/02	5.08	16.7	0.230	10.5	3.45	100
	7/02	5.09	17.5	0.246	17.5	2.86	146
	11/01	5.37	16.8	0.298	2.3	3.33	252
	1/02	5.17	15.1	0.284	1	3.58	216
	4/02	4.85	16.3	0.294	4.9	3.12	304
L	7/02	5.41	18.0	0.293	1	1.75	233

APPENDIX A (continued)

NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM SUMMARY OF SAMPLE FIELD PARAMETER VALUES

Well Number	Dates	pH (standard units)	Temperature C°	Specific Conductance (ms/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/l)	Eh (mv)
MW-5	11/01	5.07	16.0	0.290	6.7	6.58	385
	1/02	5.20	15.0	0.304	5	7.53	366
	4/02	5.28	15.0	0.350	1	7.59	260
	7/02	5.68	17.6	0.328	7	12.32	370
MW-6	11/01	5.64	16.4	0.548	6.8	2.52	263
	1/02	5.42	15.3	0.496	8	3.99	232
	4/02	5.38	15.1	0.495	1.3	2.91	244
	7/02	5.87	17.5	0.489	6.5	1.16	280
MW-7	11/01	4.88	14.4	0.226	10.6	5.04	323
	1/02	4.74	13.8	0.207	9	6.24	328
	4/02	5.10	14.5	0.207	6.9	6.10	321
	7/02	5.05	15.3	0.216	3.1	7.77	413
MW-8	11/01	5.08	14.5	0.248	19.2	6.05	51
	1/02	5.64	13.0	0.259	1	5.23	70
	4/02	6.09	14.6	0.289	23.8	4.08	8
	7/02	5.99	15.7	0.260	19	6.05	51
MW-9	7/02	10.00	15.0	0.233	7.5	6.81	207

Notes:

C° - Celsius

- ms/cm millisiemens/centimeter
 NTU Nephelometric Turbidity Unit
 mv millivolt
- mg/l milligrams per liter

+1898\F0409302.doc(R04)

Appendix B -140 **in** ł

APPENDIX B

EARLY WARNING WELL AND OFF-SITE MONITORING WELL VOLATILE ORGANIC COMPOUND RESULTS

+1898\F0409302.doc(R04)

Sample Identification	EW-1B	EW-1B	EW-1B	EW-18	Contract	NYSDEC Class GA
Sample Depth, ft	154-164	154-164	154-164	154-164	Required	Groundwater
Date of Collection	09/25/01	01/28/02	04/25/02	07/18/02	Detection	Standard or
Dilution Factor	1.0	50.0	50.0	60.2	Limit	Guidance Value
Units	(ug/l)	(ug/l)	(ug/t)	(ug/l)	(ua/l)	(ug/l)
Dichlorodifluoromethane	U	U U	U U	<u>u</u>	0.5	5 ST
Chloromethane	U	υ υ	U U	U	0.5	5 ST
Vinyl Chloride	U	U	υ	U	0.5	2 ST
Bromomethane	U	U	υ	U U	0.5	5 51
Chloroethane	υ	υ υ	ι υ	- 1 u	0.5	5.51
Fluorotrichloromethane	U	. u	u	υ	0.5	5 ST
1,1-Dichloroethene	39	45	39	38	0.5	5.51
Methylene Chloride	U U	26			0.5	5 ST
trans-1,2-Dichloroethene	0.6		U	0.8	0.5	5 ST
1,1-Dichloroethane	3.8	U	10	7	0.5	5 ST
2.2-Dichloropropane	••	l ů	······································		0.5	5.51
cis-1,2-Dichloroethene	58 **D	87	64 D	44 0	0.5	551
Chlorofossi		· · · · · · · · · · · · · · · · · · ·	031		0.5	2 ST
Bromochloromethane	u u	l ü			0.5	55T
1.1.1-Trichloroethane	40	59	52 0	41.0	0.5	5.51
1 1-Dichlorprogene					0.0	537
Carbon Tetrachioride					0.5	551
1.2-Dichlaroethane			0		0.5	551
Trichloroethene	66.0	120	01.0		0.5	0.6 51
1.2 Dichleroprogga	<u> </u>	120	310	67 D	0.5	551
Bromedichloromothane		0		0	0.5	1 ST
Dibramomethana			U		0.5	50GV
cis 1.2 Disblerentenene		0	U		0.5	5.51
trans 1.2 Dichleroproperie			U U	U	0,5	0.4 ST '
trans-1,3-Dichloropropene		U	U	U	0.5	0.4 ST *
1.2 Dichlereprenene		0	U	U	0.5	1 ST
Telrachloroothona		4000			0,5	551
renactionveniene	0300	1000	/00 D	64U U	0.5	1 55 1
Dibromophersesthere						
Dibromochloromethane	U	U	U	U	0.5	50GV
Dibromochloromethane Chlorobenzene	U U	UUU	u U	ບ ບ	0.5 0.5	50GV 5 ST
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane	U U U	υ υ υ	U U U	U U U	0.5 0.5 0.5	50GV 5 ST 5 ST
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromotorm	บ บ บ	บ บ บ บ	U U U U	U U U U	0.5 0.5 0.5 0.5	50GV 5 ST 5 ST 50GV
Dibromochloromethane Chlorobenzene 1.1.1.2-Tetrachloroethane Bromoform 1.1.2.2-Tetrachloroethane	υ υ υ υ	บ บ บ บ	U U U U	ט ט ט ט	0.5 0.5 0.5 0.5 0.5	50GV 5 ST 5 ST 50GV 5 ST
Dibromochloromethane Chlorobenzene 1.1.1.2-Tetrachloroethane Bromoform 1.1.2.2-Tetrachloroethane 1.2.3-Trichloropropane	υ υ υ υ υ	υ υ υ υ	ບ ບ ບ ບ ບ	U U U U U U	0.5 0.5 0.5 0.5 0.5 0.5	50GV 5 ST 5 ST 50GV 5 ST 0.04 ST
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromoforn 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene 1,3 Diathometanana	υ υ υ υ υ	υ υ υ υ υ υ	ບ ບ ບ ບ ບ ບ	0 0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5 0.5 0.5	50GV 5 ST 5 ST 50GV 5 ST 0.04 ST 5 ST
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromoform 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene 1,3-Dichlorobenzene	U U U U U 11	υ υ υ υ υ υ	ບ ບ ບ ບ ບ ບ ບ ບ	U U U U U U 2	0.5 0.5 0.5 0.5 0.5 0.5 0.5	50GV 5 ST 5 ST 50GV 5 ST 0.04 ST 5 ST 3 ST
Dibromochloromethane Chlorobenzene 1.1,1.2-Tetrachloroethane Bromoform 1.2,2-Tetrachloroethane 1.2,3-Trichloropropane Bromobenzene 1.3-Dichlorobenzene 1.4-Dichlorobenzene	U U U U U U 1.1 07	υ υ υ υ υ υ υ	U U U U U U 0.8	U U U U U 2 0.9	05 05 05 05 05 05 05 05 05 05	50GV 5 ST 5 ST 50GV 5 ST 0.04 ST 5 ST 3 ST 3 ST
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromoform 1,1,2,3-Trichloropropane Bromobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	U U U U U U 1.1 07 U	υ υ υ υ υ υ υ	U U U U U U U U U U U U U U U	U U U U U 2 0.9 U	05 05 05 05 05 05 05 05 05 05 05	50GV 5 ST 5 ST 50GV 6 ST 0.04 ST 5 ST 3 ST 3 ST 3 ST
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromotorn 1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-A-Trichlorobenzene	U U U U U U 1.1 07 U U U	υ υ υ υ υ υ υ υ υ	U U U U U U U U U U U U U U U U	U U U U U 2 0.9 U U	05 05 05 05 05 05 05 05 05 05 05 05 05	50GV 5 ST 5 ST 50GV 5 ST 0.04 ST 3 ST 3 ST 3 ST 5 ST
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromoform 1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Hexchlorobutadiene	U U U U U 1.1 07 U U U U	υ υ υ υ υ υ υ υ υ υ	ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	05 05 05 05 05 05 05 05 05 05 05 05 05 0	50GV 5 ST 5 ST 50GV 5 ST 0.04 ST 3 ST 3 ST 3 ST 3 ST 5 ST 0.5 ST
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromotorn 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Hexchlorobutadiene 1,2,3-Tsichlorobenzene	U U U U 1.1 07 U U U U U U	υ υ υ υ υ υ υ υ υ υ υ υ	ບ ບ ບ ບ ບ 0.8 ບ ບ ບ ບ ບ ບ ບ ບ ບ	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	05 05 05 05 05 05 05 05 05 05 05 05 05 0	50GV 5 ST 5 ST 50GV 5 ST 0.04 ST 3 ST 3 ST 3 ST 5 ST 0.5 ST 5 ST
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromoform 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Hexchlorobenzene Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether	U U U U U 11 07 U U U U U U	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	U U U U U 2 0.9 U U U U U	05 05 05 05 05 05 05 05 05 05 05 05 05 0	50GV 5 ST 5 ST 50GV 5 ST 0.04 ST 5 ST 3 ST 3 ST 3 ST 5 ST 0.5 ST 5 ST
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromoform 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Hexchlorobenzene Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether Benzene	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	ບ ບ ບ ບ ບ 0.8 ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	U U U U U 2 0.9 U U U U U U U U	05 05 05 05 05 05 05 05 05 05 05 05 05 0	50GV 5 ST 5 ST 50GV 5 ST 0.04 ST 5 ST 3 ST 3 ST 3 ST 5 ST 5 ST 5 ST 5 ST 5 ST 1 ST
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromoform 1,1,2,2-Tetrachloroethane 1,2,3-Tichloropropane Bromobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Trichlorobenzene Hexchlorobutadiene 1,2,3-Tischlorobenzene Methyl-tert-butyl ether Benzene Toluene	υ υ υ υ 1.1 07 υ υ υ υ υ υ υ υ υ υ	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	U U U U U U 2 0.9 U U U U U U U U U	05 05 05 05 05 05 05 05 05 05 05 05 05 0	50GV 5 ST 5 ST 50GV 6 ST 0.04 ST 5 ST 3 ST 3 ST 3 ST 5 ST 0.5 ST 5 ST 1 ST 5 ST
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromoforn 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-tetr-butyl ether Benzeno Toluene Ethylbenzene	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	U U U U U U 2 0.9 U U U U U U U U U U U U U	05 05 05 05 05 05 05 05 05 05 05 05 05 0	50GV 5 ST 5 ST 50GV 5 ST 0.04 ST 3 ST 3 ST 3 ST 5 ST 0.5 ST 1 ST 5 ST 5 ST
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromotorn 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-A-Trichlorobenzene Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether Benzeno Toluene Ethylbenzene m-Xylene	υ υ υ 1.1 07 υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	U U U U U 2 0.9 U U U U U U U U U U U U U U	05 05 05 05 05 05 05 05 05 05 05 05 05 0	50GV 5 ST 5 ST 50GV 5 ST 0.04 ST 3 ST 3 ST 3 ST 5 ST 0.5 ST 1 ST 5 ST 5 ST 5 ST 5 ST 5 ST
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromoform 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether Benzeno Toluene Ethylbenzene m-Xylene p-Xylene	υ υ υ 11 07 υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	υ υ υ υ υ 2 δ9 υ υ υ υ υ υ υ υ υ υ υ	05 05 05 05 05 05 05 05 05 05 05 05 05 0	50GV 55T 55T 50GV 55T 0.04 ST 55T 35T 35T 55T 55T 15T 55T 55T 55T 55T 55T 55T 5
Dibromochloromethane Chlorobenzene I,1,1,2-Tetrachloroethane Bromoform 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Hexchlorobenzene Hexchlorobetadiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether Benzeno Toluene Ethylbenzene m-Xylene p-Xylene	υ υ υ υ 1.1 07 υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	υ υυυυυυυυ υυυυυυυυυυ υυυυυυυυυυυυυυυ	ບ ບບບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	ບ ບ ບ ບ ບ ບ 2 0.9 ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	05 05 05 05 05 05 05 05 05 05 05 05 05 0	50GV 55T 55T 50GV 5ST 5ST 35T 35T 35T 5ST 5ST 5ST 5ST 5ST 5ST 5ST 5ST 5ST
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromoform 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Hexchlorobenzene Hexchlorobenzene Hexchlorobenzene Methyl-tert-butyl ether Benzeno Toluene Ethylbenzene m-Xylene p-Xylene o-Xylene Styrene	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	υ υυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυ	ບ ບ ບ ບ 0.8 ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	U U U U U U 2 0.9 U U U U U U U U U U U U U U U U U U U	05 05 05 05 05 05 05 05 05 05 05 05 05 0	50GV 55T 50GV 5ST 50GV 5ST 5ST 3ST 3ST 3ST 3ST 5ST 5ST 5ST 5ST 5ST 5ST 5ST 5ST
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromoform 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Trichlorobenzene Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether Benzeno Toluene Ethylbenzene m-Xylene o-Xylene o-Xylene Styrene Isopropylbenzene (Cumene) n. Romulhenzene	υ υ υ υ 1.1 07 υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	υ υυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυ	ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	U U U U U U U U U U U U U U U U U U U	05 05 05 05 05 05 05 05 05 05 05 05 05 0	50GV 55T 55T 50GV 6ST 0.04ST 5ST 3ST 3ST 3ST 5ST 5ST 5ST 5ST 5ST 5ST 5ST 5ST 5ST
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromotorn 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-A-Trichlorobenzene Hexchlorobutadiene 1,2,3-Trichlorobenzene Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether Benzeno Toluene Ethylbenzene m-Xylene p-Xylene o-Xylene Styrene tsopropylbenzene (Cumene) n-Propylbenzene 1,3-6-Tdirebuthesane	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	υ υυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυ	ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	05 05 05 05 05 05 05 05 05 05 05 05 05 0	50GV 5ST 5ST 50GV 5ST 0.04ST 5ST 3ST 3ST 3ST 5ST 5ST 5ST 5ST 5ST 5ST 5ST 5ST 5ST 5
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromotorn 1,1,2,2-Tetrachloroethane 1,2,3-Tetrachloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Hexchlorobutadiene 1,2,3-Tichlorobenzene Hexchlorobutadiene 1,2,3-Tichlorobenzene Hexchlorobutadiene 1,2,3-Tichlorobenzene Hexchlorobutadiene 1,2,3-Tichlorobenzene Hexchlorobutadiene 1,2,3-Tichlorobenzene Hexchlorobutadiene 1,2,3-Tichlorobenzene Hexchlorobutadiene 1,2,3-Tichlorobenzene Methyl-tert-butyl ether Benzeno Toluene Ethylbenzene m-Xylene Styrene Isopropylbenzene (Cumene) n-Propylbenzene 1,3,5-Trimethylbonzene	υ υ υ 1.1 07 υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	υ υυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυ	ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	υ υ υ ν ν ν ν υ υ υ υ υ υ υ υ υ υ υ υ υ	05 05 05 05 05 05 05 05 05 05 05 05 05 0	50GV 5ST 5ST 50GV 5ST 0.04ST 5ST 3ST 3ST 3ST 5ST 5ST 5ST 5ST 5ST 5ST 5ST 5ST 5ST 5
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromoform 1,1,2,2-Tetrachloroethane 1,2,3-Tetrachloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Hexchlorobutadiene 1,2,3-Trichlorobenzene Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether Benzeno Toluene Ethylbenzene m-Xylene p-Xylene o-Xylene Styrene tsopropylbenzene (Cumene) n-Propylbenzene 1,3-5-Trimethylbonzene 2-Chlorotoluene	υ υ υ 11 07 υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	υ υυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυ	υ υυυ υυ 0.6 υυυυυυ υυυυ υυυυ υυυ υυ υυ υυ υυ υυ υυ	ບ ບ ບ ບ ບ 2 0.9 ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	05 05 05 05 05 05 05 05 05 05 05 05 05 0	50GV 5ST 5ST 50GV 5ST 5ST 3ST 3ST 3ST 3ST 5ST 5ST 5ST 5ST 5ST 5ST 5ST 5ST 5ST 5
Dibromochloromethane Chlorobenzene I,1,1,2-Tetrachloroethane Bromoform 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Hexchlorobenzene Hexchlorobenzene Hexchlorobenzene Methyl-tert-butyl ether Benzeno Toluene Ethylbenzene m-Xylene p-Xylene o-Xylene Styrene Isopropylbenzene (Cumene) n-Propylbenzene 1,3,5-Trimethylbonzene 2-Chlorotoluene 4-Chlorotoluene	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	υυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυ	υ υυυυ υυ ο.8 υυυυυυυ ο.8 υυυυυυυ υυυυυυυυ υυυυυυ υυυυυυ υυυυυ υυυυ	ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	05 05 05 05 05 05 05 05 05 05 05 05 05 0	50GV 5 ST 5 ST 50GV 5 ST 5 ST 5 ST 3 ST 3 ST 3 ST 3 ST 5 ST
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromoforn 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-tetr-butyl ether Benzene Toluene Ethylbenzene m-Xylene p-Xylene o-Xylene Styrene Stopropylbenzene (Cumene) n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene Ista-Butylbenzene	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	υυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυ	ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	05 05 05 05 05 05 05 05 05 05 05 05 05 0	50GV 5 ST 5 ST 50GV 5 ST 5 ST 3 ST 3 ST 3 ST 3 ST 5 ST
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromotorn 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether Benzeno Toluene Ethylbenzene m-Xylene p-Xylene p-Xylene Styrene tsopropylbenzene (Cumene) n-Propylbenzene 1,3,5-Trimethylbenzene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene 4-Chlorotoluene	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	υυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυ	ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	υ υ υ υ ν ν ν ν υ υ υ υ υ υ υ υ υ υ υ υ	05 05 05 05 05 05 05 05 05 05 05 05 05 0	50GV 5 ST 5 ST 50GV 5 ST 0.04 ST 5 ST 3 ST 3 ST 3 ST 5 S
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromotorn 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether Benzene Toluene Ethylbenzene m-Xylene p-Xylene o-Xylene Styrene Isopropylbenzene (Cumene) n-Propylbenzene 1,3,5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene	υ υ υ 1.1 07 υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	υ υυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυ	υ υυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυ	υ υ υ 2 89 υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	05 05 05 05 05 05 05 05 05 05 05 05 05 0	50GV 5 ST 5 ST 50GV 5 ST 0.04 ST 5 ST 3 ST 3 ST 3 ST 3 ST 5 S
Dibromochloromethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromotorn 1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Hexchlorobutadiene 1,2,3-Trichlorobenzene Hexchlorobutadiene 1,2,3-Trichlorobenzene Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether Benzene Toluene Ethylbenzene m-Xylene 0-Xylene Styrene Isopropylbenzene (Cumene) n-Propylbenzene 1,3,5-Trimethylbenzene 2-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene p-Sutylbenzene p-Sutylbenzene 1,2,4-Trimethylbenzene p-Butylbenzene	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	υυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυ	υ υυυυ υυυ ο.8 υυυυυυυ υυυυυυυυ υυυυυυυ υυυυυυ υυυυυ υυυυ	ບ ບ ບ ບ 2 0.9 ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	05 05 05 05 05 05 05 05 05 05 05 05 05 0	50GV 5 ST 5 ST 50GV 5 ST 0.04 ST 5 ST 3 ST 3 ST 3 ST 3 ST 5 ST

QUALIFIERS;

U: Compound analyzed for but not detected

J: Compound found at a concentration below the CRDL, value estimated

Compound reported as a sum of 2,2 -dichloropropane and cis-1,2-dichloroethene
 E: Compound concentration exceeds instrument calibration range, value estimated

D: Result taken from reanalysis at a secondary dilution

NOTES:

*: Value pertains to the sum of the isomers

ST: Standard

GV: Guidance Value

--: Not established

Indicates value exceeds NYSDEC Class GA groundwater standard or guidance value

10

Sample Identification	EW-1C	EW-1C	EW-1C	EW-1C	Contract	NYSDEC Class GA
Sample Depth, ft	506-516	506-516	506-516	506-516	Required	Groundwater
Date of Collection	09/25/01	01/28/02	04/25/02	07/18/02	Detection	Standard or
Dilution Factor	1.0	1.0	1.0	1.0	Limit	Guidance Value
Units	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
Dichlorodifluoromethane	U	U	U	U	0.5	5 ST
Chloromethane	U	[U	U	U	0.5	5 ST
Vinyl Chloride	U	U	U	υ	0.5	2 \$T
Bromomethane) U	U	U	υ υ	0.5	5 ST
Chloroethane	U	υ	U	υ	0.5	5 ST
Fluorotrichloromethane) U	υ	U	U U	0.5	5 ST
1,1-Dichloroethene	(U	υ	Į U	υ	0.5	5 \$T
Methylene Chloride	U	υ (ί υ	υ υ	0.5	5 ST
trans-1,2-Dichloroethene	(U	U U	U	υ	0.5	5 ST
1,1-Dichloroethane	υ) U	υ 1	υ	0.5	5 ST
2,2-Dichloropropane	. U	U	U	υ	0.5	5 ST
cis-1,2-Dichloroethene	υ) U	υ υ	U	0.5	5 ST
Chloroform	U	υ	U	U	0.5	7 ST
Bromochloromethane	υ υ	υ	U	U	0.5	5 ST
1,1,1-Trichloroethane	U	υ υ	U	U	0.5	5 ST
1,1-Dichlarpropene	υ	υ	υ	U	0.5	5 ST
Carbon Tetrachloride	υ	l u	υ	U	0.5	5 ST
1,2-Dichloroethane	υ	U	υ	υ [0.5	0.6 ST
Trichloroethene	12	13	15	13	0.5	5 ST
1,2-Dichloropropane	υ	U	U	U	0.5	1 ST
Bromodichloromethane	U	U	U	υ	0.5	50GV
Dibromomethane	l υ	υ υ	1 u	l u	0.5	5 ST
cis-1.3-Dichloropropene	i u	- U	- -	- U	0.5	0.4 ST *
trans-1.3-Dichloropropene	υ υ	- U	- -	u u	0.5	04 ST *
1.1.2-Trichloroethane	l u	i ú	- U	- u	0.5	1.ST
1.3-Dichloropropane		- U	- -	i u	0.5	5 ST
Tetrachloroethene	- u	06	5	- u	0.5	5.51
Dibromochloromethane	t u	Ų	υ 1	- U	0.5	50GV
Chlorobenzene	υ	U	l u	υ υ	0.5	5 5 7
1,1,1,2-Tetrachloroethane	U U	υ	ι υ	U U	0.5	5 ST
Bromoform	U U	- U	- U	u u	0.5	50GV
1.1.2.2-Tetrachloroelhane	l u	ບ	U	Ū	2.5	5.ST
1,2,3-Trichloropropane	U U	- U	l ū	u u	3.5	0.04 ST
Bromobenzene	u u	υ	. U	- U	0.5	5 ST
1.3-Dichlorobenzene) U	U	U	υ	0.5	3 ST
1.4-Dichlorobenzene	U U	U	υ	u u	0.5	3 ST
1,2-Dichlorobenzene	υ U	U	U	υ	0.5	3 ST
1,2,4-Trichlorobenzene	U U	U	υ	υ	05	5 ST
Hexchloroputadiene	U	U	U	υ	0.5	0.5 ST
1,2,3-Trichlorobenzene	U U	u	υ	U	0.5	5 ST
Methyl-tert-butyl ether	U	U	υ	Ú	0.5	
Benzene	U	U U	U	U	0.5	1 ST
Toluene	υ	U	υ	U	0.5	5 ST
Ethylbenzene	U	U	U .	U	0.5	5 ST
m-Xylene	U	υ	υ	U	05	5 ST
p-Xylene	U	U	u	U	05	5 ST
o-Xylene	υ	U	U	U	0.5	5 ST
Styrene	U	U	U	U	0.5	5 ST
Isopropylbenzene (Cumene)	υ	υ	υ	U	0.5	5 ST
n-Propylbenzene	U	U	U	U	05	5 \$T
1,3,5-Trimelhylbenzene	υ	υ	U	U	0.5	5 ST
2-Chlorotoluene	U	U	U	Ų .	05	5 \$T
4-Chiorololuene	U	U	U	V	0.5	5 ST
tert-Butylbenzene	U	U	u	U	05	5 \$T
1,2,4-Trimethylbenzene	υ	U	U	Ų	0.5	5 ST
sec-Butylbenzene	Ų	U	U	U	0.5	5 ST
p-isopropyitoluene(p-Cymene)	U	U	υ	U	0.5	5 ST
n-Butylbenzene	UU	<u> </u>	U	UU	0.5	5 ST
Total VOCs	12	13.6	20	13		

QUALIFIERS:

U: Compound analyzed for but not delected

J: Compound found at a concentration below the CRDL, value estimated

**: Result reported as a sum of 2,2- dichloropropane and cis-1,2-dichloroethene

E: Compound concentration exceeds instrument calibration range, value estimated

D: Result taken from reanalysis at a secondary dilution

B: Compound found in the method blank as well as the sample

NOTES:

*: Value pertains to the sum of the isomers

ST: Standard

GV: Guidance Value

Indicates value exceeds NYSDEC Class GA groundwater standard

or guidance value

Sample Identification	EW-2B	EW-2B	EW-2B	EW-2B	Contract	NYSDEC Class GA
Sample Depth, ft	132-142	132-142	132-142	132-142	Required	Groundwater
Date of Collection	09/25/01	01/28/02	04/25/02	07/19/02	Detection	Standard or
Dilution Factor	1.0	5.0	5.0	5.0	Limit	Guidance Value
Units	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
Dichlorodifluoromethane	U	U		<u> </u>	0.5	5 ST
Chloromethane	U	U	U	U	0.5	5 ST
Vinyl Chloride	51 D	32	24	29	0.5	2 ST
Bromomethane	U	U	U U		0.5	5 ST
Chloroethane	2.6) U	24	19	0.5	5 ST
Fluorotrichloromethane	0.6	L U	U	U	0.5	5 ST
1,1-Dichloroethene	43 D	10	8	1 v	0.5	5 ST
Methylene Chloride	1.5	3 J	U U	1 ບ	0.5	5 ST
trans-1,2-Dichloroethene	U	U	U	U	0.5	5 \$1
1,1-Dichloroethane	150 D	24	8	5	0.5	5 ST
2,2-Dichloropropane	**			1 U	0.5	5 ST
cis-1,2-Dichloroethene	36 **	25	19	18	0.5	5 ST
Chloroform	U			J	0.5	7 ST
Bromochloromethane	U U	υ	l u	U U	0.5	5 ST
1,1,1-Trichloroethane	85 D	16	8	5	0.5	5 ST
1.1-Dichlororopene		t	[f u	0,5	5 ST
Carbon Tetrachloride	l u	i ū	Ū	ŭ	0,5	5 ST
1.2-Dichloroethane	0,7	i u	0.5	l u	0.5	0.6 ST
Trichloroethene	140 D	130	100 D	840	0.5	5 ST
1.2-Dichloropropane	U		<u> </u>	<u> </u>	0.5	1 ST
Bromodichloromethane	l u	- U	Ū	i u	0.5	50GV
Dibromomethane	- u		- -	- u	0.5	5 ST
ris-1.3-Dichlomoropene	i u	- u	i ü		0.5	04 ST *
trans-1.3-Dichloropropene				l u	0.5	04 51
1 1 2-Trichloroethane	- -	1 u			0.5	1.5T
1 3-Dichloropropane	U U				0.5	5 ST
Tetrachloroethene	20	21	17	21	0.5	5 ST
Dibromochloromethane		<u> </u>	<u> </u>	<u> </u>	0.5	50GV
Chlorobenzene	1.3	-	- u	i u	0.5	5 ST
1.1.1.2-Tetrachloroethane	l	l	l Ū	l ū	0,5	5 ST
Brompform	- -	- -	l ū	Î û	0.5	50GV
1,1,2,2-Tetrachloroethane	U	Ū	Ū	Ū	0.5	5 ST
1.2.3-Trichloropropane	0,5	່ ບໍ່	υ) u	0.5	0.04 ST
Bromobenzene		1 U	υ υ	υ υ	0.5	5 \$T
1.3-Dichlorobenzene	Ι υ) U	υ	υ	0,5	3 ST
1.4-Dichlorobenzene	ι υ	U	l u	υ υ	0.5	3 ST
1.2-Dichlorobenzene	Ι υ	l u 1	lυ	υ υ	0.5	3 ST
1.2.4-Trichlorobenzene	U U	U U	Ι υ	υ	0.5	5 ST
Hexchlorobutadiene	. u	U U	Ιυ	U	0.5	0.5 ST
1.2.3-Trichlorobenzene	ι 1 υ	ί υ ^Ι	l U) u	0.5	5 ST
Methyl-tert-bulyl ether	υ –	U U	ψ	U U	0.5	
Benzene	U	, i	u	- -	0.5	1 ST
Toluene	ا _ل	U U	- -	- υ	0.5	5 ST
Fthvlbenzene	- U		l u		0,5	5 ST
m-Xvlene	- U	U U	u u	i u	0.5	5 ST
n-Xvlene	υ	U	- -	- U	0.5	5 ST
o-Xvlene	U U	l u	- U	- U	0.5	5 ST
Styrene	υ	υ	υ	ψ	0.5	5 ST
Isopropylbenzene (Cumene)	U	U	υ	U	0.5	5 ST
n-Propylbenzene	U	U	U	υ	0.5	5 ST
1,3.5-Trimelhylbenzene	U	υ	υ	U	0.5	5 ST
2-Chlorotaluene	U	U U	υ	υ	0.5	5 ST
4-Chlorotoluene	U	U	υ	U	0.5	5 ST
tert-Butylbenzene	U	U	υ	U	0.5	5 ST
1,2,4-Trimethylbenzene	U	U	υ	U	05	5 ST
sec-Butylbenzene	υ	U	υ	U	0.5	5 ST
p-Isopropylloluene(p-Cymene)	υ	U	U	U	0.5	5 ST
n-Butylbenzene	U	U	U	U	0.5	5 ST
Total VOCs	632.2	264	200 5	404		······································

QUALIFIERS:

U: Compound analyzed for but not detected

Compound found at a concentration below the CRDL, value estimated
 "* Result reported as a sum of 2,2 -dichtoropropane and cis-1,2-dichtomethene
 E: Compound concentration exceeds instrument calibration range, value estimated

D: Result taken from reanalysis at a secondary dilution

NOTES:

*: Value pertains to the sum of the isomers

ST: Standard

GV: Guidance Value

Indicates value exceeds NYSDEC Class GA groundwater standard E or guidance value

Sample Identification	EW-2C	EW-2C	EW-2C	EW-2C	Contract	NYSDEC Class GA
Sample Depth, ft	504-514	504-514	504-514	504-514	Required	Groundwater
Date of Collection	09/25/01	01/28/02	04/25/02	07/19/02	Detection	Standard or
Dilution Factor	1.0	10	1.0	1.0	Limit	Guidance Value
Units	(10/1)	(µq/l)	(ug/l)	(ug/l)	(ua/l)	(µq/l)
Dichlorodifluoromethane		<u> </u>	<u> </u>	<u> </u>	0.5	5.ST
Chloromethane	1 U		U U		0.5	5.51
Vind Chloride			¢ ,		0.5	2 0 0 T
Bromomethane				0	0.5	2 3 T
Chloroothana		l ü				551
Childree have		0			0.5	5.51
1 1 Diobleracthore				0	0.5	551
	U	0	U U	U	0.5	551
Methylene Chlonde	U	U	, U	U U	0.5	5 ST
trans-1,2-Dichloroethene	U	U	U U	U U	0.5	5 ST
1,1-Dichloroethane	U	U	U	U	0.5	5 ST
2,2-Dichloropropane	U	U	U	U	0.5	5 ST
cis-1,2-Dichloroethene	υ	U U	U	ບ	0.5	5 ST
Chloroform	U	U	U	U	0.5	7 ST
Bromochloromethane	υ	U U) U	U	0.5	5 ST
1,1,1-Trichloroethane	U	u u	, u	U	0.5	5.ST
1,1-Dichlorpropene	U	υ	U U	ί υ	0.5	5 ST
Carbon Tetrachloride	U	{ υ	U U	U	0.5	5 ST
1,2-Dichloroethane	J U	U	ί υ	U U	0.5	0.6 ST
Trichloroethene	υ	υ υ) υ	υ υ	0.5	5 ST
1.2-Dichloropropane	ł u	ι υ	ι υ	[υ	0.5	1 ST
Bromodichloromethane	- - -	Ū	l u	ί υ	0.5	50GV
Dibromomethane		- -			0.5	5.ST
cis-1 3-Dicbloropropege			[0.5	0451
trans 1.3-Dichloronronene				l ü	0.5	0.4 57 *
1 1 2 Troblerophage					0.5	197
1.2 Disbleropropage					0.5	5 ¢T
T straut locuothe un					0,5	551 557
Disease at lass setting a				¦ '	0.5	5.51
Distrinochioromenane				U	0.5	5067
	[U		U U		0.5	551
11,1,1,2-1etrachioroethane	0	U	U	U	0.5	551
Bromotorm	U U) (U	U U	0.5	50GV
1,1,2,2-Tetrachloroethane	U	U	U .	u u	0.5	5 ST
1,2,3-Trichloropropane	U	U	j v	U	0.5	0.04 ST
Bromoberizene	<u>ں</u>	υ	U	Ų	0.5	5 ST
1,3-Dichlorobenzene	l u	U	U	U	0.5	3 ST
1,4-Dichlorobenzene	U U	U	U	U	0.5	3 ST
1,2-Dichlorobenzene	U	U U	υ	U	0.5	3 ST
1,2,4-Trichlorobenzene	U U	U	U	Ų	0.5	5 ST
Hexchlorobutadiene	U	U	Ų	U	0.5	0.5 ST
1,2,3-Trichlorobenzene	U J	U	U	ບ	0,5	5 51
Methyl-tert-butyl ether	U	U	U	U	0.5	
Benzene) U	U) U	Ų	0.5	1 ST
Toluene) U	U	U	U	0.5	5 ST
Ethylbenzene	U U	U	U	U	0.5	5 ST
m-Xylene	υ υ	U	υ	U	0.5	5 ST
p-Xylene	(U	U	U	U	0.5	5 ST
o-Xylene	ι υ	U	U	U	0.5	5 ST
Styrene	U U	U	υ	U	0.5	5 ST
isopropylbenzene (Cumene)	U U	U	U	U	0.5	5 ST
n-Propylbenzene	ί υ	U	U	V	0.5	5 ST
1,3,5-Trimethylberizene	U	U	U	υ	0.5	5 ST
2-Chlorotoluene	υ 🗸	U U	U	υ	0.5	5 ST
4-Chlorotoluene	υ υ	U	U	υ	0.5	5 ST
lert-Butylbenzene	U U	U	U	u	0.5	5 ST
1,2,4-Trimethylbenzene	U	U	υ	U	0.5	5 ST
sec-Butylbenzene	U U	υ U	υ	υ	0.5	5 ST
p-Isopropyltoluene(p-Cymene)	Ú Ú	U	Ų	U	0.5	5 ST
n-Butylbenzene	ι υ	U U	U	U	0.5	5 ST
Total VOCs	0	0	0	1		

QUALIFIERS

U: Compound analyzed for but not detected

Compound found at a concentration below the CRDL, value estimated
 ": Result reported as a sum of 2,2- dichloropropane and cis-1,2-dichloroethene

E: Compound concentration exceeds instrument calibration range, value estimated

D: Result taken from reanalysis at a secondary dilution

B: Compound found in the method blank as well as the sample

NOTES:

*: Value pertains to the sum of the isomers

ST: Standard

GV: Guidance Value

----. Not established

Indicates value exceeds NYSDEC Class GA groundwater standard or guidance value

Sample Identification	MW-1	MW-1	MW-1	MW-1	Contract	NYSDEC Class GA
Sample Depth, ft	90-110	90-110	90-110	90-110	Required	Groundwater
Date of Collection	11/02/01	01/24/02	04/25/02	07/16/02	Detection	Standard or
Dilution Factor	1.0	1.0	2.0	1.0	Limit	Guidance Value
Units	(vg/l)	(ug/l)	(ugA)	(ua/l)	(ug/l)	(ua/l)
Dichlorodifluoromethane	U U	<u> </u>	U U		0.5	5 ST
Chloromethane	υ υ	U	i ú	l u	0,5	5 ST
Vinvl Chloride	l u	l u	i u	U U	0.5	2 ST
Bromomethane) U	U U	Ú Ú	l u	0.5	5 ST
Chloroethane	υ U	l ú	Ú Ú	l u	0.5	5.51
Fluorotrichloromethane	υ	U U	l u	Ū	0.5	5.ST
1.1-Dichloroethene	16	8	26	24	0.5	5.51
Methylene Chloride	F	U U	<u> </u>	<u> </u>	0.5	5.ST
trans-1.2-Dichloroethene	i u	i v	u u	i u	0.5	5.51
1 1-Dichlomethane	2.8	2	5	4	0.5	5.51
2 2-Dichlorooronane		- u	-	l "u	0.5	5 ST
cis-1 2-Dichloroethene	1 1 1 1				0.5	5 ST
Chloroform	0.5		i u		0.5	7.51
Bromochloromethane	l		l ü	l 'u	0.5	5.ST
1.1.1-Trichloroethane	7.8	4	10 J	<u> </u>	0.5	5.51
1 1-Dichlomranene	<u> </u>			·	0.5	6.51
Carbon Totrachloride					0.0	551
1 2-Dichloroelhane		i u			0.5	0651
	21	16	52 D I	55 E	0.5	5.000
1.2 Dichloropropage					0.0	1.61
Pre-modichloromethane					0.5	FUCY
Dibromomenane					0.5	5000
					0.5	551
Cis-1,3-Dichloropropana					0.5	0.4 51
Itrans-1,3-Dichoropropene		u u	U		0.5	0.4 51
1,1,2-1 richloroethane			U U		0.5	151
Totrachlorophong		, j			0.5	001 #07
Disconcionation	1.1			<u> </u>	0.5	2.01
Dibromocnioromenane			U U		0.5	50GV
Chlorobenzene					0.5	551
1,3,1,2-reliacilloroesiane			0		0.5	551
1.1.2.2. Tetrachteroothano					0.5	5067
1.2.2. TellaCitorocionane		u u	u		0.5	50157
Premohonzono					0.5	0.04 51
Bromouerizene					0.5	55I 067
1.3-Dichlorobenzene				μ μ 1	0.5 0.5	351
1,4-Dichlorobenzene	U U		U		0.5	351
1,2-Dichorobenzene			U U		0.5	351
1,2,4-HICHOROFODENZENE		U			0.5	551
		U U	U D		0.5	0551
1,2,3- monorobenzene	0			0	0.5	221
Received a second secon			0		0.5	
Berizene	0	U	U	0	0.5	151
Thulbergene		0	U U		0.5	551
Einyidenzene		U	U 	U U	0.5	5 ST
m-Xylene	U	U	U		0.5	551
p-Aylerie	U U	0	U U		0.5	551
Churchan Churchan	U		0		0.5	551
(Cumono)	0	U	0	0	0.5	551
n Broowbaazaaa	l ü	U	U U	0	0.5	551
1 3 5-Trimelbylbanzene	U U		U 11		0.5	551
2-Chlorotoluone			0		0.5	5 07
4-Chlorotoluene			U		0.5	100 T23
tert-Butylbanzene					0.5	551
1 2 4-Trimethylbenzene	u u	U U	0	l ü	0.5	507
sec-Butybenzene	ů	U U	ы 1	1	0.5	5 ST
p-iscoropylloluene(p-Cymene)	ม ม	u I	U U	ц ц	0.5	5 ST
n-Butvibenzene	u U	u u	U U	ц. Ц.	0.5	5.ST
Total VOCs	53.3		105	100		

QUALIFIERS:

U: Compound analyzed for but not detected

J: Compound found at a concentration below the CRDL, value estimated **: Result reported as a sum of 2,2 -dichloropropane and cis-1,2-dichloroethene

E: Compound concentration exceeds instrument calibration range, value estimated

D: Result taken from reanalysis at a secondary dilution

NOTES:

": Value pertains to the sum of the isomers

ST: Standard

GV: Guidance Value

-: Not established

Indicates value exceeds NYSDEC Class GA groundwaler standard or guidance value

	1042	1 1 1 1 2	10003	1414/ 0	Constant	NIXEDCC Class CA
Sample Identification	MW-2	MW-2	MVV-2	10100-2	Contract	INTSDEC Class GA
Sample Depth, ft	110-130	110-130	110-130	110-130	Required	Groundwater
Date of Collection	11/02/01	01/24/02	04/24/02	07/16/02	Detection	Standard or
Dilution Factor	1.0	1.0	25.0	1.0	Limit	Guidance Value
Units	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
Dichlorodifluoromethane	U	U	U	V	0.5	5 ST
Chloromethane	U	υ - U	ίυ	U	0.5	5 ST
Vinvi Chloride	-	, i		- U	0.5	2 ST
Promomothage	, , , , , , , , , , , , , , , , , , ,	U U	, i	i i	0.5	а ет 6 ет
Oblessethere					0.5	5.57
Chioroethane	U	'	2		0.5	531
Fillorothchloromethane	0	U	0	0	0.5	55
1,1-Dichloroethene	540 D	440 D	480 D	190 E	0.5	5 ST
Methylene Chloride	1.9		U	U	0.5	5 ST
trans-1,2-Dichloroethene	U		U	Ų	0.5	5 ST
1,1-Dichloroethane	140 D	140 D	140 D	52 E	0.5	5 ST
2.2-Dichloropropane		U		U	0.5	5 ST
cis-1.2-Dichloroethene	48 **E	35	42 D	17	0.5	6 ST
Chloreform	£2	2		28	0.5	7 57
Bromochloromothana	9.2	1	, ' ₁		0.5	5.57
Biomochioromethane	0	0			0.5	5 31
1,1,1-1richioroethane	230 D	220 D	210 D	/5 E	0.5	251
1,1-Dichlorpropene	U	U	U	U	0.5	5 ST
Carbon Tetrachloride	<u> </u>	U	U	U	05	5 ST
1,2-Dichloroethane	2.2	U	2	U	0.5	0.6 ST
Trichloroethene	580 D	500 D	450 D	190 E	0.5	5 ST
1.2-Dichloropropane	U	U	U	U	0.5	1 ST
Bromodichloromethane	-	- U	- U	Ū.	0.5	50GV
Dibromomethene	, i		Î î	l ü	0.5	5 ST
controllementarie	U				0.5	04671
cis-1,3-Dicritoropropene	U		0		0.5	0.4 51
trans-1,3-Dichloropropene	0	· · · · · ·			0.3	0.4 31
1,1,2-Trichloroethane	1.5	2		U U	0.5	151
1,3-Dichloropropane	U	U U		UU	0.5	5 ST
Tetrachloroethene	49 JD	53 D	52 D	26	0.5	5 ST
Dibromochloromethane	U	U	v	U	0.5	50G∨
Chlorobenzene	Ų	υ	U	U	0.5	5 ST
1.1.1.2-Tetrachloroethane	υ	υ υ	U	U	0.5	5 S T
Bromoform	U U	11	l u	U U	0.5	50GV
1 1 2 2 Tetrachloroethane	- -	-		i u	0.5	5.ST
1 2 2 Trichloropropopo		U U	u u		0.5	0.04.51
		0			0.5	6.04 ST
bromobenzene	U	U U			0.5	531
1,3-Dichlorobenzene	U U	U U	U	U	0.5	351
1,4-Dichlorobenzene	U	U	U U	U	0.5	3 ST
1,2-Dichlorobenzene	U	U	U	U	0.5	3 ST
1,2,4-Trichlorobenzene	U	U	U	U	0.5	5 ST
Hexchlorobutadiene	U	U U	U	U	0.5	0.5 ST
1,2,3-Trichlorobenzene	U	U	U	U U	0.5	5 \$T
Methyl-tert-butyl ether	U	υ	U	ι υ	0.5	
Benzene	u u	u	U	u u	05	1 ST
Tohunan		U U	, i	i i	0.5	6 ST
					0.5	551
Einyrbenzene	0			0	0.5	531
m-Xylene	U	U	U	0	0.5	551
p-Xylene	U	U	u	U	0,5	5 ST
o-Xylene	U	U	U	U	0.5	5 ST
Styrene	U	U	U	U	0.5	5 ST
Isopropylbenzene (Cumene)	U	U	U	υ	0.5	5 \$T
n-Propylbenzene	U	u	U	U	0.5	5 ST
1,3,5-Trimethylbenzene	U	U	V	U	0.5	5 ST
2-Chlorololuene	U	U	υ	v	0.5	5 ST
4-Chlorotoluene	U	Ū	U	U	0.5	5 ST
tert-Butylbenzene		u u	- -	l ű	0.5	5 ST
1.2.4.Tomethylbenzene				l	0.5	5.57
roo Butulbeezeee			U		0.5	557
	U 				0.0	5 0 0 1 5 0 T
p-isopropyiloidene(p-Cymene)	U		U		0.5	a 51
n-buiyipenzene	Ų	U	U		0.5	351
LOTAL VOCS	1597.8	1393	1382	552		

QUALIFIERS:

U: Compound analyzed for but not detected

b. compound found at a concentration below the CRDL, value estimated
 **: Result reported as a sum of 2.2- dichloropropane and cis-1,2-dichloroethene

E: Compound concentration exceeds instrument calibration range, value estimated

D: Result taken from reanalysis at a secondary dilution

B: Compound found in the method blank as well as the sample

*: Sample result highly estimated, based on validation criteria

NOTES:

*: Value pertains to the sum of the isomers

ST: Standard

GV: Guidance Value

---: Not established

Indicates value exceeds NYSDEC Class GA groundwater standard E or guidance value

Sample Identification	MW-3	MW-3	MW-3	MW-3	Contract	NYSDEC Class GA
Sample Depth, ft	130-150	130-150	130-150	130-150	Required	Groundwater
Date of Collection	11/02/01	01/24/02	04/24/02	07/16/02	Detection	Standard or
Dilution Factor	1.0	1.0	50.0	1.0	Limit	Guidance Value
Units	(ug/l)	(uɑ/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
Dichlorodifluoromethane	<u> </u>	U	U	U	0.5	5 ST
Chloromethane	- 	ů.	- U	u	0.5	5 ST
Vinvl Chloride	- u	- u	- u	- U	0.5	2 ST
Bromomethane	u u	u u	l ū	ů.	0.5	5 ST
Chloroethane	0.7	, T		1	0.5	5.87
Elucrotrichloromethane	0.7		U U		0.5	5.ST
1 1 Dicbloroethene	900 D	770.0	390 D	670 E	0.5	5 ST
Methylene Chloride	7.1	110 0	50 D	3	0.5	5 ST
trans 1.2 Distigranthana	1.1			, , , , , , , , , , , , , , , , , , ,	0.5	5 ST
4 4 Dishlassahasa	0.5	250.0	440 D	210 5	0.5	5 ST
2.2 Disblassesses	230 D	230 D	130 D	210 E	0.5	5.51
2,2-Dichloropropane		U		0	0.5	551
cis-1,2-Dichloroethene	54 **E	40	25 "D	40 E	0.5	551
Chloroform	5.7	3	Ų	U	0.5	7 ST
Bromochloromethane	U	Ų	U	4 B	0.5	5 ST
1,1,1-Trichloroethane	350 D	350 D	160 D	270 E	0.5	5 ST
1,1-Dichlorpropene	U	U	Ų	U	0.5	5 ST
Carbon Tetrachloride	υ	V	U	υ	Q.5	5 ST
1,2-Dichloroethane	5.1	U	U	U	0.5	0.6 ST
Trichloroethene	1200 D	1000 D	490 D	920 E	0.5	5 ST
1,2-Dichloropropane	U	U	U	υ	0.5	1 ST
Bromodichloromethane	U	U	U	U	0.5	50GV
Dibromomethane	U	U	U	U	0.5	5 ST
cis-1,3-Dichloropropene	U	Ų	U	U	0.5	0.4 ST *
trans-1,3-Dichloropropene	υ	Ų	U	υ	0.5	0.4 ST *
1,1,2-Trichloroethane	2.1	2	U	2	0.5	1 ST
1,3-Dichloropropane	U	U	U	Ų	0.5	5 ST
Tetrachloroethene	67 E	74 D	28 D	70 E	0.5	5 ST
Dibromochloromethane	U	U	U	U	0.5	50GV
Chlorobenzene	u u	u u	u u	- U	0.5	5 ST
1 1 1 2.Tetrachlomethane		u u	u u	U U	0.5	5 ST
Bromolorm	, , , , , , , , , , , , , , , , , , ,			1	0.5	50GV
1 1 2 2 Tetrachlereethane	0				0.5	5.51
1,2,2.7 retractionetinane		0			0.5	00451
r,z,3- menioropropane		0	0		0.5	5.57
A 2 Distante		U U			0.5	267
1,3-Dichlorobenzene	U	U		0	0.5	3 51
1,4-Dichlorobenzene	0	U		0	0.5	331
1,2-Dichlorobenzene	Ų	Ų	U	U	0.5	351
1,2,4-Trichlorobenzene	Ų	U	U	U	0.5	5.51
Hexchlorobutadiene	U	U	U	U	0.5	0.5 \$1
1,2,3-Trichlorobenzene	U	U	U	Ų	0.5	5 ST
Methyl-tert-butyl ether	U	Ų	U	U	0,5	
Benzene	U	U	U	U	0.5	1 ST
Toluene	U	U	U	U	0.5	5 ST
Ethylbenzene	U	U	U	U	0.5	5 ST
m-Xylene	U	U	U	U	0.5	5 ST
p-Xylene	U	U	U	U	0.5	5 ST
o-Xylene	U	U	U	U	0.5	5 ST
Styrene	U	U	U	U	0.5	5 ST
Isopropylbenzene (Cumene)	υ	Ų	υ	U	0.5	5 \$T
n-Propylbenzene	V	U	U	υ	0.5	5 ST
1,3,5-Trimethylbenzene	U	U	U	υ	0.5	5 ST
2-Chlorotoluene	U	U	υ	υ	0.5	5 ST
4-Chlorotoluene	υ	U	υ	υ	0.5	5 ST
tert-Butylbenzene	U	U	U	υ	0.5	5 ST
1,2,4-Trimethylbenzene	U	υ.	U	υ	0.5	5 ST
sec-Bulylbenzene	U U	U	U	U	0.5	5 ST
p-isopropyltoluene(p-Cymene)	U	U.	U	υ	0.5	5 ST
n-Butylbenzene	U	U	U	Ű	0.5	5 ST
Total V/OCs	2822.2	2400	1079	2100		····

QUALIFIERS:

U: Compound analyzed for but not detected

B. Compound found at a concentration below the CRDL, value estimated
 **: Result reported as a sum of 2,2- dichloropropane and cis-1,2-dichloroethene
 E: Compound concentration exceeds instrument calibration range, value estimated

D: Result taken from reanalysis at a secondary dilution

B: Compound found in the method blank as well as the sample

NOTES.

*: Value pertains to the sum of the isomers

ST: Standard

GV: Guidance Value Not established

Indicates value exceeds NYSDEC Class GA groundwater standard

or guidance value

Sample Identification	MW-4	MW-4	MW-4	MW-4	Contract	NYSDEC Class GA
Sample Depth ft	180-200	180-200	180-200	180-200	Required	Groundwater
Date of Collection	11/02/01	01/24/02	04/24/02	07/16/02	Detection	Standard or
Dilution Eactor	10	10	50.0	1/50	Limit	Guidance Value
Units	(µq/l)	(110/1)	(110/1)	(uo/l)	(un/l)	(10/1)
Dichlorodifluoromethane	<u> </u>	(0977 U	u (19:17	(dg ii)	0.5	5 ST
Chloromethane	l u	U U	U	i u	0.5	5 ST
Vinvi Chloride	l u	u u	ŭ		0.5	2 ST
Bromomethane	i ŭ	U U	i i	l ü	0.5	5 ST
Chlorgethage	07	, , , , , , , , , , , , , , , , , , ,	l ü	2	0.5	5 ST
Fluorotrichloromethane	l	ι . U	ů	- -	0.5	5 ST
1.1-Dichlomethene	1100 D	750 D	530 D	520 D	0.5	5 ST
Methylene Chloride	8.9	U	55 D		0.5	5 ST
Irans-1.2-Dichloroethene	0.8	U		i ü	0.5	5 ST
1.1-Dichloroethane	310 D	280 D	180 D	170 D	0.5	5 ST
2.2-Dichloropropane		U		U	0.5	5 ST
cis-1.2-Dichloroethene	82 **E	64 D	43 "D	38 D	0,5	5 ST
Chloroform	2.4	3	U	37 BD	0.5	7 ST
Bromochloromethane	U	U	Ū Ū		D.5	5 ST
1.1.1-Trichloroethane	350 D	280 D	180 D	170 D	0.5	5 ST
1.1-Dichlororopene		U	Ц	<u>_</u>	0.5	5.ST
Carbon Tetrachloride	. U	U U	U U	Ŭ	0.5	5 ST
1.2-Dichloroethane	7	ŭ	U	U U	0.5	0.6 ST
Trichloroethene	1000 D	790 D	550 D	480 D	0.5	5 ST
1.2-Dichloropropane	U	u	U U	u	0.5	1 ST
Bromodichloromethane	υ υ	- U	- u	U U	0.5	50GV
Dibromomethane) U	u	บ	U U	0.5	5 ST
icis-1.3-Dichloropropene	- u	u u	- U	u	0.5	0.4 ST
Irans-1.3-Dichloropropene	Ű	u u	Ű	Ŭ	0.5	0.4 ST *
1,1,2-Trichloroethane	3.6	3	U	4	0.5	1 ST
1.3-Dichloropropane	U		U		0.5	5 ST
Tetrachloroethene	150 D	130 D	38 D*	77 D	0.5	5 \$T
Dibromochloromethane	U	U	U	Ŭ	0.5	50GV
Chlorobenzene	U	U	U	U	0.5	5 ST
1,1,1,2-Tetrachlorgethane	υ	U	U	υ	0.5	5 ST
Bromoform	U	U	U	υ	0.5	50GV
1,1,2,2-Tetrachloroethane	U	U	U	U	0.5	5 ST
1,2,3-Trichloropropane	U	U	U	U	0.5	0.04 ST
Bromobenzene	u	U	U	U	0.5	5 ST
1,3-Dichlorobenzene	U	U .	U	U U	0.5	3 ST
1,4-Dichlorobenzene	U	υ	U	U	0.5	3 ST
1,2-Dichlorobenzene	U	U	U	U	0.5	3 ST
1,2,4-Trichlorobenzene	. u				0.0	
ha ana an esta a		0	U	υ	0.5	5 ST
Hexchlorobutadiene	U	U U	U	U U	0.5 0.5	5 \$T 0.5 ST
1,2,3-Trichlorobenzene	U U	υ υ	U U V	U U U	0.5 0.5 0.5	5 \$⊤ 0.5 ST 5 ST
Hexchlorobutagiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether	U U U	υ υ υ	U U U U	บ บ บ	0.5 0.5 0.5 0.5	5 ST 0.5 ST 5 ST
Hexchiorobutadiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether Benzene	U U U U	ບ ບ ບ ບ	U U U U U	ม บ บ บ	0.5 0.5 0.5 0.5 0.5	5 ST 0.5 ST 5 ST 1 ST
Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-tert-butyl either Benzene Toluene	U U U U U	0 0 0 0 0	U U U U U	U U U U U	0.5 0.5 0.5 0.5 0.5 0.5	5 \$T 0.5 \$T 5 \$T 1 \$T 5 \$T
Hexchlorobutagiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether Benzene Toluene Ethylbenzene	ט ט ט ט ט	υ υ υ υ υ	0 0 0 0 0 0 0 0 0	ບ ບ ບ ບ ບ ບ	0.5 0.5 0.5 0.5 0.5 0.5 0.5	5 \$T 0.5 ST 5 ST 1 ST 5 ST 5 ST
Hexchlorobutgiene 1,2,3-Trichlorobenzene Methyl-tert-bulyl ether Benzene Toluene Ethylbenzene m-Xylene	ບ ບ ບ ບ ບ ບ ບ	υ υ υ υ υ υ υ υ	υ υ υ υ υ υ υ υ υ	ບ ບ ບ ບ ບ ບ ບ ບ	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5 \$T 0.5 \$T 5 \$T 1 \$T 5 \$T 5 \$T 5 \$T
Hexchiorobutadiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether Benzene Toluene Ethylbenzene m-Xylene p-Xylene	υ υ υ υ υ υ	υ υ υ υ υ υ υ υ υ υ υ υ	υ υ υ υ υ υ υ υ υ υ	ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5 \$T 0.5 \$T 5 \$T 1 \$T 5 \$T 5 \$T 5 \$T 5 \$T 5 \$T
Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-ter-butyl ether Benzene Toluene Ethylbenzene m-Xylene p-Xylene o-Xylene	υ υ υ υ υ υ υ υ	υ υ υ υ υ υ υ υ υ υ υ υ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	υ υ υ υ υ υ υ υ	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5 \$T 0.5 \$T 5 \$T 1 \$T 5 \$T 5 \$T 5 \$T 5 \$T 5 \$T 5 \$T 5 \$T
Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-lert-butyl ether Benzene Toluene Ethylbenzene m-Xylene p-Xylene Styrene	υ υ υ υ υ υ υ υ υ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	υ υυυυυυ υυυυυυ υυυυυ υυυυ	υ υ υ υ υ υ υ υ υ υ υ υ	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5 \$T 0.5 ST 5 ST 1 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST
Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether Benzene Toluene Ethytbenzene m-Xylene p-Xylene o-Xylene Styrene Isopropylbenzene (Cumene)	υ υ υ υ υ υ υ υ υ υ υ υ υ	υυυυυυυ υυυυυυυυ υυυυυυυ		υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5 ST 0.5 ST 5 ST 1 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5
Hexchlorobutatiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether Benzene Toluene Ethylbenzene m-Xylene p-Xylene o-Xylene Styrene Isopropylbenzene (Cumene) n-Propylbenzene	υυυυυυυυ υυυυυυυυ υ	υυυυυυυυ υυυυυυυυυυυυυ		υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5 ST 0.5 ST 5 ST 1 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5
Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether Benzene Toluene Ethylbenzene m-Xylene p-Xylene Styrene Isopropylbenzene (Cumene) n-Propylbenzene 1,3,5-Trimethylbenzene	υ υ υ υ υ υ υ υ υ υ υ υ υ			υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5 ST 0.5 ST 5 ST 1 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5
Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-lert-butyl ether Benzene Toluene Ethylbenzene m-Xylene o-Xylene o-Xylene Styrene Isopropylbenzene (Cumene) n-Propylbenzene 1,3,5-Tnmethylbenzene 2-Chlorotoluene				υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5 ST 0.5 ST 5 ST 1 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST
Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-ter-butyl ether Benzene Toluene Ethylbenzene m-Xylene p-Xylene o-Xylene Styrene Isopropylbenzene (Cumene) n-Propylbenzene 1,3,5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene				υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5 \$T 0.5 \$T 5 \$T 1 \$T 5 \$T 5 \$T 5 \$T 5 \$T 5 \$T 5 \$T 5 \$T 5
Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-lert-butyl ether Benzene Toluene Ethylbenzene m-Xylene p-Xylene o-Xylene Styrene Isopropylbenzene (Cumene) n-Propylbenzene 1,3,5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene				υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5 ST 0.5 ST 5 ST 1 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST 5 ST
Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-lert-butyl ether Benzene Toluene Ethylbenzene m-Xylene o-Xylene Styrene Isopropylbenzene 1,3,5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5 ST 0.5 ST 5 ST 1 ST 5 ST
Hexchlorobutadiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether Benzene Toluene Ethylbenzene m-Xylene p-Xylene o-Xylene Styrene Isopropylbenzene (Cumene) n-Propylbenzene 1,3,5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene				υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5 ST 0.5 ST 5 ST 1 ST 5 ST
Hexchlorobutatiene 1,2,3-Trichlorobenzene Methyl-tert-butyl ether Benzene Toluene Ethylbenzene m-Xylene p-Xylene Styrene Isopropylbenzene (Cumene) n-Propylbenzene 1,3,5-Trimethylbenzene 2-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene p-Isopropyltoluene(p-Cymene)				υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5 ST 0.5 ST 5 ST
Hexchlorobutaliene 1,2,3-Trichlorobenzene Methyl-ter-butyl ether Benzene Toluene Ethylbenzene m-Xylene o-Xylene o-Xylene Styrene Isopropylbenzene (Cumene) n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene ter-Butylbenzene 1,2,4-Timethylbenzene p-Isopropyltoluene(p-Cymene) n-Butylbenzene	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ			υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5 ST 0.5 ST 5 ST

QUALIFIERS:

U: Compound analyzed for but not detected

Compound found at a concentration below the CRDL, value estimated
 Result reported as a sum of 22- dichloropropane and cis-1,2-dichloroethene
 E: Compound concentration exceeds instrument calibration range, value estimated

D: Result taken from reanalysis at a secondary dilution

B: Compound found in the method blank as well as the sample

U*: Result qualified as non-detect based on validation criteria

NOTES:

*: Value pertains to the sum of the isomers

ST: Standard

GV: Guidance Value

---: Not established

Indicates value exceeds NYSDEC Class GA groundwater standard

or guidance value

Sample Identification	MW-5	MW-5	MW-5	MW-5	Contract	NYSDEC Class GA
Sample Depth, ft	90-110	90-110	90-110	90-110	Required	Groundwater
Date of Collection	11/05/01	01/24/02	04/25/02	07/17/02	Detection	Standard or
Dilution Factor	1.0	1.0	1.0	1.0	Limit	Guidance Value
Units	(ug/l)	(ua/l)	(ug/l)	(ua/l)	(uo/!)	(10/1)
Dichlorodifluoromethane	U U	U	U U	<u>U</u>	0.5	5 ST
Chloromethane	l ů	- u	U U		0.5	5.ST
Vinvl Chloride		l u	- u	l ů	0.5	2 \$1
Bromomethane	l u		U U	u u	0.5	5.57
Chloroothano	l ü	, i	U U	Ŭ	0.5	501
Elucrotrict/comethane				U U	0.5	501
1 1-Dichloroethene		10	,	, Š	0.5	5 5 T
Mothulono Chlorida	······		J J	· · ·	0.5	551
trans 1.3 Disblereathans		0		0	0.5	551
trans-1,2-Dichloroethene				U	0.5	551
1,1-Dichloroethane	1.5	2	0.8	U	0.5	5 ST
iz,2-Dichloropropane	0		U	0	0.5	551
cis-1,2-Dichloroethene	U	0.5	1	6	0,5	5 ST
Chlorotorm	U	U	0.3 J	U	0.5	7 ST
Bromochloromethane	0	U	U	U	0.5	5 ST
1,1,1-Trichloroethane	15	15	4	3	0.5	5 ST
1,1-Dichlorpropene	U U	υ	U	U	0.5	5 ST
Carbon Tetrachloride	U	U	U	U	0.5	5 ST
1,2-Dichloroethane	U	U	U.	U	0.5	0.6 ST
Trichloroethene	2.5	2	2	1	0.5	5 ST
1,2-Dichloropropane	U	U	U	U	0.5	1 ST
Bromodichloromelhane	U	υ	υ	U	0.5	50GV
Dibromomethane	U	U	U	υ	0.5	5 ST
cis-1,3-Dichloropropene	U	U	U	U	0.5	0.4 ST *
trans-1,3-Dichloropropene	υ	ប	υ	U	0.5	0.4 ST *
1,1,2-Trichloroethane	U	υ	υ	U	0.5	1 ST
1.3-Dichloroproparie	U	U	U	υ	0.5	5 ST
Tetrachloroethene	3.7	16	25	19	0.5	5 ST
Dibromochlorometharie	υ	Ū	U	U	0.5	50GV
Chlorobenzene	- U	Ū	- -	U U	0.5	5.ST
1.1.1.2-Tetrachioroelhane	U	Ŭ	Ŭ	U	0.5	5.51
Bromoform	u u	ů –	U U	u u	0.5	50GV
1.1.2.2-Tetrachloroethane	- U	-	-	. ů	0.5	5.ST
1.2.3-Trickloropropage	ů	ů U	9 11	ย ม	0.5	0.04 ST
Bromobenzene	U 1	U U	U U	а 1	0.5	5.64 GT
1 3-Dichlorobogzono			0		0,5	351
1,0-Dichlorobeazene	0	0		0	0.5	331
1.3 Dishlarabanzana	0		U	0	0.5	3.51
1,2-1,Trichloschennen		0	0	0	0.5	351
1,2,4-1 noniorobenzene	0	U	U U	0	0.5	551
	U	U	U	U	0.5	0.5 \$1
1,2,3-1 Honorobenzene	U	U	U	U	0.5	551
Methyl-ten-butyl ether	U	U	U i	U	0.5	
Benzene	U	U	U	U	0.5	1\$1
loluene	U	U	U	U	0.5	551
Ethylbenzene	U	U	U	U	0.5	5.57
m-Xylène	U	U	0 1	บ	0,5	551
p-Xylene	U	U	U	U	0.5	5 ST
o-Xylene	U	U	Ų	U	0.5	5 ST
Styrene	U	U	U	U	0.5	5 ST
Isopropylbenzene (Cumene)	U	U	Ψ	U	0.5	5 ST
n-Propylbenzene	U	Ų	U	υ	0.5	5 ST
1,3,5-Trimethylbenzene	V	U	V	U	0.5	5 ST
2-Chlorotoluene	U	U	U	U	0.5	5 ST
4-Chiorotoluene	U	U	Ų	υ	0.5	5 ST
tert-Butylbenzene	υ	U	U	U	0.5	5 ST
1,2,4-Trimethylbenzene	U	U	U	υ	0.5	5 ST
sec-Butylbenzene	U	U	U	U	05	5 ST
p-Isopropyltoluene(p-Cymene)	U	U	U	U	0.5	5 ST
n-Butylbenzene	U	U	<u> </u>	U	0.5	5 ST
Total VOCsl	33.7 1	46.6	26.1	24 1		

QUALIFIERS:

U: Compound analyzed for but not detected

Compound found at a concentration below the CRDL, value estimated
 **: Result reported as a sum of 2,2- dichloropropane and cis-1,2-dichloroethene

E: Compound concentration exceeds instrument calibration range, value estimated

D: Result laken from reanalysis at a secondary dilution

B: Compound found in the method blank as well as the sample

NOTES:

*: Value pertains to the sum of the isomers ST: Standard

GV: Guidance Value

----: Not established

Indicates value exceeds NYSDEC Class GA groundwater standard

or guidance value

9 of 13

Sample Identification	MW-6	MW-6	MW-6	MW-6	Contract	NYSDEC Class GA
Sample Depth, ft	110-130	110-130	110-130	110-130	Required	Groundwater
Date of Collection	11/05/01	01/25/02	04/25/02	07/17/02	Detection	Standard or
Dilution Factor	1.0	1.0	10.0	1/5	Limit	Guidance Value
Units	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
Dichlorodifluoromelhane	U	U	U	U	0.5	5 ST
Chloromethane	U	U U	u u	U	0.5	5 ST
Vinyl Chloride	U	ψ U	U	U	0.5	2 ST
Bromomethane	υ .	U	U	U	0.5	5 ST
Chloroethane	U	U	U U	ί υ	0.5	5 ST
Fluorotrichloromethane	U U) υ	1 J	l u	0.5	5 ST
1,1-Dichloroethene	270 D	72 D	100 D	99 D	0.5	5 ST
Methylene Chloride	1.3	U	U	5 D	0.5	5 ST
trans-1,2-Dichloroethene) U	U U	U	υ	0.5	5 ST
1,1-Dichloroethane	52 D	36	33	29	0.5	5 ST
2,2-Dichloropropane		U	**	U	0.5	5 ST
cis-1,2-Dichloroethene	22 **	13	9 **	9	0.5	5 ST
Chloroform	1.1	U	1	U	0.5	7 ST
Bromochloromethane	U U	U	u u	U U	0.5	5 ST
1,1,1-Trichloroethane	240 D	89 D	96 D	90 D	0.5	5 ST
1,1-Dichlorpropene	U	U	U	ų	0.5	5 ST
Carbon Tetrachloride	υ	(u	U	U	0.5	5 ST
1,2-Dichloroethane	0.8	u	Ų	υ	05	0.6 ST
Trichloroethene	93 D	54 D	43	51 D	0.5	5 ST
1.2-Dichloropropane	U U	U U	U	U	0.5	1 \$T
Bromodichloromethane	(u	U υ	U	U U	0.5	50GV
Dibromomethane	U U	U U	U U	U U	0.5	5 ST
cis-1,3-Dichloropropene	ψ V	U	U	U	0.5	0.4 ST *
trans-1.3-Dichloropropene	U	U	U	u u	0.5	0.4 ST *
1,1,2-Trichloroethane	υ υ	U	u	Ι υ	0.5	1 ST
1.3-Dichloropropane	U	Ū	υ	U	0.5	5 ST
Tetrachloroethene	80 D	37 D	68 E	47 D	0.5	5 ST
Dibromochloromethane	U	U	U		0.5	50GV
Chlorobenzene	U	U	U	U	0.5	5 ST
1,1,1,2-Tetrachloroethane	U	υ	U	U U	0.5	5 ST
Bromoform	U	U	υ	U	0.5	50GV
1,1,2,2-Tetrachloroethane	Ų	υ	U	U	0.5	5 ST
1,2,3-Trichloropropane	U	υ	υ	U	0.5	0.04 ST
Bromobenzene	U	U	U	U	0.5	5 ST
1,3-Dichlorobenzene	U	υ	U.	υ υ	0.5	3 ST
1,4-Dichlorobenzene	U	U	U	U	0.5	3 ST
1.2-Dichlorobenzene	Ū	U	U U	υ υ	0.5	3 ST
1.2.4-Trichlorobenzene	υ	U U	υ	l u	0.5	5 ST
Hexchlorobutadiene	U	U	U	Ū	0.5	0.5 ST
1.2.3-Trichlorobenzene	18	υ	U	U .	0.5	5 ST
Methyl-tert-butyl ether	U	u u	Ű	υ	0.5	
Benzene	U U	Ū	U	Ū	0.5	1 ST
Toluene	U U	- u		i u	0.5	5 ST
Elbybenzene	Ű	u u	τ U	u u	0.5	5 ST
m-Xvlene	- -	- U	- U	u u	0.5	5.ST
p-Xylene	U	U	Ű	Ū.	0.5	5 ST
o-Xylene	U	Ŭ	Ū	Ū	0.5	5 ST
Styrene	U	υ	υ	U U	0.5	5 ST
Isopropylbenzene (Cumene)	υ	υ	υ	Ū	0.5	5 ST
n-Propylbenzene	U	υ	υ	υ	0.5	5 ST
1,3,5-Trimethylbenzene	U	υ	U	υ	0.5	5 ST
2-Chlorotoluene	υ	U	υ	υ	0.5	5 ST
4-Chlorotoluene	U	Ų	U	u	0.5	5 ST
lert-Butylbenzene	U	U	υ	υ	0.5	5 ST
1,2.4-Trimethylbenzene	υ	U	u	U	0.5	5 ST
sec-Butyibenzene	U	U	U	U	0.5	5 \$T
p-Isopropyltoluene(p-Cymene)	U	U	U	U	05	5 ST
n-Butylbenzene	U	U,	U	U	0.5	5 ST
Total VOCs	761.2	301	351	330		

QUALIFIERS:

U: Compound analyzed for but not detected

J: Compound found at a concentration below the CRDL, value estimated

**: Result reported as a sum of 2,2- dichloropropane and cis-1,2-dichloroethene

E: Compound concentration exceeds instrument calibration range, value estimated

D: Result taken from reanalysis at a secondary dilution

B. Compound found in the method blank as well as the sample

NOTES:

*: Value pertains to the sum of the isomers

ST: Standard

GV: Guidance Value

----: Not established

Indicates value exceeds NYSDEC Class GA groundwater standard or guidance value
APPENDIX B NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM MONITORING WELL SAMPLE RESULTS VOLATILE ORGANIC COMPOUNDS

Sample Identification	MW-7	MW-7	MW-7	MW-7	Contract	NYSDEC Class GA
Sample Depth, ft	90-110	90-110	90-110	90-110	Required	Groundwater
Date of Collection	11/05/01	01/25/02	04/24/02	07/16/02	Detection	Standard or
Dilution Factor	1.0	1.0	1.0	1.0	Limit	Guidance Value
Units	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(vg/l)	(ug/I)
Dichlorodifluoromethane	U	U	U	U	0.5	5 ST
Chloromethane	U	U	U	U U	0.5	5 ST
Vinyl Chloride	U	(U	υ	υ υ	0.5	2 57
Bromomethane	. υ	U	υ υ	U	0.5	5 ST
Chloroethane	U	υ υ	υ	υ [0.5	5 ST
Fluorotrichloromethane	U U	U U	υ U	υ U	0.5	5 ST
1,1-Dichloroethene	U	0.5	0.7	2	0.5	5 ST
Methylene Chloride	υ υ	Ι υ	U U	υ υ	0.5	5 ST
trans-1,2-Dichloroethene	υ [U	υ υ	ι υ	0.5	5 ST
1.1-Dichloroethane	0.7	1	1	2	0.5	5 ST
2,2-Dichloropropane		U		- U	0.5	5 ST
cis-1.2-Dichloroethene	23 **	18	15 **	18	0.5	5 ST
Chloroform	U	U U	<u> </u>	U	0.5	7 ST
Bromochloromethane	U U	U	- U	- -	0.5	5 ST
1.1.1-Trichtoroethane	Ū	0.5	0.6	2	0.5	5 ST
1.1-Dichlorpropene	1 u	- U	U	- -	0.5	5 ST
Carbon Tetrachloride	- u	, v	U U		0.5	5.ST
1,2-Dichloroethane	U U	- U	Ū	Ű	0.5	0.6 ST
Trichloroethene	2	3	3		0.5	5 ST
1.2-Dichloropropane	. u	u u	- U		0.5	151
Bromodichipromethane	- -	U U	u u	u u	0.5	50GV
Dibromomethane	u u	u v	u u		0.5	5 ST
cis-1.3-Dichloropropene	l ů	U U	u u	i i	0.5	0451
trans-1.3-Dichloropronene	о 11		, u	, i	0.5	0451
1 1.2-Trichloroethane	U U	U U	u u		0.5	1.51
1.3-Dichloropropane	U U	Ű	u u	U U	0.5	5 ST
Tetrachloroethene	5.2	6	4		0.5	5 ST
Dibromochloromethane		U	U		0.5	50GV
Chlorobenzene	U	U U	U U		0.5	5 ST
1.1.1.2-Tetrachloroethane	υ	Ū	υ	ĺ	0.5	5 ST
Bromoform	U	U	U	l u	0.5	50GV
1,1,2,2-Tetrachloroethane	υ	U	U	υ	0.5	5 ST
1,2,3-Trichloropropane	U	υ	υ	υ	0.5	0.04 ST
Bromobenzene	υ	l u	υ	U	0.5	5 ST
1,3-Dichlorobenzene	U	υ	υ	υ	0.5	3 ST
1,4-Dichlorobenzene	υ	U	υ	υ	0.5	3 ST
1.2-Dichlorobenzene	U	υ	υ	U	0.5	3 ST
1,2,4-Trichlorobenzene	U	U	υ	υ	0.5	5 ST
Hexchlorobutadiene	υ	υ	U	U	0.5	0.5 ST
1,2,3-Trichlorobenzene	υ	υ	U	U	0.5	5 ST
Methyl-tert-bulyl ether	U	υ	U	2	0.5	
Benzene	υ	U	υ	U	0.5	1 ST
Toluene	U	U	υ	υ	0.5	5 ST
Ethylbenzene	U	υ	υ.	υ	0.5	5 ST
m-Xylene	U	υ	υ	U	0.5	5 ST
p-Xylene	U	υ	U	U	0.5	5 ST
o-Xylene	U	υ	U	υ	0.5	5 ST
Styrene	U	υ	U	υ	0.5	5 ST
Isopropylbenzene (Cumene)	U	U	U	U	0.5	5 ST
n-Propylbenzene	U	υ	υ	υ	0.5	5 ST
1,3,5-Trimethylbenzene	ų	U	U	υ	0.5	5 ST
2-Chlorotoluene	U	U	υ	υ	0.5	5 ST
4-Chlorololuene	U	υ	U	U	0.5	5 ST
tert-Butylbenzene	U	U	U	U	0.5	5 ST
1,2,4-Trimethylbenzene	U	U	U	U	0.5	5 ST
sec-Butylbenzene	U	υ	U	U	0,5	5 ST
p-isopropyltoluene(p-Cymene)	u	υ	U	U	0.5	5 \$T
n-Butylbenzene	U	UU	U	<u> </u>	0.5	5 ST
Total VOCa	20.0		04.2	10		

QUALIFIERS:

U: Compound analyzed for but not detected

Compound found at a concentration below the CRDL, value estimated
**: Result reported as a sum of 2.2- dichloropropane and cis-1,2-dichloroethene
E: Compound concentration exceeds instrument calibration range, value estimated

D: Result taken from reanalysis at a secondary dilution

B: Compound found in the method blank as well as the sample

NOTES:

*: Value pertains to the sum of the isomers

ST: Standard

GV: Guidance Value

---: Not established

Indicates value exceeds NYSDEC Class GA groundwater standard or guidance value

APPENDIX B NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM MONITORING WELL SAMPLE RESULTS VOLATILE ORGANIC COMPOUNDS

Sample identification	MW-8	MW-8	MW-8	MW-8	Contract	NYSDEC Class GA
Sample Depth, ft	120-140	120-140	120-140	120-140	Required	Groundwater
Date of Collection	11/05/01	01/25/02	04/24/02	07/17/02	Detection	Standard or
Dilution Factor	1.0	10	1.0	1.0	Limit	Guidance Value
Units	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
Dichlorodifluoromethane	U	U	U	U	0.5	5 ST
Chloromethane	υ υ	υ υ	υ υ	U U	0.5	5 \$T
Vinyl Chloride	υ U	U U	υ	U	0.5	2 ST
Bromomethane	υ	U) U	ψ V	0.5	5 ST
Chloroethane	. υ	υ	U	U	0.5	5 ST
Fluorotrichloromethane	υ υ	U	υ	U	0.5	5 ST
1,1-Dichloroethene	U U	0.8	U	0.5	0.5	5 ST
Methylene Chloride	υ	0.6	U U	υ υ	0.5	5 ST
trans-1,2-Dichloroethene	U	υ υ	0.9	U	0.5	5 ST
1,1-Dichloroethane	1.3	2	2	1 1	0.5	5 ST
2,2-Dichloropropane		U		U	0.5	5 ST
cis-1,2-Dichloroethene	1.7 **	2	2 **	2	0.5	5 ST
Chloroform	υ	U U	υ υ	U	0.5	7 ST
Bromochloromethane	υ	υ	U	U	0.5	5 ST
1,1,1-Trichloroethane	0.7	0.7	0.8	D	0.5	5 \$T
1,1-Dichlorpropene	U	υ	U	U	0.5	5 ST
Carbon Tetrachloride	Ú Ú	Ú	Ū	U U	0,5	5 ST
1,2-Dichloroethane	. Ū	U	υ	l Ú	0.5	0.6 ST
Trichloroethene	1.1	2	U*	0.8	0.5	5 ST
1.2-Dichloropropane	υ	ι υ	U	l u	0.5	1 ST
Bromodichtoromethane	U U) Ū	U	u u	0.5	50GV
Dibromomethane	Ū	U U	U U	ι υ	0.5	5 ST
cis-1.3-Dichloropropene	ι υ) .	υ	l u	0.5	0.4 ST *
trans-1.3-Dichloropropene	l Ū	U U	ū	l	0.5	0.4 ST *
1,1,2-Trichloroethane	- U) Ū		U U	0.5	I ST
1.3-Dichleropropane	Ū	- U	Ū	- U	0.5	5 ST
Tetrachloroethene	1.1	1	t	0.8	0.5	5 ST
Dibromochlorome!hane	U	U	U	U	0.5	50GV
Chlorobenzene	U	U U	u u	l u	0.5	5 ST
1,1,1,2-Tetrachloroethane	U	U	U	U	0.5	5 ST
Bramaform	U	U	υ	U U	0.5	50GV
1,1,2,2-Tetrachloroethane	υ	U	U	Ū	0.5	5 ST
1,2,3-Trichtoropropane	υ	U	U) Ū	0.5	0.04 ST
Bromobenzene	U	U	υ	u u	05	5 ST
1.3-Dichlorobenzene	υ	U	U	U	0.5	3 ST
1.4-Dichlorobenzene	U	U	U	l u	0.5	3 \$T
1,2-Dichlorobenzene	U	U	U	U	0.5	зsт
1,2,4-Trichlorobenzene	U	U	U	U	0.5	5 ST
Hexchlorobutadiene	U	υ	U	U	0.5	0.5 ST
1,2,3-Trichlorobenzene	U	U.	U	U U	0.5	5 ST
Melhyl-tert-butyl ether	U	U	υ	U	0.5	
Benzene	U	U	U	U	0.5	1 ST
Toluene	U	u	ບ	U	0.5	5 \$T
Ethylbenzene	U	Ų	U	U	0.5	5 ST
m-Xylene	U	U	U	υ	0.5	5 ST
p-Xylene	υ	U	U	U	0.5	5 ST .
o-Xylene	U	U	U	U	0.5	5 ST
Styrene	U	υ	U	u	0.5	5 ST
Isopropylbenzene (Cumene)	V.	U	u	U	0.5	5 ST
n-Propylbenzene	U	U	U	U	0.5	5 ST
1,3,5-Trimethylbenzene	U	U	U	U	0.5	5 ST
2-Chlorotoluene	υ	U	U	U	0.5	5 ST
4-Chlorotoluene	U	U	U	U	0.5	5 ST
tert-Butylbenzene	ບ	υ	U	U	0.5	5 ST
1,2,4-Trimethylbenzene	U	U	υ	U	0.5	5 ST
sec-Butylbenzene	U	υ	υ	U	0.5	5 ST
p-isopropylioluene(p-Cymene)	U	U	U	V	Q.5	5 ST
n-Butylbenzene	U	U	υ	U	0.5	5 ST
Total VOCs	50	0.1	87	E 1		

QUALIFIERS:

U: Compound analyzed for but not detected

J: Compound found at a concentration below the CRDL, value estimated

**: Result reported as a sum of 2,2- dichloropropane and cis-1,2-dichloroethene

E: Compound concentration exceeds instrument calibration range, value estimated

D: Result taken from reanalysis at a secondary dilution

B: Compound found in the method blank as well as the sample

NOTES:

*: Value pertains to the sum of the isomers

ST: Şlandard

GV: Guidance Value

----: Not established

Indicates value exceeds NYSDEC Class GA groundwater standard or guidance value

APPENDIX B 5-03 xis

APPENDIX B NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM MONITORING WELL SAMPLE RESULTS VOLATILE ORGANIC COMPOUNDS

Sample Identification	MW-9		1	1	Contract	NYSDEC Class GA
Sample Depth, ft	305-315	· · · · · · · · · · · · · · · · · · ·			Required	Groundwater
Date of Collection	07/17/02				Detection	Standard or
Dilution Factor	1.0	·	· · · · · · · · · · · · · · · · · · ·		Limit	Guidance Value
Units	(ug/l)		·		(ug/l)	(lug/l)
Dichloredifluoromethane	U U				0.5	5 ST
Chloromethane	l u				0.5	5 ST
Vinvi Chloride	1				0.5	2 ST
Bromomethane	l ú			ļ	0.5	5 ST
Chloroethane	- -				0.5	5.ST
Eluorotrichloromethane	-				0.5	5.5T
1.1-Dichloroethene	1				0.5	5.ST
Methylene Chloride	u i				0.5	5.57
Itrans-1.2-Dichloroethene	- u				0.5	5 ST
1 1-Dichloroethane	u u				0.5	5.ST
2.2-Dichloropropane	· · ·				0.5	557
cis-1.2-Dichloroethene	0.8 **				0.5	5 ST
Chloroform					0.5	7 ST
Bromochloromethane	ů ů				0.5	5 ST
1 t 1-Trichloroethane	2				0.5	551
1 1-Dichlororopene	-				0.5	5 ST
Carbon Tetrachloride	i ü		1		0.5	5 ST
1.2-Dichloroelhane	u u		}		0.5	06.51
Trichloroethene	15				0.5	5.ST
1.2-Dichloropropage					0.5	157
Bromodichloromethane	ŭ		1		0.5	50GV
Dibromomethane	ů u				0.5	5.5T
cis-1 3-Dichloropropene	U U		1		0.5	0457.
trans-1 3-Dichloropropene	u u				0.5	0451
1 1 2-Téchlorogibane	, i				0.5	151
1.3-Dichloropronane	U U				0.5	551
Tetrachloroethene	1		1		0.5	5 ST
Dibromochloromethane	u i				0.5	50GV
Chlorobenzene	U U				0.5	5 ST
11112-Tetrachloroethane	u u			ł	0.5	5 ST
Bromoform	u u				0.5	50GV
1 1 2 2-Tetrachloroethane	u u				0.5	5.51
1.2.3-Trichloropropage	Ú Ú				0.5	0.04.51
Bromobenzene	1				0.5	5.54 BT
1 3-Dichlorobenzene	u u				0.5	3 51
1 4-Dichlorabenzene				1	0.5	357
1.2-Dichlorobenzene				ľ	0.5	357
1.2.4-Tricblorobenzene	, i				0.5	5 97
Heychlorobutadiene					0.5	0.5.51
1 2 3-Tricblorobenzene	о 11				0.5	5.ST
Methyl-tert-butyl elber	Ŭ,				0.5	531
Benzene					0.5	1 57
Toluepe	0				0.5	1 3 I 5 6 T
Ethylboozoge					05	531
m-Xylene	U U				0,5	5 ST
p-Yviona					0.5	551
o-Xylene	0				0.5	5 51
Styrene	е 1				0.5	551
Isnoropylbenzene (Cumene)					0.5	5.ST
n-Propylbenzene	u u			1	0.5	5.ST
1.3.5-Trimethylbenzene	ŭ				0.5	5.ST
2-Chlorotoluene	i i				0.5	5.51
4-Chlorotoluene	U U				05	5.5T
tert-Butvibenzene	u v				0.5	5.ST
1.2.4-Trimelhylbenzene	U U				0.5	5 ST
sec-Butylberizene	Ű				0.5	5 ST
p-Isopropyltaluene(p-Cymene)	U				0.5	5 ST
n-Butylbenzene	U				0.5	5 ST
Total VOCs	19.8	·		·		

QUALIFIERS:

U: Compound analyzed for but not detected

Compound found at a concentration below the CRDL, value estimated
**: Result reported as a sum of 2,2- dichloropropane and cis-1,2-dichloroethene

E: Compound concentration exceeds instrument calibration range, value estimated

D: Result taken from reanalysis at a secondary dilution

B: Compound found in the method blank as well as the sample

NOTES:

*: Value pertains to the sum of the isomers

ST: Standard

GV: Guidance Value -: Not established

Indicates value exceeds NYSDEC Class GA groundwater standard

or guidance value

Appendix C

-

i.

5

-

-

APPENDIX C

HISTORIC CONCENTRATION GRAPHS FOR EARLY WARNING WELLS AND OFF-SITE MONITORING WELLS -TOTAL VOLATILE ORGANIC COMPOUNDS

♦1898\F0409302.doc(R04)

EW-1B (Screen depth 154 to164 feet bls)

EW-1C (Screen depth 506 to 516 feet bls)

EW-2B (Screen depth 132 to 142 feet bls)

EW-2C (Screen depth 504 to 514 feet bls)

Sample date

MW-1 (Screen depth 90 to 110 feet bls)

MW-2 (Screen depth 110 to 130 feet bls)

MW-3 (Screen depth 150 to 150 feet bis)

MW-4 (Screen depth 180 to 200 feet bls)

MW-5 (Screen depth 90 to 110 feet bls)

MW-6 (Screen depth 110 to 130 feet bls)

MW-7 (Screen depth 90 to 110 feet bls)

Appendix D

APPENDIX D

EARLY WARNING WELL AND OFF-SITE MONITORING WELL NATURAL ATTENUATION MONITORING PARAMETER RESULTS

♦1898\F0409302.doc(R05)

APPENDIX D NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM MONITORING WELL SAMPLE RESULTS ATTENUATION MONITORING PARAMETERS

Sample Identification	EW-1B	EW-1B	EW-1B	EW-1B	EW-1C	EW-1C	EW-1C	EW-1C		Contract	NYSDEC Class GA
Sample Depth, ft	154-164	154-164	154-164	154-164	506-516	506-516	506-516	506-516	R	Required	Groundwater
Date of Collection	09/25/01	01/28/02	04/25/02	07/19/02	09/25/01	01/28/02	04/25/02	07/19/02	D	etection	Standard or
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		Limit	Guidance Value
Units	(mg/l)		(mg/l)	(mg/l)							
Total Iron	U	0.445	U	0.038 B	0.157	U	0.248	0.316	3	0.05	0.3 ST**
Total Organic Carbon	U	1.1	2	2.7	U	U	U	1.400	1	5	
Alkalinity	20.6	18	20	18	10.2	10	12	11.0		10	
Chloride	26.9	31.9	33.5	31.2	9.81	13.3	13.6	13.7		3	250 ST
Nitrate	6.071	6.3	6	6.4	5.591	6	6	6.3		0.05	10 ST
Sulfate	21.9	23.5	23.1	21.9	U	2.3	1.4	U		5	250 ST
Carbon Dioxide	79.8	60	U U	64	72.9	13	14	17		NA	
Methane	0.005	U	U	U	0.009	ປ	U	U		0.002	

Sample Identification	EW-2B	EW-2B	EW-2B	EW-2B	EW-2C	EW-2C	EW-2C	EW-2C	Contract	NYSDEC Class GA
Sample Depth, ft	132-142	132-142	132-142	132-142	504-514	504-514	504-514	504-514	Required	Groundwater
Date of Collection	09/25/01	01/28/02	04/25/02	07/19/02	09/25/01	01/28/02	04/25/02	07/19/02	Detection	Standard or
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Limit	Guidance Value
Units	(mg/l)	(mg/l)								
Totai Iron	U	U	U	U	0.339	0.858	0.551	U	0.05	0.3 ST**
Total Organic Carbon	U	1	1.2	2	U	1.4	U	U	5	
Alkalinity	15	14	14	13	10.6	10	10	10	10	
Chloride	30.3	35.8	35.9	36.8	4.11	7	6.8	6.8	3	250 ST
Nitrate	2.194	2.2	2.1	2.3	1.773	1.9	1.9	1.9	0.05	10 ST
Sulfate	17.1	12.4	9.7	9.5	U	2.7	1.5	U	5	250 ST
Carbon Dioxide	60.6	60	56	67	17.4	13	10	14	NA	
Methane	0.11	0.048	0.004 J	0.056	0.007	U	0.074	U	0.002	

QUALIFIERS: U: Compound analyzed for but not detected NA: Not Available NOTES:

ST: Standard

---: Not established

**: Standard applies to Total Iron

: Indicates value exceeds NYSDEC Class GA Groundwater Standard

or Guidance Value

B: Concentration was above IDL but less than CRDL

2

APPENDIX D NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM MONITORING WELL SAMPLE RESULTS ATTENUATION MONITORING PARAMETERS

Sample Identification	MW-1	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2	MW-2	[Contract	NYSDEC Class GA
Sample Depth, ft	90-110	90-110	90-110	130-150	110-130	110-130	110-130	110-130		Required	Groundwater
Date of Collection	11/02/01	01/24/02	04/24/02	07/16/02	11/02/01	01/24/02	04/24/02	07/16/02		Detection	Standard or
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	· · · ·	Limit	Guidance Value
Units	(mg/l)		(mg/l)	(mg/l)							
Total Iron	U	U	U	U	U	0.474	0.265	0.254		0.05	0.3 ST**
Total Organic Carbon	U	4.1	1.9	2.1	U	3.5	2.7	2.6		5	
Alkalinity	10	U	11	U	22	25	27	27		10	
Chloride	38.8	48.9	50	59.7	33.5	37.5	37	36.6		3	250 ST
Nitrate	5.553	4.1	4.5	5.3	6.813	6.7	7	5.1		0.05	10 ST
Sulfate	24.2	26	27.3	29.4	20.9	22.8	22.5	18.9		5	250 ST
Carbon Dioxide	66.3	78	66	U	408	62	62	83		NA	
Methane	0.004	U U	υ	U	0.013	U	U	0.042	·	0.002	

Sample Identification	MW-3	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-4		Contract	NYSDEC Class GA
Sample Depth, ft	130-150	130-150	130-150	130-150	180-200	180-200	180-200	180-200		Required	Groundwater
Date of Collection	11/02/01	01/24/02	04/24/02	07/16/02	11/02/01	01/24/02	04/24/02	07/16/02	1	Detection	Standard or
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		Limit	Guidance Value
Units	(mg/l)	(mg/l)	(mg/i)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)		(mg/l)	(mg/l)
Total Iron	U	7.58	5.03	3.95	U	0.5	υ	U		0.05	0.3 ST**
Total Organic Carbon	5.505	4.3	2.7	2.3	6.309	2.8	2.9	2.4		5	
Alkalinity	18	27	18	15	22.0	20	22	19		10	
Chloride	36	39.9	35.7	37.6	45.7	47.4	46.8	46.9		3	250 ST
Nitrate	6.505	4.4	4.9	5.1	8.177	9.1	8.9	9.2	i	0.05	10 ST
Sulfate	21.1	12.4	17.2	18.9	U	2	2.3	4.4	Í	5	250 ST
Carbon Dioxide	369	71	72	83	466	68	73	71		NA	
Methane	1.2	0.097	0.11	0.14	0.013	U	U	0.002		0.002	

QUALIFIERS:

U: Compound analyzed for but not detected

NA: Not Available

B: Concentration was above IDL but less than CRDL

NOTES:

ST: Standard

---: Not established

**: Standard applies to Total Iron

Indicates Value exceeds NYSDEC Class GA Groundwater Standard

or Guidance Value

APPENDIX D NEW CASSEL INDUSTRIAL AREA OFF-SITE GROUNDWATER MONITORING AND ASSESSMENT PROGRAM MONITORING WELL SAMPLE RESULTS ATTENUATION MONITORING PARAMETERS

Sample Identification	MW-5	MW-5	MW-5	MW-5	MW-6	MW-6	MW-6	MW-6	Cor	ntract	NYSDEC Class GA
Sample Depth, ft	90-110	90-110	90-110	90-110	110-130	110-130	110-130	110-130	Req	quired	Groundwater
Date of Collection	11/05/01	01/25/02	04/26/02	07/17/02	11/05/01	01/25/02	04/26/02	07/17/02	Dete	ection	Standard or
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Li	imit	Guidance Value
Units	(mg/l)	(m	ng/l)	(mg/l)							
Total Iron	U	0.618	U	U	U	υ	0.0457 B	0.0609 B	0	.05	0.3 ST**
Total Organic Carbon	U	4.1	1	1.8	U	4.4	2	1.9		5	
Alkalinity	16	13	15	17	32	27	27	24	·	10	
Chloride	43.6	53.1	62,7	66.7	117	102	99	101		3	250 ST
Nitrate	3.744	3.7	3.9	4.9	4.885	5.1	4.7	5.2	0	.05	10 ST
Sulfate	29.2	25.7	26.6	20.5	29.1	30.9	26.4	21.3		5	250 ST
Carbon Dioxide	53.1	44	31	49	392	57	53	62	1	NA	
Methane	0.009	U	U U	U	0.007	U	υ	U	1 10.	002	

Sample Identification	MW-7	MW-7	MW-7	MW-7	MW-8	MW-8	MW-8	MW-8	MW-9	Contract	NYSDEC Class GA
Sample Depth, ft	90-110	90-110	90-110	90-110	120-140	120-140	120-140	120-140	305-315	Required	Groundwater
Date of Collection	11/05/01	01/25/02	04/24/02	07/16/02	11/05/01	01/25/02	04/24/02	07/17/02	07/17/02	Detection	Standard or
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Limit	Guidance Value
Units	(mg/l)	(mg/l)									
Total fron	U	0.0693 B	υ	U	U	10.7	18.2	13.2	0.027 B	0.05	0.3 ST**
Total Organic Carbon	ŧ υ	3.4	1.1	1.4	12.2	6.9	4,4	2.2	1.9	5	
Alkalinity	ן ט	U	U	U	14	38	53	42	24	10	
Chloride	18.8	21.8	21.5	22.7	22.9	26.1	25.9	24.7	101	3	250 ST
Nitrate	5.913	6	5.6	6.3	5.049	2.8	3.4	1.7	5.2	0.05	10 ST
Sulfate	31	33.8	28.4	31.1	32.7	27.9	22.8	19.6	21.3	5	250 ST
Carbon Dioxide	158	81	U	U	56.2	U	48	52	62	NA	
Methane	0.007	U	U	U	0.007	U	0.22	0.16	U U	0.002	

QUALIFIERS:

U: Compound analyzed for but not detected NA: Not Available

B: Concentration was above IDL but less than CRDL

NOTES:

ST: Standard

---: Not established

**: Standard applies to Total Iron

Indicates Value exceeds NYSDEC Class GA Groundwater Standard

or Guidance Value

APPENDIX E

HISTORIC CONCENTRATION GRAPH FOR BOWLING GREEN ESTATES WATER DISTRICT SUPPLY WELLS (1988-2002) -TOTAL VOLATILE ORGANIC COMPOUNDS

♦1898\F0409302.doc(R04)

•

-

۹

APPENDIX F

RI/FS WELL SAMPLING GROUNDWATER DATA SUMMARY FIGURES OF THE 2000 RI/FS REPORT

+1898\F0409302.doc(R04)

-

Ĩ

ł

ł

.

•