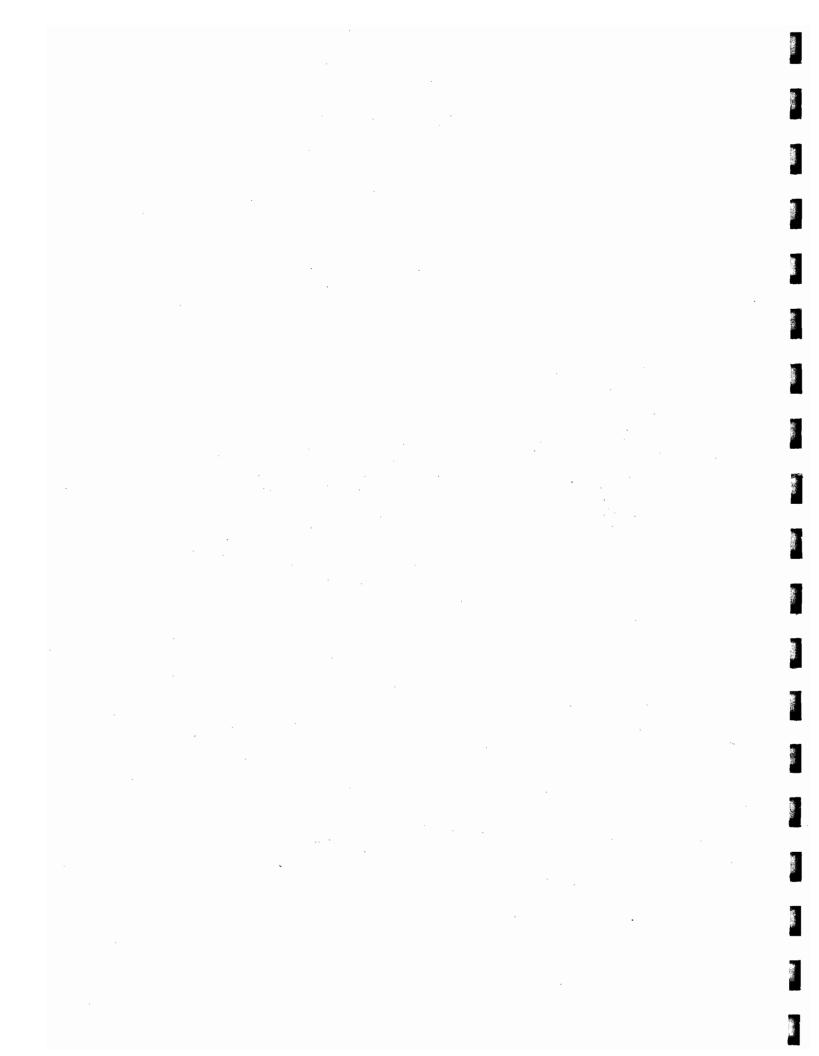
NEW YORK STATE SUPERFUND CONTRACT IMMEDIATE INVESTIGATION WORK ASSIGNMENT

VOLUME I REPORT AND APPENDICES A-B

Atlas Graphics Site No. 1-30-043B Work Assignment No. D002676-20

DATE: March 1999


Prepared for:

New York State Department of Environmental Conservation

50 Wolf Road, Albany, New York 12233 John Cahill, Commissioner

Division of Environmental Remediation Michael J. O'Toole, *Director*

By: Lawler, Matusky & Skelly Engineers LLP

ATLAS GRAPHICS (Site I.D. No. 1-30-043B) IMMEDIATE INVESTIGATION WORK ASSIGNMENT (IIWA)

TOWN OF NORTH HEMPSTEAD, NASSAU COUNTY

Work Assignment No. D002676-20

IIWA Report

Prepared for:

New York State Department of Environmental Conservation Division of Environmental Remediation

March 1999

LMSE-99/0101&650/201

LAWLER, MATUSKY & SKELLY ENGINEERS LLP Environmental Science & Engineering Consultants One Blue Hill Plaza Pearl River, New York 10965

		•
,		
		•
		-
		-
		**

		~
		-
		•
		-
		-
		-
		**
		-
		-
		-
		•

ATLAS GRAPHICS SITE IIWA REPORT TABLE OF CONTENTS

LI	ST OF	FIGURES	Page No.
LI	ST OF	TABLES	ii
1	INT	RODUCTION	
	1.1	Overview and IIWA Objectives	1-1
	1.2	Site Location and Description	1-1
	1.3	Site Background	1-1
2	FIEL	LD INVESTIGATION PROCEDURES	
	2.1	Soil and Groundwater Probes	2-1
	2.2	Test Pit Construction	2-2
	2.3	Hydropunch Groundwater Sampling	2-2
	2.4	Monitoring Well Sampling	2-3
	2.5	Soil and Groundwater Analytical Procedures	2-4
3	IIWA	A RESULTS	
	3.1	Soil Probe Results	3-1
	3.2	Groundwater Probe Results	3-2
	3.3	Hydropunch Groundwater Sampling Results	3-4
	3.4	Monitoring Well Sampling Results	3-5
4	CON	ICLUSIONS	4-1
A.	PPENI	DICES	
	A -	Soil Probe and Hydropunch Logs	
	В-	Groundwater Monitoring Sampling Sheets	
	C -	Analytical Data Summary Sheets	

LIST OF FIGURES

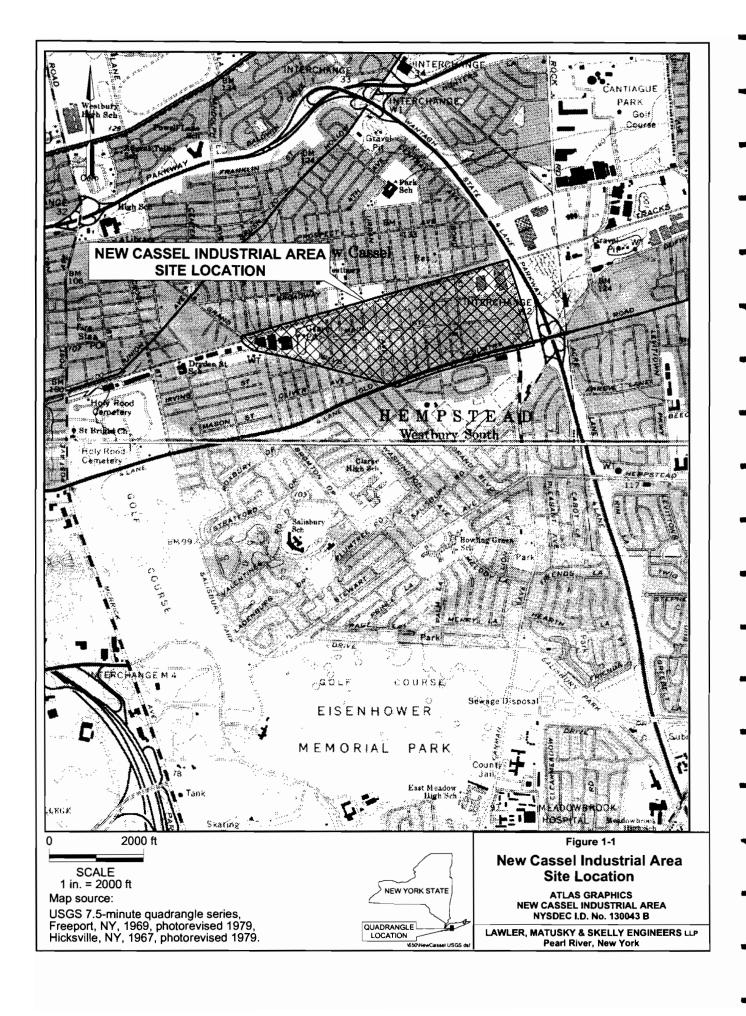
Figure No.	Title	Following Page
Figure 1-1 New Cas	ssel Industrial Area Site Location	1-1
Figure 1-2 Atlas Gr	aphics Site Locations	1-1
Figure 2-1 Probe, H	lydropunch, and Monitoring Well Locations	2-1
Figure 3-1 Hydropu	nch Results	3-3
	LIST OF TABLES	
Table No.	Title ·	Following Page
Table 3-1 Soil Prob	e Sampling Results	3-1
Table 3-2 Groundwa	ater Probe Sampling Results	3-2
Table 3-3 Groundwa	ater Monitoring Well Sampling Results	3-4

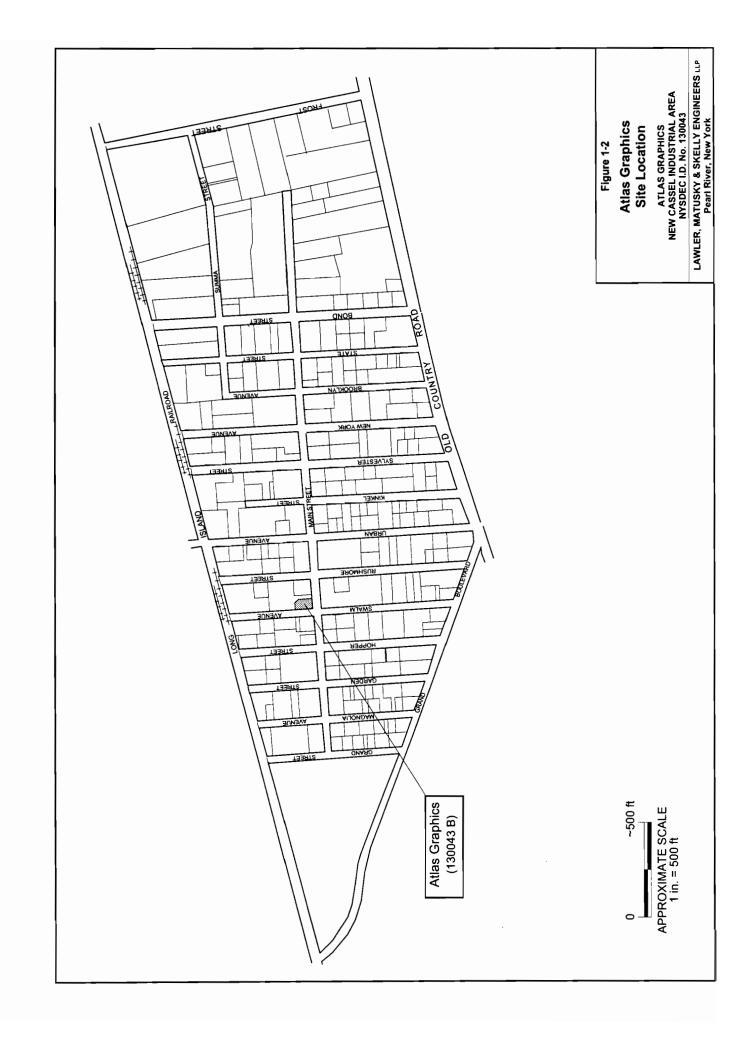
CHAPTER 1

INTRODUCTION

1.1 OVERVIEW AND OBJECTIVES OF THE IIWA

The New Cassel Industrial Area (NCIA) is located in the unincorporated village of Westbury in the Town of North Hempstead, Nassau County, New York (Figure 1-1). Approximately 200 industrial or commercial businesses occupy this 170-acre site (Figure 1-2). Due to extensive halogenated volatile organic contamination of groundwater beneath the site, the New York State Department of Environmental Conservation (NYSDEC) classified the entire industrial area as a hazardous waste site in 1988. Based on the results of a Site Investigation (SI) and Preliminary Site Assessment (PSA) conducted by Lawler, Matusky & Skelly Engineers LLP (LMS) the individual facilities responsible for the contamination were identified as Class 2 sites on the New York State Registry of Inactive Hazardous Waste Disposal Sites. The Atlas Graphics Site was identified as one of these facilities.


The objectives of the Immediate Investigation Work Assignment (IIWA) at the Atlas Graphic site were to locate the source of the contaminants in on-site soils and determine the nature and extent of the groundwater contamination plume under the site.


1.2 SITE LOCATION AND DESCRIPTION

The Atlas Graphics Site, (NYSDEC Site No. 1-30-143B on the New York State Registry of Inactive Hazardous Waste Sites) is located at 567 Main Street in the New Cassel Industrial Area (NCIA), Town of North Hempstead, Nassau County, New York (Figure 1-2). The site is comprised of approximately 8000 square feet which is bounded by a Swalm Avenue to the west, commercial buildings and parking lots to the north and east, and Main Street to the south. The property is currently a active printing and graphics operation which occupies the small two story commercial building on the site.

1.3 SITE BACKGROUND

Historic records of the Atlas Graphics site indicate the site was developed prior to 1971. Past occupants of the site include a construction company, a heating company, a development association, and a mill/mill supply company. Atlas Graphics began operations at the site in 1977 and have operated continuously since that time. Chemical usage records indicate that Atlas Graphics used 312 gallons of trichloroethylene (TCE) each year for degreasing purposes. The

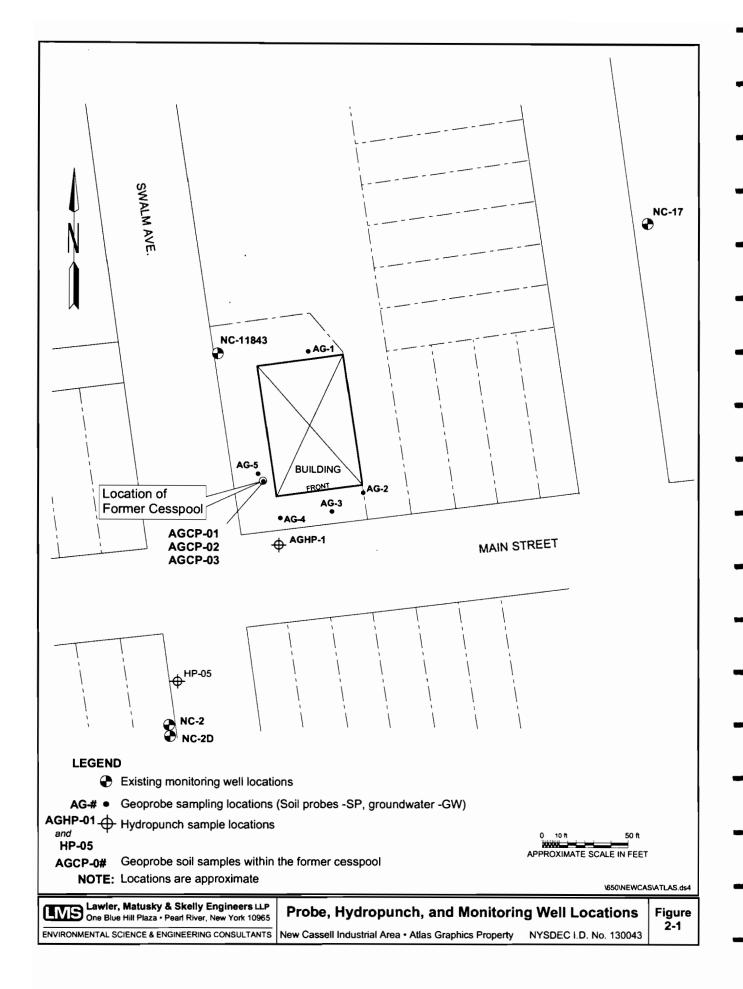
wastewater from this operation was discharged directly into a cesspool off the southwest corner of the building. The cesspool reportedly received both the industrial wastewater and the sanitary discharge. Investigations conducted by the Nassau County Health Department (NCDOH) indicated that the cesspool was heavily contaminated with TCE. In 1978 a sample collected by NCDOH showed 4,500 µg/kg TCE and 100 µg/kg of 1,1,1-trichloroethane (1,1,1-TCA), an additional sample collected in 1980 contained 318,760 µg/kg of TCE. The industrial discharges to the cesspool resulted in a SPDES violation which was corrected by equipment changes at the facility. The Atlas Graphics facility was eventually connected to the county sewer system in November 1980. Records pertaining to the cleaning and abandonment of the cesspool when the facility was connected to the county sewer were not located. It is not know if the cesspool was cleaned and removed or if any hazardous wastes were removed from the site at that time.

Previous investigations in the vicinity of the Atlas Graphics site include the SI and PSA conducted by LMS in 1994 to 1997. The records search conducted during the SI revealed the past discharge history and sampling data for the site. Concentrations of tetrachloroethylene (PCE) related contaminants were found to significantly higher in a geoprobe point (GP-20) located downgradient of the Atlas Graphics site than upgradient concentrations. Although significant concentrations were measured in GP-20 the contamination could not be entirely attributed to the Atlas Graphics site since GP-20 was also in the immediate vicinity of IMC Magnetics. This site is also a Class 2 site which is located directly across Main Street south of the Atlas Graphics site. Past records and sampling data indicated IMC used and disposed of wastes with similar compounds as those used by Atlas Graphics. The sampling data and the documented disposal of hazardous wastes resulted in a Class 2 status on the New York State Registry of Inactive Hazardous Waste Disposal Sites for the Atlas Graphics site. At that time the contribution of the Altas Graphics site to the known groundwater contamination problem in the area could not be resolved due to the presence of IMC Magnetics.

Prior to beginning the IIWA sampling a site reconnaissance of the site was conducted by LMS and NYSDEC representatives. The site reconnaissance verified that site conditions had not changed since the initial site investigation. During the site reconnaissance sampling locations were selected and the location of any subsurface utilities noted. The original scope of work for the sampling efforts included a number of soil and groundwater probes. This was latter modified to include the installation of several hydropunches and a single test pit due to difficult subsurface conditions. A full description of the field investigation procedures are found in Chapter 2.

CHAPTER 2

FIELD INVESTIGATION PROCEDURES


2.1 SOIL AND GROUNDWATER PROBES

A total of 5 (AG-01 to AG-05) soil and groundwater probe sample locations were completed during the IIWA (Figure 2-1). Each of the soil and groundwater probe samples were advanced using a truck mounted probe unit utilizing a direct push hydraulic hammer system.

Soil samples were taken with a sampling tube which was fitted with a dedicated disposable acetate liner. Soil samples were examined and described on a boring log, noting the following characteristics: moisture content, lithology, color, texture, and evidence of contamination (odor, staining, sheen, organic vapor readings, and other sample-specific notations). Depth, rate of penetration, and sample recovery were also noted on the same log. The soil samples were scanned with a photoionization detector (PID) immediately upon the opening the acetate liner in order to detect the presence of any volatile organic compounds (VOCs). Probe boring logs and the field notes can be found in Appendix A.

The groundwater probe screen sampler is constructed of a tightly wound coil of stainless steel enclosed in a steel sheath. The groundwater screen sampler enables samples to be collected from discrete 4-ft intervals. When the screen sampler reached the desired depth, the probe rods and the screen sheath were raised four feet, exposing the screen. A dedicated length of polyethylene tubing fitted with a check valve was then inserted through the probe rods to the screen. By manually surging the tubing, water was drawn to the surface. The tubing was then surged until at least three times the volume of water in the probe rods was purged to insure that the groundwater sample was from the correct interval. The sample was then collected by transferring it directly to the sample containers. Once the deepest sample was obtained, the entire assembly was raised to the next sampling interval above. A new length of dedicated tubing, fitted with a check valve, was then inserted through the probe rods and the process repeated. After the sample was collected, the entire assembly was raised to the shallow interval and the entire process repeated.

Groundwater and soil probe samples were transferred to laboratory-cleaned glass jars and labeled with the appropriate sample location, interval, date, time, sampler, and required analyses. Each of the samples were shipped by overnight carrier to the NYSDEC contract

laboratory for analysis of VOC's. Specific information on the analytical methods and protocols are found in Section 2.5.

2.2 TEST PIT INSTALLATION

A single test pit was constructed at the Atlas site to assist in placement of additional soil probe sampling locations. Delta Well & Pump Inc. (Delta), of Ronkonkoma, New York, was subcontracted to complete the test pit at the site. Delta used a tire mounted backhoe to complete the test pit under direct supervised of a LMS geologist. The test pit was located to uncover the precise location of the former leachpool located off the south west corner of the building. Once the pool was located several soil probes were completed in the test pit using the procedures found in Section 2.1.

Once the test pit was completed the excavated soils were returned to the test pit and a hot patch placed over the excavated area. The asphalt removed form the test pit location was disposed of at an off-site location.

2.3 HYDROPUNCH GROUNDWATER SAMPLING

Groundwater samples were collected using the hydropunch sampling equipment at 2 locations (Figure 3-3). The hydropunches were conducted during two mobilizations on 22 September 1997 and 24 February 1998. The second mobilization was required since this hydropunch was placed within the town roadway and required a roadway lane closure. Hydropunch groundwater samples were collected from the water table (~60-ft), 70 ft, and 80 ft below the ground surface. The hydropunch sampling resulted in a total of 6 samples.

Delta was also subcontracted to complete the hydropunches at the site using a truck-mounted drill rig. Each of the hydropunch's were completed using 4.25-in. hollow-stem augers (HSA). All drilling and sampling activities were supervised by an LMS geologist. Soil sampling was conducted according to the standard penetration test method ASTM 1586-D. This procedure involves sampling the overburden in 2-ft intervals with a 2-ft-long, 2-in. O.D. split-spoon sampler driven by a 140-lb hammer falling 30 in. Soil samples were examined and described on a boring log, noting the following characteristics: moisture content, lithology, color, texture, and evidence of contamination (odor, staining, sheen, organic vapor readings, and other sample-specific notations). Depth, blow counts, and sample recovery were also noted on the same log. The soil samples were scanned with a photoionization detector (PID)

immediately upon the opening of the split-spoon sampler in order to detect the presence of any volatile organic compounds (VOCs).

At each of the hydropunch sampling depths, the drilling rods were removed from the boring and a steam-cleaned hydropunch tool was attached to the rods. The rods were then lowered back into the boring and the hydropunch driven to the desired sampling depth. Once the hydropunch tool had been driven to the desired depth, it was retracted several inches to expose the sample port. The hydropunch tool was then allowed to fill with the groundwater sample. Once the hydropunch tool was filled, it was returned to the surface.

Hydropunch groundwater samples were then transferred to laboratory-cleaned glass jars and labeled with the appropriate sample location, interval, date, time, sampler, and required analyses. Each of these groundwater samples were shipped by overnight carrier to the NYSDEC contract laboratory for analysis. Specific information on the analytical methods and protocols are found in Section 2.5

Once completed, the hydropunch boreholes were grouted to the ground surface and a concrete or blacktop patched was then placed over the borehole. All investigation derived wastes (IDW) including drilling cuttings and fluids were containerized in a neat and orderly fashion and transported to a staging area for later disposal. Analytical data from the drilling cuttings indicated that the soils were uncontaminated drilling cuttings and were disposed of accordingly. All drilling and hydropunch sampling equipment that came into contact with potentially contaminated soil, groundwater, or dust was decontaminated before being removed from the site and between each sample location.

2.4 EXISTING MONITORING WELL SAMPLING

A total of 4 existing monitoring wells (NC-2, NC-2d, N-11843, and NC-17) in the vicinity of the Atlas site were sampled. Based on the SWL and the total depth of the well, the volume of water in the well was calculated. All of the wells were then purged until three well volumes were removed. If a well did not produce sufficient water to allow three well volumes to be purged, it was purged dry. Monitoring well sampling logs can be found in Appendix B.

During the purging process, turbidity, temperature, pH, and conductance were measured at routine intervals to track the purging process and provide sampling chemistries. All samples were collected from the top of the water column using new, dedicated Teflon bailers and rope. Sample chemistries, including temperature, turbidity, pH, and specific conductance,

were taken when sufficient volume of water was available. Hydropunch groundwater samples were then transferred to laboratory-cleaned glass jars and labeled with the appropriate sample location, interval, date, time, sampler, and required analyses. Each of these groundwater samples from the existing monitoring wells were shipped by overnight carrier to the NYSDEC contract laboratory for analysis. Specific information on the analytical methods and protocols are found in Section 2.5.

2.5 SOIL AND GROUNDWATER ANALYTICAL PROCEDURES

Each of the soil and groundwater samples were submitted to a New York State Department of Health (NYSDOH) certified laboratory for the analysis of TCL VOCs using CLP Methods 95-1. A subset of the samples were also analyzed for TAL metals using. A summary of the analysis which were completed and the analytical procedures are found on Table 2-1. For QA/QC purposes, each sample shipment containing groundwater samples included a trip blank. During the soil and groundwater sampling dedicated sampling equipment was used which eliminated the need to collect equipment blanks.

			•••
•			_
			_
			_
			_
			-
			-
			-
			_
			-
			-
			-
			_
			-
			_
			_
			-
			_
			-

CHAPTER 3

SOIL AND GROUNDWATER ANALYTICAL RESULTS

3.1 SOIL PROBE RESULTS

Sampling data from the LMS contract laboratory was received directly by LMS. The remaining data packages were supplied to LMS through the NYSDEC once the data was received and reviewed by the NYSDEC project manager. The soil probe results include the analysis of Samples from 8 locations, the results are summarized on Table 3-1.

No target compounds were detected at the quantitation limit in AGSP-01 at each of the ten depths which were sampled and analyzed. The single soil sample at AGSP-02 also did not contain any target compounds. No target compounds were detected at the quantitation limit in AGSP-03 at each of the five depths (5-7 ft, 10-12 ft, 22-24 ft, 30-32 ft, and 40-42 ft) which were sampled and analyzed (Table 3-1). No target compounds were also detected at the quantitation limit in AGSP-04 at each of the three depths (20-22 ft, 30-32 ft, and 40-42 ft) which were sampled and analyzed (Table 3-1). Traces of methylene chloride were found in many of the samples, the presence of methylene chloride is a result of laboratory contamination.

A total of seven soil samples were collected at AGSP-05 the results of the VOC analysis are shown on Table 3-1. No target compounds in excess of the NYSDEC recommended soil cleanup objective were detected in the samples with the exception of acetone at .43 mg/kg in the 20-22 ft sample. In addition to acetone TCE was detected at .042 mg/kg in AGSP-05 (5-7 ft) and at .11 mg/kg in the 20-22 ft sample. AGSP-05 was located adjacent to the former cesspool location and the presence of target compounds in the soil in this area suggest a nearby source area. This is supported by the high concentrations in the groundwater which were found in this area (AGGP-05). On reviewing the data found in this area three additional soil probes through the former cesspool (AGCP-01 to AGCP-03) were added to the investigation to collect additional soil samples for VOC analysis. A single soil sample from AGSP-05 (17 to 19 ft) was collected for SVOC analysis, no SVOC's in excess of the NYSDEC recommended soil cleanup objective were detected (Table 3-1).

Three additional probes (AGCP-01, AGCP-02, and AGCP-03) were completed inside of the test pit which was constructed to located the exact position of the former cesspool. At AGCP-01 soil probe samples were collected at 8-12 ft, 12-16 ft, and 16-20 ft bgs. The analytical data for these soil probe samples did not indicate the presence of any target compounds above the quantitation limit (Table 3-1). At AGCP-02 soil probe samples were also collected at 8-12 ft, 12-16 ft, and 16-

		****		*****	*****	*****	*****		*****	
RECOMMENDED SOIL CLEANUP OBJECTIVE (a)		1.9	0.1	0.2	0.3	0.8	7.0	NA	1,4	1.5
AGSP-01 B60205 (25-27ft)		2	0.001 j	2	2	2	2	2	2	2
AGSP-01 B60204 (20-22ft)		2	2	2	2	2	2	2	2	2
AGSP-01 B60203 (15-17ft)		2	2	2	2	2	2	2	2	2
AGSP-01 B60202 (10-12ft)		2	2	2	2	2	2	2	2	2
AGSP-01 B60201 (5-7ft)		<u>Q</u>	2	2	2	2	2	2	2	2
LMS Sample # NYSDEC Sample Designation	VOLATILE ORGANICS (mg/kg)	Chloromethane	Methylene chloride	Acetone	2-Butanone	1,1,1-Trichloroethane	Trichloroethylene	2-Hexanone	Tetrachloroethylene	Toluene

 ⁽a) - NYSDEC Division Technical and Administrative Guidance Memorandum (TAGM), 1/94.
 j - Estimated concentration; compound present below quantitation limit.
 N/A - Not available.
 ND - Not detected at analytical detection limit.

SOIL PROBE SAMPLING RESULTS

Atlas Graphics

AGSP-01 AGSP-01 AGSP-01 AGSP-02 RECOMMENDED B60206 B60207 B60208 B60209 B60210 SOIL CLEANUP (30-32ft) (35-37ft) (40-42ft) (45-47ft) (10-12ft) OBJECTIVE (4)		1.9	0.1	0.2	0.3	0.8	0.7	N/A	4.1	1.5
AGSP-02 B60210 (10-12ft)		9	2	2	2	2	2	2	2	₽
AGSP-01 B60209 (45-47ft)		Q	2	2	2	2	9	2	2	2
AGSP-01 B60208 (40-42ft)		2	2	2	2	2	2	2	2	2
AGSP-01 B60207 (35-37ft)		2	2	2	2	2	2	2	2	2
AGSP-01 B60206 (30-32ft)		2	2	2	2	2	2	2	2	2
LMS Sample # NYSDEC Sample Designation	VOLATILE ORGANICS (mg/kg)	Chloromethane	Methylene chloride	Acetone	2-Butanone	1,1,1-Trichloroethane	Trichloroethylene	2-Hexanone	Tetrachloroethylene	Toluene

<sup>NYSDEC Division Technical and Administrative Guidance Memorandum (TAGM), 1/94.
Estimated concentration; exceeds GC/MS calibration range.
Estimated concentration; compound present below quantitation limit.
Diluted sample analysis.</sup> **® •** __ ⊟

RECOMMENDED SOIL CLEANUP OBJECTIVE (b)		só.	99	NA	ю	s.	8	5	S
AGSP-04 B60252 (40-32ft)		0.002 j b	2	2	2	2	2	2	9
AGSP-04 B60251 (30-32ff)		S	2	Q	Q	Q	Q	2	Q
AGSP-04 B60250 (20-22ff)		<u>Q</u>	2	Q	2	Q	Q	2	9
AGSP-03 B60236 (40-42ft)		2	2	2	2	2	2	2	2
AGSP-03 B60234 (30-32ft)		Q	Q	2	2	2	Q	2	<u>N</u>
AGSP-03 B60233 (22-24ff)		2	2	2	2	2	Q	Q	<u>N</u>
AGSP-03 B60232 (10-12ft)		2	2	2	2	2	2	2	<u>N</u>
AGSP-03 B60231 (5-7ft)		0.002 j b	2	2	2	2	2	2	<u>Q</u>
LMS Sample # NYSDEC Sample Designation DEPTH	VOLATILE ORGANICS(mg/kg)	Methylene chloride	Acetone	2-Butanone	1,1,1-Trichloroethane	Trichloroethylene	2-Hexanone	Tetrachloroethylene	Toluene

 ⁽b) - NYSDEC Division Technical and Administrative Guidance Memorandum (TAGM), 1/94.
 b - Found in associated blanks.
 j - Estimated concentration; compound present below quantitation limit.
 N/A - Not available.
 ND - Not detected at analytical detection limit.

RECOMMENDED SOIL CLEANUP OBJECTIVE (b)		ĸ	8	NA	\$	90	22	9	5	
AGSP-06 B60218 (35-37 ft)		0.002 j b	0.009 j b	Q	Q	Q	Q	Q	2	
AGSP-05 AGSP-05 B60216 B60217 (25-27 ft) (30-32 ft)		Q	0.003 j	2	2	Q	Q	Q	2	
AGSP-05 B60216 (25-27 ft)		Q	0.008 j	Q	2	2	2	Q	ᄝ	
AGSP-05 B60215 (20-22 ft)		Q	.430 d	0.008 j	0.002	0.110	0.002 j	Q	0.006 j	
AGSP-05 B60214 (17-19 ft)		•	•	•	•	•	•	•	•	
AGSP-05 B60213 (15-17 ft)		Q	0.005 j	Q	2	0.002 j	2	2	2	
AGSP-05 B60211 (10-12 ft)		Q	Q	Q	2	Q	Q	Q	2	
AGSP-05 B60211 (5-7 ft)		0.001	Q	Q	0.001	.042 d	Q	0.002	2	
LMS Sample # NYSDEC Sample Designation DEPTH	VOLATILE ORGANICS(mg/kg)	Methylene chloride	Acetone	2-Butanone	1,1,1-Trichloroethane	Trichloroethylene	2-Hexanone	Tetrachloroethylene	Toluene	

 ⁽b) - NYSDEC Division Technical and Administrative Guidance Memorandum (TAGM), 1/94.
 + Not analyzed.
 b - Found in associated blanks.
 d - Concentration recovered from a 5:1 diluted sample.
 j - Estimated concentration; compound present below quantitation limit.
 N/A - Not available.
 Not detected at analytical detection limit.

TABLE 3-1(PAGE 5 OF 7)

LMS Sample # NYSDEC Sample Designation	B60240	TOTAL AGSP-05 B60219 (35-37ft)		RECOMMENDED SOIL CLEANUP OBJECTIVE (b)
TAL METALS (mg	/kg)			
Aluminum	1,340	394	33,000	SB
Antimony	ND N	ND	0.6 - 10 (n)	SB
Arsenic	ND N	0.95 B	3.0 - 12.0 æ	7.5 or SB
Barium	5.8 B	1.5 B	15 - 600	300 ar SB
Beryllium	0.11 B	0.17 B	0 - 1.75	0.16 or SB
Cadmium	ND N	0.12 B	0.1 - 1.0	1 or SB
Calcium	169 B	73.5 B	130 - 35,000 æ	SB
Chromium	17.6 N R	7.3 R	1.5 - 40.0 æ	10 or SB
Cobalt	0.97 B	0.33 B	2.5 - 60.0 æ	30 or SB
Copper	3.1 B	1.6 B	1.0 - 50.0	25 or SB
Iron	3,590 R	1,800 R	2,000 - 550,000	2,000 or SB
Lead	1.3	1.5	4.0 - 61 or 200 - 500*	SB*
Magnesium	349 B	48.8 B	100 - 5,000	SB
Manganese	36.1	3.5	50 - 5,000	SB
Mercury	ND N	0.06 B	0.001 - 0.2	0.1
Nickel	2.7 B	3.9 B	0.5 - 25	13 or SB
Potassium	230 B	40.7 B	8,500 - 43,000 æ	SB
Selenium	ND N	ND	0.1 - 3.9	2 or SB
Silver	ND N	1.3 B	0.1 - 5.0 (n)	SB
Sodium	38.3 B	30.5 B	6,000 - 8,000	SB
Thallium	0.31 B	0.49 B	0.1 - 0.8 (q)	SB
Vanadium	4.6 B	2.1 B	1.0 - 300	150 or SB
Zinc	ND N	3.8 B	9.0 - 50	20 or SB
Cyanide	ND	ND	N/A	**

- Background levels for lead range from 4 61 ppm in undeveloped, rural areas to 200 500 ppm in metropolitan or suburban areas or near highways.
 Some forms of Cyanide are complex and stable while other forms are pH dependent and hence are very unstable. Site-specific form(s) of Cyanide should be taken into consideration when establishing soil cleanup objectives.
- New York State background concentration.
- NYSDEC Division Technical and Administrative Guidance Memorandum (TAGM), 1/94.
- (b) (n)
- Dragun, J., The Soil Chemistry of Hazardous Materials.
 Bowan, H.J., Environmental Chemistry of the Elements.
- Value is less than the contract-required detection limit but greater than the instrument detection limit.
 - Spiked sample recovery is not within control limits.
 - Duplicate analysis not within control limits.

- N/A Not available.
- SB Site background
- ND Not detected at analytical detection limit.

TABLE 3-1(PAGE 6 OF 7)

LMS Sample # NYSDEC Sample Designation	B60214	RECOMMENDED SOIL CLEANUP OBJECTIVE (b)
SEMIVOLATILE ORGANICS (mg/kg)	
Phenanthrene	0.055 j	50
Fluoranthene	0.110 j	50
Pyrene	0.110 j	50
Benzo(a)anthracene	0.058 j	0.002
Chrysene	0.099 j	0.002
bis(2-Ethylhexyl)phthalate	0.400	4
Benzo(b)fluoranthene	0.064 j	0.002
Benzo(k)fluoranthene	0.069 j	0.002
Benzo(a)pyrene	0.055 j	0.002
Indeno(1,2,3-c,d)pyrene	0.049 j	0.002
Benzo(g,h,i)perylene	0.069 j	N/A

 ⁽b) - NYSDEC Division Technical and Administrative Guidance Memorandum (TAGM), 1/94.
 j - Estimated concentration; compound present below quantitation limit.
 N/ - Not available.

RECOMMENDED 2 SOIL CLEANUP 0BJECTIVE (b)	- 28.58 <u>₹</u> 28.52
AGCP-02 (18-20ft)	0.002 j b ND ND N
AGCP-02 , (12-16ft)	0.002 j b ND ND 0.015 0.002 j ND 0.004 j ND
AGCP-02 (8-12ft)	0.002 j b ND ND 0.930 e ND 0.016 ND 0.160 0.008 j
AGCP-01 (16-20ft)	0. 0.0000 0.000 00
AGCP-01 /	0.002 je 0.002 je 0.000
AGCP-01 /	0.00.00 0.00 0.00 0.00 0.00 0.00 0.00
PARAMETER	VOLATILE ORGANICS (mg/kg) Methylene chloride Acetone 1,1,1-Trichloroethane Trichloroethylene 2-Hexanone Tetrachloroethylene 1,1,2,2-Tetrachloroethane Toluene Ethylbenzene Xylene (total)

RECOMMENDED SOIL CLEANUP OBJECTIVE (b)	255 255 255 255 255 255 255 255 255 255
GCP-02 (8-12ft)D	0.024 j b ND ND 2.300 ND 0.068 j ND 0.530 ND
AGCP-03 (16-20ft)	0.002 j b ND ND 0.065 0.065 0.016 ND ND ND ND ND
AGCP-03 AGCP-03 DL (12-16ft) (12-16ft)	55585 55585 55585 5558 5558 5558 5558
AGCP-03 / (12-16ft)	0.003 j b ND 0.006 j 1.100 e ND 0.008 j ND 0.540 e 0.005 j
AGCP-03 (8-12ft)	0.002 j b 0.002 j b 0.006 j
AGCP-03 ,	0.002 j b ND ND j 0.009 j 0.005 j ND ND ND ND 0.003 j
PARAMETER	VOLATILE ORGANICS (mg/kg) Methylene chloride Acetone 1,1,1-Trichloroethane Trichloroethylene 2-Hexanone Tetrachloroethylene 1,1,2,2-Tetrachloroethane Toluene Ethylbenzene Xylene (total)

 ⁽b) - NYSDEC Division Technical and Administrative Guidance Memorandum (TAGM), 1/94.
 b - Found in associated blanks.
 e - Estimated concentration; exceeds GC/MS calibration range.
 j - Estimated concentration; compound present below quantitation limit.
 N/ - Not available.
 N - Not detected at analytical detection limit.

20 ft bgs. The analytical data for these soil probe samples did not indicate the presence of any target compounds in the 16-20 ft sample at AGCP-02 (Table 3-1). The concentration of TCE exceeded the recommended cleanup objective in the 8-12 ft soil probe sample with a concentration of 2.3 mg/kg. The recommended cleanup objective for TCE is .7 mg/kg. Only trace levels of TCE (.015 mg/kg) were found in the 12-16 ft soil probe sample. At AGCP-03 soil probe samples were collected at 4-8 ft, 8-12 ft, and 12-16 ft bgs. The analytical data for these soil probe samples did not indicate the presence of any target compounds above the quantitation limit in the 4-8 ft sample and the 8-12 ft sample (Table 3-1). The concentration of TCE exceeded the recommended cleanup objective in the 12-16 ft soil probe sample with a concentration of 7.6 mg/kg. Trace levels of TCE (.009 mg/kg), PCE (.005 mg/kg), ethylbenzene (.003 mg/kg), and xylene (.006 mg/kg) were also found in the 4-8 ft soil probe sample.

Soil samples for TAL metals analysis were collected at two locations (AGSP-03 [35-37 ft] and AGSP-03 [10-12 ft]) (Table 3-1). No metals were detected at concentrations which exceed the recommended soil cleanup objective or the anticipated site background concentrations in an industrialized area. All of the measured soil concentrations were within the eastern background soil concentrations.

3.2 GROUNDWATER PROBE RESULTS

A total of groundwater probe samples were collected from AGGW-01, AGGW-03, and AGGW-05, the results are summarized on Table 3-2. Groundwater probe samples were not collected at AGGW-02 and AGGW-04 due to refusals above the watertable. Several attempts to reach the other groundwater sampling depths at these locations also resulted in shallow refusal and after discussions with the NYSDEC project manager these locations were abandoned.

The results of AGGW-01 indicate concentrations of VOCs in excess of NYSDEC class GA groundwater standards at the shallow depth (56-60 ft). A groundwater probe sample was not taken at the intermediate depth (66-70 ft) since this zone appeared dry. Target compounds above the quantitation limit were not detected in the deep sample (76-80 ft). The primary target compound which was detected in the 56-60 ft sample was PCE ($10\mu g/l$). Other compounds found above the Class GA groundwater standards included acetone ($150 \mu g/l$), and benzene ($2 \mu g/l$). Trace levels of 1,2-DCE ($10 \mu g/l$), 2-butone ($40 \mu g/l$), TCE ($4 \mu g/l$), toluene ($3 \mu g/l$), xylene ($2 \mu g/l$), 4-methyl-2-pentanone ($9 \mu g/l$), 2-hexanone ($5 \mu g/l$), and styrene ($1 \mu g/l$).

The results of AGGW-03 indicate concentrations of VOCs in excess of NYSDEC class GA groundwater standards at all three of the depths sampled (56-60, 66-70 ft and 76-80 ft). The primary target compound which was detected is TCE and concentrations are highest at the shallow

TABLE 3-2 (PAGE 1 OF 3)

GROUNDWATER PROBE SAMPLING RESULTS Atlas Graphics

LMS Sample # NYSDEC Sample Designation	AGGW-01 B60230 (56-60ff)	AGGW-01 B60235 (76-80ff)	AGGW-03 B60239 (56-60f)	AGGW-03 B60238 (66-70ft)	AGGW-03 B60237 (76-80ff)	TRIP	NYSDEC CLASS GA STANDARDS (a)
VOLATILE ORGANICS (µg/I)							
Methylene chloride	Q	2	2	2	2	dį t	S
Acetone	150	9	16	2	2	2	50
1,1-Dichloroethylene	Q	2	2 j	2	2	2	5
1,1-Dichloroethane	2	2	2	2	2	2	5
1,2-Dichloroethylene (total)	10	2	6	3 j	2	2	N/A
1,2-Dichloroethane	2	2	8	2	2	2	9.6
2-Butanone	40	2	2	2	2	2	NA
1,1,1-Trichloroethane	2	Q	47	Ĺ	2	2	20
Trichloroethylene	4 j	2	310 e	16	2	2	S
1,1,2-Trichloroethane	2	2	3 j	2	2	2	ĸ)
Tetrachloroethylene	10	<u>Q</u>	30	6 j	4	2	S
Toluene	3 j	2	2	2	3 j	2	so.
Ethylbenzene	Q	2	Q	2	2	2	S
Xylene (total)	7	2	Q	2	2	2	NA
Benzene	2 j	2	Q	2	2	2	0.7
4-Methyl-2-pentanone	9 j	2	Q	2	2	2	NA
2-Hexanone	5 j	2	Q	2	2	2	50
Styrene	1	2	2	2	2	2	5

<sup>NYSDEC Division Division of Water Technical and Operational Guidance Series (1.1.1) June 1998
Not analyzed.
Concentration recovered from diluted sample.
Estimated concentration; exceeds GC/MS calibration range.
Estimated concentration; compound present below quantitation limit.
Not available.
Not detected at analytical detection limit.</sup>

[®] ◆

Ž Š Q

GROUNDWATER PROBE SAMPLING RESULTS Atlas Graphics

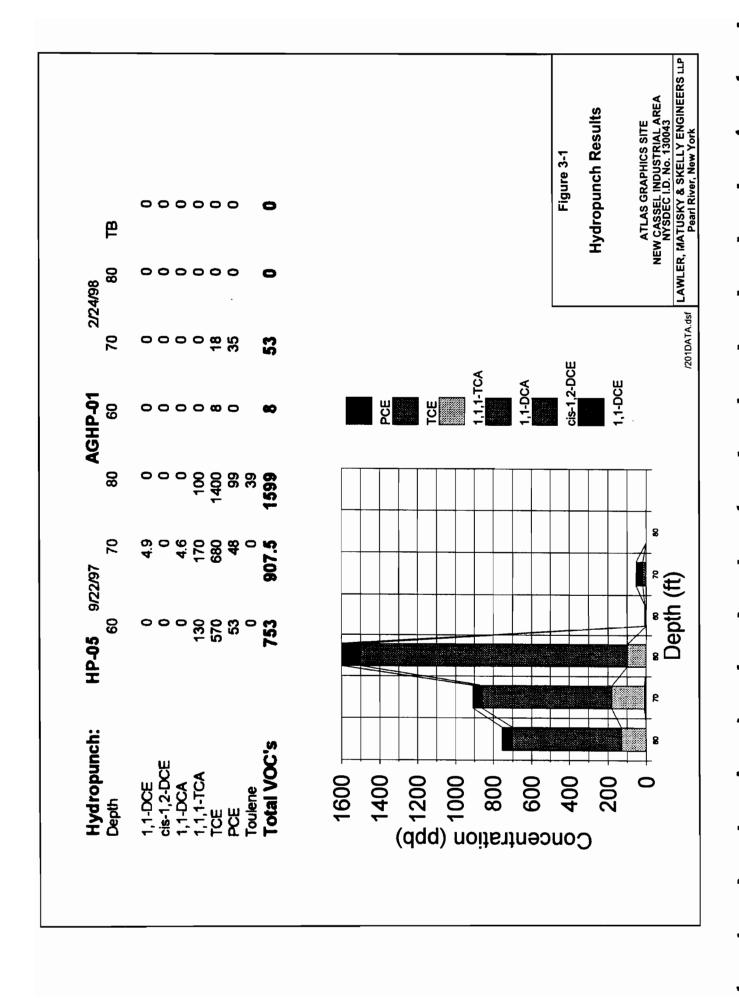
NTOUCK Sample Designation	(76-80 ft)	860221 (66-70 ft) [DL 5:1]	B60222 (56-60 ft) [DL 5:1]	CLASS GA STANDARDS (a)
VOLATILE ORGANICS (μg/l)	•		,	
Methylene chloride	Ė.	<u>;</u>	2	S
Acetone	440 e	130	92	20
,1-Dichloroethene	†	2	2 j	9
,1-Dichloroethane	2	2	5 j	40
,2-Dichloroethylene (total)	2	4 j	13	NA
,2-Dichloroethane	2	2	3.	8
2-Butanone	9 j	2	2	NA
I,1,1-Trichloroethane	82	17	160	w
Frichloroethylene	3900 d	250 d	710 d	8
Benzene	2	2	욷	7.0
4-Methyl-2-pentanone	2	2	2	N/A
2-Hexanone	2	2	2	20
Tetrachloroethylene	26	17	15	S
Foluene	320 d	37	10	S.
Ethylbenzene	÷	2	2	5
Styrene	Q	2	2	5
Xylene (total)	4	2	2	N/A

 ⁽a) - NYSDEC Division Division of Water Technical and Operational Guidance Series (1.1.1) June 1998
 d - Concentration recovered from diluted sample.
 e - Estimated concentration; exceeds GC/MS calibration range.
 j - Estimated concentration; compound present below quantitation limit.
 N/A - Not available.
 ND - Not detected at analytical detection limit.

GROUNDWATER PROBE SAMPLING RESULTS Atlas Graphics

	TOTAL AGSP-05 B60223 (56-60ft)	DISSOLVED AGSP-05 B223AX (56-60ff)	TOTAL AGSP-05 B60224 (66-70ft)	DISSOLVED AGSP-05 B224AX (66-70ft)	NYSDEC CLASS GA STANDARDS
TAL METALS	(µg/l)				
Aluminum	2111000	ND	68200	ND	NS
Antimony	ND N	ND	6.0 B N	ND	3.0
Arsenic	1500	ND	222	ND	25
Barium	852	28.7 B	356	41.4 B	1,000
Beryllium	18.9	0.20 B	4.8 B	0.27 B	3.0 GV
Cadmium	ND	ND	ND	0.63 B	5.0
Calcium	44700 B	17400	48900	43900	NS
Chromium	4710 N	ND	612 N	ND	50
Cobalt	73.1	6.0 B	33.7 B	7.7 B	NS
Copper	1490	1.5 B E	273	1.1 B E	200
Iron	2550000	4550	313000	10700	300 (m)
Lead	438 E	ND	75.5 E	ND	25
Magnesium	50400 B	17000	22900	19000	35,000 GV
Manganese	6370	407	1550	402	300 (m)
Mercury	3.4	ND	0.52	ND	0.7
Nickel	447	26.6 B	161	30.6 B	100
Potassium	89200	66100	19700	12300	NS
Selenium	34.4 B	ND	9.4 B	ND	10
Silver	2740	ND	281	ND	50
Sodium	44000	34000	33100	31400	20,000
Thallium	105 B	3.3 B	13.6 B	4.0 B	0.5 GV
Vanadium	1730	ND	304	1.7 B	NS
Zinc	15900	557	4450	1250	2,000 GV
Cyanide	N/A	N/A	N/A	N/A	200

 ⁽m) - Iron and manganese not to exceed 500 μg/l.
 B Value is less than the contract-required detection limit but greater than the instrument detection limit.
 N - Spiked sample recovery is not within control limits.
 R - Duplicate analysis not within control limits.
 N/A - Not available.
 GV - Guidance value.
 ND - Not detected at analytical detection limit.


depth (76-80 ft) (Table 3-2). Target compounds found at the shallow depth (56-60 ft) in excess of the Class GA groundwater standards include 1,1-DCE (2 μg/l), 1,1-DCA (8 μg/l), 1,1,1-TCA (47 μg/l), TCE (310 μg/l), and PCE (30 μg/l). Other compounds found at the shallow depth include acetone (16 μg/l) and 1,1,2-TCA (3 μg/l). Target compounds found at the intermediate depth (66-70 ft) in excess of the Class GA groundwater standards include TCE (16 μg/l), and PCE (6 μg/l). Other compounds found at the intermediate depth include 1,1,1-TCA (1 μg/l), and 1,2-DCE (3 μg/l). The only target compound found at the deepest depth (76-80 ft) in excess of the Class GA groundwater standards was PCE (40 μg/l). Toluene (3 μg/l) was also detected at the deepest depth. The only trend noted in the data from the AGGW-03 is a decreasing concentration of TCE with depth. The presence of high concentrations of TCE at the shallow depth suggest an on-site source of TCE. However, similar concentrations of TCE were noted in the upgradient sampling point (NC-17).

The results of AGGW-05 indicate concentrations of VOCs in excess of NYSDEC class GA groundwater standards at all three of the depths sampled (56-60, 66-70 ft and 76-80 ft). The primary target compound which was detected was TCE and concentrations are highest at the deepest depth (76-80 ft) (Table 3-2). Total VOCs at the two shallow depths (56-60 ft and 66-70 ft) were $1010 \mu g/l$ and $756 \mu g/l$, respectively. At the deepest depth (76-80 ft) total VOCs were $4819 \mu g/l$ including $3900 \mu g/l$ of TCE. This geoprobe was located on the Atlas Graphics site just north of the former cesspool location. The presence of high levels of TCE in the vicinity of the former cesspool suggests that the past disposal of TCE into the cesspool has affected the groundwater quality in this area.

3.3 HYDROPUNCH GROUNDWATER SAMPLING RESULTS

The results of AGHP-01 indicate concentrations of VOCs in excess of NYSDEC class GA groundwater standards at 60, and 70 ft below the ground surface (Figure 3-1). No target compounds were detected at the deepest sampling depth (80 ft). At the 60 ft depth 8 μ g/l PCE was detected, total VOC's at the 70 ft depth were 53 μ g/l including 18 μ g/l TCE and 35 μ g/l PCE. This hydropunch was located along the north side of Main Street just south (downgradient) of the former cesspool on the Atlas site. The source of this groundwater contamination cannot be entirely attributed to the Atlas site since the upgradient groundwater contaminant concentrations are similar to those found in AGHP-01.

The results of HP-05 indicate concentrations of VOCs in excess of NYSDEC class GA groundwater standards at 60, 70, and 80 ft below the ground surface (Figure 3-1). The primary target compounds are 1,1-DCE, 1,1- DCA, 1,1,1-TCA, TCE, PCE and Toulene. The concentrations reach a peak concentration at 80 ft (Figure 3-1). The trend of the concentrations

with depth below 80 ft is not known as sampling was stopped at 80 ft. Total VOCs peaked at 80 ft where 1599 µg/l was detected including 100 µg/l 1,1,1-TCA, 1400 µg/l TCE, 99 µg/l PCE, and 39 µg/l Toulene. Total VOCs at 70 ft where 907.5 µg/l including 4.9 µg/l 1,1-DCE, 4.6 µg/l 1,1-DCA, 170 µg/l 1,1,1 TCA, 680 µg/l TCE, and 48 µg/l PCE. Total VOCs at 60 ft where 753 µg/l including 130 µg/l 1,1,1 TCA, 570 µg/l TCE, and 53 µg/l PCE. This hydropunch was located along the west side of Swalm Avenue (Figure 3-1). This location is in a downgradient position of the former cesspool at the Atlas site. However, this sampling location is located immediately west of the IMC Magnetics site. Investigations at this site have shown that this site is heavily contaminated with target compounds as a result of past activities at this site. It is believed that most of the contamination detected in the HP-05 groundwater samples can be attributed to the IMC Magnetics site.

3.4 MONITORING WELL SAMPLING RESULTS

A total of four existing monitoring wells were sampled during the IIWA field sampling. The wells included NC-17, NC-2, NC-2D, and NC-11843. The analytical results for these groundwater samples are found in Table 3-3

The results from the NC-2 and NC-2D well pair showed concentrations of VOCs in excess of NYSDEC class GA groundwater standards in both wells (Table 3-3). NC-2 is the shallow watertable well completed to a total depth of approximately 122 ft. Target compounds detected in excess of NYSDEC class GA groundwater standards in this well include 1,2-DCE (24 μ g/l), TCE (290 μ g/l), and PCE (510 μ g/l). NC-2D is the deeper well in this well pair with a total depth of approximately 122 ft. Target compounds detected in excess of NYSDEC class GA groundwater standards in this well include 1,2-DCA (7 μ g/l), 1,1,1-TCA (29 μ g/l), TCE (81 μ g/l), and PCE (160 μ g/l). The contamination in this area appears to be associated with the plume of TCE/PCE contamination which appears to originate from the Former IMC Magnetics site which is located just east of the NC-2 well pair. The maximum downgradient extent of this contamination is unknown.

The results from N-11843 also showed concentrations of VOCs in excess of NYSDEC class GA groundwater standards (Table 3-3). Target compounds detected in excess of NYSDEC class GA groundwater standards in this well include 1,2-DCE (7 μ g/l), TCE (19 μ g/l), and PCE (20 μ g/l). This well is located approximately 22 ft from the center line of Swalm Street in the northwest corner of the Atlas property. It is in a upgradient position of the Atlas cesspool and the NC-2 well pair and is completed to a total depth of 59 ft. NC-17 has a total depth of approximately 64 ft. TCE (81 μ g/l) was the only target compound detected in excess of NYSDEC class GA groundwater standards (Table 3-3). Trace levels of 1,2-DCE, and PCE were also detected in NC-17.

MONITORING WELL SAMPLING RESULTS Atlas Graphics

VOLATILE ORGANICS (µy/l) ND ND ND 1 jb 5 Methylene chloride ND ND 10 j ND 50 Acetone ND ND ND 10 j ND 50 1,1-Dichloroethane ND 24 7 j 3 j ND NA 1,2-Dichloroethylene (total) ND 24 7 j 3 j ND NA 1,2-Dichloroethylene (total) ND ND ND ND ND NA 1,2-Dichloroethylene (total) ND ND ND ND ND NA 1,1-1-Trichloroethylene 81 290 d 19 5 j ND NA 2-Hexanone ND ND ND ND ND ND NA 2-Hexanone ND ND ND ND ND ND SD 2-Hexanone 160 510 d 20 41 ND SD 2-Hexanone ND ND ND	LMS Sample # NYSDEC Sample Designation	NC-2D B60226	NG-2 B60227	N-11843 B60228	NC-17 B60229	TRIP	NYSDEC CLASS GA STANDARDS(a)
ND ND ND 10 j ND 1 jb ND ND 10 j ND	ATILE ORGANICS (µg/I)						
ethene ND ND ND 10 j ND ethane ND 2 j ND ND ND ethane ND 24 7 j 3 j ND ethane 7 j ND ND ND ethane ND ND ND ND schane ND ND ND ND srehane 29 100 3 j ND ND ylene ND ND ND ND ND ylene ND ND ND ND ND sylene ND ND ND ND ND sylene ND ND ND ND ND sylene ND ND ND ND ND sthylene ND ND ND ND ND sthylene ND ND ND ND ND sthylene ND ND ND </td <td>hylene chloride</td> <td><u>Q</u></td> <td>2</td> <td>9</td> <td>2</td> <td>1 j b</td> <td>5</td>	hylene chloride	<u>Q</u>	2	9	2	1 j b	5
ethene ND ND ND ND ethane ND 2j ND ND ND ethylene (total) ND 24 7 j 3 j ND ethane 7 j ND ND ND ND orethane 29 100 3 j ND ND ylene 81 290 d 19 5 j ND ylene ND ND ND ND sylene ND ND ND ND sylene ND ND ND ND sylene ND ND ND ND sthylene ND ND<	lone	2	2	2	10 j	9	22
ethane (total) ND 24 7 j 3 j ND ND ethylene (total) ND 24 7 j 3 j ND ethylene (total) ND 24 7 j 3 j ND ND ethylene (total) ND	Dichloroethene	2	2	Q	2	2	'n
ethylene (total) ND 24 7 j 3 j ND ethane 7 j ND ND ND ND proethane 29 100 3 j ND ND ylene 81 290 d 19 5 j ND ylene ND ND ND ND sylene 81 290 d 19 5 j ND ND ND ND ND ND ND sylene 81 290 d 19 5 j ND ND ND ND ND ND ND sentanone ND ND ND ND ND sthylene 160 510 d 20 41 ND sthylene ND ND ND ND ne ND ND ND ND ne ND ND ND ND ne ND ND ND <t< td=""><td>Dichloroethane</td><td>Q</td><td>2 j</td><td>2</td><td>2</td><td>2</td><td>w</td></t<>	Dichloroethane	Q	2 j	2	2	2	w
ethane 7 j ND ND <t< td=""><td>Dichloroethylene (total)</td><td>2</td><td>54</td><td>7 j</td><td>3 j</td><td>2</td><td>NA</td></t<>	Dichloroethylene (total)	2	5 4	7 j	3 j	2	NA
ND ND ND ND ND Sroethane 29 100 3 j ND ND ND Sylene 81 290 d 19 5 j ND	Dichloroethane	7 j	2	2	2	2	6.0
oethane 29 100 3 j ND ND ene 81 290 d 19 5 j ND ND ND ND ND ND Intanone ND ND ND ND ND ND ND ND ND Nylene 160 510 d 20 41 ND Nylene 3 j 2 j 2 j 3 j ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND	ıtanone	2	2	2	2	2	NA
ene 81 290 d 19 5 j ND ND ND ND ND ND Intanone ND Nylene 160 510 d 20 41 ND	I-Trichloroethane	29	100	3 j	2	2	s
ND	loroethylene	81	290 d	19	5 j	2	2
ntanone ND ND ND ND ND ND ND ND ND Nylene 160 510 d 20 41 ND 3 j 2 j 2 j 3 j ND ND ND ND ND ND	zene	2	2	<u>Q</u>	2	2	0.7
ND ND ND ND ND ND ND ND NJ NJ ND NJ ND	ethyl-2-pentanone	2	2	Q	2	2	NA
hylene 160 510 d 20 41 ND 3 j 2 j 2 j 3 j ND	exanone	2	2	2	2	2	50
3 j 2 j 3 j ND	achloroethylene	160	510 d	20	4	2	'n
	ene	3 j	2 j	2 j	3 j	9	w
ON O	lbenzene	2	2	<u>Q</u>	2	2	10
ON ON ON ON ON (ene	2	2	Q	2	2	s
	ne (total)	Q	2	2	2	2	NA

 ⁽a) - NYSDEC Division Division of Water Technical and Operational Guidance Series (1.1.1) June 1998
 d - Concentration recovered from diluted 5:1 sample.
 e - Estimated concentration; exceeds GC/MS calibration range.
 j - Estimated concentration; compound present below quantitation limit.
 N/A - Not available.
 NO - Not detected at analytical detection limit.

CHAPTER 4

CONCLUSIONS

This chapter presents the conclusions of the IIWA sampling and analysis at the Atlas Graphics Site, (NYSDEC Site No. 1-30-143B on the New York State Registry of Inactive Hazardous Waste Sites) is located at 567 Main Street in the New Cassel Industrial Area (NCIA), Town of North Hempstead, Nassau County, New York. Several of the soil samples collected during this investigation confirmed that hazardous wastes were disposed of on the site or are present on the site. The source area of this contamination appears to be isolated to the former cesspool location off the south west corner of the building.

The contamination appears to be the result of past disposal practices at the site. It is believed that wastes associated with the on-site graphics facility were disposed of in the on-site cesspool sometime between 1977 and 1980. Chemical usage records indicate that Atlas Graphics used 312 gallons of TCE each year for degreasing purposes. NCDOH indicated that the cesspool was heavily contaminated with TCE. In 1978 a sample collected by NCDOH showed 4,500 µg/l TCE and 100 µg/l of 1,1,1-TCA, an additional sample collected in 1980 contained 318,760 µg/l of TCE. The industrial discharges to the cesspool resulted in a SPDES violation which was corrected by equipment changes at the facility. The Atlas Graphics facility was eventually connected to the county sewer system in November 1980. Records pertaining to the cleaning and abandonment of the cesspool when the facility was connected to the county sewer were not located. It is not know if the cesspool was cleaned and removed or if any hazardous wastes were removed from the site at that time.

The groundwater probe, hydropunch groundwater samples, and the monitoring well groundwater samples were analyzed for the site to determine upgradient and downgradient contaminant concentrations. The upgradient groundwater sampling points included NC-17, AGGW-01, and NC-11843. The noted concentrations in the three upgradient points are significantly less than the downgradient groundwater sampling points (AGGW-03, AGGW-05, HP-01, HP-05, and NC-2 well cluster). The AGGW-05 was the closest groundwater sampling point to the former cesspool location which received the TCE contaminated wastewater. This sampling point showed the highest concentrations measured during this investigation. At AGGW-05 the concentrations of TCE were 710 µg/l in the 56-60 ft sample, 550 µg/l in the 66-70 ft sample, and 3900 µg/l in the 76-80 ft sample. The concentrations appear to be increasing with depth and the concentrations below 80 feet are not known as deeper sampling was not conducted. The vertical distribution of TCE suggests that the main body of contamination has migrated downward from the watertable.

The overall nature and extent of the groundwater contamination associated with the Atlas site is difficult to determine since the Atlas site is directly upgradient of the Former IMC Magnetics site located south of the Atlas site on Main Street. Past investigations at this facility indicate that the soils and groundwaters at this site were heavily contaminated with similar contaminants as those used at the Atlas site. It is likely that the large contaminant concentrations found in HP-05, NC-2 and NC-2D are the result of past disposal practices at IMC Magnetics.

APPENDIX A

Probe Boring Logs and Field Notes

	•	

1

A. Carrier

J

		<u>;</u>	SUBS	SURI	FACE	EXPLORATION BORING LOG	BORING ID: AG-1
				Pr	oject	: Atlas Graphics IIWA	Page 1 of 1
Client:	NYSD	EC				LMS Job No.: 850-201	
			Cassel,	, NY		LMS Disk No.: HS11248	
1						Date Begin/End: 1/21/97	
			nvironm			Total Depth: 47	
			push s			Depth to Water:	
Geolog	jist: Pe	erry Yo	ung			NYSDEC Site No.: 1-30-043B	
						Geologic Description	
(FT)	æ				&	and = 35 - 50% f = fine	
프	SAMPLER	RECOVERY	P I D	F I D	호	some = 20 - 35% m = medium	
DEPTH	SA	<u></u>	-	۱ ۳	LITHOLOGY	little = 10 - 20% c = coarse	Remarks
					L	trace = 0 - 10%	770
2-						•	
4-			1	1			
				8	0: 0:		
6-	LB	1.6		10	0 0 0 0	5-7 Orange medium and coarse quartz sand.	CLP VOA (5-7)
8-				5			1
•							
10	LB	1.8		! !	0 0	10-12 Brown-orange medium and coarse quartz sand, loose.	CLP VOA (10-12)
12-		1.0		1 2	0 0		CLP VUA (10-12)
				1			
14-			ŀ	7			
16-	LB	1.8		7		15-17 Tan medium quartz sand, little to some coarse sand, loose.	CLP VOA (15-17)
l t				5	[1
18-							
20-				3		CO CO To and the control of the cont	
22-	LB	1.4		3.5		20-22 Tan medium quartz sand, little to some coarse sand, loose.	CLP VOA (20-22)
"Ţ							
24-							
26-	LB	1.5		5	0 0	25-27 Tan medium and coarse quartz sand, loose.	CLP VOA (25-27)
["]		1.5		4	0 0		CLF VOA (25-27)
28-							
30				2			
	LB	1.8		5	:::::	30-32 Tan-brown medium quartz sand.	CLP VOA (30-32)
32				4			
34-							
l +				3		35-37 Tan medium quartz sand.	0.0.00
36-	LB '	1.7		0			CLP VOA (35-37)
38-				'			
40	LB	2.0		2		40-42 Tan medium quartz sand, little fine sand.	CLP VOA (40-42)
42-		2.0		2			
44-				1			
46-	LB	2.0		i	::::: [™]	45-47 Tan medium quartz sand, little fine sand.	CLP VOA (45-47)
, <u>†</u>				0		END OF BORING - REFUSAL AT 47 FT.	
48-						END OF BORDRO - NEI CORE AT 41 11.	

			SUBS	SURF	FACE	EXPLORATION BORING LOG	BORING ID: AG-2
						t: Atlas Graphics IIWA	Page 1 of 1
Client:	NYSD	EC				LMS Job No.: 650-201	
			Cassel,	NY		LMS Disk No.: HS11246	
Boring	Locati	on: <u>SE</u>	corner	of bui	lding	Date Begin/End: 1/21/97	
Drilling	co: Z	ebra Ei	nvironm	ental		Total Depth: 12	
Drill M	ethoct	<u>Direct</u>	push so	oil prob	e	Depth to Water:	
Geolog	gist: Pe	rry Yo	ung			NYSDEC Site No.: 1-30-043B	
[]		,				Geologic Description	
(F)	SAMPLER	RECOVERY		٥	LITHOLOGY	and = 35 - 50% f = fine	
TH	\MPI	200	P I D	F 1 0	로	some = $20 - 35\%$ m = medium	
DEPTH (FT)	S/	RE(little = $10 - 20\%$ c = coarse	Remarks
					ļ.	trace = 0 - 10%	
						•	
Ī							
2-							
4-							
-							
6-							
8-							
_ ا							
10-		1		2		10-12 Tan-brown medium and coarse quartz sand, loose.	
					0 0		
	LB	2.0		1	0 0		CLP VOA (10-12)
					0 0		
12-				2	o∵ o∶		
						END OF BORING - REFUSAL AT 12 FT.	
]	1.						
14-	1						
				1			

	•	9	SUBS	SURI	FACE	EXPLORATION BORING LOG	BORING ID: AG-3
				Pr	ojec	t: Atlas Graphics IIWA	Page 1 of 1
	NYSD					LMS Job No.: 650-201	
			Cassel,			LMS Disk No.: HS11246	
						Date Begin/End: 1/23/97	
			nvironm			Total Depth: 42	
		erry Yo	push so	oli prob	<u></u>	Depth to Water:	
Geolog	Jist: L		l			NYSDEC Site No.: 1-30-043B	
E	95	`			5	Geologic Description	
ОЕРТН (FT)	SAMPLER	RECOVERY	0.1	10	LITHOLOGY	and = 35 - 50% f = fine some = 20 - 35% m = medium	
EPT	SAN		۵.	Ŀ	<u>E</u>	little = 10 - 20%	Remarks
					-	trace = 0 - 10%	nema ka
2- 4- 6- 8-	LB	1.7		1 3 1	o∵ o∵ ∴o ∵ o o∵ o∵	5-7 Orange medium and coarse quartz sand.	CLP VOA (5-7)
10-	LB	1.2		4 2	0 0 0 0 0 0 0	10-12 Brown-orange medium and coarse quartz sand.	CLP VOA (10-12)
18- 18- 20- 22- 22- 24- 26-	LB	0.0		1 1 5	o o o o o o o o o o o o o o o o o o o	20-22 No recovery. 22-24 Tan medium and coarse quartz sand.	CLP VOA (22-24)
28- 30- 32- 34- 36-	LB	0.8		12		30-32 Brown-red medium quartz sand, trace coarse sand.	CLP VOA (30-32)
38- 40- 42- 44-	LB					40-42 Orange-tan medium quartz sand. END OF BORING - REFUSAL AT 42 FT.	CLP VOA (40-42)

			SUBS	SURI	FACE	EXPLORATION BORING LOG	BORING ID: AG-4	1
				Pr	ojec	t: Atlas Graphics IIWA	Page 1 of 1	•
l	NYSD					LMS Job No.: 850-201		1
						LMS Disk No.: HS11246		١.
					ilding	Date Begin/End: 1/24/97		[
ı			nvironm			Total Depth: 42		
l			push so	oii proc	e	Depth to Water:		١.
Geolog	gist: Pe	119 10	l l			NYSDEC Site No.: 1-30-043B		┨
E	œ	٨			≥	Geologic Description		l
=	PLE)VE	10	10	<u> </u>	and = 35 - 50% f = fine some = 20 - 35% m = medium		
ОЕРТН (FT)	SAMPLER	RECOVERY	٩	L.	LITHOLOGY	little = 10 - 20%	Domeste	
=		Œ			_	trace = 0 - 10%	Remarks	١.
								1
2-						•		1
4-								ŀ
] "]				١,	00.1			l
6-	LB	1.9		0	0 0	5-7 Tan medium and coarse quartz sand, loose.	CLP VOA (5-7)	
8-	LB	1.8		20	0 0	7-9 Tan medium and coarse quartz sand, loose.	CLP metals (7-9)	
				15	. o . d			l
10-				0	0 0 0	10-12 Tan medium and coarse quartz sand, loose.		.
12-	LB	1.6		0	0 0		CLP VOA (10-12)	
-				'				
14-								•
16-								١
18-								
20-				0	00.1			١
١ ا	LB	0.8		1	0 0	20-22 Tan medium and coarse quartz sand, trace pebbles, loose.	CLP VOA (20-22)	
22-								l
24-			ļ					l
26-								•
20-			l.					١
28-								
30-				0				
"	LB	0.9		0		30-32 Tan medium quartz sand, trace coarse sand, loose.	CLP VOA (30-32)	
32-					····			-
34-								
36-								
38-								
								-
40-	LB	1.2		5		40-42 Tan medium quartz sand.	CLP VOA (40-42)	
42-	LB	1.2		6			ULT TUA (40-42)	
						END OF BORING - REFUSAL AT 42 FT.		•
44-								

		S	SUBS	SURI	FACE	EXPLORATION BORING LOG	BORING ID: AG-5
				Pr	oject:	Atlas Graphics IIWA	Page 1 of 1
Client:	NYSD	EC				LMS Job No.: 650-201	
			Cassel,			LMS Disk No.: HS11246	
						Dool Date Begin/End: 1/22/97	
			nvironm			Total Depth: 37	
		erry Yo	push so	oil prob	<u>e</u>	Depth to Water:	
Geolog	JIST: L	117 10	ung	Ι	T	NYSDEC Site No.: 1-30-043B	
FT)	æ	₽			ا ج	Geologic Description and = 35 - 50% f = fine	
ОЕРТН (FT)	SAMPLER	RECOVERY	1 D	10	LITHOLOGY	some = 20 - 35% m = medium	
EP.	SAN		٩	ட	폼	little = 10 - 20%	Remarks
_		<u> </u>			-	trace = 0 - 10%	11CMCI K3
2- 1 4-				5		•	
6-	LB	0.7		2	0 0	5-7 Brown medium and coarse quartz sand, loose.	CLP VOA (5-7)
ł					00		
8-							
10-	LB	1.2		2 5	0 0	10-12 Brown medium and coarse quartz sand, loose.	CLP VOA (10-12)
12-		1.2		2	0 0		CEF VOX (10-12)
14-	LB	1.0		4 5	0: 0: :0: 0: 0: 0: 1	15-17 Orange-tan medium and coarse quartz sand, little pebbles.	CLP VOA (15-17)
18-	LB	1.1		0 3	0 0	17-19 Dark orange-brown medium and coarse quartz sand. Presumed bottom depth of former cesspool.	CLP metals (17-19)
20-	LB	0.6		30		20-22 Tan medium quartz sand, some coarse sand, little to trace fine sand.	CLP VOA (20-22)
24-	LB	1.4		1 1 3		25-27 Orange-tan medium quartz sand, some fine sand, trace coarse sand.	CLP VOA (25-27)
28-							
30-	LB	1,5		1 10		30–32 Tan medium and fine quartz sand.	CLP VOA (30-32)
34-	LB	1.2		2 6		35-37 Tan fine quartz sand, some medium sand.	CLP VOA (35-37)
1				10		END OF BORING - REFUSAL AT 37 FT.	

ATI 16 CO10/100
HTLAS GRAPHICS IIWA 21 JANA9 30°CLEAR
0715 PY LEAVES HOTEL TO PICKUP THES.
BOTTLES AT HZM
0745 PICK UP BOTTLES AT HEM
0815 APRIVE ON SITE. GAS, ELEC. E
WATER MARKOUTS ARE VISIBLE
ON THE WEST SIDE OF THE
PROPERTY ALONG SWALMAUE.
INDENTATIONS IN PAVEMENT
BEHWD BUILDING (NW CORNER)
INDICATE POSSIBLE DRUM STAGING
AREA
0930 TEFF FROM ANSON ARRIVES
ANSON IS ATTHS GR. CONSULTANT.
HELE TO OBSELVE
1000 ZETSRA ARLIVES. JOHN, MANY.
1015 ZEBRA SETUP ON KI
HOLF. BEEIN SOIL SAMPLINE
EVERY 5 ' TO . (AGSP-1)
No.

1550 JEFF (4250) (20165 STE. 700 K. SPL.) - SHUPLES OF.	16 MB 28 BB 150 - 10.17 Soil SAMPLE WAS REPURED - 14 (M65P-2)	WE WILL SAMPLE THROUGHT. CLSS POOL BOUGHOUN WHERE DREVIOUS PERMET (40,500)	THE GEOPPOSE.	3M WW	MAW ST.
1130 TEFF & I WOVERD NCHEYZ - 2" # UEU LUNSER "WATER" COVER.	1200 LEBLA OFF-SITE FOR LUNCH. 1250 ZEBRA RETURNS, CONTINUE & AESP-1	1450 AGSPLI-REFUSALATYS' NO GW. TAKEN YET SAMPLED 1800 SOIL @ S'INTERVAS.	TOE TONES HASH'T APPLIED,	RELUGANCE OF STREETHES ON SITE (NYDDE) UNE WORK EARLY TO ACSP-2 UNE WILL SOMPLE SOIL @10' WE WILL SOMPLE SOIL @10' WITHELIAMS HEAR AND RETURN TO SAMPLE EW AT ACSP. I APPROADED	COUCUES PLAN.

		,	22.741 - 22	
	•		A LANGE	62884165
5291	1645 DE DAVES (NYSDEC)	(2365/20)	2000	7
• !	OFF- 5.75.	# 100K	40272	(+5.44. 5.40t) 371. 2-1.00 404. 421.00
	NOD DET AT MOUNT	12.57 51.57 THOM	10 T 340K	Move to CESS Pool 4884, Will
1	Taylogon 1	(1.22-05)	SAMPLE	51. 6 5 (MT. 70 M
	CINE WAS INDICATED THE STATE OF	TO BOOK	08 #36 0001	O JEAF BONGLY (ANSON) ON-SITE.
1.	PICK LIPINIOPE SO	DE. Soll 1/04	>3QShN Sho!	1045 NYSDEC DELIVERS MORE
	JARES	2 7 7 7 7 7 7 5 5 6 5 6 5 6 5 6 6 6 6 6 6	34 AV PUE 12	ortes
	The state of the state of		301	m 3215 331537 5.
2591	Wilson out out	# 6/TF	in OTHER WIST	XC 1288 - 74164 WILL
)		By (TrscHran. NY AVE.)
1704	50	÷	11.30 JERE	30 JER BOGG-SITE
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		A. C. 18.	1182 25 364	15 STOPPED @ 37 "
			7 - TA	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
			0 F F 50 K	57 YXT 2 18-
			puste wa	PUSH WATER SAMRER DESTER.
		•	P7 CHECK	PT CHECKED SWL IN NC 11843-55 1365
1			1230 3名开路	-Sirt.
	:		1235 2484	24 Eld 15 47 66. OULY HAVE
		# 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Acos 73 GET 70
		•	60	72: may will 60 72
\$7. **	1 3 1 5 1 1 1 2 mag		7 3 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	PLAWLIGU. & GET NORE ROOS FROM
			And on the	ANOTHER CREW TO ATTEMPT TO
i			4 m PKE 6	208
)

23. 3A2 - TH AZAS 6/2041CS 45. 0930 P4 02-5178 TT 02.5178	77, P7 RECENT OF 12 12 12 12 12 12 12 12 12 12 12 12 12	3.	\	1350 COULECTED 550-60 AGEN-1 50222 JANNES IN SAMPLE. 1420 NC-20 PUBER JONES & IT	HOWANCING AGER-3 IN FRONT OF
222	1400 TEFF OFF SITE	1415 TOE TONGS & TUTTER GW SAMPLES, PACK UP. WILL RETURN TO ATTEND! GW SAMPLE AT. AG I STORGEOW.	1645 PY OFF SITE JEFF 13 TOOK SPLOTS OF SOIL (322-351) 5		

,		
0551	MOVING TO M-11843	2235 May 2000
4.7	77 47 110- (7 45/20)	080 25th (STRUE) an- SITE
S .	Pulch C	22.55
!		0530 COUTINUENS 4650.3
89	WINGUE - JOHN PULGED OUTO	100 REFUSA
:	DC-17 - 4641 PUBLED OUT OF 15	
	24 Red OFF SITE.	
		MOT
2171	CAMOUNT NC-17	2 200 Babs. 4
		7.
712	CAMPIED Was 11,1002	1300 ZEBER 13ACK ON-5118.
!	11-21-22-22-22-22-22-22-22-22-22-22-22-2	4664
On LI	Was The The Tours OFFice The	
7	2 90 CITS	100 ms 10 AGSP-4
٠ •		184
		27/m 1640et 21 04 8 1986
		202
,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	-	BIS DEBER OFF SITE
		- 32, 2 200 Sant 201.

Si TE			0800 07 02:517E	0 465p.4 -10 x	13061	241	REPUESAG- 42 Suis TORDIDGE.	REFLICAL IN STREET 4X:	27, 2, 22	1200 Canc	13321	W.	477874 SET SET 626.	Kensat. 1X	0		50 MBC - 2584 H	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	WICL CALL JOE JANES (NYSDEC)	10 SGG /T HE WEEDS MOREOU DATA.	HC mik	\{ 	2 M Points
	· · ·	2		:	:			į								,			:				
	SITE	. Dr.		•	***							· ·									:		

								•												· ·			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \										3												
		!																					
				<u> </u>		-							-				•				-		: .
-	145/26-)	775	28	C# 88	Z,	LATER DATE.		•	•	ξ		(20-22)	18 60251 - 465P-4 (30-32)	(25.05)		.		•			5		
۳	Spret 3et et 301085	WE DECIDED THAT WE WILL	NOT 18 TURN NITH 268 A. WE	WILL DISCUSS HYDROPUNCH OR	WITH MIKE	¥		- Ware		N		#657-4 (20-22	7650	ACS0-9		!			1	•	•	•	
WERR OFFSITE.	305 67	(500)	Tules N	Scuss	WELL DRILLING WITH	AND REMAN ATA	1/20 Pr. OFF	657 C 428	. 0	7174 TO #	. (1260150-	200	- 255					-1			•	•
	5 parce	22 22	NOT 1/8	WILL D	WELL D.	AWA A	of the	LIN TO				1560		86.0						3			
1530	,		!	:	:			200							1		1	;		17.12			!

ATLAS GRAPHICS 1 66 ' BLAC-Riag ×, ×1×4 / # ×22 * X9' X,

MAIN ST.

247

SUACE

Lawler, Matusky & Skelly Engineers One Blue Hill Plaza P. O. Box 1509 Pearl River, New York 10965

January 29, 1997

Attention: Mr. Michael Lehtinen

RE: Project Summary, Geoprobe Sampling Services

Atlas Graphics

567 Main Street, New Cassel, New York

Work Performed on January 21 through 24, and 27, 1997

Dear Mr. Lehtinen:

Following is a summary of site activities performed by ZEBRA Environmental at the Atlas Graphics site located in New Cassel, New York. The work was performed on January 21 through 24, and 27, 1997.

PROJECT PERSONNEL ON SITE:

Mr. Perry Young, Lawler, Matusky & Skelly

Mr. John Mutuski, ZEBRA Environmental

Mr. Emanuel Poulos, ZEBRA Environmental

Mr. Stephen Salembier, ZEBRA Environmental

Mr. Brian Hoashi, ZEBRA Environmental

ZEBRA mobilized a fully equipped truck-mounted Geoprobe unit to the project site on January 21, 1997. ZEBRA personnel met Mr. Perry Young of Lawler, Matusky & Skelly at approximately 9:30 AM and walked the site with Mr. Young noting utilities and anticipated location of sampling points.

The project involved collecting soil and groundwater samples from twelve (12) points identified by Mr. Young. The location of the points was recorded on a site plan by Mr. Young.

To penetrate the surface pavement, a rotary carbide tipped concrete drill bit was utilized with the probe unit.

At each of the sampling points, ZEBRA's truck-mounted Geoprobe unit was positioned over the point and a blind probe was driven to a depth above the desired sampling elevation in order to clear obstructions and/or debris. Subsequent to opening a probe hole or drilling a hole in the pavement (if required), a clean Large Bore (LB) sampler was driven to the desired sampling depth and a soil core measuring approximately 22" long by 1\(\frac{1}{16}\)" in diameter was collected. The LB sampler remains completely closed while it is being driven to depth and is opened by releasing a stop pin from the surface. Removal of the stop pin allows the piston to retract into the sample tube as it is displaced by the soil core. Each of the samplers used was fitted with a new acetate liner prior to use. The acetate liner assists in the removal of the soil sample from the tube and helps insure sample integrity.

To collect groundwater samples, a clean Geoprobe Screen Point 15 groundwater sampler (SP15) was used. The SP15 is a 1.5" (38 mm) O.S. X 52" (1321 mm) overall length sampler and within the protective sheath, the SP15 has a 41" (1041 mm) screen. The screen consists of a slotted screen of .004" (0.1 mm) which is exposed as the sampler is retracted. Once the sampler is driven to its desired depth, chase rods are inserted down the inside of the probe rods. As the probe rods are retracted ≈ 4 ', the chase rods allow the screen to be exposed by holding the chase rods in place. The design of the SP15 sampler allows the stainless steel screen to remain retracted within the protective sheath until it is driven to the desired sampling depth. The screen is held in place by a sacrificial point fitted with a watertight "O" ring seal. Once the chase rods are used to expose the screen, the sacrificial point is lost. After the screen had been exposed, an unused, clean section of 3/6" polyethylene tubing was fitted with a stainless steel bottom check valve and inserted down the probe rod to the desired sampling depth. The poly tubing was oscillated up and down to drive a column of water to the surface.

A copy of the Field Sampling Log recorded on site has been transcribed below:

ZEBRA <u>PT#/SAMPLE#</u>	<u>TYPE</u>	<u>DESCRIPTION</u>
January 21, 1997		
1/1 1/2 1/3 1/4	Soil-LB Soil-LB Soil-LB Soil-LB	Collected sample @ 5-7' BG. Collected sample @ 10-12' BG. Collected sample @ 15-17' BG. Collected sample @ 20-22' BG.
1/5 1/6 1/7 1/8 1/9	Soil-LB Soil-LB Soil-LB Soil-LB Soil-LB Soil-LB	Collected sample @ 25-27' BG. Collected sample @ 30-32' BG. Collected sample @ 35-37' BG. Collected sample @ 40-42' BG. Collected sample @ 45-47' BG. Attempted to sample @ 50-52' BG (did not grab, refusal @ 48' BG).
2/1 3/1 4/1 5/1	Soil-LB Soil-LB Soil-LB Soil-LB	Collected sample @ 10-12' BG. Refusal @ 5.5' BG. Refusal @ 5.5' BG. Refusal @ 5.5' BG.
January 22, 1997		
1/1 1/2 1/3 1/4 1/5	Soil-LB Soil-LB Soil-LB Soil-LB	Collected sample @ 5-7' BG. Collected sample @ 10-12' BG. Collected sample @ 15-17' BG. Collected sample @ 17-19' BG. Collected sample @ 20-22' BG.

ZEBRA <u>PT#/SAMPLE#</u>	TYPE	DESCRIPTION
January 22, 1997, cont'd		
1/6 1/7 1/8	Soil-LB Soil-LB Soil-LB	Collected sample @ 25-27' BG. Collected sample @ 30-32' BG. Collected sample @ 35-37' BG. Refusal @ 37' BG. Collected sample @ 76-80' BG.
1/10 1/11	GW-SP15 GW-SP15	Collected sample @ 66-70' BG. Collected sample @ 56-60' BG.
January 23, 1997		
1/1 1/2 1/3	GW-SP15 GW-SP15 GW-SP15	Collected sample @ 76-80' BG. Collected sample @ 66-70' BG, no water encountered. Collected sample @ 56-60' BG.
2/1 2/2 2/ 2/3 2/4	Soil-LB Soil-LB Soil-LB Soil-LB Soil-LB	Collected sample @ 5-7' BG. Collected sample @ 10-12' BG. Collected sample @ 20-22' BG, not sufficient recovery. Collected sample @ 22-24' BG. Collected sample @ 30-32' BG.
January 24, 1997		
1/1 1/2 1/3	GW-SP15 GW-SP15 GW-SP15	Collected sample @ 76-80' BG. Collected sample @ 66-70' BG. Collected sample @ 56-60' BG.
2/1 2/2 2/3	Soil-LB Soil-LB Soil-LB	Collected sample @ 5-7' BG. Collected sample @ 7-9' BG. Collected sample @ 10-12' BG.
January 27, 1997		
1/1 1/2 1/3 1/4 1/5	Soil-LB Soil-LB Soil-LB GW-SP15 GW-SP15	Collected sample @ 20-22' BG. Collected sample @ 30-32' BG. Collected sample @ 40-42' BG. Refusal @ 44' BG. Refusal @ 42' BG.

PT#/SAMPLE#	TYPE	DESCRIPTION
January 27, 1997, cont'd		
2/1	GW-SP15	Refusal @ 4' BG.
2/2	GW-SP15	Refusal @ 4' BG.
2/3	GW-SP15	Refusal @ 9' BG.
2/4	GW-SP15	Refusal @ 22' BG.
3/1	GW-SP15	Refusal @ 9' BG.
3/2	GW-SP15	Refusal @ 9' BG.
3/3	GW-SP15	Refusal @ 4' BG.
3/4	GW-SP15	Refusal @ 8' BG.
4/1	GW-SP15	Refusal @ 9' BG.
5/1	GW-SP15	Refusal @ 40' BG.

A total of twenty-eight (28) soil samples and eight (8) groundwater samples were collected by ZEBRA during the five (5) days on site.

All sampling tools and probe rods were washed with Alconox and steam cleaned back at ZEBRA's office each night.

All samples were left in the custody of Mr. Young and all drilled holes were sealed with asphalt prior to leaving the site.

ZEBRA appreciates the opportunity to provide these services and looks forward to working with Lawler, Matusky & Skelly in the future. Should there be any questions regarding this project or our other services, please do not hesitate to call.

Sincerely yours,

ZEBRA

John Mutuski

ZEBRA Environmental Corp.

JM:bal

cc: Alex Nadolishny

				_
				-
				-
				-
				-
	•			
				-

			•	
				-
				-
				_
				-
		•		
				-
				-

APPENDIX B

Monitoring Well Sampling Logs

.

7

1

· Company

No. of Parties

or dependen

CONTRACTOR OF THE PARTY OF THE

	METERS USED
Date: 1-23-97 1970	Temp: 050 - 560
Crew: <u>IT / PY</u>	рН: 303
Job No: (50-201	"Cond: 105C - 560
Project: ATLAS GRAPHICS TIWA	Turb: NYSNGC
Project Site: New Casse	5/N 19834
	Section 1
Well ID No: N-11843 (6-60228)	DTW Before Sampling: 53.44
Well Condition: Poor	Sample Date/Time(s): 1-23-97 / 1525
Well Depth/Diameter: ~ 59 ft / 210	Sampling Method: Tollon disp bailer
Well Casing Type: PVC	Sampling Depth(s): Top of Column
Screened Interval:	DTW After Sampling: 53.44
Casing Ht/Lock No:	Sampling Observations: with cloud?
Reference Pt: TOC	Chain-of-Custody No(s): Staples retire
Depth to Water (DTW): 52.38	Analytical Lab(s):
Water Column; Ht/Vol: 6.12 /5.5	
Purge Est: 16.5	SAMPLE CHEMISTRIES
Purge Date/Time(s): 1-23-77 /1600	Temp. Sp. (°C) pH Cond. Turb.
Purge Method: Teflon briter	Start 12.8 Rown 340 200+
Depth(s): Top of column	End /30 V 375 200+
Rates (gpm): 0.25	
Purged Volume: 15 94/	SAMPLE ANALYSES
DTW After Purging: 53.44	Inv. Pres. Filt.
6	Parameters No. Meth. (Y/N)
Yield Rate: L-M(H)	/oc 240
Purge Observations: Large amounts of fire search (up to 16 briller) coming up it beiler each withdrawn. PURGE CHEMISTRIES TEMP. SP. VOL. (°C) pH COND. TURB. O 13.7 & 371 Joot 5 13.2 1.2 291 200 t 10 13.8 Meter 294 200 t 15 22 200 t	

Comments:

Air Temp: ~ 35°
Weather Conditions: Clear

Crew Chief Signature:

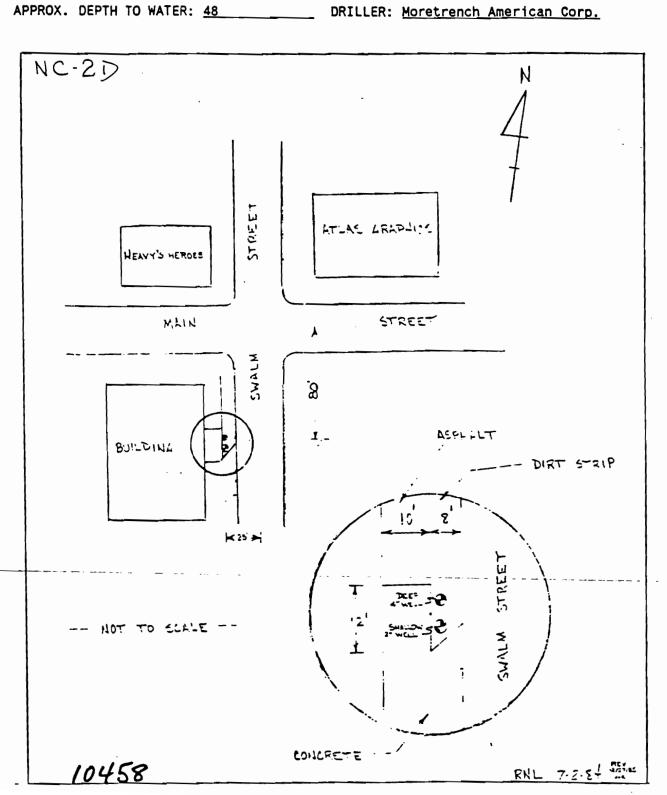
Date: /-23-97

			M	ETERS_	USED	
Date: /-23-97	£ 2	√Temp:_	DEC -	160		• •
Crew: JT / PY		pH:	303			
Job No: 650 201	7.4	Cond:	DEC S	60	· ·	• .
Project: 47LAS CRAPILES DWA		Turb:_	NYSDE			•
Project Site: New Case			5/N 59	834		
	•					
Well ID No: NC-17 (3-60229)		DTW 1	Before Sa	ampling:	53.24	
Well Condition:		Sample	Date/Ti	me(s): , -	23-77/	1715
Well Depth/Diameter: ~61 / 2"		Sampli	ng Metho	d: Fell	a disp	bailer
Well Casing Type: PVC - SCH 40		. Sampli	ng Depth	(s): For	of col	umm
Screened Interval:			After San	_	_	
Casing Ht/Lock No:					wher c	
Reference Pt: TOC		Chain-	of-Custod	y No(s):		s refeige
Depth to Water (DTW): 53.23		Analyti	ical Lab(s	s):	'	ay DEC
Water Column; Ht/Vol: 844 / 7./						
Purge Est: ∂/·3			SAMPLE	CHEM	ISTRIES	
Purge Date/Time(s): /- 23-57 / /60	00		Temp. (°C)	рН	Sp. Cond.	Turb.
Purge Method: Tetlon Bailer		Start	12.2	Down	516	2001
Depth(s): Top of Column		End	12.0	1	563	200 t
Rates (gpm): 0.25 3p~						
Purged Volume: 15 3-1			SAMI	PLE AN	ALYSES	
DTW After Purging: 53.23				Inv.	Pres.	Filt.
_		<u>Paramete</u>	rs	<u>No.</u>	Meth. ∠ 4°	(Y/N)
Yield Rate: L-M		NOC			-7	
Purge Observations: water very class	ody					
PURGE CHEMISTRIES TEMP. SP.						
VOL. (°C) pH COND. TUR						
7.5 13.0 536 200						
15 13.2 V 576 30	o t					
•						
Comments:						
			mp: 3 s er Condit		les-	

Crew Chief Signature:

Date: 1-23-87

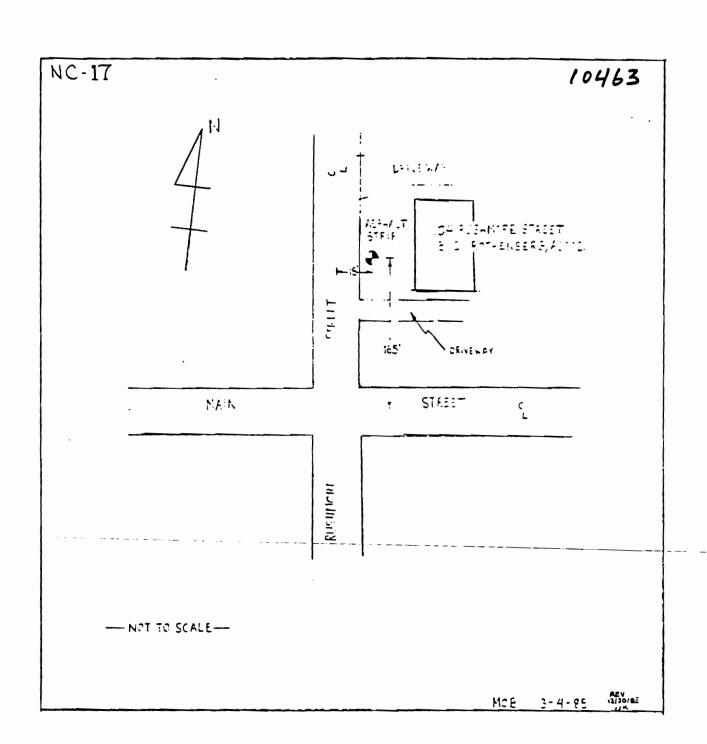
			N	<u>IETERS</u>	USED	
Date: 1-83-97	- A 7-13	Temp:	DEC-	-560	<u>.</u>	
Crew: 37 / PY		pH:	303			
Job No: 650-201		Cond:_	OEC-	56 0	•	
Project: ATLAS GRAMICS ILWA		Turb:_	מצעע	EC_		
Project Site: New Case			6/N	19834	•	
uc ,						
Well ID No: Mまーみ (8-60327)		DTW 1	Before S	ampling:	53.00	>
Well Condition:						1500
Well Depth/Diameter: ~ 54 Pt / 2 in		Samplin	ng Metho	od: <i>Disp</i>	· tello	n' builer
Well Casing Type: Pv		Sampli	ng Depth	(s):	lad colu	mn
Screened Interval:			After Sar			
Casing Ht/Lock No:		Sampli	ng Obser	vations:	water	cloudy
Reference Pt: To		Chain-c	of-Custod	ly No(s)	: 294/	les refaire
Depth to Water (DTW): 52-78			cal Lab(s			by NYSOL
Water Column; Ht/Vol: It / 0.9 30						
Purge Est: 3.7			SAMPLE	E CHEM	<u> IISTRIES</u>	<u></u>
Purge Date/Time(s): -23-97 / 1000			Temp. _(°C)	рΗ	Sp. Cond.	Turb.
Purge Method: Teffer bailer		Start	14.5		605	
Depth(s): Total coun		End	14.3			ુ∞ †
Rates (gpm): 0.25 37m						
Purged Volume: 6 4			SAMI	PLE AN	ALYSES	
DTW After Purging: 53.00			<u> </u>	Inv.	Pres.	Filt.
DIW Mich Languig.	<u> P</u>	arameter	rs	No.	Meth	. (Y/N)
Yield Rate: L-M-H		roc			~ 4	0
Purge Observations: Lots of fine some To beiler (2-3 To) per with army						
PURGE CHEMISTRIES						
TEMP. SP. VOL. (°C) pH COND. TURB.						
0 16.3 8.4 694 200+						
3 15.3 6.4 663 200+						
() () () ()						
6 15.2 6.6 609 200 t						
Comments:		Air Ter	np: 40			
		Weathe	r Condit	tions: a	ear	


Crew Chief Signature: / Moules Date: /- 23-97

•	METERS USED
Date: /-23-97	Temp: 0Ec - 560
Crew: 37 / PY	pH: 303
Job No: 650-201	Cond: <u>DEC 560</u>
Project: ATLAS CRAPHICS IIWA	Turb: NYSOSC
Project Site: New Casse/	5/N 19834
Well ID No: Mad-2D (B-60226) Well Condition: fair Well Depth/Diameter: ~/22 41 / 4 in Well Casing Type: PVC Screened Interval: Casing Ht/Lock No: Reference Pt: TOC Depth to Water (DTW): 52.74 Water Column; Ht/Vol: 70 ft / 53.4 Purge Est: 157 gal Purge Date/Time(s): [-33-97 / .000 Purge Method: Cantos pump	DTW Before Sampling: 52.75 Sample Date/Time(s): 1-33-97 / 143 5 Sampling Method: Teffen Bailer Sampling Depth(s): Boffen A column DTW After Sampling: 53.00 Sampling Observations: When Shifty Chain-of-Custody No(s): James Teffen Analytical Lab(s): SAMPLE CHEMISTRIES Temp. Sp. (°C) pH Cond. Turb. Start 147 7.6 121 25
Depth(s): sotton on column	End 149 60 129 30
Rates (gpm): ~5 3p~	
Purged Volume: 200 Sel.	SAMPLE ANALYSES
DTW After Purging: 52.75	Inv. Pres. Filt.
3. , 2	Parameters No. Meth. (Y/N)
Yield Rate: L-M-H	voc
Purge Observations: Purge in 40 sal. In creased and shut of pump to dispose at water. PURGE CHEMISTRIES TEMP. SP. VOL. (°C) pH COND. TURB. 40 14.6 5.7 230 6 40 14.6 5.7 232 3 60 14.7 6.7 235 0.2 100 14.2 6.6 346 0.2 120 14.6 6.4 357 0.7 Comments: 140 14.5 6.2 349 0.1	Air Temp: 45 ** Weather Conditions: Cher-
186 14.2 5.7 245 0.1 200 14.4 5.8 825 0.1 Crew Chief Signature: John Made	Date: /- 23-97

•	NASSAU COUNTY WELL NO:	NC-2s	LOCATION: New Cassel
	N.Y. STATE NO:	10319	INSTALLED: 10/3/84
	TOTAL DEPTH: 57'		MEAS. POINT: Top of Casing
_	DIAMETER: 2" Schedule	80 PVC	ELEV. MEAS. PT: 121.35
•	APPROX. DEPTH TO WATER:	421	DRILLER: Moretrench American Corp
	NOT TO SCALE -	STREET -6	STREET - CL STRIP

CONCRETE -


NASSAU COUNTY WELL No: NC-2d	LOCATION: New Cassel
N.Y. STATE No: 10458	INSTALLED: 11/18/85
TOTAL DEPTH: 120'	MEAS. POINT: Top of Casing .
DIAMETER: 4" Schedule 80 PVC	ELEV. MEAS. PT: 121.09

N.Y. STATE NO: 10463 ... INSTALLED: 8/30/85

TOTAL DEPTH: 64' MEAS. POINT: Top of Casing ...
DIAMETER: 2" Schedule 80 PVC ELEV. MEAS. PT: 122.12 ...

APPROX. DEPTH TO WATER: 48 DRILLER: Moretrench American Corp.

LAT 40°45'24" LONG 73°3	3'55"	
		· · · · · · · · · · · · · · · · · · ·
	· -	
	M ST.	N - N
	SWALM	· · · · · · · · · · · · · · · · · · ·
	لن 4 ^{21.5}	BLACK
		θ υπιλιπγ PGLE
DELI		· · · · · · · · · · · · · · · · · · ·
	127.5 A	
MAIN ST.	¥ ę	
- · · · · · · · · · · · · · · · · · · ·	L	
·····		

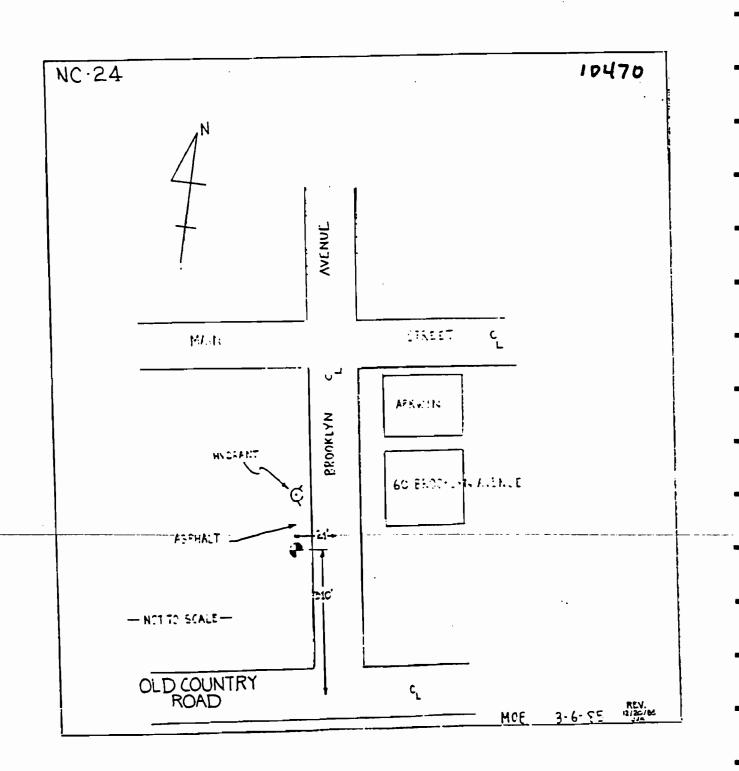
NASSAU

COMPLETION REPORT - LONG ISLAND WELL

N	-1	184	13			
Well No						

OWNER	COMPLETION KET					
U.S. GEOLOGICAL SURVEY					* LOG	
ADDRESS 5 AERIAL WAY SYOSSET, NEW YORK 11791				Ground Surface	ft. abov	
LOCATION OF WELL				Λ		
21.5 E/O CL SWALM ST , 127.5 N/O CL MAIN ST. DEPTH OF WELL BELOW SURFACE DEPTH TO GROUND WATER FROM SURFACE			<u>v</u>			
DEPTH OF WELL BELOW SURFACE			TOP OF	WELL		
		APPROX.	46_ ft.	 		
DIAMETER		<u> </u>		1 1 1		
2 in.	in.	In.	in.	<u> </u>		
LENGTH 50 ft.						
SEALING	ft.	ft. CASINGS REMOVED	ft.	-		
				50'		
	\$CR1	ENS] 37		
MAKE		OPENINGS . 01]		
DIAMETER				-		
	SUMP 2 in.	ln.	in.			
LENGTH		<u> </u>		1		
5 ft.	Sump 5 n.	ft.	ft.			
DEPTH TO TOP FROM TOP C	OF CASING			54	S.R.	
	PUMPIN	G TFST		5-1	S u	
DATE		TEST OR PERMANENT PUMPS		1 ° - Y	—	
	<u> </u>			1		
DURATION OF TEST		MAXIMUM DISCHARGE				
STATIC LEVEL PRIOR TO TE	hours	LEVEL DURING MAXIMUM P	gallons per min.	-	- 1	
ft.	In. below top of casing		in, below top of casing	1]		
MAXIMUM DRAWDOWN		ne of return to normal level af		1		
	ft	hrs.	min.] .	1	
ТҮРЕ	PUMP IN:		EL NO.	4 1		
	MONE	MOD	EL NO.			
MOTIVE POWER	MAKE	. Н.Р.		1.		
			· ·]	.	
CAPACITY						
NUMBER BOWLS OR STAGES	g_p.m_ against	2	ft. of discharge head	{		
			ft. of total head			
DROP LINE		SUCTION LINE]		
DIAMETER	_	DIAMETER	_			
LENGTH	in.	LENGTH	in.	·		
	ft.		ft.			
METHOD OF DRILLING		USE OF WATER		1		
rotary cable tool	other AUGER					
MORK STARTED 11/29	7/90	COMPLETED 11/29/	190			
DATE	PRILLER	· · · · / · / · / · / ·	LICENSE NO.	1		
•	U.S. GEOLOGICA	AL SURVEY]]		
*NOTE: Show log of we	ell - materials encounte	red, with depth below gr	ound surface,			
water bearing	beds and water level	s in each, casings, sc	reens, pump,			
		itters of interest. Descri				
See Instruction	ns as to Well Drillers' l	icenses and Reports. Pa	iges 5 - 7.			

ORIGINAL - Environmental Conservation Copy


NASSAU COUNTY WELL No: NC-24 LOCATION: New Cassel

N.Y. STATE No: 10470 INSTALLED: 9/03/85

TOTAL DEPTH: 65' MEAS. POINT: Top of Casing . .

DIAMETER: 2" Schedule 80 PVC ELEV. MEAS. PT: 119.99 .

APPROX. DEPTH TO WATER: 46 DRILLER: Moretrench American Corp.

