

FPM Group, Ltd. FPM Engineering Group, P.C. formerly Fanning, Phillips and Molnar CORPORATE HEADQUARTERS 909 Marconi Avenue Ronkonkoma, NY 11779 631/737-6200 Fax 631/737-2410

February 16, 2005

Mr. Joseph Jones New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 11th Floor Albany, NY 12233 **Bi-annual Groundwater Monitoring and Status Report** Re: **Arkwin Industries Site** NYSDEC Registry # 1-30-043D FPM File No. 652-05-06

Dear Mr. Jones:

In accordance with the groundwater and remediation system monitoring schedule outlined in the November 2000 Groundwater Remediation Work Plan (GRWP) with addendums (January 2002) and the March 2003 Operation, Maintenance and Monitoring Plan (OMMP) for the abovereferenced site, as approved by the New York State Department of Environmental Conservation (NYSDEC), the fourth round of bi-annual groundwater monitoring was performed by FPM Group (FPM) on October 13, 2004. Wells AIMW-10A, AIMW-10B, AIMW-11A, AIMW-11B, MW-4 and MW-7, situated hydraulically downgradient of the site, were sampled to evaluate the performance of the two air sparge/soil vapor extraction (AS/SVE) groundwater remediation systems, which were placed into operation in November 2002. In addition, seven upgradient monitoring wells, AIMW-8A, AIMW-8B, AIMW-9A, AIMW-9B, MW-1, MW-2 and MW-3, were sampled to monitor the contamination migrating onto the site from offsite sources. A site plan showing the well locations is included as Plate 1. This report also includes a discussion of the operation and maintenance activities performed on the AS/SVE systems.

Groundwater Monitoring Procedures

The wells to be sampled were purged of at least three but no more than five casing volumes of water using a dedicated disposable bailer. Following the removal of each casing volume of water, the parameters turbidity, pH, conductivity, and temperature were measured to determine if equilibrium had been reached. In general, all parameters except for turbidity had stabilized following the removal of three casing volumes of water. Turbidity was noted to exceed 50 nephelometric turbidity units (NTUs) in most of the wells following purging. Therefore, to reduce sample turbidity, the wells were allowed to stand undisturbed for approximately one to two hours prior to sampling. Well purging data were recorded on well sampling forms, which are included in Attachment A.

Following purging, each well was sampled using a disposable bailer. The retrieved samples were transferred into laboratory-supplied sample bottles and the filled sample bottles were labeled and placed in a cooler with ice to depress the sample temperature. A chain of custody form was completed and kept with the filled coolers to document the sequence of sample possession. The filled coolers were transmitted via overnight courier to Severn-Trent Laboratories, a New York State Department of Health NELAP-certified laboratory. All samples were analyzed for Target Compound List (TCL) volatile organic compounds (VOCs) by NYSDEC ASP methods with Category B deliverables. The laboratory report is included in Attachment B.

Quality Assurance/Quality Control

Several types of quality assurance/quality control (QA/QC) samples were obtained during the groundwater sampling. One equipment blank sample was prepared by pouring laboratory-supplied deionized water through the sampling apparatus and capturing the liquid in the appropriate sample bottles. The equipment blank sample was tested for the same parameters as the associated primary environmental samples. The equipment blank sample results were evaluated to determine the potential for either laboratory or field contamination and attest to the quality of the equipment decontamination procedures.

No compounds were detected in the equipment blank sample results (AIMW-11E) and, therefore, it does not appear that equipment or procedures utilized during sampling activities have affected the laboratory analytical results.

A blind duplicate sample was also collected and was analyzed for the same constituents as the associated parent sample. The results were utilized to evaluate the precision of the laboratory analysis. Blind duplicate sample results are summarized in Table 1 together with the results from the associated parent sample. The results from the blind duplicate sample (MW-12) and associated parent groundwater sample (MW-2) are very similar and, therefore, the laboratory results are likely to be reasonably precise.

A trip blank sample was submitted with each cooler that contained samples for VOC analysis. The trip blank sample consists of two filled, preserved, and unopened vials of laboratory water which are kept with the unfilled sample bottles and transported to the laboratory with the filled sample bottles in the coolers. The purpose of the trip blank sample is to provide an indication of the potential for cross-contamination of the VOC samples within the coolers. The trip blank sample results (trip blank) are summarized in Table 1. Methylene chloride was detected at a low estimated concentration that is B-qualified. The B-qualification indicates that this compound was identified in an associated laboratory blank. Given the absence of this compound in the primary samples and its detection in a laboratory blank, it does not appear that cross-contamination is a concern for the environmental samples.

Matrix spike/matrix spike duplicate (MS/MSD) samples consist of field samples spiked with known concentrations of the analytes of interest for the purpose of assessing the effect of the matrix on the reliability of the analytical results. Spiking occurs in the laboratory prior to sample preparation and analysis. One MS/MSD sample was collected during this sampling event. The MS/MSD results are included in the chemical analytical data package in Attachment B. Based on information provided by the analytical laboratory, the MS/MSD results were within QC limits

and, therefore, it appears that there are no matrix-related effects associated with the analytical results.

Other laboratory QA/QC samples include method blank samples. The method blank sample results are included in the chemical analytical data package in Attachment B. The results indicate that there were no detected compounds in the laboratory method blank samples with the exception of a low estimated concentration of methylene chloride in one method blank sample. Methylene chloride is a common laboratory contaminant and was also detected in the trip blank, but was not detected in any of the environmental samples. Therefore, these detections do not appear to have affected the sample results.

Finally, the laboratory also utilized spiked laboratory control samples (LCSs) to evaluate accuracy of the laboratory results. A review of the LCS results included in Attachment B indicates that all of the surrogate compound recoveries were within their allowable recovery limits. Therefore, these results suggest that the laboratory results are accurate for the primary environmental samples.

In summary, based on the results of the QA/QC samples, the chemical analytical data from the groundwater samples collected during this sampling event may generally be relied upon and no significant field or laboratory contamination appears to be present.

Groundwater Monitoring Results

Depth-to-groundwater measurements were recorded at nine shallow-screened monitoring wells and incorporated with measured well top of casing elevations to develop a water table elevation contour map. The water table elevation and total VOC concentration for each well are shown on Plate 1. The groundwater flow direction is to the south-southwest, which is consistent with previous groundwater flow direction measurements.

The results of the October 2004 sampling, including total site-specific target VOC concentrations (as specified in the November 2000 GRWP) and total VOC concentrations, are summarized in Table 2 together with historical sampling results. The chemical analytical laboratory report is included in Attachment B. Several VOCs were detected at each of the upgradient and downgradient wells, with the exceptions of wells AIMW-9A, AIMW-10B, AIMW-11B, MW-3, MW-1 and MW-7, where no VOCs were detected.

VOCs that exceeded the NYSDEC Standards were noted at shallow-screened (0 to 10 feet below the water table) wells MW-2 and AIMW-8A, which are located upgradient of the eastern AS/SVE system. These data indicate that total VOCs at concentrations of up to 28.11 micrograms per liter (ug/l) continue to migrate onsite from offsite sources. No VOCs exceeding NYSDEC Standards were noted at intermediate-level well AIMW-8B, which is also located upgradient of the eastern system. It should be noted that the primary VOC noted in the two shallow upgradient wells is trichloroethylene (TCE), which is not a site-related contaminant.

Exceedances of NYSDEC Standards were noted at shallow-screened wells AIMW-11A and MW-4 located downgradient of the eastern AS/SVE system. It should be noted that the primary VOC detected in well MW-4 is TCE, which is not a site-related contaminant and is migrating onsite from an upgradient source. At well AIMW-11A several VOCs, including site-related VOCs, were noted to exceed the NYSDEC Standards and, therefore, site-related impacts

remain present at this well. In general, the detected VOC concentrations have continued to decrease, although some variability is noted.

-4-

VOCs were not detected in shallow-screened wells AIMW-9A or MW-3 situated upgradient of the western AS/SVE system. Only low levels of VOCs, below the NYSDEC Standards, were detected in intermediate-screened well AIMW-9B, located upgradient of the western AS/SVE system. These data indicate that no significant concentrations of VOCs are migrating onsite from offsite sources upgradient of the western AS/SVE system.

No VOCs were detected above NYSDEC Standards downgradient of the western AS/SVE system. Targeted VOCs were not detected in either of these wells. Therefore, site-related VOC impacts are no longer present downgradient of the western system.

In summary, VOC concentrations have continued to remain low or have decreased in wells situated downgradient of the former source areas. The 648 Main Street former source area (western system) has showed significant declines and VOC impacts no longer appear to be present downgradient or upgradient of this system.

VOC concentrations downgradient of the 66 Brooklyn Avenue former source area (eastern system) have also declined although some site-related VOCs remain present, primarily at well AIMW-11A. The eastern system continues to be impacted by an upgradient offsite plume of TCE.

AS System Monitoring

In accordance with the OMMP, both remediation System A (66 Brooklyn Avenue) and System B (648 Main Street) are checked on a monthly basis by FPM personnel to ensure proper operation and to perform routine maintenance tasks. In addition, Arkwin personnel perform weekly system checks to ensure system operation and to notify FPM of any system irregularities. The AS/SVE systems were in place and on line in November 2002 and have generally been in continuous operation since that time, with the exception of down time for regular moisture removal (especially during the colder months). However, following the repair of the System B compressor in September 2004, the compressor failed again in late November 2004 and has not operated since that time.

Monitoring of the AS systems has been conducted by regularly monitoring air injection flow rates and injection pressures to ensure proper AS system operation, and by measuring the concentration of dissolved oxygen (DO) in monitoring wells within the radius of influence or in close proximity of the AS wells. The DO levels for well MW-4 (situated in proximity to System A) and well MW-7 (situated within the radius of influence of System B) were noted to be 8.16 mg/l and 7.99 mg/l, respectively. DO levels collected prior to remediation system operation ranged from 7.1 to 7.5 mg/l in these wells.

SVE System Monitoring

Two sets of effluent samples were collected from each system to evaluate emissions compliance during the third and fourth quarters of 2004. The samples were transmitted to a NELAP-approved laboratory for analysis of VOCs by EPA Method TO14. The laboratory reports are included in Attachment B.

The results are summarized on Table 3 and indicate that effluent total chlorinated VOC concentrations generally increased throughout this monitoring period in System A (eastern system), from 103 parts per billion per volume (ppbv) in September 2004 to 363 ppbv in December 2004. The increase in concentrations is likely attributed to the system being restarted (system offline on arrival due to high condensate level) the day it was sampled and will likely decrease upon equilibration. It should be noted that a decrease in VOC concentrations was noted between the June 2004 and September 2004 and is consistent with the system's downward trend in mass removal. Several petroleum-related and fluorinated compounds were also noted at generally low concentrations in the SVE effluent. These compounds have previously been periodically detected in the SVE effluent at low concentrations and their source is not known. None of these compounds were detected in the groundwater samples.

Effluent concentrations were noted to remain relatively unchanged in System B from 243 ppbv in June 2004 to 248 ppbv in September 2004. However, concentrations were noted to decline during the December 2004 sampling event and may be related to the improved groundwater quality in the vicinity of this system.

To ensure compliance with effluent guidelines, FPM previously calculated the various air impacts and compared them to the applicable annual guideline concentration (AGC) and short-term guideline concentration (SGC) for each compound identified as a site concern, as specified in NYSDEC's DAR-1 Guidelines for the Control of Toxic and Ambient Air Contaminants. These calculations were presented in the OMMP prepared in March 2003 and indicated that following startup, slight exceedances were noted, but upon resampling the levels had dropped to below each compound's respective AGC and SGC. The concentrations detected in the September and December 2004 SVE effluent samples remained below the AGCs and SGCs. Based upon compliance with the AGCs and SGCs, no effluent treatment is required at this time. FPM will continue to sample the SVE effluent on a quarterly basis to ensure compliance with the applicable guidelines.

Total VOC Mass Removal Estimate

An estimate of the total pounds of VOCs removed for each SVE system was calculated and indicates that since startup, estimated totals of approximately 353.45 pounds and approximately 378.41 pounds of VOCs have been removed by Systems A and B, respectively, as shown in Table 3. The removed mass of each compound is calculated is as follows:

VOC removed in pounds/day = (flow rate in cfm) (1440 mins/day) (laboratory VOC concentration in ppb) (1/volume of 1 mole VOC at 35°C) (total VOC molecular weight in grams/mole) (various unit conversions) For example, for the VOC tetrachloroethylene, the calculation for December 2004 in System A is as follows:

tetrachloroethylene removed (pounds per day) = (105 ft³/min) (1440 mins/day) (19 ppb) (1 mole/25.27 liters) (165.83 g/mole) (2.203 pounds/1,000 g) (28.32 l/ft³) (1/10⁹)

tetrachloroethylene removed (pounds per day) = 0.00117 lbs/day = 1.2×10^{-3} lbs/day

Once the estimated daily loading rate is computed, it is then multiplied by the number of operating days to yield an estimated total mass removed for the specific compound. Similar calculations are performed for each additional VOC of concern and then a cumulative total is calculated to yield an estimated mass removed, as shown in Table 3.

The data for VOC mass removal rates indicate that the majority of the VOC mass was removed following system startup and that removal rates are decreasing over time, as expected. The total mass of VOCs removed from Systems A and B in the first half of 2004 was only 2.12 pounds and 1.11 pounds, respectively. Figure 1 shows graphically the total VOC mass removed over time for each system.

Summary and Recommendations

Based on the current groundwater chemical analytical data in the vicinity of the 66 Brooklyn Avenue system (System A, Eastern System), groundwater VOC contamination remains present in the shallow groundwater downgradient of the formerly-impacted leaching pools, although the concentrations are decreasing. No impacts are noted in intermediate-level groundwater. Impacted groundwater containing TCE, which is not a site-related VOC, is also migrating onsite in this area from upgradient sources.

Groundwater chemical analytical data in the vicinity and downgradient of the 648 Main Street system (System B, Western System) has shown a decrease to non-detect for all site-specific targeted compounds. Intermediate-level groundwater remains unimpacted. Shallow groundwater upgradient of the western system no longer contains detectable concentrations of VOCs.

The following recommendations are made for the site:

- Based on the October 2004 chemical analytical results, FPM recommends that the remediation system situated at 648 Main Street (System B, western system) remain offline as the shut-down closure criteria specified in the NYSDEC-approved November 2000 GRWP have been achieved. Bi-annual monitoring will be continued for 2005 to confirm that groundwater quality remains acceptable. In the event that monitoring indicates an unacceptable increase in target VOC concentrations, the system will be returned to service.
- At this time no changes are recommended for the operation of the 66 Brooklyn Avenue system (System A, Eastern System). System operation and groundwater monitoring will be continued in accordance with the November 2000 GRWP.

Mr. Joseph Jones

٩

,

Should you have any questions, please do not hesitate to call us at (631) 737-6200.

Very truly yours,

27C.

Ben T. Cancemi Senior Hydrogeologist

e (

Stephanie O. Davis Department Manager Senior Hydrogeologist

SOD/BTC:tac Attachments

cc: Guy Bobersky - NYSDEC Stephen Holbreich, Esq. – Arkwin Industries Thomas Molloy – Arkwin Industries Gary Litwin – NYSDOH (two copies) Peter A. Scully – NYSDEC Region 1

\\Lifs\clients\Arkwin\GW Monitoring\Q4-2004\Q4-2004 GWItr report.doc

TABLE 1 QUALITY ASSURANCE/QUALITY CONTROL SAMPLE RESULTS ARKWIN INDUSTRIES SITE WESTBURY, NEW YORK

Sample Type	Equipment Blank Sample	Blind Duplic	ate Sample	Trip Blank
Sample No.	AIMW-11E	MW-2 (Primary)	MW-12 (Duplicate)	Trip Blank
Sample Date	10/13/04	10/13/04	10/13/04	10/13/04
Target Compound List V	/olatile Organic Compounds ir	micrograms per	liter	
Methylene chloride	ND	ND	ND	2.2 J B
1,1-Dichloroethylene	ND	3.3 J	3.8 J	ND
1,1-Dichloroethane	ND	3.0 J	2.8 J	ND
1,2-Dichloroethylene	ND	1.5 J	1.5 J	ND
1,2-Dichloroethane	ND	0.91 J	ND	ND
1,1,1-Trichloroethane	ND	2.6 J	2.8 J	ND
Trichloroethene	ND	16	17	ND
Tetrachloroethene	ND	0.8 J	0.51 J	ND

Notes:

.

Only analytes detected in one or more samples are included in this table.

ND = Not detected at or above instrument detection limit.

J = Estimated concentration less than the quantitation limit but greater than zero.

B = Analyte was detected in an associated blank.

TABLE 2 GROUNDWATER VOLATILE ORGANIC COMPOUND DATA ARKWIN INDUSTRIES SITE WESTBURY, NEW YORK

SHALLOW WELLS

(0 to 10 feet below water table)

Well Lo	ocation				h na ha											Upgrad	lient Wells														e e	NYSDEC Class GA
W STREET	Vell No.			All	A6-MN						W-3				a ta ta t	1	W-2					All	WW-8A						/ W-1			Ambient Water
Sampl	le Date	10/98	1/21/02	3/4/03	9/25/03	3/24/04	10/13/04	10/98	1/22/02	3/6/03	9/25/03	3/24/04	10/13/04	10/98	1/24/02	3/6/03	9/25/03	3/24/04	10/13/04	10/98	1/21/02	3/6/03	9/25/03	3/24/04	10/13/04	10/98	1/22/02	3/6/03	9/25/03	3/24/04	10/13/04	Quality Standards*
Volatile Organic Col	mpounds	in ug/l																					••••••				•		<u> </u>			· · · · · · · · · · · · · · · · · · ·
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Chloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene		NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	5
Carbon Disulfide		NA	NA	ND	ND	ND	ND	NA	NA	7	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	5
1,1-Dichloroethylene*	**	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8 J	NA	5 J	5 J	4 J	3.3 J	ND	2 J	2 J	ЗJ	2 J	1.1 J	2 J	ND	0.9 J	ND	ND	ND	5
1,1-Dichloroethane**		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3 J	NA	7	5	7	3.0 J	1 J	5 J	5	11	3 J	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dichloroethylene		ND	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	91	NA	2 J	2 J	13	1.5 J	ЗJ	2 J	ND	ND	ND	ND	ND	ND	ΒN	ND	ND	ND	. 5
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7
1,2-Dichloroethane		ND	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	2 J	NA	ND	ND	ND	0.91 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
1,1,1-Trichloroethane	e**	2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6 J	NA	10	6	10	2.6 J	4 J	12	9	22	7	ND	7 J	4 J	3 J	ND	ND	ND	5
Trichloroethylene		ND	ND	ND	ND	ND	ND	ND	ND	1 J	ND	ND	ND	120	NA	17	18	11	16	39	30	8	4 J	4 J	9.9	ND	1 J	ND	0.8 J	1 J	ND	5
1,1,2-Trichloroethane	Э	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Tetrachloroethylene**	*	ND	ND	ND	ND	ND	ND	ND	ND	0.7 J	ND	ND	ND	ND	NA	1 J	1 J	0.5 J	0.80 J	ND	ND	0.5 J	0.7 J	ND	ND	NÐ	ЗJ	2 J	2 JB	2 J	ND	5
1,2,4-Trichlorobenzer	ne	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,3-Trichlorobenzer	ne	ND	ND .	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Methylene Chloride		ND	2 JB	ND B	ND B	ND	ND	ND	6 JB	ND B	ND B	ND	ND	ND	NA	ND B	ND B	ND	ND	ND	13 B	ND B	ND B	ND	ND	ND	13 B	NDB	ND B	ND	ND	5
Toluene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1 J	ND	ND	ND	ND	ND	ND	5
Total Volatile Organ Compounds	nic	2	ND	ND	ND	ND	ND	ND	ND	8.7	В	ND	ND	148	NA	42	37	33.5	28.11	47	51	24.5	40.7	16	12.1	9	8	5.9	2.8	3	ND	-
Targeted Volatile Or Compounds	rganic	2	ND	ND	ND	ND	ND	ND	ND	0.7	ND	ND	ND	17	NA	23	17	21.5	9.7	5	19	16.5	36.7	12	1.1	9	7	5.9	2	2	ND	-

Notes:

- 16

.

Only analytes detected in one or more samples are included in this table. ND = Not Detected.

NA = Not Available

B = Analyte was detected in associated blank and may result from contamination.

D = Diluted sample result.

J = An estimated value.

ug/l = micrograms per liter

- = No NYSDEC Class GA Ambient Water Quality Standard established.

Bold values exceed the NYSDEC Class GA Ambient Water Quality Standard.

** = Targeted (site specific) compound as specified NYSDEC approverd Groundwater Remediation Work Plan (November 2000 with amendments)

TABLE 2 (CONTINUED) **GROUNDWATER VOLATILE ORGANIC COMPOUND DATA** ARKWIN INDUSTRIES SITE WESTBURY, NEW YORK

INTERMEDIATE WELLS (25 to 35 feet below water table)

Well Location						Upgradie	nt Wells											Downgrad	lient Wells						NYSDEC Class GA
Well No.			AIM	W-9B					AIM	W-8B					AIM	W-10B					AIM	V-11B			Ambient Water
Sample Date	10/98	1/21/02	3/4/03	9/25/03	3/24/04	10/13/04	10/98	1/21/02	3/6/03	9/25/03	3/24/04	10/13/04	10/98	1/21/02	3/4/03	9/25/03	3/24/04	10/13/04	10/98	1/22/02	3/4/03	9/25/03	3/24/04	10/13/04	Quality Standards*
Volatile Organic Compound	ds in ug/l								<u></u>								-								
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	В	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Carbon Disulfide	ND	ND	ND	ND	ND	ND	ND	ND	1 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1-Dichloroethylene**	20	2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3 J	ND	ND	ND	ND	ND	5 J	5 J	2 J	5 J	4 J	ND	5
1,1-Dichloroethane**	8 J	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4 J	9 J	2 J	5 J	3 J	ND	5
1,2-Dichloroethylene	ND	ND	ND	ND	ND	2.1 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1 J	1 J	1 J	ND	5
Chloroform	ND	ND	ND	ND	ND	ND	ND	,ND	0.7 J	0.7 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
1,1,1-Trichloroethane**	180	7 J	ND	ND	ND	1.9 J	1J	ND	ND	ND	ND	ND	ND	1 J	2 J	ND	ND	ND	17	16	4 J	7	4 J	ND	5
Trichloroethylene	ND	ND	ND	ND	ND	ND	5 J	2 J	4 J	1 J	2 J	2.6 J	ND	ND	ND	ND	ND	ND	6 J	9 J	12	11	6	ND	5
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Tetrachloroethylene**	3 J	ND	ND	ND	ND	ND	ND	1 J	ND	0.8 J	ND	ND	ND	ND	ND	ND	ND	ND	ЗJ	2 J	5 J	4 JB	3 J	ND	5
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Methylene Chloride	ND	3 JB	NÐ B	ND B	ND	ND	ND	2 JB	ND B	ND B	ND	ND	ND	3 JB	ND B	ND B	ND	ND	ND	2 JB	ND B	ND B	ND	ND	5
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.63 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Total Volatile Organic Compounds	211	9	ND	ND	ND	4	6	3	5.7	2.5	2	3.23	3	1	2	ND	ND	ND	35	41	26	33	21	ND	-
Targeted Volatile Organic Compounds	211	9	ND	ND	ND	1.9	1	1	ND	0.8	ND	ND	3	1	2	ND	ND	ND	29	32	13	21	14	ND	-

Notes:

•

.

Only analytes detected in one or more samples are included in this table. ND = Not Detected.

NA = Not Available

B = Analyte was detected in associated blank and may result from contamination.

D = Diluted sample result.

J = An estimated value.

ug/l = micrograms per liter

- No NYSDEC Class GA Ambient Water Quality Standard established.
Bold values exceed the NYSDEC Class GA Ambient Water Quality Standard.

** = Targeted (site specific) compound as specified NYSDEC approverd Groundwater Remediation Work Plan (November 2000 with amendments)

TABLE 2 (CONTINUED) GROUNDWATER VOLATILE ORGANIC COMPOUND DATA **ARKWIN INDUSTRIES SITE** WESTBURY, NEW YORK

SHALLOW WELLS (0 to 10 feet below water table)

Well Location												Downgrad	lient Wells												
Well No.			AIMV	V-10A					M	W-7					AIMV	N-11A					M	W-4			Ambient Water
Sample Date	10/98	1/21/02	3/4/03	9/25/03	3/24/04	10/13/04	10/98	1/22/02	3/6/03	9/25/03	3/24/04	10/13/04	10/98	1/22/02	3/4/03	9/25/03	3/24/04	10/13/04	10/98	1/22/02	3/4/03	9/25/03	3/24/04	10/13/04	Quality Standards*
Volatile Organic Compoun	ds in ug/l			* · · · · · · · · · · · ·													• · · · · · · · · · · · · · · · · · · ·								
Acetone	ND	ND	ND	33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene	ND	NA	0.7 J	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	5
Carbon Disulfide	ND	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	5
1,1-Dichloroethylene**	32 DJ	28	10	1 J	ND	ND	54	4 J	ND	ND	ND	ND	27	15	11	5	8	19	20	4 J	ND	ND	ND	ND	5
1,1-Dichloroethane**	59 D	73	23	5 J	ND	ND	180 D	6 J	ND	ND	ND	ND	12	12	16	5	5	8.2	12	18	10	ND	ND	ND	5
1,2-Dichloroethylene	5 J	2 J	6	8	19	2.0 J	7 J	ND	ND	ND	ND	ND	ND	18	26	27	12	15	13	39	36	2 J	3 J	2.3 J	5
Chloroform	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
1,1,1-Trichloroethane**	ND	220 D	61	10	ND	ND	560 D	30	ND	ND	ND	ND	400 D	79	73	13	14	20	200 D	86	26	ND	ND	ND	5
Trichloroethylene	7 J	6 J	4 J	1 J	1 J	ND	16	1 J	ND	ND	ND	ND	17	33	39	24	22	49	24	50	26	1 J	1 J	ND	5
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Tetrachloroethylene**	14	20	12	3 J	3 J	ND	45	5 J	ND	0.8 J	ND	ND	57	80	85	18 B	26	47	120	92	55	4 J	22	18	5
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Methylene Chloride	ND	9 JB	ND B	ND B	ND	ND	ND	2 JB	ND B	ND B	ND	ND	ND	1 JB	ND B	ND B	ND	ND	ND	3 JB	ND B	ND B	ND	ND	5
Total Volatile Organic Compounds	117	349	116.7	61	23	2	866	46	ND	0.8	ND	ND	513	237	250	92	87	158.2	389	289	153	7	26	20.3	-
Targeted Volatile Organic Compounds	105	341	106	19	3	ND	839	45	ND	0.8	ND	ND	496	186	185	41	53	94.2	352	200	91	4	22	18.0	-

Notes:

•

.

Only analytes detected in one or more samples are included in this table. ND = Not Detected.

NA = Not Available

B = Analyte was detected in associated blank and may result from contamination.

D = Diluted sample result.

J = An estimated value.

ug/l = micrograms per liter

- = No NYSDEC Class GA Ambient Water Quality Standard established.

Bold values exceed the NYSDEC Class GA Ambient Water Quality Standard.

** = Targeted (site specific) compound as specified NYSDEC approverd Groundwater Remediation Work Plan (November 2000 with amendments)

TABLE 3 SOIL VAPOR EXTRACTION SYSTEMS EFFLUENT CHEMICAL ANALYTICAL DATA ARKWIN INDUSTRIES SITE WESTBURY, NEW YORK

SYSTEM A (Eastern System)												
	Flow Rate	Concentration	Daily Loading	Flow Rate	Concentration	Daily Loading	Total Mass Removed	Total Mass Removed				
Compound		September 28, 2004			December 28, 2004		Quarter 2004	to Date				
	SCFM	ppbv	lbs/day	SCFM	ppby	lbs/day	lbs	lbs				
1,1-dichloroethene	105	ND	0.0000	105	ND	0.0000	0.00	9.77				
trans-1,2-dichioroethene	105	ND	0.0000	105	ND	0.0000	0.00	0				
1,1-dichloroethane	105	ND	0.0000	105	19.0	0.0007	0.06	14.76				
cis-1,2-dichloroethene	105	12.0	0.0004	105	47.0	0.0017	0.19	30.69				
1,1,1-trichloroethane	105	59.0	0.0029	105	170.0	0.0085	1.04	113.72				
trichloroethene	105	13.0	0.0006	105	39.0	0.0019	0.23	42.31				
tetrachloroethene	105	19.0	0.0012	105	88.0	0.0055	0.60	142.20				
	Total VOCs	103.0		Total VOCs	363.0	Totals	2.12	353.45				

SYSTEM B (Western System)												
	Flow Rate	Concentration	Daily Loading	Flow Rate	Concentration	Daily Loading	Total Mass Removed	Total Mass Removed				
Compound		September 28, 2004			December 28, 2004		Quarter 2004	to Date				
	SCFM	ppbv	lbs/day	SCFM	ppbv	lbs/day	lbs	lbs				
1,1-dichloroethene	105	ND	0.000	105	ND	0.000	0.00	17.67				
1,2-dichloroethene	105	ND	0.000	105	ND	0.000	0.00	0.50				
1,1-dichloroethane	105	19.0	0.001	105	ND	0.000	0.07	23.74				
cis-1,2-dichloroethene	105	99.0	0.004	105	ND	0.000	0.36	56.38				
1,1,1-trichloroethane	105	81.0	0.004	105	2.8	0.000	0.41	122.83				
trichloroethene	105	34.0	0.002	105	1.5	0.000	0.17	72.90				
tetrachloroethene	105	15.0	0.000931	105	1.3	0.000	0.10	84.39				
	Total VOCs	248.0		Total VOCs	5.6	Totals	1.11	378.41				

Notes:

SCFM = Standard Cubic Feet Per Minute ppbv = Parts Per Billion Per Volume lbs = Pounds lbs/day = Pounds per day ND = Not Detected VOCs = Volatile Organic Compounds

ATTACHMENT A

•

÷

WELL SAMPLING DATA FORMS

FPM group

Engineering and Environmental Science

WELL SAMPLING DATA FORM	1
Client:A	
Project No.: <u>65, -04-05</u>	
Location: <u>HCIA</u>)/
Well No.: Mie / Well Diameter:	2″
Date: 10/13- Start Time:	
Weather: Finish Time:	
Sampled By: <u>BC/Ms</u>	
Depth to Bottom of Well:	Feet.
Depth to Water: <u>54.12</u>	Feet.
Height of Water Column: <u>6.88</u>	_Feet.
Water Volume in Casing: <u>4.47</u>	_Gallons.
Water Volume to be Purged: <u>13.42</u> Gallons.	
Water Volume Actually Purged: 13.5 Gallons.	
Purge Method: <u>H.B.</u>	

Physical Appearance/Comments:

FIELD MEASUREMENTS

Time	Volume (gal)	рН	Conductivit y (uS)	Temperature (°F)	Turbidity (FTU)
	4.5	5.73	292	68.3	7/000
	9.0	5.54	344	61.7	71000
	13.5	5.76	382	61.4	7/000

Samplingand

Analytical

Methods:

Laboratory Name and Location: <u>STL</u>

Vods

	W	ELL SAMPLIN	NG DATA FOR	M	
Client:	A [: 		
Project No.:	6.52	-04-0	5		
Location:	NCIA			. /	
Well No.:	Mar 2	ء أنبي مست	Well Diameter	: 4//	
Date:/	0/13/04	- 1 	Start Time:		
Weather:	Sanny		Finish Time:		
Sampled By: _	BC./	MS			
Depth to Botto	om of Well:	62,		Feet.	
Depth to Wate	er:	55.13		_Feet.	
Height of Wat	er Column:	6.87		Feet.	
Water Volume	e in Casing:	4.4	7.	Gallons.	<i>i</i>)
Water Volume	e to be Purged:	13.39 Gal	llons.		marche
Water Volum	e Actually Purge	ed: <u>135</u> Gal	llons.		Per
Purge Method	l:	HB.			
Physical Appe	earance/Comme	ents:	Deplica	K	-
FIELD MEASU	REMENTS		 	<u></u>	
Time	Volume (gal)	pН	Conductivit y (uS)	Temperature (°F)	Turbidity (FTU)
	4.5	5.65	165	_55,/	7/005
	9.0	5.18	170	59.2	7/000
	13.5	5.32	171	58.9	7/000
L			· · · · · · · · · · · · · · · · · · ·		
Samplingand	Voc	2S Ar	nalytical	_	Methods:
Laboratory Na	ame and Locatio	n: <u>570</u>	7		

WEL	L SAMPLING DATA FOR	RM
Client:A		
Project No.: G.S.2	-04-05	
Location: NCIA		11
Well No.: <u>MW-3</u>	Well Diameter	r. 4
Date: 10/13-	Start Time:	
Weather:SCIUIU	Finish Time:	
Sampled By: 3C	/m.s	
Depth to Bottom of Well:	61.3	Feet.
Depth to Water:	54.68	Feet.
Height of Water Column:	6.62	Feet.
Water Volume in Casing:	4.30	Gallons.
Water Volume to be Purged: _/	<u>7.9</u> Gallons.	
Water Volume Actually Purged:	<u> </u>	
Purge Method:	HB	
Physical Appearance/Comment	ts:	
FIELD MEASUDEMENTS		

Time	Volume (gal)	рН	Conductivit y (uS)	Temperature (°F)	Turbidity (FTU)
	4.5	6.42	612	60.9	7/000
	9.0	6.53	644	59.2	71000
	13.0	6.55	637	58.9	71000

Analytical Samplingand Methods: Voch Laboratory Name and Location:

WI	ELL SAMPLING DATA FORM	A
Client:A		
Project No.:	04-05	
Location:NCIA	2	
Well No.: MCe-	Well Diameter:	<u> </u>
Date: 10/13/0	4 Start Time:	
Weather: SCUN	Finish Time:	-
Sampled By:RC	MS	
Depth to Bottom of Well:	62.5	_Feet.
Depth to Water:	54.35	Feet.
Height of Water Column:	8.15	_Feet.
Water Volume in Casing:	5.30	_Gallons.
Water Volume to be Purged:	<u>15 89</u> Gallons.	
Water Volume Actually Purge	d: <u>//</u> Gallons.	
Purge Method:	<u> </u>	
Physical Appearance/Comme	nts:	د

Time	Volume (gal)	pН	Conductivit y (uS)	Temperature (°F)	Turbidity (FTU)
	5	6.10	250	62.6	71000
	10	5.78	234	61.4	7/000
	16	5.77	527	61.0	71000

Samplingand	110C	Analytical	Methods:
Laboratory Name and Loc	ation:	STL	

V	VELL SAMPLING DATA FOR	M
Client:A		
Project No.: <u>65</u>	-04-05	
Location: <u><i>NC</i></u>	1D	
Well No .: MCC	<u> </u>	411
Date: 0/13/04	Start Time:	
Weather: 5GN	If Finish Time:	
Sampled By:	IMS	
Depth to Bottom of Well:	61.5	_Feet.
Depth to Water:	54.00	Feet.
Height of Water Column:	7.5	Feet.
Water Volume in Casing:	4.87	Gallons.
Water Volume to be Purged	: <u>14.63</u> Gallons.	
Water Volume Actually Purg	ed: <u>1475</u> Gallons.	
Purge Method:	HB	

Physical Appearance/Comments:

Time	Volume (gal)	pН	Conductivit y (uS)	Temperature (°F)	Turbidity (FTU)
	5	5.93	276	63.8	7/000
	10	5.36	242	62.3	71000
	14.35	4.72	300	61.5	71000

Samplingand Analytical Methods: 000 S Laboratory Name and Location:

FPM group-----

Engineering and Environmental Science

WELL SAMPL	ING DATA FORM
Client:A I	
Project No.: <u>GS2-04-0</u>	5
Location: NCIA	,1
Well No .: AI MCU-87	Well Diameter:
Date: 10/13/04	Start Time:
Weather: <u>SCIUM</u>	Finish Time:
Sampled By: $\underline{3c/MS}$	
Depth to Bottom of Well: 65	- <u>4</u> Feet.
Depth to Water: 54.2	Feet.
Height of Water Column:/ 5, / 9	Feet.
Water Volume in Casing: <u>7 7 3</u>	Gallons.
Water Volume to be Purged:G	allons.
Water Volume Actually Purged: $\frac{7}{2}$ G	allons.
Purge Method: <u>HP</u>	

Physical Appearance/Comments:

Time	Volum e (gal)	pН	Conductivit y (uS)	Temperature (°F)	Turbidity (FTU)
	2.5	5.58	162	62.Z	>1000
	5	5.43	1:59	62.2	2/000
	7.3	5,30	159	61.3	7/000

Analytical Samplingand Methods: 000 Laboratory Name and Location: S,

FPM group

	WELL SAMPLING DAT	AFUKM
Client:A	/	
Project No.: 653	2-04-03	
Location://	<i>h</i>	
Well No .: AIMC	<u>v-8B</u> Well Di	ameter://
Date://3/0.	Ý Start Ti	me:
Weather:SGN	Finish	Time:
Sampled By:	/ms	
Depth to Bottom of Well: _		Feet.
Depth to Water:	54.36	Feet.
Height of Water Column:	35.74	Feet.
Water Volume in Casing:	5.72	Gallons.
Water Volume to be Purge	d: <u>17.16</u> Gallons.	
Water Volume Actually Pu	rged: <u>17. (۲</u> Gallons.	
Purge Method:	H.K.	
Physical Appearance/Com	ments:	

Time	Volume (gal)	pН	Conductivit y (uS)	Temperature (°F)	Turbidity (FTU)
	6	5.31	182	61.4	71000
	12	5.348	189	61.4	71000
	17.25	5.31	184	61,4	7/000

Samplingand	Analytical	Methods:
Laboratory Name and Location:	STC	

FPM group-----

Engineering and Environmental Science

WELL SAMPLING DATA FORM
Client: ARKein To
Project No.: <u>652 04-05</u>
Location: NC/A
Well No.: <u>AIMCU-9</u> Well Diameter: <u>2</u>
Date:/Start Time:
Weather: SCNM Finish Time:
Sampled By: BC/MS
Depth to Bottom of Well:
Depth to Water: <u>54.05</u> Feet.
Height of Water Column: <u><u>8.65</u>Feet.</u>
Water Volume in Casing:/. 4 Gallons.
Water Volume to be Purged: 4.15 Gallons.
Water Volume Actually Purged: $\frac{2}{25}$ Gallons.
Purge Method: <u>H</u>

Physical Appearance/Comments:

FIELD MEASUREMENTS

Time	Volume (gal)	рН	Conductivit y (uS)	Temperature (°F)	Turbidity (FTU)
	1.5	4.28	196	66.0	71000.
	30	4.24	184	65.4	71000
	4.75	4.21	190	66.2	71000

Samplingand

Analytical

2S

5

Methods:

Laboratory Name and Location:

WELL SAMPLING DATA FORM
Client: <u>A</u>
Project No.: <u>652-04-05</u>
Location: NCIA
Well No.: $\underline{AIMcc-9B}$ Well Diameter: $\underline{2}$
Date: 0/13/04 Start Time:
Weather: Sanny Finish Time:
Sampled By: <u>BC/MS</u> .
Depth to Bottom of Well: & ?
Depth to Water: 54.60 Feet.
Height of Water Column: <u>35.01</u> Feet.
Water Volume in Casing: <u>5.60</u> Gallons.
Water Volume to be Purged: _/6.80 Gallons.
Water Volume Actually Purged: $\underline{12}$ Gallons.
Purge Method: <u>H</u> H
Physical Appearance/Comments:

Time	Volume (gal)	рН	Conductivit y (uS)	Temperature (°F)	Turbidity (FTU)
	5.5	5,41	115	63,7	7/00 C).
	11.0	SUS	113	62.1	7/000
	/7	5.23	112	61.5	71000

Samplingand Analytical Methods: VC Laboratory Name and Location: STL

		ELL SAMPLI	NG DATA FOR	M	
Client:	_ <u>A /</u>				
Project No.:	652-	-04-0.	5		
Location: <u>NC/</u>	A			. 1	
Well No.:	AI May-1	SA-	Well Diameter	:/	
Date:	13/04		Start Time:		
Weather:	5GNNY	[Finish Time:		
Sampled By: _	<u> </u>	IM5			
Depth to Botto	om of Well:	62.2		_Feet.	
Depth to Wate	er:	52.65	······································	Feet.	
Height of Wat	er Column:	<u> </u>	5	Feet.	
Water Volume	e in Casing:	1.85		Gallons.	
Water Volume	e to be Purged:	<u>4.58</u> Gal	llons.		A C
Water Volume	e Actually Purge	ed: <u>4,75</u> Gal	llons.		$\rightarrow p$
Purge Method	· · · · · · · · · · · · · · · · · · ·	HP			
Physical Appe	arance/Comme	ents:	MS/MSI	>	
FIELD MEASU	REMENTS		, 		
Time	Volume (gal)	рН	Conductivit y (uS)	Temperature (°F)	Turbidity (FTU)
	1.5	\$5.02	345	63.0	7/000
	3.0	4.96	343	62.2	7/000
	4.75	4.90	338	62.0	7/000
					·
Samplingand	()	c'_{5}	alytical	<u></u>	Methods:
Laboratory Na	me and Locatio	n·	377-		

V	VELL SAMPLING DATA F	ORM			
Client: A/		·			
Project No.: <u>65</u>	-04-05				
Location: <u>DC1</u>	<i>P</i>				
Well No .: AIMLe-	OB Well Diame	eter: $2^{\prime\prime}$			
Date:/0/13	Start Time:				
Weather: <u>SCNN</u>	Finish Time	2:			
Sampled By:BC	/ ms				
Depth to Bottom of Well:	90,0	Feet.			
Depth to Water:	52.50	Feet.			
Height of Water Column:	37.50	Feet.			
Water Volume in Casing:	6	Gallons.			
Water Volume to be Purged:/ & Gallons.					
Water Volume Actually Purg	ed: <u>/8</u> Gallons.				
Purge Method: <u>HP</u>					
Physical Appearance/Comm	nents:				

Time	Volume (gal)	рН	Conductivit y (uS)	Temperature (°F)	Turbidity (FTU)
	6	5.26	5/	64.3	7/000
	12	4.80	50	63.7	7/000
	18	4.76	50	63.6	7 (OCC
			\		

Samplingand	(DCS Analytical	Methods:
Laboratory Name and Locatio	n: <u>STL</u>	

WELL SAMPI	ING DATA FORM	1
Client:		
Project No.: <u>6.52-04-05</u>		
Location: <u>IC/A</u>		,
Well No .: AIMW-11A	Well Diameter:	2''
Date: 10/13/04	Start Time:	
Weather: SCAULY	Finish Time:	
Sampled By: <u>BC/MS</u>		
Depth to Bottom of Well:63	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_Feet.
Depth to Water: 53	3,68	Feet.
Height of Water Column:	i.32	_Feet.
Water Volume in Casing:	.5	_Gallons.
Water Volume to be Purged: <u>4.5</u>	Gallons.	
Water Volume Actually Purged:	Gallons.	
Purge Method:		·

Physical Appearance/Comments:

Time	Volume (gal)	pН	Conductivit y (uS)	Temperature (°F)	Turbidity (FTU)
	1.5	5.42	497	59.7	7/000
	3.0	5.41	487	59.4	71000
	4.5	5.42	482	59. S	21000

Samplingand	Analytical	Methods:
Laboratory Name and Location:	STL	·

WELL SA	MPLING DATA	FORM
Client:		
Project No.: <u>GS2-04</u>	<u>-65</u>	
Location: NC14		
Well No.:AIMW-11B	Well Dian	neter: <u>211</u>
Date: 10/12/64	Start Time	ð:
Weather: <u>SGNN</u>	Finish Tin	ne:
Sampled By: <u><u>BC/MS</u></u>		
Depth to Bottom of Well:	87.00	Feet.
Depth to Water:	53,35	Feet.
Height of Water Column:	35.65	Feet.
Water Volume in Casing:	5.7	Gallons.
Water Volume to be Purged:	/Gallons.	
Water Volume Actually Purged:	<u>75</u> Gallons.	
Purge Method:	HP	

Physical Appearance/Comments:

FIELD MEASUREMENTS

Time	Volume (gal)	pН	Conductivit y (uS)	Temperature (°F)	Turbidity (FTU)
	6	6.06	181	61.9	71000
	12	557	182	60.3	71000
	17.75	5.58	189	60.0	0000

· :

Samplingand	Analytical	Methods:
Laboratory Name and Location:	STL	

ATTACHMENT B

. .

LABORATORY CHEMICAL ANALYTICAL REPORTS

ECO NOV 8 - 2004

tor_ J.L. Dubauskas

Signature

Name: Johanna L. Dubauskas

Title: Project Manager

E-Mail: jdubauskas@stl-inc.com

STL Connecticut 128 Long Hill Cross Road Shelton, CT 06484

This Report Contains (246) Pages

STL Report : 207793 FPM GROUP

Case Narrative

Sample Receipt – All samples were received in good condition and at the proper temperature.

Volatile Organics – Volatile organics were determined by purge and trap GC/MS using guidance provided in Method 5030B/8260B.

The spike compound percent recoveries were within the laboratory generated guidelines in the independent source quality control samples.

Sample Calculation:

Sample ID-A1MW-11A Compound- 1,1-Dichloroethene

 $\frac{(42636 \text{ area})(125 \text{ ng})(1)}{(163012 \text{ area})(.346 \text{ area/ng})(5 \text{ ml})} = 18.89 = 19 \text{ ug/L}.$

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in the case narrative.

0000001

Page 1 - Narrative for Login No. 207793

S A M P	LE INFORMATION Date: 11/05/2004
Job Number.: 207793	Project Number: 20000435
Customer: FANNING, PHILLIPS AND MOLNAR	Customer Project ID: ARKWIN INDUSTRIES
Attn: Ben Cancemi	Project Description: Arkwin Industries

Laboratory Sample ID	Customer Sample ID	Sample Matrix	Date Sampled	Time Sampled	Date Received	Time Received
207793-1	A1MW-11E	Groundwater	10/13/2004	10:00	10/15/2004	09:30
207793-2	A1MW-11A	Groundwater	10/13/2004	10:20	10/15/2004	09:30
207793-3	A1MW-11B	Groundwater	10/1 3 /2004	10:10	10/15/2004	09:30
207793-4	MW-1	Groundwater	10/13/2004	12:20	10/15/2004	09:30
207793-5	A1MW-8A	Groundwater	10/13/2004	11:50	10/15/2004	09:30
207793-6	A1MW-8B	Groundwater	10/13/2004	11:40	10/15/2004	09:30
207793-7	MW-2	Groundwater	10/13/2004	11:00	10/15/2004	09:30
207793-8	MW-12	Groundwater	10/13/2004	11:10	10/15/2004	09:30
207793-9	MW-3	Groundwater	10/13/2004	13:40	10/15/2004	09:30
207793-10	A1MW-9A	Groundwater	10/13/2004	13:10	10/15/2004	09:30
207793-11	A1MW-9B	Groundwater	10/13/2004	13:00	10/15/2004	09:30
207793-12	MW-7	Groundwater	10/13/2004	15:40	10/15/2004	09:30
207793-13	A1MW-10B	Groundwater	10/13/2004	14:50	10/15/2004	09:3 0
207793-14	A1MW-10A	Groundwater	10/13/2004	15:00	10/15/2004	09 :3 0
207793-15	MW-4	Groundwater	10/13/2004	14:15	10/15/2004	09:30
207793-16	тв	Groundwater	10/13/2004	00:00	10/15/2004	09:30
					4	
					1	

Page 1

LABORATORY TEST RESULTS

Job Number: 207793

Date:10/28/2004

ATTN: Ben Cancemi

CUSTOMER: FANNING, PHILLIPS AND MOLNAR

PROJECT: ARKWIN INDUSTRIES

Customer Sample ID: A1MW-11E Date Sampled.....: 10/13/2004 Time Sampled.....: 10:00 Sample Matrix....: Groundwater Laboratory Sample ID: 207793-1 Date Received.....: 10/15/2004 Time Received.....: 09:30

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DT	DATE/	TIME	тесн
8260B	Volatile Organics (5mL Purge)					,						
0	Chloromethane	ND	U	1.4	5.0	1.00000	ug/L	39771		10/25/0	4 1707	pam
	Vinyl chloride	ND	U	0.60	5.0	1.00000	ug/L	39771	1	10/25/0	4 1707	pam
\mathbf{O}	Bromomethane	ND	U	2.7	5.0	1.00000	ug/L	39771		10/25/0	4 1707	Dam
\bigcirc (Chloroethane	ND	lu	1.7	5.0	1.00000	ug/L	39771	1 1	10/25/0	4 1707	pant
\bigcirc	1,1-Dichloroethene	ND	U	0.80	5.0	1.00000	ug/L	39771		10/25/0	4 1707	pam
Č,	Carbon disulfide	ND	{U	0.40	5.0	1.00000	ug/L	39771		10/25/0	4 1707	pam
ر المحا روستان	Acetone	ND	U	2.0	10	1.00000	ug/L	39771	ļ	10/25/0	4 1707	pam
<u> </u>	Methylene chloride	ND	U	0.60	5.0	1,00000	ug/L	39771		10/25/0	4 1707	pam
ω	trans-1,2-Dichloroethene	ND	U	0.50	5.0	1.00000	ug/L	39771	{ }	10/25/0	4 1707	pam
	1,1-Dichloroethane	ND	(U)	0.40	5.0	1.00000	ug/L	39771		10/25/0	4 1707	pam
	Vinyl acetate	ND	U	1.9	5.0	1.00000	ug/L	39771	1 1	10/25/0	4 1707	pam
	cis-1,2-Dichloroethene	ND	U	0.70	5.0	1.00000	ug/L	39771		10/25/0	4 1707	pam
	2-Butanone (MEK)	ND	U	1.6	10	1.00000	ug/∟	39771		10/25/0	4 1707	pam
	Chloroform	ND	U	0.60	5.0	1.00000	ug/L	39771	łl	10/25/0	4 1707	pam
i	1,1,1-Trichloroethane	ND	{u{	0.90	5.0	1.00000	ug/L	39771		10/25/0	4 1707	pam
	Carbon tetrachloride	NÐ	U	0.60	5.0	1.00000	ug/L	39771		10/25/0	4 1707	pam
,	Benzene	ND	<u></u> ט	0.50	5.0	1.00000	ug/L	39771		10/25/0	4 1707	pam
	1,2-Dichloroethane	ND	U	0.60	5.0	1.00000	ug/L	39771		10/25/0	4 1707	pam
	Trichloroethene	ND	ប្រ	0.80	5.0	1.00000	ug/L	39771		10/25/0	4 1707	pam
	1,2-DichLoropropane	ND	U	0.70	5.0	1.00000	ug/L	39771		10/25/0	4 1707	pam
	Bromodichloromethane	ND	u lu	. 0.70	5.0	1.00000	ug/L	39771		10/25/0	4 1707	pam
	cis-1,3-Dichloropropene	ND	(u)	0.40	5.0	1.00000	ug/L	39771		10/25/0	4 1707	pam
	4-Methyl-2-pentanone (MIBK)	ND	U	0.90	10	1.00000	ug/L	39771		10/25/0	4 1707	pam
	Toluene	ND	U	0.40	5.0	1.00000	ug/L	39771		10/25/0	4 1707	pam
	trans-1,3-Dichloropropene	ND	U	0.80	5.0	1.00000	ug/L	39771		10/25/0	4 1707	pam
	1.1.2-Trichloroethane	ND	U	0.80	5.0	1.00000	l ug/L	39771		10/25/0	4 1707	pam
	Tetrachloroethene	ND	u	0.40	5.0	1.00000	ug/L	39771		10/25/0	4 1707	pam
	2-Hexanone	ND	່ປ	0.70	10	1.00000	ug/L	39771		10/25/0	4 1707	pam
					i							

* In Description = Dry Wgt.

			TECH		
			ME	7071 7071 7071 7071 7071	
			TE/TJ	202020 202020 202020 202020 202020	
			βĄ		
2	i ma or		DT		
8/200	n Car		ATCH		
:10/2	Be		•	<u> </u>	
Date	NTTA		STIN	イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イ	
			UTIO		
			DIL		
		100			
		7793- /15/2 :30	RL	ນ ມີ	
S		893 893 893			
ש ש		ole II			ļ
ы S	ES	ved.	DL	22.00 22.00 22.00 20.00	
æ	USTRI	atory Recei Recei			
L S	GNI N	Labor Date Time	6		
μ Γ	(RKW I		FLAG		ge 3
R Y	CT: J		ø	22222	Pa
1 O	PROJE		ESULT		
R A			PLE R		
A B (SAM	222222	
			K		
			IPTIC		ند
1			DESCR		.5 M G
	(AR	L (1)	rest	than	= D
ñ	MOL	-11E 5/2004	:TER/	thane to the terms of the terms of the terms of the terms of terms	ption
20779	s and	A1M4- 10/13 10:00 Grour	ARAME	trach tach	escri
ber:	ILLIP	9	•	s (tc	E E
- NUM	G, PH	ample ed ed rix		ibros tyretty 2,2,2,2	*
P	ENN 3	mer Si Samplu Samplu Bati	-	20mvmfx	-
	R: F	Custo Date Trime Sample	1ETHOI		
	ISTOME	0 8 7 9	EST)	000004	
	ថ	_		000004	

	Job Number: 207793		-		o -		Date:'	10/28/2004			
CUSTOMER: FANN	VING, PHILLIPS AND MOLNAR	PROJECT:	ARKWIN	INDUSTRIES			ATTN:	Ben Cance	Ē		
Customer Date San Time San Sample M	r Sample ID: A1MW-11A mpled: 10/13/2004 mpled: 10:20 hatrix: Groundwater		TT TT	aboratory Sample . ite Received	ID: 207793-2 : 10/15/2004 : 09:30						· · · · · · · · · · · · · · · · · · ·
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	G FLAGS	MDL	RL	DILUTION	MITS	BATCH D	T DATE/	TIME	TECH
⁵⁰⁰	Volatile Organics (5mL Purge) Chloromethane Vinyl chloride	QN	:	1.4	.0 .0	1.00000	, ng/L L	17795 17772 17772	10/25/0	4 1731	mag Mag
00	Bromonethane Chloroethane 1 3-10: hor charteane	a Q Q	<u> </u>		0.00	1.0000		17795	10/22/0	1731	
 000	Carbon disulfide Acetone	22		9.0.0		1.00000	ר ר המ/ך ה	39771	10/25/0	555	m m m m
05	Methylene chloride trans-1,2-Dichloroethene 1,1-Dichloroethane	ND ND 8.2	22	0.50	0.00	1.00000	1/6n 1/6n	39771	10/25/0		n mag bam bam
	Vinyl acetate cis-1,2-Dichloroethene	ND 15	5	0.70	0.0, 0,0,0		ng/L ug/L	39771 39771 20771	10/22/01	151 4 151 4 151 4	
	Z-Butanone (MEK) Chloroform (MEK)			0.00	0.0	1.0000	ng/L ug/L	127765	10/25/0	1731	n med Dam
	1,1,1 1.1.1.1.1.0.0ethane Carbon tetrachloride Benzene	Q Q	20	0.50	5.0	1.00000	ng/L	39771	10/25/0	4 1731	med med
	1,2-Dichloroethane Trichloroethene	ND 49	<u> </u>	0.60	2.0	1.00000	ng/L ug/L	39771	10/25/0	4 1731	pam pam
	1,2-Dichtoropropane Bromodichtoromethane	99	<u> </u>	0.70	0.0.0		-/ -/ -/ -/ -/ -/ -/ -/ -/ -/ -/ -/ -/ -	39771 39771 20771	10/22/01	151 4 151 4 153 4	
	cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK)			0.0 9 0.0 0	, ę.		ng/r ng/r	39771 1792	10/25/01		med
	Toluene trans-1,3-Dichloropropene			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,0,0	1.0000	ug/r t	39771	10/22/0	4 1731	lied
	1,1,2-Trichloroethane Tetrachloroethene	47 47	<u> </u>	0.0	2.0	1.0000	1/50 ng/L	39771	10/25/0	4 1731	pam pam
	2-Hexanone	5	5		2						
	* In Description = Dry Wgt.	с.	age 4								,
1											

,		eart	DT DATE/TIME TECH	10/25/04 1731 pam 10/25/04 1731 pam 10/25/04 1731 pam 10/25/04 1731 pam 10/25/04 1731 pam 10/25/04 1731 pam	
	Date:10/28/2004	ATTN: Ben Cano	UNITS BATCH	ug/L 10/L 10/L 10/L 10/L 10/L 10/L 10/L 10	
	T S	10,15/2004		~~~~~ ~~~~~~~	
	T RESUL	DUSTRIES ratory Sample Received	MDL	0,50 0,70 0,00 0,00 0,00 0,00 0,00 0,00	
	T E S	ARKWIN IN Labo Date	LAGS		ige 5
	LABORATORY	PROJECT:	SAMPLE RESULT 6	222222	<u>В</u>
	Number: 207793	, РНІЦЬТРЗ АМВ МОЕЛЛАR mple ID: А1МЫ-11А d: 10/13/2004	TX Groundwater	bromochloromethane lorobenzene hylbenzene rrene amoform 1,2,2-Tetrachloroethane lenes (total)	* In Description = Dry Wgt.
		CUSTOMER: FANNING, Customer Samp Date Sampled Tate Sampled	TEST NETHOD	<u> 者ままま 255</u> 000006	

, ·

LABORATORY TEST RESULTS

Job Number: 207793

Date:10/28/2004

ATTN: Ben Cancemi

CUSTOMER: FANNING, PHILLIPS AND MOLNAR PROJECT: ARKWIN INDUSTRIES

Customer Sample ID: A1MW-11B Date Sampled.....: 10/13/2004 Time Sampled.....: 10:10 Sample Matrix....: Groundwater

Laboratory Sample ID: 207793-3 Date Received.....: 10/15/2004 Time Received.....: 09:30

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	٩	FLAGS	MDL	RL	DILUTION	UNITS	BATCH	₽T	DATE/	TIME	тесн
8260B	Volatile Organics (5mL Purge)			1					1				
	Chloromethane	ND	U		1.4	5.0	11.00000	ua/L	39771	[.]	10/25/0	4 1755	bloam
	Vinyl chloride	ND	JU		0.60	5.0	1.00000	ua/L	39771		10/25/0	4 1755	bam
\Box ·	Bromomethane	ND	U	í ·	2.7	5.0	1.00000	ua/L	39771		10/25/0	4 1755	Dam
\Box	Chloroethane	ND	U		1.7	5.0	1.00000	ug/L	39771	F	10/25/0	4 1755	pam
	1,1-Dichloroethene	ND	U		0.80	5.0	1.00000	ug/L	39771		10/25/0	4 1755	pam
	Carbon disulfide	ND	U		0.40	5.0	1.00000	ug/L	39771		10/25/0	4 1755	pam
2002 C	Acetone	ND	U	ļ	2.0	10	1.00000	ug/L	39771		10/25/0	4 1755	pam
	Methylene chloride	ND	U		0.60	5.0	1.00000	ug/L	39771] }	10/25/0	4 1755	ipam
	trans-1,2-Dichloroethene	ND	U		0.50	5.0	1.00000	ug/L	39771		10/25/04	4 1755	pam
	1,1-Dichloroethane	ND	U		0.40	5.0	1.00000	ug/L	39771		10/25/0	4 1755	pam
	Vinyl acetate	ND	ប	l	1.9	5.0	1.00000	ug/L	39771		10/25/0	4 1755	pant
	cis-1,2-Dichloroethene	ND	U	1	0.70	5.0	1.00000	ug/L	39771		10/25/0	4 1755	pam
l i	2-Butanone (NEK)	ND	U]	1.6	10	1.00000	ug/L	39771		10/25/0	4 1755	pam
]	Chloroform	ND	juj	ļ	0.60	5.0	1.00000	ug/L	39771		10/25/0	4 1755	pam
	1,1,1-Trichloroethane	ND	ט		0.90	5.0	1.00000	ug/L	39771		10/25/0	4 1755	pam
	Carbon tetrachloride	ND	U		0.60	5.0	1.00000	ug/L	39771		10/25/04	4 1755	pam
	Benzene	ND	U		0.50	5.0	1.00000	ug/L	39771		10/25/0	4 1755	pam
	1,2-Dichloroethane	ND	U		0.60	5.0	1.00000	ug/L	39771		10/25/0	4 1755	pam
	Trichloroethene	ND	U		0.80	5.0	1.00000	ug/L	39771	ΙI	10/25/0	4 1755	pam
j j	1,2-Dichloropropane	ND	U		0.70	5.0	1.00000	ug/L	39771		10/25/0	4 1755	pam
	Bromodichloromethane	ND	[U]		0.70	5.0	1.00000	ug/L	39771	1	10/25/0	4 1755	pam
	cis-1,3-Dichloropropene	ND	U		0.40	5.0	1.00000	ug/L	39771		10/25/0	4 1755	pam
	4-Methyl-2-pentanone (MIBK)	ND	U		0.90	10	1.00000	ug/L	39771		10/25/0	4 1755	pam
	Toluene	ND	U		0.40	5.0	1.00000	ug/L	39771	1	10/25/0	4 1755	pan
	trans-1,3-Dichloropropene	ND	U		0,80	5.0	1.00000	ug/L	39771		10/25/0	4 1755	pam
	1,1,2-Trichloroethane	ND	U		0,80	5.0	1.00000	ug/L	39771		10/25/0	4 1755	pam
	Tetrachloroethene	ND	10	ł	0.40	5.0	1.00000	ug/L	59771		10/25/0	+ 1755	pam
	2-Hexanone	ND	U		0.70	10	1.00000	ug/L	39771		10/25/04	+ 1755	pam

* In Description = Dry Wgt.
PROJECT: ARKWIN INDUSTRIES

Date:10/28/2004

ATTN: Ben Cancemi

CUSTOMER: FANNING, PHILLIPS AND MOLNAR

Customer Sample ID: A1MW-11B Date Sampled.....: 10/13/2004 Time Sampled.....: 10:10 Sample Matrix....: Groundwater

Job Number: 207793

Laboratory Sample ID: 207793-3 Date Received......: 10/15/2004 Time Received......: 09:30

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q	FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME	TECH
00000	Dibromochloromethane Chlorobenzene Ethylbenzene Styrene Bromoform 1,1,2,2-Tetrachloroethane Xylenes (total)	ND ND ND ND ND ND	ບ ບ ບ ບ ບ ບ		0.50 0.50 0.70 0.80 0.70 0.90	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	39771 39771 39771 39771 39771 39771 39771 39771		10/25/04 1755 10/25/04 1755 10/25/04 1755 10/25/04 1755 10/25/04 1755 10/25/04 1755 10/25/04 1755	pam pam pam pam pam pam pam

Date:10/28/2004

ATTN: Ben Cancemi

CUSTOMER: FANNING, PHILLIPS AND MOLNAR

PROJECT: ARKWIN INDUSTRIES

Customer Sample ID: MW-1 Date Sampled.....: 10/13/2004 Time Sampled.....: 12:20 Sample Matrix....: Groundwater

Job Number: 207793

Laboratory Sample ID: 207793–4 Date Received.....: 10/15/2004 Time Received.....: 09:30

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME	. ° 1	TECH
	PARAMETER/TEST DESCRIPTION Volatile Organics (SmL Purge) Chloromethane Vinyl chloride Bromomethane Chloroethane 1,1-Dichloroethene Carbon disulfide Acetone Methylene chloride trans-1,2-Dichloroethene 1,1-Dichloroethane Vinyl acetate cis-1,2-Dichloroethene 2-Butanone (MEK) Chloroform 1,1,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Trichloroethene 1,2-Dichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Cis-1,3-Dichloromethane cis-1,3-Dichloromethane cis-1,3-Dichloropropene	SAMPLE RESULT ND ND ND ND ND ND ND ND ND ND ND ND ND	Q FLAGS U U	MDL 1.4 0.60 2.7 1.7 0.80 0.40 2.0 0.60 0.50 0.40 1.9 0.70 1.6 0.60 0.90 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.70 0.60 0.50 0.60 0.50 0.40 0.70 0.60 0.50 0.40 0.70 0.40 0.70 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.50 0.60 0.50 0.70 1.6 0.60 0.50 0.60 0.50 0.70 0.60 0.50 0.70 0.60 0.50 0.40 0.50 0.70 0.60 0.50 0.70 0.60 0.50 0.50 0.50 0.50 0.50 0.60 0.70 0.60 0.70 0.60 0.70 0.60 0.70 0.60 0.70 0.60 0.70 0.60 0.70 0.60 0.70 0.60 0.70 0.60 0.70 0.70 0.60 0.70 0.70 0.70 0.70 0.60 0.70 0.70 0.70 0.70 0.60 0.70	RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	DILUTION 1.000000 1.00000 1.00000 1.00000 1.000000 1.000000 1.000000 1.0000000000	UNITS US	8ATCH 39771	DT	DATE/TIME 10/25/04 18 10/25/04 18 10/25/0	1 р р р р р р р р р р р р р р р р р р р	ECH Jam Jam Jam Jam Jam Jam Jam Jam Jam Jam
	Trichloroethene 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK) Toluene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene 2-Kexanone	ND ND ND ND ND ND ND ND ND		0.80 0.70 0.40 0.90 0.40 0.80 0.80 0.40 0.70	5.0 5.0 5.0 10 5.0 5.0 5.0 5.0 5.0 10	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0g/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	39771 39771 39771 39771 39771 39771 39771 39771 39771 39771		10/25/04 18" 10/25/04 18" 10/25/04 18" 10/25/04 18" 10/25/04 18" 10/25/04 18" 10/25/04 18" 10/25/04 18" 10/25/04 18"	19 p 19 p 19 p 19 p 19 p 19 p 19 p 19 p	am am am am am am am am am am am

 			Æ		
			Ħ		
			TIME	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
			DATE/	0/22/00 (22/00/22/00/22/00/22/00/22/00/22/00/22/00/22/00/22/00/22/00/22/00/22/00/22/00/22/00/22/00/22/00/22/00/22/00/22	
	E		11		
/2004	Canc		CH II	FEFFFF	
0/28/	Ben		BAT	2377 3377 777 777 777 777 777 777 777 77	
Date:1	ATTN:		MITS	21111111111111111111111111111111111111	
			N		
			ILUTIO		
		4	0		
		93-4 5/200	RL	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
s		207 101 06 06 06			
S Ш Х	5	ived	OL	000000	
	DUSTR .	Recer			
ы С	NI NI	Lapo Date Time	GS		
	ARKW		G FLA		age 9
0 8 1	SECT		11		
RAT	PR		E RÉSI		
ВО			SAMPL		
L A				2227222	
			N		
			RIPTI		<u>.</u>
			r desc	e .	Jry Wg
	OLNAR	004 ater	R/TES	oe thar	
1793	AND A	-1-13/2 ::20 oundw	ARETE	Chlor a	ripti
er: 20	TIPS		PAR	tota (tota (tota	Desc
, сшлх	IHA	ix.		bromo vrene omofoi Lenes Lenes	ц *
doL	UNNING .	ample Matr		292 X 2 2 X	
	ER: FI	Custon Date (Time (Sample	1ETHOE		
	USTOM		TEST	000010	
L				0000010	

PROJECT: ARKWIN INDUSTRIES

Job Number: 207793

Date:10/28/2004

ATTN: Ben Cancemi

CUSTOMER: FANNING, PHILLIPS AND MOLNAR

Customer Sample ID: A1MW-8A Date Sampled.....: 10/13/2004 Time Sampled.....: 11:50 Sample Matrix.....: Groundwater

Laboratory Sample ID: 207793-5 Date Received.....: 10/15/2004 Time Received.....: 09:30

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	BATCH D	T DATE/TIME TECH
8260B	Volatile Organics (5mL Purge) Chloromethane Vinyl chloride Bromomethane Chloroethane 1,1-Dichloroethene Carbon disulfide Acetone Methylene chloride	SAMPLE RESULT ND ND ND ND 1.1 ND ND ND	G FLAGS	MDL 1.4 0.60 2.7 1.7 0.80 0.40 2.0 0.60	RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 10 5.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	UWITS Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L	BATCH D 39771 39771 39771 39771 39771 39771 39771 39771 39771	T DATE/TINE TECH 10/25/04 1843 pam 10/25/04 1843 pam
}>	trans-1,2-Dichloroethene 1,1-Dichloroethane Vinyl acetate cis-1,2-Dichloroethene 2-Butanone (MEK) Chloroform 1,1,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Trichloroethene 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK) Toluene	ND ND ND ND ND ND ND ND ND ND ND ND ND N		0.50 0.40 1.9 0.70 1.6 0.60 0.90 0.60 0.50 0.60 0.50 0.80 0.70 0.70 0.70 0.40 0.90 0.40	5.0 5.0 5.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	9/LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL	39771 39771 39771 39771 39771 39771 39771 39771 39771 39771 39771 39771 39771 39771 39771 39771 39771	10/25/04 1843 pam 10/25/04 1843 pam
	Trans-1,5-01Chloropropene 1,1,2-Trichloroethane Tetrachloroethene 2-Hexanone	ND ND ND	U U U	0.80 0.80 0.40 0.70	5.0 5.0 10	1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L	39771 39771 39771 39771	10/25/04 1843 pam 10/25/04 1843 pam 10/25/04 1843 pam

Date:10/28/2004

ATTN: Ben Cancemi

CUSTOMER: FANNING, PHILLIPS AND MOLNAR

PROJECT: ARKWIN INDUSTRIES

Customer Sample ID: A1MW-8A Date Sampled.....: 10/13/2004 Time Sampled.....: 11:50 Sample Matrix....: Groundwater

Job Number: 207793

Laboratory Sample ID: 207793-5 Date Received.....: 10/15/2004 Time Received.....: 09:30

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAG	i MDL	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME	тесн
000012	Dibromochloromethane Chlorobenzene Ethylbenzene Styrene Bromoform 1,1,2,2-Tetrachloroethane Xylenes (total)	ND ND ND ND ND ND		0.50 0.50 0.70 0.80 0.70 0.90	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L	39771 39771 39771 39771 39771 39771 39771 39771		10/25/04 1843 10/25/04 1843 10/25/04 1843 10/25/04 1843 10/25/04 1843 10/25/04 1843 10/25/04 1843	5 pam 5 pam 5 pam 5 pam 5 pam 5 pam 5 pam 5 pam

* In Description = Dry Wgt.

.

ND U 0.40 5.0 1.00000 ug/L 39771 10/25/04 1907 pail Tetrachloroethene ND U 0.70 10 1.00000 ug/L 39771 10/25/04 1907 pail Z-Hexanone ND U 0.70 10 1.00000 ug/L 39771 10/25/04 1907 pail
--

Date:10/28/2004

ATTN: Ben Cancemi

Job Number: 207793

CUSTOMER: FANNING, PHILLIPS AND MOLNAR

PROJECT: ARKWIN INDUSTRIES

Customer Sample ID: A1MW-8B Date Sampled.....: 10/13/2004 Time Sampled.....: 11:40 Sample Matrix....: Groundwater Laboratory Sample ID: 207793-6 Date Received.....: 10/15/2004 Time Received.....: 09:30

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	BATCH D	DATE/TIME TE	ECH
000001/	Dibromochloromethane Chlorobenzene Ethylbenzene Styrene Bromoform 1,1,2,2-Tetrachloroethane Xylenes (total)	ND ND ND ND ND ND		0.50 0.50 0.70 0.80 0.70 0.90	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	սց/Լ սց/Լ սց/Լ սց/Լ սց/Լ սց/Լ սց/Լ	39771 39771 39771 39771 39771 39771 39771 39771	10/25/04 1907 pa 10/25/04 1907 pa 10/25/04 1907 pa 10/25/04 1907 pa 10/25/04 1907 pa 10/25/04 1907 pa 10/25/04 1907 pa	3m 3m 3m 3m 3m 3m 3m

PROJECT: ARKWIN INDUSTRIES

Job Number: 207793

Date:10/28/2004

ATTN: Ben Cancemi

CUSTOMER: FANNING, PHILLIPS AND MOLNAR

Customer Sample ID: MW-2

Date Sampled.....: 10/13/2004 Time Sampled.....: 11:00 Sample Matrix....: Groundwater

Laboratory Sample ID: 207793-7 Date Received.....: 10/15/2004 Time Received.....: 09:30

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPI	E RESULT	Q	FLAGS	MDL	RL.	DILUTION	UNITS	BATCH	DT	DATE/TIME	TECH
8260B	Volatile Organics (5mL Purge)		<u></u>								1200		<u></u>
	Chloromethane	ND		lul		1.4	5.0	1.00000	ua/1	39771		10/25/04 193	1
\mathbf{O}	Vinyl chloride	ND		10		0.60	5.0	1.00000	ug/L	39771		10/25/04 193	100
O	Bromomethane	ND		U		2.7	5.0	1.00000	ug/)	39771		10/25/04 193	1 nem
\bigcirc .	Chloroethane	ND		lul		1.7	5.0	1.00000	ua/L	39771	[]	10/25/04 193	1 pam
ō.	1,1-Dichloroethene		3.3	11	н	0.80	5.0	1.00000	uq/L	39771		10/25/04 193	1 pam
Ä	Carbon disulfide	ND		10		0.40	5.0	1.00000	ug/L	39771]]	10/25/04 1934	1 pam
	Acetone	ND		U		2.0	10	1.00000	ug/L	39771		10/25/04 1931	1 pam
	Methylene chloride	ND		10		0.60	5.0	1.00000	ug/L	39771	1 1	10/25/04 1931	1 pam
J U U	trans-1,2-Dichloroethene	DM		[U]		0.50	5.0	1.00000	uģ/L	39771		10/25/04 1931	1 pam
	1,1-Dichloroethane		3.0	J	M	0.40	5.0	1.00000	ug/L	39771		10/25/04 1931	1 pam
	Vinyl acetate	ND		U		1.9	5.0	1.00000	ug/L	39771	1	10/25/04 1931	1 pam
	cis-1,2-Dichloroethene		1.5	J		0.70	5.0	1.00000	ug/L	39771		10/25/04 1931	1 pant
	2-Butanone (MEK)	ND		{U}		1.6	10	1.00000	ug/L	39771		10/25/04 1931	1 pam
	Chloroform	ND		U		0.60	5.0	1.00000	ug/L	39771		10/25/04 1931	1 pam
	1,1,1-Trichloroethane		2.6	11	M	0.90	5.0	1.00000	ug/L	39771		10/25/04 1937	1 pam
	Carbon tetrachloride	ND		U		0.60	5.0	1.00000	ug/L	39771		10/25/04 1931	ipam
	Benzene	ND		UV.		0.50	5.0	1.00000	ug/L	39771		10/25/04 1931	pam
	1,2-Dichloroethane	}	0.91	13	м	0.60	5.0	1.00000	ug/L	39777		10/25/04 1951	ipam i
	Trichloroethene	L	16	1.1		0.80	5.0	1.00000	ug/L	39771		10/25/04 1951	lipam
	1,2-Dichloropropane	ND		U		0.70	5.0	11.00000	ug/L	39771		10/25/04 1931	i pam
	Bromodichloromethane	ND		101		0.70	5.0	1.00000	ug/L	20774		10/25/04 1951	1 pam
	cis-1,3-Dichloropropene	ND		ויין		0.40	5.0	1.00000	ug/L	30774		10/25/04 1931	
	4-Methyl-2-pentanone (MIBK)	ND		U		0.90	10	1.00000	ug/L	20774		10/22/04 1931	
	Toluene	ND		U		0.40	5.0	1.00000	ug/L	30774		10/25/04 1931	
	trans-1,3-Dichloropropene	ND		UU		0.80	5.0	1.00000	ug/L	20771		10/25/04 1951	1 pam
	1,1,2-Trichloroethane	IND		1u		08.0	5.0	1.0000	ug/L	20771		10/25/04 195	
	Tetrachloroethene	1	0.80	11		0.40	5.0	1 00000	ug/L	30771		10/25/04 1931	1 nam
	2-Hexanone	IND		[U]		0.70	10	1,00000	uy/L	J7/1		10/20/04 1901	pan

* In Description = Dry Wgt.

Page 14

PROJECT: ARKWIN INDUSTRIES

Date:10/28/2004

ATTN: Ben Cancemi

CUSTOMER: FANNING, PHILLIPS AND MOLNAR

Customer Sample ID: MW-2 Date Sampled.....: 10/13/2004 Time Sampled.....: 11:00 Sample Matrix....: Groundwater

Job Number: 207793

Laboratory Sample ID: 207793-7 Date Received.....: 10/15/2004 Time Received.....: 09:30

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q	FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME	TECH
0000016	Dibromochloromethane Chlorobenzene Ethylbenzene Styrene Bromoform 1,1,2,2-Tetrachloroethane Xylenes (total)	ND ND ND ND ND ND			0.50 0.50 0.70 0.80 0.70 0.90	5.0 5.0 5.0 5.0 5.0 5.0 5.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	39771 39771 39771 39771 39771 39771 39771 39771		10/25/04 1931 10/25/04 1931 10/25/04 1931 10/25/04 1931 10/25/04 1931 10/25/04 1931 10/25/04 1931	pam pam pam pam pam pam

Customer Sample ID: WU-72 Date Sampled: 10/13/2004 Time Sampled: 10/13/2004 Time Sampled: 10/13/2004 Time Sampled: 11/13/2004 EST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS Notatile Organics (Sall Purge) NB Volatile Organics (Sall Purge) NB Vinyl Jactate Callorotethene NB Vinyl Jactate NB Vinyl Jactate NB Vinyl Jactate NB VINY Jactate NB VIN JAC VIN VIN JACTATA VINY JA	Laboratory Sample ID: 207793-8 Date Received 10/15/2004 Time Received 09:30 H 0.60 P 5.0 H 0.60 2.7 1.7 5.0 H 0.40 2.0 H 0.40 7.0 7.0 1.7 7 5.0 H 0.40 7.0 7.0 7.0 7.0 7.0 1.7 7 5.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	DILUTION UNITS 1.00000 ug/L 1.00000 ug/L	39771 39771 39771 39771 39771 39771 39771 39777 39777	0/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956	TECH pam pam pam pam
EST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT & FLAGS R260B Volatile Organics (5mL Purge) NB VIJY chloroethane Vijy chloroethane Vijy chloroethane Chloroethane Chloroethane Chloroethane Carbon disulfide NB VI - 1/1-bichloroethane NB VIJY chloroethane Vijy 1 - 1/1-bichloroethane NB VIJY chloroethane Vijy 1 - 2.8 J H VIJY - 2.05 J H VIJY - 2.05 Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Vijy 2 - 2.8 J H VIJY - 2.05 Chloroethane	LAGS HDL. F 1.4GS MDL. F 1.2.77 1.2.060 1.2.77 1.2.060 1.2.00 1.2.00 1.2.00 1.2.00 1.2.00 1.2.00 1.2.0	pitUrTioN UNITS 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L	BATCH 6 39771 39771 39771 39771 39771 39771 39771 39771 39771	DT DATE/TIME 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956	TECH TECH Pam Pam Pam Pam
8260BVolatile Organics (5mL Purge)NDVinyl chloromethaneVinyl chlorodetVinyl chloromethaneNDVinyl chloroethaneNDChloroethaneNDChloroethaneNDCarbon disulfideNDCarbon disulfideNDAcetoneNDAcetoneNDCarbon disulfideNDAcetoneNDAcetoneNDCarbon disulfideNDAcetoneND	н ене 4.0 4.0 4.0 7.7 8.0 8.0 6.0 7.0 6.0 7.0 7.0 6.0 7.0 7.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	1.00000 1.000000 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000000	39771 39771 39771 39771 39771 39771 39771 39771	10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956	pam pam pam pam pam pam pam pam
Chloromethane Vinyl chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Acetone Ac	т	1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L	39771 39771 39771 39771 39771 39771 39771 39771 39771	10/25/94 1955 10/25/94 1955 10/25/94 1956 10/25/94 1956 10/25/94 1956 10/25/94 1956 10/25/94 1956 10/25/94 1956 10/25/94 1956	para para para para para para para para
Bromomethane1,1-bichloroethane1,1-bichloroethane1,1-bichloroethane1,1-bichloroethane1,1-bichloroethaneRetrylene chlorideRetrylene chlorideRetrylene chlorideRetrylene chloroethaneNinyl acetate1,1-bichloroethane1,1-bichloroethane1,1-bichloroethane1,1-bichloroethane1,1-bichloroethane1,1-bichloroethane1,1-bichloroethane1,1-bichloroethane1,1-bichloroethane1,1,1-Trichloroethane1,1,1-Trichloroethane1,1,1-Trichloroethane1,2-bichloroptaneBenzene1,2-bichloroptane1,1-1,2-bichloroptane1,1-1,2-bichloroptane1,1-1,2-bichloroptane1,1-1,2-	т тт т 277-00200-0-0-00 277-860886 8	ug/L ug/L 1.00000 ug/L	39777 39777 39777 39777 39777 39777 39777 39777	10/25/04 10/25/04 10/25/04 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956	pam pam pam pam pam
ChloroethaneND3.8U1,1-Dichloroethane1,1-DichloroethaneND3.8U1,1-DichloroethaneND2.8UUAcetoneND2.8UUAcetoneND2.8UU1,1-DichloroethaneND2.8UU1,1-DichloroethaneND1.5UU1,1-DichloroethaneND2.8UU1,1-DichloroethaneND1.5UU1,1,1-TrichloroethaneND2.8UU1,1,1-TrichloroethaneND2.8UU1,1,1-TrichloroethaneND1.5UU1,1,1-TrichloroethaneND1.5UU1,1,2-DichloroethaneND1.5UU1,2-DichloroptaneND1.7UU1,2-DichloroptaneNDNDUU1,2-DichloroptaneNDNDUU1,2-DichloroptaneNDNDUU1,2-DichloroptaneNDNDUU1,2-DichloroptaneNDNDUU1,2-DichloroptaneNDNDUU1,2-DichloroptaneNDNDUU1,2-DichloroptaneNDNDUU1,2-DichloroptaneNDUU1,2-DichloroptaneNDUU1,2-DichloroptaneNDUU1,2-DichloroptaneNDU<	т т т т 7.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L	39771 39771 39771 39771 39771 39771	10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956	pam pam pam pam pam
1,1-Dichloroethene3.81,1-DichloroetheneNDAcetoneNDAcetoneNDAcetoneNDAcetoneNDAcetoneNDAcetoneNDAcetoneND1,1-DichloroetheneND1,1-DichloroetheneND1,1-DichloroetheneND1,1-DichloroetheneND1,1,1-TrichloroetheneND1,1,1-TrichloroetheneND1,1,1-TrichloroetheneND1,1,1-TrichloroetheneND1,1,1-TrichloroetheneND1,1,1-TrichloroetheneND1,1,2-DichloroetheneND1,2-Dichloroethene	т т т т 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0	1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L 1.00000 ug/L	22/1/2 237/1/2	10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956 10/25/04 1956	
Carbon drautine ND Acetone ND Yinyl acetate ND Z-Butanone (MEK) ND Yinyl-Acethone (MEK) ND Yinyl-Acethone (MIBK) ND Yingtor ND Yingtor ND Yingtor YN Yingtor ND Yingtor ND Yingtor ND Yingtor ND Yingtor ND Yingtor ND <td>Е Т Е 0.0006050 0.0006050 0.0006050 0.0000000000</td> <td></td> <td>12262 17792 17792 17792</td> <td>10/25/04 1956 10/25/04 1956 10/25/04 1956</td> <td></td>	Е Т Е 0.0006050 0.0006050 0.0006050 0.0000000000		12262 17792 17792 17792	10/25/04 1956 10/25/04 1956 10/25/04 1956	
Methylene chlorideNDtrans-1,2-DichloroethaneND1,1-DichloroethaneND1,1-DichloroethaneND1,1-DichloroethaneND1,1-DichloroethaneND2-Butanone (MEK)ND2.Butanone (MEK)ND2.Butanone (MEK)ND2.Butanone (MEK)ND1,1,1-TrichloroethaneND1,1,1-TrichloroethaneND2.Butanone (MEK)ND1,1,2-DichloroethaneND1,2-DichloroethaneND1,2-DichloroethaneND1,2-DichloroethaneND1,2-DichloroethaneND1,2-DichloropeneND1,2-DichloropeneND1,2-DichloropeneND1,2-DichloropeneND1,2-DichloropeneND1,2-DichloropeneND1,2-DichloropeneND1,2-DichloropeneND1,2-DichloropeneND1,2-DichloropeneND1,2-DichloropeneND1,2-DichloropeneND1,2-DichloropeneND1,2-DichloropeneND1,2-DichloropeneND1,2-DichloropeneND1,2-DichloropeneND1,2-DichloropeneND1,3-DichloropeneND1,3-DichloropeneND1,3-DichloropeneND1,3-DichloropeneND1,3-DichloropeneND1,3-DichloropeneND1,3-DichloropeneND1,3-DichloropeneND1,3-Dichlo	н н т 0.50 0.50 0.60 0.60 0.60 0.60 0.60 0.60	1.00000 ug/L 1.00000 ug/L 1.00000 ug/L	39771 39771 3977	10/25/04 1956 10/25/04 1956 10/25/04 1956	
trans-1,2-DichloroetheneND1,1-DichloroethaneND2.8J1,1-DichloroethaneND2.9J1,1-TrichloroethaneND2.9J2.9ND2.9J1,1,1-TrichloroethaneND1,1,1-TrichloroethaneND1,1,1-TrichloroethaneND1,2-DichloroethaneND1,2-DichloroethaneND1,2-DichloroethaneND1,2-DichloroethaneND1,2-DichloropropaneND1,2-DichloropropeneND1,3-DichloropropeneND1,3-DichloropropeneND1,3-DichloropropeneND<	ттт 0.50 0.4.0 0.7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.00000 ug/L 1.00000 ug/L 1.00000 ug/L	39771	10/25/04 1956	
1,1-Dichloroethane2.8Vinyl acetateVinyl acetateVinyl acetateNDcis-1,2-Dichloroethane1.52-Butanone (NEK)ND2-Butanone (NEK)ND2-Butanone (NEK)ND2.1,1-TrichloroethaneND1,1,1-TrichloroethaneND2.2.8J1,2-DichloroethaneND1,2-DichloroethaneND1,2-DichloroethaneND1,2-DichloroethaneND1,2-DichloroptopeneND1,2-DichloropropeneND1,2-DichloropropeneND1,2-DichloroptopeneND1,3-DichloroptopeneND	ттт 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1.00000 ug/L 1.00000 ug/L	39771	22/01	ban med pan med pan med
Vinyl acetate cis-1,2-Dichloroethene Chloroform Chloroform (hitoroform (1,1,1-Trichloroethane (1,1,1-Trichloroethane (1,1,1-Trichloroethane (1,2-Dichloroethane (1,2-Dichloroethane (1,2-Dichloropane) (1,2-Dichloropane) (1,2-	н н 2000		20714	140/JE/07 10E	
Z-Butanone (MEK) Chloroform Chloroform Carbon tetrachloride Carbon tetrachloride Benzene 1,7,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Trichloroethane 1,2-Dichloropropane Bromodichloronmethane Cis-1,3-Dichloropropene ND 1,2-Dichloro	н 0.66 0.90 5.0 5.0	1 00000 1 10/1	11/25	10/25/04 1956	
Chloroform Chloroform 1,1,1-Trichloroethane Carbon tetrachloride Benzene Carbon tetrachloride Benzene 1,2-Dichloroethane 1,2-Dichloropane ND 1,2-Dichloropane	M 0.60 5.0	1.00000 ug/L	39771	10/25/04 1956	bam bam
1,1,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Trichloroethane 1,2-Dichloropropane 1,2-Dichloropropane Bromodichloropropane Bromodichloropropane Cis-1,3-Dichloropropene Cis-1,3-Dichloropropene ND Cis-1,2-Dichloropropene ND Cis-1,2-Dichloropropene ND Cis-1,2-Dichloropropene ND Cis-1,2-Dichloropropene ND Cis-1,2-Dichloropropene ND Cis-1,2-Dichloropropene ND Cis-1,2-Dichloropropene ND Cis-1,2-Dichloropropene ND Cis-1,2-Dichloropropene ND Cis-1,2-Dichloropropene ND Cis-1,2-Dichloropropene Cis-1,3-Dichloropropene ND Cis-1,2-Dichloropropene ND Cis-1,3-Dichloropropene ND Cis-1,3-Dichloropropene ND Cis-1,3-Dichloropropene ND Cis-1,3-Dichloropropene Cis-1,3-Dichloropropene Cis-1,3-Dichloropropene ND Cis-1,3-Dichloropropene ND Cis-1,3-Dichloropropene Cis-1,3-Dichloropropene Cis-1,3-Dichloropropene ND Cis-1,	M 0.90 5.0	1.00000 ug/L	39771	10/25/04 1956	-
Carbon tetrachloride ND Carbon tetrachloride ND Benzene ND 1,2-Dichloroethane ND 17 UU 17 UU 17,2-Dichloroperpane ND 17 UU 20		1.00000 ug/L	39771	10/25/04 1956	100
Benzene ND U 1,2-Dichloroethane ND 17 U Trichloroptane ND 17 U 1,2-Dichloroptane ND U U 1,2-Dichloroptane ND U U 1,2-Dichloroptopane ND U U 1,1-Z-pentanone (MIBK) ND U U		1.00000 ug/L	17705	10/22/04 1936	
Trichloroethene Trichloroethene 1,2-Dichloropropane Bromodichloropropane cis-1,3-Dichloropropene cis-1,3-Dichloropropene MD 4-Methyl-2-pentanone (MIBK) Toluene		1.00000 ug/L	39774	10/25/04 1956	
1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene cis-1,3-Dichloropropene MD U 4-Methyl-2-pentanone (MIBK) Toluene	0.80 5.0	1.00000 ug/L	12795	10/25/04 1956	bam
Bromodichloromethane ND U cis-1,3-Dichloropropene ND U 4-Methyl-2-pentanone (MIBK) ND U Toluene ND U	0.70 5.0	1.00000 ug/L	39771	10/25/04 1956	pam
cis-1,3-Dichloropropene ND U 4-Methyl-2-pentanone (MIBK) ND U U Toluene ND U	0.70 5.0	1.00000 ug/L	39771	261 20/52/01	pam
4-Methyl-Z-pentanone (MIBK) ND U Toluene VD U	0.40 5.0	1.00000 hug/L	2077	10/22/01	
Toluene	0.90	1.00000 ug/L	12202	10/22/01	
		1 00000 ug/r	3977	10/25/04 1956	Dam
	0.80 5.0	1.00000 ug/L	39771	10/25/04 1956	bam
	0.40 5.0	1.00000 ug/L	39771	10/25/04 1956	pam
	0.70	1.00000 ug/L	39771	10/25/04 1950	med

			TECH		
			TE/TIME	5/04 1956 5/04 1956 5/04 1956 5/04 1956 5/04 1956	
	emi		DT DA		
0/28/2004	Ben Canc		BATCH	39771 39771 39770 17772 177777777	
Date:1	ATTN:		STINU	1111111111111111111111111111111111111	
			DILUTION	1.00000 1.00000 1.00000 1.00000 1.00000 00000 00000 00000 00000 00000 0000	
T S		10: 207793-8 : 10/15/2004 : 09:30	RL		
TRESUL	NDUSTRIES	oratory Sample e Received	TOM	000000 88888 88888	
T E S	ARKWIN I	Lab Dat Tim	FLAGS		ge 17
0 R Y	OJECT:		ut le		Pa
LABORAT	PR		SAMPLE RES	<u> </u>	
Job Number: 207793	ING, PHILLIPS AND MOLNAR	Sample ID: MW-12 Died: 10/13/2004 Died: 11:10 atrix Groundwater	PARAMETER/TEST DESCRIPTION	bibromochloromethane chlorobenzene Ethylbenzene Styrene Bromoform 1,1,2,2-Tetrachloroethane Xylenes (total)	* In Description = Dry Wgt.
<u>,</u>	CUSTOMER: FANNI	Customer Date Samp Time Sample Ma	TEST METHOD	0000018	

	LABORATO	RY TES CT: ARKNIN IN	T RESUL DUSTRIES	S	Date:1	3/28/2004 Ben Cancen	Ŧ	
ustomer Sample ID: MW-3 ate Sampled: 10/13/2004 ime Sampled: 13:40 ample Matrix: Groundwater		Labo Date Time	ratory Sample I Received	0: 207793-9 .: 10/15/2004 .: 09:30				
<pre>B volatile organics (5mL Purge) chloromethane VinyL chloride Bromomethane Chloroethane 1,1-Dichloroethane Carbon disulfide Acetone Methylene chloride trans-1,2-Dichloroethane VinyL acetate vinyL acetate cis-1,2-Dichloroethane VinyL acetate Chloroform 1,1,1-Trichloroethane cis-1,2-Dichloroethane cis-1,2-Dichloroethane cis-1,3-Dichloropene Henzene 1,2-Dichloroethane cis-1,3-Dichloropene Trichloroethane cis-1,3-Dichloropene Trichloroethane cis-1,3-Dichloropene Trichloroethane Colleene Colleene Co</pre>	<u>9999999999999999999999999999999999999</u>		+0%+00%999+0+0+000000000000000000000000		۲,۲,۲,۲,۲,۲,۲,۲,۲,۲,۲,۲,۲,۲,۲,۲,۲,۲,۲,	39771 39771 397777 39777 39777 39777 39777 39777 39777 39777 39777 397777 397777 39777777 397777 3977777777	22222222222222222222222222222222222222	

Date:10/28/2004

CUSTOMER: FANNING, PHILLIPS AND MOLNAR

PROJECT: ARKWIN INDUSTRIES

ATTN: Ben Cancemi

Customer Sample ID: MW-3 Date Sampled.....: 10/13/2004 Time Sampled.....: 13:40 Sample Matrix....: Groundwater

Job Number: 207793

Laboratory Sample ID: 207793-9 Date Received......: 10/15/2004 Time Received......: 09:30

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MD1,	RL	DILUTION	UNITS	BATCH	DT DATE/TIME TECH
0000020	Dibromochloromethane Chlorobenzene Ethylbenzene Bromoform 1,1,2,2-Tetrachloroethane Xylenes (total)	ND ND ND ND ND ND		0.50 0.50 0.70 0.80 0.70 0.90	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	սց/Լ սց/Լ սց/Լ սց/Լ սց/Լ սց/Լ	39771 39771 39771 39771 39771 39771 39771 39771	10/25/04 2020 pam 10/25/04 2020 pam 10/25/04 2020 pam 10/25/04 2020 pam 10/25/04 2020 pam 10/25/04 2020 pam 10/25/04 2020 pam

·Date:10/28/2004

CUSTOMER: FANNING, PHILLIPS AND MOLNAR

4

PROJECT: ARKWIN INDUSTRIES

ATTN: Ben Cancemi

Customer Sample ID: A1MW-9A Date Sampled.....: 10/13/2004 Time Sampled.....: 13:10 Sample Matrix....: Groundwater

Job Number: 207793

Laboratory Sample ID: 207793-10 Date Received......: 10/15/2004 Time Received.....: 09:30

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DT DATE/TIME TECH
82608	Volatile Organics (5mL Purge)								
	Chloromethane	ND	lul	1.4	5.0	1 00000	ua/1	39771	10/25/04 2116 nam
\mathbf{O} .	Vinyl chloride	ND	U	0,60	5.0	1.00000	ug/L	39771	10/25/04 2116 pam
	Bromomethane	ND	U	2.7	5.0	1.00000	ua/L	39771	10/25/04 2116 par
\Box	Chloroethane	ND	U	1.7	5.0	1.00000	ug/L	39771	10/25/04 2116 pam
ñ,	1,1-Dichloroethene	ND	U	0.80	5.0	1.00000	ug/L	39771	10/25/04 2116 pam
S	Carbon disulfide	ND	U	0.40	5.0	1.00000	ug/L	39771	10/25/04 2116 pam
	Acetone	ND	U	2.0	10	1.00000	ug/L	39771	10/25/04 2116 pam
IN I	Methylene chloride	ND	U	0.60	5.0	1.00000	ug/L	39771	10/25/04 2116 pam
 >	trans-1,2-Dichloroethene	ND	U	0.50	5.0	1.00000	ug/L	39771	10/25/04 2116 pam
	1,1-Dichloroethane	ND	U	0.40	5.0	1.00000	ug/L	39771	10/25/04 2116 pam
	Vinyl acetate	ND	U	1.9	5.0	1.00000	ug/L	39771	10/25/04 2116 pam
	cis-1,2-Dichloroethene	ND	U	0.70	5.0	1.00000	ug/L	39771	10/25/04 2116 pam
	2-Butanone (MEK)	ND	U	1.6) 10	1.00000	ug/L	39771	10/25/04 2116 pam
	Chloroform	ND	ប	0.60	5.0	1.00000	ug/L	39771	10/25/04 2116 pam
	1,1,1-Trichloroethane	ND	וטן	0.90	5.0	1.00000	ug/L	39771	10/25/04 2116 pam
	Carbon tetrachloride	ND	[U]	0.60	5.0	1.00000	ug/L	39771	10/25/04 2116 pam
	Benzene	ND	U	0.50	5.0	1.00000	ug/L	39771	10/25/04 2116 pam
	1,2-Dichloroethane	ND	101	0,60	5.0	1.00000	ug/L	39771	10/25/04 2116 pam
	Trichloroethene	ND	ויין	0.80	5.0	1.00000	ug/L	39771	10/25/04 2116 pam
	1,2-Dichloropropane	ND		0.70	5.0	1.00000	ug/L	39771	10/25/04 2116 pam
	Bromodichloromethane	ND	101	0.70	5.0	1.00000	ug/L	20774	10/25/04 2116 pam
	cis-1,3-Dichloropropene	ND		0.40	5.0	1.00000	ug/L	20774	10/25/04 2116 pam
	4-Methyl-2-pentanone (MIBK)	ND	וטן	0.90	10	1.00000	ug/L	39777	10/25/04 2116 pam
	Toluene	NÐ	U	0.40	5.0	1.00000	ug/L	39//1	10/25/04 2110 pam
	trans-1,3-Dichloropropene	ND	u	0.80	5.0	1.00000	ug/L	37111	10/25/04 2116 pain
	1,1,2-Trichloroethane	ND	juj	08.0	5.0	1.00000	ug/L	20774	10/25/04 2110 pam
	Tetrachloroethene	ND		0.40	5.0		ug/L	3711	10/25/04 2110 pam
	2-Hexanone	ND	U	0.70	10	1.00000	ug/L	37111	10/23/04 2110 pam
) 	

	Terres a		10:2000		
			TECH	K 2116 pam K 2116 pam K 2116 pam K 2116 pam K 2116 pam K 2116 pam	
ধ	cemi		DT DATE/	10/25/01 10/25/01 10/25/01 10/25/01 10/25/01	
10/28/200	Ben Can		BATCH	39771 39771 39771 17772 17772 17773	
Date:	ATTN:		DNITS	が、「、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	
			DILUTION	1.00000 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	
LTS		ID: 207793-10 : 10/15/2004 : 09:30	R	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
ST RESU	INDUSTRIES	aboratory Sample ate Received ime Received	TOW	0.0.0.0.0 0.0.0.0.0 0.0.0.0.0	
ш Н	ARKWIN	Цён	FLAGS		ge 21
0 R A T 0 R Y	PROJECT: /		PLE RESULT	22222	Paç
LAB			SAP	222222	
Job Number: 207793	ING, PHILLEPS AND NOLNAR	Sample ID: A1MW-9A bled: 10/13/2004 bled: 13:10 atrix: Groundwater	PARAMETER/TEST DESCRIPTION	Dibromochloromethane Chlorobenzene Ethylbenzene Styrene Bromoform 1,1,2,2-Tetrachloroethane Xylenes (total)	* In Description = Dry Wgt.
~	CUSTOMER: FANNI	Customer Date Samp Time Sample Ma	TEST METHOD	0000022	

Date:10/28/2004

ATTN: Ben Cancemi

CUSTOMER: FANNING, PHILLIPS AND MOLNAR

PROJECT: ARKWIN INDUSTRIES

Customer Sample ID: A1MW-9B Date Sampled.....: 10/13/2004 Time Sampled.....: 13:00 Sample Matrix....: Groundwater

Job Number: 207793

Laboratory Sample ID: 207793-11 Date Received......: 10/15/2004 Time Received......: 09:30

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q	FLAGS	MOL	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME	TECH
8260B	Volatile Organics (5mL Purge)											
_	Chloromethane	ND	U		1.4	5.0	1.00000	uα/L	39773		10/26/04 122	5 nam
\Box	Vinyl chloride	ND	U		0.60	5.0	1.00000	ua/L	39773	1	10/26/04 122	5 pam
\square	Bromomethane	ND	U		2.7	5.0	1.00000	ug/L	39773	[]	10/26/04 122	S bam
\Box .	Chloroethane	ND	U		1.7	5.0	1.00000	ug/L	39773	1	10/26/04 122	5 pam
lõ.	1,1-Dichloroethene	ND	U		0.80	5.0	1.00000	ug/L	39773		10/26/04 122	5 pam
	Carbon disulfide	ND	U		0.40	5.0	1.00000	ug/L	39773		10/26/04 122	5 pam
	Acetone	ND	U		2.0	10	1.00000	ug/L	39773	1	10/26/04 122	5 pam
IN	Methylene chloride	ND	ឋ	в	0.60	5.0	1.00000	ug/L	39773		10/26/04 122	5 pam
$ \omega $	trans-1,2-Dichloroethene	ND	[U]		0.50	5.0	1.00000	ug/L	39773		10/26/04 122	S pam
	1,1-Dichloroethane	2.1	[]		0.40	5.0	1.00000	ug/L	39773		10/26/04 122	5 parr
	Vinyl acetate	ND	U		1.9	5.0	1.00000	ug/L	39773		10/26/04 122	5 pam
	cis-1,2-Dichloroethene	ND	U		0.70	5.0	1.00000	ug/L	39773		10/26/04 122	S[pam
	2-Butanone (MEK)	ND	U		1.6	. 10	1.00000	ug/L	39773		10/26/04 122	5 pam
	Chloroform	ND	וטן		0.60	5.0	1.00000	ug/L	39773	t I	10/26/04 122	5 pam
	1,1,1-Trichloroethane	1.9	J		0.90	5.0	1.00000	ug/L	39773		10/26/04 122	5 pam
	Carbon tetrachloride	ND	U		0.60	5.0	1.00000	ug/L	39773		10/26/04 122	5 pann)
	Benzene	ND	U		0.50	5.0	1.00000	ug/L	39773		10/26/04 122	5 pam
	1,2-Dichloroethane	ND	U		0.60	5.0	1.00000	ug/L	39773		10/26/04 122	S[pam]
	Trichloroethene	ND	ΙU		0.80	5.0	1.00000	ug/L	39773		10/26/04 122	5 pam
	1,2-Dichloropropane	ND	U		0.70	5.0	1.00000	ug/L	39773	1	10/26/04 122	Spam
	Bromodichloromethane	ND	U		0.70	5.0	1.00000	ug/L	39773		10/26/04 122	pam
	cis-1,3-Dichloropropene	ND	U		0.40	5.0	1.00000	ug/L	39773		10/26/04 122	pam
	4-Methyl-2-pentanone (MIBK)	ND	U		0.90	10	1.00000	ug/L	59775		10/26/04 122	pam
	Toluene	ND	U		0.40	5.0	1.00000	ug/L	39775		10/26/04 122	pam
	trans-1,3-Dichloropropene	ND	U		0.80	5.0	1.00000	ug/L	39773		10/26/04 122	pam
	1,1,2-TrichLoroethane	ND	U		0.80	5.0	1.00000	ug/L	39113		10/20/04 122	pam
	Tetrachloroethene	ND	U		0.40	5.0	1.00000	ug/L	39773		10/26/04 122	meq
	2-Hexanone	ND	U		0.70	10	1.00000	ug/L	37113		10/26/04 122	pam
	- · · · ·											

	Job Number: 207793	LABORATOR	TS		Date:1	0/28/200	4		•		
CUSTOMER: FAN	WING, PHILLIPS AND MOLNAR	PROJEC	T: ARKWIN I	NDUSTRIES			ATTN:	Ben Can	cemi		
Custome Date Sa Time Sa Sample	er Sample ID: A1MW-9B mpled: 10/13/2004 mpled: 13:00 Matrix: Groundwater		Lab Dat Tim	oratory Sample I e Received e Received	D: 207793-11 .: 10/15/2004 .: 09:30						
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME	тесн
0000024	Dibromochloromethane Chlorobenzene Ethylbenzene Styrene Bromoform 1,1,2,2-Tetrachloroethane Xylenes (total)	ND ND ND ND ND ND ND		0.50 0.50 0.70 0.80 0.70 0.90	5.0 5.0 5.0 5.0 5.0 5.0 5.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L	39773 39773 39773 39773 39773 39773 39773		0/26/04 122 0/26/04 122 0/26/04 122 0/26/04 122 0/26/04 122 0/26/04 122	25 pam 25 pam 25 pam 25 pam 25 pam 25 pam 25 pam

* In Description = Dry Wgt.

Page 23

Date:10/28/2004

CUSTOMER: FANNING, PHILLIPS AND MOLNAR

PROJECT: ARKWIN INDUSTRIES

ATTN: Ben Cancemi

Customer Sample ID: MW-7 Date Sampled.....: 10/13/2004 Time Sampled.....: 15:40 Sample Matrix....: Groundwater

Job Number: 207793

Laboratory Sample ID: 207793-12 Date Received......: 10/15/2004 Time Received......: 09:30

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT		MDL	PI		IINTTS	BATCH	БТ	DATE/TIME	ТЕЛИ
02/05					4D				<u> </u>		
820UB	Volatile Organics (SmL Purge)								- 1		
\frown	Unioromethane ·	ND	U	1.4	5.0	1.00000	ug/L	39773	1	10/26/04 1249	pam
	Vinyt chtoride	ND	U	0.60	5.0	1.00000	ug/L	39773		10/26/04 1249	pam
\mathcal{O}	Bromomethane	ND	U	2.7	5.0	1.00000	ug/L	39773	1	10/26/04 1249	pam
\mathbf{O}	La Loroethane	ND	U	1.7	5.0	1.00000	ug/L	39773		10/26/04 1249	pam
\circ	1,1-Vichloroethene	ND		0.80	5.0	1.00000	ug/L	39773		10/26/04 1249	pam
\sim	Larbon disultide	ND	U	0.40	5.0	1.00000	ug/L	39773		10/26/04 1249	pam
	Acetone	IND		2.0	10	1.00000	ug/L	39773	Ì	10/26/04 1249	pam
	methylene chloride	ND	о в	0.60	5.0	1.00000	ug/L	39773	ļ	10/26/04 1249	pam
01 -	trans-1,2-Dichloroethene	IND	(U)	0.50	5.0	1.00000	ug/L	39773		10/26/04 1249	pam
	1, 1-Dichloroethane	ND	U	0.40	5.0	1.00000	ug/L	39773	[10/26/04 1249	pam
	Vinyl acetate	NO	0	1.9	5.0	1.00000	ug/L	39773	- 1	10/26/04 1249	pam
	cis-1,2-Dichloroethene	ND	U	0.70	5.0	1.00000	ug/L	39773		10/26/04 1249	pam
	2-Butanone (MEK)	ND	U	1.6	10	1.00000	ug/L	39773		10/26/04 1249	pam
-	Chloroform	ND	U	0.60	5.0	1.00000	ug/L	39773	- 1	10/26/04 1249	pam
	1,1,1-Trichloroethane	DM	U	0.90	5.0	1.00000	ug/L	39773		10/26/04 1249	pam
	Carbon tetrachloride	ND	U	0.60	5.0	1.00000	ug/L	39773		10/26/04 1249	pem
•	Benzene	ND	101	0.50	5.0	1.00000	ug/L	39773		10/26/04 1249	pam
	1,2-Dichloroethane	ND	U	0.60	5.0	1.00000	ug/L	39775		10/20/04 1249	pana
	Trichloroethene	ND	U	0.80	5.0	1.00000	ug/L	39773		10/26/04 1249	pam
	1,2-Dichloropropane	ND	U	0.70	5.0	1.00000	ug/L	39773	1	10/26/04 1249	pam
4	Bromodichloromethane	ND	U	0.70	5.0	1.00000	ug/L	39775		10/26/04 1249	pam
	cis-1,3-Dichloropropene	ND	U	0.40	5.0	1.00000	ug/L	39775	- 1	10/26/04 1249	pam
	4-Methyl-2-pentanone (MIBK)	ND	U	0.90	10	1.00000	ug/L	39773		10/26/04 1249	pam
	Toluene	ND	U	0.40	5.0	1.00000	ug/L	29773		10/26/04 1249	pam
	trans-1,3-Dichloropropene	ND	U	0.80	5.0	1.00000	ug/L	37113		10/20/04 1249	pam [
	1,1,2-Trichloroethane	ND	u	0.80	5.0	1,00000	ug/L	20777		10/20/04 1249	pam
	Tetrachloroethene	ND	U	0.40	5.0	1.00000	ug/L	37(1)		10/20/04 1249	pam
1	2-Hexanone	ND	U	0.70	10	1,00000	ug/L	137113	1	10/20/04 1249	hau
ĺ				}				ι Ι	- {		
			1 h						_		L}

Job Number: 207793

Date:10/28/2004

CUSTOMER: FANNING, PHILLIPS AND MOLNAR

PROJECT: ARKWIN INDUSTRIES

ATTN: Ben Cancemi

Customer Sample ID: MW-7 Date Sampled.....: 10/13/2004 Time Sampled.....: 15:40 Sample Matrix....: Groundwater Laboratory Sample ID: 207793-12 Date Received.....: 10/15/2004 Time Received.....: 09:30

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Ø	FLAGS	MOL	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME	TECH
0000026	Dibromochloromethane Chlorobenzene Ethylbenzene Styrene Bromoform 1,1,2,2-Tetrachloroethane Xylenes (total)	ND ND ND ND ND ND			0.50 0.50 0.70 0.80 0.70 0.90	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L	39773 39773 39773 39773 39773 39773 39773 39773		10/26/04 1249 10/26/04 1249 10/26/04 1249 10/26/04 1249 10/26/04 1249 10/26/04 1249 10/26/04 1249	pam pam pam pam pam pam
									- -			

Job Number: 207793

Date:10/28/2004

ATTN: Ben Cancemi

CUSTOMER: FANNING, PHILLIPS AND MOLNAR

PROJECT: ARKWIN INDUSTRIES

Customer Sample ID: A1MW-10B Date Sampled.....: 10/13/2004 Time Sampled.....: 14:50 Sample Matrix....: Groundwater Laboratory Sample ID: 207793-13 Date Received.....: 10/15/2004 Time Received.....: 09:30

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q	FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME	T	ECH
TEST METHOD 8260B 000 000 27	PARAMETER/TEST DESCRIPTION Volatile Organics (5mL Purge) Chloromethane Vinyl chloride Bromomethane Chloroethane 1,1-Dichloroethene Carbon disulfide Acetone Methylene chloride trans-1,2-Dichloroethene 1,1-Dichloroethane Vinyl acetate cis-1,2-Dichloroethene 2-Butanone (MEK) Chloroform 1,1,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Trichloroethene 1,2-Dichloroethene	SAMPLE RESULT ND ND ND ND ND ND ND ND ND ND ND ND ND		B	MDL 1.4 0.60 2.7 1.7 0.80 0.40 2.0 0.60 0.50 0.40 1.9 0.70 1.6 0.60 0.90 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.70 1.7 0.80 0.70 1.7 0.80 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.50 0.40 0.50 0.50 0.50 0.50 0.50 0.60 0.50 0.50 0.50 0.50 0.60 0.50 0.50 0.50 0.50 0.50 0.60 0.50 0.50 0.60 0.50 0.50 0.50 0.50 0.50 0.60 0.50 0.50 0.60 0.50 0.50 0.60 0.50 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.50 0.60 0.5	RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	DILUTION 1.00000	UNITS USITS USITS US/L US/L US/L US/L US/L US/L US/L US/L US/L US/L US/L US/L US/L US/L US/L US/L US/L US/L	BATCH 39773 39	PT	DATE/TIME 10/26/04 131: 10/26/04 1	T 000000000000000000000000000000000000	ECH am am am am am am am am am am am am am
	Carbon tetrachloride Benzene 1,2-Dichloroethane Trichloroethane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK) Toluene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethane 2-Hexanone	ND ND ND ND ND ND ND ND ND ND ND ND ND			0.60 0.50 0.60 0.80 0.70 0.70 0.40 0.90 0.40 0.80 0.80 0.40 0.70	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1.0000 1.00000 1.000000 1.000000 1.00000 1.00000 1.000000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.0000000000	9/L 99/L 99/L 99/L 99/L 99/L 99/L 99/L	39773 39773 39773 39773 39773 39773 39773 39773 39773 39773 39773 39773 39773 39773		10/26/04 131 10/26/04 131	3 3 3 3 3 3 3 3 3 3 3 3 3 3	am am am am am am am am am am am am am

Date:10/28/2004	ATTN: Ben Cancemi		DILUTION UNITS BATCH DT DATE/TIME TECH	1.00000 ug/L 39773 10/26/04 1313 pam 1.00000 ug/L 39773 10/26/04 1313 pam	
LABORATORY TEST RESULTS	PROJECT: ARKVIN INDUSTRIES	taboratory Sample ID: 207793-13 Date Received: 10/15/2004 Time Received: 09:30	SAMPLE RESULT Q FLAGS MDL RL I		Page 27
Job Number: 207793	CUSTOMER: FANNING, PHILLIPS AND MOLNAR	Customer Sample ID: AiMW-10B Date Sampled: 10/13/2004 Time Sampled: 14:50 Sample Matrix: Groundwater	TEST NETHOD PARAMETER/TEST DESCRIPTION	Dibromochloromethane chlorobenzene Ethylbenzene Styrene Bromoform 1,1,2,2-Tetrachloroethane Xylenes (total)	* In Description = Dry Wgt.

•

,

Job Number: 207793

Date:10/28/2004

ATTN: Ben Cancemi

CUSTOMER: FANNING, PHILLIPS AND MOLNAR

PROJECT: ARKWIN INDUSTRIES

Customer Sample ID: A1NW-10A Date Sampled.....: 10/13/2004 Time Sampled.....: 15:00 Sample Matrix....: Groundwater

Laboratory Sample ID: 207793-14 Date Received.....: 10/15/2004 Time Received.....: 09:30

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	QFLAGS	MDL	RL	DILUTION	UNITS	BATCH	DT	DATE/TI	ME	тесн
8260B	Volatile Organics (5mL Purge)	1	T			1					20000000	
	Chloromethane	ND	U	1.4	5.0	1.00000	ua/L	39771	[10/25/04	1642	Dam
	Vinyl chloride	ND	U	0.60	5.0	1.00000	ug/L	39771		10/25/04	1642	Dam
O	Bromomethane	ND	18	2.7	5.0	1.00000	ua/L	39771		10/25/04 1	1642	Dam
	Chloroethane	ND	U	1.7	5.0	1.00000	ug/L	39771		10/25/04 1	1642	Dam
	1,1-Dichloroethene	NÐ	ט)	0.80	5.0	1.00000	ua/L	39771		10/25/04 1	1642	Dam
l o	Carbon disulfide	ND	{u	0.40	5.0	1.00000	ug/L	39771		10/25/04 1	1642	pam
	Acetone	ND	U	2.0	10	1.00000	ug/L	39771		10/25/04 1	1642	pam
	Methylene chloride	ND	U	0.60	5.0	1.00000	ug/L	39771		10/25/04 1	1642	pant
U V	trans-1,2-Dichloroethene	ND	{U	0.50	5.0	1.00000	ug/L	39771	- F	10/25/04 1	1642	pan
	1,1-Dichloroethane	ND	0	0.40	5.0	1.00000	ug/L	39771	ľ	10/25/04 1	1642	pan
ļ	Vinyl acetate	ND	ប	1.9	5.0	1.00000	ug/L	39771	l i	10/25/04 1	1642	pam
	cis-1,2-Dichloroethene	2.0	[][0.70	5.0	1.00000	ug/L	39771	- ·	10/25/04 1	1642	pani
•	2-Butanone (MEK)	ND	in)	1.6	10	1.00000	ug/L	39771	!	10/25/04 1	1642	pam
t i i i i i i i i i i i i i i i i i i i	Chloroform	ND	U	0.60	5.0	1.00000	ug/L	39771	- Ì'	10/25/04 1	1642	pam
]	1,1,1-Trichloroethane	ND	U	0.90	5.0	1.00000	ug/L	39771	1	10/25/04 1	1642	pam
ļ	Carbon tetrachloride	ND	u	0.60	5.0	1.00000	ug/L	39771	- ['	10/25/04 1	1642	pam
	Benzene	ND	ļuļ	0.50	5.0	1.00000	ug/L	39771	1	10/25/04 1	1642	pam
1	1,2-Dichloroethane	ND	U	0.60	5.0	1.00000	ug/L	39771	ļ	10/25/04 1	1642	pam
	Trichloroethene	ND	U	0.80	5.0	1.00000	ug/L	39771	Ľ	10/25/04 1	642	pam
	1,2-Dichloropropane	ND	Ini	0.70	5.0	1.00000	ug/L	39771		10/25/04 1	642	pam
	Bromodichloromethane	ND	U	0.70	5.0	1.00000	ug/L	39771	Ľ	10/25/04 1	1642	pam
	cis-1,3-Dichloropropene	ND	ប	0.40	5.0	1.00000	ug/L	39771	Ľ	10/25/04 1	1642	pam
	4-Methyl-2-pentanone (MIBK)	ND	lu l	0.90	10	1.00000	ug/L	39771		10/25/04 1	1642	pam
}	Toluene	ND	ហ	0.40	5.0	1.00000	ug/L	39771	- 1	10/25/04 1	1642	pam
1	trans-1,3-Dichloropropene	ND	18	0.80	5.0	1.00000	ug/L	39771		10/25/04 1	1642	pam
	1,1,2-Trichloroethane	ND	101	0.80	5.0	1.00000	ug/L	39771		10/25/04 1	1042	pam
	Tetrachloroethene	ND	Inl	0.40	5.0	1.00000	ug/L	39//1		10/25/04 1	1042	pam
]	2-Hexanone	ND	101	0.70	10	1.00000	ug/L	34441	ľ	10/25/04 1	1042	pam
	•			[ļ	

* In Description = Dry Wgt.

Page 28

			E		
			TEC		
			ų	1642	
			:/T1	222222	
			DAT		
	E		÷		
Ś	ance		0 н		
28/20	5		BATCI		
10/2	à			<u>ăăăăăăă</u>	
ate:	NLI		STI	~~~~~~	
-			5		
			8		
			LUTI		
			Id		
		14		0000000	
		93-1 5/2(RL	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		2077 10/1 09:3			
τ		A : :			
L C		ple		000000	
ы	ŝ	sam ved. ved.	DF	00000	
*	STRI	tory ecei	E		
F (NON	ie Ra Registra			
ш	Z	Lat Dat Tir	165		8
F	ARKI		5		age
R Y	÷٦				ä.
10	ROJE		SUL		
RA	. с .		ERE		
о в			AMPL		
κ. Γ			~	222222	
			TI0		
			CRIF		₫t.
			DES	e L	2
	NAR	er 4	TEST	t ha n	11
м	¥	10A /200 dwat	TER/	or or o	tio
6220	AND	1MW- 0/13 5:00 roun	RAME	e al)	crip
2	SdI	8 C C C C	РА	Tetr service (tot	Des
Imbei	HIL	e i i		ofor ofor 2,2-1-2	* II
N qo	ę,	Samp Led. Led. trix			
ř	HNN	Samp Samp Mat			1
	E E	ante ample	10HT3		
	IONE	0 d L N	IN 15		
	cus		TE	0000030	

. .

Job Number: 207793

Date:10/28/2004

PROJECT: ARKWIN INDUSTRIES

ATTN: Ben Cancemi

Customer Sample ID: MW-4 Date Sampled.....: 1D/13/2004 Time Sampled.....: 14:15 Sample Matrix....: Groundwater

CUSTOMER: FANNING, PHILLIPS AND MOLNAR

Laboratory Sample ID: 207793-15 Date Received...... 10/15/2004 Time Received...... 09:30

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q	FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DT	DATE/TIM	1E	TECH
8260B	Volatile Organics (5mL Purge)	1	11				1						2004.0.201
6775	Chloromethane	ND	U		1.4	5.0	1.00000	uo/L	39773		10/26/04 1	1337	Dam
	Vinyl chloride	ND	ΙU		0.60	5.0	1.00000	ua/L	39773		10/26/04 1	337	Dam
	Bromomethane	ND	U		2.7	5.0	1.00000	ug/L	39773		10/26/04 1	337	Dam
O.	Chloroethane	ND	U		1.7	5.0	1.00000	ug/L	39773		10/26/04 1	337	bam
6.	1,1-Dichloroethene	ND	U		0.80	5.0	1.00000	ug/L	39773	1 1	10/26/04 1	337	pam
1 Co	Carbon disulfide	ND	[U]		0.40	5.0	1.00000	ug/L	39773		10/26/04 1	337	pam
	Acetone	ND	U		2.0	10	1.00000	ug/L	39773		10/26/04 1	337	pam
	Methylene chloride	ND	U	B	0.60	5.0	1.00000	ug/L	39773		10/26/04 1	337	pam
	trans-1,2-Dichloroethene	ND	U		0.50	5.0	1.00000	. ug/L	39773		10/26/04 1	337	pam
	1,1-Dichloroethane	ND	U		0.40	5.0	1.00000	ug/L	39773	1	10/26/04 1	337	pam
}	Vinyl acetate	ND	U		1.9	5.0	1.00000	ug/L	39773		10/26/04 1	337	pam [
	cis-1,2-Dichloroethene	2.3	J		0.70	5.0	1.00000	ug/Ն	39773]]	10/26/04 1	337	pam;
}	2-Butanone (MEK)	ND	U		1.6	10	1.00000	ug/L	39773		10/26/04 1	337	pam
	Chloroform	ND	ប		0.60	5.0	1.00000	ug/L	39773		10/26/04 1	337	pam
	1,1,1-Trichloroethane	ND	U		0.90	5.0	1.00000	ug/L	39773		10/26/04 1	337	pana
	Carbon tetrachloride	ND	U		0.60	5.0	1.00000	ug/L	39773		10/26/04 1	337	pam
	Benzene	ND	u		0.50	5.0	1.00000	ug/L	39773		10/26/04 1	337	pam
}	1,2-Dichloroethane	ND	0	į	0.60	5.0	1.00000	ug/L	39773		10/26/04 1	337	pam
	Trichloroethene	ND	U		0.80	5.0	1.00000	ug/L	39773		10/26/04 1	337	pam (
	1,2-Dichloropropane	ND	U		0.70	5.0	1.00000	ug/L	39773		10/26/04 1	337	pam
ļ	Bromodichloromethane	ND	U		0.70	5.0	1.00000	ug/L	39773		10/26/04 1	337	pam
	cis-1,3-Dichloropropene	ND	U		0.40	5.0	1.00000	ug/L	39773		10/26/04 1	337	pam
j	4-Methyl-2-pentanone (MIBK)	ND	U		0.90	10	1.00000	ug/L	39773	ł	10/26/04 1	337	pam
	Toluene	ND	U		0.40	5.0	1.00000	ug/L	39773		10/26/04 1	557	pam
	trans-1,3-Dichloropropene	ND ·	U		0.80	5.0	1.00000	ug/L	39773		10/26/04 1	331	pam
	1,1,2-Trichloroethane	ND	U		0.80	5.0	1.00000	ug/L	59775		10/26/04 1	331	pam
	Tetrachloroethene	18			0.40	5.0	1.00000	ug/L	39115	ļļ	10/26/04 1	227	pam
l	2-Hexanone	ND	U		0.70) 1 0	1.00000	ug/L	39(13		10/26/04 1	221	baw

Date:10/28/2004

CUSTOMER: FANNING, PHILLIPS AND MOLNAR

Job Number: 207793

PROJECT: ARKWIN INDUSTRIES

ATTN: Ben Cancemi

Customer Sample ID: NW-4 Date Sampled.....: 10/13/2004 Time Sampled.....: 14:15 Sample Matrix....: Groundwater

Laboratory Sample ID: 207793-15 Date Received......: 10/15/2004 Time Received......: 09:30

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME	TECH
000003	Dibromochloromethane Chlorobenzene Ethylbenzene Styrene Bromoform 1,1,2,2-Tetrachloroethane Xylenes (total)	ND ND ND ND ND ND ND	ม บ บ บ บ บ	0.50 0.50 0.70 0.70 0.80 0.70 0.90	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	սց/Լ սց/Լ սց/Լ սց/Լ սց/Լ սց/Լ սց/Լ	39773 39773 39773 39773 39773 39773 39773 39773		10/26/04 1337 10/26/04 1337 10/26/04 1337 10/26/04 1337 10/26/04 1337 10/26/04 1337 10/26/04 1337	pam pam pam pam pam pam
											•

* In Description = Dry Wgt.

Page 31

LABORATORY TEST RESULTS Date:10/28/2004 PROJECT: ARKWIN INDUSTRIES ATTN: Ben Cancemi	Laboratory Sample ID: 207793-16 Date Received 10/15/2004 Time Received 09:30	M 1.4 5.0 1.00000 ug/L 39773 10/26/0 N 1.1 1.1 1.1 10/26/0 10/26/0 10/26/0 10/26/0 N 1.1 1.1 1.1 <th>Page 32</th>	Page 32
Job Number: 207793 MER: FANNING, PHILLIPS AND MOLNAR	Customer Sample ID: TB Date Sampled: 10/13/2004 Time Sampled: 00:00 Sample Matrix Groundwater	260B Volatile Organics (5mL Purge) Chloromethane Vinyl chloride Bromomethane Chloroethane ()1-01chloroethene ()1-01chloroethene ()1-01chloroethene ()1-01chloroethene ()1-01chloroethene ()1-01chloroethene ()1-01chloroethene ()1-01chloroethene ()1-01chloroethene ()2-01chloroethene ()2-01chloroethane ()2-01chloroethane ()2-01chloroethane ()2-01chloroptopene ()2-01chloroptopene ()2-01chloroptopene ()1-1,01coethane ()1,1,2-771chloroptopene ()1,1,2-771chloroptopene ()1,1,2-771chloroptopene ()1,1,2-771chloroethane ()1,1,2-771chloroptopene ()1,1,2-771chloroethane ()1,1,2-771chloroethane ()1,1,2-771chloroethane ()1,1,2-771chloroethane ()1,1,2-771chloroethane ()1,1,2-771chloroethane ()1,1,2-771chloroethane ()1,1,2-771chloroethane ()1,1,2-771chloroethane ()1,1,2-771chloroethane ()1,1,2-771chloroethane ()1,1,2-771chloroethane ()1,1,2-771chloroethane ()1,1,2-771chloroethane ()1,1,2-771chloroethane ()1,1,2-771chloroethane ()2-Hexanone	* In Description = Dry Wgt.

			TECH		
			CME	222222	
			TE/TI	2000 2000 2000 2000 2000 2000	
			A	22001	
Ş	Incell		ы		
28/20	en Ca		BATCH	2779 2779 2776 2776 2776	
:10/	8			<u> </u>	
Date	ATTI	·	TINU	切切切切切切切り	
			N		
			<u>υ</u> τιο		
			IId		
		-16			
		07793 0/15/ 9:30	RL	<u></u>	
T S		8 4 8 8 4 8			
L L		ple I		000000	ŀ
с Ш С	ES	/ Sam ived. ived.	TOP	000000	
_	USTR	Recer			
ш С	UNI N	Labor Date Time	S		
F	RKWI		FLAG		Je 33
≻ ~	:L1:		ø	<u> </u>	- Pai
L D	PROJE		ESULT		
4 4 4			PLE R		
₽			SAM	222222	
1					
			NC		
			ITALS		
			DESCI		y Hgt
	NAR	4 U	TEST	than	ц Ц
93	DON Q	3/200 0 ndwat	ETER/	Loroe Loroe	ption
2077	PS AN	10/1 00:01 6rou	ARAM	orome ene otal) tal)	escri
ber:	III	9		boch (c en action 2-Ter (t) (t)	- D M
ð Nun	IG, Pł	lample ed ed rix			*
ŗ	ANNEN	mer S Sampl Sampl e Mat	Q		1
	ER: F	Custc Date Time Sampl	METHO		
	MOTSU		rest	0000001	
	Ū			0000034	

dof	Number: 207793	LABORATORY	СН	RONI	CLE	Date: 1	1/05/2004		
CUSTOMER: FANNING	, PHILLIPS AND MOLNAR	PROJECT	: ARKWIN	INDUSTR	IES	,	(TTN: Ben Cancem	i	
Lab ID: 207793-1 METHOD 50304	Client ID: A1MW-11E DESCRIPTION 5030 5 ml Purge Bren		Date Re RUN#	cvd: 10/ BATCH#	15/2004 PREP BT	Sample #(S)	Date: 10/13/200 DATE/TIME ANA	4 LYZED	DILUTION
8260B	Volatile Organics (5mL	Purge)	1	39771	39688		10/25/2004	1 7 07	1.00000
Lab 1D: 207793-2 METHOD 5030A	Client ID: A1MW-11A DESCRIPTION 5030 5 mL Purge Prep		Date Re RUN# 1	cvd: 10/ BATCH# 39688	15/2004 PREP BT	Sample #(S)	Date: 10/13/200 DATE/TIME ANA	4 Lyzed	DILUTION
8260B	Volatile Organics (5mL	Purge)	1	39771	39688		10/25/2004	1731	1.00000
Lab ID: 207793-3 METHOD 5030A	Client ID: A1MW-11B DESCRIPTION 5030 5 mL Purge Prep		Date Re RUN# 1	cvd: 10/ BATCH# 39688	15/2004 PREP BT	Sample #(S)	Date: 10/13/200 DATE/TIME ANA	LYZED	DILUTION
8260B	Volatile Organics (5mL	Purge)	1	39771	39688		10/25/2004	1755	1.00000
Lab ID: 207793-4 METHOD 5030A	Client ID: MW-1 DESCRIPTION 5030 5 mL Purge Prep		Date Re RUN# 1	ecvd: 10/ BATCH# 39688	15/2004 PREP BT	Sample #(S)	Date: 10/13/200 DATE/TIME ANA	ALYZED	DILUTION
8260B	Volatile Organics (5mL	Purge)	1	39771	39688		10/25/2004	1819	1.00000
Lab ID: 207793-5 METHOD 5030A	Client ID: A1MW-8A DESCRIPTION 5030 5 mL Purge Prep		Date Re RUN# 1	ecvd: 10/ BATCH# 39688	15/2004 PREP BT	Sample #(S)	Date: 10/13/200 DATE/TIME ANA)4 ALYZED	DILUTION
8260B	Volatile Organics (5mL	Purge)	1	39771	39688		10/25/2004	1843	1.00000
Lab ID: 207793-6 METHOD	Client ID: A1MW-8B DESCRIPTION 5030 5 mL Purge Prep		Date Re RUN# 1	ecvd: 10/ BATCH#	15/2004 PREP BT	Sample #(S)	Date: 10/13/200 DATE/TIME ANA)4 ALYZED	DILUTION
82608	Volatile Organics (5mL	Purge)	1	39771	39688		10/25/2004	1907	1.00000
Lab ID: 207793-7 METHOD 5030A	Client ID: MW-2 DESCRIPTION 5030 5 mL Purge Prep		Date Re RUN# 1	ecvd: 10/ BATCH# 39688	15/2004 PREP BT	Sample #(S)	Date: 10/13/200 DATE/TIME ANA	04 ALYZED	DILUTION
82608	Volatile Organics (5mL	Purge)	1	39771	39688 .		10/25/2004	1931	1.00000
Lab ID: 207793-8 METHOD 5030A	Client ID: MW-12 DESCRIPTION 5030 5 mL Purge Prep		Date Re RUN# 1	ecvd: 10/ BATCK# 39688	15/2004 PREP BT	Sample #(S)	Date: 10/13/200 DATE/TIME AN/	04 ALYZED	DILUTION
8260B	Volatile Organics (5mL	Purge)	1	39771	39688		10/25/2004	1956	1.00000
Lab ID: 207793-9 METHOD 5030A	Client ID: MW-3 DESCRIPTION 5030 5 mL Purge Prep		Date Re RUN# 1	ecvd: 10/ BATCH# 39688	15/2004 PREP BT	Sample #(S)	Date: 10/13/200 DATE/TIME AN	04 Alyzed	DILUTION
8260B	Volatile Organics (5mL	Purge)	1	39771	39688		10/25/2004	2020	1.00000
Lab ID: 207793-10 METHOD	Client ID: A1MW-9A DESCRIPTION 5030 5 ml Burge Bree		Date Re RUN# 1	ecvd: 10/ BATCH#	15/2004 PREP BT	Sample #(S)	Date: 10/13/20 DATE/TIME AN	04 ALYZED	DILUTION
8260B	Volatile Organics (5mL	Purge)	1	39771	39688		10/25/2004	2116	1.00000
Lab ID: 207793-11 METHOD	Client ID: A1MW-9B DESCRIPTION 5030 5 ml Burge Bree		Date Re RUN#	ecvd: 10/ BATCH#	15/2004 PREP BT	Sample #(S)	Date: 10/13/20 DATE/TIME AN	04 ALYZED	DILUTION
82608	Volatile Organics (5mL	Purge)	1	39773	39 741		10/26/2004	1225	1.00000
Lab ID: 207793-12 METHOD 5030A	Client ID: MW-7 DESCRIPTION 5030 5 mL Purge Prep		Date Re RUN# 1	ecvd: 10/ BATCH# 39741	/15/2004 PREP BT	Sample #(S)	Date: 10/13/20 DATE/TIME AN	004 IALYZED	DILUTION

Page 34

Joh	Number	207703
100	Numbers	201193

LABORATORY CHRONICLE

Date: 11/05/2004

CUSTOMER: FANNING, PHILLIPS AND MOLNAR PROJECT: ARKWIN INDUSTRIES ATTN: Ben Cancemi Lab ID: 207793-12 Client ID: MW-7 Date Recvd: 10/15/2004 Sample Date: 10/13/2004 RUN# BATCH# PREP BT #(S) 1 39773 39741 METHOD DESCRIPTION DATE/TIME ANALYZED DILUTION 8260B 10/26/2004 1249 Volatile Organics (5mL Purge) 1.00000 Lab ID: 207793-13 Client ID: A1MW-10B Date Recvd: 10/15/2004 Sample Date: 10/13/2004 METHOD DESCRIPTION RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION 5030A 5030 5 mL Purge Prep 39741 1 8260B Volatile Organics (5mL Purge) 39773 39741 10/26/2004 1313 1.00000 1 Lab ID: 207793-14 Client ID: A1MW-10A Date Recvd: 10/15/2004 Sample Date: 10/13/2004 DESCRIPTION RUN# BATCH# PREP BT #(S) METHOD DATE/TIME ANALYZED DILUTION 5030A 5030 5 mL Purge Prep 39688 1 8260B Volatile Organics (5mL Purge) 1 39771 39688 10/25/2004 1642 1.00000 Lab ID: 207793-15 Client ID: MW-4 Date Recvd: 10/15/2004 Sample Date: 10/13/2004 METHOD DESCRIPTION RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION 5030A 39741 5030 5 mL Purge Prep 1 8260B Volatile Organics (5mL Purge) 1 39773 39741 10/26/2004 1337 1_00000 Lab ID: 207793-16 Client ID: TB Date Recvd: 10/15/2004 Sample Date: 10/13/2004 METHOD DESCRIPTION RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION 5030 5 mL Purge Prep 5030A 39741 1 8260B Volatile Organics (5mL Purge) 1 **3**9773 39741 10/26/2004 1201 1.00000

Page 35

SURROGATE RECOVERIES REPORT Job Number.: 207793

Report Date .: 10/28/2004

Method: Volatile Organics (5mL Purge) Batch(s): 39771					Metho Test	d Code Matrix	Prep Batch Equipment Code	: 39688 : MSL		
Lab ID	DT	Sample ID			Date	12DCED	BRFLBE	DERFLM	TOLDB	
LCS-39688-	2			1	0/25/2004	81	76	80	75	
MB-39688-1				1	0/25/2004	81	80	83	77	
207793- 1		Almw-lie		1	0/25/2004	80	76	79	76	
207793- 2		AIMW-11A		1	0/25/2004	81	7 7	80	75	
207793~ 3		A1MW-11B		1	0/25/2004	83	80	83	75	
207793- 4		MW-1		1	0/25/2004	82	80	80	73	
207793- 5	L. C.	A1MW-8A		1	0/25/2004	83	78	86	74	
207793- 6		A1MW-8B		1	0/25/2004	79	78	81	76	
207793- 7	•	MW-2		1	0/25/2004	78	76	81	77	
207793- 8		MW-12		1	0/25/2004	82	77	79	74	
207793- 9	i i i i i i i i i i i i i i i i i i i	MW-3		1	0/25/2004	80	74	79	73	
207793- 10	r	almw-9a		1	0/25/2004	80 -	76	84	75	
207793- 14	1	AIMW-10A		1	0/25/2004	83	75	81	80	
Test	Test Des	scription		Limits						
12DCED	1,2-Dich	loroethane-d4 (surr)		70 - 130	-					
BRFLBE	4-Bromof	luorobenzene (surr)		70 - 130						
DERFLM	Dibromof	luoromethane (surr)		70 - 130						
TOLDS	Toluene-	dB (surr)		70 - 130						

Method., Batch(s)	Method: Volatile Organics (5mL Purge) Batch(s): 39773			Method Code: 8260.5 Test Matrix: Water					Prep Batch: 39741 Equipment Code: MSL		
Lab ID	DL	Sample ID	D	ate	12DCED	BRFLBE	DBRFLM	TOLDS			
LCS-39741-2	_		10/2	6/2004	87	74	B6	74			
MB-39741-1			10/2	6/2004	80	76	84	75			
207793- 11		Almw-9B	10/2	26/2004	86	78	86	76			
207793- 12		MW-7	10/2	26/2004	81	81	84	77			
207793- 13		Almw-10B	10/2	26/2004	82	78	80	74			
207793- 14 MS		AIMW-10A	10/2	26/2004	91	76	91	77			
207793- 14 MSB		A1MW-10A	10/2	26/2004	86	75	85	75			
207793- 14 MSD		Almw-10A	10/2	26/2004	86	73	86	79			
207793- 15		MN-4	10/2	26/2004	87	78	85	75			
207793- 16		ТВ	10/2	26/2004	81	76	84	-76			
Test Test	Des	scription	Limits								
12DCED 1,2-1	Dich	loroethane-d4 (surr)	70 - 130								
BRFLBE 4-Br	anof	luorobenzene (surr)	70 - 130								
DERFIM Dibro	anof	luoromethane (surr)	70 - 130								
TOLDS Tolue	ene-	ds (surr)	70 - 130								

Page 44

Job Number.: 207793

QUALITY CONTROL RESULTS

Report Date.: 10/27/2004

CLISTOMER: F7	INING PHILLIPS AND MOLNER PROJECT	ARKNIN INDUSTRI		ATIN: Ben Cancem		
QC Type	Description	Reag. Code	Lab ID	Dilution Factor	Date	Time

Test Method: 8260B	Equipment Code: MSL	Analyst: pam
Method Description : Volatile Organics (5mL Purge)	Batch 39773	

MS Natrix Spike (1997) 10/26/2004: 1456

Parameter/Test Description	Units	QC Result	QC Result	True Value	Orig. Value QC Calc.	* Limits F
Chloromethane	ug/L	51.497		50.000	1.400 U 103	43-134
Vinyl chloride	ug/L	54.142		50,000	0.600 0 108	51-139
Bromomethane	ug/L	46.907		50.000	2.700 0 94	27-171
Chloroethane	ug/L	52.248		50.000	1.700 U 104	53-167
1,1-Dichloroethene	ug/L	55.071		50.000	0.800 U 110	57-137
Carbon disulfide	ug/L	51.881		50.000	0.400 U 104	44-142
Acetone	ug/L	52.590		50,000	2.000 0 105	18-263
Methylene chloride	ug/L	51.959		50.000	0.600 U 104	61-129
trans-1,2-Dichloroethene	ug/L	53.644		50.000	0.500 0 107	\$7-129
1,1-Dichloroethane	ug/L	54.701		50.000	0.400 U 109	67-121
cis-1,2-Dichloroethene	ug/L	55.586		50.000	1.954 J 107	65-120
2-Butanone (MEK)	ug/L	48.071		50.000	1.600 Ŭ 96	30-222
Chloroform	ug/L	53.814		50.000	0.600 U 108	70-124
1,1,1-Trichloroethane	ug/L	57,252		50.000	0.900 U 115	60-128
Carbon tetrachloride	ug/L	59.510		50.000	0.600 U 119	56-131
Benzené	ug/L	54.904		50,000	0.500 U 110	68-126
1,2-Dichloroethane	ug/L	54.390		50.000	0.600 U 109	68-124
Trichloroethene	ug/L	54.113		50.000	0.800 0 108	58-125
1,2-Dichloropropane	ug/L	54.574		50.000	0.700 Ū 109	69-122
Bromodichloromethane	ug/L	55.532		50.000	0.700 U 111	67-118
cis-1,3-Dichloropropene	ug/L	53.834		50.000	0.400 U 108	60-122
4-Methyl-2-pentance (MIBK)	ug/L	47.876		50.000	0.900 U 96	61-140
Toluene	ug/L	47.405		50.000	0.400 U 95	70-116
trans-1,3-Dichloropropene	ug/L	54.461		50,000	0.800 U 109	55-126
1,1,2-Trichloroethane	ug/L	56.312		50.000	0.800 U 113	70-119
Tetrachloroethene	ug/L	48,728		50.000	0.400 Ŭ 97	62-118
2-Hexanone	ug/L	49.129		50.000	0.700 Ŭ 98	54-179
Dibromochloromethane	ug/L	49.218		50.000	0.500 U 98	65-114
Chlorobenzene	ug/L	47.861		50.000	0.500 U 96	71-114
Ethylbenzene	ug/L	48.729		50.000	0.500 U 97	71-115
Styrene	ug/L	47.314		50.000	0.700 Ŭ 95	69-112
Bronoform	ug/L	48.293		50.000	0.800 0 97	63-115
1,1,2,2-Tetrachloroethane	ug/L	45.231		50.000	0.700 0 90	66-129
Xylenes (total)	ug/L	140.992		150.000	0.900 U 94	66-118

	.) Diff #=01	tia za⊀⊶4	° (1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	≠ Z7-ə	Sed			
50 20-113	ד דדד מ	008-0	000.02	212-95	975-55	т/бп	ananaoo	
50 22-759	4 1 114	008-0	50°000	T9#`#S	626.93	т/бп	Toropropene	foid-E,1-anari
02 20-116	9 τοτ Ω	007.0	000.02	507°47	644.02	т/Бn	-	aranioT
0Z 07-140		006-0	000.02	9/8.72	88Z*E5	-' T/5n	(VELK) SUCLES	 ₹-₩≎¢₩-7
50 90-755	פ דד מ	007.0	000.02	¥68-62	692-95		suspense	cis-1, 3-Dichlo
50 11-13	נ בדד ב	004.0	00010\$	255.52	057.72	ч/бn	ອດຣດາອາ	Branodichlora
50 69-755	s דדד ח	002.0	20*000	\$45°\$5	255.92	л/бл	aredo	1,2-Dichlorop
50 28-332	ε τττ α	008.0	000.02	ETT . #5	074.55	т/Бn	÷	Trichloroether
50 68-134	τ τ ο	009-0	000.02	065.42	025-95	1 /5n	9ਹਵਰੋਂ:	1,2-Dichloroet
50 89-739	3 171	005.0	000°05	706. 42	\$ 78.95	т/бn		anaznad
02 20-737	3 0 753	009.0	000.02	012.62	545.13	T/Bn	loride	bertet nodred
50 90-358	ד ת דדפ	006.0	000-05	52.72	860.85	T/En	anaritaco	τ, 1, 1-Γτέστλοι
50 10-154	т 1733	009-0	000.02	¥18.52	782.3 84	Ч/Ба		miotorofut)
50 30-555	פ ת 201	009°T	000-05	T70.8₽	512.12	т/Бп	EK)	M) anonatua-S
30 62-730	ל ת 175	⊅ 56°τ	000105	985.22	+00*85	· Ţ/Ēn	anadagon	cis-1,2-Dichlo
50 61- 7 57	ة 10 171	007.0	50.000	104°75	661.72	, Ţ/Sn	aaad	1,1-Dichloroet
50 51-75	ז מ זדג	005.0	000.02	PP9-E5	TT0-95	ч/бл	Joroethene	bid-s,i-anari
0Z 671-T2	τ 60T Ω	009-0	000.02	656'TS	872.42	л/Би	ortde	werpylene chi
50 78-5 63	Z LOT LI	000°Z	000.0Z	065.22	024,53	т/бn	- /	Acetone
50 44-745	ε 20τΩ	007-0	20.000	188.12	PES'ES	т/бn	əpi	Carbon disult:
02 21-13	s STT Q	008.0	000.02	T40-22	619-72	1/ба	eusq.	ד, ז-דינהנמוסדספו
50 23-TQL	6 זדד ח	002-τ	000.02	872 25	912.72	ч/бл		chloroethane
50 51-117	S 86 Д	002.2	000.02	L06-97	870.04	т/Бп		anadremomora
02 627-73	Φ Ω 775	009-0	000.02	24.142	880.92	<u>т</u> /Ба		Vinyl chlorid
50 43-134	τ ΔτΩ	00 % °T	000.02	26 % .15	\$99.55	<u>т/Б</u> п.		Chloronethane
atmita a	. OC Cale.	entev .eta	TTUE Value Or	C Kesult	oc kesutt	מחבינם	ster/Test Description	uereg
Store (LIZST)	2/01-		JT-E6LL00	TOOXA	METPOA		HALLIK SPIKE DUITCS	CISK
ued	יייזבענפטע		елтее : Лем :	kquipment Code. Istch.	द (व	מזכב (כשר בתדשי	iptican.: 82608 iptican.: Volatile Orga	. Test Method. Method Descr
əmiT ə:	Factor Dat	Dilution	वा वष्टा	g. code	ਵਰਮੁ	בדסט	Descrip	oc Type
		UƏH ~ NI.II		SHILLSOONT NE	BROJECE, PERM	J. SANI	ON ONV SALTILHA SNIM	
	₩00Z/LZ/0T :'3	sport Date	8 2 I J U S	ая лоят	ITY CON	лято	Eerros :.redmuk dot	

Job Number.: 207793

QUALITY CONTROL RESULTS

Report Date.: 10/27/2004

CUSTOMER FAI	NING PHILLIPS AND MOLA		PROJECT;	ARKWIN INDUSTRI		ATIN Ben	Cancent			
QC Type	Descripti	an		Reag. Code	Lab ID	Dilution	Factor	Date	e Time	_
MSD meetings	Mainx Spike Duplicate.	.		OAHWRKDOI	207793-14			10/26/	2004 0 152	
Param	eter/Test Description	Units	QC Result	QC Result	True Value	Orig. Value	çc cal	c	Limits	F
Tetrachloroet	<u>DED6</u>	ug/L	54.243	48.728	50.000	0.400	U 108 11	<u> </u>	62-118 20	
2-Hexanone		ug/L	53.136	49.129	50.000	0.700	U 106		54-179	
Dibromochloro	nethane	ug/L	52.864	49.218	50.000	0.500	υ 106 7		65-114 20	
Chlorobenzene		ug/L	51.079	47.861	50.000	0.500	U 102		71-114	
Ethylbenzene		ug/L	53.065	5 48.729	50.000	0.500	U 106		71-115	
Styrene		vg/L	50.975	47.314	50.000	0.700	U 102 7		69-112 20	
Bromoform		ug/L	52.794	48.293	50.000	0.800	υ 1 06		63-115	
1,1,2,2-Tetrac	hloroethane	ug/L	47.584	45.231	50.000	0.700	ບ 95 5		66-129 20	
Xylenes (total	_)	ug/L	153.108	140.992	150.000	0.900	U 102 8		66-118 20	

0000040

Page 43 • %=% REC, R=RFD, A=ABS Diff., D=% Diff.

QUALITY CONTROL RESULTS Job Number. : 207793 Report Date .: 10/27/2004 CUSTOMER FANNING PHILLIPS AND MOLNAR ATEN Ben Cancemi ARKNIN INDUSTRIES QC Type Description Reag. Code Lab ID Dilution Factor Date Time Test Method.....: 8260B Equipment Code: MSL Analyst...: pam Method Description .: Volatile Organics (5mL Purge) Batch..... 39773 Matrix Spike Blank 1. 4 VO4HWRK001 207793-14 2004 1432 Parameter/Test Description Units QC Result OC Result True Value Orig. Value QC Calc. Limits ٠ F Chloromethane ug/L 53.803 50.000 1.400 U 108 43-134 Vinyl chloride .ug/L 53.441 50.000 0.600 0 107 51-139 Bromomethane ug/L 42.741 50.000 2.700 U 85 27-171 Chloroethane ug/L 53.465 50.000 1.700 U 107 53-167 ug/L 1,1-Dichloroethene 55.011 50.000 0.800 U 110 57-137 Carbon disulfide ug/L 52.103 50.000 0.400 44-142 U 104 57.056 Acetone ug/L 50,000 2.000 U 114 18-263 Methylene chloride ug/L 54.434 0,655 50.000 J 108 61-129 trans-1,2-Dichloroethene ug/L 50.000 54.664 0.500 **U** 109 57-129 1,1-Dichloroethane 54.485 ug/L 50.000 0.400 σ 109 67-121 cis-1,2-Dichloroethene 53,680 ug/L 50.000 0.700 U 107 65-120 2-Butanone (MEK) ug/L 57.534 50.000 1.600 U 115 30-222 Chloroform ug/L 55.292 50.000 0.600 U 111 70-124 ug/L 1,1,1-Trichloroethane 53.379 50.000 0.900 0 107 60-128 Carbon tetrachloride ug/L 48.371 50.000 0.600 U 97 56-131 Benzene uq/L 55.576 50.000 0.500 U 111 68-125 1,2-Dichloroethane ug/L 55.016 50.000 0.600 U 110 68-124 Trichloroethene ug/L 54.969 50.000 0.800 U 110 58-125 1,2-Dichloropropane ug/L 52.765 50.000 0.700 U 106 69-122 Bromodichloromethane ug/L 56.733 50.000 0.700 U 113 67-118 cis-1,3-Dichloropropene ug/L 55.080 50.000 0.400 U 110 60-122 4-Methyl-2-pentanone (MIBK) υg/L 54.688 50.000 0.900 U 109 61-140 Toluene ug/L 49.444 50.000 0.400 U 99 70-116 trans-1,3-Dichloropropene ug/L 50.000 54.889 0.800 Ū 110 55-126 1,1,2-Trichloroethane 50.000 56.416 ug/L 0.800 U 113 70-119 Tetrachloroethene ug/L 48.708 50.000 0.400 U 97 62-118 2-Hexanone ug/L 56.638 50.000 0.700 U 113 54-179 Dibromochloromethane ug/L 51.026 50,000 0.500 U 102 65-114 Chlombenzene ug/L 49.067 50.000 0.500 U 98 71-114 Ethylbenzene ug/L 49.283 50.000 0.500 Ū 99 71-115 Styrene ug/L 49.020 50.000 0.700 U 98 69-112 63-115 Bromoform ug/L 53.587 \$0.000 0.800 U 107 1, 1, 2, 2-Tetrachloroethane υ<u>g</u>/L 50.825 50.000 0.700 U 102 66-129 Xylenes (total) ug/L 147.342 150.000 0.900 U 98 66-118

QUALITY CONTROL RESULTS Job Number.: 207793 Report Date.: 10/27/2004								
OUSTOMER - FANNING PHILLI	PS AND MILNAR	PROJECT: ARI	WIN INDUSTRIE	S. C. States	ATTN: Ben Canceni :			
QC Type	Description	Re	eag. Code	Lab ID	Dilution Factor	Date	Time	
Test Method: 8260B Equipment Code: MSL Analyst: pam Method Description.: Volatile Organics (5mL Purge) Batch: 39771						am		
LCS 12 126073607 (Control Sample 1953, 12 1057)								
Parameter/Test Desc	cription Units	QC Result	QC Result	True Value	Orig. Value QC Cal	c. *	Limits F	
Chloromethane	ug/L	24.349		20.000	122	+	43-134	
Vinyl chloride	ug/L	22.862		20.000	114	*	51-139	
Bromomethane	ug/L	18.816		20.000	94	*	27-171	
Chloroethane	ug/L	21.348		20.000	107	*	53-167	
1,1-Dichloroethene	ug/L	20.758		20.000	104	+	57-137	
Carbon disulfide	ບໆ/ໂ	17.225		20.000	86	ł	44-142	
Acetone	ug/L	19.666		20.000	98	*	18-263	
Methylene chloride	ug/L	19.437		20.000	9 7	*	61-129	
trans-1,2-Dichloroethene	ug/L	20.036		20.000	100	*	57-129	
1,1-Dichlorcethane	ug/L	18.799		20.000	94	*	67-121	
cis-1,2-Dichloroethene	ug/L	18.652		20.000	93	*	65-120	
2-Butanone (MEK)	ug/L	22,966		20.000	115	*	30-222	
Chloroform	ug/L	19.829		20.000	99	*	70-124	
1,1,1-Trichloroethane	ug/L	19.399		20.000	97	*	60-128	
Carbon tetrachloride	ug/L	20.612		20.000	103	*	56-131	
Benzene	ug/L	19.779		20.000	99	ŧ	68-126	
1,2-Dichloroethane	ug/L	19.358		20.000	97	ł	68-124	
Trichloroethene	ug/L ´	19.406		20.000	97	ŧ	58-125	
1,2-Dichloropropane	ug/L	19.058		20.000	95	+	69-122	
Bronodichloromethane	ug/L	19.634		20.000	98	*	67-118	
cis-1,3-Dichloropropene	ug/L	18.611		20.000	93	+	60-122	
4-Methyl-2-pentanone (MIBK)	ug/L	17.736		20.000	89	*	61-140	
Toluene	ug/L	18.152		20.000	91	*	70-116	
trans-1,3-Dichloropropene	ug/L	19.168		20.000	96	+	55-126	
1,1,2-Trichloroethane	ug/L	19.688		20.000	98	*	70-119	
Tetrachloroethene	ug/L	17.455		20.000	87	*	62-118	
2-Hexanone	ug/L	18.938		20.000	95	*	54-179	
Dibromochloromethane	ug/L	17.638		20,000	88	ŧ	65-114	
Chlorobenzene	ug/L	17.588		20.000	88	ŧ	71-114	
Ethylbenzene	ug/L	18.010		20.000	90	*	71-115	
Styrene	ug/L	17,794		20.000	89	+	69-112	
Bromoform	ug/L	18.610	•	20.000	93	ŧ	63-115	
1,1,2,2-Tetrachloroethane	ug/L	18.208		20.000	91	÷	66-129	
Xylenes (total)	ug/L	54.548		60,000	91	+	66-118	

0000042

. . . .

Job Number.: 207793

QUALITY CONTROL RESULTS

Report Date.: 10/27/2004

CUSTOMER - F7	NNINS, PHILLIPS AND MOLNAR AND SPROJE	T ARKVIN INDUSTRI	S. Alteration	ATTN: Ben Cancemi			
QC Type	Description	Reag. Code	Lab ID	Dilution Factor	Date	Time	
Test Method 8260B		· Equipment Co	le: MSL	Analyst: pam			

Test Method.....: 8260B Method Description.: Volatile Organics (5mL Purge)

Equipment Code....: MSL Batch..... 39773

Laboratory Control Sam	ple: Plant	1704	HWRKDO1	-39741:5-002		 . 10	/26/2004.111	9
Parameter/Test Description	Units	QC Result	QC Result	True Value	Orig. Value	QC Calc.	• Limits	F

Chloromethane	ug/L	25.664	20.000	128	*	43-134
Vinyl chloride	ug/L	23.217	20.000	116	¥ .	51-139
Bromomethane	ug/L	18.206	20.000	91	+	27-171
Chloroethane	ug/L	22.214	20.000	111	۲.	53-167
1,1-Dichloroethene	ug/L	21.178	20.000	106	ł	57-137
Carbon disulfide	ug/L	17.959	20.000	90	ŧ.	44-142
Acetane	ug/L	20.462	20.000	102	ŧ.	18-263
Methylene chloride	ug/L	19.711	20.000	99	ŧ	61-129
trans-1,2-Dichlorcethene	ug/L	19.356	20.000	97	ŧ	57-129
1,1-Dichloroethane	ug/L	19.749	20.000	99	Ł	67-121
cis-1,2-Dichloroethene	ug/L	20.497	20.000	102	ŧ.	65-120
2-Butanone (MEK)	ug/L	19.886	20.000	99	¥	30-222
Chloroform	ug/L	20.361	20.000	102	ł	70-124
1,1,1-Trichloroethane	ug/L	20.145	20.000	101	Ł	60-128
Carbon tetrachloride	ug/L	17.694	20.000	88	*	56-131
Benzene	ug/L	20.870	20.000	104	ŧ	68-126
1,2-Dichloroethane	ug/L	20.554	20.000	103	ł	68-124
Trichloroethene	ug/L	19.439	20.000	97	*	58-125
1,2-Dichloropropane	ug/L	19.635	20.000	96	ł	69-122
Bromodichloromethane	ug/L	19.086	20.000	95	ł	67-118
cis-1,3-Dichloropropene	ug/L	19.942	20.000	100	ł	60-122
4-Methyl-2-pentanone (MIBK)	ug/L	18.352	20.000	92	¥	61-140
Toluene	ug/L	17.194	20.000	86	÷	70-116
trans-1,3-Dichloropropene	ug/L	19.386	20.000	97	ł	55-126
1,1,2-Trichloroethane	ug/L	19.991	20.000	100	ł	70-119
Tetrachloroethene	ug/L	17.348	20.000	87	¥	62-118
2-Hexanone	ug/L	19.213	20.000	96	*	54-179
Dibromochloromethane	ug/L	17.170	20.000	86	*	65-114
Chlorobenzene	ug/L	16.910	20.000	85	*	71-114
Ethylbenzene	ug/L	17.969	20.000	90	Ł	71-115
Styrene	ug/L	16.308	20.000	82	ŧ	69-112
Bromoform	ug/L	17.845	20,000	89	÷	63-115
1,1,2,2-Tetrachloroethane	ug/L	17.372	20.000	87	8	66-129
Xylenes (total)	ug/L	52.137	60.000	87	÷.	66-118

0000043

Page 38 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.
4A VOLATILE METHOD BLANK SUMMARY

Case No.: 207793 SAS No.:

Lab Name: STL-CT

Lab Code: STL-CT

Lab File ID: L6535

Contract:

39688-1MB

SDG No.: 207793

Lab Sample ID: 39688-1MB

Date Analyzed: 10/25/04

GC Column: RTX-624 ID: 0.53 (mm)

Instrument ID: MSL

Heated Purge: (Y/N) N

Time Analyzed: 1030

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

[EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	==========	=================	================	=========
01	39688-2LCS	39688-2LCS	L6536	1057
02	A1MW-10A	207793-14	L6549	1642
03	A1MW-11E	207793-1	L6550	1707
04	A1MW-11A	207793-2	L6551	1731
05	A1MW-11B	207793-3	L6552	1755
06	MW-1	207793-4	L6553	1819
07	A1MW-8A	207793-5	L6554	1843
08	A1MW-8B	207793-6	L6555	1907
09	MW-2	207793-7	L6556	1931
10	MW-12	207793-8	L6557	1956
11	MW-3	207793-9	L6558	2020
12	A1MW-9A	207793-10	L6560	2116
13				
14				
15				
16				
17				
18	<u> </u>			
19	<u> </u>			
20				
21				
22				
23				
24				
25				
20	·			
27	<u> </u>	······································	·	
20				
20				
-0				

COMMENTS:

page 1 of 1

FORM IV VOA

Jab Number.: 207793	QUAI	LITY CO	NTROL R	ESULTS	Report Date.: 10/	27/2004	
CUSTOMER: FANNING, PHILLIPS AND MOL	MAR	T. PROJECE	REWIN INDUSTRIE	state y a	NUN Ben Cancemi	Start in	
QC Type Descript	ion		Reag. Code	Lab ID	Dilution Factor	Date	Time
					······································		<u> </u>
Test Method 8260B Method Description.: Volatile Organ	ics (SmL Purg	ge)	Equipment Cod Batch	le: MSL : 39771	Analy	st: pam	
MB Method Blank		A. B Private	S., 197	19688 -001		10/25/20	14 1 030
Parameter/Test Description	Units	QC Result	QC Result	True Value	Orig. Value QC Ca	lc. • Li	lmits F
Chloromethane	ug/L	1.400	U		-		
Vinyl chloride	ug/L	0.600	υ				
Bromomethane	ug/L	2.700	υ				
Chloroethane	ug/L	1.700	U				
1,1-Dichloroethene	υg/L	0.800	υ				
Carbon disulfide	ug/L	0.400	υ				
Acetone	ug/L	2.000	σ				
Methylene chloride	ug/L	0.600	υ				
trans-1,2-Dichloroethene	ug/L	0.500	Ŭ				
1,1-Dichloroethane	ug/L	0.400	U				
Vinyl acetate	ug/L	1.900	U				
cis-1,2-Dichloroethene	ug/L	0.700	U				
2-Butanone (MEK)	ug/L	1.600	U				
Chlorotom	ug/L	0.600	U				
1,1,1-irichioroethane	ug/L	0.900	U				
Carbon tetrachioride	ug/L	0.600	U T				
1.2 Dichlemethere	0 <u>0</u> 71	0.500	U 17				
Trichloroethere		0.000					
1.2-Dichloropape		0.800	U 11				
Bromodichloromethane	ug/L	0.700	υ π				
cis-1_3-Dichloropropene	ug/L	0.400	1				
4-Methyl-2-pentanone (MIBK)	13G/T	0.400	U U				
Toluene	1)cr/T.	0.500	U				
trans-1.3-Dichloropropene	1107/L	0.800	U U				
1,1,2-Trichloroethane	ug/L	0.800	ŭ				
Tetrachloroethene	uq/L	0.400	Ū				
2-Hexanone	ug/L	0.700	U				
Dibromochloromethane	ug/L	0.500	υ				
Chlorobenzene	ug/L	0.500	U				
Ethylbenzene	ug/L	0.500	U				
Styrene	ug/L	0.700	U				
Bromoform	ug/L	0.800	U				
1,1,2,2-Tetrachloroethane	ug/L	0.700	U				
Ayrenes (Cotar)	ug/L	0.900	U				

. .

EPA SAMPLE NO.

VOLATILE METHOD BLANK SUMMARY

39741-1MB

Lab Name: STL-CTContract:Lab Code: STL-CTCase No.: 207793SAS No.:SDG No.: 207793Lab File ID: L6563Lab Sample ID: 39741-1MBDate Analyzed: 10/26/04Time Analyzed: 1055GC Column: RTX-624ID: 0.53 (mm)Heated Purge: (Y/N) NInstrument ID: MSL

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	==========	=================		
01	39741-2LCS	39741-2LCS	L6564	1119
02	TB	207793-16	L6565	1201
03	A1MW-9B	207793-11	L6566	1225
04	MW-7	207793-12	L6567	1249
05	A1MW-10B	207793-13	L6568	1313
06	MW-4	207793-15	L6569	1337
07	A1MW-10A	207793-14MSB	L6571	1432
08	A1MW-10AMS	207793-14MS	L6572	1456
09	A1MW-10AMSD	207793-14MSD	L6573	1521
10				
11				
12		· .		
13				
14	······································			
15				
16				
17				
18				
19				
20				
21				
22				
23			·	
24				
25		·		<u>_</u>
26				
27				
28				
29				l
30				

COMMENTS:

page 1 of 1

FORM IV VOA

doL	Number.: 207793	QUAL	ITY	со	רא	TROL RI	ESULTS	F	Report Date	.: 10/2	7/2004		
CUSTOMER - FADVING	PELL IPS AND MOLN	AR	PROJEC	r . Af	ekoni	N INDOSTRIE	S at		TIN Ben C	ancema	24		
QC Type	Descripti	an		F	leas	, Code	Lab ID		Dilution F	actor	Date	. Ti	ime
Test Method Method Descriptio	cs (5mL Purg	e)		Ec Ba	nipment Cod	le: MSL : 39773			Analys	t: ŗ	kann		
ME IS Meth	cd Blenk 👘 🖓	200 D	31 3 4				39741 -001 7			and and a	10/26	2004 🔬	1055
Parameter/	Test Description	Units	QC Res	ult		QC Result	True Value	0	rig. Value	QC Cal	.c. •	Limit	5 F
Chloromethane Vinyl chloride Bromomethane		ug/L ug/L ug/L	1.4	400 500	U U		-,						
Chloroethane 1,1-Dichloroethene		ug/L ug/L	1. 0.	700 800	ប ប								
Carbon disulfide Acetone Methylane chlorida		ug/L ug/L ug/I	0.4	400 000	UU								n
trans-1,2-Dichloro 1.1-Dichloroethane	ethene	ug/L ug/L	0.	500 400	U U								8
Vinyl acetate cis-1,2-Dichloroet	hene	ug/L ug/L	1.	900 700	บ บ								
2-Butanone (MEK) Chloroform		ug/L ug/L	1. 0.0	500 500	U U								
1,1,1-Trichloroeth Carbon tetrachlori	ane de	ug/L ug/L	0.	900 500	Ŭ U								
1,2-Dichloroethane Trichloroethene		ug/L ug/L ug/L	0.	500 600 800	U U								
1,2-Dichloropropan Bromodichlorometha	e ne	ug/L ug/L	0.1	700 700	U U								
cis-1,3-Dichloropr 4-Methyl-2-pentano	opene ne (MIBK)	ug/L ug/L	0 0	400 900	U U								
trans-1,3-Dichloro	propene	ug/L ug/L ug/L	0.	400 800 800	U U II								
Tetrachloroethene 2-Hexanone		ug/L ug/L	0.	400 700	ប ប								
Dibromochlorometha Chlorobenzene Ethylbenzene	ne	ug/L ug/L ug/L	0. 0.	500 500 500	U U I								
Styrene Bromoform		ug/L ug/L	0. 0. 0.	700 800	U U								
1,1,2,2-Tetrachlor Xylenes (total)	oethane	ug/L ug/L	0. 0.	700 900	ប ប								

QUALITY ASSURANCE METHODS REFERENCES AND NOTES

Report Date: 11/05/2004

Abbreviations

Batch	Designation given to identify a specific extraction, digestion, preparation set, or analysis set
CAP	Capillary Column
CCB	Continuing Calibration Blank
CCV	Continuing Calibration Verification
CF	Confirmation Analysis
CRA	Low Level Standard Check - GFAA, Mercury
CRI	Low Level Standard Check - ICP
Dil Fac	Dilution Factor
DL	Secondary dilution and analysis
DEFac	Detection Limit Factor
DSH	Distilled Standard - High Level
DSL	Distilled Standard - Low Level
DSM	Distilled Standard - Medium Level
EB	Extraction Blank
ICB	Initial Calibration Blank
	Initial Calibration Verification
IDL	Instrument Detection Limit
ISA	Interference Check Sample A
ISB	Interference Uneck Sample B
JOD NO.	The first six digits of the sample in which refers to a specific client, project and sample group
	An 8 number unique laboratory identification
	Laboratory Control Standard Duplicate
LUS	Laboratory control standard with reagent grade water or a matrix free from the analyte of interest
MB	Method Blank or (PB) Preparation Blank
MD	Method DupitCate
MUL	Method Detection Limit
MLE	Medium Level Extraction Blank
MKL	Method Reporting Limit Standard
MSA	Method of Standard Additions
MS MSD	Matrix Spike
MSD	Matrix Spike Duplicate
NU	
PALK	Vacked Column
PREPT	Preparation factor used by the Laboratory's information management system (LIMS)
	Post spike Duplicate
	Post spike builtate
	Re-extraction and analysis
PPD	Relative Percent Difference of dunlicate (unrounded) analyses
RRF	Relative Response Factor
RS	Reference Standard
RT .	Referition Time
RTU	Retention Time Window
SampleID	A 9 digit number unique for each sample, the first six digits are referred as the job number
SCB	Seeded Control Blank
SD	Serial Dilution
UCB	Unseeded Control Blank

One or a combination of these data qualifiers and abbreviations may appear in the analytical report.

Page 46

QUALITY ASSURANCE METHODS

REFERENCES AND NOTES

Report Date: 11/05/2004

REPORT COMMENTS

- 1) All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.
- 2) Soil, sediment and sludge sample results are reported on a "dry weight" basis except when analyzed for landfill disposal or incineration parameters. All other solid matrix samples are reported on an "as received" basis unless noted differently.

3) Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.

- 4) The test results for the noted analytical method(s) meet the requirements of NELAC. Lab Cert. ID# 10604
- 5) According to 40CFR Part 136.3, pH, Chlorine Residual and Dissolved Oxygen analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH Field) they were not analyzed immediately, but as soon as possible on laboratory receipt.

Glossary of flags, qualifiers and abbreviation

Inorganic Qualifiers (Q-Column)

- 11 Analyte was not detected at or above the reporting limit.
- Not detected at or above the reporting limit.
- Result is less than the RL, but greater than or equal to the method detection limit. .1
- Result is less than the CRDL/RL, but greater than or equal to the IDL/MDL. B
- S Result was determined by the Method of Standard Additions.
- Inorganic Flags (Flag Column)
- ICV, CCV, ICB, CCB, ISA, ISB, CRI, CRA, MRL: Instrument related QC exceed th upper or lower control limits.
- LCS, LCD, MD: Batch QC exceeds the upper or lower control limits.
- MSA correlation coefficient is less than 0.995.
- MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike 4
- concentration; therefore, control limits are not applicable. Ε
- SD: Serial dilution exceeds the control limits.
- MB, EB: Batch QC is greater than reporting limit or had a negative instrument reading lower than the н absolute value of the reporting limit.
- N MS, MSD: Spike recovery exceeds the upper or lower control limits.
- PS: Post-digestion spike was outside 85-115% control limits.
- Organic Qualifiers (Q Column)
- п Analyte was not detected at or above the reporting limit.
- ND Compound not detected.
- Result is an estimated value below the reporting limit or a tentatively identified compound (IIC). Ъ
- Q Result was qualitatively confirmed, but not quantified.
- С Pesticide identification was confirmed by GC/MS.
- Y The chromatographic response resembles a typical fuel pattern.
- The chromatographic response does not resemble a typical fuel pattern. Ζ
- Ε Result exceeded calibration range, secondary dilution required.

Organic Flags (Flags Column)

- MB,EB, MLE: Batch QC is greater than reporting limit.
- LCS, LCD, CCV, MS, MSD, Surrogate, RS:Batch QC exceeds the upper or lower control limits.
- Concentration exceeds the instrument calibration range or below the reporting limit. A
- В Compound was found in the blank.
- Surrogate or matrix spike recoveries were not obtained because the extract was diluted for D
- analysis; also compounds analyzed at a dilution will be flagged with a D. Н Alternate peak selection upon analytical review
- Indicates the presence of an interfence, recovery is not calculated. 1
- Manually integrated compound. М
- The lower of the two values is reported when the % difference between the results of two GC columns is greater than 25%.

Page 45

STL-Connecticut Certification Summary (as of October 2004)

The laboratory identification numbers for the STL-Connecticut laboratory are provided in the following table. Many states certify laboratories for specific parameters or tests within a category (i.e. method 325.2 for wastewater). The information in the following table indicates the lab is certified in a general category of testing such as drinking water or wastewater analysis. The laboratory should be contacted directly if parameter-specific certification information is required.

Stare	Responsible Agency	Centringation	Existentiador Existentiador EDate	Lab Shinder
Connecticut	Department of Health Services	Drinking Water, Wastewater	12/31/04	PH-0497
Maine	Department of Health and Environmental Services	Drinking Water, Wastewater/Solid, Hazardous Waste	04/18/06	CT023
Massachusetts	Department of Environmental Protection	Potable/Non-Potable Water	06/30/05	CT023
New Hampshire	Department of Environmental Services	Drinking Water, Wastewater	08/29/05	2528
New Jersey	Department of Environmental Protection	Drinking Water, Wastewater	06/30/05	46410
New York	Department of Health	CLP, Drinking Water, Wastewater, Solid/ Hazardous Waste NELAC	04/01/05	10602
Rhode Island	Department of Health	ChemistryNon- Potable Water and Wastewater	12/30/04	A43
Utah	Department of Health	RCRA	05/31/05	2032614458

MISCELLANEOUS DOCUMENTS

SEVERN TRENT STL	CHAIN OF CUSTODY RECORD					PAGE OF 2 NO.							
	Tel: (203) 929-81 Fax: (203) 929-81	40. 42	C			<u>11</u> 2		*			ertians hallings		
STL JOB #: 20000 43	5		NC BY							D C D	1975 - 1977 ZNH		
CLIENT: FPM GROGP			-830					"PAG		14410	D. Doc		
PROJECT ID: 652-04-05					- ilei i	E TAVE I AN	DIPRISTER	ATONSEE			0,0		
STL PROJECT MGR: JO LANDA D).		30.										
RUSH YES X NO C	due date	• .	3X						-				
BORLE SEAT	Maria Angled		Y / N	Y / N	Y / N) FILICERED) Y / N	HEIRGLEN Y / N	Y / N	Y / N	Y/N	ક્રાંગોલન નાવલવાઉ		
AIMOU-ILE Idi	3/4 100 160	OI N	X					· · ·			Anna den statung mang di Pantanan nang paning pinang pinang pinang pinang pinang pinang pinang pinang pinang pi		
O AIMW-11A	1000	(02)											
8 AIMCO-11B	10.10	(13)			-								
8 mer-1	1220	(CP)				-							
00 AIMW-8A	1150	(05)											
AIMCe-8B	1140	$\widehat{\mathcal{Q}}$											
Mw-2	1100	(0)				20^{-1}	779	33	10/29	9/2004			
Mw-12					3, PHILLIPS	AND MOL	NAR						
mce-3	1340	(9)				ARKWN	INDUSTRI	ES					
AIMW-9A	1310	(10)											

MAIRDA	GOD[45]	BOTTLES PREPARED BY	DATE/TIME	BOTTHESRECTORY	DATE/TIME	REMARKS(0))	SAMPLEREGEPT
				Mydalen	10/14/04 9150		
A AIR	S - SOIL	SIGNATURE		SIGNATURE			CUSTODY SEALS
AQ - AQUEOUS	SL - SLUDGE			ينهب ا			
C - COMPLEX	W - WPE		DATE /TIME	RECEIVED IN LAR BY	DATE /TIME	PRESERVED	SEALS INTACT
D - DRUM WASTE	0 - OTHER	R		16 Jun Rlagh			—
01 - 01L	FB - FIELD BLANK	DON I, CANCOMI	10/14/04	MASTINA DIOULU	10 15 104		SEE REMARKS
1	TB - TRIP BLANK	SIGNATURE	17 '	SIGNATURE			
		1 Mit-L	I	hable	0130		

SEVERN TRENT STL STL Connecticut 128 Long Hill Cross Road Shelton, CT 06484	CHAIN OF CUSTODY RECORD PAGE 2 OF 2 NO.								
Tel: (203) 929-8140 Fax: (203) 929-8142	3	642 (1968) 1		ie I	sis	X			A SCHENERAMINE MARKS
STL JOB #: 20000 435	N M					up r c	A. (7))	553	
CLIENT: FPM GROUP	A C					PAS	SEL	hau	Se i i tan i V
PROJECT ID: GS2-04-05	Σ		Roma	LEAN PERAN	IN PRESED	VANIGINE			R
STL PROJECT MGR: John NUA D.	cm/								
RUSH YES NO DUE DATE	hxip						1		
BOINTER GEIENT SAMPLE ID SAMPLE DATE/TIME MATRIX LAB OC SAMPLED MATRIX	Y /(N)	Y / N	Y / N	XEALTERED	CIRCLEN Y / N	CONNERS OF			SAMPLET REMARKS:
AIMOW-SB 10/13/04 1300 HO 11 N							. /		
0. MW-7 12 N									
3 AIMW-10B 1450 (3) N									
8 AIMUE-10A 1500 (1) 4									MS/MS DEAM
1415 V (5) N									
TB V V V	J.	(]	poth 1	Brial	shav	e head	ls pa c	l	TRIP BLANK
					〔	Piolis	704)		
EANNING, PHILLIPS AND MOLANIA									
BEN CANCEMI ARKWN INDUSTRIES									

MATRIX	ભભગારડ	BOTTLES PREPARED BY	DATE/TIME	BOTTLES REC'D BY	DATE/TIME 9:5710/14/04	REMARKS ON	ISAMEESAAGENATION
A - AIR	S - SOIL	SIGNATURE		SIGNATURE	, , , , , , , , , , , , , , , , , , , ,		
AQ - AQUEOUS	SL - SLUDGE			<u> </u>			
	0 - OTHER	SAMPLES COLLECTED BY	DATE/TIME	RECEIVED IN LAB BY	DATE/TIME		SEALS INTACT
	FB - FIELD BLANK	Ban / CAREM	10/14/04	pristing Bolker	10/15/04 0930	CHILLED	SEE REMARKS
	TB - TRIP BLANK	SIGNATURE AC,	1	ABh	1.1	_	-
		1		•			STI-8122

. .

rpjsckl	Job Sample Receipt Checklist Report	٧2
Job Number.: 207793 Location.: 57207 Customer Job ID: Project Number.: 20000435 Project Descr Customer: FANNING, PHILLIPS AND MC	Check List Number.: 1 Description.: Job Check List Date.: iption.: Arkwin Industries DLNAR Contact.: Ben Cancemi	Date of the Report: 10/15/2004 Project Manager: jld
Questions ?	(Y/N) Comments	
Chain-of-Custody Present?	Y	
If "yes", completed properly?	Y	
Custody seal on shipping container?	Y	
If "yes", custody seal intact?	Y	
Custody seals on sample containers?	N	
If "yes", custody seal intact?		
Samples iced?	Υ	
Temperature of cooler acceptable? (4 deg	C +/- 2). Y 0.0C	
Samples received intact (good condition)?	? Y	
Volatile samples acceptable? (no headspace	e) N BOTH TB VIALS HAVE HEADSPACE	
Correct containers used?	Y	
Adequate sample volume provided?	Y	
Samples preserved correctly?	· · · · · · · · · · · · · · · · · · ·	
Samples received within holding-time?	····· Y	
Agreement between COC and sample labels?.	······ Y	
Radioactivity at or below background leve	els? Y	
A Sample Discrepancy Report (SDR) was nee	eded? N	
Comments		:
If samples were shipped was there an air	bill #? Y FEDEX	
Sample Custodian Signature/Date		Ken 10/15/04

			· ;		1								•	
4	· ·	Time											· · · · ·	
10/29/200		Date		1.00 million - 100 million										-
793 LIPS AND MOLINAR STRIES	-10 -10-	Accepted by		***********			-					-		
FANNING, PHIL BEN CANCEMI ARK WIN INDU	Date Received: Sample #s: OI Locations: $R\tilde{c}$	Relinquished by	Used	Wspal				-	es es de des					
· · · · · · · · · · · · · · · · · · ·		Reason	pan .	in ind	tops	-								
• •		Time	16=00	11-10-11		 								
· · · ·		Date	Holzsky	HOLZON										
tody	.#01-16	Accepted by	B	P.H.										
Jonnecticut Il Chain-of-Cust LP	Water	Relinquished by	10)							-			507.CT
STL - C Interna Trip Blank: #//	FB:	Laboratory Sample #	1-10,1416	1)-13,14-16			-							STL Form# SMF00.

SDG NARRATIVE

STL Report : 207793 FPM GROUP

Case Narrative

Sample Receipt – All samples were received in good condition and at the proper temperature.

Volatile Organics – Volatile organics were determined by purge and trap GC/MS using guidance provided in Method 5030B/8260B.

The spike compound percent recoveries were within the laboratory generated guidelines in the independent source quality control samples.

Sample Calculation:

Sample ID-A1MW-11A Compound-1,1-Dichloroethene

= 18.89 = 19 ug/L.(42636 area)(125 ng)(1)(163012 area)(.346 area/ng)(5ml)

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in the case narrative.

I certify that this data package is in compliance with the terms and conditions of this contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computerreadable data submitted on diskette has been authorized by the Laboratory Director or his designee, as verified by the following signature.

a K. Cullep

Laboratory Director

Nov 52004

CC:BC

NED OCT 1 2 2004

Technical Report

prepared for

FPM Group 909 Marconi Avenue Ronkonkoma, New York 11779 Attention: Ben Cancemi

Report Date: 10/6/2004 *Re: Client Project ID: Arkwin 652-04-05* York Project No.: 04090665

CT License No. PH-0723 New York License No. 10854 Mass. License No. M-CT106 Rhode Island License No. 93 NJ License No. CT401

STRATFORD, CT 06615

(203) 325-1371

Report Date: 10/6/2004 Client Project ID: Arkwin 652-04-05 York Project No.: 04090665

FPM Group 909 Marconi Avenue Ronkonkoma, New York 11779 Attention: Ben Cancemi

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on 09/29/04. The project was identified as your project "Arkwin 652-04-05".

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables

All samples were received in proper condition meeting the NELAC acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All the analyses met the method and laboratory standard operating procedure requirements except as indicated under the Notes section of this report, or as indicated by any data flags, the meaning of which is explained in the attachment to this report, if applicable.

The results of the analyses, which are all reported on an as-received basis unless otherwise noted, are summarized in the following table(s).

Client Sample ID			System A Effluent		System B Effluent	
York Sample ID			04090665-01		04090665-02	
Matrix			AIR		AIR	
Parameter	Method	Units	Results	MDL	Results	MDL
Volatiles(TO-14 list)	EPA TO14	ppbv				
1,1,1-Trichloroethane			59	1.0	81	1.0
1,1,2,2-tetrachloroethane			Not detected	1.0	Not detected	1.0
1,1,2-Trichloroethane			Not detected	1.0	Not detected	1.0
1,1-Dichloroethane			Not detected	1.0	- 19	1.0
1,1-Dichloroethylene			Not detected	1.0	Not detected	1.0
1,2,4-Trichlorobenzene			Not detected	1.0	Not detected	1.0
1,2,4-Trimethylbenzene			Not detected	1.0	Not detected	1.0
1,2-Dibromoethane			Not detected	1.0	Not detected	1.0
1,2-Dichlorobenzene			Not detected	1.0	Not detected	1.0
1,2-Dichloroethane			Not detected	1.0	Not detected	1.0
1,2-Dichloropropane			Not detected	1.0	Not detected	1.0
1,2-Dichlorotetrafluoroethane			Not detected	1.0	Not detected	1.0
1,3,5-Trimethylbenzene			Not detected	1.0	Not detected	1.0
1,3-Dichlorobenzene			Not detected	1.0	Not detected	1.0
1,4-Dichlorobenzene			Not detected	1.0	Not detected	1.0
3-Chloropropene			Not detected	1.0	Not detected	1.0

Analysis Results

Client Sample ID			System A Effluent		System B Effluent	
York Sample ID			04090665-01		04090665-02	
Matrix			AIR		AIR	
Parameter	Method	Units	Results	MDL	Results	MDL
4-Ethyltoluene			Not detected	1.0	Not detected	1.0
Benzene			Not detected	1.0	Not detected	1.0
Benzyl Chloride			Not detected	1.0	Not detected	1.0
Bromomethane			Not detected	1.0	Not detected	1.0
Carbon Tetrachloride			Not detected	1.0	Not detected	1.0
Chlorobenzene			Not detected	1.0	Not detected	1.0
Chloroethane			Not detected	1.0	Not detected	1.0
Chloroform		-	Not detected	1.0	Not detected	1.0
Chloromethane			Not detected	1.0	Not detected	1.0
cis-1,2-Dichloroethylene			12	1.0	99	1.0
cis-1,3-Dichloropropylene			Not detected	1.0	Not detected	1.0
Dichlorodifluoromethane			4.3	1.0	Not detected	1.0
Ethylbenzene			Not detected	1.0	Not detected	1.0
Freon-113			Not detected	1.0	Not detected	1.0
Hexachloro-1,3-Butadiene			Not detected	1.0	Not detected	1.0
Methylene Chloride			Not detected	1.0	Not detected	1.0
o-Xylene			Not detected	1.0	Not detected	1.0
p- & m-Xylenes			Not detected	1.0	Not detected	1.0
Styrene			Not detected	1.0	Not detected	1.0
Tetrachloroethylene			19	1.0	15	1.0
Toluene			2.7	1.0	1.9	1.0
trans-1,3-Dichloropropylene			Not detected	1.0	Not detected	1.0
Trichloroethylene			13	1.0	34	1.0
Trichlorofluoromethane			2.3	1.0	Not detected.	1.0
Vinyl Chloride			Not detected	1.0	Not detected	1.0

Units Key: For Waters/Liquids: mg/L = ppm; ug/L = ppb

For Soils/Solids: mg/kg = ppm ; ug/kg = ppb

Notes for York Project No. 04090665

- 1. The MDL (Minimum Detectable Limit) reported is adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation.
- 6. All analyses conducted met method or Laboratory SOP requirements.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory.

Approved Robert Q. Brad Managing Director

Date: 10/6/2004

YORK

Analytical Laboratories, Inc.

QA/QC Summary Report

Associated Samples: AC32430

Client: FPM Group

Analysis Name: Volatiles(TO-14 list) QA ONLY QA Sample #: AC32430 Batch Name: \$TO14_-13987 York's Sample ID: 04090665-01 Unit of Measure: ppbv Spike Duplicate Matrix Spike Parameter Unspiked LCS(%) Result Blank Amount Result Recovery, % Duplicate Recovery,% Precision, RPD 1,2-Dichloroethane Not detected Not detected Not detected Not detected Not detected Not detected Benzyl Chloride Not detected Not detected Not detected Not detected Not detected Not detected Benzene Not detected Not detected 78.0 5.0 3.9 Not detected 4-Ethyltoluene Not detected Not detected Not detected Not detected Not detected Not detected 3-Chloropropene Not detected Not detected Not detected Not detected Not detected Not detected 1.4-Dichlorobenzene Not detected Not detected Not detected Not detected Not detected Not detected 1,3-Dichlorobenzene Not detected Not detected Not detected Not detected Not detected Not detected 1,3,5-Trimethylbenze Not detected Not detected Not detected Not detected Not detected Not detected 1,1,1-Trichloroethane Not detected Not detected Not detected Not detected Not detected Not detected 1,2-Dichloropropane Not detected Not detected Not detected Not detected Not detected Not detected Chlorobenzene Not detected Not detected 5.0 4.0 80.0 Not detected 1,2-Dichlorobenzene Not detected Not detected Not detected Not detected Not detected Not detected 1,2-Dibromoethane Not detected Not detected Not detected Not detected Not detected Not detected 1,2,4-Trimethylbenze Not detected Not detected Not detected Not detected Not detected Not detected 1.2.4-Trichlorobenze Not detected Not detected Not detected Not detected Not detected Not detected 1,1-Dichloroethylene Not detected Not detected 5.0 4.2 84.0 Not detected 1,1-Dichloroethane Not detected Not detected Not detected Not detected Not detected Not detected 1,1,2-Trichloroethane Not detected Not detected Not detected Not detected Not detected Not detected 1,1,2,2-tetrachloroet Not detected Not detected Not detected Not detected Not detected Not detected 1,2-Dichlorotetrafluor Not detected Not detected Not detected Not detected Not detected Not detected Freon-113 Not detected Not detected Not detected Not detected Not detected Not detected Trichlorofluorometha Not detected Not detected Not detected Not detected Not detected Not detected Trichloroethylene Not detected 5.0 43 86.0 Not detected Not detected trans-1,3-Dichloropro Not detected Not detected Not detected Not detected Not detected Not detected Toluene 1.4 Not detected 5.0 4.1 82.0 1.3 7.4 Tetrachloroethylene Not detected Not detected Not detected Not detected Not detected Not detected Styrene Not detected Not detected Not detected Not detected Not detected Not detected

YORK

ANALYTICAL LABORATORIES, INC.

120 RESEARCH DRIVE

Field Chain-of-Custody Recor

Page / of /

STRATFORD, CT 06615

203.325.1371	FAX 203.357-0166	:		<u>.</u>					$-\Omega \alpha$	
<u>C</u> c	ompany Name	Re	port to:		Invoid	e to:		Project ID/No.	Ala III	h
Ŷ	FPM	BEN		FEM			ARKWIN	Sample's Col	lec//d by (signature)	
		C	CANCEMI				652-04-05	MARC R. JA	encer .	
Sample No.	Location/ID		Date Sampled	S Water	ample Soil	Matri Air	x Other	Analy	ses Requested	Container Desc.
	SYSTEM A EFFW	ENT	9/28/04 1250			×		VOCS ,	by TO14	() FEDLAR BAG
	SYSTEM BEALUR	TNT .	l 1300			J	•		·	Ţ
							•		· · · · · · · · · · · · · · · · · · ·	
							- -			
								İ		
			· · · · · · · · · · · · · · · · · · ·					· ·	······································	
	·									
	· · · · · · · · · · · · · · · · · · ·									
Chain-of-Cu	istody Record		March.	SIEN	rek.			9/29/0y W	agipue	9/29 1100
Bottles R	elinquished from Lab by	Date/Time	Sampl	es Relinqu	uished b	у		Date/Time	KATERY 21	Date/Time
Bottle	s received in field by	Date/Time	Sampl	es Relinq	uished b	у		Date/Time	Turn-Around Time Reque	sted-Specify Date Expected
oonnon oo		•							if RUSH Requested: DAT	E DUE FOR RUSH:
		•		_						RUSH(Define)

RECT JAN 7 2005 CC : BC

Technical Report

prepared for

FPM Group 909 Marconi Avenue Ronkonkoma, New York 11779 **Attention: Ben Cancemi**

Report Date: 1/4/2005 Re: Client Project ID: Arkwin/652-04-05 York Project No.: 04120697

CT License No. PH-0723

Mass, License No. M-CT106 Rhode Island License No. 93 NJ License No. CT401 New York License No. 10854

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

FAX (203) 357-0166

Report Date: 1/4/2005 Client Project ID: Arkwin/652-04-05 York Project No.: 04120697

FPM Group 909 Marconi Avenue Ronkonkoma, New York 11779 Attention: Ben Cancemi

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on 12/29/04. The project was identifed as your project "Arkwin/652-04-05".

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables .

All samples were received in proper condition meeting the NELAC acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All the analyses met the method and laboratory standard operating procedure requirements except as indicated under the Notes section of this report, or as indicated by any data flags, the meaning of which is explained in the attachment to this report, if applicable.

The results of the analyses, which are all reported on an as-received basis unless otherwise noted, are summarized in the following table(s).

Client Sample ID			System A Effluent		System B Effluent	
York Sample ID			04120697-01		04120697-02	
Matrix			AIR		AIR	
Parameter	Method	Units	Results	MDL	Results	MDL
Volatiles(TO-14 list)	EPA TO-14A	ppbv				·
1,1,1-Trichloroethane			170	1.0	2.8	1.0
1,1,2,2-tetrachloroethane			Not detected	1.0	Not detected	1.0
1,1,2-Trichloroethane			Not detected	1.0	Not detected	1.0
1,1-Dichloroethane			19	1.0	Not detected	1.0
1,1-Dichloroethylene			Not detected	1.0	Not detected	1.0
1,2,4-Trichlorobenzene			Not detected	1.0	Not detected	1.0
1,2,4-Trimethylbenzene			Not detected	1.0	Not detected	1.0
1,2-Dibromoethane			Not detected	1.0	Not detected	1.0
1,2-Dichlorobenzene			Not detected	1.0	Not detected	1.0
1,2-Dichloroethane			Not detected	1.0	Not detected	1.0
1,2-Dichloropropane			Not detected	1.0	Not detected	1.0
1,2-Dichlorotetrafluoroethane			Not detected	1.0	Not detected	1.0
1,3,5-Trimethylbenzene			Not detected	1.0	Not detected	1.0
1,3-Dichlorobenzene			Not detected	1.0	Not detected	1.0
1,4-Dichlorobenzene			Not detected	1.0	Not detected	1.0
3-Chloropropene		·····	Not detected	1.0	Not detected	1.0

Analysis Results

YORK

Client Sample ID		-	System A Effluent		System B Effluent	
York Sample ID			04120697-01		04120697-02	
Matrix	[AIR		AIR	
Parameter	Method	Units	Results	MDL	Results	MDL
4-Ethyltoluene			Not detected	1.0	Not detected	1.0
Benzene		1	Not detected	1.0	Not detected	1.0
Benzyl Chloride			Not detected	1.0	Not detected	1.0
Bromomethane			Not detected	1.0	Not detected	1.0
Carbon Tetrachloride		<u> </u>	Not detected	1.0	Not detected	1.0
Chlorobenzene			Not detected	1.0	Not detected	1.0
Chloroethane			Not detected	1.0	Not detected	1.0
Chloroform		1	Not detected	1.0	Not detected	1.0
Chloromethane	·····		Not detected	1.0	Not detected	1.0
cis-1,2-Dichloroethylene		1	47	1.0	Not detected	1.0
cis-1.3-Dichloropropylene			Not detected	1.0	Not detected	1.0
Dichlorodifluoromethane	<u> </u>	**************************************	Not detected	1.0	Not detected	1.0
Ethylbenzene			Not detected	1.0	Not detected	1.0
Freon-113			100	1.0	Not detected	1.0
Hexachloro-1.3-Butadiene			Not detected	1.0	Not detected	1.0
Methylene Chloride			Not detected	1.0	Not detected	1.0
o-Xvlene		<u> </u>	Not detected	1.0	Not detected	1.0
n-& m-Xylenes			Not detected	1.0	Not detected	10
Styrene			Not detected	10	Not detected	1.0
Tetrachloroethylene			88	1.0	13	1.0
Toluene		<u></u>	Not detected	1.0	Not detected	1.0
trans-1 3-Dichloropropylene			Not detected	1.0	Not detected	1.0
Trichloroethylene		<u> </u>	30	1.0	15	1.0
Trichlorofluoromethane	<u> </u>		Not detected	1.0	Not detected	1.0
Vinyl Chloride			Not detected	1.0	Not detected	1.0
Valatile Organics TO14 List	EPA TO14A	110/011 m	Not detected	1.0	Not detected	1.0
1 1 1 Trichloroethane		ug/cu.m.	042	5.55	15.5	5 5 5
1,1,2,2 tetrachloroethane	·		Not detected	7.00	15.5 Not detected	7.00
1,1,2,2-tetracinoroethane	· · · · · · · · · · · · · · · · · · ·		Not detected	5.55	Not detected	7.00
1.1 Dichloroethane				410	Not detected	110
1.1. Dichloroethylene			/0.2	4.10	Not detected	4.10
1.2.4 Triphlorphorgene			Not detected	4.05	Not detected	4.03
1.2.4 Trimethylbengene	······································	<u> </u>	Not detected	5.00	Not detected	5.00
1.2 Dibromosthane	L <u> </u>	· · · · ·	Not detected	7.00	Not detected	7 00
1.2 Dichlorohangene		<u> </u>	Not detected	6.00	Not detected	6.00
1.2 Dichloroathane		<u> </u>	Not detected	4 10	Not detected	4.10
1.2-Dichloropropage			Not detected	4.10	Not detected	4.10
1.2-Dichlorotetrafluoroethane	· · · ·		Not detected	4.70	Not detected	4.70
1.3.5.Trimethylbenzene			Not detected	5.00	Not detected	5.00
1.3-Dichlorohanzene			Not detected	6 10	Not detected	6 10
1.4-Dichlorobenzene		· · · · · · · · · · · · · · · · · · ·	Not detected	6.10	Not detected	6.10
3_Chloropropage			Not detected	7.50	Not detected	7.50
<u> </u>	·	<u> </u>	Not detected	7.50	Not detected	5.05
Renzene	· · · · · · · · · · · · · · · · · · ·		Not detected	2.05	Not detected	2.05
Benzyl Chloride	L		Not detected	5.23	Not detected	5.23
Bromomethane		<u> </u>	Not detected	3.05	Not detected	3.05
Carbon Tetrachloride	· · ·	<u> </u>	Not detected	6.40	Not detected	6.40
Chlorohenzene			Not detected	1 70	Not detected	4 70
Chloroethane		<u> </u>	Not detected	2 70	Not detected	2 70
Chloroform			Not detected	2.70	Not detected	4.05
Chloromethane		,	Not detected	4.95	Not detected	2 10
Chioromethalie		1	INOT detected	<u> </u>	INOT detected	1_2.10

Client Sample ID			System A Effluent		System B Effluent	
York Sample ID			04120697-01		04120697-02	
Matrix			AIR		AIR	
Parameter	Method	Units	Results	MDL	Results	MDL
cis-1,2-Dichloroethylene			190	4.05	Not detected	4.05
cis-1,3-Dichloropropylene			Not detected	4.95	Not detected	4.95
Dichlorodifluoromethane			Not detected	5.05	Not detected	5.05
Ethylbenzene			Not detected	4.40	Not detected	4.40
Freon-113		· ·	779	7.80	Not detected	7.80
Hexachloro-1,3-Butadiene			Not detected	7.10	Not detected	7.10
Methylene Chloride			Not detected	3.55	Not detected	3.55
o-Xylene			Not detected	4.40	Not detected	4.40
p- & m-Xylenes			Not detected	4.40	Not detected	4.40
Styrene	· · · · · · · · · · · · · · · · · · ·		Not detected	4.35	Not detected	4.35
Tetrachloroethylene	_		607	6.90	8.97	6.90
Toluene			Not detected	3.85	Not detected	3.85
trans-1,3-Dichloropropylene			Not detected	5.05	Not detected	5.05
Trichloroethylene			213	5.45	8.20	5.45
Trichlorofluoromethane			Not detected	5.70	Not detected	5.70
Vinyl Chloride			Not detected	2.60	Not detected	2.60

Units Key:

For Waters/Liquids: mg/L = ppm ; ug/L = ppb

For Soils/Solids: mg/kg = ppm ; ug/kg = ppb

Notes for York Project No. 04120697

1. The MDL (Minimum Detectable Limit) reported is adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference.

2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.

3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.

4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.

5. All samples were received in proper condition for analysis with proper documentation.

6. All analyses conducted met method or Laboratory SOP requirements.

7. It is noted that no analyses reported herein were subcontracted to another laboratory.

Approved By:

aw Robert Q. Bradley Managing Director

Date: 1/4/2005

YORK

ANALYTICAL LABORATORIES, INC.

QA/QC Summary Report

Associated Samples: AC41545 Client: FPM Group

Analysis Name: Volatiles(TO-14 list) QA ONLY Unit of Measure: ppbv

04-Jan-05

Analysis Name: Vo Unit of Measure: pp	latiles(TO-14 lis bv	st) QA ONLY		Batch Nam	e: \$TO14_	-14514	QA Sar York's San	mple #: AC4 aple ID: 041	1545 20697-01
					Matrix Spike	•	Spike Duplicate V Duplicate Recovery, V Precision, RPD Ad Not detected 2.8 13.3		
Parameter	LCS(%)	Unspiked Result	Blank	Amount	Result	Recovery, %	Duplicate	Recovery,%	Precision, RPD
1,2-Dichloroethane		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected		
Benzyl Chloride		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected		
Benzene	:	3.2	Not detected	5,0	6.6	132.0	2.8		13.3
4-Ethyltoluene	× .	Not detected	Not detected	Not detected	Not detected	Not detected	Not detected		
3-Chloropropene	•	Not detected	Not detected	Not detected	Not detected	Not detected	Not detected	,	
1,4-Dichlorobenzene		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected		
1,3-Dichlorobenzene		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected		
1,3,5-Trimethylbenze		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected		
1,1,1-Trichloroethane		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected		
1,2-Dichloropropane		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected	,	
Chlorobenzene	•	1.2	Not detected	5.0	5.7	114.0	1.1		8.7
1,2-Dichlorobenzene		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected		
1,2-Dibromoethane		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected		
1,2,4-Trimethylbenze		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected		
1,2,4-Trichlorobenze		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected		
1,1-Dichloroethylene		Not detected	Not detected	5.0	5.6	112.0	Not detected		
1,1-Dichloroethane		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected		
1,1,2-Trichloroethane		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected		
1,1,2,2-tetrachloroet		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected		
1,2-Dichlorotetrafluor		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected		
Freon-113		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected		
Trichlorofluorometha		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected		
Trichloroethylene		1.3	Not detected	5.0	5.4	108.0	1.6		20,7
trans-1,3-Dichloropro	•	Not detected	Not detected	Not detected	Not detected	Not detected	Not detected		
Toluene	•	2.5	Not detected	5.0	5.8	116.0	2.4		4.1
Tetrachloroethylene		74	Not detected	Not detected	Not detected	Not detected	64		14.5
Styrene		Not detected	Not detected	Not detected	Not detected	Not detected	Not detected		

YORK

ANALYTICAL LABORATORIES, INC.

QA/QC Summary Report

p- & m-Xylenes	1.6	Not detected	Not detected Not detected	Not detected	1.6	0.0
o-Xylene	1.6	Not detected	Not detected Not detected	Not detected	1.4	13.3
Bromomethane	Not detected	Not detected	Not detected Not detected	Not detected	Not detected	
Hexachloro-1,3-Buta	Not detected	Not detected	Not detected Not detected	Not detected	Not detected	
Carbon Tetrachloride	Not detected	Not detected	Not detected Not detected	Not detected	Not detected	
Ethylbenzene	1.2	Not detected	Not detected Not detected	Not detected	1.2	0.0
Dichlorodifluorometh	Not detected	Not detected	Not detected Not detected	Not detected	Not detected	
cis-1,3-Dichloroprop	Not detected	Not detected	Not detected Not detected	Not detected	Not detected	
cis-1,2-Dichloroethyl	26	Not detected	Not detected Not detected	Not detected	24	8.0
Chloromethane	Not detected	Not detected	Not detected Not detected	Not detected	Not detected	
Chloroform	Not detected	Not detected	Not detected Not detected	Not detected	Not detected	
Chloroethane	Not detected	Not detected	Not detected Not detected	Not detected	Not detected	
Vinyl Chloride	2.8	Not detected	Not detected Not detected	Not detected	2.6	7.4
Methylene Chloride	Not detected	Not detected	Not detected Not detected	Not detected	Not detected	

ANALYTICAL L 120 RE STRATFO 203) 325-1371	ABORATORI SEARCH DRI RD; DT D66 FAX (203)	ES, INC. VE 315 357-0166		ŀ	-ielo	<u>d C</u>	<u>Cha</u>	ain-	of-Cu	istody Reco	$\frac{rd}{2}$
<u>Company</u> FPMG	Name 1009	<u>Report</u> Ben Cani	<u>To:</u> Cemi	Invoi FPX	<u>ce To</u> 1	ŀ	Arro	Proj nv/6	ect ID/No 52-04-0	05 Marc R. S	i collected by (Signature) SPENCER fame (Printed)
Sample No.	Loca	tion/ID	Date Sa	ampled	S Water	ample Soil	Matrix Air	(DTHER	ANAL	YSES REQUESTED	Container Description(s)
	SYSTEM A	EFFLUENT	12/28/04	1035			X		VOCs	BY, TO14	(1) TEDLAR BAG
	SYSTEM B	EFFWENT	V	1045			V			V	
									· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·	<u> </u>		1997 - 1997 -						· · · · · · · · · · · · · · · · · · ·	
			l								
	·			-					·		
						} 			· · ·		<u>.</u>
	· · · · ·										
					·			1	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·		
hain-of-Custod	tion Field by	y Date/Tim		ample Reling	wished by		<u> </u> Z	Les /04 Date/Ti	1700 me	Sample Received by Sample Received by Sample Received in UAB by	A : DOS AMA . Date/Time