

FPM Group, L.Id.
FPM Engineering Group, P.C.
tornarly Finning, Philips and Mohar

908 Mercan Average
Ronkonkoma, nr 11770
631/797-6200
Fax G3V/797-2440

VIA MAIL AND EMAIL

December 9, 2008

Mr. Joseph Jones
New York State Department of Environmental Conservation
Division of Environmental Remediation, Region 2
625 Broadway, 11th Floor
Albany, NY 12233

DEC 15 Z

DUREAU OF EASIES!

PEMELSA.

Rau

Soil Vapor Investigation
Arkwin Industries, Inc., Westbury, New York
NYSDEC Registry # 1-30-043D
FPM File No. 852-08-08

Dear Joe:

A sod vapor investigation has been conducted at the above-referenced site in accordance with the New York State Department of Environmental Conservation (NYSDEC)-approved Soil Vapor Work Plan. The scope of work included sampling and gas and groundwater in the vicinity of the 648 Main Street and 66 Brooklyn Avenue properties. The sampling procedures and results are reported herein. A site plan showing the layout of the two properties and sampling locations is included as Plate 1.

Soll Gas Sampling Procedures and Results

Based upon the historic locations of contamination at the site and the presence of upgradient sources of contamination, four locations were selected for soil vapor sampling, as shown on Plate 1. Two locations were in proximity to the former 648 Main Street and 66 Brooklyn: Avenue seurce areas (SG-1 and SG-4) and two locations were situated upgradient of the former source areas (SG-2 and SG-3).

Sampling was performed using soil vapor irrelaits in exportance with the procedures in the New York State Department of Health (NYSDOH) Dealther 2006 Soil Vapor intrusion Guidance Document. Implants were placed using a direct-plashing to a depth of approximately six feet below grade, which is just below the anticipated base of the building foundations. Upon completion of each soil gas implant, the surface seal was integrity tested using a helium tracer gas. No issues with seal integrity were noted at any of the sampling points and, therefore, each point was purged of approximately three air volumes and sampled using a laboratory-provided one-hour flow controller (less then 0.2 liters per minute) connected to a Summa canister. The collected samples were then transmitted to Centek Laboratories of Syrecuse. New York and analyzed for volatile organic

compounds (VOCs) using Method TO-15. A trip blank sample was also utilized to evaluate the potential for sample cross-contamination.

The soil vapor samples results are summarized on Table 1. The complete laboratory analytical report is included in Attachment B. No detections were noted in the trip blank sample and, therefore, sample cross-contamination does not appear to present a concern.

The results indicate that concentrations of VOCs, including several site-related VOCs (1,1,1-trichloroethane or 1,1,1-TCA, 1,1-dichloroethane, 1,1-dichloroethene, and tetrachloroethylene or PCE) are present in soil vapor samples SG-1 and SG-4 collected in proximity in the former source areas. Lower concentrations of several of these VOCs were noted in the associated upgradient sampling locations SG-2 and SG-3. A comparison of the upgradient and former source area data indicates that there may be some contribution to the VOC detections in the source areas from the upgradient offsite sources. However, these contributions are not anticipated to be significant.

Although the soil vapor data cannot be directly evaluated using Matrix 1 or 2 of the NYSDOH guidance, a comparison of these data to the matrix values suggests that the levels of 1,1,1-TCA, PCE, and trichloroethylene at the SG-1 and SG-4 locations are somewhat elevated above typical background levels but are not highly elevated.

Groundwater Sampling Procedures and Results

Four existing groundwater monitoring wells, MW-2 through MW-4 and MW-7, were sampled to evaluate current groundwater conditions in proximity to the soil vapor sampling locations. Each well to be sampled was accessed and gauged to determine the appropriate purge volume, was purged of three well volumes with a decontaminated submersible pump, and was then sampled with a dedicated disposable polyethylene bailer. The samples were placed in laboratory-provided glassware and submitted to a NYSDOH-certified laboratory for analysis of VOCs. Sampling forms documenting the purging and sampling procedures are included in Attachment A.

The groundwater sampling results are summarized on Table 2 and are compared to the NYSDEC Class GA Ambient Water Quality Standards (Standards). The historic data for each of these wells are shown for comparison. The complete laboratory analytical report is included in Attachment B.

The groundwater sampling results indicate that VOCs, including site-related VOCs, continue to migrate in the shallow groundwater onto the 66 Brooklyn Avenue (eastern) property from upgradient offsite sources. However, no VOCs appear to be migrating in the shallow groundwater onto the 648 Main Street (western) property. Concentrations of VOCs in the onsite shallow monitoring wells were noted to be below or to only slightly exceed the NYSDEC Standards. Based upon the groundwater data, it appears that groundwater VOC concentrations are not contributing significantly to the detected soi! vapor concentrations.

Summary and Conclusions

Based upon the soil vapor and groundwater sampling results, it appears that minor amounts of residual soil contamination may remain present in the 648 Main Street and 66 Brooklyn Avenue former source areas, but at levels that do not impact groundwater quality. The soil vapor detections in these areas do not appear highly elevated. Although some of the VOC detections in the onsite soil vapor may be contributed from upgradient offsite sources, it does not appear that these offsite contributions are significant.

If you have any questions, please do not hesitate to contact us at (631) 737-6200.

Very truly yours,

Stephanie O. Davis Senior Hydrogeologist Department Manager

Ben T. Cancemi Senior Hydrogeologist

BTC/SOD:tac Attachments

cc: Stephen Holbreich, Esq.

Mr. Thomas Molloy, Arkwin

S:\Arkwin\Soil Vapor Investigation\Soilvaporinvestreport.Doc

TABLE 1 **SOIL VAPOR SAMPLE DATA** ARKWIN INDUSTRIES, INC., WESTBURY, NEW YORK

Sample Location	648 Main Street (West Side)		66 Brooklyn Avenue (East Side)		
Sample Name	SG-1	SG-2	SG-3	SG-4	
	(former source area)	(upgradient)	(upgradient)		
Sample Date	8/6/08	8/6/08	8/6/08	8/6/08	
Volatile Organic Compounds					
1,1,1-Trichloroethane**	520	4.5	0.78 J	630	
1,1-Dichloroethane**	250	ND	ND	41	
1,1-Dichloroethene**	2.5	ND	ND	13	
1,2,4-Trimethylbenzene	16	9.5	11	25	
1,3,5-Trimethylbenzene	8.2	4.5	4.9	9.0	
1,4-Dichlorobenzene	2.5	3.2	1.8	ND	
2,2,4-Trimethylpentane	21	9.7	9.0	12	
4-Ethyltoluene	9.2	4.9	6.3	11	
Acetone	. 180	160	220	540	
Benzene	4.1	3.0	2.7	10	
Carbon disulfide	3.6	ND	1.8	8.9	
Chloroethane	ND	ND	ND	0.43	
Chloroform	1.7	ND	0.99	1.2	
Chloromethane	0.44	0.69	ND	ND	
cis-1,2-Dichloroethene	10	ND	ND	11	
Cyclohexane	ND	ND	2.3	5.2	
Ethyl acetate	ND	1.3	2.0	ND	
Ethylbenzene	7.5	4.9	6.5	13	
Freon 11	4.3	3.6	3.7	3.5	
Freon 113	68	ND	ND	490	
Freon 12	1.8	3.6	3.5	2.6	
Heptane	ND	4.7	4.4	18	
Hexane	ND	4.0	6.7	33	
Isopropyl alcohol	ND	3.0	ND	ND	
m&p-Xylene	12 J	12	15	25	
Methyl Ethyl Ketone	24	13	13	40	
Methyl Isobutyl Ketone	7.3	ND	3.9	17	
Methylene chloride	ND	0.88	8.8	0.49 J	
o-Xylene	8.1	4.3	5.7	12	
Styrene	7.5	3.8	6.0	13	
Tetrachloroethylene**	360	3.6	2.5	100	
Toluene	18	18	15	28	
Trans-1,2-Dichloroethene	ND	ND	ND	1.8	
Trichloroethene	27	1.0	0.71 J	57	
Vinyl acetate	1.5	ND	ND	3.0	
Vinyl chloride	3.1	ND	ND	ND ND	

Notes:

Only analytes detected in one or more samples are summarized herein. See lab report for the complete data. ug/m³ = micrograms per cubic meter ND = Not detected.

^{** =} Targeted (site-specific) compound as specified in NYSDEC-approved Groundwater Remediation Work Plan (November 2000 with amendments).

J = Estimated concentrations at or below quantitation limits.

TABLE 2 (CONTINUED) GROUNDWATER VOLATILE ORGANIC COMPOUND DATA ARKWIN INDUSTRIES SITE WESTBURY, NEW YORK

Well Location	. Beauty in a li-									Downg	adlent Sha	llow Wells (0 to 10 fee	below water	er table)		
Well No.			1. 0.14	Hawibar.	ļudiek, i	MW-7 (W	est Side)		. Logica						_54		
Sample Date	10/98	1/22/02	3/6/03	9/25/03	3/24/04	10/13/04	3/30/05	11/2/05	5/23/06	11/15/06	6/22/07	8/9/2008	10/98	1/22/02	3/4/03	9/25/03	3
/olatile Organic Compound	s in ug/l																_
Acetone	ND	ND	ND	ND	ND	ND	2.1 J	1.5 J	ND	ND	ND	ND	ND	NA	ND	ND	
Chloroethane	ND	ND	ND	- ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	
Chlorobenzene	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	
Carbon Disulfide	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	
1.1-Dichloroethene**	54	4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8 J	NA	5 J	5 J	
1.1-Dichloroethane**	180 D	6 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3 J	NA	7	5	
1,2-Dichloroethene	7 J	ND	ND	ND	ND	ND	3.0 J	1.1 J	5.6	1.8 J	1.1 J	ND	9 J	NA	2 J	2 J	4
Chloroform	2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	
1.2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2 J	NA	ND	ND	
1.1.1-Trichloroethane**	560 D	30	ND	ND	ND	ND	ND	1.0 JH	ND	ND	0.71 J	ND	6 J	NA	10	6	
Trichloroethylene	16	1 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	120	NA	17	18	
1.1.2-Trichloroethane	2 J	ND	ND	ND	ND .	ND	ND	ND	ND	ND	ND	ND .	ND	NA	ND	ND	
Tetrachloroethene**	45	5 J	ND	0.8 J	ND	ND	0.98 J	1.2 J	3.9 J	2.8 J	3.5 J	1.5 J	ND	NA	1 J	1 J	(
Methylene Chloride	ND	2 JB	ND	ND	ND	ND	0.46 JB	ND	ND	ND	ND	ND	ND	NA	ND B	ND B	
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	
Total Volatile Organic Compounds	866	46	ND	0.8	ND	ND	6.54	4.8	9.5	4.6	5.31	1.5	148	NA	42	37	
Targeted Volatile Organic Compounds	839	45	ND	0.8	ND	ND	0.98	2.2	3.9	2.8	4.21	1.5	17	NA	23	17	

Notes:

Only analytes detected in one or more samples are included in this table:

ND = Not Detected.

NA = Not Available

B = Analyte was detected in associated blank and may result from contamination.

D = Diluted sample result.

J = An estimated value.

H = Alternate peak selection upon analytical review.

ug/l = micrograms per liter

- = No NYSDEC Class GA Ambient Water Quality Standard established.

Bold values exceed the NYSDEC Class GA Ambient Water Quality Standard.

** = Targeted (site specific) compound as specified NYSDEC approved Groundwater Remediation Work Plan (November 2000 with amendments)

F	P	M

OTO III	_
OLOH.	
ZI Ou	٤.
0	г

Engineering and Environmental Science

clients\eh\springdp\springs well forms\template

WELL SAMPLING DATA FORM

Client:	ARKCEI	d			
Project No.:					
Location:/					
Well No.:			Well Diameter: _	411	
Date: 8/	5/08		Start Time:		
Date: 8/0	SONIX	76°	Finish Time:		
Sampled By:	,				
Depth to Bottom	of Well:	62.14	F	Feet.	
Depth to Water:		50.56]	Feet.	
Height of Water	Column:	7+3	11.58	Feet.	
Water Volume in	Casing:	27.5	8 7.53	Gallons.	
Water Volume to	be Purged: 2	2.58 Gallon	S.		
Water Volume A	ctually Purged: _	23_Gallon	s.	•	
Purge Method:	S. bani	sble Pany	<u> </u>		
Physical Appeara	ance/Comments:				
FIELD MEASU	REMENTS				
Time	Volume (gal)	pН	Conductivity (uS)	Temperature (°F)	Turbidity (FTU)
	Ď	5.57	153	70.9	0.00
	12	5.24	154	68.3	0.00
	23	5.16	155	721	8.00
Samplingand Analytical Methods: TCL clx's Laboratory Name and Location: TA CT					
Laboratory Nam	ne and Location:	TA	<u>-7</u>		

	F	M	grou	D-
•	-		7	

Engineering and Environmental Science

WELL SAMPLING DATA FORM

Client:	RKWIN				¥
Project No.:	652-08	-08			
Location:	RKWIN				
Well No.:	MN-H	_	Well Diameter:	_4'	
Date:	8/6/08		Start Time:	1;07	
Weather: 0.	cloudy, 7	8°F	Finish Time: _	1:25	
Sampled By:	BC/KF		No. of the second secon		
Depth to Botton	n of Well:	51.00		_Feet.	,
Depth to Water	: 40	1.98		_ Feet.	
Height of Water	r Column:	10.02		Feet.	
Water Volume	in Casing:	6.513		Gallons.	
Water Volume					(E)
Water Volume	Actually Purge	d: <u>20</u> Ga	llons.		
Purge Method:					
Physical Appea			/		
FIELD MEASUR	EMENTS				
Time	Volume (gal)	pН	Conductivit y (uS)	Temperature (°F)	Turbidity (FTU)
1:12	6	6.55	73	70.0	13.74
1:17	12	5.95	66	66.1	20.37
1.23	20	6-06	69	70.	5. 79
Samplingand	r's	Α	nalytical	-	Methods:
Laboratory Na	me and Locatio	n: <i>TP</i> , 0	7		

ATTACHMENT B LABORATORY ANALYTICAL REPORTS

ANALYTICAL REPORT

Job Number: 220-6157-1

Job Description: Arkwin Industries

For:

FPM Group Limited 909 Marconi Avenue Ronkonkoma, NY 11779

Attention: Mr. Ben Cancemi

Joan Widomskin

Designee for
Johanna Dubauskas
Project Manager I
johanna.dubauskas@testamericainc.com
08/23/2008

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Project Manager.

TestAmerica Connecticut Certifications and Approvals: CTDOH PH-047, MADEP CT023, RIDOH A43, NYDOH 10602, NY NELAP 10602, NHDES 2528, NJDEP CT410, ME DOH CT023, UT DOH 2032614458

Job Narrative 220-J6157-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

SAMPLE SUMMARY

Client: FPM Group Limited

Job Number: 220-6157-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
220-6157-1	MW-2	Water	08/06/2008 0000	08/09/2008 1155
220-6157-2	MW-3	Water	08/06/2008 0000	08/09/2008 1155
220-6157-3	MŴ-4	Water	08/06/2008 0000	08/09/2008 1155
220-6157-4	MW-7	Water	08/06/2008 0000	08/09/2008 1155
220-6157-5	TRIP BLANK	Water	08/06/2008 0000	08/09/2008 1155

METHOD / ANALYST SUMMARY

Client: FPM Group Limited

Job Number: 220-6157-1

 Method
 Analyst
 Analyst ID

 SW846 8260B
 Kostrzewska, Barbara
 BK

Analytical Data

Client: FPM Group Limited Job Number: 220-6157-1

Client Sample ID:

MW-3

Lab Sample ID:

220-6157-2

Client Matrix?

Water

Date Sampled:

08/06/2008 0000

Date Received:

08/09/2008 1155

8260B Volatile Organic Compounds by GC/MS

Method: Preparation:

Dilution:

8260B

5030B

1.0

Date Analyzed: Date Prepared:

08/11/2008 1930 08/11/2008 1930 Analysis Batch: 220-18928

instrument ID:

HP 5890/5971 GC/MS

Lab File ID:

L8717.D

Initial Weight/Volume:

0.99

2.3

0.99

0.76

U

U

U

U

5.0

5.0

5.0

5.0

5 mL

Final Weight/Volume:

5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Acetone	10	U	1.0	10	
Benzene	5.0	U	0.74	5.0	
Bromodichloromethane	5.0	U	0.48	5.0	
Bromoform	5.0	U	0.46	5.0	
Bromomethane	5.0	U	2.1	5.0	
Methyl Ethyl Ketone	10	U	1.1	10	
Carbon disulfide	5.0	U	0.90	5.0	
Carbon tetrachloride	5.0	U	1.1	5.0	
Chlorobenzene	5.0	U	0.72	5.0	
Chloroethane	5.0	U	1.1	5.0	
Chloroform	5.0	U	0.67	5.0	
Chloromethane	5.0	U	1.1	5.0	
Dibromochloromethane	5.0	U	0.55	5.0	
1,1-Dichloroethane	5.0	U	1.0	5.0	
1,2-Dichloroethane	5.0	U	0.72	5.0	
1,1-Dichloroethene	5.0	U	0.83	5.0	
1,2-Dichloropropane	5.0	U	0.71	5.0	
cis-1,3-Dichloropropene	5.0	U	0.28	5.0	
trans-1,3-Dichloropropene	5.0 =	U	0.57	5.0	
Ethylbenzene	5.0	U	0.87	5.0	
2-Hexanone	10	U	1.1	10	
Methylene Chloride	5.0	··· U	0.78	5.0	
methyl isobutyl ketone	10	U	0.38	10	
Styrene	5.0	U *	0.64	5.0	
1,1,2,2-Tetrachloroethane	5.0	U	0.81	5.0	
Vinyl acetate	5.0	U	1.6	5.0	
Tetrachloroethene	5.0	U	0.81	5.0	
Toluene	5.0	U	0.72	5.0	
1,1,1-Trichloroethane	5.0	U	0.69	5.0	
1,1,2-Trichloroethane	5.0	U	0.65	5.0	
Trichloroethene	5.0	U	0.62	5.0	
11101110110	F 0	1.1	0 00	5.0	

Currogata	%Rec	Acceptance Limits		
Surrogate	71	53 - 125		
1,2-Dichloroethane-d4 (Surr)	98	73 - 127		
4-Bromofluorobenzene	76	54 - 137		
Dibromofluoromethane Toluene-d8 (Surr)	76	63 - 121		
Toluene-uo (Sull)				

5.0

5.0

5.0

5.0

Vinyl chloride

Xylenes, Total

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

Analytical Data

Client: FPM Group Limited

Job Number: 220-6157-1

Client Sample ID:

MW-7

Lab Sample ID:

220-6157-4

Client Matrix:

Water

Date Sampled:

08/06/2008 0000

Date Received:

08/09/2008 1155

8260B Volatile Organic Compounds by GC/MS

Method: Preparation: 8260B

5030B

Dilution:

1.0

Date Analyzed: 08/11/2008 2020

Date Prepared:

08/11/2008 2020

Analysis Batch: 220-18928

Instrument ID:

HP 5890/5971 GC/MS

Lab File ID:

L8719.D

Initial Weight/Volume:

5 mL

Final Weight/Volume:

5 mL

Analyte Result (ug/L) Qualifier MDL RL 10 Acetone 10 Ũ 1.0 U Benzene 5.0 0.74 5.0 Bromodichloromethane 5.0 U 0.48 5.0 U 0.46 Bromoform 5.0 5.0 Bromomethane 5.0 U 2.1 5.0 Methyl Ethyl Ketone 10 U 1.1 10 Carbon disulfide 5.0 U 0.90 5.0 5.0 U 1.1 5.0 Carbon tetrachloride Chlorobenzene 5.0 U 0.72 5.0 5.0 U 1.1 5.0 Chloroethane Chloroform 5.0 U 0.67 5.0 5.0 U 1.1 5.0 Chloromethane 5.0 U 0.55 5.0 Dibromochloromethane 5.0 U 1.0 5.0 1,1-Dichloroethane 5.0 U 0.72 5.0 1,2-Dichloroethane 5.0 U 0.83 5.0 1,1-Dichloroethene 5.0 U 0.71 5.0 1,2-Dichloropropane U 0.28 5.0 5.0 cis-1,3-Dichloropropene 0.57 5.0 5.0 U trans-1,3-Dichloropropene 0.87 5.0 5.0 IJ Ethylbenzene 10 10 U 1.1 2-Hexanone U 0.78 5.0 5.0 Methylene Chloride 10 U 0.38 10 methyl isobutyl ketone 5.0 0.64 5.0 U * Styrene 5.0 0.81 5.0 U 1,1,2,2-Tetrachloroethane 1.6 5.0 U 5.0 Vinyl acetate J 0.81 5.0 1.5 Tetrachloroethene 5.0 IJ 0.72 5.0 Toluene 0.69 5.0 5.0 U 1,1,1-Trichloroethane 0.65 5.0 U 5.0 1,1,2-Trichloroethane 0.62 5.0 U 5.0 Trichloroethene 0.99 5.0 U 5.0 Vinvl chloride U 2.3 5.0 5.0 Xylenes, Total 0.99 5.0 IJ 5.0 cis-1,2-Dichloroethene 5.0 0.76 U 5.0 trans-1,2-Dichloroethene Acceptance Limits

Client: FPM Group Limited

Job Number: 220-6157-1

Surrogate Recovery Report

8260B Volatile Organic Compounds by GC/MS

Client Matrix: Water

Lab Sample ID	Client Sample ID	DBFM %Rec	12DCE %Rec	TOL %Rec	BFB %Rec
220-6157-1	MW-2	77	76	75 ·	100
220-6157-2	MW-3	76	71	76	98
220-6157-3	MW-4	71	70	75	107
220-6157-4	MW-7	70	69	75	102
220-6157-5	TRIP BLANK	70	69	71	100
MB 220-18928/2		88	84	92	121
LCS 220-18928/3		92	85	91	106

Surrogate	Acceptance Limits		
DBFM = Dibromofluoromethane	54-137		
12DCE = 1,2-Dichloroethane-d4 (Surr)	53-125		
TOL = Toluene-d8 (Surr)	63-121		
BFB = 4-Bromofluorobenzene	73-127		
DI D DIGITION CONCUENTE			

Client: FPM Group Limited Job Number: 220-6157-1

Lab Control Spike - Batch: 220-18928

Method: 8260B ° Preparation: 5030B

Lab Sample iD: LCS 220-18928/3

Client Matrix: Water Dilution: 1.0

Date Analyzed: 08/11/2008 1319 Date Prepared: 08/11/2008 1319 Analysis Batch: 220-18928

Prep Batch: N/A Units: ug/L Instrument ID: HP 5890/5971 GC/MS

Lab File ID: L8702.D
Initial Weight/Volume: 5 mL
Final Weight/Volume: 5 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Acetone	20.0	24.5	122	18 - 263	
Benzene	20.0	21.4	107	68 - 126	
Bromodichloromethane	20.0	18.8	94	67 - 118	
Bromoform	20.0	16.4	82	63 - 115	
Bromomethane	20.0	18.3	92	27 - 171	
Methyl Ethyl Ketone	20.0	25.6	128	30 - 222	
Carbon disulfide	20.0	21.7	108	44 - 142	
Carbon tetrachloride	20.0	18.5	92	56 - 131	
Chlorobenzene	20.0	15.8	79	71 - 114	
Chloroethane	20.0	18.2	91	53 - 167	
Chloroform	20.0	21.5	107	70 - 124	
Chloromethane	20.0	18.9	94	43 - 134	
Dibromochloromethane	20.0	16.5	83	65 - 114	
1,1-Dichloroethane	20.0	22.0	110	67 - 121	
1,2-Dichloroethane	20.0	19.7	99	68 - 124	
1,1-Dichloroethene	20.0	20.9	104	57 - 137	
1,2-Dichloropropane	20.0	21.4	107	69 - 122	
cis-1,3-Dichloropropene	20.0	19.1	96	60 - 122	
trans-1,3-Dichloropropene	20.0	19.4	97	55 - 126	
Ethylbenzene	20.0	14.7	73	71 - 115	
2-Hexanone	20.0	18.9	94	54 - 179	
Methylene Chloride	20.0	24.4	122	61 - 129	
methyl isobutyl ketone	20.0	19.4	97	61 - 140	
Styrene	20.0	13.6	68	69 - 112	*
1,1,2,2-Tetrachloroethane	20.0	21.7	108	66 - 129	
Tetrachloroethene	20.0	13.0	65	62 - 118	
Toluene	20.0	16.2	81	70 - 116	>>
1,1,1-Trichloroethane	20.0	19.5	98	60 - 128	
1,1,2-Trichloroethane	20.0	21.3	106	70 - 119	
Trichloroethene	20.0	18.2	91	58 - 125	
Vinyl chloride	20.0	17.8	89	51 - 139	
Xylenes, Total	60.0	43.4	72	66 - 118	
cis-1,2-Dichloroethene	20.0	21.5	107	65 - 120	
trans-1,2-Dichloroethene	20.0	20.6	103	57 - 129	
trans-1,2-Dichioroetherie					
Surrogate	%	Rec	/	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)		85		53 - 125	
4-Bromofluorobenzene		106		73 - 127	
Dibromofluoromethane		92		54 - 137	
Toluene-d8 (Surr)		91		63 - 121	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: FPM Group Limited

Job Number: 220-6157-1

QC Association Summary

			Report			
Lab Sample ID	Client Sample ID		Basis	Client Matrix	Method	Prep Batch
GC/MS VOA						
Analysis Batch:220-1	8928					
LCS 220-18928/3	Lab Control Spike		Т	Water	8260B	
MB 220-18928/2	Method Blank		Т	Water	8260B	
220-6157-1	MW-2		Т	Water	8260B	
220-6157-2	. MW-3		Т	Water	8260B	
220-6157-3	MW-4		Т	Water	8260B	
220-6157-4	MW-7		Τ	Water	8260B	
220-6157-5	TRIP BLANK	25	Т	Water	8260B	

Report Basis

T = Total

Client: FPM Group Limited

Job Number: 220-6157-1

Laboratory Chronicle

Lab ID: LCS

Client ID: N/A

Sample Date/Time: N/A

Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030B	LCS 220-18928/3		220-18928		08/11/2008 13:19	1	TAL CT	BK
A:8260B	LCS 220-18928/3		220-18928		08/11/2008 13:19	1	TAL CT	BK

Lab References:

TAL CT = TestAmerica Connecticut

CENTEK LABORATORIES, LLC

143 Midler Park Drive * Syracuse, NY 13206

Phone (315) 431-9730 * Fax (315) 431-9731 * Emergency 24/7 (315) 416-2751

NELAC Certificate No. 11830

www.centextabs.com

Friday, August 29, 2008

Ben T. Cancemi FPM Group 909 Marconi Avenue Ronkonkoma, NY 11779

TEL: (631) 737-6200

FAX

RE: Arkwin 652-08-08

Dear Ben T. Cancemi:

Order No.: C0808023

Centek Laboratories, LLC received 5 sample(s) on 8/20/2008 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Please contact us at (315) 431-9730, if you would like any additional information regarding this report.

Sincerely,

Russell Pellegrino Laboratory Director

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek as contained in this report are believed by Centek to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages.

Date: 01-Oct-08

CLIENT:

FPM Group

Project:

Arkwin 652-08-08

Lab Order:

C0808023

CASE NARRATIVE

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Date: 01-Oct-08

CLIENT: Project: Lab Order:	FPM Group Arkwin 652-08-08 C0808023		Work Ord	er Sample Summary
Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
C0808023-001A	SG-1	166,345	8/6/2008	8/20/2008
C0808023-002A	SG-2	420,390	8/6/2008	8/20/2008
C0808023-003A	SG-3	421,126	8/6 <mark>/2</mark> 008	8/20/2008
C0808023-004A	SG-4	313,434	8/6/2008	8/20/2008
C0808023-005A	Trip Blank	188	8/6/2008	8/20/2008

Sample ID:	Action Resident	ActionDate:	Person:	WewLocation:
C0808023-001A	Login	8/20/2008 2:10:56 PM	russ	Sample Log In
C0808023-005A	Login	8/20/2008 2:12:38 PM	russ	Sample Log in
C0808023-004A	Login	8/20/2008 2:12:38 PM	russ	Sample Log In
C0808023-003A	Login	8/20/2008 2:12:38 PM	russ	Sample Log In
C0808023-002A	Login	8/20/2008 2:12:38 PM	russ	Sample Log In
C0808023-001A	Transfer	。8/25/2008 4:04:52 PM	ADM	GC/MS Lab
C0808023-002A	Transfer	8/25/2008 4:04:52 PM	ADM	GC/MS Lab
C0808023-003A	Transfer	8/25/2008 4:04:52 PM	ADM	GC/MS Lab
C0808023-004A	Transfer	8/25/2008 4:04:52 PM	ADM ·	GC/MS Lab
C0808023-005A	Transfer	8/25/2008 4:04:52 PM	ADM	GC/MS Lab
C0808023-001A	Mark as Consumed	8/29/2008 10:24:00 AM	ADM	Consumed
C0808023-002A	Mark as Consumed	8/29/2008 10:24:00 AM	ADM	Consumed
C0808023-003A	Mark as Consumed	8/29/2008 10:24:00 AM	ADM	Consumed
C0808023-004A	Mark as Consumed	8/29/2008 10:24:00 AM	ADM	Consumed
C0808023-005A	Mark as Consumed	8/29/2008 10:24:00 AM	ADM	Consumed

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 ANALYTICAL RESULTS

Date: 18-Sep-08

CLIENT:

FPM Group

Lab Order:

C0808023

Project:

Arkwin 652-08-08

Lab ID:

C0808023-001A

Client Sample ID: SG-1

Tag Number: 166,345 Collection Date: 8/6/2008

Matrix: AIR

Analyses	Result	Limit	Qual	Units	ÐF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-	-15			Analyst: RJP
Freon 11	4.3	0.86		ug/m3	1	8/26/2008 3:00:00 AM
Freon 113	68	12		ug/m3	10	8/26/2008 7:14:00 PM
Freon 114	ND	1.1		ug/m3	1	8/26/2008 3:00:00 AM
Freon 12	1.8	0.75		ug/m3	1	8/26/2008 3:00:00 AM
Heptane	ND	0.62		ug/m3	1	8/26/2008 3:00:00 AM
Hexachloro-1,3-butadiene	ND	1.6		ug/m3	1	8/26/2008 3:00:00 AM
Hexane	ND	0.54		ug/m3	1	8/26/2008 3:00:00 AM
Isopropyl alcohol	ND	0.37		ug/m3	1	8/28/2008 3:00:00 AM
m&p-Xylene	12	13	J	ug/m3	10	8/26/2008 7:14:00 PM
Methyl Butyl Ketone	ND	1.2		ug/m3	1	8/26/2008 3:00:00 AM
Methyl Ethyl Ketone	24	9.0		ug/m3	10	8/26/2008 7:14:00 PM
Methyl Isobutyl Ketone	7.3	1.2		ug/m3	1	8/26/2008 3:00:00 AM
Methyl tert-butyl ether	ND	0.55		ug/m3	. 1	8/26/2008 3:00:00 AM
Methylene chloride	ND	0.53		ug/m3	1	8/26/2008 3:00:00 AM
o-Xylene	8.1	0.66		ug/m3	1	8/26/2008 3:00:00 AM
Propylene	ND	0.26		ug/m3	. 1	8/26/2008 3:00:00 AM
Styrene	7.5	0.65		ug/m3	1	8/26/2008 3:00:00 AM
Tetrachloroethylene	360	41		ug/m3	40	8/26/2008 7:46:00 PM
Tetrahydrofuran	ND	0.45		ug/m3	1	8/26/2008 3:00:00 AM
Toluene	18	5.7		ug/m3	10	8/26/2008 7:14:00 PM
trans-1,2-Dichloroethene	ND	0.60		ug/m3	1	8/26/2008 3:00:00 AM
trans-1,3-Dichloropropene	ND .	0,69		ug/m3	1	8/26/2008 3:00:00 AM
Trichloroethene	27	8.2		ug/m3	10	8/26/2008 7:14:00 PM
Vinyl acetate	1.5	0.54		ug/m3	1	8/26/2008 3:00:00 AM
Vinyl Bromide	ND	0.67		ug/m3	1	8/26/2008 3:00:00 AM
Vinyl chloride	3.1	0.39		ug/m3	1	8/26/2008 3:00:00 AM
Surr: Bromofluorobenzene	110	70-130		%REC	1	8/26/2008 3:00:00 AM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT:

FPM Group

Lab Order:

C0808023

Project:

Arkwin 652-08-08

Lab ID:

C0808023-002A

Date: 18-Sep-08

Client Sample ID: SG-2

Tag Number: 420,390

Collection Date: 8/6/2008

Matrix: AIR

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO	-15		Analyst: RJF
Freon 11	3.6	0.86	ug/m3	1	8/26/2008 3:33:00 AM
Freon 113	ND	1.2	ug/m3	1	8/26/2008 3:33:00 AM
Freon 114	ND	1.1	ug/m3	1	8/26/2008 3:33:00 AM
Freon 12	3.6	0.75	ug/m3	1	8/26/2008 3:33:00 AM
Heptane	4.7	0.62	ug/m3	1	8/26/2008 3:33:00 AM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	8/26/2008 3:33:00 AM
Hexane	4.0	0.54	ug/m3	1	8/26/2008 3:33:00 AM
isopropyl alcohol	3.0	0.37	ug/m3	1	8/26/2008 3:33:00 AM
m&p-Xylene	12	1.3	ug/m3	1	8/26/2008 3:33:00 AM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	8/26/2008 3:33:00 AM
Methyl Ethyl Ketone	13	4.5	ug/m3	5	8/26/2008 8:19:00 PM
Methyl Isobutyl Ketone	ND	1.2	ນg/m3	1	8/26/2008 3:33:00 AM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	8/26/2008 3:33:00 AM
Methylene chloride	0.88	0.53	ug/m3	1	8/26/2008 3:33:00 AM
o-Xylene	4.3	0.66	ug/m3	1	8/26/2008 3:33:00 AM
Propylene	ND	0.26	ug/m3	1	8/26/2008 3:33:00 AM
Styrene	3.8	0.65	ug/m3	1	8/26/2008 3:33:00 AM
Tetrachloroethylene	3.6	1.0	ug/m3	1	8/26/2008 3:33:00 AM
Tetrahydrofuran	ND	0.45	ug/m3	1	8/26/2008 3:33:00 AM
Toluene	18	2.9	ug/m3	5	8/26/2008 8:19:00 PM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	8/26/2008 3:33:00 AM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	` 1	8/26/2008 3:33:00 AM
Trichloroethene	1.0	0.82	ug/m3	1	8/26/2008 3:33:00 AM
Vinyl acetate	ND	0.54	ug/m3	1	8/26/2008 3:33:00 AM
Vinyl Bromide	ND	0.67	ug/m3	1	8/26/2008 3:33:00 AM
Vinyl chloride	ND	0.39	ug/m3	1	8/26/2008 3:33:00 AM
Surr. Bromofluorobenzene	127	70-130	%REC	1	8/26/2008 3:33:00 AM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 18-Sep-08

CLIENT:

FPM Group

Lab Order:

C0808023

Project:

Arkwin 652-08-08

Lab ID:

C0808023-003A

Client Sample ID: SG-3

Tag Number: 421,126

Collection Date: 8/6/2008

Matrix: AIR

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
Freon 11	3.7	0.86	ug/m3	1	8/26/2008 4:07:00 AM
Freon 113	ND	1.2	ug/m3	1	8/26/2008 4:07:00 AM
Freon 114	ND	1.1	ug/m3	1	8/26/2008 4:07:00 AM
Freon 12	3.5	0.75	ug/m3	1	8/26/2008 4:07:00 AM
Heptane	4.4	0.62	ug/m3	1	8/26/2008 4:07:00 AM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	8/26/2008 4:07:00 AM
Hexane	6.7	0.54	ug/m3	1	8/26/2008 4:07:00 AM
Isopropyl alcohol	ND	0.37	ug/m3	1	8/26/2008 4:07:00 AM
m&p-Xylene	15	1.3	ug/m3	1	8/26/2008 4:07:00 AM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	8/26/2008 4:07:00 AM
Methyl Ethyl Ketone	13	4.5	ug/m3	5	8/26/2008 9:26:00 PM
Methyl Isobutyl Ketone	3.9	1.2	ug/m3	1	8/26/2008 4:07:00 AM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	8/26/2008 4:07:00 AM
Methylene chloride	8.8	2.6	ug/m3	5	8/26/2008 9:26:00 PM
o-Xylene	5.7	0.66	ug/m3	1	8/26/2008 4:07:00 AM
Propylene	ND	0.26	ug/m3	1	8/26/2008 4:07:00 AM
Styrene	6.0	0.65	ug/m3	1	8/26/2008 4:07:00 AM
Tetrachloroethylene	2.5	1.0	ug/m3	1	8/26/2008 4:07:00 AM
Tetrahydrofuran	ND	0.45	ug/m3	1	8/26/2008 4:07:00 AM
Toluene	15	2.9	ug/m3	5	8/26/2008 9:26:00 PM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	8/26/2008 4:07:00 AM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	8/26/2008 4:07:00 AM
Trichloroethene	0.71	0.82	J ug/m3	1	8/26/2008 4:07:00 AM
Vinyl acetate	ND	0.54	ug/m3	1	8/26/2008 4:07:00 AM
Vinyl Bromide	ND	0.67	ug/m3	1	8/26/2008 4:07:00 AM
Vinyl chloride	ND	0.39	ug/m3	1	8/28/2008 4:07:00 AM
Surr: Bromofluorobenzene	117	70-130	%REC	1	8/26/2008 4:07:00 AM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Date: 18-Sep-08

CLIENT:

FPM Group

Lab Order:

C0808023

Project:

Arkwin 652-08-08

Lab ID:

C0808023-004A

Client Sample ID: SG-4

Tag Number: 313,434

Collection Date: 8/6/2008

Matrix: AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15	•	то	-15			Analyst: RJP
Freon 11	3.5	0.86		ug/m3	1	8/26/2008 4:41:00 AM
Freon 113	490	47		ug/m3	40	8/26/2008 11:08:00 PM
Freon 114	ND	1.1		ug/m3	1	8/26/2008 4:41:00 AM
Freon 12	2.6	0.75		ug/m3	1	8/26/2008 4:41:00 AM
Heptane	18	6.2		ug/m3	10	8/26/2008 10:34:00 PM
Hexachloro-1,3-butadiene	ND	1.6		ug/m3	1	8/26/2008 4:41:00 AM
Hexane	33	5.4		ug/m3	10	8/26/2008 10:34:00 PM
Isopropyl alcohol	ND	0.37		ug/m3	1	8/26/2008 4:41:00 AM
m&p-Xylene	25 ⁻	13		ug/m3	10	8/26/2008 10:34:00 PM
Methyl Butyl Ketone	ND	1.2		ug/m3	1	8/26/2008 4:41:00 AM
Methyl Ethyl Ketone	40	9.0		ug/m3	10	8/26/2008 10:34:00 PM
Methyl Isobutyl Ketone	17	12		ug/m3	10	8/26/2008 10:34:00 PM
Methyl tert-butyl ether	ND	0.55		ug/m3	1	8/26/2008 4:41:00 AM
Methylene chloride	0.49	0.53	J	ug/m3	1	8/26/2008 4:41:00 AM
o-Xylene	12	6.6		ug/m3	10	8/26/2008 10:34:00 PM
Propylene	, ND	0.26		ug/m3	1	8/26/2008 4:41:00 AM
Styrene	13	6.5		ug/m3	10	8/26/2008 10:34:00 PM
Tetrachloroethylene	100	10		ug/m3	10	8/26/2008 10:34:00 PM
Tetrahydrofuran	ND	0.45		ug/m3	1	8/26/2008 4:41:00 AM
Toluene	28	5.7		ug/m3	10	8/26/2008 10:34:00 PM
trans-1,2-Dichloroethene	1.8	0.60		ug/m3	1	8/26/2008 4:41:00 AM
trans-1,3-Dichloropropene	ND	0.69		ug/m3	1	8/26/2008 4:41:00 AM
Trichloroethene	57	8.2		ug/m3	10	8/26/2008 10:34:00 PM
Vinyl acetate	3.0	0.54		ug/m3	1	8/26/2008 4:41:00 AM
Vinyl Bromide	ND	0.67		ug/m3	1	8/26/2008 4:41:00 AM
Vinyl chloride	ND	0.39		ug/m3	1	8/26/2008 4:41:00 AM
Surr: Bromofluorobenzene	116	70-130		%REC	1	8/26/2008 4:41:00 AM

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ľN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Value above quantitation range
- Analyte detected at or below quantitation limits
- Not Detected at the Reporting Limit

New York State and Local Retirement System 110 State Street Albany NY 12244-0001

RECE	IVED
l. indi	

Application for Service Retirement

RS6037-I

Rev. 2/05

Proof of your date of birth is required before a benefit can be paid. If it is not immediately available, file this application now and submit proof as soon as possible. The delay in filing this document will delay payment of your allowance, including any advance payments.

THIS APPLICATION MUST BE ON FILE WITH THE RETIREMENT SYSTEM FOR AT LEAST 30 DAYS BUT NOT MORE THAN 90 DAYS BEFORE YOUR RETIREMENT CAN BECOME EFFECTIVE.

INFORMATION ABOUT YOU						
1. NAME		2. SOCIAL SECURITY NUMBER*				
3. ADDRESS		4. REGISTRATION NUMBE	R	3.75		
		5. DATE OF BIRTH				
6. TELEPHONE NUMBER: HOME () WORK ()		7. EFFECTIVE RETIREMEN	NT DATE**			
 *Social Security Number Required (see statement of the effective retirement date is the first day of your subject to your approval, establish the earliest possible to your approval, establish the earliest possible to your about your PUBLIC EMPI To the best of your ability, please complete the FORCES. AS THE RESULT OF LEGISLATIV AND PUBLIC EMPLOYMENT, WHICH PREV ANY SUCH SERVICE AFTERYOUR RETIRE 	ur retirement, not the last essible retirement date. LOYMENT following record of ALL /E CHANGES, YOU MA'	. PUBLIC EMPLOYMENT, includir Y NOW BE ABLE TO SECURE CF /E BEEN AVAILABLE. SINCE YO	ng service IN THE AR REDIT FOR MILITARY U WILL NOT BE ABL	MED 'SERVICE E TO CLAIN		
EMPLOYER	Department	Title		VICE		
(Indicate whether State, County, City, Town, Village, etc.)	or Agency	of Position	FROM	то		
9. TIER REINSTATEMENT APPLICATION. If y						
be eligible to retire based on your previous memory. FORMER MEMBERSHIP INFORMATION: PLEASE CHECK THE FIRST RETIREMENT S New York State Teachers' Retirement System New York State and Local Employees' Retirement New York State and Local Police and Fire Retirent New York City Employees' Retirement System	SYSTEM YOU WERE A	MEMBER OF: □ NewYork City Boar	rd of Education Retiren chers' Retirement Syste ce Pension Fund	nent System		
PLEASE COMPLETE THE FOLLOWING (if kn	own):	*				
Former Registration Number:		Date of Membe	rship:			
Former Name (if applicable):						
Have you received credit for this former mem						
That's you received broak for the fermior morning	botomp in any outer to	thement system:				

YOU MUST COMPLETE OTHER SIDE

Date: 18-Sep-08

CLIENT:

FPM Group

Lab Order:

C0808023

Project:

Arkwin 652-08-08

Lab ID:

C0808023-005A

Client Sample ID: Trip Blank

Tag Number: 188

Collection Date: 8/6/2008

Matrix: AIR

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
UG/M3 BY METHOD TO15		TO-	15		Analyst: RJF
Freon 11	ND	0.86	ug/m3	1	8/26/2008 1:52:00 AM
Freon 113	ND	1.2	ug/m3	1	8/26/2008 1:52:00 AM
Freon 114	ND	1.1	ug/m3	1	8/26/2008 1:52:00 AM
Freon 12	ND	0.75	ug/m3	1	8/26/2008 1:52:00 AM
Heptane	ND	0.62	ug/m3	1	8/26/2008 1:52:00 AM
Hexachloro-1,3-butadlene	ND	1.6	ug/m3	1	8/26/2008 1:52:00 AM
Hexane	ND	0.54	ug/m3	1	8/26/2008 1:52:00 AM
Isopropyl alcohol	ND	0.37	ug/m3	1	8/26/2008 1:52:00 AM
m&p-Xylene	ND	1.3	ug/m3	1	8/26/2008 1:52:00 AM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	8/26/2008 1:52:00 AM
Methyl Ethyl Ketone	ND	0.90	ug/m3	1	8/26/2008 1:52:00 AM
Methyl Isobutyl Ketone	ND	1.2	ug/m3	1	8/26/2008 1:52:00 AM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	8/26/2008 1:52:00 AM
Methylene chloride	ND	0.53	ug/m3	1	8/26/2008 1:52:00 AM
o-Xylene	ND	0.66	ug/m3	1	8/26/2008 1:52:00 AM
Propylene	ND	0.26	ug/m3	1	8/26/2008 1:52:00 AM
Styrene	ND	0.65	ug/m3	1	8/26/2008 1:52:00 AM
Tetrachioroethylene	ND	1.0	ug/m3	1	8/26/2008 1:52:00 AM
Tetrahydrofuran	ND	0.45	ug/m3	1	8/26/2008 1:52:00 AM
Toluene	ND	0.57	ug/m3	1	8/26/2008 1:52:00 AM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	8/26/2008 1:52:00 AM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	8/26/2008 1:52:00 AM
Trichloroethene	ND	0.82	′ ug/m3	1	8/26/2008 1:52:00 AN
Vinyl acetate	ND	0.54	ug/m3	1 .	8/26/2008 1:52:00 AN
Vinyl Bromide	ND	0.67	ug/m3	1	8/26/2008 1:52:00 AN
Vinyl chloride	ND	0.39	ug/m3	1	8/26/2008 1:52:00 AN
Surr: Bromofluorobenzene	77.0	70-130	%REC	1	8/26/2008 1:52:00 AM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit