

FINAL ANNUAL LONG TERM MONITORING REPORT

Site:

Utility Manufacturing/Wonder King 700-712 Main Street New Cassel, New York 11590

Submitted to:

New York State Department of Environmental Conservation (NYSDEC) 625 Broadway Albany, New York 12233

Prepared for: NYSDEC

625 Broadway Albany, New York 12233

Prepared by:

AECOM 100 Red Schoolhouse Road, Suite B-1 Chestnut Ridge, NY 10977

January 2011

AECOM Project No. 60134954

Table of Contents

1	INT	RODUCTION	1
	1.1 1.2 1.3	Background Investigations Conducted at the Utility Manufacturing Site Selected Remedy	1 1 3
2	FIE	LD INVESTIGATION	4
	2.1 2.1 2.1 2.2	Groundwater Sampling 1 Well Installation & Development Oversight 2 Well Sampling Indoor Air Sampling	4 4 5 5
3	LAE	BORATORY ANALYTICAL RESULTS	6
	3.1 3.2	Groundwater Samples	6 8
4	DA	TA VALIDATION	9
5	SU	MMARY	9
6	RE	FERENCES	9

FIGURES

Figure 1	Site Location Map
Figure 2	Monitoring Well Locations
Figure 3	Groundwater Elevations Shallow Wells – May 2010
Figure 4	Groundwater Elevations Deep Wells – May 2010
Figure 5	Indoor Air Sampling Locations
Figure 6	Groundwater Sampling Results – May 2010
<u> </u>	

Figure 7 Indoor Air Sampling Results – January 2010

TABLES

- Table 1Well Construction Data
- Table 2 Groundwater Elevations
- Table 3VOCs in Groundwater
- Table 4Other Parameters in Groundwater
- Table 5VOCs in Indoor Air Samples
- Table 6VOCs in Sub-Slab Air Samples
- Table 7
 VOCs in Outdoor Air Samples
- Table 8
 VOCs Comparison to 75th Percentile NYSDOH Background Indoor Air Samples 2010
- Table 9
 VOCs Comparison to 75th Percentile NYSDOH Background Outdoor Air Samples 2010
- Table 10Comparison of Indoor Air Levels to the NYSDOH Decision Matricies

APPENDICES

- Appendix A Field Forms
- Appendix B Indoor Air Quality Questionnaires and Building Inventories
- Appendix C Photo Log
- Appendix D Laboratory Data and Data Usability Summary Reports on CD

1 INTRODUCTION

AECOM Technical Services Northeast, Inc. (AECOM) has been issued Work Assignment #D004436-32 under the New York State Department of Environmental Conservation (NYSDEC) State Superfund Standby Program. The site under this work assignment is Utility Manufacturing/Wonder King (Utility Manufacturing), Operable Unit 2 (Site No. 130043H). The location of the site is shown on Figure 1.

The scope of work for this project, as defined by the NYSDEC, is project scoping, preparation of plans and specifications, oversight of construction services including sub-slab depressurization system installation at three facilities and installation of six monitoring wells, and one round of groundwater and indoor air sampling. The work was performed in accordance with NYSDEC Division of Environmental Remediation Final DER-10 Technical Guidance for Site Investigation and Remediation (NYSDEC, May 2010) and the Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH; Final, October 2006). This report documents the well installation, groundwater sampling, and indoor air sampling conducted in 2010.

1.1 Background

Utility Manufacturing site is located at 700-712 Main Street (south side) between Bond Street and Frost Street, approximately 500 feet (ft) north of Old Country Road in the New Cassel Industrial Area (NCIA), Town of North Hempstead, Nassau County, New York (Figure 1). The Utility Manufacturing site is approximately one acre in size and is comprised of one building with pavement on three of the four sides, a fence along the west, south and east sides with a gate to the driveway area opening on the north. Trailers (sea containers) are located along the southern perimeter fence.

Currently, Utility Manufacturing site is an active facility consisting of a 20,000 square feet (sf) main floor manufacturing and storage facility, and a 10,000 sf second floor for offices, technical laboratory, silk screening, and storage area. The company manufactures a variety of cleaning and lubricating products primarily for commercial and industrial customers. Utility Manufacturing stores, blends, and repackages tetrachloroethene (perchloroethene, or PCE). The facility uses over 20,000 pounds of PCE per year (ERM, December 2005). In 1988, several dry wells and cesspools were sampled at the Utility Manufacturing site by Utility Manufacturing's consultant. Sampling results indicated that these drainage structures were contaminated with PCE and other volatile organic chemicals (VOCs). Utility Manufacturing subsequently remediated these drainage structures under the supervision of the Nassau County Health Department (NCHD). Groundwater contaminated groundwater from other sites in the New Cassel Industrial Area (NCIA).

The site and study area are located within the NCIA, which is a 170-acre industrial and commercial area on the north side of Old Country Road. The NCIA is bounded on the north by the Long Island Railroad, on the east by the Wantagh Parkway, on the south by Old Country Road, and on the west by Grand Boulevard. Land uses directly north, south and west are primarily residential with some light business interests along Old Country Road. East and northeast of the Wantagh Parkway (east side of the NCIA) is the West Hicksville industrial/commercial area. These areas were developed in the late 1940s–early 1950s timeframe. The sites within the study area consist mostly of commercial and industrial operations including auto repair, auto garage, office spaces, warehouse, and machine tool shop.

1.2 Investigations Conducted at the Utility Manufacturing Site

In 1986, an investigation revealed that groundwater beneath and downgradient of the NCIA was impacted by four chlorinated VOCs, whose concentrations exceeded New York State (NYS) Class GA Groundwater Criteria: PCE, trichloroethene (TCE), 1,2-dichloroethene, and 1,1,1-trichloroethane. As a result of the investigation, the NYSDEC classified the entire NCIA as a Class 2 site in 1988. Regional groundwater was determined to flow to the southwest, and consequently, impacted groundwater leaving the NCIA flows directly towards the Bowling Green Water District (BGWD) public supply wells (Well Nos. N8956 and N8957) located south of Old Country Road at the end of Iris Place. At the time of the 1986 investigation, the BGWD public supply wells were not impacted by the VOCs, but have since been impacted by VOC contamination. An air-stripper treatment system was constructed in 1996, and the water supplied to the public system from the BGWD wells has since then been treated by the air stripping system to meet Federal and New York State Drinking Water Maximum Contaminant Levels (MCLs) and guidelines.

In 1988, drywells and cesspools at Utility Manufacturing were sampled and found to have elevated concentrations of chlorinated and aromatic VOCs (PCE, TCE, 1,2-dichloroethene, 1,1,1-trichloroethane, methylene chloride, chloroform, toluene, ethylbenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, chloroethane, chloromethane, bromomethane, and vinyl chloride). These structures were remediated by Utility Manufacturing in 1989 by pumping them out and power-washing them under the supervision of the NCDH. Endpoint sampling results met NYSDEC Soil Cleanup criteria. The Utility Manufacturing facility was subsequently connected to the municipal sewer.

Based on the findings of a 1995 site investigation report, the NYSDEC removed the NCIA from the Registry in March 1995. In 1996, NYSDEC issued a Preliminary Site Assessment (PSA) report for several properties in the NCIA. Groundwater sampling results from the PSA showed PCE concentrations downgradient of the Utility Manufacturing site an order of magnitude greater than upgradient concentrations. The NYSDEC added the Utility Manufacturing site to the Registry of Inactive Hazardous Waste Sites as a Class 2 site in May 1996, naming Utility Manufacturing as a Potentially Responsible Party (PRP). Utility Manufacturing filed petitions to delist the site in 1996 and 1997. The NYSDEC denied both petitions.

In September 1997, Utility Manufacturing entered into a Consent Order with NYSDEC to perform a Remedial Investigation/Feasibility Study (RI/FS) for the Utility Manufacturing site. The RI included the installation of groundwater monitoring wells, and the collection of both soil and groundwater samples. The RI indicated that groundwater beneath the Utility Manufacturing site was contaminated with volatile organic compounds and the contaminants appear to flow in the general groundwater direction flow from northeast to southwest. No on-site soil contamination exceeding the evaluation criteria was detected during the RI. The NYSDEC required Utility Manufacturing to perform additional groundwater sampling to fully define the extent of on-site groundwater contamination. The additional sampling was completed in fall 2000. The result of the fall 2000 sampling revealed elevated levels of PCE in groundwater beneath the Utility Manufacturing site. PCE was detected in on-site soils at concentrations exceeding the New York State groundwater standard. PCE was detected in on-site soils at concentrations below the NYSDEC guidance value of 1.4 mg/kg. Two semivolatile organic compounds (SVOCs), benzo(a)anthracene and benzo(a)pyrene, were detected in on-site soils at concentration exceeding NYSDEC guidance values. However, neither compound was detected in the groundwater.

An Interim Remedial Measure (IRM) consisting of an air sparge/soil vapor extraction (AS/SVE) system was installed to the south of the Utility Manufacturing building to remediate on-site soil and groundwater contamination. The AS/SVE system operated from December 2001 to December 2002. By December 2002, the system had reduced total VOC concentrations in groundwater from 1,019 µg/L to 13 µg/L, and the contaminant concentration had stopped decreasing. The AS/SVE system was chosen for the final remedy for on-site contamination in the Record of Decision (ROD) dated March 2003 (NYSDEC, 2003). The remaining contamination was allowed to attenuate naturally. After the AS/SVE system ceased operation, Utility Manufacturing's consultant (CA RICH Consultants, Inc.) obtained groundwater samples annually until 2005 to detect any possible rebound in groundwater contaminant concentrations. As no rebound was detected, the NYSDEC deemed the on-site remediation to be complete.

In 2002, NYSDEC ordered Utility Manufacturing to perform off-site (downgradient) groundwater sampling to Old Country Road. This off-site area comprises Operable Unit 2 (OU2) of the site and is known as the study area. Utility Manufacturing refused to perform this work in accordance with the NYSDEC's requirements. As a result, NYSDEC lead the off-site RI/FS. As part of the off-site RI, 11 soil borings were advanced to the south of the site. Groundwater samples were collected from each of the soil borings by

Hydropunch sampling and new groundwater monitoring wells were installed in the south parking lot of the office building located at 1025 Old Country Road. Thirteen VOCs were detected in the Hydropunch and monitoring well groundwater samples; seven of which exceeded the applicable New York State Groundwater Quality Standard by one to two orders of magnitude. The vertical distribution of contaminants shows that VOCs were present in groundwater at higher concentrations in the deeper more transmissive strata of the Magothy aquifer. The RI concluded that the distribution of the VOCs in groundwater is consistent with southwesterly flow direction from the site across the study area towards the public supply wells.

A total of 17 soil vapor/indoor air/outdoor air samples were also collected from various locations across the study area. Initially, one soil vapor sample was collected from each of the 11 soil borings. Based on the results of the initial soil vapor samples, a sub-slab soil vapor sample from the ground floor of the office building located at 1025 Old Country Road, and two soil vapor samples from the parking lot of the shopping center at 1065 Old Country Road were also collected. Outdoor air samples were collected on the east side of the 1025 Old Country Road office building and an indoor air sample was collected from a small office area on the south end of the building at 1025 Old Country Road. A total of 30 VOCs were detected in the soil vapor/indoor/outdoor air samples. PCE was the dominant VOC in soil vapor. The results indicated that volatilization of VOCs from groundwater represented a complete and significant exposure pathway that is confirmed by the presence of VOCs in groundwater, soil vapor, and indoor/outdoor air samples collected in the study area.

A total of eight properties in the study area were investigated as part of the Off-Site Soil Vapor Intrusion study in 2007 by AECOM. Originally, 13 properties were proposed for sampling. Since access was denied for five of the structures; only eight structures were sampled.

Based on the detected concentrations of TCE and PCE in the sub-slab vapor and indoor air samples, the following recommendations were made:

- No additional actions were required to address human exposures for two properties (Structures 3 and 11).
- Continued indoor air monitoring was recommended at three properties (Structures 1, 7, and 13).
- Based on TCE concentrations mitigation was recommended for three properties (Structures 2, 6, and 9).

1.3 Selected Remedy

A ROD presenting the selected remedy for Operable Unit 2 was finalized in March 2008. The elements of the selected remedy are as follows:

- 1. A remedial design program will be implemented to provide the details necessary for the construction, operation, maintenance, and monitoring of the remedial program.
- 2. Sub-slab depressurization systems will be installed in three off-site buildings that have vapor intrusion impacts.
- 3. Periodic vapor sub-slab vapor, indoor air and outdoor air samples will be obtained at three properties where the potential for vapor intrusion exists. Periodic sampling will continue until sampling results indicate that continued sampling is no longer required.
- 4. Groundwater contamination within the study area will be allowed to naturally attenuate.
- 5. Imposition of an institutional control in the form of an environmental easement on the site that will require: (a) compliance with the approved site management plan; and (b) the property owner to complete and submit to the Department a periodic certification of institutional and engineering controls.
- 6. Development of a site management plan which will include the following institutional and engineering controls: (a) monitoring of groundwater, sub-slab vapor, indoor air and outdoor air; and (b) provisions for the continued proper operation and maintenance of the components of the remedy.

- 7. The property owner will provide a periodic certification of institutional and engineering controls, prepared and submitted by a professional engineer or such other expert acceptable to the Department, until the Department notifies the property owner in writing that this certification is no longer needed.
- 8. The operation of the components of the remedy will continue until the remedial objectives have been achieved, or until the Department determines that continued operation is technically impracticable or not feasible.
- 9. Since the remedy results in untreated hazardous waste remaining at the site, a long term monitoring program will be instituted. Up to nine monitoring wells will be sampled periodically for VOCs to track the progress of the natural attenuation. In addition, sub-slab vapor, indoor air and outdoor air samples will be obtained and analyzed for VOCs at three buildings with potential vapor intrusion impacts. This program will allow the effectiveness of the natural attenuation and soil vapor intrusion mitigation measures to be monitored and will be a component of the operation, maintenance, and monitoring for the site.

This report documents sampling efforts in accordance with items 3 and 9 of the selected remedy.

2 FIELD INVESTIGATION

The Phase II field investigation, conducted between January and May 2010, consisted of monitoring well installation, groundwater sampling, collection of groundwater elevation measurements, and indoor air sampling. Groundwater samples were collected from two existing wells and six newly installed wells. Indoor air samples were collected from three structures. AECOM contacted the owners and occupants to schedule appointments for indoor air sampling. Laboratory analyses were conducted by TestAmerica. YEC, Inc. participated in field activities as a subcontractor to AECOM. Field forms are provided in Appendix A. Indoor air sampling and a handout prior to sampling listing activities which could influence the results of the sampling (Appendix A).

2.1 Groundwater Sampling

2.1.1 Well Installation & Development Oversight

As required in the 2008 ROD for OU 2, annual groundwater monitoring will be conducted in the study area to evaluate natural attenuation of the groundwater contamination from up to nine wells (three existing and six installed as required by the ROD). Two existing wells have been identified on site (MW-1S and MW-1D); however, the third existing well – Nassau County well NC-12 – could not be located. A small manhole was identified near the location of NC-12, but a monitoring well inner casing and cap were not found. A picture of this location is shown in Appendix C.

Three additional nested pairs of groundwater monitoring wells were installed. The well locations are shown on Figure 2. The well locations were moved from the proposed locations to north of Old Country Road to avoid overhead utilities. Each of these well pairs was screened from approximately 85-95 feet below ground surface (bgs) (shallow) and 115-125 feet (deep). AECOM coordinated with NYSDEC's remedial contractor (Environmental Assessments and Remediation, Inc. [E.A.R.]) and provided oversight during installation of the wells. During the installation and development of the wells AECOM prepared soil boring logs, well construction logs, and development forms. These forms are provided in Appendix A. The six wells were installed in March 2010. Prior to installation, E.A.R. contacted DIG SAFE and conducted a utility mark out prior to advancing borings. All borings were first hand cleared to 5 ft bgs.

Soil cuttings were collected in drums. A composite sample was collected for waste characterization by the AECOM representative during well installation and provided to E.A.R for laboratory analysis. E.A.R. arranged for the drums to be collected from the site on a daily basis.

AECOM	Annual Long Term Monitoring Report
January 2011	NYSDEC/Utility Manufacturing/ Wonder King

The wells were surveyed by YEC, Inc. on April 13, 2010. Well construction information is provided in Table 1. The wells were developed by NYSDEC's remedial contractor with oversight by an AECOM representative on April 13, 2010. Nassau County Department of Public Works approved discharge of the purge water to the sanitary sewer based on a VOC analysis on a sample collected from the six new wells, provided the water was screened to remove sediment prior to disposal. The purge water was discharged to the sanitary sewer at locations approved by Nassau County.

2.1.2 Well Sampling

AECOM collected one round of samples from two existing (MW-1S and MW-1D) and six newly installed wells in May 2010 (MW-11S, MW-11D, MW-12S, MW-12D, MW-13S, and MW-13D). Well sampling forms showing compliance with EPA low flow sampling procedures (EPA SOP, 1998) are provided in Appendix A. A bladder pump was used. The pump intake was set at the midpoint of the screened interval. Dedicated Teflon-lined tubing was used for all groundwater sample collection. Several parameters were recorded during purging including flow rate, depth to water, temperature, pH, conductivity, DO, ORP and turbidity. The measurements were recorded on a well sampling form. Measurements were collected approximately every five minutes. A flow through cell was used to measure most of the parameters. Purging was considered complete when the indicator parameters have stabilized over three consecutive readings. If the groundwater did not stabilize, the samples were collected after two hours of purging. Stabilization parameters are:

- depth to water: less than 0.3 ft drawdown during purging;
- pH: ± 0.1
- conductivity: ± 3%
- DO: ± 10 mV
- ORP: ±10% and
- Turbidity: less than 50 NTU.

During sample collection, the flow cell was disconnected and the sample tubing discharge was poured directly into the laboratory supplied sample containers and field vials. Water samples were collected in pre-preserved bottles provided by the laboratory, cooled to 4°C after collection, and shipped to the subcontract laboratory for analysis of VOCs, dissolved iron (field filtered), sulfates, nitrates, carbon dioxide, and methane by TestAmerica in Amherst, New York a NYSDOH Environmental Laboratory Approval Program (ELAP #10391).

A round of water table elevation data for the existing monitoring wells was collected on May 12, 2010, prior to groundwater sampling. The results are presented in Table 2. Groundwater elevations are shown on Figure 3 for the shallow wells and Figure 4 for the deep wells. The groundwater flow direction appears to be to the southwest.

2.2 Indoor Air Sampling

AECOM collected indoor air, outdoor ambient air and sub-slab soil vapor samples at the three properties in January 2010 in accordance with the Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH; Final, October 2006). The locations for Structures 1, 7, and 13 are shown on Figure 5.

Prior to sampling, an inspection of general site conditions was performed at each location. The inspection also included the preparation of a chemical product inventory, collection of ambient air organic vapor readings, and the completion of a property owner questionnaire (Appendix B).

Two indoor air samples were collected within the first floors of each structure. Two outdoor ambient air samples were collected concurrently with the indoor air samples. Two sub-slab vapor samples were collected at Structures 7 and 13. One sub-slab sample and one duplicate were collected from Structure 1

using a sampling tee. AECOM installed permanent sub-slab sampling ports to facilitate future long term air monitoring.

Where possible, sub-slab vapor samples were located central to the building and away from the foundation walls and apparent penetrations such as water pipes and floor drains. Each sampling point location was marked, documented, and photographed. The Summa canisters were located in the same locations as in 2007. AECOM used a photoionization detector (PID) to screen indoor air and penetrations (e.g., concrete floor cracks, floor drains) prior to collecting the air samples. No products containing chlorinated solvents were identified which required removal from the interior of the buildings prior to and during the sampling effort. Product inventories for each structure are provided in Appendix B. Photographs of the sampling event are included in Appendix C.

The air samples were collected using 6-liter summa batch certified canisters equipped with 24-hour flow controller valves pre-calibrated at the laboratory.

Indoor air samples were collected by placing the summa batch certified canister with 24-hour flow controllers in the breathing zone (4-6 ft above the floor).

Outdoor air sampling locations were away from outdoor operations known to generate VOCs. The outdoor air samples were collected from the rear of Structures 1 and 7. For the sub-slab samples, after the foundation slab had been inspected, the location of subsurface utilities determined, and the ambient air surrounding the proposed sampling location screened with a PID, an electric drill was used to advance a boring to a depth of no more than 2 inches beneath the basement flooring/foundation slab.

AECOM installed the permanent probes for sampling sub-slab vapor. An electric drill was utilized to make a 1-inch diameter borehole through the concrete slab. The drill bit was advanced approximately six inches into the sub-slab material at each sampling location to create an open cavity. A 6-inch long stainless steel soil gas implant fitted with a Teflon-lined polyethylene tube was then inserted into the borehole. The annulus around the implant was backfilled with sand pack to the bottom of the cement slab. The remaining annular space was sealed using inert material (i.e., bentonite). The integrity of the seal was then tested using helium tracer gas inserted into an enclosure placed above the seal. After installation of the probe, the tubing was connected to a vacuum pump and up to one liter of sub-slab vapor was purged (at a rate less than 200 milliliters per minute [mL/min]). Once purging was completed, the sample tube was connected to the Summa® canister with a pre-set regulator designed to sample for a 24-hour period. Permanent sub-slab points were sealed to the floor with hydraulic cement. After sampling, each point will be capped with a stainless steel threaded cap to seal the point and allow future monitoring activities. Appendix A contains the field information collected during sampling. Pictures of a typical sub-slab point are provided in Appendix A.

All sub-slab, indoor air, and outdoor air samples were sent to TestAmerica in South Burlington, Vermont, a NYSDOH Environmental Laboratory Approval Program (ELAP #10391). Proper chain-of-custody (COC) procedures were maintained throughout the sampling event. The samples were analyzed for VOCs by USEPA Method TO-15 with a detection limit of 1.0 μ g/m³ (0.25 μ g/m³ for TCE). Site-specific quality control (QC) measures included the submission of a field duplicate (co-located sample) from Structure 1. The field duplicate is a sub-slab sample. In addition, the laboratory performed batch QC as required by the analytical method.

3 LABORATORY ANALYTICAL RESULTS

3.1 Groundwater Samples

Groundwater samples were collected from eight wells and submitted for the following analyses VOC (EPA SW-846 Method 8260), dissolved iron (EPA SW-846 Method 6010B), sulfates (EPA 300.0), nitrates (EPA 353.2), carbon dioxide (EPA RSK-175), and methane (EPA RSK-175). The VOC groundwater results are compared to the NYS Class GA Groundwater Criteria and are presented in Table 3. VOC detections are

summarized on Figure 6. A summary of concentrations exceeding the NYS Class GA Groundwater Criteria are provided below:

- 1,1,1-Trichloroethane was detected in the four deep wells. The concentrations exceed the NYS Class GA criterion of 5 μg/L in MW-1D (15 μg/L) and MW-12D (8.8 μg/L).
- 1,1-Dichloroethene was detected in the four deep wells. The concentrations exceed the NYS Class GA criterion of 5 μg/L in MW-1D (30 μg/L) and MW-12D (17 μg/L).
- 1,2-Dichloroethene was detected in all wells except MW-11S. The concentrations exceed the NYS Class GA criterion of 5 μg/L in MW-1S (18 μg/L), MW-12S (15 μg/L), and MW-13D (17 μg/L).
- cis-1,2-Dichloroethene was detected in all wells except MW-11S and MW-13S. The concentrations exceed the NYS Class GA criterion of 5 μ g/L in MW-1S (18 μ g/L), MW-12S (15 μ g/L), and MW-13D (17 μ g/L).
- Tetrachloroethene (PCE) was detected in all of the wells. The concentrations exceed the NYS Class GA criterion of 5 μg/L in seven of the eight wells with concentrations ranging from 7.1 μg/L (MW-12D) to 18 μg/L (MW-1D).
- Trichloroethene (TCE) was detected in five of the eight wells. The concentrations exceed the NYS Class GA criterion of 5 μ g/L in MW-1D at 74 μ g/L and MW-13D at 200 μ g/L.

Groundwater samples collected from monitoring wells in 2005 (ERM, 2005) exceeded the NYS Class GA criteria for five parameters:

		2005	2010
•	1,1,1-Trichloroethane	17 µg/L	15 µg/L
•	1,1-Dichloroethene	22 µg/L	30 µg/L
•	cis-1,2-Dichloroethene	84 µg/L	18 µg/L
•	PCE	220 µg/L	18 µg/L
•	TCE	54 µg/L	200 µg/L

The decline in the maximum concentration detected in 2010 for PCE, cis-1,2-dichloroethene, and 1,1,1trichloroethane compared to the levels detected in 2005 indicates limited dechlorination through natural attenuation is occurring at the site. The concentration of 1,1-dichloroethene increased from 22 μ g/L to 30 μ g/L, possibly as a result of dechlorination from TCE or PCE. The maximum TCE concentration detected increased from 54 μ g/L in 2005 to 200 μ g/L in 2010. However, the maximum detection in 2010 was from a downgradient location (MW-13D) which was not sampled during the RI. Natural attenuation may be occurring in this area, but another round of groundwater monitoring is recommended to confirm the remedy is active throughout OU2.

The results for parameters other than VOCs are provided in Table 4. A summary of the results is provided below. This evaluation considers the deep wells only because the total VOC concentrations in the deep wells show the pattern as in the ROD (2008) for this portion of the plume where concentrations increase approximately tenfold from MW-11S/D to MW-13S/D.

- Methane: An increase in methane may be an indicator of reducing conditions or be a present as a byproduct microbial degradation using carbon dioxide as an electron acceptor. Methane was not detected at seven of the eight wells. This parameter does not appear to be an indicator of biological activity at this site.
- Carbon dioxide: An increase in carbon dioxide may provide an indication of biodegradation. Concentrations ranged from 1,000 µg/L at MW-11D to 9,000 µg/L at MW-13D in the deep wells, potentially providing an indication of biological activity at this site.
- Sulfate: A decrease in sulfate, relative to background, may indicate that sulfate is serving as an electron acceptor under anaerobic conditions. Sulfate concentrations drop from 28 μg/L at MW-11D to 12.4 μg/L at MW-13D. This parameter may indicate of biological activity at this site.
- Nitrite-Nitrate: A decrease in nitrite-nitrate, relative to background, may indicate nitrite-nitrate is serving as an electron acceptor under slightly reducing conditions. Concentrations increase from

1.62 mg/L-N at MW-11D to 6.39 mg/L-N at MW-13D. This parameter does not appear to be an indicator of biological activity at this site.

- Dissolved iron: An increase in dissolved iron (Fe II), relative to background, may indicate that insoluble iron (Fe III) is serving as an electron acceptor in anaerobic biodegradation. Iron is not detected at all wells except MW-1D (0.029 mg/L). This parameter does not appear to be an indicator of biological activity at this site.
- Dissolved oxygen: Dissolved oxygen is a microbial electron acceptor and a redox indicator. High concentrations were measured, but these results are unlikely to indicate aerobic conditions because the bladder pump was operating.

3.2 Air Samples

A total of 13 air samples and one field duplicate were collected. The air samples include sub-slab soil vapor samples, indoor air samples, and outdoor air samples. All air samples were analyzed for VOCs by USEPA method TO-15. The analytical results are presented in Table 5 (indoor air), Table 6 (sub-slab), and Table 7 (outdoor air). Detected VOCs included chlorinated aliphatics (e.g., TCE and PCE), and petroleum-related compounds (e.g., m/p-xylene). Detections at each sample location are shown in Figure 7.

Indoor air and outdoor air sample data compared to background concentrations are presented in Table 8 and Table 9, respectively. The background concentrations are the 75th percentiles reported in the NYSDOH 2003 Study of Volatile Organic Chemicals in Air of Fuel Oil Heated Homes and the EPA 2001 Building Assessment and Survey Evaluation (BASE) database (Appendix C of NYSDOH, 2006).

Indoor air concentrations exceeded at least one of the reported average background levels for the following compounds:

- PCE
- n-Hexane
- Ethylbenzene
- Xylene (m,p)
- Xylene (o)

Outdoor air concentrations exceeded at least one of the reported average background levels for the following compounds:

- Chloroform
- PCE
- Cyclohexane
- n-Hexane
- Toluene
- Ethylbenzene
- Xylene (m,p)
- Xylene (o)

A comparison of the concentrations of TCE and PCE in the sub-slab vapor and indoor air samples with the Decision Matrices from NYSDOH (2006) is presented in Table 10. No further action is indicated for the three structures based on the PCE concentrations. No further action is indicated for Structures 1 and 13 based on the TCE concentrations. Take reasonable and practical actions to identify source(s) and reduce exposures is indicated for Structures 7 based on the TCE concentrations, although the TCE concentrations are just above this criteria. No further monitoring is recommended for Structure 7, because of the soil vapor concentration reductions in indoor and sub-slab air in 2010 compared to the initial vapor sampling conducted in 2007 (AECOM, 2007); current indoor air levels are relatively equal to those typically found in indoor air; and the building has a commercial use within an industrial area. If future

groundwater sampling determines that concentrations of volatile organic compounds are increasing again around Structures 1, 7 and 13, additional soil vapor intrusion monitoring may be required at that time according to the recommendation of NYSDOH and NYSDEC.

4 DATA VALIDATION

Data validation was provided by Environmental Data Services, Inc. (EDS) of Williamsburg, Virginia, an independent chemist under subcontract to AECOM. Data Usability Summary Reports (DUSRs) for each sample delivery group (SDG) are included on CD as Appendix D. Complete copies of the laboratory analytical data reports are included on CD as Appendix D.

Air sample data from samples collected in January 2010 were reported by TestAmerica, South Burlington, Vermont as one sample delivery group (SDG), NY135783. A total of 14 analyses were validated, including one field duplicate and 13 environmental samples. The data are acceptable for the intended purposes. Data were qualified for the following deficiencies:

- One compound (1,2-dichlorotetrafluoroethane) was qualified as estimated in eight samples due to a high continuing calibration percent deviation value.
- Three compounds (PCE, 4-ethyltoluene, 1,3,5-trimethylbenzene) were qualified as estimated in the field duplicate pair due to poor duplicate precision.
- One compound (toluene) was qualified as estimated in two samples due to exceeding the linear range of the instrument.

Groundwater data from samples collected in May 2010 were reported by TestAmerica, South Burlington, Vermont as one sample delivery group (SDG), RTE0678. A total of 14 analyses were validated, included two trip blanks, one MS/MSD pair, one field duplicates, eight environmental samples, and one reanalyses. The data are acceptable for the intended purposes. Data were qualified for the following deficiencies:

- TCE was qualified as not detected in three samples due to trip blank contamination.
- Several compounds were qualified as estimated in all samples due to high continuing calibration relative response factor values.

5 CONCLUSIONS AND RECOMMENDATIONS

Groundwater and air sampling was performed at the Utility Manufacturing site in Westbury, NY with field work conducted in 2010. A summary of the sampling effort is provided below:

- Installation and development of six monitoring wells was completed in March 2010. Two existing
 and the six newly installed monitoring wells were sampled in May 2010. VOC concentrations in
 samples from one or more monitoring wells exceed the NYS Class GA criteria for 1,1,1trichloroethane, 1,1-dichloroethene, 1,2-dichloroethene, PCE, and TCE. Due to the continued
 exceedences of compounds above NYS Class GA standards another round of groundwater
 sampling is recommended.
- Soil vapor intrusion air sampling was conducted at Structures 1, 7, and 13. Based on the results of this sampling event, no additional soil vapor intrusion air sampling is recommended.

6 **REFERENCES**

AECOM, 2007. Supplemental Remedial Investigation Report (Off-Site Soil Vapor Intrusion Site Characterization), Utility Manufacturing/Wonder King, OU 2, Town of North Hempstead, New York. October

Environmental Resources Management (ERM), 2005. Off-Site Remedial Investigation Report, Utility Manufacturing, New Cassel, Town of North Hempstead, Nassau County, NY. December

New York State Department of Health (NYSDOH), 2003. Fact Sheet: Tetrachloroethene (Perc) In Indoor And Outdoor Air. May

NYSDOH, 2006. Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October.

New York State Department of Environmental Conservation (NYSDEC), 2008. Record of Decision Utility Manufacturing/Wonder King Site Operable Unit No. 2 Town of North Hempstead, Nassau County, New York. Site Number 130043H. March.

NYSDEC, 2010. NYSDEC Division of Environmental Remediation DER-10 Technical Guidance for Site Investigation and Remediation. May.

Table 1	
Well Construction	Data

				Top of	Total
Well			Ground	Casing	Depth of
Number	Northing	Easting	Elevation	Elevation	Well
MW-11D	214,701.44	1,106,744.20	119.77	119.51	124
MW-11S	214,706.18	1,106,741.07	119.96	119.66	95
MW-12D	214,675.55	1,106,597.69	118.56	118.26	125
MW-12S	214,670.11	1,106,598.27	118.51	117.88	95
MW-13D	214,630.74	1,106,353.23	116.82	116.41	126
MW-13S	214,625.69	1,106,354.25	116.66	116.32	96
MW-1S	214,708.46	1,106,651.34	120.28	119.82	90
MW-1D	214,707.10	1,106,646.90	120.18	119.77	130

Notes:

All elevations and depths are in feet. Vertical datum: NAVD88 Horizontal datum: NY State Plane NAD83

Table 2 Groundwater Elevations

		Depth	Groundwater
Well	Ground	To Water	Elevation
Number	Elevation	5/12/10	5/12/10
MW-11D	119.77	42.74	77.03
MW-11S	119.96	42.76	77.2
MW-12D	118.56	41.47	77.09
MW-12S	118.51	41.08	77.43
MW-13D	116.82	39.74	77.08
MW-13S	116.66	39.68	76.98
MW-1S	120.28	41.85	78.43
MW-1D	120.18	42.4	77.78

Notes:

All elevations and depths are in feet. Vertical datum: NAVD88

Table 3 VOCs in Groundwater

	NYS	MW11	S	MW1	1D	MW1	2S	MW12S	MW12S (dup)		MW12D		3S	MW13D		MW1S		MW1D	
	Class GA	5/12/20	10	5/12/2	010	5/11/2	010	5/11/2010		5/11/20	010	5/11/2010		5/11/20	010	5/12/2	010	5/12/20	010
ANALYTE	ug/L	µg/L		µg/l	L	µg/	L	μg/L	µg/L		_	µg/L		µg/L	_	µg/l	-	µg/L	_
1,1,1-Trichloroethane	5	1	U	1.8		1	U	1	U	8.8		1	U	4.2		1	U	15	
1,1,2,2-Tetrachloroethane	5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,1,2-Trichloroethane	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,1,2-Trichlorotrifluoroethane	5	1	U	1	U	1	U	1	U	2.2		1	U	1.2		1	U	3.5	
1,1-Dichloroethane	5	1	U	2.5		1	U	1	U	2.4		1	U	1.2		1	U	4.3	
1,1-Dichloroethene	5	1	U	4		1	U	1	U	17		1	U	7		1	U	30	
1,2,4-Trichlorobenzene	5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,2-Dibromo-3-chloropropane	0.04	1	U	1	U	1	UJ	1	U	1	U	1	UJ	1	UJ	1	U	1	U
1,2-Dibromoethane (EDB)	5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,2-Dichlorobenzene	3	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,2-Dichloroethane	0.6	1	U	1	U	1	U	1	U	1	U	1	U	0.58	J	1	U	1	U
1,2-Dichloroethene, Total	5	2	U	1.2	J	15		15		1.8	J	0.74	J	17		18		4.4	
1,2-Dichloropropane	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,3-Dichlorobenzene	3	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,4-Dichlorobenzene	3	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
2-Butanone (MEK)	5	5	U	5	UJ	5	U	5	U	5	U	5	U	5	U	5	UJ	5	U
2-Hexanone	5	5	U	5	UJ	5	U	5	U	5	U	5	U	5	U	5	UJ	5	U
4-Methyl-2-pentanone (MIBK)	5	5	U	5	UJ	5	U	5	U	5	U	5	U	5	U	5	UJ	5	U
Acetone	5	5	U	4.8	J	5	U	5	U	5	U	5	U	5	U	5	J	5	U
Benzene	1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Bromodichloromethane	5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Bromoform	5	1	U	1	UJ	1	U	1	U	1	U	1	U	1	U	1	UJ	1	U
Bromomethane	5	1	UJ	1	U	1	U	1	UJ	1	UJ	1	U	1	U	1	U	1	UJ
Carbon disulfide	60	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Carbon Tetrachloride	5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Chlorobenzene	5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Chlorodibromomethane	NA	1	U	1	U	1	UJ	1	U	1	U	1	UJ	1	UJ	1	U	1	U
Chloroethane	5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Chloroform	7	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Chloromethane	5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
cis-1,2-Dichloroethene	5	1	U	1.2		15		15		1.8		1	U	17		18		4.4	
cis-1,3-Dichloropropene	0.4	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Cyclohexane	NA	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Dichlorodifluoromethane	5	1	U	1	U	1	UJ	1	U	1	U	1	UJ	1	UJ	1	U	1	U
Ethylbenzene	5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Isopropylbenzene	5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Methyl Acetate	NA	1	U	1	UJ	1	U	1	U	1	U	1	U	1	U	1	UJ	1	U
Methyl tert-Butyl Ether	5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Methylcyclohexane	NA	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Methylene Chloride	5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U

Table 3 VOCs in Groundwater

	NYS	MW1 ²	V11S N		MW11D		2S	MW12S	(dup)	MW1	MW12D		3S	MW13D		MW1S		MW	1D
	Class GA	5/12/20	010	5/12/2	5/12/2010 5/		5/11/2010		5/11/2010		5/11/2010		010	5/11/2010		5/12/2010		5/12/201	
ANALYTE	ALYTE ug/L µg/L µg/L		L	µg/L		μg/	µg/L		µg/L		L	µg/L		µg/L		µg/L			
Styrene	5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene (PCE)	5	8.7		8.1		10		10		7.1		1.2		9.4		8.9		18	
Toluene	5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	5	1	U	1	С	1	U	1	U	1	U	1	U	1	U	1	C	1	U
trans-1,3-Dichloropropene	0.4	1	U	1	U	1	UJ	1	U	1	U	1	UJ	1	UJ	1	U	1	U
Trichloroethene (TCE)	5	1	U	3	U	2.5		2.4		25		1.7		200		3.1	U	74	
Trichlorofluoromethane	5	1	С	1	C	1	UJ	1	U	1	U	1	UJ	1	UJ	1	U	1	U
Vinyl chloride	2	1	С	1	C	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Xylenes, total	5	2	U	2	U	2	U	2	U	2	U	2	U	2	U	2	U	2	U

U Not detected

J Concentrations are estimated.

Bolded concentrations exceed the NYS Class GA groundwater criteria.

Table 4 Other Parameters in Groundwater

		MW11	S	MW11	D	MW12	MW12S		MW12S (dup)		MW12D		3S	MW13D		MW1S		MW1D	
ANALYTE	UNITS	5/12/20	2/2010 5/12/2010		5/11/2010		5/11/2010		5/11/2010		5/11/2010		5/11/2010		5/12/2010		5/12/2010		
Methane	μg/L	1	U	0.63	J	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Carbon Dioxide	µg/L	5200		1000		3500		3400		3500		17000		9000		7700		15000	
Sulfate	mg/L	16.1	В	28.4	В	28.9		29		46.8		47.9		12.4		25.9	В	24.4	В
Nitrate-Nitrite	mg/L-N	1.42		1.62		2.97		2.97		3.38	D08	3.81	D08	6.39	D08	1.85		2.8	
Iron - Dissolved	mg/L	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U	0.029	L
Dissolved Oxygen	mg/L	10.50		10.58		11.31		11.31		9.92		12.19		9.32		6.64		4.16	

U Not detected

J Concentrations are estimated.

D08 Dilution required due to high concentration of target analyte(s)

B Analyte was detected in the associated Method Blank

Table 5
VOCs in Indoor Air Samples

Building	B01		B01		B07		B07		B13		B13		
Sample	FF1		FF2		FF1		FF2		FF1		FF2		
Sample Date	01/27/2	010	01/27/2	010	01/28/2	010	01/28/2	010	01/27/2010		01/27/2	010	
Parameter	µg/m	3	µg/m	3	µg/m	l ³	µg/m	3	µg/m	3	µg/m³		
1,1,1-Trichloroethane	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U	
1,1,2,2-Tetrachloroethane	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	
1,1,2-Trichloroethane	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U	
1,1-Dichloroethane	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	
1,1-Dichloroethene	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	
1,2-Dibromoethane	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	
1,2-Dichloroethane	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U	
1,2-Dichloroethene,Total	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	
1,2-Dichloropropane	0.37	U	0.37	U	0.37	U	0.37	U	0.37	U	0.37	U	
1,2-Dichlorotetrafluoroethane	0.28	UJ	0.28	UJ	0.28	UJ	0.28	UJ	0.28	UJ	0.28	UJ	
1,3,5-Trimethylbenzene	0.88		1.0		0.39	U	0.39	U	0.79		1.0		
1,3-Butadiene	0.40		0.31		0.24		0.18	U	0.18	U	0.24		
2,2,4-Trimethylpentane	1.3		1.1		0.61		0.47		1.7		2.3		
3-Chloropropene	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	
4-Ethyltoluene	0.74		0.88		0.38		0.29		0.74		1.2		
Benzene	2.2		2.0		1.2		1.0		2.9		3.5		
Bromodichloromethane	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	
Bromoethene	0.35	U	0.35	U	0.35	U	0.35	U	0.35	U	0.35	U	
Bromoform	0.41	U	0.41	U	0.41	U	0.41	U	0.41	U	0.41	U	
Bromomethane	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	
Carbon tetrachloride	0.56		0.50		0.55		0.48		0.57		0.50		
Chloroethane	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U	
Chloroform	0.20	U	0.37		0.47		0.23		0.20	U	0.20	U	
cis-1,2-Dichloroethene	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	
cis-1,3-Dichloropropene	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	
Cyclohexane	0.89		0.96		0.59		0.45		0.96		1.5		
Dibromochloromethane	0.34	U	0.34	U	0.34	U	0.34	U	0.34	U	0.34	U	
Dichlorodifluoromethane	3.0		2.6		3.1		3.0		3.3		2.9		
Ethylbenzene	2.9		3.4		0.61		0.69		2.4		3.7		
Methyl tert-Butyl Ether	0.14	U	0.14	U	0.14	U	0.14	U	0.14	U	0.14	U	
Methylene chloride	2.8	U	2.8	U	2.8	U	2.8	U	2.8	U	2.8	U	
n-Heptane	1.5		1.5		0.61		0.78		2.1		3.0		
n-Hexane	2.3		2.0		1.1		0.81		6.0		9.5		
Tetrachloroethene (PCE)	0.81		0.95		0.68		0.75		1.9		1.2		
Toluene	14		14		4.5		5.3		17	J	23	J	
trans-1,2-Dichloroethene	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	
trans-1,3-Dichloropropene	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	
Trichloroethene (TCE)	0.21	U	0.21	U	0.33		0.28		0.21	U	0.21	U	
Trichlorofluoromethane	1.6		1.5		1.6		1.6		1.7		1.5		
Vinyl Chloride	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	
Xylene (m,p)	6.9		7.4		1.9		1.7		8.7		13		
Xylene (o)	2.3		2.4		0.61		0.61		2.6		3.9		
Xylenes, Total	9.6		9.6		2.5		2.3		11		17		
	U	Not	detect										
	J	Con	centratior	ns are	detected								

Table 6
VOCs in Sub-Slab Air Samples

Building	B01		B01		B07		B07		B13		B13	
Sample	SS1		SS1 (dup) SS1			SS2		SS1		SS2		
Sample Date	01/27/20	010	01/27/20	010	01/28/2	010	01/28/201		01/27/20	010	01/27/20	010
Parameter	µg/m ³	3	µg/m ³	3	µg/m	3	µg/m	μg/m³ μg/m³		µg/m	3	
1,1,1-Trichloroethane	0.87	U	41		6.5		2.2	U	21		0.87	U
1,1,2,2-Tetrachloroethane	1.1	U	1.1	U	2.7	U	2.7	U	1.1	U	1.1	U
1,1,2-Trichloroethane	0.87	U	0.87	U	2.2	U	2.2	U	0.87	U	0.87	U
1,1-Dichloroethane	0.65	U	0.65	U	1.6	U	1.6	U	0.65	U	0.65	U
1,1-Dichloroethene	0.63	U	0.63	U	1.6	U	1.6	U	0.63	U	0.63	U
1,2-Dibromoethane	1.2	U	1.2	U	3.1	U	3.1	U	1.2	U	1.2	U
1,2-Dichloroethane	0.65	U	0.65	U	1.6	U	1.6	U	0.65	U	0.65	U
1,2-Dichloroethene,Total	0.63	U	0.63	U	1.6	U	1.6	U	0.63	U	0.63	U
1,2-Dichloropropane	0.74	U	0.74	U	1.8	U	1.8	U	0.74	U	0.74	U
1,2-Dichlorotetrafluoroethane	1.1	U	1.1	U	2.8	U	2.8	U	1.1	U	1.1	U
1,3,5-Trimethylbenzene	1.1	J	12	J	5.4		5.4		1.6		10	
1,3-Butadiene	0.88	U	0.88	U	2.2	U	2.2	U	1.4		0.88	U
2,2,4-Trimethylpentane	1.4		0.75	U	1.9	U	1.9	U	0.75	U	2.2	
3-Chloropropene	1.3	U	1.3	U	3.1	U	3.1	U	1.3	U	1.3	U
4-Ethyltoluene	0.88	J	9.3	J	4.4		4.3		1.8		7.9	
Benzene	2.7		1.4		1.3	U	1.3	U	1.8		3.5	
Bromodichloromethane	1.1	U	1.1	U	2.7	U	2.7	U	1.1	U	1.1	U
Bromoethene	0.70	U	0.70	U	1.7	U	1.7	U	0.70	U	0.70	U
Bromoform	1.7	U	1.7	U	4.1	U	4.1	U	1.7	U	1.7	U
Bromomethane	0.62	U	0.62	U	1.6	U	1.6	U	0.62	U	0.62	U
Carbon tetrachloride	1.0	U	1.0	U	2.5	U	2.5	U	1.1		1.0	U
Chloroethane	1.1	U	1.1	U	2.6	U	2.6	U	1.1	U	1.1	U
Chloroform	0.78	U	0.98		2.0	U	2.0	U	1.2		0.78	U
cis-1,2-Dichloroethene	0.63	U	0.63	U	1.6	U	1.6	U	0.63	U	0.63	U
cis-1,3-Dichloropropene	0.73	U	0.73	U	1.8	U	1.8	U	0.73	U	0.73	U
Cyclohexane	0.72		1.6		1.4	U	1.4	U	1.1		1.6	
Dibromochloromethane	1.4	U	1.4	U	3.4	U	3.4	U	1.4	U	1.4	U
Dichlorodifluoromethane	2.9		3.1		4.9	U	4.9	U	2.4		3.1	
Ethylbenzene	3.3		3.3		1.7	U	1.7	U	2.2		3.3	
Methyl tert-Butyl Ether	1.4	U	1.4	U	3.6	U	3.6	U	1.4	U	1.4	U
Methylene chloride	1.4	U	1.4	U	3.5	U	3.5	U	1.9		1.4	U
n-Heptane	1.4		1.2		1.6	U	1.6	U	1.2		2.9	
n-Hexane	1.7		1.4	U	3.5	U	3.5	U	1.7		7.4	
Tetrachloroethene (PCE)	1.5	J	31	J	43		9.5		66		1.5	
Toluene	12		11		2.2		1.7		9.8		18	
trans-1,2-Dichloroethene	0.63	U	0.63	U	1.6	U	1.6	U	0.63	U	0.63	U
trans-1,3-Dichloropropene	0.73	U	0.73	U	1.8	U	1.8	U	0.73	U	0.73	U
Trichloroethene (TCE)	0.86	U	0.86	U	3.4		2.1	U	17		0.86	U
Trichlorofluoromethane	1.5		1.7		2.8		2.2	U	5.6		1.5	
Vinyl Chloride	0.41	U	0.41	U	1.0	U	1.0	U	0.41	U	0.41	U
Xylene (m,p)	6.5		7.8		3.5	U	3.5	U	7.4		11	
Xylene (o)	2.3		3.5		1.7	U	1.7	U	2.4		4.0	
Xylenes, Total	8.7		11		1.7	U	1.7	U	9.6		14	
	U	No	t detect									
	J	Co	ncentratio	ons a	are detect	ted						

Table 7 VOCs in Outdoor Air Samples

Building	B01		B07			
Sample	OA		OA			
Sample Date	01/27/2	010	01/28/2010			
Parameter	µg/m	l ³	µg/m	3		
1,1,1-Trichloroethane	0.22	U	0.22	U		
1,1,2,2-Tetrachloroethane	0.27	U	0.27	U		
1,1,2-Trichloroethane	0.22	U	0.22	U		
1,1-Dichloroethane	0.16	U	0.16	U		
1,1-Dichloroethene	0.16	U	0.16	U		
1,2-Dibromoethane	0.31	U	0.31	U		
1,2-Dichloroethane	0.32	U	0.32	U		
1,2-Dichloroethene,Total	0.16	U	0.16	U		
1,2-Dichloropropane	0.37	U	0.37	U		
1,2-Dichlorotetrafluoroethane	0.28	UJ	0.28	UJ		
1,3,5-Trimethylbenzene	0.39	U	0.39	U		
1,3-Butadiene	0.18		0.27			
2,2,4-Trimethylpentane	0.44		0.70			
3-Chloropropene	0.25	U	0.25	U		
4-Ethyltoluene	0.29		0.29			
Benzene	0.99		1.3			
Bromodichloromethane	0.27	U	0.27	U		
Bromoethene	0.35	U	0.35	U		
Bromoform	0.41	U	0.41	U		
Bromomethane	0.31	U	0.31	U		
Carbon tetrachloride	0.39		0.54			
Chloroethane	0.21	U	0.21	U		
Chloroform	0.48		0.20	U		
cis-1,2-Dichloroethene	0.16	U	0.16	U		
cis-1,3-Dichloropropene	0.18	U	0.18	U		
Cyclohexane	0.48		0.34			
Dibromochloromethane	0.34	U	0.34	U		
Dichlorodifluoromethane	3.0		3.0			
Ethylbenzene	0.52		0.74			
Methyl tert-Butyl Ether	0.14	U	0.14	U		
Methylene chloride	2.8	U	2.8	U		
n-Heptane	0.53		0.57			
n-Hexane	0.92		1.1			
Tetrachloroethene (PCE)	0.66		0.63			
Toluene	3.7		5.3			
trans-1,2-Dichloroethene	0.16	U	0.16	U		
trans-1,3-Dichloropropene	0.18	U	0.18	U		
Trichloroethene (TCE)	0.24		0.21	U		
Trichlorofluoromethane	1.5		1.5			
Vinyl Chloride	0.20	U	0.20	U		
Xylene (m,p)	1.4		2.3			
Xylene (o)	0.43		0.69			
Xylenes, Total	1.9		3.0			
	U	Not	detect			
	J Concentrations are					

Concentrations are detected

Table 8VOCs Comparison to 75th Percentile NYSDOH Background - Indoor Air Samples 2010

NYSDOH	B01	B01	B07	B07	B13	B13	
Background	FF1	FF2	FF1	FF2	FF1	FF2	
75th Percentile	01/27/10	01/27/10	01/28/10	01/28/10	01/27/10	01/27/10	
µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg∕m³	
1.7	0.88	1.0	0.39 U	0.39 U	0.79	1.0	
NA	0.40	0.31	0.24	0.18 U	0.18 U	0.24	
NA	1.3	1.1	0.61	0.47	1.7	2.3	
NA	0.74	0.88	0.38	0.29	0.74	1.2	
5.9	2.2	2.0	1.2	1.0	2.9	3.5	
0.6	0.56	0.50	0.55	0.48	0.57	0.50	
0.5	0.20 U	0.37	0.47	0.23	0.20 U	0.20 U	
2.6	0.89	0.96	0.59	0.45	0.96	1.5	
4.1	3.0	2.6	3.1	3.0	3.3	2.9	
2.8	2.9	3.4	0.61	0.69	2.4	3.7	
7.6	1.5	1.5	0.61	0.78	2.1	3.0	
5.9	2.3	2.0	1.1	0.81	6.0	9.5	
1.1	0.81	0.95	0.68	0.75	1.9	1.2	
25	14	14	4.5	5.3	17 J	23 J	
5.4	1.6	1.5	1.6	1.6	1.7	1.5	
4.6	6.9	7.4	1.9	1.7	8.7	13	
3.1	2.3	2.4	0.61	0.61	2.6	3.9	
NA	9.6	9.6	2.5	2.3	11	17	
	NYSDOH Background 75th Percentile µg/m ³ 1.7 NA NA NA 5.9 0.6 0.5 2.6 4.1 2.8 7.6 5.9 1.1 25 5.9 1.1 25 5.4 4.6 3.1 NA	NYSDOH B01 Background FF1 75th Percentile 01/27/10 µg/m³ µg/m³ 1.7 0.88 NA 0.40 NA 0.40 NA 0.74 5.9 2.2 0.6 0.56 0.5 0.20 2.6 0.89 4.1 3.0 2.8 2.9 7.6 1.5 5.9 2.3 1.1 0.81 25 14 5.4 1.6 4.6 6.9 3.1 2.3 NA 9.6	NYSDOH Background B01 B01 FF1 FF2 75th Percentile 01/27/10 µg/m³ µg/m³ 1.7 0.88 1.7 0.88 NA 0.40 NA 0.40 NA 0.74 0.88 1.0 NA 0.74 0.6 0.56 0.50 0.20 0.6 0.89 0.96 4.1 3.0 2.6 2.8 2.9 3.4 7.6 1.5 1.5 5.9 2.3 2.0 0.81 0.95 2.4 1.1 0.81 0.95 1.4 1.4 1.4 5.4 1.6 4.6 6.9 7.4 3.1 2.3 2.4	NYSDOH Background B01 B01 B07 FF1 FF2 FF1 75th Percentile 01/27/10 01/27/10 01/28/10 µg/m³ µg/m³ µg/m³ µg/m³ 1.7 0.88 1.0 0.39 U NA 0.40 0.31 0.24 NA 1.3 1.1 0.61 NA 0.74 0.88 0.38 5.9 2.2 2.0 1.2 0.6 0.56 0.50 0.55 0.5 0.20 0.37 0.47 2.6 0.89 0.96 0.59 4.1 3.0 2.6 3.1 2.8 2.9 3.4 0.61 7.6 1.5 1.5 0.68 25 14 14 4.5 5.4 1.6 1.5 1.6 4.6 6.9 7.4 1.9 3.1 2.3 2.4 0.61	NYSDOH Background B01 B01 B07 B07 Background FF1 FF2 FF1 FF2 75th Percentile 01/27/10 01/27/10 01/28/10 01/28/10 µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ 1.7 0.88 1.0 0.39 U 0.39 U NA 0.40 0.31 0.24 0.18 U NA 0.40 0.31 0.24 0.18 U NA 0.40 0.31 0.24 0.18 U NA 1.3 1.1 0.61 0.47 NA 0.74 0.88 0.38 0.29 5.9 2.2 2.0 1.2 1.0 0.6 0.56 0.50 0.55 0.48 0.5 0.20 U 0.37 0.47 0.23 2.6 0.89 0.96 0.59 0.45 4.1 3.0 2.6 3.1 <t< td=""><td>NYSDOH Background B01 B01 B07 B07 B13 Background FF1 FF2 FF1 FF2 FF1 75th Percentile 01/27/10 01/27/10 01/28/10 01/28/10 01/27/10 µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ 1.7 0.88 1.0 0.39 U 0.79 NA 0.40 0.31 0.24 0.18 U 0.18 U NA 0.74 0.88 0.38 0.29 0.74 5.9 2.2 2.0 1.2 1.0 2.9</td></t<>	NYSDOH Background B01 B01 B07 B07 B13 Background FF1 FF2 FF1 FF2 FF1 75th Percentile 01/27/10 01/27/10 01/28/10 01/28/10 01/27/10 µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ 1.7 0.88 1.0 0.39 U 0.79 NA 0.40 0.31 0.24 0.18 U 0.18 U NA 0.74 0.88 0.38 0.29 0.74 5.9 2.2 2.0 1.2 1.0 2.9	

U Not detect

J Concentrations are detected

Bolded concentrations exceed the NYSDOH Background 75th percentile.

Table 9 VOCs Comparison to 75th Percentile NYSDOH Background - Outdoor Air Samples 2010

Building	NYSDOH	B01	B07
Sample	Background	OA	OA
Sample Date	75th Percentile	01/27/2010	01/28/2010
Parameter	µg/m³	µg/m³	µg/m³
1,3-Butadiene	NA	0.18	0.27
2,2,4-Trimethylpentane	NA	0.44	0.70
4-Ethyltoluene	NA	0.29	0.29
Benzene	2.2	0.99	1.3
Carbon tetrachloride	0.6	0.39	0.54
Chloroform	<0.25	0.48	0.20 U
Cyclohexane	0.4	0.48	0.34
Dichlorodifluoromethane	4.2	3.0	3.0
Ethylbenzene	0.5	0.52	0.74
n-Heptane	1.9	0.53	0.57
n-Hexane	1	0.92	1.1
Tetrachloroethene (PCE)	0.3	0.66	0.63
Toluene	2.4	3.7	5.3
Trichloroethene (TCE)	<0.25	0.24	0.21 U
Trichlorofluoromethane	2.2	1.5	1.5
Xylene (m,p)	0.5	1.4	2.3
Xylene (o)	0.6	0.43	0.69
Xylenes, Total	NA	1.9	3.0

U Not detect

J Concentrations are detected

Bolded concentrations exceed the NYSDOH Background 75th percentile.

 Table 10

 Comparison of Indoor Air Levels to the NYSDOH Decision Matricies

Units: ug/m3			Те	tracł	nloroethen	e (PCE)	Trichloroethene (TCE)				pethene (TCE)		
Structure	Indoor	Q	Sub-	Q	Outdoor	Q Matrix 2	Indoor	Q	Sub-	Q	Outdoor	Q Matrix 1	
	Air		Slab		Air		Air		Slab		Air		
1	0.81		1.5	J	0.66	1. No further action	0.21	U	0.86	U	0.24	1. No further action	
	0.95		31	J	0.66	1. No further action	0.21	U	0.86	U	0.24	1. No further action	
7	0.75		9.3		0.63	1. No further action	0.28		2.1	U	0.21	U 2. Take reasonable and practical	
	0.68		43		0.63	1. No further action	0.33		3.4		0.21	U actions to identify source(s) and	
												reduce exposures	
13	1.9		66			1. No further action	0.21	U	17			1. No further action	
	1.2		1.5			1. No further action	0.21	U	0.86	U		1. No further action	

Notes:

1. Soil/Vapor Matrix as shown in NYSDOH (2006); recommended action and numbering taken from corresponding matrix.

U = Not detected

J = Concentrations are estimated

NA = Data are not available to compare to the matrix thresholds

100 Red Schoolhouse Road, Suite B-1 Chestnut Ridge , NY 10977-6715

ENVIRONMENTAL CONSULTING ENGINEERS

	PROJECT: REMEDIAL DESIGN/	SITE LOCATION MAP
AECOM	CONSTRUCTION OVERSIGHT	Project No: 60134954
	Utility Manufacturing/Wonder King, OU2 700 – 712 Main Street, Westbury, New York	Figure No: 1

Utility Manufacturing/Wonder King 700 – 712 Main Street Westbury, New York 0 20 40 80 Feet

Legend

Monitoring Wells

Installed by ERM

No Monitoring Well Found

Monitoring Well Locations

Project No: 60134954

Figure No: 2

Utility Manufacturing/Wonder King 700 – 712 Main Street Westbury, New York 0 15 30 60

Legend

Monitoring Wells

Installed March 2010

Installed by ERM

Groundwater elevations are in NAVD88.

Groundwater Elevations Shallow Wells - May 2010

Project No: 60134954

Figure No: 3

Utility Manufacturing/Wonder King 700 – 712 Main Street Westbury, New York 0 15 30 60

Legend

Monitoring Wells

Installed March 2010

Installed by ERM

Groundwater elevations are in NAVD88.

Groundwater Elevations Deep Wells - May 2010

Project No: 60134954

Figure No: 4

Utility Manufacturing/Wonder King 700 – 712 Main Street Westbury, New York 0 30 60 120

Legend

Site Indoor Air Sample Structures

Indoor Air Sampling Locations

Project No: 60134954

Figure No: 5
Upt. WV138 WV139 WV1310 11.1-Trichloroethane ND 1.2 11.1-Dichloroethane ND 1.2 12.Dichloroethane ND 1.2 11.1-Tichloroethane ND 1.2 12.Dichloroethane ND 1.2 12.Dichloroethane ND 1.2 11.1-Tichloroethane ND 1.2 11.1-Tichloroethane ND 1.2 11.1-Tichloroethane ND 2.2 11.1-Tichloroethane ND 2.7 11.1-Tichloroethane ND 7.8 <t< th=""><th></th><th>1000</th><th></th><th>ug/L 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene</th><th>MW1S ND ND ND ND 18</th><th>MW1D 15 3.5 4.3 30 4 4</th><th></th><th>Bond Street</th><th></th><th></th></t<>		1000		ug/L 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene	MW1S ND ND ND ND 18	MW1D 15 3.5 4.3 30 4 4		Bond Street		
11.2 Trichtorderhane ND 1.2 11.2 Trichtorderhane ND 1.2 11.3 Trichtorderhane ND 1.2 12.3 Dichtorderhane ND 1.2 11.3 Trichtorderhane ND 1.2 11.3 Trichtorderhane ND 1.2 11.3 Dichtorderhane ND 1.2 11.3 Dichtorderhane ND 1.2 11.3 Dichtorderhane ND 1.2 11.3 Trichtorderhane ND 1.2 11.3 Trichtorderhane ND 1.2 11.3 Trichtorderhane ND 1.2 11.3 Dichtorderhane ND 1.2 11.3 Dichtorderhane ND 1.2 1	ug/L		D	cis-1 2-Dichloroethene	18	4.4	Long Harth	ua/L	MW11S MW11	
11-10-chloroethane ND 12 11-10-chloroethane ND 72 11-10-chloroethane ND 72 11-10-chloroethane ND 72 11-10-chloroethane ND 73 12-Dichloroethane ND 63 12-Dichloroethane ND 12-Dichloroethane 12-Dichloroethane 12-Dichloroethane ND 12-Dichloroethane 12-Dichloroethane ND 12-Dichloroethane 12-Dichloroethane ND 11-Dichloroethane ND 22 11-Dichloroethane ND 22 11-Dichloroethane ND 17 12-Dichloroethane ND 17 12-Dichloroethane ND 17 12-Dichloroethane ND 17 12-Dichloroethane	1,1,1-I richloroethane	ND 4.2		Tetrachloroethene	8.9	18		1,1,1-Trichloroethane	ND 1.8	
In-Dickloredhene ND 12 In-Dickloredhene, Total ND 12 In-Dickloredhene ND 12	1,1,2-Thchlorothluoroethane	ND 1.2	7 1	Trichloroethene	3.1	74	-	1,1-Dichloroethane	ND 2.5	
11-2-Dichloroethene ND 0.50J 12-2-Dichloroethene ND 12-2-Dichloroethene ND 12-2-Dichloroethene 13-2-Dichloroethene ND 3-2-Dichloroethene ND 12-2-Dichloroethene ND 12-2-Dichloroethene 13-2-Dichloroethene ND 3-2-Dichloroethene ND 12-2-Dichloroethene ND 12-2-Dichloroethene 12-2-Dichloroethene ND 3-2-Dichloroethene ND 12-Dichloroethene ND 12-Dichloroethene 12-2-Dichloroethene ND 3-2-Dichloroethene ND 12-Dichloroethene ND 12-Dichloroethene 12-2-Dichloroethene 17 200 NW12D NW12D NW12D NW12D 11-1-Tichloroethane ND 2-2-4 1-1-Dichloroethene ND 12-2-4 12-Dichloroethene 10 7-1 15 18-Dichloroethene 10 7-1 12-Dichloroethene 10 7-1 15 18-Dichloroethene 10 7-1 12-Dichloroethene 10 7-1 10 10 10 10 10 12-Dichloroethene 10	1,1-Dichloroethene	ND 1.2		menorocarene	0.1	N D D V	AND I DOWN	1,1-Dichloroethene	ND 4	
12-Dichloroethene Total 0.74J 17 12-Dichloroethene ND 17 tist-12-Dichloroethene ND 12 tetrachloroethene 12 9.4 Trichloroethene 17 200 WW12D WW12S WW12S tetrachloroethene 12.9 9.4 Trichloroethene 17.7 200 WW13D UW13D UW13S UW14D 1,1-Trichloroethane ND 2.4 1,1-Dichloroethene 18.2 1.1 1.1-Dichloroethane ND 2.4 1,1-Dichloroethene 18.1 18.1 18.1 18.1 18.1 18.1 18.1 19.1 17.1 17.1 10.1 17.1	1.2-Dichloroethane	ND 0.58		MVV-1	SMW-1D	ID M	W-11D MW-11S	1,2-Dichloroethene, Tot	al ND 1.2J	
List-1.2Dichloredhene ND 1.2 Tickheyne Chloride ND 3.2.j Tickhoredhene 1.7 200 WW12b UMW12b Tichloredhene 0.57.7 Tickhoredhene 1.7 200 WW12b UMW12b UMW12b Tichloredhene UMW12b UMW12b WU12b Tichloredhene 0.57.7 UMW12b UMW12b WU12b Tichloredhene 0.57.7 UUL ULL Tichloredhene ND 2.2 ULL-Dichloredhene ND 1.8 1.2 1.1 1.2 1.1 ULL-Dichloredhene 1.5 1.8 1.8 1.2 1.1 1.2 1.4 1.4 1.4 Tichloredhene 2.5 2.5 1.5 1.4 1.4 1.4 1.4 UMU <td< td=""><td>1.2-Dichloroethene Total</td><td>0.741 17</td><td></td><td></td><td>₽</td><td></td><td></td><td>Acetone</td><td>5J 4.8J</td><td></td></td<>	1.2-Dichloroethene Total	0.741 17			₽			Acetone	5J 4.8J	
Bit Pictore ND 3.2.1 Tetrachloroethene 1.2 9.4 Tichloroethene 1.7 200 MV/13D MV/13S 1.1.1.Tichloroethane ND 2.8 1.1.2.Tichloroethene ND 2.4 1.1.Dichloroethane ND 2.4 1.1.Dichloroethene 10 1.1. 1.1.Dichloroethane ND 2.4 1.1.Dichloroethene 1.0 1.1. 1.1.Dichloroethene ND 1.4 1.1.Dichloroethene ND 1.8 1.2.2. 1.1.Dichloroethene ND 1.4 1.1.Dichloroethene ND 1.5 1.8 1.3.2. 1.1.1.Tichloroethene 1.5 1.8 cis.1.2.Dichloroethene 10 7.1.1 Tichloroethene 1.5 1.8 1.3.2. 1.1.1.Tichloroethene 2.5 <td>cis_1 2-Dichloroethene</td> <td>ND 17</td> <td>1</td> <td>U AD</td> <td> 1</td> <td>2 2</td> <td>Y</td> <td>cis-1,2-Dichloroethene</td> <td>ND 1.2</td> <td></td>	cis_1 2-Dichloroethene	ND 17	1	U AD	1	2 2	Y	cis-1,2-Dichloroethene	ND 1.2	
Inchloroethene 1.2 9.4 Tichloroethene 1.7 200 WW13D WW13S I.1.2.Tichloroethene ND 1.1.2.Dichloroethene ND 1.1.2.Dichloroethene ND 1.1.2.Dichloroethene ND 1.1.2.Dichloroethene ND 1.1.2.Dichloroethene ND 1.2.2.Dichloroethene ND 1.2.2.Dichloroethene 15 1.3.2.Dichloroethene 10 Tichloroethene 10 Tichloroethene 10 1.1.Dichloroethene 10 Tichloroethene 10	Methylene Chloride	ND 321	The state of the s	MW-12D MW-12S	0.0	0		Tetrachloroethene	8.7 8.1	The second second
Tichloroethere 1.7 20 WV/135 WV/135 OTH COUNTRY OTH COUNTRY U2. Thichloroethane ND 2.2 1.1-Dichloroethane ND 2.4 1.1-Dichloroethane ND 2.4 1.2-Dichloroethane 15 1.8 Tetrachloroethene 15 1.8 Tetrachloroethene 2.5 25	Tetrachloroethene	12 94	69		DE:	and the second s		Trichloroethene	0.57J 3	
	Trichloroethene	1.7 200 5 010	country	ug/L M 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene, Total cis-1,2-Dichloroethene Tetrachloroethene Trichloroethene	W12S MV ND 8 ND 2 ND 7 15 1 15 7 2.5 7	V12D 3.8 2.2 2.4 17 .8J 1.8 7.1 25				

AECOM

Utility Manufacturing/Wonder King 700 – 712 Main Street Westbury, New York Δ \bigcirc 80 ⊐ Feet 0 20 40

Legend

Monitoring Wells

 \oplus

Installed March 2010 \oplus

Installed by ERM

Concentrations exceeding the NYS Class GA criteria are in red.

The NYS Class GA criterion for 1,2-dichloroethane is 0.6 ug/L.

The NYS Class GA criteria for all other parameters shown are 5 ug/L.

Groundwater Sampling Results - May 2010

Project No: 60134954

Figure No: 6

October 1, 2010

Cliny Manufauluring Wonder King Son FE2	B07 Sam 1.1, 1.3, 1.3, 2.2, 4-E Ben Car Car Car Chr Chr Cyc Dici	T (ug/m3) Indoor Air Sub-Slab Outdoor mple FF1 FF2 SS1 SS2 OA ,1-Trichloroethane 0.2 U 7 2 U 0.2 U g.5-Trimethylbenzene 0.4 U 0.4 U 5 5 0.4 U g.4-Trimethylbenzene 0.6 0.5 2 U 2 U 0.3 g.4-Trimethylbenzene 0.6 0.5 2 U 2 U 0.3 g.4-Trimethylbentane 0.6 0.5 2 U 2 U 0.7 Ethyltoluene 0.4 0.3 4 4 0.3 nzene 1.2 1 1 U 1.3 rbon tetrachloride 0.6 0.5 3 U 3 U 0.5 loroform 0.5 0.2 2 U 0.2 U Clohexane 0.6 0.5 1 U 0.3 <td< th=""><th></th></td<>	
B01 ug/m3 Indoor Air Sample FF1 1,1.1-Trichloroethane 0.2 1,3.5-Trimethylbenzene 0.9 1.3-Butadiene 0.4 0.2,2.4-Trimethylpentane 1.3 1.4-Ehyltoluene 0.7 0.9 Benzene 2.2 2 Carbon tetrachloride 0.6 0.5 Choroform 0.2 0.9 Dichlorodifluoromethane 3 2.6 Ehylbenzene 2.9 3.4	Sub-Slab Outdoor Sub-Slab Outdoor SS1 (dup) 9 U 1 J 2 J 4 0.8 9 J 7 1.4 9 J 9 J.3 3 3.3 3 3.3	lybenzene 0.6 0.7 2 U 2 U 0.7 1 U 2 U 0.7 1 1 1 1 0.8 2 U 2 U 0.6 0.6 0.8 2 U 2 U 0.6 0.6 0.8 2 U 2 U 0.6 1 1 0.8 4 U 4 U 4 U 1.1 1 0.8 4 U 4 U 1.1 1 1 0.8 4 U 4 U 1.1 1 <th1< th=""> <th1< th="" th<=""><th></th></th1<></th1<>	
n-Heptane 1.5 1.5 1 n-Hexane 2.3 2 1 Tetrachloroethene (PCE) 0.8 0.95 1 Toluene 14 14 14 Trichlorofluoromethane 1.6 1.5 1 Xylene (n,p) 6.9 7.4 6 Xylene (o) 2.3 2.4 2 Xylenes, Total 9.6 9.6 8	4 1.2 0.5 7 1.4 U 0.9 5 J 31 J 0.7 2 11 3.7 5 5 5 7.8 1.4 0.9 6 5 7.8 1.4 0.9 6 3 3.5 0.4 7 11 1.9 Thy interval Carbon tetrach Cyclohexane Dichlorodifluor Ethylbenzene Dichlorodifluor Hylenzene Methylenzene Methylenzene Nethylenzene Trichlorodifluor 1.1 1.9 Tetrachloroeth Tolene Trichlorofluoro Xylene (m,p) Xylene (m,p) Xylene (o) Xylene (m,p)	a 0.2 U 0.2 1.4 0.9 U ylpentane 1.7 2.3 0.8 U 2.2 a 0.7 1.2 1.8 7.9 2.9 3.5 1.8 3.5 chloride 0.6 0.5 1.1 1 U 0.2 U 0.2 U 1.2 0.8 U 1 1.5 1.1 1 U 0.2 0.2 U 0.2 0.8 U 1 1.5 1.1 1.6 0.6 0.5 1.1 1 U 0.2 U 0.2 U 1.2 0.8 U 0.8 U 1 1.5 1.1 1.6 0.5 0.5 0.7 0.7 0.5 0.6 0.5 0.7 0.7 0.4 0.2 <t< td=""><td>treet best Auturo Line</td></t<>	treet best Auturo Line
AECOM Utility Manufacturing/Wonder King 700 – 712 Main Street Westbury, New York	Xylenes, Total Legend IndoorAirSamples Site Indoor Air Sample Structures		Indoor Air Sampling Results - January 2010 Project No: 60134954 Figure No: 7 October 1, 2010

APPENDIX A

Field Forms

A				BORING LOG	Boring No.:	MW-11S
PROJEC	T:	Utility Mfg	Wonder King		PAGE 1 OF 1	
PROJEC	I NO.:	601	34954	CONTRACTOR: EAR/Clearwater Drillers, Inc.	DATE: 3/9/2010	
LOCATIC		Westbury,		DRILLERS NAME: Rob, Mike, Bruce, Dennis	REP.: Jim Christophe	er (YEC)
DATE						
DATE	1050					
3/11/10		40 ES: wasto	characterizat	CE ELEVATION. GS DEFIN OF BOR	CEHOLE. 95.0	
LADOINA	Sample		PID			
Denth	Number	Rec	Readings	SAMPLE DESCRIPTION REMARKS	AND STRATUM CHANGES	
(ft)	& Time	(foot)	(nnm)			
(11)	ANA/ 11C	(ieet)	(ppm)	Acabalt		
-	10100-115		0.0	Aspitali		
1 –	Boring		0.0			
-	Composite					
	1118					
20						
20 -		1	0.0	Orange-Brown gravelly coarse sand. clasts	s round	
-				to sub-round ~14mm slightly damp		
-	_					
40 -				_		
-	_			X		
_						
60 -						
00			0.0	Yellow-Brown coarse sand, saturated		
80 -			0.0	Yellow-Brown fine to medium sand very w	et	
-	_		0.0	Tellow Brown line to medium sand, very w	et	
-	_					
100 -				End of boring		
400						
120 -						
-						
-	_					
140 —						
-						
	4					
_						
-		1				
•	1					
-		1	1			
·	-1					
-						
1		1				

	-		AA/amal 12		BOFING NO.:	WW-11D
PROJEC	[: [No :	Utility Mfg	/Wonder King 34954	CONTRACTOR: EAR/Clearwater Drillers Inc	PAGE 1 OF 1	
	N:	Westbury.	NY	DRILLERS NAME: Rob. Mike, Bruce, Dennis	REP.: Peter Lawlor (YEC)
	WATER LEVEL	S	DESIGNAT	ION OF DRILL RIG: Hollow Stem Auger		-1
DATE	TIME	DEPTH	SIZE AND	TYPE OF EQUIPMENT: Truck Mounted Rig		
3/16/10	1439	45.6	REFERENC	CE ELEVATION: GS DEPTH OF BOR	EHOLE: 128.0'	
LABORA	FORY ANALYS	ES: waste	characterizat	ion I		
Depth	Sample	Rec	PID	SAMPLE DESCRIPTION REMARKS	AND STRATIM CHANGES	
(ft)	&Time	(feet)	(nnm)			
(19	MW-11D	(1001)	(PPIII)	Asphalt		
-	Boring		0.0	Tan coarse sand moist		
1 —	Composite		0.0			
-	1415					
-	1					
20 —						
-	-					
-						
40 —				_		
-			0.0	Tan coarse sand, saturated		 -
-						
60 —						
-						
80 —						
-						
100						
100 -						
-						
120			0.0	Tan medium to coarse sand, saturated		
120 -			0.0	Gray clay, trace fine sand, saturated, no ode	or	
				End of borehole		
140 —						
1-10						
_						
_						
_						
-						
_						
_	1					
_	1					
	1		1			

				BORING LOG	Boring No.:	MW-12S
PROJEC	T:	Utility Mfg	/Wonder King		PAGE 1 OF 1	
PROJEC	I NO.:	601	34954	CONTRACTOR: EAR/Clearwater Drillers, Inc.	DATE: 3/10/2010	
LUCATIO		westbury,			REP.: JIM Christophe	er (YEC)
DATE						
DATE		DEFIII				
		ES: wasto	characterizat	ion	REHOLE. 95.0	
LADOIN	Sample		PID			
Denth	Number	Rec	Readings	SAMPLE DESCRIPTION REMARKS	AND STRATUM CHANGES	
(ff)	& Time	(foot)	(nnm)			
(11)		(ieet)	(ppiii)	Concrete eidewelk		
	10100-125					
1 -	Boring		0.0	Orange-Brown gravelly coarse sand, clasts	s ~14mm, damp,	
	Composite			some cohesion		
_						
00	7					
20 -			0.0	Yellowing Orange-Brown gravelly coarse s	and clasts ~14mm	
	-		0.0	cohesion damp weakening		
-				concolori, darnp, weakening		
	-					
40 -	-					
			0.0	Yellow-Brown gravelly coarse sand, clasts	≦~5mm, moist,	
_				very little cohesion		
			0.1	Yellow-Brown medium sand, no clasts, mo	ist	
60 -						
	-					
-			0.1	Vellow-Brown medium sand no clasts we	ŧ	
	-		0.1	Tellow-Drown mediam sand, no clasts, we	t	
80 -						
	_					
_						
	_			L		
100				End of boring		
100 -						
	7					
	-					
120 -						
	-					
-						
	_					
140 -						
_						
	7					
	-					
-	+	+	+			
_			-			
	4					
_	1					
		1				

A		M		BORING LOG	Boring No.:	MW-12D
PROJEC	T:	Utility Mfg	Wonder King		PAGE 1 OF 1	
PROJEC		601	34954	CONTRACTOR: EAR/Clearwater Drillers, Inc.	DATE: 3/5/2010	
LUCATI	JN. WATER LEVEL	s s		ION OF DRILL RIG: Hollow Stem Auger	REF. Pelei Lawioi (
DATE		DEPTH	SIZE AND	TYPE OF FOUIPMENT: Truck Mounted Rig		
3/5/10		58	REFERENC	CE ELEVATION: GS DEPTH OF BOR	EHOLE: 126.0'	
LABORA	TORY ANALYS	ES: waste	characterizat	on		
	Sample		PID			
Depth	Number	Rec.	Readings	SAMPLE DESCRIPTION, REMARKS,	AND STRATUM CHANGES	
(ft)	&Time	(feet)	(ppm)			
	MW-12D			Concrete sidewalk		
	Boring		0.0			
1 -	Composite			Tan coarse sand, moist		
	1045					
-	1010					
	-					
20 -	-		0.0	Tan aparan and trans grouple (20mm) me	viet	
	-		0.0	ran coarse sand, trace gravels (-20mm) mo	ภรเ	
	_					
40 -						
_						
				Tan coarse sand, moist		
<u> </u>			0.0			
60 -						
	-					
-				Tan coarse sand, saturated		
	-		0.0			
80 -			0.0			
	-					
	-					
100 -						
	-					
_						
	_					
120 -				Tan clayey medium to coarse sand, saturate	ed	
120						
_				End of borehole		
1 1 0						
140 -						
	-					
-						
	-					
-	1					
	-1					
-						
-	+					
	4					
_	4					
		1				

A		VI		BORING LOG	Boring No.:	MW-13S
PROJEC	T:	Utility Mfg	/Wonder King		PAGE 1 OF 1	
PROJEC	I No.:	601	34954	CONTRACTOR: EAR/Clearwater Drillers, Inc.	DATE: 3/11/2010	
LOCATIO	N:	Westbury,	NY	DRILLERS NAME: Rob, Mike, Bruce, Dennis	REP.: Jim Christophe	er (YEC)
	WATER LEVEL	.S	DESIGNAT	ION OF DRILL RIG: Hollow Stem Auger		
DATE	TIME	DEPTH	SIZE AND	YPE OF EQUIPMENT: Truck Mounted Rig		
3/16/10	0851	41.48	REFERENC	CE ELEVATION: GS DEPTH OF BOR	REHOLE: 96.0'	
LABORA	IORY ANALYS	ES: waste	characterizat	on		
	Sample	_	PID			
Depth	Number	Rec.	Readings	SAMPLE DESCRIPTION, REMARKS,	, AND STRATUM CHANGES	
(ft)	&Time	(feet)	(ppm)			
	MW-13S			Asphalt		
	Boring		0.0	Brown gravelly coarse sand, clasts ~12.5m	im, moist	
1 -	Composite					
-	0029					
-	0350		0.0	Orange Dreyve greyelly secres and close	10 Emm maint	
-	-		0.0	Orange-Brown gravelly coarse sand, clasts	5~12.5mm, moist	
20 —						
			0.0	Yellow-Brown gravelly coarse sand, clasts	~12.5mm, moist,	
40				some cohesion		
40 -				X		
-	-		0.1	Vellow-Brown gravelly coarse sand fewer	claste claste	
-			0.1	Emm maist some schosion		
-	-					
60 —						
	_		0.0	Light Yellow-Brown medium sand, no clast	s, wet, some cohesion	
			0.0	Light Yellow-Brown medium sand, no clasts	s, very wet, some cohes	ion
00						
00 -						
-	1		0.0	I ight Yellow-Brown mottled clavey fine to n	nedium sand, clav	
				medium grey no clasts wet moderate coh	lesion	
-	-					
100 —						
-	-					
_						
120						
120 -						
-						
-						
140 —			1			
-	-					
	-		-			
-	_					
_						
	1					
-	1					
	1					
-	1					
-	4					
	1	1	1			

A	=CO	M		BORING LOG	Boring No.: MW-13
PROJEC	T:	Utility Mfg/	Wonder King		PAGE 1 OF 1
PROJEC	T No.:	601	34954	CONTRACTOR: EAR/Clearwater Drillers, Inc.	DATE: 3/12/2010
LOCATIO	DN:	Westbury,	NY	DRILLERS NAME: Rob, Mike, Bruce, Dennis	REP.: Jim Christopher (YEC)
DATE	WATER LEVEL	S	DESIGNAT	ION OF DRILL RIG: Hollow Stem Auger	
DATE	TIME	DEPTH	SIZE AND		
			REFERENC	CE ELEVATION: GS DEPTH OF BOR	REHOLE: 126.0
LABORA	TORY ANALYS	ES: waste o	characterizati	on	
D (1	Sample	_	PID		
Depth	Number	Rec.	Readings	SAMPLE DESCRIPTION, REMARKS,	, AND STRATUM CHANGES
(ft)	& l ime	(feet)	(ppm)		
	MW-13D			Asphalt	
1	Boring				
1 -	Composite				
			0.0	Light Orange-Brown gravelly coarse sand	
-			0.0	elaste ~15mm largest ~40mm little eshesi	on moist
	-				on, moist
20 -	-				
	_				
_					
			0.0	Yellow-Brown gravelly coarse sand, clasts≤	20mm, moist
40					
40 -					
	-		0.0	Yellow-Brown gravelly coarse sand fewer	clasts_clasts≤10mm_moist
-			0.0		
	-		0.0	Vollow Brown modium cand, no claste, moi	ict
60 -			0.0		ISI
	_				
_					
			0.0	Light Yellow-Brown medium sand, no clast	s, wet
80			0.0	Light Yellow-Brown clayey fine to medium	sand, no clasts, wet
00					
_					
	-				
100 -					
	-				
-					
	_				
120 -					
-					
_				End of boring	
140					
140 -					
	-				
-					
	-1				
-	+				
-	-	<u> </u>			
	-				
-		<u> </u>			
	-				
-	-1				

Well No. MW-11S

AECOM Project No.: 60134954 Date of Completion: 3/9/2010 Driller: CDI
Driller: CDI Well Permit No.: N/A AECOM Rep.: Jim Christopher Locking protective flushmount with concrete pad Ground Surface 0.0 ft Well casing 0.5 ft bgs Borehole diameter 4 inches Cement-bentonite grout from 77.3 ft to 1.0 ft
Well Permit No.: N/A AECOM Rep.: Jim Christopher Locking protective flushmount with concrete pad Ground Surface 0.0 ft Well casing 0.5 ft bgs Borehole diameter 4 inches Cement-bentonite grout from 77.3 ft to 1.0 ft Diser Pino from 95.0 ft to 0.5 ft
AECOM Rep.: Jim Christopher Locking protective flushmount with concrete pad Ground Surface 0.0 ft Well casing 0.5 ft bgs Borehole diameter 4 inches Cement-bentonite grout from 77.3 ft to 1.0 ft Riser Pino from 95.0 ft to 0.5 ft
Ground Surface 0.0 ft Well casing 0.5 ft bgs Borehole diameter 4 Inches grout from 77.3 ft to 1.0 ft
Ground Surface <u>0.0</u> ft Well casing <u>0.5</u> ft bgs Borehole diameter <u>4</u> inches Cement-bentonite grout from <u>77.3</u> ft to <u>1.0</u> ft Biger Pipe from <u>95.0</u> ft to <u>0.5</u> ft
Well casing 0.5 ft bgs Borehole diameter 4 inches Cement-bentonite grout from 77.3 ft to 1.0 ft
Borehole diameter <u>4</u> inches Cement-bentonite grout from <u>77.3</u> ft to <u>1.0</u> ft Biger Pipe from <u>85.0</u> ft to <u>0.5</u> ft
Cement-bentonite grout from 77.3 ft to 1.0 ft
grout from 77.3 ft to 1.0 ft
Riger Dipo from 95.0 ft to 0.5 ft
Slurry <u>78.3</u> ft to <u>77.3</u> ft
Sand Choker (Size 00) 80.5 ft to 78.3 ft
Filter pack from 95.0 ft to 80.5 ft
Water V Sand Size 0
45.63 ft bas
Well screen from <u>95.0</u> ft to <u>85.0</u> ft
Diameter 2 inches
Slot size <u>10</u> inches
Type PVC Sch 40
Bottom Cap at <u>95.0</u> ft
Bottom of Borehole at <u>95.0</u> ft
Note: All measurements based on ground surface at 0.0 feet. (+) above grade. (-) below grade.
(NOT TO SCALE)

AECOM

ALCOM			Well No. Deep	11D
Project: Utility Mfg/Wonder King	Location: Westbury, NY		Page 1 of 1	
AECOM Project No.: 60134954	Date of Completion: 3/16	/10		
Driller: Clearwater				
Well Permit No.: N/A				
AECOM Rep.: Peter Lawler				
	Locking protective flushmount w	ith concrete pad		
	Ground Surface	0.0 ft		
	Well casing	0.5 ft bgs		
	Borehole diameter	6 inches		
	Cement-bentonite	108.4 ft to	1.0.ft	
	grout nonn	100.1		
	Riser Pipe from	114.0 ft to	<u>0.5</u> ft	
	Slurry	109.4 ft to	108.4	
			400.4.#	
	Filter pack from	125.0 ft to	117.7 ft	
	·			
Water Variation Variatio Variatio Variatio Variatio Variatio Variatio Variatio Variat	Sand Size	0		
45.6 ft bgs				
	Well screen from	124.0 ft to	<u>114.0</u> ft	
	Diameter	2 inches		
	Slot size	10 inches		
	Type F	PVC Sch 80		
	Bottom Cap at	124.0 ft		
	Bottom of Borehole at	128.0 ft		
Note: All measurement	s based on ground surface at 0.0 feet.	(+) above grade. (-)	below grade.	
	(NOT TO SCALE)			

Well No. MW-12S

Project: Utility Mfg/Wonder King	Location: Westbury, N	(Page 1 of 1			
AECOM Project No.: 60134954	Date of Completion: 3/	Date of Completion: 3/11/2010				
Driller: CDI	·					
Well Permit No.: 66198						
AECOM Rep.: James Christopher						
	Locking protective flushmount	t with concrete pad				
	Ground Surface	0.0 ft				
	Well casing	0.5 ft bgs				
	Borehole diameter	4 inches				
	Cement-bentonite					
	grout from _	75.0 ft to	<u>1.0</u> ft			
· · · · · · · · · · · · · · · · · · ·	Riser Pipe from	85.0 ft to	<u>0.5</u> ft			
	Slurry	76.0 ft to	75.0			
	Sand Choker (Size 00)	78.0 ft to	76.0 ft			
	Filter pack from	95.0 ft to	78.0 ft			
Water Lovel	Sand Size	0				
41.98 ft bgs						
	Well screen from	95.0 ft to	85.0 ft			
	Diameter	2 inches				
	Slot size	10 inches				
	Туре	PVC Sch 40				
	Bottom Cap at	95.0 ft				
	Bottom of Borehole at	95.0 ft				
Note: All meas	surements based on ground surface at 0.0 fea	et. (+) above grade. (-) b	elow grade.			
	(

			Well No. Deep	12D
Project: Utility Mfg/Wonder King	Location: Westbury, NY		Page 1 of 1	
AECOM Project No.: 60134954	Date of Completion: 3/15	5/10		
Driller: Clearwater				
Well Permit No.: 66199				
AECOM Rep.: Peter Lawler				
	Locking protective flushmount w	vith concrete pad		
	Ground Surface	0.0 ft		
	Well casing	0.5 ft bas		
		<u> </u>		
	Borehole diameter	6 inches		
	Cement-bentonite			
	grout from	<u>110.0</u> ft to	<u> </u>	
	Riser Pipe from	115.0 ft to	0.5 ft	
	—			
		444.0 # +-	440.0	
	Siurry	<u>111.0</u> ft to	110.0	
I I I I I I I I I I I I I I I I I I I	Sand Choker (Size 00)	113.0 ft to	111.0 ft	
┃	Filter pack from	125.0 ft to	113.0 ft	
Water	Sand Siza	0		
	Sand Size	0		
43.6 ft bgs				
	Well screen from	125.0 ft to	115.0 ft	
	Diameter	2 inches		
	Slot size	10 inches		
	Type F	PVC Sch 80		
	Bottom Cap at	125.0 ft		
	Bottom of Borehole at	126.0 ft		
Note: All measuremen	ts based on ground surface at 0.0 feet.	(+) above grade. (-)	below grade.	
	(NOT TO SCALE)			

Well No. MW-13S

Project: Utility Mfg/Wonder King	Location: Westbury, NY	,	Page 1 of 1	
AECOM Project No.: 60134954	Date of Completion: 3/1	1/2010		
Driller: CDI	i			
Well Permit No.: 66198				
AECOM Rep.: James Christopher				
	Locking protective flushmount	with concrete pad		
	Ground Surface	0.0 ft		
		0.5.45		
	Well casing	0.5 ft bgs		
│	Borehole diameter	4 inches		
	Cement-bentonite			
	grout from	75.0 ft to	<u>1.0</u> ft	
	Riser Pipe from	86.0 ft to	0.5 ft	
	Slurry	76.0 ft to	75.0	
	Sand Choker (Size 00)	78.0 ft to	76.0 ft	
	Filter pack from	96.0 ft to	78.0 ft	
Water	Sand Size	0		
	-			
41.98 ft bgs	Well screen from	96.0 ft to	86.0 ft	
	-			
	Diameter _	2 inches		
		PVC Sch 40		
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	Bottom Cap at	96.0 ft		
	Bottom of Borehole at	96.0 ft		
Note: All measuremen	ts based on ground surface at 0.0 fee	et. (+) above grade. (-) b	elow grade.	
	(NOT TO SCALE)			

Well No. MW-13D

Project: Utility Mfg/Wonder King	Location: Westbury, NY	,	Page 1 of 1	
AECOM Project No.: 60134954	Date of Completion: 3/1	2/2010		
Driller: CDI				
Well Permit No.: 66198				
AECOM Rep.: James Christopher				
	Locking protective flushmount	with concrete pad		
	Ground Surface	0.0 ft		
	Well casing	0.5 ft bgs		
	° <u>–</u>	0		
┃	Borehole diameter	4 inches		
	Cement-bentonite			
	grout from	109.5 ft to	1.0 ft	
	Riser Pipe from	116.0 ft to	0.5 ft	
	Slurry	110.5 ft to	109.5	
I I I I I I I I I I I I I I I I I I I	Sand Choker (Size 00)	112.5 ft to	110.5 ft	
	Filter pack from	126.0 ft to	112.5 ft	
Water Z	Sand Size	0		
42.06 ft bgs				
	Well screen from	126.0 ft to	116.0 ft	
	Diameter	2 inches		
	Slot size	10 inches		
	Туре	PVC Sch 80		
	Bottom Cap at	126.0 ft		
	Bottom of Borehole at	126.0 ft		
Note: All measurements ba	used on ground surface at 0.0 fee	et. (+) above grade. (-) b	elow grade.	
	(NOT TO SCALE)			

AECOM

WELL NO. 11S

										QUEET	OUFFTO
WELL	DEVEL	OPMENT	FORM		Utility N	Mfg/ Wo	onder Kir	ıg	60134954	SHEET 1	OF 1
1. LOCATI					4. DATE W	ELL START				5. DATE WELL COM	PLETED
Westbu	ry, NY				Ap	$r_{11} 13, 20$	010			April 13, 20	10
2. ULIENI NVSDE	iC.				0. NAME O	r INSPECT	UK				
3. DRILLIN		Y				lwici					
E.A.R./	Clearwat	er Drilling.	Inc.								
	Depth			FIE	LD MEA	SUREME	NTS				
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	DO	рΗ	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)		(mV)	(ntu)			
1036	42.92								Static		
10:40	42.96								Static, with	pump	
10:44	43.15	8603	15.4	0.176	5.99	5.87	-	51	Begin pump	ing, yellow tint	
10:49	43.15	7471	15.7	0.198	6.63	5.66	-	253	cloudy		
10:56	43.15	9158	15.8	0.192	7.1	5.63	-	11	clear		
11:01	43.16	9233	15.7	0.192	6.62	5.54	-	3	clear		
11:03									pump off		
									r r		
									pump set at	~60-65' bgs	
									total volume	nurged: 45 gal	ons
									total volume	puiged. 10 gui	ions.
									ł		
							-				
							ļ				
									-		
			ļ						ļ		
			ļ						ļ		
			ļ								
									ļ		
Pump T	ype:	S.S. Mons	oon (Pur	np 01)							
Analytic	cal Paran	neters:	Not Rec	luired							

					PROJECT				PROJECT No.	SHEET SHEET!
WELL	DEVELC	OPMENT	FORM		Utility I	Mfg/ Wo	nder Kin [,]	g	60134954	1 of 1
. LOCATIC)N				4. DATE W	ELL STARTE	<u>-</u> D	2		5. DATE WELL COMPLETED
Westbur	y, NY				Ar	pril 13, 20	010			April 13, 2010
	C				6. NAME U	FINSPECIO	R			
NI JUL	G COMPANY				FEILI Lu	IWICI				
E. <u>A.R./</u>	Clearwate	er <u>Drilling,</u>	Inc.							
	Depth			FI	ELD MEA	SUREME	NTS			
	to	Purge		1 2		T			4	
Time	Water	Rate	Temp.	Conduct.		рн	0KP (m\/)	Turbiality		REMARKS
10.38	/3 33	(111/1111)	(0)	(IIIS/CIII)	(ing, _,	├ ──┤	(1117)	(inc)	Static	
10.50	45.55	<u> </u>	'	 	 '	├ ──┤			Static with	numn
10.52	17 39	7327	14.6	0.833	1 16	12 59		232	Regin numr	punp ving brown
10.52	*	3773	15.0	0.855	3 41	12.57		199	numn at 66.	5 has brown
11.06	*	2723	16.0	0.641	2.39	12.05		902	oray	J 0g3, 010 wn
11:11	*	2416	15.8	0.436	3.31	11.72		707	hrown	
11:16	*	2736	15.9	0.362	3.23	11.08		805	orav	
11:20	69.72	2421	15.9	0.333	3.28	10.54	- I	835	grav	
11:25	69.80	2391	16.0	0.305	3.11	10.04	- 1	825	brown	
11:30	*	2406	16.0	0.290	4.96	9.64	- 1	735	brown	
11:35	*	2280	15.9	0.293	3.58	9.52		663	gray	
11:45	*	2271	16.0	0.272	3.88	9.12		570	gray	
11:50	68.93	2227	15.8	0.266	4.01	8.83		611	brown	
12:00	*	2065	15.7	0.261	4.32	8.61		545	brown	
12:10	69.63	1121	15.9	0.249	4.58	8.42		344	pump dropp	ed to 76.75'bgs, brown
12:20	77.15	3889	15.5	0.249	3.77	8.27		390	brown	
12:33	<u> </u>				<u> </u>				pump off, w	ater dischg. to sewer
12:47	<u> </u>				<u> </u>				pump on	
12:50	69.52	3605	15.1	0.243	3.53	8.14		409	brown	
12:55	72.60	3045	15.2	0.241	3.31	7.96		362	brown	
13:00	75.98	3217	15.5	0.234	3.68	7.89	-	306	gray	
13:05	76.24	3028	15.5	0.226	3.27	7.84	-	336	gray	
13:15	77.55	2950	15.7	0.217	3.20	7.51		626	gray	
13:25	*	2934	15.4	0.211	3.82	7.48		589	brown	
13:30	*	2942	15.5	0.212	3.70	7.39		618	brown	
13:35	*	3012	15.5	0.210	3.90	7.35		673	brown	
13:40	*	2973	15.5	0.209	3.71	7.30		619	brown	
	 '		 '		↓'	┥			pump off	
	 '	 	 '		↓ '	₊		_	_	
	 '	 	 '		↓ '	↓}		_	pump set at	76.75' bgs
	 '	 	 '		↓ '	₊		_	total volume	e purged: 120 gallons
	<u> </u>	1	· · · · · ·	<u> </u>	<u> </u>		L		* = water le	vel below top of pump

Pump Type: S.S. Monsoon (Pump 1102)

Analytical Parameters: Not Required

	00.	•••			PROJECT				PROJECT No.	SHEET SHEETS
WELL	DEVEL	OPMENT	FORM		Utility N	Mfg/ Wo	nder Kir	ng	60134954	1 of 1
1. LOCATI	ON NIX				4. DATE W	ELL START	ED			5. DATE WELL COMPLETED
Westbu:	ry, n y				Ар 6. NAME О	FINSPECT	DIU DR			April 13, 2010
NYSDE	EC				Peter La	wler				
3. DRILLIN	IG COMPAN	Y								
E.A.R./	Clearwa	ter Drilling,	, Inc.						1	
	Depth	Purge		FIE	LD MEA	SUREME	NIS			
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity		REMARKS
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	•	(mV)	(ntu)		
9:03	41.28								Static	
9:05	43.00								Static, with	pump
9:27	41.75	4542	16.0	0.369	6.93	7.51	-	-10	Begin pump	ing, cloudy
9:32	41.67	5594	16.0	0.369	7.04	7.03	-	249	cloudy	
9:37	41.68	6489	15.8	0.364	7.33	6.60	-	-10		
9:42	41.68	6309	15.9	0.360	7.24	6.60	-	-10	clear	
9:47	41.68	6206	15.6	0.356	7.79	6.58	-	-10	clear, recalib	brated U-10
9:55	-	-	15.8	0.442	8.79	4.93	-	1	clear	
9:57	41.69	5332	15.4	0.360	7.14	5.76	-	2	clear	
			ļ							6011
			 						pump set at	~60' bgs
			 						total volume	purged: 55 gallons
			<u> </u>							
				ŕ						
			<u> </u>							
			 	ļ						
										
			ļ							
			ļ							
			┣────							
			├───							
			L	<u> </u>						
Pump T	ype:	S.S. Mons	oon (Pur	np 1102)						
Analyti	cal Parar	neters:	Not Red	quired						

AE	CON	Л								WELL NO. 12D
					PROJECT		1 17'		PROJECT No.	SHEET SHEETS
1. LOCATI		OPMENT	FORM		4. DATE W	VITE/ WO	nder Kin	g	60134954	I OF I
Westbu	ry, NY				Ap	oril 13, 2	010			April 13, 2010
2. CLIENT					6. NAME O	F INSPECTO	DR			
NYSDE 3. DRILLIN		Y			Peter La	wler				
E.A.R./	Clearwat	er Drilling.	Inc.							
	Depth			FI	ELD MEA	SUREME	NTS			
	to	Purge	_							
Time	Water (ft)	Rate (ml/min)	Temp.	(ms/cm)		рн	ORP (m\/)	I urbidity		REMARKS
900	42.03	(111/11111)	(0)	(IIIS/CIII)	(iiig/L)		(1117)	(1110)	Static	
-	-								Static, with	חווש
9:18	45.12	3785	16.0	0.930	2.25	12.47	_	-10	Begin pump	ing. clear
9:27	50.05	3785	15.8	0.719	3.02	12.82	-	-10	clear, recalit	prated U-10
9:30	51.08	3407	15.7	0.605	2.02	12.69	-	951	cloudy	
9:35	51.64	3273	15.4	0.315	3.06	10.68	-	359	cloudy	
9:40	51.72	4130	15.3	0.281	3.50	9.72	-	-10	cloudy	
9:45	51.61	3370	15.1	0.261	4.51	8.99	-	-10	cloudy	
9:53	-	3785	15.3	0.293	3.84	5.49	-	32	clear	
9:57	52.34	-	15.2	0.253	4.01	6.01	-	22	clear	
									pump set at	~70' bgs
									total volume	e purged: 42 gallons
							L			
								1		
								1		
Pump T Analyti	'ype: cal Parar	S.S. Monsoneters:	oon (Pur Not Rec	np 01) Juired						

					PROJECT				PROJECT No.	SHEET SH
VELL	DEVEL	OPMENT	FORM		Utility M	Mfg/ Wo	nder Kir	ıg	60134954	1 of
LOCATIO	NX		_		4. DATE W	ELL STARTE	ED			5. DATE WELL COMPLETED
	ry, in i				Ap 6. NAME C	$\frac{11112, 20}{1100}$				April 13, 2010
NYSDF	EC				Peter La	awler	, K			
. DRILLIN	G COMPAN	Y								
E.A.R./	Clearwat	ter Drilling	, Inc.							
	Depth	'		FIE	ELD MEA	SUREMEN	NTS			
Time	to Water	Purge	Tomp	Conduct		- <u></u>		Turbidity	4	DEMADKe
line	(ft)	Kate (ml/min)	(C)	(ms/cm)	(mg/L)	рп	(mV)	(ntu)		KEMARNS
8.44	39.96	(1110/11-11-)	(0)	(113/011.)	('''9' <i>''''</i>)	├ ── ┦	((inco)	Static	
9.41	40.02	'	 		<u> </u>	├ ──┦	i'	<u> </u>	Static with	numn
9.54	40.12	├ <u></u>	+	<u> </u>	<u>+ </u>	<u>├</u>	<u>├──</u>	<u> </u>	Regin nump	Junp
10:00	40.04	3596	17.6	0.628	8.08	6.14	<u>├──</u>	999	cloudy tan, 1	numn off 1003-1014
10:19	40.12	3785	16.9	0.570	6.96	5.62	<u> </u>	999	light tan. flo	w stopped
13:03	40.10	-	19.7	0.416	7.09	10.08	_ ·	761	cloudy, resu	med purging by hand
13:10	40.08	8736	16.4	0.535	8.29	7.10	/	999	Light tan	<u>inou punging - j</u>
13:15	40.04	18927	16.1	0.519	7.98	6.04	/	999	tan	
13:20	40.04	7941	16.0	0.508	7.57	5.83	-	999	tan	
13:25	40.25	16223	16.0	0.491	7.34	5.69	-	999	tan	
13:33	39.98	16223	16.1	0.481	7.00	5.56	- 1	671	light tan, wa	ter discharged to sewer
14:06	40.05	-	16.4	0.481	6.81	5.55	-	381	cloudy	0
14:11	40.08	-	16.0	0.475	7.36	5.64	-	156	cloudy	
14:16	40.28	-	16.1	0.472	9.99	5.58	-	166	cloudy	
14:21	40.08	-	16.4	0.475	6.92	5.55	-	155	cloudy	
14:26	39.86	-	16.3	0.483	6.70	5.71	- 1	573	cloudy, oran	ige (140 gals)
14:33	40.00	-	17.2	0.474	6.62	5.77	- 1	420	cloudy	
14:38	39.89	-	16.4	0.465	7.16	6.13	- 1	379	cloudy, light	t tan
14:56	39.99	-	21.0	0.484	6.47	5.72	- 1	196	cloudy, (158	gallons purged)
15:01		-	18.2	0.467	6.69	6.16	- 1	299	cloudy	
15:05		-	17.4	0.461	7.21	6.33	- 1	362	cloudy	
15:14	- 1	-	16.5	0.480	7.77	5.90	- 1	90	cloudy	
15:31		<u> </u>	15.9	0.489	7.00	5.64	<u> </u>	826	cloudy (170	gals purged)
14:04	40.05								Static	<u> </u>
14:05	40.15	7941	15.4	0.538	7.46	7.15	<u> </u>	16	pump on; cle	ear
14:10	40.15		15.2	0.550	7.19	6.15	<u> </u>	35	clear, pump	off
							ſ <u> </u>			
									total volume	e purged: 180 gallons
							[<u> </u>			

Analytical Parameters: Not Required

AE	CON	Λ								WELL NO.	13D
					PROJECT				PROJECT No.	SHEET	SHEETS
WELL	DEVEL	OPMENT	FORM		Utility N	Mfg/ Wo	nder King	5	60134954	1	ог 1
1. LOCATIO					4. DATE W	ELL STARTE	ED 010			5. DATE WELL COM	PLETED
2. CLIENT	IY, N I				A 6. NAME O	FINSPECTO	DR			April 15, 20	10
NYSDE	EC				Peter La	wler					
3. DRILLIN	G COMPAN	Υ	_								
E.A.R./	Clearwat	er Drilling,	, Inc.			0110 5145					
	Depth	Burgo		FI	ELD MEA	SUREME	INTS				
Time	Water	Rate	Temp.	Conduct.	DO	рΗ	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	1	(mV)	(ntu)			
8:48	40.30								Static		
9:06	39.48								Static, with	pump	
9:21	43.70	-	15.8	0.266	5.69	8.77		-10	Begin pump	ing, milky tan	
9:29	50.65	3028	15.8	0.260	4.65	8.03		-10	milky tan; lo	ost flow after 15	gals
14:14	40.05								Static		
14:15	57.47	8350	16.3	0.325	5.76	9.92		100	pump on; Cl	loudy	
14:20	60.57	5540	15.3	0.318	4.18	8.44		999	tan		
14:27	60.38	-	15.3	0.280	3.43	7.40		999	tan		
14:34	60.70	5092	15.5	0.267	3.21	6.95		439	cloudy		
14:40	60.69	5307	15.4	0.259	3.44	6.68		199	pump at 59.2	10' bgs	
14:45	59.73	5162	15.5	0.254	2.83	6.38		133	cloudy		
14:50	*	4506	15.4	0.252	3.11	6.36		201	cloudy		
14:55	*	5408	15.5	0.246	3.13	6.37		117	cloudy		
15:00	*	4792	15.4	0.245	2.55	6.32		107	clear		
15:05	59.10	5162	15.4	0.242	3.43	6.19		74	clear		
15:10	59.10	5794	15.4	0.241	3.28	6.22		78	clear		
15:15	*	4673	15.3	0.240	3.10	6.18		121	cloudy		
15:20	*	5434	15.5	0.240	4.28	6.23		174			
15:22									pump off, di	scharged into se	ewer
15:40									pump on		
15:41	54.75	6041	15.7	0.247	2.66	6.17		114	cloudy		
15:45	*	4812	15.6	0.240	2.80	6.10		124	pump at 58.7	75	
15:50	*	4598	15.4	0.244	2.83	6.27		290			
15:55	*	4937	15.4	0.244	2.84	6.18		166	cloudy		
16:00	*	4471	15.4	0.240	3.30	6.21		141	clear		
16:05	*	5025	15.4	0.239	2.65	6.07		112	clear		
16:10	*	4673	15.5	0.237	3.03	6.15		111	clear		
16:15	*	4812	15.5	0.233	2.52	6.10		110	clear		
16:20	*	5594	15.4	0.236	3.08	6.11		89	clear		
16:25	*	5258	15.4	0.232	3.30	6.13		92	clear		
16:30	*	46/3	15.3	0.234	3.30	6.13		61	clear		
16:35	*	4506	15.4	0.233	2.91	6.01		60	clear		
Pump T	ype:	S.S. Mons	oon						pump set at	60.74' bgs	
1	• 1								total volume	purged: 180 ga	llons
Analytic	cal Paran	neters:	Not Rec	quired					*= water lev	rel below top of	pump

WELL NO. MW-1S

				PROJECT					PROJECT No.	SHEET		SHEETS
WELL	SAMP	LING FOR	RM	Utility Ma	anufacturin	g				1	OF	1
	1							DATE WELL STAF	RTED	DATE WELL COMPLETE	D	
VVestD	ury, NY							May 12, 20	10 Tor	May 12, 2010		
NYSD	EC							Celest Fost	ter (AECOM)	/Pete Lawler (YE	C Inc.)	
DRILLING	COMPANY							SIGNATURE OF I	NSPECTOR			
E.A.R.	/Clearw	ater Drilli	ng, Inc.				TO		1			
	Deptn to	Purge				EASUREMEN	115					
Time	Water	Rate	Temp.	рН	Conduct.	DO	ORP	Turbidity		REMARKS		
40.44	(ft)	(ml/min)	(ºC)		(ms/cm)	(mg/L)	(mV)	(ntu)	Ctatia			
12:44	41.57								Static Dump On			
12:42	40.00	400	45.40	4.05	0.014	6.64	101	0.1	Pump On			
12:47	42.88	400	15.40	4.35	0.214	0.04	191	0.1				
12:52	42.50	400	15.80	4.03	0.206	6.77	215	0.0				
12:57	41.87	250	15.60	4.16	0.206	6.74	226	0.0				
13:06	41.87	280	15.60	4.18	0.205	6.73	232	0.0				
13:14	41.87	250	15.60	4.07	0.205	0.00	235	0.0				
13:19	41.87	250	15.60	4.17	0.204	0.05	238	0.1				
13:25	41.87	200	15.50	4.02	0.204	0.00	242	0.0				
13:30	41.87	250	15.60	4.28	0.202	6.91	247	0.1				
13:35	41.87	240	15.70	4.38	0.201	6.93	249	0.0				
13:40	41.87	225	15.60	4.35	0.201	0.83	252	0.0				
13.40	41.07	400	15.60	4.41	0.199	0.70	200	0.1				
13.55									Sample 08	MW/15 collected		
13.55									Sample 00			
									Purged 4 3	als		
									i uigeu 4.0	gais		
									1			
Pump	Type:	Bladder p	oump wit	th dedicat	ed tubing f	or samplin	g					

WELL NO. MW-1D

				PROJECT	<u> </u>				PROJECT No.	SHEET		SHEETS
	SAMPI	LING FOR	RM	Utility Ma	anufacturin	g		DATE WELL STA	RTED	DATE WELL COMPLETE	OF FD	1
Westb	urv. NY	r						May 12, 20)10	May 12, 2010		
CLIENT	<u></u> ,,							NAME OF INSPEC	CTOR	,,,		
NYSD	EC							Celest Fos	ter (AECON	1)/Pete Lawler (YE	C Inc.)	
DRILLING	company /Clearw	vater Drilli	na. Inc.					SIGNATURE OF I	NSPECTOR			
	Depth				FIELD M	EASUREMEN	VTS					
	to	Purge										
Time	Water (ft)	Rate (ml/min)	Temp. (ºC)	рН	Conduct. (ms/cm)	DO (mg/L)	ORP (mV)	Turbidity (ntu)		REMARKS		
12:17	42.10				(,		. ,		Static			
12:21	41.95	150	14.97	5.53	0.177	4.16	143	>1000	Pump On			
12:25	42.00	150	15.05	5.46	0.179	3.06	155	499	1			
12:30	41.98	150	14.70	5.35	0.179	2.75	176	728	1			
12:42	41.95	100	14.52	5.43	0.178	2.17	198	508				
12:50	41.89	100	14.33	5.38	0.177	1.98	212	475				
12:55	41.90	100	14.15	5.38	0.176	1.95	218	489	1			
13:00	42.05	290	15.20	5.33	0.172	1.89	224	467				
13:05	42.00	200	15.15	5.31	0.173	1.09	229	470				
13:10		200	15.08	5.31	0.172	0.99	234	396				
13:15	41.98	200	15.06	5.27	0.171	0.89	242	358				
13:20	41.98	200	15.12	5.29	0.171	0.85	246	340				
13:25	42.00	200	15.03	5.26	0.168	0.86	257	314				
13:30	41.98	150	15.21	5.26	0.169	0.80	260	0	Clear			
13:35	41.94	175	15.21	5.24	0.169	0.75	266	241				
13:40	41.98	170	15.18	5.25	0.169	0.64	270	215				
13:45	41.98	210	15.36	5.22	0.168	0.72	275	187				
13:50	41.96	210	15.42	5.22	0.169	0.61	280	207				
13:55	41.96	210	15.36	5.23	0.169	0.58	284	160				
14:00	41.96	210	15.31	5.22	0.168	0.58	287	152				
14:05	41.98	210	15.31	5.21	0.168	0.60	291	145				
14:10	41.98	210	15.42	5.21	0.168	0.59	293	127				
14:18	42.02	210	15.20	5.14	0.165	0.57	300	108				
14:25									Sample 09	MW 1D collected	1	
			[!		<u>ا</u>			<u> </u>	<u> </u>		_	
			ļ!						Purged 5.3	3 gals		
			ļ!									
		'										
		'										
			ļ!									
			ļ!									

Pump Type: Bladder pump with dedicated tubing for sampling

WELL NO. MW-11S

				PROJECT					PROJECT No.	SHEET		SHEETS
WELL	SAMP	LING FOR	RM	Utility Ma	anufacturin	g				1	OF	1
	1			-				DATE WELL STA	RTED	DATE WELL COMPLETE	D	
	ury, NY							May 12, 20	010 CTOR	May 12, 2010		
NYSD	EC							Celest Fos	ter (AECOM)	Pete Lawler (YE	C Inc.)	
DRILLING	COMPANY		_					SIGNATURE OF I	NSPECTOR	× ×	,	-
E.A.R.	/Clearw	ater Drilli	ng, Inc.						1			
	Depth	Purge			FIELD ME	ASUREMEN	115					
Time	Water	Rate	Temp.	рН	Conduct.	DO	ORP	Turbidity		REMARKS		
	(ft)	(ml/min)	(°C)		(ms/cm)	(mg/L)	(mV)	(ntu)				
								_	Static			
9:31	42.85								Pump On			
9:35	42.81	400	14.40	3.76	0.162	10.50	157	0				
9:40	42.81	250	14.20	2.86	0.156	11.11	175	0				
9:45	42.81	250	14.20	3.89	0.156	11.14	182	0				
9:50	42.80	250	14.30	4.07	0.150	11.12	186	0				
9:55	42.80	250	14.20	4.09	0.154	10.88	188	0				
10:00	42.82	280	14.20	4.1	0.154	10.97	189	0				
10:05	42.82	280	14.20	4.2	0.153	10.84	192	0				
10:10	42.82	280	14.40	4.19	0.151	10.15	196	0				
10:25	42.81	280	14.30	4.03	0.150	9.88	201	0				
10:30	42.82	280	14.40	4.12	0.149	9.82	203	0				
10:35	42.82	280	14.40	4.12	0.148	9.76	201	0				
10:40	42.81	280	14.40	4.04	0.147	9.71	203	0				
10:50									Sample 06	MW 11S coolecte	ed	
									Purged 4 ga	als		
									Sample 09	MW 1D collected		
Pump	Туре:	Bladder p	oump wi	th dedicat	ed tubing f	or samplin	g					

WELL NO. MW-11D

				PROJECT					PROJECT No.	SHEET		SHEETS
WELL	SAMP	LING FOR	RM	Utility Ma	nufacturin	g				1	OF	1
								DATE WELL STA	RTED	DATE WELL COMPLE	TED	
CLIENT	uly, in i							NAME OF INSPE	CTOR	May 12, 2010		
NYSD	EC							Celest Fos	ter (AECOM)/Pete Lawler (Y	EC Inc.)	
		rator Drilli						SIGNATURE OF I	NSPECTOR			
Е.А.К.	Depth	ater Dinn	ng, inc.		FIELD ME		ITS		T			
	to	Purge	_									
Time	Water	Rate	Temp.	рН	Conduct.	DO (ma/l.)	ORP	Turbidity]	REMARKS		
	(11)	(mvinin)	(*0)		(ms/cm)	(mg/∟)	(niv)	(IIIU)	Static			
9.16	42.73							+				
9:26	43,70	200	12.12	4.11	0.000	10.58	217	74				
9:33	43.61	160	12.82	4.19	0.000	10.32	218	74				
9:39	43.50	175	13.03	4.22	0.000	10.44	219	75				
9:45	43.35	160	13.20	4.26	0.000	10.43	219	76				
9:50	43.30	160	13.20	4.25	0.000	10.37	220	77				
9:55	43.30	160	13.22	4.25	0.000	10.35	220	77				
10:00	43.25	100	13.18	4.24	0.000	10.38	221	78				
10:05	43.15	100	13.03	4.22	0.000	10.49	222	80				
10:10	43.09	100	12.95	4.19	0.000	10.47	222	82				
10:25	43.10	100	12.75	4.17	0.000	10.21	222	85				
10:30	43.12	100	12.83	4.15	0.000	10.37	222	85				
10:40	43.51	240	12.79	4.16	0.000	10.52	221	85	Flowrate ch	nanged		
10:43									Horriba U-2	22 changed from	11S	
10:45	43.84	260	14.00	5.61	0.243	5.02	87	0				
10:50	43.81	110	13.10	5.6	0.238	3.79	85	0				
10:55	43.35	110	13.40	5.63	0.235	3.67	84	0				
11:00	43.32	160	13.30	5.63	0.233	3.78	82	0				
				 			 	<u> </u>				
11:10				<u> </u>			<u> </u>	_	Sample 07	MW 11D collect	ed	
				ļ			ļ					
				 			 		Purged 2.3	gais		
				<u> </u>			<u> </u>					-
				┢────			┢────		-			
								-				
								1				
								1				
				<u>.</u>	<u>. </u>		<u>.</u>					
Pump	Туре:	Bladder p	oump wi	th dedicat	ed tubing f	or samplin	g					

WELL NO. MW-12S

				PROJECT					PROJECT No.	SHEET		SHEETS	
WELL SAMPLING FORM				Utility Ma	nufacturin	g				1	OF	1	
								DATE WELL STA	RTED	DATE WELL COMPLETER	D		
	ury, NY							NAME OF INSPECTOR					
								Celest Foster (AECOM)/Pete Lawler (YEC Inc.)					
E.A.R.	/Clearw	ater Drilli	ng, Inc.										
	Depth		<u>,</u>		FIELD MI	EASUREMEN	TS						
Time	to	Purge	Tamm		Conduct		000	Truckislity					
Time	(ft)	Rate (ml/min)	remp. (⁰C)	рн	(ms/cm)	(mg/L)	(mV)	(ntu)	REMARKS				
13:37	41.27								Static				
13:56	41.20								Pump On				
14:00	41.20	425	16.10	2.8	0.273	1304.00	179	0					
14:05	41.30	275	16.00	2.35	0.263	11.31	213	0					
14:10	41.25	275	16.00	2.79	0.260	10.61	214	0					
14:15	41.25	250	16.00	3.04	0.257	10.47	212	0					
14:20	41.25	250	15.90	3.06	0.254	10.03	210	0					
14:25	41.25	250	15.90	3.16	0.252	10.17	207	0					
14:30	41.25	250	15.90	3.16	0.252	10.30	202	0					
14:37	41.25	250	15.80	3.42	0.247	10.60	198	0					
14:42	41.25	250	15.80	3.47	0.247	9.89	196	0					
14:47	41.25	250	15.80	3.56	0.245	10.07	194	0					
14:55									Sample 03 I	MW 12S collected	4		
15:10									Sample 03 MW 62S collected				
									Purged 3.6	gals			
				-	-			•	•				
Pump	Туре:	Bladder p	oump wi	th dedicat	ed tubing	for sampling	9						

WELL NO. MW-12D

				PROJECT					PROJECT No.	SHEET		SHEETS	
	WELL SAMPLING FORM Utility Manufacturing							DATE WELL STA	PTED		OF	1	
Westb	ury, NY	,						May 11, 20)10	May 11, 2010	,		
								NAME OF INSPE	CTOR		、		
	EC	,						Celest Foster (AECOM)/Pete Lawler (YEC Inc.)					
E.A.R.	/Clearw	vater Drilli	ng, Inc.						No. Loren				
	Depth	· · · · · ·			FIELD ME	EASUREMEN	ITS						
Time	to Water	Purge Rate	Temp	пН	Conduct	00		Turbidity	-	REMARKS			
Time	(ft)	(ml/min)	(°C)	P.1	(ms/cm)	(mg/L)	(mV)	(ntu)					
									Static				
13:32									Pump On				
13:33	41.95	200	18.94	3.9	0.000	9.92	194	65.1					
13:41	41.91	200	18.25	3.9	0.000	10.12	196	67.2	<u> </u>		_		
13:46	41.90	180	17.89	3.89	0.000	10.13	198	67.2					
13:51	41.90	180	17.60	3.9	0.000	10.15	199	66.9					
13:56	41.82	180	17.54	3.87	0.000	10.02	200	67.8					
14:02	41.89	180	17.68	3.87	0.000	10.06	201	67.1					
14:07	41.80	180	17.68	3.86	0.000	9.99	201	67.0					
14:12	41.85	180	17.67	3.86	0.000	9.83	201	66.9					
14:17	41.84	180	17.63	3.86	0.000	9.98	201	67.3	ļ				
14:22	41.87	180	17.52	3.87	0.000	9.89	200	67.1	ļ				
14:28	41.87	180	17.34	3.87	0.000	10.00	202	67.0	ļ				
14:34	41.87	180	17.59	3.88	0.000	9.71	202	67.0	ļ				
15:05	41.87	180	18.10	3.89	0.000	9.72	202	66.0	ļ				
15:10	41.85	180	18.10	3.89	0.000	9.66	202	66.6					
15:20	41.85	180	17.79	3.89	0.000	9.63	200	66.7	_				
15:25	41.85	180	17.96	3.88	0.000	9.83	197	66.7	_				
15:30	41.85	180	17.22	3.88	0.000	9.92	197	66.5	<u> </u>				
15.40	 '	 '	 '	 	ļ!	 '	───		2 1 05				
15:40	├ ───'	 '	├──── ′	 	↓ !	 '	───		Sample US	MW 12D collected	1		
	├ ───'	 '	├──── ′	 	↓ !	 '	───		Durned 0.0	la			
	┝───┘	 '	───′	 	├─── /	 '	┣────	+	Purgeu 3.o	gais			
	┝───┘	 '	───′	 	├─── /	 '	┣───	+					
	\vdash	 '	───′	 	↓ /	 '	┣───						
	┢───┘	 '	┟───┘	├───	∤ ────┦	├ ────'	───						
	┢───┘	 '	┟───┘	├───	∤ ────┦	├ ────'	───						
	┢───┘	 '	┟────′	 	├ ───┦	'	├───	-	+				
	┝───┘	'	┟────┤	 	├ ───┦	 '	├───						
	┢────┘	 '	├─── ′	 	├ ───┦	 '	┣────						
	┢────┘	├ ───'			├ ───┦	'	┣───		+				
	┢────┘	├ ───'			├ ───┦	'	┣───		+				
	┢───┦	├ ────'		 	├─── ┦	'	├───		+				
				L		<u> </u>	<u> </u>						
Pump	Type:	Bladder p	pump wit	h dedicat	ed tubing f	ior samplin	ıg						

WELL NO. MW-13S

ROJEC PROJECT No. SHEET SHEET WELL SAMPLING FORM Utility Manufacturing 1 1 OF DATE WELL STARTED DATE WELL COMPLETED Westbury, NY May 11, 2010 May 11, 2010 CLIENT NAME OF INSPECTOR NYSDEC Celest Foster (AECOM)/Pete Lawler (YEC Inc.) DRILLING COMPANY SIGNATURE OF INSPECTOR E.A.R./Clearwater Drilling, Inc. FIELD MEASUREMENTS Depth to Purge Time Water Rate Conduct. DO ORP Turbidity REMARKS Temp. pН (ms/cm) (mV) (ml/min) (°C) (mg/L) (ft) (ntu) Static 9:17 39.92 Pump On 9:22 39.91 250 16.30 1.1 0.571 12.19 145 0.0 9:32 39.87 200 16.30 1.91 0.566 10.70 214 0.0 9:39 39.55 250 16.30 3.01 0.562 9.71 212 0.0 9:42 39.85 205 16.40 1.78 0.562 10.03 217 0.0 1.79 10.40 225 9:47 39.86 205 16.40 0.557 0.0 9:52 39.86 205 16.40 3.57 0.554 9.69 223 0.0 9:57 39.86 205 16.30 4.23 0.551 9.33 223 0.0 10:02 39.86 195 16.40 3.31 0.545 10.78 231 0.0 10:07 39.85 200 16.40 2.42 0.548 10.38 234 0.0 10:12 39.86 450 16.10 2.64 0.541 10.22 240 0.0 Pump changed in attempt to change 13D 170 2.49 0.538 244 0.0 10:18 39.86 16.40 9.60 pump changed back 10:25 16.50 39.85 160 2.48 0.536 9.17 246 0.0 10:30 39.84 170 16.50 1.92 0.535 11.32 250 0.0 11.30 0.0 10:36 39.84 170 16.40 1.64 0.540 252 10:40 39.85 170 16.60 1.53 0.539 10.10 254 0.0 10:46 39.84 170 16.60 1.7 0.541 10.88 257 0.0 170 2.46 0.534 257 0.0 10:56 39.85 16.60 11.08 11:02 39.86 170 16.60 2.36 0.532 10.09 260 0.0 11:07 39.85 170 16.70 2.45 0.532 10.09 262 0.0 Sample 01 MW 13S collected 11:18 11:33 Sample MS MW 13S collected 11:48 Sample MSD MW 13S collected Purged 4.8 gals

Pump Type: Bladder pump with dedicated tubing for sampling

WELL NO. MW-13D

				PROJECT					PROJECT No.	SHEET		SHEETS	
	SAMPI		RM	Utility Ma	anufacturin	g		DATE WELL STA			OF	1	
Westb	ury, NY							May 11, 20)10	May 11, 2010	D		
								NAME OF INSPE	CTOR		<u> </u>		
								Celest Foster (AECOM)/Pete Lawler (YEC Inc.)					
E.A.R.	/Clearw	/ater Drilli	ng, Inc.					Gionarda e	Nor Loren				
	Depth	· · · · · ·			FIELD ME	EASUREMEN	NTS						
Time	to Water	Purge Rate	Temn	ГрН	Conduct	00		Turbidity	-	REMARKS			
111.15	(ft)	(ml/min)	(°C)		(ms/cm)	(mg/L)	(mV)	(ntu)					
									Static				
10:01	40.10								Pump On				
10:09	40.07	60	21.84	4.57	0.000	9.32	239	90.2	T				
10:16	40.08	100	19.96	4.18	0.000	9.85	231	99.4	Adjusted p	ump speed			
10:23	40.12	125	19.15	3.88	0.000	10.12	2285	104.0					
10:28	40.13	140	18.95	3.92	0.000	10.00	224	104.0					
10:33	40.11	110	18.86	3.94	0.000	9.93	218	106.0					
10:38	40.12	120	18.74	3.89	0.000	9.91	215	88.5					
10:43	40.12	120	18.65	3.88	0.000	9.87	215	107.0					
10:54	40.13	120	18.60	3.91	0.000	9.87	214	105.0					
11:01	40.15	120	18.62	3.9	0.000	9.86	214	103.0	<u> </u>				
11:06	40.15	120	18.56	3.9	0.000	9.98	214	103.0					
11:11	40.15	120	18.60	3.89	0.000	9.96	214	104.0					
11:23	40.11	120	18.66	3.89	0.000	10.18	213	101.0					
11:55	40.15	200	18.30	3.89	0.000	10.21	210	76.2					
12:00	40.19	200	18.27	3.88	0.000	10.15	209	73.7					
12:05	40.17	200	18.27	3.88	0.000	10.14	208	68.4					
10.07	└───┘	ļ'			ļ!	 			2				
12:07	└───┘	ļ'			ļ!	 			Sample 02	MW 13D			
	└───┘	 '			با	 		───					
┣───┤	┝───┦	 '			↓ !	 		+	Purgea 2.7	gais			
	┝───┦	 '	───		↓ !	 		+	-				
	┝───┦	 '	──	──	↓ !	 			+				
	┢───┦		──	──	↓ /	 			+				
┟───┤	┟───┦	i'	╂────	───	∤ ────┦	┟────	┨─────		+				
	┢────┦	i'	╂────	┼───	∤ ────┦	 	╂────	+	+				
┣───┤	┢────┦	i'	┨─────	┨─────	┨────┦	 	╂────	+	+				
	┢────┦	i'	├───	├───	┨────┦	 	┼────		+				
	┢────┦	i'	├───	├───	┨────┦	 	┼────		+				
	┢───┦	i'			├ ───┦								
┠───┤	┢───┦	i'	 	 	∤ ───┦	i		+	+	-			
┠───┤	┢───┦	i'	 	 	∤ ───┦	i		+	+	-			
┠───┤	┢───┦	i'	 	 	∤ ───┦	i		+	+	-			
	J	J	<u> </u>	<u> </u>		L	<u> </u>						
Pump	Type:	Bladder r	pump wit	th dedicat	ed tubing f	for samplin	ıg						

Summa Canister Sampling Field Data Sheet Site: Utility Manufacturing (60134954), 624 Main St, Building 1

Samplers: Celeste Foster (AECOM), Kevin Seise (AECOM), Peter Lawler (YEC) at pickup								
Date: 1/26 to 1/27/2010								
Sample#	B01-SS1-20100126	B51-SS1-20100126	B01-FF2-20100126	B01-FF1-20100126	B01-OA-20100126			
Location	Building 1 - SE corner subslab	Duplicate of B01- SS1-20100126	Building 1 - SE corner indoor air	Building 1 - SW corner, storage are, indoor air	Building 1 - South West corner, outdoor air			
Summa Canister ID	2677	2683	3327	3273	2714			
Flow Controler ID	3100	2582	3111	4102	4767			
Additional Tubing Added	Yes	←───	No	No	No			
How much?	2 ft	←───	N/A	N/A	N/A			
Purge Time (Start)	1245	<i>←</i>	N/A	N/A	N/A			
Purge Time (Stop)	1250	←───	N/A	N/A	N/A			
Total Purge Time (min)	5	←───	N/A	N/A	N/A			
Purge Volume	1 Liter	←	N/A	N/A	N/A			
Trace Gas Results	300 ppm/ 60%	←───	N/A	N/A	N/A			
Pressure Gauge - Before Sampling (" Hg)	-30	-30	-28	-28	-28			
Sample Time (Start)	1302	1303	1303	1304	1333			
Sample Time (Stop)	1128	1234	1234	1245	1250			
Total Sample Time (min)	1346	1411	1411	1421	1397			
Pressure Gauge - After Sampling (" Hg)	-1	-8	-6	-6	-5			
Sample Volume	6L	6L	6L	6L	6L			
Canitster Pressure Went to Ambient Pressure?	No	No	No	No	No			
Weather 24 hours before and during sampling 30-40 degrees F, sunny, wind from west northwest								
General Comments Canister 2523 sent back unused Flow controller 4526 malfunctioning, sent back unused Flow controller 3100 needs to be checked Canister 2683 was stuck open had to be closed with a screw driver								

Summa Canister Sampling Field Data Sheet Site: Utility Manufacturing (60134954), 58 State St, Building 13

Samplers: Celeste Foster (AECOM), Kevin Seise (AECOM)									
Date: 1/26 to 1/27/2010									
Sample#	B13-SS1-20100126	B13-FF1-20100126	B13-SS2-20100126	B13-FF2-20100126					
Location	Building 13 -center W side (storefront), subslab	Building 13 -center, indoor air	Building 13 - SE storage area, subslab	Building 13 - SE storage area, indoor air					
Summa Canister ID	2678	3760	3425	3506					
Flow Controller ID	4505	3786	3965	3167					
Additional Tubing Added	Yes	No	Yes	No					
How much?	2 ft	N/A	2 ft	N/A					
Purge Time (Start)	1547	N/A	1635	N/A					
Purge Time (Stop)	1552	N/A	1640	N/A					
Total Purge Time (min)	5	N/A	5	N/A					
Purge Volume	1 Liter	N/A	1 Liter	N/A					
Trace Gas Results	0/93.7%	N/A	0/95%	N/A					
Pressure Gauge - Before Sampling (" Hg)	-28	-28	-29	-30					
Sample Time (Start)	1646	1646	1648	1648					
Sample Time (Stop)	1618	1622	1609	1135					
Total Sample Time (min)	1412	1416	1401	1127					
Pressure Gauge - After Sampling (" Hg)	-6	-6	-6	-2					
Sample Volume	6L	6L	6L	6L					
Canitster Pressure Went to Ambient Pressure?	No	No	No	No					
Weather 24 hours before									
and during sampling 30-40 degrees F, sunny, wind from west northwest									
Flow controller 3167 peeds	General Comments								

Summa Canister Sampling Field Data Sheet Site: Utility Manufacturing (60134954), 44 Bond Street, Building 7

Samplers: Celeste Foster (AECOM), Pete Lawler (YEC)								
Date: 1/27 to 1/28/2010								
Sample#	B07-SS2-20100127	B07-FF2-20100127	B07-SS1-20100127	B07-FF1-20100127	B07-OA-20100127			
Location	Building 7 - NW Corner, indoor air	Building 7 - NW Corner, indoor air	Building 7 - NE Corner, subslab	Building 7 - NE Corner, indoor air	Building 7 - W side of N face, outdoor air			
Summa Canister ID	3283	4161	3407	3160	3380			
Flow Controler ID	4044	4754	4490	4199	4763			
Additional Tubing Added	Yes	No	Yes	No	No			
How much?	3 ft	N/A	3 ft	N/A	N/A			
Purge Time (Start)	1143	N/A	1154	N/A	N/A			
Purge Time (Stop)	1148	N/A	1159	N/A	N/A			
Total Purge Time (min)	5	N/A	5	N/A	N/A			
Purge Volume	1 Liter	N/A	1 Liter	N/A	N/A			
Trace Gas Results	250 ppm/93%	N/A	350 ppm/92.4%	N/A	N/A			
Pressure Gauge - Before Sampling (" Hg)	-30	-29	-27	-30+	-27			
Sample Time (Start)	1207	1208	1211	1212	1221			
Sample Time (Stop)	1139	1145	1153	1157	1202			
Total Sample Time (min)	1412	1417	1422	1425	1421			
Pressure Gauge - After Sampling (" Hg)	-4	-6	-5	-9	-6			
Sample Volume	6L	6L	6L	6L	6L			
Canitster Pressure Went to Ambient Pressure?	No	No	No	No	No			
Weather 24 hours before and during sampling	30-40 degrees F, su	Inny, wind from west	northwest, snow on t	he morning of 1/28				
General Comments								

Indoor Air Sampling

To avoid potential interferences and dilution effects, occupants should make a reasonable effort to avoid the following for 24 hours prior to and during sampling:

- a. opening any windows, fireplace dampers, openings or vents;
- operating ventilation fans unless special arrangements are made;
- c. smoking in the building;
- d. painting;
- e. using a wood stove, fireplace or other auxiliary heating equipment (e.g., kerosene heater);
- f. operating or storing automobile in an attached garage;
- g. allowing containers of gasoline or oil to remain within the house or garage area, except for fuel oil tanks;
- h. cleaning, waxing or polishing furniture, floors or other woodwork with petroleum- or oil-based products;
- i. using air fresheners, scented candles or odor eliminators;
- j. engaging in any hobbies that use materials containing volatile chemicals;
- k. using cosmetics including hairspray, nail polish, nail polish removers, perfume/cologne, etc.;
- I. lawn mowing, paving with asphalt, or snow blowing;
- m. applying pesticides;
- n. using building repair or maintenance products, such as caulk or roofing tar; and
- o. bringing freshly dry-cleaned clothing or furnishings into the building.

Air Sampling Canister

The sampling canister uses vacuum pressure to draw air into the canister. Valves regulate the flow of air, allowing air to trickle into the canister over a 24-hour period. After 24 hours, technicians will close the valves, remove the canister from the building and ship it to a laboratory for analysis.

Occupant's Role

As a owner/occupant, you will not be required to do much, but there are a few things we will ask of you to ensure the sample is as accurate as possible.

What to do

What NOT to do

You can do most of the things you would do on a normal day. You don't have to vacate the premises and, for the most part, won't have to take any special precautions.

Prior to the technicians arriving, it would be helpful to make sure they have access to the basement in order to install the monitoring point and place the canisters. If there is no basement, sampling will occur on the first floor.

When the technicians come to place the canister, they will ask you a few questions. This will help them determine where to place the canister and to find out what kind of chemical products are already in your home.

Avoid having freshly dry-cleaned clothing in the home, if at all possible. If you have dry cleaning ready to be picked up, please wait until after the canister has been collected to pick it up.

Avoid using solvents or degreasers within 24 hrs of the air sample, if possible. Avoid working on hobby projects that would require the use of paint, glue or other chemicals. For a comprehensive list of other activities to avoid, please see the next page.

Avoid contact with the canister and sample setup.

Step-by-Step Air Sampling Process

- Agree to have air sampling done in your home by contacting the Department of Environment Conservation (DEC) as indicated in the cover letter.
- Someone from DEC will contact you and schedule a initial site visit to determine sampling locations. The tentative date for this is December 29-30, 2009.
- Someone from DEC will contact you and schedule a sampling appointment. We will attempt to set the appointment at a time that is convenient for you.
- You will receive a reminder, either by phone or mail, prior to your scheduled appointment as a courtesy.
- Technicians will arrive at the scheduled time and ask you some questions about chemical products in your home. They will install a monitoring point and place the air sampling canisters. The monitoring point will be a temporary point drilled through the concrete floor (basement or slab). Care will be taken during the initial site visit to select a point that will not disturb any floor finishes. Air sampling canisters will be placed using a folding stand. Photos have been included in this brochure to depict sample setup appearance.
- 24 hours later, the technicians will return to pick up the canisters and remove and patch the monitoring point. The canisters will be sent to a certified laboratory for analysis.
- You will receive a letter from DEC including a copy of your results.
- Section will depend on your results.

Air Sampling Results

After your air sample is collected, you will receive a copy of the final lab results in the mail, along with a letter explaining your results and the action we recommend taking.

The New York State Department of Health (NYSDOH) and the New York State Department of Environmental Conservation (NYSDEC) have established action levels for select chemicals found in the groundwater. These action levels are the lowest levels at which we would recommend taking action to prevent vapors from entering the home. The action levels were established using a number of factors, including health risk and background levels.

Sub-slab sample point (above), small hole drilled into concrete, patched after sample collection. Indoor air sample point (right)

NOT DETECTED	• The NYSDEC will take no action at this time.	 Operate your furnace and whole-house air conditioner as appropriate for the current weather conditions Do not use wood stoves, fireplaces or auxiliary heating equipment Do not open windows or keep doors open. Avoid using window air conditioners, fans or vents Do not smoke in the building
DETECTED, BELOW ACTION LEVEL	• The NYSDEC will take no immediate action but may recommend monitoring of the air in the home.	 Do not use air fresheners or odor eliminators Do not use paints or varnishes (up to a week in advance, if possible) Do not use cleaning products (e.g., bathroom cleaners, furniture polish, appliance cleaners, all-purpose cleaners, floor cleaners) Do not use cosmetics, including hair spray, nail polish remover, perfume, etc. Avoid bringing freshly dry-cleaned clothes into the building Do not partake in bobbies indoor that use solvents
DETECTED, ABOVE ACTION LEVEL	 Additional action will be determined with input from the NYSDEC and NYSDOH. 	 Do not apply pesticides Do not store containers of gasoline, oil or petroleum-based or other solvents within the building or attached garages (except for fuel oil tanks) Do not operate or store automobiles in an attached garage Do not operate gasoline-powered equipment within the building, attached garage or around the immediate perimeter of the building

Equipment for Permanent Soil Vapor Points

APPENDIX B

Indoor Air Quality Questionnaires and Building Inventories

OSR-3

an dae

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name	leste Foster.	Date/Time Prepared	1/26/2010	9AM
Preparer's Affination		_ Phone No. <u>975</u>	228-0010	
Purpose of Investigation	Soil vapor investi	gation		
1. OCCUPANT:	8 N			
Interviewed: (Y)/ N				
Structure 1		• •		
2. OWNER OR LANDI	ORD: (Check if same as occupant	:)		
Interviewed: Y/N	Corporate RKJF	Realty	,	
Last Name:	First Name:	1 - <u>1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.</u>		
Address:				
County:				
Home Phone:	Office Phone:		2	40 40
	<u> </u>			
3. BUILDING CHARA	CTERISTICS	5		
Type of Building: (Circle	e appropriate response)	12 	· .	
Residential Industrial	School Commercial Church Other:	/Multi-use	a a a	ж.
25	н ^т .		2 9 9 8 9 9	I

	If the property is resident	ial, type? (Circle appropr	iate response) N/A					
()	Ranch	2-Family	3-Family					
	Raised Ranch	Split Level	Colonial					
	Cape Cod	Contemporary	Mobile Home					
	Modular	Log Home	Other:					
	If multiple units how may	NIR	a					
	Te d							
	If the property is commer	cial, type?	- Audio	haden anstrom				
	Business Type(s) <u> </u>	FFICE/WARE	TOUSE AUUTO,	VILLE CUSION				
	Does it include residen	ces (i.e., multi-use)? Y	\dot{N} If yes, how n	nany?				
	Other characteristics:	24						
	Number of floors $1 + 3$	Storage Atthe Buil	ding age_~50 Yr S	Ś.				
	Is the building insulated	How Some How	vair tight? Tight Avera	gev Not Tight				
	4. AIRFLOW		, s					
	Use air current tubes or tr	Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:						
()	Airflow between floors							
	<u> </u>							
	a 10	G						
				7				
	Airflow near source							
	Airflow near source No Cracks	visible						
	Airflow near source No Cracks	visible						
	Airflow near source No Cracks	visible						
	Airflow near source No Cracks	visible						
	Airflow near source <u>No</u> Cracks	visible						
	Airflow near source <u>No</u> Cracks Outdoor air infiltration	visible	~ks					
	Airflow near source <u>No</u> Cracks Outdoor air infiltration <u>Th</u> from	visible loading door	-ks					
*** ,	Airflow near source <u>No</u> Cracks Outdoor air infiltration <u>Th</u> from	visible loading door	- KS					
	Airflow near source <u>No</u> Cracks Outdoor air infiltration <u>Th</u> from	visible loading door	<u>-ks</u>					
	Airflow near source <u>No</u> Cracks Outdoor air infiltration <u>Infiltration</u> Infiltration into air ducts	visible loading door	- KS					
	Airflow near source <u>No Cracks</u> Outdoor air infiltration <u>The from</u> Infiltration into air ducts	visible loading door	<u>ks</u>					
	Airflow near source <u>No Cracks</u> Outdoor air infiltration <u>The from</u> Infiltration into air ducts	visible loading do	<u>- ks</u>					
Q	Airflow near source <u>No Cracks</u> Outdoor air infiltration <u>The from</u> Infiltration into air ducts	visible loading do	<u> </u>					
Q	Airflow near source <u>No Cracks</u> Outdoor air infiltration <u>Infiltration into air ducts</u>	visible loading door	<u>-ks</u>					
0	Airflow near source <u>No Cracks</u> Outdoor air infiltration <u>The from</u> Infiltration into air ducts	visible loading door	<u>ks</u>					
0	Airflow near source <u>No Cracks</u> Outdoor air infiltration <u>Th</u> from Infiltration into air ducts	visible loading do						

· : · /

· Jahana Janaa I

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction:	wood frame	concrete	stone	brick insure
b. Basement type:	full	crawlspace	slab	other N/A
c. Basement floor:	concrete	dirt	stone	other N/A
d. Basement floor:	uncovered	covered	covered with	N/A
e. Concrete floor:	unsealed (sealed	sealed with	
f. Foundation walls:	poured	block	stone	other Brick/poured unsule
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy N/A
i. The basement is:	finished	unfinished	partially finish	ned N/A
j. Sump present?	YN			x x
k. Water in sump? Y/N	/ not applicable			
Basement/Lowest level depth below	grade: N/A	(feet)		

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

Cracks in loading area do not appear to extend

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply - note primary)

- JF + +		.g. (man apply note p		
Hot air circulation Space Heaters Electric baseboard	Heat p Stream Wood	ump radiation stove	Hot water basebo Radiant floor Outdoor wood bo	oard oiler Other	
The primary type of fuel us	sed is:				
Natural Gas Electric Wood	Fuel O Propan Coal	il e	Kerosene Solar	,	and pl
Domestic hot water tank fu	eled by: <u>Nat</u>	wal ga	s main a	ea hotair /	Warehause
Boiler/furnace located in:	Basement	Outdoors	Main Floor	Other	
Air conditioning:	Central Air	Window uni	its Open Windows	None	

Are there air distribution ducts present?

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPANCY

Is basement/lo	west level occupied?	Full-time	Occasionally	Seldom	Almost Never
Level	General Use of Each	Floor (e.g., far	nilyroom, bedro	om, laundry, wo	orkshop, storage)
Basement					
1 st Floor	AFTICE	NADE	HAUSE		
1 11001	<u>GFFILE</u>				
2 ^{na} Floor	Storage 7	ttic_			
3 rd Floor					
4 th Floor					
8. FACTORS	THAT MAY INFLUE	NCE INDOOR	AIR QUALITY	2 7 0	
a. Is there ar	attached garage?			YN	
b. Does the g	arage have a separate	heating unit?		Y/N NA	
c. Are petrol stored in t	eum-powered machine he garage (e.g., lawnme	es or vehicles ower, atv, car)		Y / N NA Please specify_	
d. Has the bi	ulding ever had a fire?	2	ž	Y N When?	
e. Is a kerose	ene or unvented gas spa	ace heater prese	ent?	Y/W Where?	<u></u> ,
f. Is there a v	vorkshop or hobby/cra	ft area?	(Y) N	Where & Type?	workshop
g. Is there sn	oking in the building?	5 D	Y/N	How frequently	?
h. Have clear	ning products been use	d recently?	N (Y)	When & Type?	And days age
i. Have cosm	etic products been use	d recently?	YN	When & Type?	

5	little painting)
j. Has painting/staining been done in the last 6 months?	(Y) N Where & When? 10510e, back office
k. Is there new carpet, drapes or other textiles?	(Y)N Where & When? Carpet 6mo.ago
l. Have air fresheners been used recently?	(Y) N When & Type? Regular boll room/w Kly
m. Is there a kitchen exhaust fan?	Y(N) If yes, where vented?
n. Is there a bathroom exhaust fan?	(Y) N If yes, where vented? OUTSIde
o. Is there a clothes dryer?	Y(N) If yes, is it vented outside? Y / N
p. Has there been a pesticide application?	(YN When & Type? Once a ma. For rodents
Are there odors in the building? If yes, please describe:	YN
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or a boiler mechanic, pesticide application, cosmetologist	Y(N) auto body shop, painting, fuel oil delivery,
If yes, are their clothes washed at work?	Y/N
Do any of the building occupants regularly use or work at a response) Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	dry-cleaning service? (Circle appropriate
Is there a radon mitigation system for the building/structure Is the system active or passive? Active/Passive	e? Y / N Date of Installation:
9. WATER AND SEWAGE Water Supply: Public Water Drilled Well Driver Sewage Disposal: Public Sewer Septic Tank Leach	Well Dug Well Other: <u>For</u> dnn King Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill residentia	l emergency) N/A
a. Provide reasons why relocation is recommended:	
b. Residents choose to: remain in home relocate to frie	nds/family relocate to hotel/motel
c. Responsibility for costs associated with reimbursemen	t explained? Y / N
d. Relocation package provided and explained to residen	ts? Y/N

the Roberts

()

()

A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A CONTRACTOR A CONTRACTOR A CONTRACTOR A CONTRACTOR A CONTRACTOR A

 \bigcirc

11. FLOOR PLANS

()

)

ł

sere er ald dadere

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement: NA

and the second second

()

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:

11.1

÷

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
, laid inside Warehase	Faints 20	2002	U	\checkmark	\bigcirc	У
	BEHR PROMIUM	BUS 7	ntunor flat	ETHYLENE GLYCOLI SULCO	clay	
	Benjamin mor	e & C	οU	titanium dioxide, Nepheein Limestre, silica rearth.	syenite Coolin	
	Sheetnek Allpurpose	554l	U	Notlisted	Õ	Y
	Elmers wood Filler	100Z	и	Nothsted	0	У
	Benjamin moore	5gal	U	Not listed	\Box	Y
	Diese Fuel therapy	140Z	lo	Not listed	0	Y
	BAR'S LEAKS Hydraulicsba	lat-	40	NL	0	¥
	Preston D-Icer	1102	<u> </u>	NL	0	Ý
	PVC Cement	1602	u	MEK, Acetone cyclohexan	0	Y
	PEQUA drainopen	- 5gh	u	Potassium Hydroxide	0	Ý
	Klean Stop Paint	Igal	U	100% mineral	0	Y
Workshep	RUSTOLEUM X8 PAINTER TOUCHES	1202	U	Not Listed	σ	Y
	Endust	1002	U	Not Listed	0	X
	Goof off2	2002	U	Not Listal	Ø	¥
	Goof off greenwer	2302	U	NL	0	Ý
	Wrench	10-22	U	NL	Ø	Ý.
	Amencan Acients	1202	U	NL	0	Ϋ́́Υ
	600600=	1202	\cup	NL	0	×

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) ** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

BTSA\Sections\SIS\Oil Spills\Guidance Docs\Aiproto4.doc

 $\left(\right)$

T B S

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Celeste Faster Date/Time Prepared 1/27/2010 10Am
Preparer's Affiliation <u>AE(OM</u> Phone No. <u>973-338-6680</u>
Purpose of Investigation SOIL Vapor Monitaring
1. OCCUPANT:
Interviewed: WN
Structure 7
1
2. OWNER OR LANDLORD: (Check if same as occupant)
Interviewed: YN Spiegel Associa
Last Name: First Name:
Address:
County:
Home Phone: Office Phone:
K
3. BUILDING CHARACTERISTICS
Type of Building: (Circle appropriate response)
Residential School Commercial/Multi-use Church Other:

NA If the property is residential, type? (Circle appropriate response) 2-Family Ranch 3-Family **Raised Ranch** Colonial Split Level Cape Cod Contemporary Mobile Home Duplex **Apartment House** Townhouses/Condos Modular Log Home Other: If multiple units, how many? N/AIf the property is commercial, type? Business Type(s) phirmaceuticals/compassionali cove pharmeg Does it include residences (i.e., multi-use)? Y (N If yes, how many? **Other characteristics:** Number of floors Building age Is the building insulated How air tight? Tight / Average / Not Tight 4. AIRFLOW Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe: Airflow between floors NIA Airflow near source NIA Sativis monnu Outdoor air infiltration from outside Swirls in Infiltration into air ducts

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction:	wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other N/A
c. Basement floor:	concrete	dirt	stone	other / / /
d. Basement floor:	uncovered	covered	covered with	N/A
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed (sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy N/A
i. The basement is:	finished	unfinished	partially finishe	d N/A
j. Sump present?	YN Not	visible	55 95	
k. Water in sump? Y / I	N not applicable	>		

Basement/Lowest level depth below grade: N/A (feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

None visible

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) u	ed in this building:	(circle all that apply – note primary)
-----------------------------	----------------------	--

Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiation Wood stove	Hot water baseboard Radiant floor Outdoor wood boiler	Other	
The primary type of fuel u	ised is:			
Natural Gas	Fuel Oil	Kerosene		
Electric	Propane	Solar		
wood	Coal			
Domestic hot water tank fo	ueled by: <u>gas</u>		54 (14)	
Boiler/furnace located in:	Basement Outdoors	Main Floor	Other	<u></u>
Air conditioning:	Central Air Window un	its Open Windows	None	
			a a	H

Are there air distribution ducts present?

()

4 Y) N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

Cei	ling		
	0	New York Control of State	
1			
			714
7. OCCUPA	ANCY		
Is basement/l	owest level occupied? Full-time Oc	casionally Seldom	Almost Never
<u>Level</u>	General Use of Each Floor (e.g., familyr	<u>oom, bedroom, laundry, w</u>	orkshop, storage)
Basement	NIA		
1 st Floor	office Istorage I champa	cu da nanal d	, nt
2 nd Floor	<u></u>	g, smpping a	
3 rd Floor			
4 th Floor			ŝ
			a A
8. FACTORS	THAT MAY INFLUENCE INDOOR AIR	QUALITY	
a. Is there a	n attached garage?	YN	
b. Does the	garage have a separate heating unit?	YNNA	
c. Are petro stored in	leum-powered machines or vehicles the garage (e.g., lawnmower, atv, car)	Y / N /NA Please specify_	
d. Has the b	uilding ever had a fire?	Y(N) When?	
e. Is a keros	ene or unvented gas space heater present?	Y (N) Where?	
f. Is there a	workshop or hobby/craft area?	Y/N Where & Type?	р
g. Is there si	noking in the building?	YN How frequently	?
h. Have clea	ning products been used recently?	(Y)/N When & Type?	1you windex yestro
i. Have cosm	netic products been used recently?	Y /N When & Type?	

y

	j. Has painting/staining been done in the last 6 months? (Y)) Where & When? entry building
	k. Is there new carpet, drapes or other textiles? (Y) N Where & When? All New O Pug /Sec
	I. Have air fresheners been used recently?
	m. Is there a kitchen exhaust fan? $(Y)N$ If yes, where vented? $OUTSIDE$
	n. Is there a bathroom exhaust fan? $OV + SI OV$ If yes, where vented? $OV + SI OV$
	o. Is there a clothes dryer? Y (N) If yes, is it vented outside? Y / N
	p. Has there been a pesticide application? Y(N) When & Type?
	Are there odors in the building? If yes, please describe: <u>hew capets well</u>
	Do any of the building occupants use solvents at work? Y/N (e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist
	If yes, what types of solvents are used?
	If yes, are their clothes washed at work?
)	Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response) Yes, use dry-cleaning regularly (weekly)
	Yes, use dry-cleaning infrequently (monthly or less)
	Is there a radon mitigation system for the building/structure? Y N Date of Installation: Is the system active or passive? Active/Passive
	9. WATER AND SEWAGE Water Supply: (Public Water) Drilled Well Driven Well Dug Well Other: Poland
	Sewage Disposal: Public Sewer Septic Tank Leach Field Dry Well Other:
	10. RELOCATION INFORMATION (for oil spill residential emergency)
	a. Provide reasons why relocation is recommended:
	b. Residents choose to: remain in home relocate to friends/family relocate to hotel/motel
1	c. Responsibility for costs associated with reimbursement explained? Y / N
J	d. Relocation package provided and explained to residents? Y / N
28	
· · · · · · · · · · · · · · · · · · ·	

5

l an

 $\left(\right)$

a to show the to do the short of the

ment in the second second

| ()

()

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

an llo

1

dada ara sherara

(

 $\left(\right)$

and the second second

 $\left(\right)$

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

Rap

13. PRODUCT INVENTORY FORM

Line a

-

11

Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y/N</u>
Kthen	4501	1202	U		\overline{O}	Y
	Fantastik	3207	11		Õ	Ý_
-	Pine Glo	1002	Ŭ.		0	Ý
	Acrylic Gramel & Sony	Paint	Remover	- 100501 	0	Ý_
	Pledar	2502	- U		_ 6	ΎΥ
	Gem X handsaniti	802 Zvr	U		Õ	Ý
	WAS TOTALLY AWES	ME 3202	uo		б	Ý
_	Windex	2502	и		0	Y
	Windlex Antrbact.	lgt	U		0	Y
	Raid Max Pouch	14.502	U		0	Ý.
Export	Paints X.3	12602	U		0	Y
	Joint compound X2	5al	U		0	Y
					2.522	

* Describe the condition of the product containers as **Unopened (UO)**, Used (U), or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

BTSA\Sections\SIS\Oil Spills\Guidance Docs\Aiproto4.doc

OSR - 3

Let :--

-

()

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name <u>Celeste Foster</u> Date/Time Prepared	1/26/2010	1400
Preparer's Affiliation $AECO m$ Phone No. 97.3	338-6680	\supset
Purpose of Investigation_Soil Vapor Intrusion	<u>.</u>	
1. OCCUPANT:		
Interviewed: Y)N	40	
Structure 13		
2. OWNER OR LANDLORD: (Check if same as occupant)		
Interviewed: Y(N) Spiegel & Associated		
Last Name: First Name:	<u>-</u>	
Address:		
County:		
Home Phone: Office Phone:		
	*	
3. BUILDING CHARACTERISTICS	*	
Type of Building: (Circle appropriate response)	20 20 10	
Residential School Commercial/Multi-use Industrial Church Other:		
	2	

2

a sustaine sustaine de la constant a constant

-

....l.

) i

()

 \bigcirc

If the property is residenti	al, type? (Circle appropri	te response) N/A	
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other:	
If multiple units, how man	y? N/A		
If the property is commerc	ial, type?		
Business Type(s) <u></u> K	etail		
Does it include residence	es (i.e., multi-use)? Y /	If yes, how ma	ny?
Other characteristics:	,		
Number of floors	Build	ng age ~30yrs	
Is the building insulated	YN How	ir tight? Tight / Average	Not Tight
Airflow between floors			
	· · · ·		
Airflow near source 10 000 QA Same Same	rage door	s lentronce	
	1. /		
Outdoor air infiltration	Tride		
Outdoor air infiltration	Tside		
Outdoor air infiltration	Tside		
Outdoor air infiltration	Tide		
Outdoor air infiltration	Jside	·····	

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction:	wood frame	concrete	stone	brick			
b. Basement type:	full	crawlspace	slab	other N/A			
c. Basement floor:	concrete	dirt	stone	other N/A			
d. Basement floor:	uncovered	covered	covered with	N/A			
e. Concrete floor:	unsealed	sealed	sealed with				
f. Foundation walls:	poured	block	stone	other			
g. Foundation walls:	unsealed	sealed	sealed with _				
h. The basement is:	wet	damp	dry	moldy N/A			
i. The basement is:	finished	unfinished	partially finis	hed N/A			
j. Sump present?	YN			3			
k. Water in sump? Y / N	/not applicable	$\mathbf{)}$					
Basement/Lowest level depth below grade: 1/A (feet)							

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

racks in slab in groge, metal slatin center 00 0

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply - note primary)

(Hot air circulation	> Heat pump	Hot water baseboard
Space Heaters	Stream radiation	Radiant floor
Electric baseboard	Wood stove	Outdoor wood boiler Other
The primary type of fuel used	d is:	tenant said there
Natural Gas	Fuel Oil	Kerosene Was a heart P
Electric	Propane	solar on the pot that
Wood	Coal	1 1 0 0 0 8
Domestic hot water tank fuel	ed by: <u>Elechic</u>	Used gas !
Boiler/furnace located in:	Basement Outdoors	Main Floor Other
Air conditioning:	Central Air Window units	Open Windows None
	2043.002	vi 27 Σ2 Σ2 ►

Are there air distribution ducts present?

1.1

te i num 🏰 di adens

 $\int_{-\infty}^{+\infty} \frac{1}{2}$

)

4 Y(N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

9 <u></u>	i		<u> </u>
£-			<u> </u>
×	1, 10 - 111 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Sub N	
2	2 		
7. OCCUPA	NCY		
Is basement/lo	west level occupied? Full-time Od	ccasionally Seldom	Almost Never
Level	General Use of Each Floor (e.g., family	room, bedroom, laundry, w	orkshop, storage)
Deserves	_		
1 st Elece	arrive / bata //ct		
	OPPICE / RETAIL / ST	oracy	-
3 Floor		<u></u>	
4 th Floor		<u></u>	<u>.</u>
8. FACTORS	THAT MAY INFLUENCE INDOOR AIF	QUALITY	
a. Is there ar	attached garage?	Y/N	
b. Does the g	arage have a separate heating unit?	Y/N NA	
c. Are petrol	eum-powered machines or vehicles	Y/N NA	
stored in t	he garage (e.g., lawnmower, atv, car)	Please specify_	
d. Has the bu	ulding ever had a fire?	Y (N') When?	
e. Is a kerose	ne or unvented gas space heater present?	Y (N) Where	·
f. Is there a v	vorkshop or hobby/craft area?	Y(N) Where & Type	?
g. Is there sn	noking in the building?	Y / How frequently	?
h. Have clear	ing products been used recently?	Y /N When & Type?	й.
i. Have cosm	etic products been used recently?	\sqrt{N} When & Type?	

j. Has painting/staining been done in the last 6 months?	Y N Where & When?
k. Is there new carpet, drapes or other textiles?	Y N Where & When?
I. Have air fresheners been used recently?	(YPN When & Type? 14sol/Febreeze da
m. Is there a kitchen exhaust fan?	Y/N. If yes, where vented?
n. Is there a bathroom exhaust fan?	Y/N If yes, where vented? <u>outs</u> cle
o. Is there a clothes dryer?	Y / N If yes, is it vented outside? Y / N
p. Has there been a pesticide application?	Y /N When & Type?
Are there odors in the building? If yes, please describe:	YN
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or a boiler mechanic, pesticide application, cosmetologist	Y N auto body shop, painting, fuel oil delivery,
If yes, what types of solvents are used?	
If yes, are their clothes washed at work?	YN
Do any of the building occupants regularly use or work at a response)	dry-cleaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	No Unknown
Is there a radon mitigation system for the building/structure Is the system active or passive? Active/Passive	e? YN Date of Installation:
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well Driven	Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Leach	Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill residentia	l emergency)
a. Provide reasons why relocation is recommended:	
b. Residents choose to: remain in home relocate to fries	nds/family relocate to hotel/motel
c. Responsibility for costs associated with reimbursement	t explained? Y / N
d. Relocation package provided and explained to resident	ts? Y/N

5

-

Harris I.

22 22 22 (``)

()

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

 \bigcap

. असे जिसका ह

1

{

12. OUTDOOR PLOT

s subbut data a

ा मा ग

 $\left(\right)$

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

1

13. PRODUCT INVENTORY FORM

ĺ

. d. 16.

긜

Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
batwoon	ScrubbingTes	2502	U	NL	0	Y
	Dial	Igal	U_	TRICOL SAN Water	unt O	Ý
	Lysol x 4 total	1202	(300)	NL	\mathcal{O}	X
	Clorox	29t	U	2	0	Ý
	12mon batycomdw	1200Z	U		0	Y
	Raiel Hase \$ lad	- Moz.	U		0	Х
	Winder	19a1	\mathcal{U}		ð	<u>_</u>
	Softsaap	Igal	U		\mathcal{O}	Ý.
garage	Pledge the	1402	V			/
Belaset	Gunk Siliconspu	16z	16			
	Motor 01/	3202	UU			
	Minute de van	V2	UO		2	
	Trail blazer X	Isal	, 00			
	Paint-X3 Behr	3 cans	UO			
-	Febreze.	1002	UO			
	Pledge	1402	UO	а. 		
	Windex	1gdl	US	7.		V
	CLOROX	2402	VO		\vee	
·	Scribbingbibble	2502	UD			

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

BTSA\Sections\SIS\Oil Spills\Guidance Docs\Aiproto4.doc

APPENDIX C

Photo Log

Indoor Air Sampling – 2010

Sampling Structure 1 Sub-Slab

Sampling Structure 1 Indoor Air

Utility Manufacturing/Wonder King Westbury, NY Photo Log

Sampling Structure 1 Indoor Air

Sampling Structure 1 Outdoor Air

Sampling Structure 7 Sub-Slab and Indoor Air

Sampling Structure 7 Sub-Slab

Sampling Structure 7 Sub-Slab

Sampling Structure 7 Indoor Air

Utility Manufacturing/Wonder King Westbury, NY Photo Log

Sampling Structure 7 Outdoor Air

Sampling Structure 13 Indoor Air

Sampling Structure 13 Indoor Air

Sampling Structure 13 Sub-Slab

Groundwater Sampling – 2010

Monitoring Well Installation

NC-12 Location - Not Sampled

APPENDIX D

Laboratory Data and Data Usability Summary Reports on CD