

Environment

Prepared for: NYSDEC Albany, NY Prepared by: AECOM Chestnut Ridge, NY 60269807 October 2015

Annual Long Term Monitoring Report For 2015 Utility Manufacturing/Wonder King (Site No. 130043H) October 28, 2015

1.0	Introd	uction		1
	1.1	Backgro	bund	1
	1.2	Previou	s Investigations Conducted at the Utility Manufacturing Site	1
	1.3	Selecte	d Remedy	2
2.0	Field	Investig	ation	3
	2.1	Ground	water Sampling	3
3.0	Labor	atory Ar	nalytical Results	4
	3.1	Ground	water Samples	
		3.1.1		4
		3.1.2	MNA Data	5
4.0	Data \	/alidatio	n	8
5.0	Concl	usions a	and Recommendations	9
6.0	Refere	ences		10

List of Appendices

Appendix A	Field Forms
------------	-------------

Appendix B Data Usability Summary Reports

List of Tables

- Table 1 Well Construction Data
- Table 2 Groundwater Elevations
- Table 3 VOCs in Groundwater
- Table 4 MNA Parameters in Groundwater

- Figure 1 Site Location Map
- Figure 2 Monitoring Well Locations
- Figure 3 Groundwater Elevations Shallow Wells May 2015
- Figure 4 Groundwater Elevations Deep Wells May 2015
- Figure 5 Groundwater Sampling Results
- Figure 6 Groundwater VOC Concentrations over Time
- Figure 7 Groundwater MNA Parameter Concentrations over Time

1.0 Introduction

AECOM Technical Services Northeast, Inc. (AECOM) has been issued Work Assignment #D007626-16 under the New York State Department of Environmental Conservation (NYSDEC) State Superfund Standby Program. The site under this work assignment is Utility Manufacturing/Wonder King (Utility Manufacturing), Operable Unit No. 2 (Site No. 130043H). The location of the site is shown on Figure 1.

The scope of work for this project consisted of collecting a round of groundwater samples from nine wells in 2013. The work was performed in accordance with NYSDEC Division of Environmental Remediation Final DER-10 Technical Guidance for Site Investigation and Remediation (NYSDEC, May 2010). The annual long term monitoring report for 2013 was converted to a periodic review report, which was submitted December 30, 2013. The scope of work was amended on May 16, 2014 to include annual long term groundwater monitoring and reporting for 2014 through 2017.

1.1 Background

The Utility Manufacturing site is located at 700-712 Main Street (south side) between Bond Street and Frost Street, approximately 500 feet (ft) north of Old Country Road in the New Cassel Industrial Area (NCIA), Westbury, Nassau County, New York. The site and study area for Operable Unit No. 2 are located within the NCIA (Figure 1), which is a 170-acre industrial and commercial area on the north side of Old Country Road. The sites within the Operable Unit No. 2 consist mostly of commercial and industrial operations including an auto repair facility, auto garage, office spaces, warehouse, and machine tool shop. The Former Applied Fluidics site, No. 130043M, is located approximately 750 feet east of the Utility Manufacturing site. The 89 Frost Street site, No. 130043L, and the Former Autoline Automotive site, No. 130043I, are adjacent to the Former Applied Fluidics site. All three of these sites are Class 2 sites.

1.2 Previous Investigations Conducted at the Utility Manufacturing Site

AECOM completed the initial scope of work for this project including project scoping, preparation of plans and specifications, oversight of construction services including sub-slab depressurization system installation at one facility and installation of six monitoring wells, and one round of groundwater and indoor air sampling under Work Assignment #D004436-32 issued by NYSDEC. The work was performed in accordance with NYSDEC Division of Environmental Remediation Final DER-10 Technical Guidance for Site Investigation and Remediation (NYSDEC, May 2010) and the Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH; Final, October 2006). The work conducted under the initial scope (well installation, groundwater sampling, and indoor air sampling) was completed in 2010 and documented in the Final Annual Long Term Monitoring Report (AECOM, 2011). In August 2011, two rounds of monitoring well sampling and vapor intrusion sampling at two structures was conducted. One round of monitoring well sampling and soil vapor intrusion sampling at one structure conducted in 2011 was documented in the Annual Long Term Monitoring Report for 2011 (AECOM, 2012a). One round of monitoring well sampling in 2012 was documented in the Annual Long Term Monitoring Report for 2012 (AECOM, 2012b). The Periodic Review Report Review Period November 27, 2012 to December 14, 2013 (AECOM, 2013) which was prepared for the site included documentation of one round of groundwater sampling in 2013.

A summary of the site investigations conducted for the Utility Manufacturing site between 1986 and 2007 is provided in the Record of Decision (ROD) dated March 2008 for Operable Unit No. 2 (NYSDEC, 2008).

1.3 Selected Remedy

A ROD presenting the selected remedy for Operable Unit No. 2 was finalized by NYSDEC in March 2008. The elements of the selected remedy are as follows:

- 1. Implementation of a remedial design program to provide the details necessary for the construction, operation, maintenance, and monitoring of the remedial program.
- 2. Installation of sub-slab depressurization systems in three off-site buildings that have vapor intrusion impacts.
- Collection of periodic sub-slab vapor, indoor air and outdoor air samples at three properties where the potential for vapor intrusion exists. Periodic sampling will continue until sampling results indicate that continued sampling is no longer required.
- 4. Natural attenuation of groundwater contamination within the study area.
- 5. Imposition of an institutional control in the form of an environmental easement on the site that will require: (a) compliance with the approved site management plan; and (b) the property owner to complete and submit to NYSDEC (the Department) a periodic certification of institutional and engineering controls.
- Development of a site management plan which will include the following institutional and engineering controls: (a) monitoring of groundwater, sub-slab vapor, indoor air and outdoor air; and (b) provisions for the continued proper operation and maintenance of the components of the remedy.
- 7. Provision of a periodic certification of institutional and engineering controls by the property owner, prepared and submitted by a professional engineer or such other expert acceptable to the Department, until the Department notifies the property owner in writing that this certification is no longer needed.
- 8. Continued operation of the components of the remedy until the remedial objectives have been achieved, or until the Department determines that continued operation is technically impracticable or not feasible.
- 9. Since the remedy results in untreated hazardous waste remaining at the site, a long-term monitoring program will be instituted. Up to nine monitoring wells will be sampled periodically for VOCs to track the progress of the natural attenuation. In addition, sub-slab vapor, indoor air and outdoor air samples will be obtained and analyzed for VOCs at three buildings with potential vapor intrusion impacts. This program will allow the effectiveness of the natural attenuation and soil vapor intrusion mitigation measures to be monitored and will be a component of the operation, maintenance, and monitoring for the site.

Vapor intrusion sampling at three structures (item 3) and groundwater monitoring sampling (item 9) were conducted in 2010 and documented in the Final Annual Long Term Monitoring Report for 2011 (AECOM, 2011). Of the three off-site buildings identified for installation of sub-slab depressurization systems (item 2), property managers for two of the structures (6 and 9) have declined to have the systems installed. NYSDEC has proposed to collect vapor intrusion samples from these structures instead. To date, the firm managing Structure 9 has declined to have the vapor intrusion samples collected. Subsequent testing at Structure 6 indicates an SSDS system is not required. Since finalizing the ROD, NYSDEC has determined that an environmental easement (item 5) is not needed for the site (NYSDEC, 2012). A site management plan (AECOM, 2012c) was approved for the site by NYSDEC in September 2012 (item 6). The groundwater sampling documented in this report was completed in accordance with the long-term monitoring requirements for the site (item 9).

2.0 Field Investigation

Groundwater sampling and collection of groundwater elevation measurements was conducted in May 2015. Groundwater samples were collected from the nine wells shown on Figure 2. Well construction data is provided in Table 1. A well inspection checklist was completed for each monitoring well sampled. Field forms are provided in Appendix A.

2.1 Groundwater Sampling

AECOM collected one round of samples from two wells installed for the off-site remedial investigation (MW1S and MW1D), six wells installed off-site in May 2010 (MW11S, MW11D, MW12S, MW12D, MW13S, and MW13D), and one well installed by Nassau County (NC-12). Well sampling forms showing compliance with EPA low-flow sampling procedures (EPA SOP, 1998) are provided in Appendix A. A bladder pump was used for sampling. The pump intake was set at the midpoint of the screened interval. Dedicated Teflon-lined tubing was used for all groundwater sample collection. Field measurements recorded during purging include flow rate, depth to water, temperature, pH, conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP) and turbidity. The measurements were recorded on a well sampling form. Measurements were collected approximately every five minutes. A flow-through cell was used to measure the parameters. Purging was considered complete when the indicator parameters stabilized over three consecutive readings. If the groundwater parameters did not stabilize, the samples were collected after two hours of purging. Stabilization parameters are:

- depth to water: less than 0.3 ft drawdown during purging;
- pH: ± 0.1
- conductivity: ± 3%
- DO: ± 10 % or less than 5 mg/L
- ORP: ±10 mV and
- Turbidity: ± 10 % or less than 5 (NTU)
- Temperature: ± 3 %.

During sample collection, the flow cell was disconnected and the sample tubing discharge was poured directly into the laboratory-supplied sample containers and field vials. Water samples were collected in pre-preserved bottles provided by the laboratory, cooled to 4°C after collection, and shipped to the subcontracted laboratory for analysis of VOCs, dissolved iron (field filtered), sulfates, nitrates, carbon dioxide, and methane. All parameters other than VOCs are referred to as monitored natural attenuation (MNA) parameters. Analyses were performed by Pace Analytical Services, Inc. (formerly H2M Labs, Inc.), Melville, New York, a NYSDOH Environmental Laboratory Approval Program (ELAP) certified lab (ELAP ID 10478).

A round of water table elevation data for the monitoring wells was collected on May 27, 2015, prior to groundwater sampling. All wells were sampled between May 27, 2015 and May 28, 2015. The results are presented in Table 2. Groundwater elevations are shown on Figure 3 for the shallow wells and Figure 4 for the deep wells. The groundwater flow direction appears to be to the south.

3.0 Laboratory Analytical Results

3.1 Groundwater Samples

3.1.1 VOC Data

Groundwater samples were collected from nine wells and submitted for the following analyses: VOCs (EPA SW-846 Method 8260), dissolved iron (EPA SW-846 Method 6010B), sulfates (EPA 300.0), nitrates (EPA 353.2), carbon dioxide (EPA SM4500CO2 D), dissolved oxygen (EPA 360.2), and methane (EPA RSK-175). The VOC groundwater results are compared to the NYS Class GA groundwater criteria and presented in Table 3. VOC detections are summarized on Figure 5. A summary of concentrations exceeding the NYS Class GA groundwater criteria are provided below:

- Tetrachloroethene (PCE) was detected in all wells except MS12S and NC-12. The concentrations exceed the NYS Class GA criterion of 5 μ g/L in three of the nine wells with concentrations of 6 μ g/L (MW13S), 12 μ g/L (MW1D), and 13 μ g/L (MW11D);
- Trichloroethene (TCE) was detected in wells MW11D, MW12D, MW13S, MW13D, and MW1D. The concentrations exceed the NYS Class GA criterion of 5 μg/L in MW13D (11 μg/L) and MW1D (61 μg/L);
- Cis-1,2-dichloroethene (cis-1,2-DCE) was detected in all wells except MW12S, MW12D, and NC-12. The concentration exceeds the NYS Class GA criterion of 5 μg/L in MW13S (17 μg/L).
- Trans-1,2-dichloroethene was not detected in any of the wells;
- 1,1-Dichloroethene (1,1-DCE) was detected in MW11D, MW12D, MW13S, MW13D, and MW1D. The concentration exceeds the NYS Class GA criterion of 5 μ g/L in MW1D (16 μ g/L);
- 1,1,1-Trichloroethane (1,1,1-TCA) was detected in MW1D, MW12D, and MW13S. The concentrations are below the NYS Class GA criterion of 5 μ g/L; and,
- 1,1-Dichloroethane (1,1-DCA) was detected in MW1D, MW11D, and MW13S. The concentration exceeds the NYS Class GA criterion of 5 μg/L in MW13S (10 μg/L).

The VOC concentrations for parameters with exceedances of the NY Class GA criteria are presented over time in Figure 6. Groundwater samples collected from monitoring wells MW1S and MW1D in 2005 for the remedial investigation (ERM, 2005) are also included. The concentrations were compared as follows:

- Shallow well concentration differs from the deeper well concentration by more than 5 µg/L;
- The concentration differs from the previous year by more than 5 μg/L; and,
- The concentration in the well is greater than the NY Class GA criterion (5 μ g/L for each parameter) or greater than twice the NY Class GA criterion.

A description of the data collected in 2015 compared to data collected in 2014 is provided below.

For wells MW11S and MW11D, the current PCE concentration in the deep well is more than 5 μ g/L higher than in the shallow well. The PCE concentration in MW11D is greater than the NY Class GA criterion of 5 μ g/L (13 μ g/L). The PCE concentration in MW11D increased in 2015 compared to the concentration in 2014. No other parameters have exceedances in these wells in 2014 and 2015.

For wells MW12S and MW12D, the 2014 and 2015 concentrations are below the NY Class GA criteria.

For wells MW13S and MW13D, the TCE concentration in the deep well is more than 5 μ g/L higher than in the shallow well, and the TCE concentrations in the deep well is greater than twice the NY Class GA criterion. The TCE concentrations in the shallow and deep wells decreased more than 5 μ g/L over the 2014 level. The cis-1,2-DCE concentration in the shallow well is more than 5 μ g/L higher than in the deep well. The cis-1,2-DCE concentration in the shallow well has decreased more than 5 μ g/L from the 2014 level.

For wells MW1S and MW1D, the concentrations are lower in the shallow well than in the deeper well by more than 5 μ g/L for PCE, TCE, and 1,1-DCE. Concentrations are greater than twice the NY Class GA criterion of 5 μ g/L for PCE, TCE, and cis-1,2-DCE in MW1D. The concentration TCE declined between 2014 and 2015 in well MW1D by more than 5 μ g/L.

For NC-12, there were no VOC detections in 2014 or 2015.

The groundwater concentrations generally appear to be stabilizing over time. All concentrations are within 5 μ g/L of the 2014 levels or have declined by more than 5 μ g/L. There were no exceedances of criteria in MW-11S, MW12S, MW12D, MW1S or NC-12 in 2013, 2014 and 2015. The concentration of TCE has declined in MW1D since 2014. The VOC concentrations in MW13S and MW13D which are located farther to the west generally decreased compared to the 2014 levels.

3.1.2 MNA Data

The results for laboratory MNA parameters are provided in Table 4. The final field measurements of temperature and dissolved oxygen are also listed. The data were evaluated to determine whether reductive dechlorination is occurring.

Biologically-mediated reductive dechlorination of chlorinated VOCs occurs through a series of progressive biochemical reactions where chloride atoms are replaced by hydrogen atoms to sequentially dechlorinate the chlorinated ethenes.

 $PCE \rightarrow TCE \rightarrow DCE \rightarrow vinyl chloride \rightarrow ethene$

1,1,1-TCA \rightarrow 1,1-DCA \rightarrow chloroethane \rightarrow ethane

Because the chlorinated ethenes are acting as electron acceptors the availability of other electron acceptors will compete with the process. Therefore, reductive dechlorination is more efficient in reducing conditions (ORP less than -75 mV). Dissolved oxygen is a strong oxidizing agent (electron acceptor) so negligible levels of dissolved oxygen are necessary for the process to occur efficiently. In conditions sustaining anaerobic activities (dissolved oxygen less than 0.5 mg/L) nitrate, ferric iron and sulfate will act as electron acceptors that compete with reductive dechlorination. The anaerobic generation of methane (methanogenesis) during the biodegradation of organic carbon is an indication of a highly reducing environment. Furthermore, in order for most of the common bacteria to thrive, the groundwater must be circumneutral (pH between 6.0 and 8.5).

For microbial-mediated reactions, aerobic reactions are the most energetically favorable. As dissolved oxygen is consumed, microbes use electron acceptors in the order of reducing energy efficiencies (denitrification of nitrate, manganese reduction, ferric iron reduction, sulfate reduction,

carbon dioxide in methanogenesis). Biotic reductive dechlorination typically occurs most favorably in the ORP range needed for sulfate reduction or methanogenesis (i.e., below -100 mV).

- <u>pH</u>: Water quality measurements indicate that the groundwater is slightly acidic (pH 5.50 to 6.54), and five of the nine wells sampled have pH values less than pH 6.0. The low pH values observed are below the range indicated above and could limit biological natural attenuation processes.
- <u>ORP</u>: Water quality measurements collected in real time during the field sampling indicate that the groundwater conditions are generally oxidizing (ORP 205 to 314 mV) in all of the nine wells. Biotic reductive dechlorination does not occur under these oxidizing conditions.
- <u>Dissolved Oxygen:</u> Water quality measurements collected in real time and laboratory analyses for dissolved oxygen indicate that the monitoring wells have high levels of dissolved oxygen (lab values ranged from 3.48 to 22.4 mg/L). The availability of dissolved oxygen as an electron acceptor limits reductive dechlorination.
- <u>Nitrate:</u> was detected in all nine wells sampled (0.9 mg/L to 6.0 mg/L). Under the conditions required for reductive dechlorination, nitrate is converted to nitrite and ammonia through denitrification. Therefore, the presence of nitrate indicates unfavorable conditions for reductive dechlorination. Nitrate concentrations have been relatively stable from 2010 to 2015.
- <u>Dissolved Iron</u>: An increase in dissolved ferrous iron (Fe II) may indicate reducing conditions since it indicates the reduction of insoluble ferric iron (Fe III). Total dissolved iron was detected at very low concentrations (<1 mg/L) in all of the nine monitoring wells.
- <u>Sulfate</u> was detected in all nine wells sampled (10 mg/L to 45 mg/L). In the environment required for reductive dechlorination, sulfate reducing bacteria would convert sulfate to sulfide and sulfate concentrations would decrease. Such conditions would be favorable for reductive dechlorination of most of the chlorinated ethenes. Sulfate concentrations have been relatively stable from 2010 to 2015.
- <u>Methane</u> is a byproduct of microbial degradation using carbon dioxide as an electron acceptor, and the presence of methane is an indicator of reducing conditions in groundwater, such conditions would be optimal for reductive dechlorination. Methane was not detected above 1 mg/L in any of the nine monitoring wells sampling in May 2015.
- <u>Carbon dioxide</u>: An increase in carbon dioxide may provide an indication of microbial processes. Carbon dioxide was detected in all wells with concentrations ranging from 1,800 μg/L to 18,000 μg/L. These values are consistent with the previous sampling rounds.
- <u>Daughter products</u> are another indicator of reductive dechlorination processes, and increases in daughter products accompany decreases in parent VOCs as shown in the reactions above (i.e., increase in cis-1,2-DCE as TCE decreases). In addition, 1,1-DCA is an abiotic breakdown product of 1,1,1-TCA. Concentrations of TCE were detected in five of the nine wells and 1,2-DCE was detected in six of the nine monitoring wells. Concentrations of 1,1-DCA were detected in three of the nine monitoring wells. Daughter products of both PCE and 1,1,1-TCA have been relatively stable over time. In addition, chloroethane and vinyl chloride were not detected.

The concentrations for 2010 through 2015 are shown over time for VOCs exceeding the NYS Class GA Groundwater Criteria in Figure 6 and for methane, carbon dioxide, sulfate, nitrate, dissolved oxygen in Figure 7. From the evaluation of MNA analyses and water quality parameters in this section, there is no evidence suggesting that biological reductive dechlorination is occurring in site groundwater for the majority of the monitoring wells. The overall biogeochemical environment in the wells tends to favor aerobic bacteria. Reductions in concentrations of VOCs are mostly likely the result of dilution and dispersion and to a lesser extent sorption and volatilization. For bioremediation

of site VOCs to occur, the pH would need to be raised to circumneutral levels and groundwater would need to become more reducing.

4.0 Data Validation

Data validation was provided by Environmental Data Services, Inc. (EDS) of Williamsburg, Virginia, an independent chemist under subcontract to AECOM. Data usability summary reports (DUSRs) for each sample delivery group (SDG) are included in Appendix B.

Groundwater data from samples collected in May 2015 were reported by Pace Analytical Services, Inc., Melville, New York as one SDG, AECOM238. A total of 15 analyses were validated, including two trip blanks, one storage blank, one matrix spike/matrix spike duplicate (MS/MSD) pair, one field duplicate, and nine environmental samples.

AECOM238: There were no rejections of data. Overall, the data are acceptable for the intended purposes as qualified for the following deficiencies:

- Cis-1,2-Dichloroethene was qualified as estimated in one sample due to a high MS/MSD recovery.
- Two compounds (bromomethane and dichlorodifluoromethane) were qualified as estimated in all samples due to high continuing calibration percent difference values.

5.0 Conclusions and Recommendations

Groundwater sampling was performed at the Utility Manufacturing site in Westbury, NY with field work conducted in May 2015. A summary of the sampling effort is provided below:

- The groundwater flow direction appears to be to the south.
- All groundwater concentrations are within 5 μg/L of the 2014 levels or have declined by more than 5 μg/L. There were no exceedances of criteria in MW-11S, MW12S, MW12D, MW1S or NC-12 in 2013, 2014, or 2015.
- Groundwater concentrations in the shallow wells have decreased over time such that only cross-gradient well MW13S has detects over the NYS Class GA criteria. Groundwater concentrations in the deep wells MW1D and MW11D are above the NYS Class GA criteria for several compounds and do not show any discernible trends, while cross-gradient well MW13D has shown a definitive downward trend.
- Review of the MNA and VOC data indicate that natural attenuation is occurring primarily through dilution and dispersion and to a lesser extent sorption and volatilization.
- Continued annual groundwater monitoring is recommended due to detections of VOCs in the May 2015 samples exceeding the NYS Class GA groundwater criteria.

6.0 References

AECOM, 2007. Supplemental Remedial Investigation Report (Off-Site Soil Vapor Intrusion Site Characterization), Utility Manufacturing/Wonder King, OU 2, Town of North Hempstead, New York. October.

AECOM, 2011. Final Annual Long Term Monitoring Report, Utility Manufacturing/Wonder King, OU 2, Town of North Hempstead, New York. January.

AECOM, 2012a. Final Annual Long Term Monitoring Report for 2011, Utility Manufacturing/Wonder King, OU 2, Town of North Hempstead, New York. May.

AECOM, 2012b. Final Annual Long Term Monitoring Report for 2012, Utility Manufacturing/Wonder King, OU 2, Town of North Hempstead, New York. August.

AECOM, 2012c. Site Management Plan, Utility Manufacturing/Wonder King, OU 2, Town of North Hempstead, New York. August.

AECOM, 2013. Periodic Review Report Review Period November 27, 2012 to December 14, 2013, Utility Manufacturing/Wonder King (Site No. 130043H), December 30, 2013

Environmental Resources Management (ERM), 2005. Off-Site Remedial Investigation Report, Utility Manufacturing, New Cassel, Town of North Hempstead, Nassau County, NY. December.

New York State Department of Health (NYSDOH), 2003. Fact Sheet: Tetrachloroethene (Perc) In Indoor and Outdoor Air. May.

NYSDOH, 2006. Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October.

New York State Department of Environmental Conservation (NYSDEC), 1994. Technical and Administrative Guidance Memorandum #4046. Determination of Soil Cleanup Objectives and Cleanup Levels. January.

NYSDEC, 2008. Record of Decision Utility Manufacturing/Wonder King Site Operable Unit No. 2 Town of North Hempstead, Nassau County, New York. Site Number 130043H. March.

NYSDEC, 2010. NYSDEC Division of Environmental Remediation DER-10 Technical Guidance for Site Investigation and Remediation. May.

NYSDEC, 2012. Memo Modification to the Record of Decision, Utility Manufacturing/Wonder King Site Operable Unit No. 2 Town of North Hempstead, Nassau County, New York. Site Number 130043H. April.

				Top of	Total
Well			Ground	Casing	Depth of
Number	Northing	Easting	Elevation	Elevation	Well
MW-1D	214,707.10	1,106,646.90	120.18	119.77	130
MW-1S	214,708.46	1,106,651.34	120.28	119.82	90
MW-11D	214,701.44	1,106,744.20	119.77	119.51	124
MW-11S	214,706.18	1,106,741.07	119.96	119.66	95
MW-12D	214,675.55	1,106,597.69	118.56	118.26	125
MW-12S	214,670.11	1,106,598.27	118.51	117.88	95
MW-13D	214,630.74	1,106,353.23	116.82	116.41	126
MW-13S	214,625.69	1,106,354.25	116.66	116.32	96
FSMW-07A	214,823.99	1,107,063.34	122.84	122.7	70
FSMW-07B	214,817.40	1,107,063.14	122.84	122.73	150
MW-02	215,480.78	1,106,935.05	123.48	122.49	58
MW-08	215,542.41	1,106,801.90	122.86	122.68	60.35
MW-09	215,055.99	1,106,860.06	122.08	121.86	62.05
NC-12	214,665.28	1,107,007.09	121.9	121.1	54
NC-25	215,133.85	1,106,575.82	119.28	119.05	60
U-1	215,414.79	1,106,492.01	124.2	124.03	67

Table 1 Well Construction Data

Notes:

All elevations and depths are in feet. Vertical datum: NAVD88 Horizontal datum: NY State Plane NAD83

	Top of	Depth											
Well	Inner	To Water	Elevation										
Number	Casing	5/12/10	5/12/10	8/9/11	8/9/11	4/24/12	4/24/12	6/20/13	6/20/13	6/3/14	6/3/14	5/28/15	5/28/15
MW-1D	119.77	42.4	77.37	45.59	74.18	43.84	75.93	44.06	75.71	46.52	73.25	46.18	73.59
MW-1S	119.82	41.85	77.97	45.58	74.24	43.82	76.00	44.05	75.77	46.38	73.44	46.21	73.61
MW-11D	119.51	42.74	76.77	46.65	72.86	44.7	74.81	44.95	74.56	47.36	72.15	47.13	72.38
MW-11S	119.66	42.76	76.90	46.5	73.16	44.66	75.00	45.01	74.65	47.37	72.29	47.2	72.46
MW-12D	118.26	41.47	76.79	45.25	73.01	43.52	74.74	43.76	74.50	45.6	72.66	45.82	72.44
MW-12S	117.88	41.08	76.80	44.82	73.06	43.12	74.76	43.38	74.50	46.1	71.78	45.43	72.45
MW-13D	116.41	39.74	76.67	43.5	72.91	41.81	74.6	42.1	74.31	44.35	72.06	44.11	72.3
MW-13S	116.32	39.68	76.64	43.4	72.92	41.73	74.59	42.05	74.27	44.27	72.05	43.97	72.35
FSMW-07A	122.7	NM	NM	48.67	74.03								
FSMW-07B	122.73	NM	NM	49.04	73.69								
MW-02	122.49	NM	NM	NM	NM	NM	NM	46.28	76.21	NM	NM	47.93	74.56
MW-08	122.68	NM	NM	48.06	74.62								
MW-09	121.86	NM	NM	38.51	83.35								
NC-12	121.1	NM	NM	NM	NM	NM	NM	45.25	75.85	47.6	73.5	47.44	73.66
NC-25	119.05	NM	NM	44.92	74.13								
U-1	124.03	NM	NM	49.65	74.38								

Table 2 Groundwater Elevations

Notes:

All elevations and depths are in feet. Vertical datum: NAVD88 NM - No measurement

	NYS	MW11S	MW11S	MW11S	MW11S	MW11S	(dup)	MW11S	(dup)
Units: μg/L	Class GA	5/12/2010	10/3/2011	4/24/2012	6/20/2013	6/3/2014	6/3/2014	5/27/2015	5/27/2015
1,1,1-Trichloroethane	5	1 U	0.78 J	1 UJ	5 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5	1 U	1 U	1 U	5 U	5 UJ	5 UJ	5 U	5 U
1,1,2-Trichloroethane	1	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichlorotrifluoroethane	5	1 U	1 U	1 U	NA	NA	NA	NA	NA
1,1-Dichloroethane	5	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethene	5	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
1,2,4-Trichlorobenzene	5	1 U	1 U	1 U	5 UJ	5 UJ	5 UJ	5 U	5 U
1,2-Dibromo-3-chloropropane	0.04	1 U	1 UJ	1 U	5 UJ	R	R	5 U	5 U
1,2-Dibromoethane (EDB)	5	1 U	1 U	1 U	5 U	5 UJ	5 UJ	5 U	5 U
1,2-Dichlorobenzene	3	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane	0.6	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethene, Total	5	2 U	1 U	NA	3	1.5	1.7	2 J	2
1,2-Dichloropropane	1	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
1,3-Dichlorobenzene	3	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
1,4-Dichlorobenzene	3	1 U	1 U	1 U	5 UJ	5 U	5 U	5 U	5 U
2-Butanone (MEK)	5	5 U	R	5 U	5 UJ	5 UJ	5 UJ	5 U	5 U
2-Hexanone	5	5 U	5 U	5 U	5 UJ	5 UJ	5 UJ	5 U	5 U
4-Methyl-2-pentanone (MIBK)	5	5 U	5 U	5 U	5 UJ	5 UJ	5 UJ	5 U	5 U
Acetone	5	5 U	R	R	5 UJ	5 U	5 U	5 U	5 U
Benzene	1	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
Bromodichloromethane	5	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
Bromoform	5	1 U	1 UJ	1 U	5 U	5 U	5 U	5 U	5 U
Bromomethane	5	1 UJ	1 U	1 U	5 UJ				
Carbon disulfide	60	1 U	1 UJ	1 U	5 U	5 U	5 U	5 U	5 U
Carbon Tetrachloride	5	1 U	1 U	1 UJ	5 U	5 U	5 U	5 U	5 U
Chlorobenzene	5	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
Chlorodibromomethane	NA	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
Chloroethane	5	1 U	1 U	1 U	5 UJ	5 U	5 U	5 U	5 U
Chloroform	7	1 U	1 UJ	1 U	5 U	5 U	5 U	5 U	5 U
Chloromethane	5	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	1 U	1 U	1 U	3 J	1 J	2 J	2 J	2 J
cis-1,3-Dichloropropene	0.4	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
Cyclohexane	NA	1 U	1 U	1 UJ	5 U	5 U	5 U	5 U	5 U
Dichlorodifluoromethane	5	1 U	1 U	1 UJ	5 U	5 U	5 U	5 UJ	5 UJ
Ethylbenzene	5	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
Isopropylbenzene	5	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
Methyl Acetate	NA	1 U	1 U	1 UJ	5 U	5 U	5 U	5 U	5 U
Methyl tert-Butyl Ether	5	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
Methylcyclohexane	NA	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
Methylene Chloride	5	1 U	1 U	1 UJ	5 U	5 U	5 U	5 U	5 U
Styrene	5	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene (PCE)	5	<mark>8.7</mark>	<mark>5.5</mark> J	4.7	4 J	2 J	2 J	2 J	2 J
Toluene	5	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	0.4	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene (TCE)	5	1 U	0.71 J	1 UJ	5 U	5 U	5 U	5 U	5 U
Trichlorofluoromethane	5	1 U	1 U	1 U	5 UJ	5 U	5 U	5 U	5 U
Vinyl chloride	2	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U
Xylenes, total	5	2 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U

U-Not detected J-Estimated R-Rejected Detections are in bold text. Exceedances are highlighted

	NYS	MW11D	MW11D	MW11D	(dup)	MW11D	MW11D	MW11D
Units: µg/L	Class GA	5/12/2010	10/3/2011	4/24/2012	4/24/2012	6/20/2013	6/3/2014	5/27/2015
1,1,1-Trichloroethane	5	1.8	2.1	0.82 J	1	1 J	5 U	5 U
1,1,2,2-Tetrachloroethane	5	1 U	1 U	1 U	1 U	5 U	5 UJ	5 U
1,1,2-Trichloroethane	1	1 U	1 U	1 U	1 U	5 U	5 U	5 U
1,1,2-Trichlorotrifluoroethane	5	1 U	1 U	1 U	1 U	NA	NA	NA
1,1-Dichloroethane	5	2.5	3	1.6	2	2 J	2 J	2 J
1,1-Dichloroethene	5	4	5.2	2	2.5	3 J	2 J	4 J
1,2,4-Trichlorobenzene	5	1 U	1 U	1 U	1 UJ	5 UJ	5 UJ	5 U
1,2-Dibromo-3-chloropropane	0.04	1 U	1 UJ	1 U	1 U	5 UJ	R	5 U
1,2-Dibromoethane (EDB)	5	1 U	1 U	1 U	1 U	5 U	5 UJ	5 U
1,2-Dichlorobenzene	3	1 U	1 U	1 U	1 U	5 U	5 U	5 U
1,2-Dichloroethane	0.6	1 U	1 U	1 U	1 U	5 U	5 U	5 U
1,2-Dichloroethene, Total	5	1.2 J	1.9	NA	NA	1	1.4	2
1,2-Dichloropropane	1	1 U	1 U	1 U	1 U	5 U	5 U	5 U
1,3-Dichlorobenzene	3	1 U	1 U	1 U	1 U	5 U	5 U	5 U
1,4-Dichlorobenzene	3	1 U	1 U	1 U	1 U	5 UJ	5 U	5 U
2-Butanone (MEK)	5	5 UJ	R	5 U	5 R	5 UJ	5 UJ	5 U
2-Hexanone	5	5 UJ	5 U	5 U	5 U	5 UJ	5 UJ	5 U
4-Methyl-2-pentanone (MIBK)	5	5 UJ	5 U	5 U	5 U	5 UJ	5 UJ	5 U
Acetone	5	4.8 J	R	R	R	5 UJ	5 U	5 U
Benzene	1	1 U	1 U	1 U	1 U	5 U	5 U	5 U
Bromodichloromethane	5	1 U	1 U	1 U	1 U	5 U	5 U	5 U
Bromoform	5	1 UJ	1 UJ	1 U	1 U	5 U	5 U	5 U
Bromomethane	5	1 U	1 U	1 U	1 U	5 UJ	5 UJ	5 UJ
Carbon disulfide	60	1 U	1 UJ	1 U	1 U	5 U	5 U	5 U
Carbon Tetrachloride	5	1 U	1 U	1 UJ	1 U	5 U	5 U	5 U
Chlorobenzene	5	1 U	1 U	1 U	1 U	5 U	5 U	5 U
Chlorodibromomethane	NA	1 U	1 U	1 U	1 U	5 U	5 U	5 U
Chloroethane	5	1 U	1 U	1 U	1 U	5 UJ	5 U	5 U
Chloroform	7	1 U	1 UJ	1 U	1 U	5 U	5 U	5 U
Chloromethane	5	1 U	1 U	1 U	1 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	1.2	1.9	1.1	1.2	1 J	1 J	2 J
cis-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	5 U	5 U	5 U
Cyclohexane	NA	1 U	1 U	1 UJ	1 U	5 U	5 U	5 U
Dichlorodifluoromethane	5	1 U	1 U	1 UJ	1 U	5 U	5 U	5 UJ
Ethylbenzene	5	1 U	1 U	1 U	1 U	5 U	5 U	5 U
Isopropylbenzene	5	1 U	1 U	1 U	1 U	5 U	5 U	5 U
Methyl Acetate	NA	1 UJ	1 U	1 UJ	1 U	5 U	5 U	5 U
Methyl tert-Butyl Ether	5	1 U	1 U	1 U	1 U	5 U	5 U	5 U
Methylcyclohexane	NA	1 U	1 U	1 U	1 U	5 U	5 U	5 U
Methylene Chloride	5	1 U	1 U	1 UJ	1 U	5 U	5 U	5 U
Styrene	5	1 U	1 U	1 U	1 U	5 U	5 U	5 U
Tetrachloroethene (PCE)	5	8.1	17 J	9	8	14	8	13
Toluene	5	1 U	1 U	1 U	1 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	5 U	5 U	5 U
Trichloroethene (TCE)	5	3 U	5.3	2.4 J	2.6	4 J	3 J	4 J
Trichlorofluoromethane	5	1 U	1 U	1 U	1 U	5 UJ	5 U	5 U
Vinyl chloride	2	1 U	1 U	1 U	1 U	5 U	5 U	5 U
Xylenes, total	5	2 U	2 U	2 U	2 U	5 U	5 U	5 U

	NYS	MW12S	(dup)	MW12S	MW12S	MW12S	MW12S	MW12S
Units: µg/L	Class GA	5/11/2010	5/11/2010	8/9/2011	4/24/2012	6/20/2013	6/3/2014	5/27/2015
1,1,1-Trichloroethane	5	1 U	1 U	5 U	1 UJ	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5	1 U	1 U	5 U	1 U	5 U	5 UJ	5 U
1,1,2-Trichloroethane	1	1 U	1 U	5 U	1 U	5 U	5 U	5 U
1,1,2-Trichlorotrifluoroethane	5	1 U	1 U	5 U	1 U	NA	NA	NA
1,1-Dichloroethane	5	1 U	1 U	5 U	1 U	5 U	5 U	5 U
1,1-Dichloroethene	5	1 U	1 U	5 U	1 U	5 U	5 U	5 U
1,2,4-Trichlorobenzene	5	1 U	1 U	5 U	1 U	5 UJ	5 UJ	5 U
1,2-Dibromo-3-chloropropane	0.04	1 UJ	1 U	5 UJ	1 U	5 UJ	R	5 U
1,2-Dibromoethane (EDB)	5	1 U	1 U	5 U	1 U	5 U	5 UJ	5 U
1,2-Dichlorobenzene	3	1 U	1 U	5 U	1 U	5 U	5 U	5 U
1,2-Dichloroethane	0.6	1 U	1 U	5 U	1 U	5 U	5 U	5 U
1,2-Dichloroethene, Total	5	15	15	2.2 J	NA	5 U	5 U	5 U
1,2-Dichloropropane	1	1 U	1 U	5 U	1 U	5 U	5 U	5 U
1,3-Dichlorobenzene	3	1 U	1 U	5 U	1 U	5 U	5 U	5 U
1,4-Dichlorobenzene	3	1 U	1 U	5 U	1 U	5 UJ	5 U	5 U
2-Butanone (MEK)	5	5 U	5 U	5 UJ	5 U	5 UJ	5 UJ	5 U
2-Hexanone	5	5 U	5 U	5 U	5 U	5 UJ	5 UJ	5 U
4-Methyl-2-pentanone (MIBK)	5	5 U	5 U	5 U	5 U	5 UJ	5 UJ	5 U
Acetone	5	5 U	5 U	R	R	5 UJ	5 U	5 U
Benzene	1	1 U	1 U	5 U	1 U	5 U	5 U	5 U
Bromodichloromethane	5	1 U	1 U	5 U	1 U	5 U	5 U	5 U
Bromoform	5	1 U	1 U	5 U	1 U	5 U	5 U	5 U
Bromomethane	5	1 U	1 UJ	5 U	1 U	5 UJ	5 UJ	5 UJ
Carbon disulfide	60	1 U	1 U	5 U	1 U	5 U	5 U	5 U
Carbon Tetrachloride	5	1 U	1 U	5 U	1 UJ	5 U	5 U	5 U
Chlorobenzene	5	1 U	1 U	5 U	1 U	5 U	5 U	5 U
Chlorodibromomethane	NA	1 UJ	1 U	5 U	1 U	5 U	5 U	5 U
Chloroethane	5	1 U	1 U	5 U	1 U	5 UJ	5 U	5 U
Chloroform	7	1 U	1 U	5 U	1 U	5 U	5 U	5 U
Chloromethane	5	1 U	1 U	5 U	1 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	<mark>15</mark>	<mark>15</mark>	2.2 J	1.7	5 U	5 U	5 U
cis-1,3-Dichloropropene	0.4	1 U	1 U	5 U	1 U	5 U	5 U	5 U
Cyclohexane	NA	1 U	1 U	5 U	1 UJ	5 U	5 U	5 U
Dichlorodifluoromethane	5	1 UJ	1 U	5 U	1 UJ	5 U	5 U	5 UJ
Ethylbenzene	5	1 U	1 U	5 U	1 U	5 U	5 U	5 U
Isopropylbenzene	5	1 U	1 U	5 U	1 U	5 U	5 U	5 U
Methyl Acetate	NA	1 U	1 U	5 UJ	1 UJ	5 U	5 U	5 U
Methyl tert-Butyl Ether	5	1 U	1 U	5 U	1 U	5 U	5 U	5 U
Methylcyclohexane	NA	1 U	1 U	5 U	1 U	5 U	5 U	5 U
Methylene Chloride	5	1 U	1 U	5 U	1 UJ	5 U	5 U	5 U
Styrene	5	1 U	1 U	5 U	1 U	5 U	5 U	5 U
Tetrachloroethene (PCE)	5	10	10	<mark>18</mark>	21	5	1 J	5 U
Toluene	5	1 U	1 U	5 U	1 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	1 U	1 U	5 U	1 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	0.4	1 UJ	1 U	5 U	1 U	5 U	5 U	5 U
Trichloroethene (TCE)	5	2.5	2.4	1.9 J	3 J	2 J	5 U	5 U
Trichlorofluoromethane	5	1 UJ	1 U	5 U	1 U	5 UJ	5 U	5 U
Vinyl chloride	2	1 U	1 U	5 U	1 U	5 U	5 U	5 U
Xylenes, total	5	2 U	2 U	5 U	2 U	5 U	5 U	5 U

	NYS	MW12D	MW12D	MW12D	MW12D	MW12D	MW12D
Units: µg/L	Class GA	5/11/2010	8/9/2011	4/24/2012	6/20/2013	6/3/2014	5/27/2015
1,1,1-Trichloroethane	5	8.8	0.91 J	1.1 J	2 J	1 J	1 J
1,1,2,2-Tetrachloroethane	5	1 U	5 U	1 U	5 U	5 UJ	5 U
1,1,2-Trichloroethane	1	1 U	5 U	1 U	5 U	5 U	5 U
1,1,2-Trichlorotrifluoroethane	5	2.2	5 U	1 U	NA	NA	NA
1,1-Dichloroethane	5	2.4	5 U	1 U	5 U	5 U	5 U
1,1-Dichloroethene	5	17	1.5 J	1 U	4 J	1 J	2 J
1,2,4-Trichlorobenzene	5	1 U	5 U	1 U	5 UJ	5 UJ	5 U
1,2-Dibromo-3-chloropropane	0.04	1 U	5 UJ	1 U	5 UJ	R	5 U
1,2-Dibromoethane (EDB)	5	1 U	5 U	1 U	5 U	5 UJ	5 U
1,2-Dichlorobenzene	3	1 U	5 U	1 U	5 U	5 U	5 U
1,2-Dichloroethane	0.6	1 U	5 U	1 U	5 U	5 U	5 U
1,2-Dichloroethene, Total	5	1.8 J	5 U	NA	5 U	5 U	5 U
1,2-Dichloropropane	1	1 U	5 U	1 U	5 U	5 U	5 U
1,3-Dichlorobenzene	3	1 U	5 U	1 U	5 U	5 U	5 U
1,4-Dichlorobenzene	3	1 U	5 U	1 U	5 UJ	5 U	5 U
2-Butanone (MEK)	5	5 U	5 UJ	5 U	5 UJ	5 UJ	5 U
2-Hexanone	5	5 U	5 U	5 U	5 UJ	5 UJ	5 U
4-Methyl-2-pentanone (MIBK)	5	5 U	5 U	5 U	5 UJ	5 UJ	5 U
Acetone	5	5 U	R	R	5 UJ	5 U	5 U
Benzene	1	1 U	5 U	1 U	5 U	5 U	5 U
Bromodichloromethane	5	1 U	5 U	1 U	5 U	5 U	5 U
Bromoform	5	1 U	5 U	1 U	5 U	5 U	5 U
Bromomethane	5	1 UJ	5 U	1 U	5 UJ	5 UJ	5 UJ
Carbon disulfide	60	1 U	5 U	1 U	5 U	5 U	5 U
Carbon Tetrachloride	5	1 U	5 U	1 UJ	5 U	5 U	5 U
Chlorobenzene	5	1 U	5 U	1 U	5 U	5 U	5 U
Chlorodibromomethane	NA	1 U	5 U	1 U	5 U	5 U	5 U
Chloroethane	5	1 U	5 U	1 U	5 UJ	5 U	5 U
Chloroform	7	1 U	5 U	1 U	5 U	5 U	5 U
Chloromethane	5	1 U	5 U	1 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	1.8	5 U	1 U	5 U	5 U	5 U
cis-1,3-Dichloropropene	0.4	1 U	5 U	1 U	5 U	5 U	5 U
Cyclohexane	NA	1 U	5 U	1 UJ	5 U	5 U	5 U
Dichlorodifluoromethane	5	1 U	5 U	1 UJ	5 U	5 U	5 UJ
Ethylbenzene	5	1 U	5 U	1 U	5 U	5 U	5 U
Isopropylbenzene	5	1 U	5 U	1 U	5 U	5 U	5 U
Methyl Acetate	NA	1 U	5 UJ	1 UJ	5 U	5 U	5 U
Methyl tert-Butyl Ether	5	1 U	5 U	1 U	5 U	5 U	5 U
Methylcyclohexane	NA	1 U	5 U	1 U	5 U	5 U	5 U
Methylene Chloride	5	1 U	5 U	1 UJ	5 U	5 U	5 U
Styrene	5	1 U	5 U	1 U	5 U	5 U	5 U
Tetrachloroethene (PCE)	5	7.1	1.8 J	2.6	3 J	2 J	2 J
Toluene	5	1 U	5 U	1 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	1 U	5 U	1 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	0.4	1 U	5 U	1 U	5 U	5 U	5 U
Trichloroethene (TCE)	5	25	1.4 J	1.6 J	3 J	5 U	2 J
Trichlorofluoromethane	5	1 U	5 U	1 U	5 UJ	5 U	5 U
Vinyl chloride	2	1 U	5 U	1 U	5 U	5 U	5 U
Xylenes, total	5	2 U	5 U	2 U	5 U	5 U	5 U

	NYS	MW13S	MW13S	(dup)	MW13S	MW13S	MW13S	MW13S
Units: µg/L	Class GA	5/11/2010	8/9/2011	8/9/2011	4/24/2012	6/20/2013	6/4/2014	5/28/2015
1,1,1-Trichloroethane	5	1 U	2.1 J	1.8 J	2.5 J	6	<mark>8</mark> J	4 J
1,1,2,2-Tetrachloroethane	5	1 U	5 U	5 U	1 U	5 U	5 UJ	5 U
1,1,2-Trichloroethane	1	1 U	5 U	5 U	1 U	5 U	5 U	5 U
1,1,2-Trichlorotrifluoroethane	5	1 U	5 U	5 U	1 U		NA	NA
1,1-Dichloroethane	5	1 U	4.2 J	3.6 J	5.3	15	18 J	10
1,1-Dichloroethene	5	1 U	0.82 J	0.74 J	1 U	2 J	2 J	1 J
1,2,4-Trichlorobenzene	5	1 U	5 U	5 U	1 U	5 UJ	5 UJ	5 U
1,2-Dibromo-3-chloropropane	0.04	1 UJ	5 UJ	5 UJ	1 U	5 UJ	R	5 U
1,2-Dibromoethane (EDB)	5	1 U	5 U	5 U	1 U	5 U	5 UJ	5 U
1,2-Dichlorobenzene	3	1 U	5 U	5 U	1 U	5 U	5 U	5 U
1,2-Dichloroethane	0.6	1 U	5 U	5 U	1 U	5 U	5 U	5 U
1,2-Dichloroethene, Total	5	0.74 J	6.1	5.3	NA	24	31 J	18
1,2-Dichloropropane	1	1 U	5 U	5 U	1 U	5 U	5 U	5 U
1,3-Dichlorobenzene	3	1 U	5 U	5 U	1 U	5 U	5 U	5 U
1,4-Dichlorobenzene	3	1 U	5 U	5 U	1 U	5 UJ	5 U	5 U
2-Butanone (MEK)	5	5 U	5 UJ	5 UJ	5 U	5 UJ	5 UJ	5 U
2-Hexanone	5	5 U	5 U	5 U	5 U	5 UJ	5 UJ	5 U
4-Methyl-2-pentanone (MIBK)	5	5 U	5 U	5 U	5 U	5 UJ	5 UJ	5 U
Acetone	5	5 U	R	R	R	5 UJ	5 U	5 U
Benzene	1	1 U	5 U	5 U	1 U	5 U	5 U	5 U
Bromodichloromethane	5	1 U	5 U	5 U	1 U	5 U	5 U	5 U
Bromoform	5	1 U	5 U	5 U	1 U	5 U	5 U	5 U
Bromomethane	5	1 U	5 U	5 U	1 U	5 UJ	2 J	5 UJ
Carbon disulfide	60	1 U	5 U	5 U	1 U	5 U	5 U	5 U
Carbon Tetrachloride	5	1 U	5 U	5 U	1 UJ	5 U	5 U	5 U
Chlorobenzene	5	1 U	5 U	5 U	1 U	5 U	5 U	5 U
Chlorodibromomethane	NA	1 UJ	5 U	5 U	1 U	5 U	5 U	5 U
Chloroethane	5	1 U	5 U	5 U	1 U	5 UJ	5 U	5 U
Chloroform	7	1 U	5 U	5 U	1 U	5 U	5 U	5 U
Chloromethane	5	1 U	5 U	5 U	1 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	1 U	6.1	5.3	7.9	24	<mark>30</mark> J	17
cis-1,3-Dichloropropene	0.4	1 U	5 U	5 U	1 U	5 U	5 U	5 U
Cyclohexane	NA	1 U	5 U	5 U	1 UJ	5 U	5 U	5 U
Dichlorodifluoromethane	5	1 UJ	5 U	5 U	1 UJ	5 U	5 U	5 UJ
Ethylbenzene	5	1 U	5 U	5 U	1 U	5 U	5 U	5 U
Isopropylbenzene	5	1 U	5 U	5 U	1 U	5 U	5 U	5 U
Methyl Acetate	NA	1 U	5 UJ	5 UJ	1 UJ	5 U	5 U	5 U
Methyl tert-Butyl Ether	5	1 U	5 U	5 U	1 U	5 U	5 U	5 U
Methylcyclohexane	NA	1 U	5 U	5 U	1 U	5 U	5 U	5 U
Methylene Chloride	5	1 U	5 U	5 U	1 UJ	5 U	5 U	5 U
Styrene	5	1 U	5 U	5 U	1 U	5 U	5 U	5 U
Tetrachloroethene (PCE)	5	1.2	3.5 J	3.3 J	5.5	14	<mark>13</mark> J	6
Toluene	5	1 U	5 U	5 U	1 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	1 U	5 U	5 U	1 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	0.4	1 UJ	5 U	5 U	1 U	5 U	5 U	5 U
Trichloroethene (TCE)	5	1.7	16	<mark>14</mark>	16 J	22	12	5
Trichlorofluoromethane	5	1 UJ	5 U	5 U	1 U	5 UJ	5 U	5 U
Vinyl chloride	2	1 U	5 U	5 U	1 U	5 U	5 U	5 U
Xylenes, total	5	2 U	5 U	5 U	2 U	5 U	5 U	5 U

	NYS	MW1	3D	MW1	3D	MW13D	MW13D	MW13D	MW13D
Units: µg/L	Class GA	5/11/2		8/9/2		4/24/2012	6/20/2013	6/4/2014	5/28/2015
1,1,1-Trichloroethane	5	4.2		4.7	J	3.1 J	2 J	2 J	5 U
1,1,2,2-Tetrachloroethane	5	1	U	5	U	1 U	5 U	5 UJ	5 U
1,1,2-Trichloroethane	1	1	U	5	U	1 U	5 U	5 U	5 U
1,1,2-Trichlorotrifluoroethane	5	1.2		5	U	1 U	NA	NA	NA
1,1-Dichloroethane	5	1.2		0.72	J	0.63 J	5 U	5 U	5 U
1,1-Dichloroethene	5	7		5.6		3.8	5	3 J	1 J
1,2,4-Trichlorobenzene	5	1	U	5	U	1 U	5 UJ	5 UJ	5 U
1,2-Dibromo-3-chloropropane	0.04	1	UJ	5	UJ	1 U	5 UJ	R	5 U
1,2-Dibromoethane (EDB)	5	1	U	5	U	1 U	5 U	5 UJ	5 U
1,2-Dichlorobenzene	3	1	U	5	U	1 U	5 U	5 U	5 U
1,2-Dichloroethane	0.6	0.58	J	5	U	1 U	5 U	5 U	5 U
1,2-Dichloroethene, Total	5	17		8.5		NA	8	3.6	2
1,2-Dichloropropane	1	1	U	5	U	1 U	5 U	5 U	5 U
1,3-Dichlorobenzene	3	1	U	5	U	1 U	5 U	5 U	5 U
1,4-Dichlorobenzene	3	1	U	5	U	1 U	5 UJ	5 U	5 U
2-Butanone (MEK)	5	5	U	5	UJ	5 U	5 UJ	5 UJ	5 U
2-Hexanone	5	5	U	5	U	5 U	5 UJ	5 UJ	5 U
4-Methyl-2-pentanone (MIBK)	5	5	U	5	U	5 U	5 UJ	5 UJ	5 U
Acetone	5	5	C		R	R	5 UJ	5 U	5 U
Benzene	1	1	U	5	U	1 U	5 U	5 U	5 U
Bromodichloromethane	5	1	U	5	U	1 U	5 U	5 U	5 U
Bromoform	5	1	C	5	C	1 U	5 U	5 U	5 U
Bromomethane	5	1	C	5	C	1 U	5 UJ	5 UJ	5 UJ
Carbon disulfide	60	1	U	5	C	1 U	5 U	5 U	5 U
Carbon Tetrachloride	5	1	C	5	C	1 UJ	5 U	5 U	5 U
Chlorobenzene	5	1	C	5	C	1 U	5 U	5 U	5 U
Chlorodibromomethane	NA	1	UJ	5	U	1 U	5 U	5 U	5 U
Chloroethane	5	1	U	5	U	1 U	5 UJ	5 U	5 U
Chloroform	7	1	U	5	U	1 U	5 U	5 U	5 U
Chloromethane	5	1	U	5	U	1 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	17		8.5		<mark>6.1</mark>	<mark>8</mark>	4 J	2 J
cis-1,3-Dichloropropene	0.4	1	U	5	U	1 U	5 U	5 U	5 U
Cyclohexane	NA	1	U	5	U	1 UJ	5 U	5 U	5 U
Dichlorodifluoromethane	5	1	UJ	5	U	1 UJ	5 U	5 U	5 UJ
Ethylbenzene	5	1	U	5	U	1 U	5 U	5 U	5 U
Isopropylbenzene	5	1	U	5	U	1 U	5 U	5 U	5 U
Methyl Acetate	NA	1	U	5	UJ	1 UJ	5 U	5 U	5 U
Methyl tert-Butyl Ether	5	1	U	5	U	1 U	5 U	5 U	5 U
Methylcyclohexane	NA	1	U	5	U	1 U	5 U	5 U	5 U
Methylene Chloride	5	1	U	5	U	1 UJ	5 U	5 U	5 U
Styrene	5	1	U	5	U	1 U	5 U	5 U	5 U
Tetrachloroethene (PCE)	5	9.4		5.5		5.2	7	3 J	2 J
Toluene	5	1	U	5	U	1 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	1	U	5	U	1 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	0.4	1	UJ	5	U	1 U	5 U	5 U	5 U
Trichloroethene (TCE)	5	200		88		<mark>60</mark> J	<u>65</u>	<u>30</u>	11
Trichlorofluoromethane	5	1	UJ	5	U	1 U	5 UJ	5 U	5 U
Vinyl chloride	2	1	U	5	U	1 U	5 U	5 U	5 U
Xylenes, total	5	2	U	5	U	2 U	5 U	5 U	5 U

	NYS	MW	1S	MW1S	MW1S	MW1S	MW1S	MW1S	MW1S
Units: µg/L	Class GA	4/5/20		5/12/2010	8/10/2011	4/24/2012	6/20/2013	6/3/2014	5/28/2015
1,1,1-Trichloroethane	5	3.6		1 U	5 U	1 UJ	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5	0.5	U	1 U	5 U	1 U	5 U	5 UJ	5 U
1,1,2-Trichloroethane	1	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
1,1,2-Trichlorotrifluoroethane	5	0.5	U	1 U	5 U	1 U	NA	NA	NA
1,1-Dichloroethane	5	0.9		1 U	5 U	1 U	5 U	5 U	5 U
1,1-Dichloroethene	5	1.4		1 U	5 U	1 U	5 U	5 U	5 U
1,2,4-Trichlorobenzene	5	0.5	U	1 U	5 U	1 U	5 UJ	5 UJ	5 U
1,2-Dibromo-3-chloropropane	0.04	0.5	U	1 U	5 UJ	1 U	5 UJ	R	5 U
1,2-Dibromoethane (EDB)	5	0.5	U	1 U	5 U	1 U	5 U	5 UJ	5 U
1,2-Dichlorobenzene	3	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
1,2-Dichloroethane	0.6	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
1,2-Dichloroethene, Total	5	NA		18	20	NA	4	2.8	3
1,2-Dichloropropane	1	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
1,3-Dichlorobenzene	3	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
1,4-Dichlorobenzene	3	0.5	U	1 U	5 U	1 U	5 UJ	5 U	5 U
2-Butanone (MEK)	5	5	U	5 UJ	5 UJ	5 U	5 UJ	5 UJ	5 U
2-Hexanone	5	5	U	5 UJ	5 U	5 U	5 UJ	5 UJ	5 U
4-Methyl-2-pentanone (MIBK)	5	5	U	5 UJ	5 U	5 U	5 UJ	5 UJ	5 U
Acetone	5	5	U	5 J	R	R	5 UJ	5 U	5 U
Benzene	1	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
Bromodichloromethane	5	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
Bromoform	5	0.5	U	1 UJ	5 U	1 U	5 U	5 U	5 U
Bromomethane	5	0.5	U	1 U	5 U	1 U	5 UJ	5 UJ	5 UJ
Carbon disulfide	60	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
Carbon Tetrachloride	5	0.5	U	1 U	5 U	1 UJ	5 U	5 U	5 U
Chlorobenzene	5	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
Chlorodibromomethane	NA	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
Chloroethane	5	0.5	U	1 U	5 U	1 U	5 UJ	5 U	5 U
Chloroform	7	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
Chloromethane	5	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	84		18	20	12	4 J	3 J	3 J
cis-1,3-Dichloropropene	0.4	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
Cyclohexane	NA	0.5	U	1 U	5 U	1 UJ	5 U	5 U	5 U
Dichlorodifluoromethane	5	0.5	U	1 U	5 U	1 UJ	5 U	5 U	5 UJ
Ethylbenzene	5	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
Isopropylbenzene	5	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
Methyl Acetate	NA	0.5	U	1 UJ	5 UJ	1 UJ	5 U	5 U	5 U
Methyl tert-Butyl Ether	5	0.97		1 U	5 U	1 U	5 U	5 U	5 U
Methylcyclohexane	NA	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
Methylene Chloride	5	0.5	U	1 U	5 U	1 UJ	5 U	5 U	5 U
Styrene	5	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
Tetrachloroethene (PCE)	5	220		<mark>8.9</mark>	4.4 J	5.5	4 J	2 J	3 J
Toluene	5	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	0.76		1 U	5 U	1 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	0.4	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
Trichloroethene (TCE)	5	33		3.1 U	2.2 J	1.8 J	2 J	5 U	5 U
Trichlorofluoromethane	5	0.5	U	1 U	5 U	1 U	5 UJ	5 U	5 U
Vinyl chloride	2	0.5	U	1 U	5 U	1 U	5 U	5 U	5 U
Xylenes, total	5	0.5	U	2 U	5 U	2 U	5 U	5 U	5 U

	NYS	MW1D	MW1D	MW1D	MW1D	MW1D	MW1D	MW1D
Units: µg/L	Class GA	4/5/2005	5/12/2010	8/10/2011	4/24/2012	6/20/2013	6/3/2014	5/27/2015
1,1,1-Trichloroethane	5	17	15	3.7 J	9.9 J	9	6	4 J
1,1,2,2-Tetrachloroethane	5	0.5 U	1 U	5 U	1 U	5 U	5 UJ	5 U
1,1,2-Trichloroethane	1	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
1,1,2-Trichlorotrifluoroethane	5	1.7	3.5	5 U	1 U	NA	NA	NA
1,1-Dichloroethane	5	4	4.3	2.2 J	2.8	3 J	5 U	2 J
1,1-Dichloroethene	5	22	30	4.3 J	24	28	15	16
1,2,4-Trichlorobenzene	5	0.5 U	1 U	5 U	1 U	5 UJ	5 UJ	5 U
1,2-Dibromo-3-chloropropane	0.04	0.5 U	1 U	5 UJ	1 U	5 UJ	R	5 U
1,2-Dibromoethane (EDB)	5	0.5 U	1 U	5 U	1 U	5 U	5 UJ	5 U
1,2-Dichlorobenzene	3	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
1,2-Dichloroethane	0.6	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
1,2-Dichloroethene, Total	5	NA	4.4	5.7	NA	7	5.9	5
1,2-Dichloropropane	1	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
1,3-Dichlorobenzene	3	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
1,4-Dichlorobenzene	3	0.5 U	1 U	5 U	1 U	5 UJ	5 U	5 U
2-Butanone (MEK)	5	5 U	5 U	5 UJ	5 U	5 UJ	5 UJ	5 U
2-Hexanone	5	5 U	5 U	5 U	5 U	5 UJ	5 UJ	5 U
4-Methyl-2-pentanone (MIBK)	5	5 U	5 U	5 U	5 U	5 UJ	5 UJ	5 U
Acetone	5	5 U	5 U	R	R	5 UJ	5 U	5 U
Benzene	1	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
Bromodichloromethane	5	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
Bromoform	5	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
Bromomethane	5	0.5 U	1 UJ	5 U	1 U	5 UJ	5 UJ	5 UJ
Carbon disulfide	60	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
Carbon Tetrachloride	5	0.5 U	1 U	5 U	1 UJ	5 U	5 U	5 U
Chlorobenzene	5	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
Chlorodibromomethane	NA	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
Chloroethane	5	0.5 U	1 U	5 U	1 U	5 UJ	5 U	5 U
Chloroform	7	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
Chloromethane	5	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	4.4	4.4	5.7	<mark>6.6</mark>	7	6	5
cis-1,3-Dichloropropene	0.4	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
Cyclohexane	NA	0.5 U	1 U	5 U	1 UJ	5 U	5 U	5 U
Dichlorodifluoromethane	5	0.5 U	1 U	5 U	1 UJ	5 U	5 U	5 UJ
Ethylbenzene	5	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
Isopropylbenzene	5	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
Methyl Acetate	NA	0.5 U	1 U	5 UJ	1 UJ	5 U	5 U	5 U
Methyl tert-Butyl Ether	5	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
Methylcyclohexane	NA	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
Methylene Chloride	5	0.5 U	1 U	5 U	1 UJ	5 U	5 U	5 U
Styrene	5	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
Tetrachloroethene (PCE)	5	<mark>8.6</mark>	<mark>18</mark>	<mark>6.6</mark>	<mark>24</mark>	<mark>26</mark>	13	12
Toluene	5	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	0.4	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
Trichloroethene (TCE)	5	<mark>54</mark>	<mark>74</mark>	<mark>65</mark>	<mark>110</mark> J	<mark>110</mark>	77	61
Trichlorofluoromethane	5	0.5 U	1 U	5 U	1 U	5 UJ	5 U	5 U
Vinyl chloride	2	0.5 U	1 U	5 U	1 U	5 U	5 U	5 U
Xylenes, total	5	0.5 U	2 U	5 U	2 U	5 U	5 U	5 U

[NYS	NC-12	NC-12	NC-12
Units: µg/L	Class GA	6/20/2013	6/3/2014	5/28/2015
1,1,1-Trichloroethane	5	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5	5 U	5 UJ	5 U
1,1,2-Trichloroethane	1	5 U	5 U	5 U
1,1,2-Trichlorotrifluoroethane	5	NA	NA	NA
1,1-Dichloroethane	5	5 U	5 U	5 U
1,1-Dichloroethene	5	5 U	5 U	5 U
1,2,4-Trichlorobenzene	5	5 UJ	5 UJ	5 U
1,2-Dibromo-3-chloropropane	0.04	5 UJ	R	5 U
1,2-Dibromoethane (EDB)	5	5 U	5 UJ	5 U
1,2-Dichlorobenzene	3	5 U	5 U	5 U
1,2-Dichloroethane	0.6	5 U	5 U	5 U
1,2-Dichloroethene, Total	5	5 U	5 U	5 U
1,2-Dichloropropane	1	5 U	5 U	5 U
1,3-Dichlorobenzene	3	5 U	5 U	5 U
1,4-Dichlorobenzene	3	5 U	5 U	5 U
2-Butanone (MEK)	5	5 UJ	5 UJ	5 U
2-Hexanone	5	5 UJ	5 UJ	5 U
4-Methyl-2-pentanone (MIBK)	5	5 U	5 UJ	5 U
Acetone	5	5 UJ	5 U	5 U
Benzene	1	5 U	5 U	5 U
Bromodichloromethane	5	5 U	5 U	5 U
Bromoform	5	5 U	5 U	5 U
Bromomethane	5	5 UJ	5 UJ	5 UJ
Carbon disulfide	60	5 UJ	5 U	5 U
Carbon Tetrachloride	5	5 U	5 U	5 U
Chlorobenzene	5	5 U	5 U	5 U
Chlorodibromomethane	NA	5 UJ	5 U	5 U
Chloroethane	5	5 UJ	5 U	5 U
Chloroform	7	5 U	5 U	1 J
Chloromethane	5	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	5 U	5 U	5 U
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U
Cyclohexane	NA	5 UJ	5 U	5 U
Dichlorodifluoromethane	5	5 U	5 U	5 UJ
Ethylbenzene	5	5 U	5 U	5 U
Isopropylbenzene	5	5 U	5 U	5 U
Methyl Acetate	NA	5 UJ	5 U	5 U
Methyl tert-Butyl Ether	5	5 U	5 U	5 U
Methylcyclohexane	NA	5 UJ	5 U	5 U
Methylene Chloride	5	5 U	5 U	5 U
Styrene	5	5 U	5 U	5 U
Tetrachloroethene (PCE)	5	5 U	5 U	5 U
Toluene	5	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	5 U	5 U	5 U
trans-1,3-Dichloropropene	0.4	5 U	5 U	5 U
Trichloroethene (TCE)	5	5 U	5 U	5 U
Trichlorofluoromethane	5	5 UJ	5 U	5 U
Vinyl chloride	2	5 U	5 U	5 U
Xylenes, total	5	5 U	5 U	5 U

Table 4MNA Parameters in Groundwater

		NY						MW	/11S											MW	/11D			
ANALYTE	UNITS	Class GA	5/12/2	010	10/3/2	011	4/24/20)12	6/20/20)13	6/3/20	14	5/27/20	15	5/12/20	010	10/3/20	011	4/24/20	012	6/20/2013	6/3/20	14	5/27/2015
Methane	µg/L	NA	1	U	1.9		1.8		1	U	1	U	1	U	0.63	J	1.7		13		1 U	1	U	0.3 J
Carbon Dioxide	µg/L	NA	5200		1750		2340		13200		10600		1800		1000		7350		10300		26400	25500		7000
Sulfate	mg/L	250	16.1	В	12		23.5		44.6		38.3		31.6		28.4	В	17		15.6		16.2	17.3		16.4
Nitrogen, Nitrate	mg/L-N	10	1.42		1.3	В	2.3	D	2.31	D	2.04	D	1.73	D	1.62		1.3	В	1.2	D	0.77	0.67	D	0.9
Iron - Dissolved	mg/L	300	0.05	U	0.2	U	0.05	В	0.04	В	0.02	В	0.01	В	0.05	U	0.2	U	0.23		0.35	0.01	В	0.11
Dissolved Oxygen																								
Laboratory	mg/L	NA	10.5		33.6		50.4		12.0		8.4		12.6		10.6		35.6		37.3		1.8	7.0		3.8
Field	mg/L	NA	9.7		13.4		14.0		6.7		7.8		8.0		3.8		3.1		2.8		0.7	8.6		1.5
Temperature																								
Field	Celsius	NA	14.4		17.9		11.7		22.2		16.2		15.1		13.3		19.0		15.9		18.9	20.5		15.3

U Not detected

J Concentrations are estimated.

D Dilution required due to high concentration of target analyte(s)

B Analyte was detected in the associated Method Blank

NA Not available

Detections are in bold text.

The field dissolved oxygen and temperature are the final readings collected during groundwater sampling.

Table 4
MNA Parameters in Groundwater

		NY	MW12	2S	(dup))					MW12S											МW	12D				
ANALYTE	UNITS	Class GA	5/11/20	010	5/11/2	010	8/9/20)11	4/24/2	012	6/20/20	13	6/3/201	4	5/27/2015	5 5	5/11/2	010	8/9/20	011	4/24/20)12	6/20/20	13	6/3/201	4	5/27/2015
Methane	µg/L	NA	1	U	1	U	0.61		1.8		1	U	1	U	1 L	J	1	U	0.63		1.6		1	U	1	U	1 U
Carbon Dioxide	µg/L	NA	3500		3400		6400		3530		8800		35200		6200	3	500		2300		8150		13200		15800		3100
Sulfate	mg/L	250	28.9		29		37		47.6		39.2		41.2		45	4	46.8		25		29.3		22.8		20.1		21.2
Nitrogen, Nitrate	mg/L-N	10	2.97		2.97		4	В	3.77		2.68	D	2.12	D	1.62 D) 3	3.38	D	2.4	В	2.59		2.57	D	2.38	D	2.43 D
Iron - Dissolved	mg/L	300	0.05	U	0.05	U	0.2	U	0.2	U	0.04	В	0.02	В	0.01 L	JO	0.05	U	0.2	U	0.2	U	0.09	В	0.01	В	0.01 U
Dissolved Oxygen																											
Laboratory	mg/L	NA	11.3		11.3		37.2		27.4		8.9		9.1		13.4		9.9		47.4		35.0		9.9		9.4		6.7
Field	mg/L	NA	10.1		NA		7.5		12.7		3.3		6.5		7.9		9.9		15.8		8.3		8.3		4.8		4.9
Temperature																											
Field	Celsius	NA	15.8		NA		20.1		15.0		38.8		20.4		18.2	1	17.2		18.7		10.5		18.1		20.4		17.0

Table 4
MNA Parameters in Groundwater

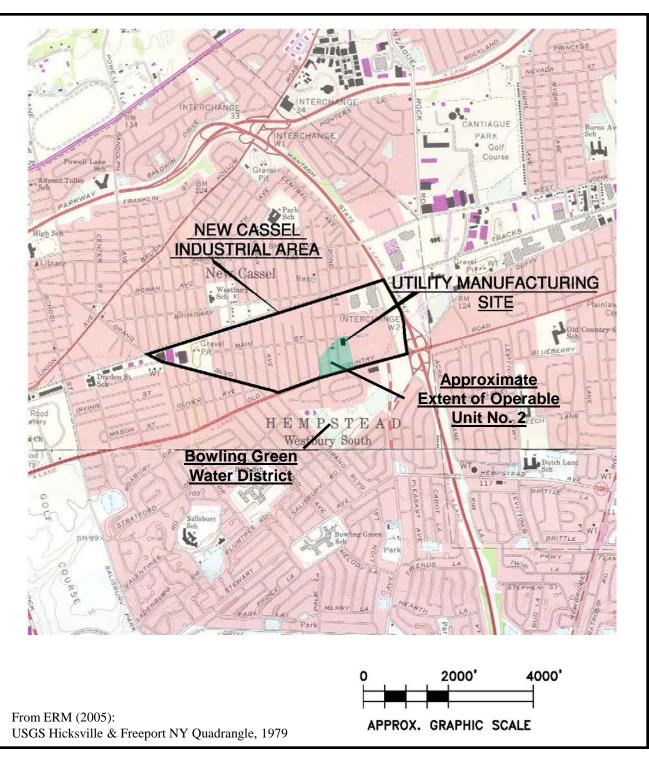

		NY						MW	'13S											MW	13D					
ANALYTE	UNITS	Class GA	5/11/2	010	8/9/20)11	4/24/2	012	6/20/20)13	6/4/20	14	5/28/20	15	5/11/2	010	8/9/201	1	4/24/20)12	6/20/20)13	6/4/201	14	5/28/20	015
Methane	µg/L	NA	1	U	0.63		2.0		1	U	1	U	1	U	1	U	0.67		1.7		1	U	1	U	0.3	J
Carbon Dioxide	µg/L	NA	17000		11000)	12900		17600		34300		16300		9000		13600		22400		30800		17600		7900	
Sulfate	mg/L	250	47.9		28		39.5		31.2		33.2		27.8		12.4		12		16.5		9.94		10.5		10	
Nitrogen, Nitrate	mg/L-N	10	3.81	D	4.4	В	5.34		4.44	D	3.31	D	3.03	D	6.39	D	4.6	В	5.7		6.53	D	6.82	D	6	D
Iron - Dissolved	mg/L	300	0.05	U	0.2	U	0.2	U	0.04	В	0.01	В	0.02	В	0.05	U	1.17	U	0.2	U	0.04	В	0.12		0.12	
Dissolved Oxygen																										
Laboratory	mg/L	NA	12.2		16.9		18.4		9.3		12.2		9.9		9.3		16.0		52.3		5.5		1.0		22.4	
Field	mg/L	NA	10.1		7.5		10.7		8.0		8.8		4.8		10.1		4.5		3.3		5.7		0.1		10.5	
Temperature																								-		
Field	Celsius	NA	16.7		19.4		11.3		17.8		19.6		17.2		18.3		18.3		15.7		18.9		16.3		17.9	

Table 4
MNA Parameters in Groundwater

		NY							MW1	S												Ν	MW1D					
ANALYTE	UNITS	Class GA	5/12/2	010	8/10/2	011	4/24/20	12	6/20/20	13	6/20/20	13	6/4/201	4	5/28/201	15	5/12/20	10	8/10/20	11	4/24/2012	2 6/	/20/2013	6/20/2	013	6/4/2014	1 5	5/27/2015
Methane	µg/L	NA	1	U	0.7		1.7		1	U	1	U	1	U	1	U	1	U	0.78		1.8		1 U	1	U	1	U	0.3 J
Carbon Dioxide	µg/L	NA	7700		10400)	8790		26400		13200		20200		9700		15000		3860		13000	3	35200	3520)	22000		10600
Sulfate	mg/L	250	25.9	В	13		18.6		25.4		44.4		37.1		28.9		24.4	В	16		22.5		20	20		16.1		13.8
Nitrogen, Nitrate	mg/L-N	10	1.85		2.2	В	2.6	D	2.39	D	2.27	D	1.94	D	1.73	D	2.8		2.5	В	2.4 D)	1.67 D	1.67	D	1.55	D	1.25
Iron - Dissolved	mg/L	300	0.05	U	0.2	U	0.05	В	0.05	В	0.06	В	0.02	В	0.02	В	0.029	J	0.2	U	0.036 B		0.20	0.20		0.18		0.05 B
Dissolved Oxygen																												
Laboratory	mg/L	NA	6.6		25.2		48.4		8.1		11.4		12.1		9.6		4.2		38.0		18.3		2.3	2.3		7.5		11.6
Field	mg/L	NA	6.8		12.2		10.4		7.0		NA		8.2		7.4		0.6		16.8		2.3		1.1	1.1		8.4		9.1
Temperature																												
Field	Celsius	NA	15.8		17.9		15.9		19.3		NA		22.8		17.0		15.2		20.8		16.4		17.7	17.7		23.2		19.8

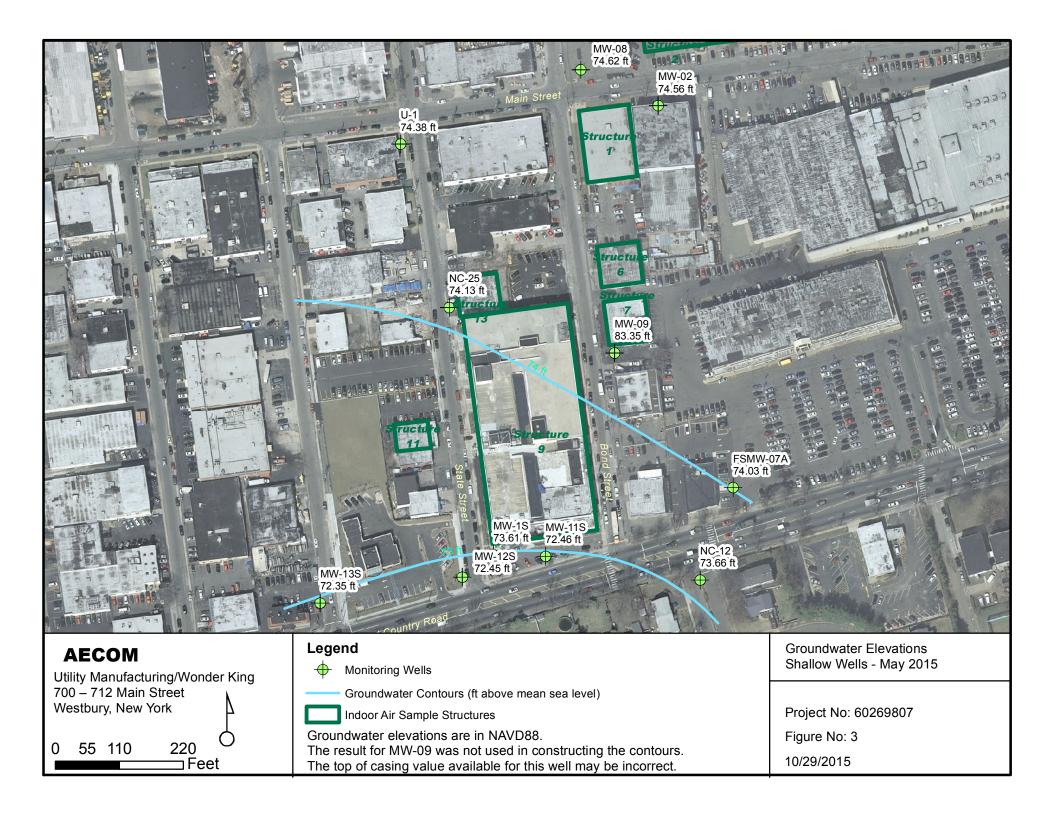
Table 4 MNA Parameters in Groundwater

		NY			NC-1	2		
ANALYTE	UNITS	Class GA	6/28/20)13	6/4/20	14	5/28/20)15
Methane	µg/L	NA	1	U	1	U	1	U
Carbon Dioxide	µg/L	NA	26400		36100		18000	
Sulfate	mg/L	250	134	D	86.1	D	40.5	
Nitrogen, Nitrate	mg/L-N	10	2.8	D	2.89	D	3.9	D
Iron - Dissolved	mg/L	300	0.11		0.02	В	0.01	В
Dissolved Oxygen								
Laboratory	mg/L	NA	8.0		8.6		8.9	
Field	mg/L	NA	8.08		6.3		7.5	
Temperature								
Field	Celsius	NA	18.9		20.7		17.4	

100 Red Schoolhouse Road, Suite B-1 Chestnut Ridge , NY 10977-6715

ENVIRONMENTAL CONSULTING ENGINEERS

	PROJECT: SITE MANAGEMENT	SITE LOCATION MAP
$\Lambda = C \cap M$		Project No: 60269807
ALCOM	Utility Manufacturing/Wonder King, OU2 700 – 712 Main Street, Westbury, New York	Figure No: 1
		June 24, 2013


Indoor Air Sample Structures Westbury, New York 80 ⊐ Feet

0 20 40

Project No: 60269807

Figure No: 2

June 24, 2013

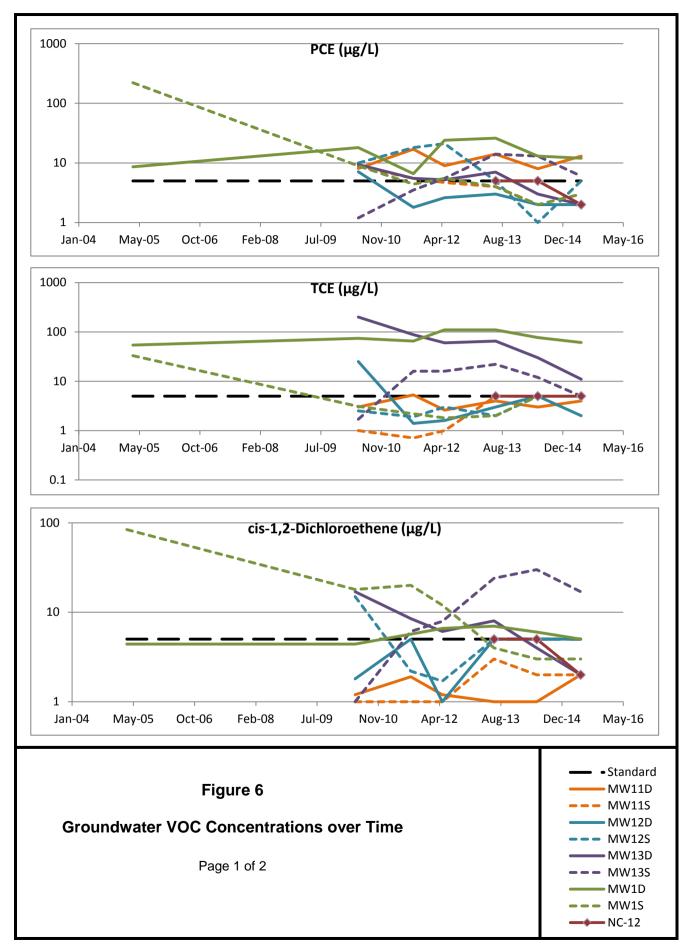
AECOM

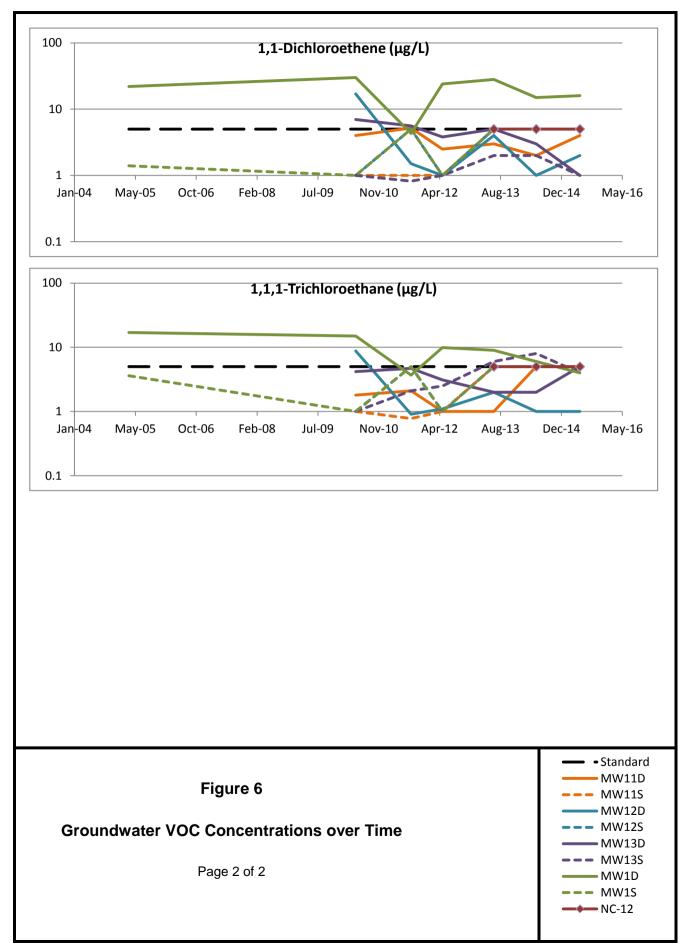
Utility Manufacturing/Wonder King 700 – 712 Main Street Westbury, New York 100 ⁽ ⊒ Feet 0 25 50

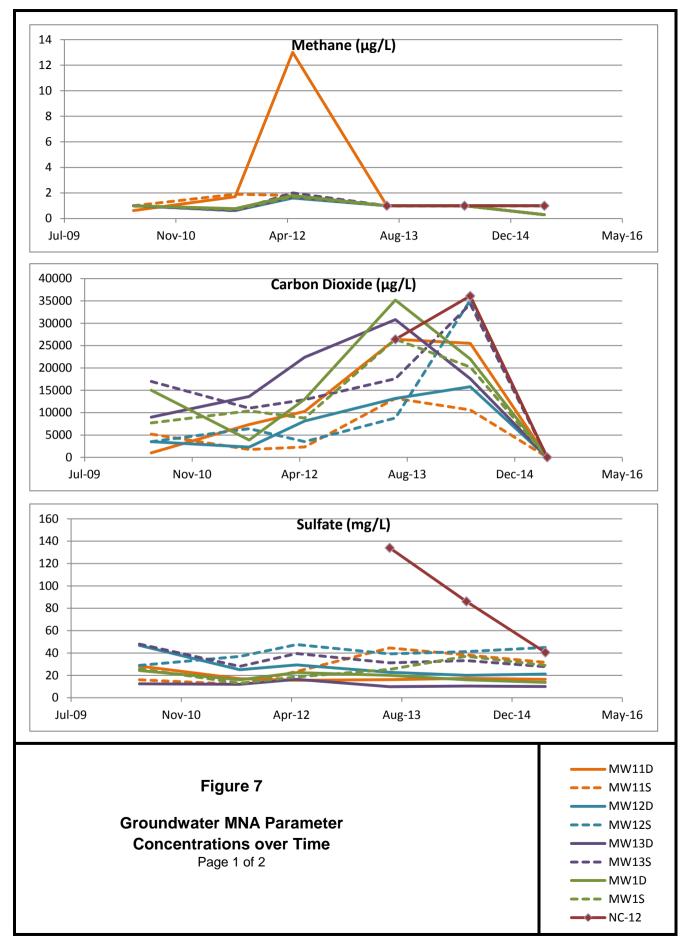
Monitoring Wells \oplus

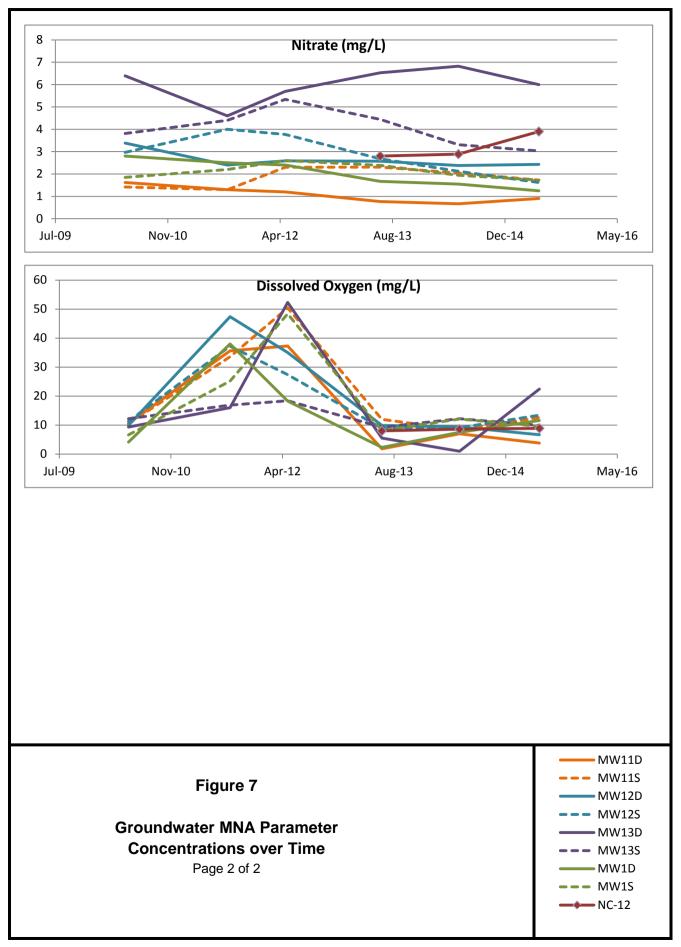
Groundwater Contours (ft above mean sea level) Indoor Air Sample Structures

Groundwater elevations are in NAVD88.


Deep Wells - May 2015


Project No: 60269807


Figure No: 4


10/28/2015

PCE 1.2 3.5 J 3.3 J 5.5 14 13 J TCE 1.7 16 14 16 J 22 12 cis-1,2-DCE 1 U 6.1 5.3 7.9 24 30 J 1,1-DCE 1 U 0.82 J 0.74 J 1 U 2 J J 1,1,1-TCA 1 U 2.1 J 1.8 J 2.5 J 6 8 J	MW1S 2005 2010 2011 20 PCE 220 8.9 4.4 J 5.5 TCE 33 3.1 U 2.2 J 1.8 cis-1,2-DCE 84 18 20 12 1,1-DCE 1.4 1 U 5 U 1 1,1,1-DCA 3.6 1 U 5 U 1 1,1,1-DCA 0.9 1 U 5 U 1 1,1-DCA 0.9 1 U 5 U 1 1,1-DCA 0.9 1 U 5 U 1 1,1-DCA 2005 2010 2011 2012 2012 PCE 8.6 18 6.6 24 24 1,1-DCE 22 30 4.3 2 4 0 1,1,1-TCA 17 15 3.7 9.9 1 1,1-DCA 4 4.3	4 J 2 J 3 J PCE 9 5.5 J 4.7 4 3 J 5 U 5 U TCE 1 U 0.7 J 1 UJ 5 4 J 3 J J C-1,2-DCE 1 U 1 U 3 U 5 U 5 U 5 U 1,1-DCE 1 U 1 U 3 U 5 U	U 5 U 5 U 5 U 5 U U 5 U 5 U 5 U 5 U up) 2013 2014 2015 2014 2015 2014 2015 8 14 8 13 3 4 J 2 1 J 1 J 2 J 5 3 J J 4 J . 1 J 5 U S U
PCE 9.4 5.5 5.2 7 3 J 2 J TCE 200 88 60 J 65 30 11 cis-1,2-DCE 17 8.5 6.1 8 4 J 2 J 1,1-DCE 7 5.6 3.8 5 3 J 1 J 1,1,1-TCA 4.2 4.7 J 3.1 J 2 J 5 U 1,1-DCA 1.2 0.72 0.63 5 U 5 U 1,1-DCA 1.2 0.72 0.63 5 U 5 U WW-13D MW-13S	MW-12D MW-12D MW-12 PCE 10 10 18 21 TCE 3 2 2 J 3 cis-1,2-DCE 15 15 2 J 2 1,1-DCE 1 U 1 U 5 U 1 1,1-DCA 1 U 1 U 5 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D12 2013 2014 2015 5 1 J 5 U J 2 J 5 U 5 J 2 J 5 U 5 U J 2 J 5 U 5 U U 5 U 5 U 5 U U 5 U 5 U 5 U U 5 U 5 U 5 U 13 2014 2015 J J J J Z J J 5 U 2 J J J L J U 5 U 5 U S U S U	NC-12 2013 2014 2015 NC-12 5 U 5 U 5 U 5 U NC-12 5 U 5 U 5 U 5 U NC-12 5 U 5 U 5 U 5 U NC-12 5 U 5 U 5 U 5 U NC-12 5 U 5 U 5 U 5 U NC-12 5 U 5 U 5 U 5 U NC-12 5 U 5 U 5 U 5 U 1,1,1-TCA 5 U 5 U 5 U 5 U 1,1-DCA 5 U 5 U 5 U 5 U 1,1-DCA 5 U 5 U 5 U 5 U
AECOM Utility Manufacturing/Wonder King 700 – 712 Main Street Westbury, New York 0 2040 80	Legend Monitoring Well	Concentrations exceeding the NYS Class GA criteria are in red. Units: µg/L The NYS Class GA criteria for all other parameters shown are 5 µg/L. (dup) Environmental duplicate sample	Groundwater Sampling Results Project No: 60269807 Figure No: 5 10/29/2015

APPENDIX A

Field Forms

WELL NO. MW-1D

WELL SAMPLING FORM Utility Manufacturing/Wonder King Site									PROJECT №. 60269807	SHEET 1	SHEETS OF 1
LOCATION			VI		nuiacturin	King Site	DATE WELL STAI	RTED	DATE WELL COMPLETED		
	ury, NY						May 27, 20	15	May 27, 2015		
client NYSDE	EC					NAME OF INSPEC	ster (AECOM))			
DRILLING									, ,	<u>'</u>	
NA	Depth								r		
	to	Purge	FIELD MEASUREMENTS								
Time	Water (ft)	Rate (ml/min)	Temp. (ºC)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (ntu)		REMARKS	
1340	46.11	(((()	()	Static Level		
1345									Pump on		
1400	46.22	200	19.02	0.218	11.76	6.03	168	920			
1415	46.21	200	19.65	0.279	9.9	5.70	217	>1000			
1430	46.21	200	19.54	0.263	7.79	5.61	236	700			
1445	46.21	200	19.54	0.257	10.54	5.57	242	658			
1500	46.21	200	19.63	0.257	10.52	5.59	248	632			
1415	46.21	200	19.48	0.25	9.68	5.53	249	767			
1530	46.21	200	19.87	0.230	9.18	5.52	254	471			
1545	46.21 46.21	200	19.85	0.233	9.07 9.12	5.53	255	465			
1600 1605		200 MW-1D c	19.83	0.232	9.12	5.53	254	461			
1005	Sample		Jollected				<u> </u>				
							<u> </u>				
						 	 				
							<u> </u>				
				 			┢────		-		
							 				
							<u> </u>				
							┣────				
			1	<u> </u>		<u> </u>	<u> </u>	1	<u> </u>		
Pump ⁻	Туре:	Bladder p	oump wit	h dedicate	ed tubing f	or samplin	ıg				
			-		-						
Analyti	Analytical Parameters: VOCs, methane, carbon dioxide, dissolved oxygen, iron										

WELL NO. MW-1S

PROJECT									PROJECT No.	SHEET		SHEETS
WELL SAMPLING FORM Utility Manufacturing/Wonder King Site LOCATION Visite Content of the second se									60269807	1 DATE WELL COMPLETED	OF	1
Westbury, NY client									15 TOR	May 28, 2015		
NYSDEC									ster (AECOM)	1		
drilling NA	COMPANY											
	Depth	_			FIELD MI	EASUREMEN	NTS					
Time	to Water	Purge Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REMARKS			
1115	(ft) 46.21	(ml/min)	(ºC)	(ms/cm)	(mg/L)		(mV)	(ntu)	Static Level			
1125									Pump on			
1130	46.21	200	17.08	0.263	8.2	5.6	280	245				
1140	46.21	200	17.03	0.234	10.04	5.54	283	59.4				
1150	46.21	200	17.02	0.233	9.32	5.53	286	58.7				
1200	46.21	200	17.09	0.233	9.96	5.51	303	30.7				
1215	46.21	200	17.04	0.233	7.65	5.53	305	15.7				
1225	46.21	200	17	0.238	7.77	5.53	297	11.7				
1230	46.21	200	16.99	0.236	7.46	5.5	310	9.4				
1235	46.21	200	17	0.237	7.49	5.51	313	10				
1245	46.21	200	16.98	0.236	7.42	5.5	314	9.5				
1255	Sample	MW-1S C	Collected									
							 	ļ				
	Pump Type: Bladder pump with dedicated tubing for sampling Analytical Parameters: VOCs, methane, carbon dioxide, dissolved oxygen, iron											

WELL NO. MW-11D

	PROJECT PROJECT No. SHEET SHEET											
		ING FOR	М	Utility Ma	nufacturin	<u> </u>	60269807		OF	1		
LOCATION Westbu	∙ ury, NY					date well star May 27, 20)15	date well complete May 27, 2015	D			
client NYSDE						NAME OF INSPECTOR Celeste Foster (AECOM)						
	company /Clearwa	ater Drillin	a. Inc.									
	Depth		9,		FIELD M	EASUREMEN	NTS	<u> </u>	T			
Time	to Water (ft)	Purge Rate (ml/min)	Temp. (⁰C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (ntu)				
1030	42.1								Static Level			
1040									Pump on			
1045		200	 '						Had to disco	onnect Horiba to f	ix connec	ction
1050	48.85	200	17.23	0.341	3.97	5.84	171	>1000	_			
1100	48.12	200	15.93	0.328	1.62	5.86	172	>1000				
1115	48.1	200	15.72	0.309	1.5	5.77	199	521				
1130	48.15	200	15.81	0.302	1.57	5.66	204	384				
1145 1200	48.13 48.12	200 200	15.72 15.26	0.302	1.47 1.46	5.69 5.69	204	398 402				
		200 9 MW-11D			1.40	5.09	205	402	+			
1205	Sampic		Conecto	ju I		├	+		+			
	┟────┦	 '	 '	├ ──┤	i	<u> </u>	 	+	+			
	/·!		├ ────		[]	<u> </u>	+	+	+			
		'	├ ────		[]	<u> </u>	+	1	+			
					(<u>†</u>	1	1			
	l – – – – – – – – – – – – – – – – – – –				l		1					
					i		1	1	1			
					í		1					
	<u> </u>											
	<u> </u>		<u> </u>		 '							
	<u> </u>	ļ'	<u> </u>		 '							
	↓ '	 '	 '	\mid	l'			_	_			
	└─── '	ļ'	 '	\mid	 '	 		<u> </u>	<u> </u>			
	 '	 '	 '		 '							I
 	└──── ′	 '	 '	├ ───┤	 '	───	╂────	╂────				
┣───┤	┢────┘	 '	 '	───┦	 '	┣────	<u> </u>	+	+			
┣───┤	┢────┘	 '	 '	──┤		┣────	───					
┣───┤	┟────┘	 '	 '	├ ───┤	l'	╂────	╂────	+	+			
	┟──── ′	<u> </u> '	 '	┣───┦	i'	├───	╂────	+	+			
╏────┤	├ ──── [/]	'	 '	┝───┦		<u> </u>	+		+			
		 	├ ────′		i	<u> </u>	+	+	+			
	l!	'	├ ────		[]	<u> </u>	+	1	1			
	<u> </u>		<u> </u>	<u> </u>	. <u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			
Pump ⁻	Type:	Bladder r	oump wit	th dedicate	ed tubing f	or sampling	D					
			•		-	-	0					
Analyti	Analytical Parameters: VOCs, methane, carbon dioxide, dissolved oxygen, iron											

WELL NO. MW-11S

	PROJECT PROJECT No. SHEET SHEET										
WELL SAMPLING FORM Utility Manufacturing/Wonder King Site 60269807										of 1	
Westb	∙ ury, NY						May 27, 20)15	date well completed May 27, 2015		
CLIENT NYSDI	FC						NAME OF INSPECTOR Celeste Foster (AECOM)				
DRILLING	DRILLING COMPANY E.A.R./Clearwater Drilling, Inc.								0101 (<u>,</u>	
Е.А.К.,	/Clearwa	ater Drillin I	g, Inc.		FIELD M	EASUREMEN	NTS	<u> </u>			
Time	to Water	Purge Rate	Temp.	Conduct.	DO		ORP	Turbidity	4	DEMARKS	
Time	(ft)	Rate (ml/min)	remp. (⁰C)	(ms/cm)	(mg/L)	рН	(mV)	(ntu)		REMARKS	
1000	47.17								Static Level		
1015				ليبيها				L	Pump on		
1025	45.32	250	15.49	0.614	7.89	6.86	228	625	<u> </u>		
1040	45.32	250	15.11	0.558	7.9	6.05	267	22.8	_		
1050 1055	45.31 45.31	250	15.08	0.556	7.92	6.03	275	7.4	<u> </u>		
1055	45.31	250 250	15.09 15.09	0.552 0.552	8.03 8.04	6.02 6	280 284	4			
1100	45.31	250 250	15.09	0.552	8.04 8.03	6.03	284	2.4			
1110		e MW-11S			0.00	0.00	200	<u> </u>	+		
				IS Collecte	ed	<u> </u>		+	1		
	<u> </u>					<u> </u>		+	1		
					l				1		
	l – – – – – – – – – – – – – – – – – – –						1	1	1		
			i					<u>† </u>	1		
	<u> </u>				['			\Box			
	<u> </u>	ļ'		ļ!	 '						
	 '	 '	Ļ	ļ!	 '				_		
	└───'	ļ'		ļ′	 '	───	──	───	<u> </u>		
	↓ '	ļ'		ļ'	 '		──	<u> </u>	<u> </u>		
	 '	 '	───	↓ /	 '	───	╂────	───	_		
	┢────┘	 '		↓ /	 '	┣────		+	<u> </u>		
┟───┤	┟────┘	 '	╂────	┨────┦	ŀ'	───	┨────		 		
	├ ────'	 '	├───	┨────┦	'	┢────		+	+		
┣───┤	┢────┦	'	├───	├ ───┦		<u> </u>	──	+	+		
	┟──── ┦	 '	╂────	╂────┦	i'	<u> </u>	╂────	+	+		
		<u> </u>		├ ───┦	l'	<u> </u>		+	1		
			1	├ ──┦	l		1	1	1		
	[1		l'		1				
	[]							1	1		
Pump	Tvne:	Bladder r	oump wit	th dedicate	ed tubina f	or samplin	'n				
i unp	Pump Type: Bladder pump with dedicated tubing for sampling										
Analyti	Analytical Parameters: VOCs, methane, carbon dioxide, dissolved oxygen, iron										

WELL NO. MW-12D

PROJECT No. SHEETS PROJECT SHEET WELL SAMPLING FORM Utility Manufacturing/Wonder King Site 60269807 1 1 OF LOCATION DATE WELL STARTED DATE WELL COMPLETED Westbury, NY May 27, 2015 May 27, 2015 CLIENT NAME OF INSPECTOR NYSDEC Celeste Foster (AECOM) DRILLING COMPANY E.A.R./Clearwater Drilling, Inc. FIELD MEASUREMENTS Depth to Purge Temp. Turbidity Time Water Rate Conduct. DO ORP REMARKS pН (ml/min) (ms/cm) (mV) (ft) (°C) (mg/L) (ntu) 1235 45.81 Static Level 1240 Pump on 1300 200 16.68 5.34 46.1 0.463 5.89 217 >1000 1305 46.1 200 16.17 0.443 5.34 5.81 221 >1000 1330 46.1 200 16.78 0.411 4.96 5.72 215 845 1345 46.1 200 16.91 0.413 4.95 5.74 211 708 1400 46.1 200 16.91 0.401 4.92 5.68 223 486 1415 46.1 200 16.96 0.4 4.83 5.68 223 265 1430 46.1 200 16.92 0.401 4.84 5.7 223 280 1445 46.1 200 16.98 0.398 4.87 5.68 224 287 1500 Sample MW-12D Collected Pump Type: Bladder pump with dedicated tubing for sampling Analytical Parameters: VOCs, methane, carbon dioxide, dissolved oxygen, iron

WELL NO.

PROJECT No. SHEETS PROJECT SHEET WELL SAMPLING FORM Utility Manufacturing/Wonder King Site 60269807 1 1 OF LOCATION DATE WELL STARTED DATE WELL COMPLETED Westbury, NY May 27, 2015 May 27, 2015 CLIENT NAME OF INSPECTOR NYSDEC Celeste Foster (AECOM) DRILLING COMPANY E.A.R./Clearwater Drilling, Inc. FIELD MEASUREMENTS Depth to Purge Temp. Turbidity REMARKS Time Water Rate Conduct. DO ORP pН (ml/min) (ms/cm) (mV) (ft) (°C) (mg/L) (ntu) 1250 45.45 Static Level 1300 Pump on 42.31 200 21.36 0.298 8.23 6.28 1310 258 >1000 1325 42.31 200 18.61 0.295 7.68 5.98 296 >1000 1340 42.31 200 18.23 0.294 9.24 6.12 268 876 1345 42.31 200 18.14 0.295 7.91 6.19 268 34.1 1400 42.31 200 18.16 0.298 7.86 6.14 272 34.8 1405 42.31 200 18.17 0.298 7.87 6.16 276 33.9 1415 Sample MW-12S Collected Pump Type: Bladder pump with dedicated tubing for sampling Analytical Parameters: VOCs, methane, carbon dioxide, dissolved oxygen, iron

MW-12S

WELL NO. MW-13D

PROJECT No. SHEETS PROJECT SHEET WELL SAMPLING FORM Utility Manufacturing/Wonder King Site 60269807 1 1 OF LOCATION DATE WELL STARTED DATE WELL COMPLETED Westbury, NY May 28, 2015 May 28, 2015 CLIENT NAME OF INSPECTOR NYSDEC Celeste Foster (AECOM) DRILLING COMPAN E.A.R./Clearwater Drilling, Inc. FIELD MEASUREMENTS Depth Purge to Time Water Rate Conduct. DO ORP Turbidity REMARKS Temp. pН (ml/min) (ms/cm) (mV) (ft) (°C) (mg/L) (ntu) 0750 44.11 Static Level 0810 Pump on 200 10.34 0825 41.1 21.01 0.329 6.61 201 >1000 Very Turbid 0840 41.1 200 19.18 0.285 10.66 6.74 227 856 0855 41.1 200 19.37 0.279 10.27 6.68 232 581 0905 41.1 200 19.34 0.278 10.42 6.63 232 251 200 0.28 10.37 230 229 0915 41.1 19.2 6.64 19.17 0930 41.1 200 0.277 10.59 233 6.61 180 0945 41.1 200 18.78 0.268 11.64 6.53 237 150 1000 41.1 200 18.41 0.267 12.02 6.55 234 698 701 1010 41.1 200 18.45 0.268 11.99 6.54 235 1020 41.1 200 17.9 0.282 10.69 6.56 232 678 1030 41.1 200 17.88 0.281 10.46 6.55 233 683 1040 41.1 200 17.87 0.281 10.49 6.54 232 680 Sample MW-13D Collected 1045 Pump Type: Bladder pump with dedicated tubing for sampling Analytical Parameters: VOCs, methane, carbon dioxide, dissolved oxygen, iron

WELL NO. MW-13S

PROJECT No. SHEETS PROJECT SHEET WELL SAMPLING FORM Utility Manufacturing/Wonder King Site 60269807 1 1 OF LOCATION DATE WELL STARTED DATE WELL COMPLETED Westbury, NY May 28, 2015 May 28, 2015 CLIENT NAME OF INSPECTOR NYSDEC Celeste Foster (AECOM) DRILLING COMPANY E.A.R./Clearwater Drilling, Inc. FIELD MEASUREMENTS Depth to Purge Temp. Turbidity REMARKS Time Water Rate Conduct. DO ORP pН (ms/cm) (ml/min) (mV) (ft) (°C) (mg/L) (ntu) 0815 43.94 Static Level 0825 Pump on 0835 200 18.29 5.52 5.93 43.7 0.46 277 394 0845 43.7 200 18.09 0.521 5 5.79 285 67.2 0855 43.7 200 18.13 0.529 4.84 5.78 289 32.9 0905 43.7 200 17.66 0.538 5.16 5.69 290 11.7 0915 43.7 200 17.6 0.548 4.94 5.66 293 8.8 0930 43.7 200 17.29 0.548 4.8 5.68 295 9 0940 43.7 200 17.23 0.548 4.77 5.69 298 9.3 0945 Sample MW-13S Collected Pump Type: Bladder pump with dedicated tubing for sampling Analytical Parameters: VOCs, methane, carbon dioxide, dissolved oxygen, iron

WELL NO. NC-12

WELL SAMPLING FORM Utility Manufacturing/Wonder King Site 60269807 LOCATION DATE WELL STARTED DATE WELL STARTED DATE WELL STARTED DATE WELL STARTED May 28, 2015 CUENT NAME OF INSPECTOR Celeste Foster (AECOM) May 28, 2015 May 28, 2015 NYSDEC Celeste Foster (AECOM) DORTHUNG COMPANY Celeste Foster (AECOM) May 28, 2015 NA Purge (tt) Rate (ml/min) CO.duct. DO pH ORP Turbidity (ntu) REMAF 1325 47.44 200 17.81 3.05 13.49 6.16 245 57.7 1340 47.44 200 17.6 3.06 7.77 6.15 249 28.2 1355 47.44 200 17.38 3.09 7.59 6.09 241 3.3 1410 47.44 200 17.36 3.09 7.59 6.09 242 3.6 1410 47.44 200 17.36 3.09 7.53 6.09 242 3.6 <			SHEETS
Westbury, NY May 28, 2015 May 28, 2015 <t< td=""><td></td><td>OF</td><td>1</td></t<>		OF	1
NYSDEC Celeste Foster (AECOM) DRILLING COMPANY NA Depth to Purge Rate (ml/min) Temp. (°C) Conduct. (ms/cm) DO (mg/L) PH ORP (mV) Turbidity (ntu) REMAR 1325 47.44 Conduct. DO (ms/cm) DO (mg/L) PH ORP (mV) Turbidity (ntu) REMAR 1325 47.44 Conduct. DO (ms/cm) PH ORP (mV) Static Level 1330 Conduct. DO (ms/cm) Turbidity (ms/cm) Pump on Static Level 1330 Conduct. Antiperative Antiperative Pump on Static Level 1330 Total 3.05 13.49 6.16 245 57.7 1345 47.44 200 17.6 3.06 7.77 6.15 249 28.2 1355 47.44 200 17.38 3.09 7.78 6.09 241 3.3 1425 47.44 200 17.36 3.09 7.59 6.09 242 3.6			
DRILLING COMPANY NA Depth to (ft) Purge (ml/min) Field MEASUREMENTS Turbidity (mg/L) Turbidity (mg/L) REMAR 1325 47.44 Conduct. (ml/min) DO (mg/L) pH ORP (mV) Turbidity (ntu) REMAR 1330 Temp. (ml/min) Conduct. (ms/cm) DO (mg/L) pH ORP (mV) Static Level 1330 Temp. (ml/min) Conduct. (ms/cm) DO (mg/L) pH ORP (mV) Static Level 1330 Temp. (ml/min) Conduct. (ms/cm) DO (mg/L) PH ORP (mV) Turbidity (ntu) REMAR 1345 47.44 200 17.81 3.05 13.49 6.16 245 57.7 1345 47.44 200 17.6 3.06 7.77 6.15 249 28.2 1355 47.44 200 17.38 3.09 7.78 6.09 241 3.3 1425 47.44 200 17.36 3.09 7.53 6.09 242 3.6			
Depth to Water (ft) Purge Rate (ml/min) FIELD MEASUREMENTS Turbidity (mg/L) Turbidity (mV) REMAR 1325 47.44 600 pH ORP (mV) Turbidity (ntu) REMAR 1330 1340 47.44 200 17.81 3.05 13.49 6.16 245 57.7 1345 47.44 200 17.6 3.06 7.77 6.15 249 28.2 1355 47.44 200 17.54 3.07 7.42 6.12 251 26.9 1410 47.44 200 17.38 3.09 7.59 6.09 241 3.3 1425 47.44 200 17.36 3.09 7.53 6.09 242 3.6			
to Water (ft)Purge Rate (ml/min)Temp. (°C)Conduct. (ms/cm)DO (mg/L)pHORP (mV)Turbidity (ntu)REMAR132547.44Static Level1330 </td <td></td> <td></td> <td></td>			
Time Water (ft) Rate (ml/min) Temp. (°C) Conduct. (ms/cm) DO (mg/L) pH (mV) ORP (mV) Turbidity (ntu) REMAR 1325 47.44 Static Level 1330 Pump on 1340 47.44 200 17.81 3.05 13.49 6.16 245 57.7 1345 47.44 200 17.6 3.06 7.77 6.15 249 28.2 1355 47.44 200 17.54 3.07 7.42 6.12 251 26.9 1410 47.44 200 17.38 3.09 7.59 6.09 241 3.3 1425 47.44 200 17.36 3.09 7.53 6.09 242 3.6 1440 47.44 200 17.36 3.09 7.53 6.09 242 3.3			
1325 47.44 Static Level 1330 Pump on 1340 47.44 200 17.81 3.05 13.49 6.16 245 57.7 1345 47.44 200 17.6 3.06 7.77 6.15 249 28.2 1355 47.44 200 17.54 3.07 7.42 6.12 251 26.9 1410 47.44 200 17.38 3.09 7.78 6.09 241 3.3 1425 47.44 200 17.36 3.09 7.59 6.09 242 3.6 1440 47.44 200 17.36 3.09 7.53 6.09 242 3.3	RKS		
134047.4420017.813.0513.496.1624557.7134547.4420017.63.067.776.1524928.2135547.4420017.543.077.426.1225126.9141047.4420017.383.097.786.092413.3142547.4420017.363.097.596.092423.6144047.4420017.363.097.536.092423.3			
134547.4420017.63.067.776.1524928.2135547.4420017.543.077.426.1225126.9141047.4420017.383.097.786.092413.3142547.4420017.363.097.596.092423.6144047.4420017.363.097.536.092423.3			
1355 47.44 200 17.54 3.07 7.42 6.12 251 26.9 1410 47.44 200 17.38 3.09 7.78 6.09 241 3.3 1425 47.44 200 17.36 3.09 7.59 6.09 242 3.6 1440 47.44 200 17.36 3.09 7.53 6.09 242 3.3			
1410 47.44 200 17.38 3.09 7.78 6.09 241 3.3 1425 47.44 200 17.36 3.09 7.59 6.09 242 3.6 1440 47.44 200 17.36 3.09 7.53 6.09 242 3.6			
1425 47.44 200 17.36 3.09 7.59 6.09 242 3.6 1440 47.44 200 17.36 3.09 7.53 6.09 242 3.6			
1440 47.44 200 17.36 3.09 7.53 6.09 242 3.3			
1440 47.44 200 17.36 3.09 7.53 6.09 242 3.3			
Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image:			
Image: state of the state			
Image: state of the state			
Image: state of the state			
Image: state of the state			
Image: Second			
Pump Type: Bladder pump with dedicated tubing for sampling Analytical Parameters: VOCs, methane, carbon dioxide, dissolved oxygen, iron			

Well ID: MW-1S	Date: 5/28/2015
Type: Flushmount	
Stickup Height: NA	
As Built Well Depth: 90 ft	Stickup Material: NA
Riser Diameter: 2 inch	Stickup Diameter: NA
Riser Material: PVC	
Riser Appearance: Ok	Inspector: C Foster (AECOM)
CONDITION	
Signs of Vandalism: No	
Cannot Locate: No	
Locked: Yes	
Inner Cap: Yes	
Protective Casing Loose: No	
Concrete Pad: Ok	
Soil Erosion: No	
Ponded Water: No	
Well Marked: No	
Cannot Identify: No	
Depth to water from TOC: 46.21 ft	
Depth to bottom from TOC: NM	
Does well appear: SILTED UP [No] HARD BOTTOM	[No] OTHER: None
Obstruction in well: No	
PID reading: 0 ppm	
Active pump in well: No	
Comments: None	

Well ID: MW-1D	Date: 5/28/2015
Type: Flushmount	
Stickup Height: NA	
As Built Well Depth: 130 ft	Stickup Material: NA
Riser Diameter: 2 inch	Stickup Diameter: NA
Riser Material: PVC	
Riser Appearance: Ok	Inspector: C Foster (AECOM)
CONDITION	
Signs of Vandalism: No	
Cannot Locate: No	
Locked: Yes	
Inner Cap: Yes	
Protective Casing Loose: No	
Concrete Pad: Ok	
Soil Erosion: No	
Ponded Water: No	
Well Marked: No	
Cannot Identify: No	
Depth to water from TOC: 46.18 ft	
Depth to bottom from TOC: NM	
Does well appear: SILTED UP [No] HARD BOTTOM	[No] OTHER: None
Obstruction in well: No	
PID reading: 0 ppm	
Active pump in well: No	
Comments: None	

Well ID: MW-11S	Date: 5/28/2015
Type: Flushmount	
Stickup Height: NA	
As Built Well Depth: 95 ft	Stickup Material: NA
Riser Diameter: 2 inch	Stickup Diameter: NA
Riser Material: PVC	
Riser Appearance: Ok	Inspector: C Foster (AECOM)
CONDITION	
Signs of Vandalism: No	
Cannot Locate: No	
Locked: Yes	
Inner Cap: Yes	
Protective Casing Loose: No	
Concrete Pad: Ok	
Soil Erosion: No	
Ponded Water: No	
Well Marked: No	
Cannot Identify: No	
Depth to water from TOC: 47.20 ft	
Depth to bottom from TOC: NM	
Does well appear: SILTED UP [No] HARD BOTTOM	[No] OTHER: None
Obstruction in well: No	
PID reading: 0 ppm	
Active pump in well: No	
Comments: None	

Well ID: MW-11D	Date: 5/28/2015
Type: Flushmount	
Stickup Height: NA	
As Built Well Depth: 124 ft	Stickup Material: NA
Riser Diameter: 2 inch	Stickup Diameter: NA
Riser Material: PVC	_
Riser Appearance: Ok	Inspector: C Foster (AECOM)
CONDITION	
Signs of Vandalism: No	
Cannot Locate: No	
Locked: Yes	
Inner Cap: Yes	
Protective Casing Loose: No	
Concrete Pad: Ok	
Soil Erosion: No	
Ponded Water: No	
Well Marked: No	
Cannot Identify: No	
Depth to water from TOC: 47.13 ft	
Depth to bottom from TOC: NM	
Does well appear: SILTED UP [No] HARD BOTTOM	[No] OTHER: None
Obstruction in well: No	
PID reading: 0 ppm	
Active pump in well: No	
Comments: None	

Well ID: MW-12S	Date: 5/28/2015
Type: Flushmount	
Stickup Height: NA	_
As Built Well Depth: 95 ft	Stickup Material: NA
Riser Diameter: 2 inch	Stickup Diameter: NA
Riser Material: PVC	
Riser Appearance: Ok	Inspector: C Foster (AECOM)
CONDITION	
Signs of Vandalism: No	
Cannot Locate: No	
Locked: Yes	
Inner Cap: Yes	
Protective Casing Loose: No	
Concrete Pad: Ok	
Soil Erosion: No	
Ponded Water: No	
Well Marked: No	
Cannot Identify: No	
Depth to water from TOC: 45.43 ft	
Depth to bottom from TOC: NM	
Does well appear: SILTED UP [No] HARD BOTTOM	[No] OTHER: None
Obstruction in well: No	
PID reading: 0 ppm	
Active pump in well: No	
Comments: None	

Well ID: MW-12D	Date: 5/28/2015
Type: Flushmount	
Stickup Height: NA	
As Built Well Depth: 125 ft	Stickup Material: NA
Riser Diameter: 2 inch	Stickup Diameter: NA
Riser Material: PVC	_
Riser Appearance: Ok	Inspector: C Foster (AECOM)
CONDITION	
Signs of Vandalism: No	
Cannot Locate: No	
Locked: Yes	
Inner Cap: Yes	
Protective Casing Loose: No	
Concrete Pad: Ok	
Soil Erosion: No	
Ponded Water: No	
Well Marked: No	
Cannot Identify: No	
Depth to water from TOC: 45.82 ft	
Depth to bottom from TOC: NM	
Does well appear: SILTED UP [No] HARD BOTTOM	[No] OTHER: None
Obstruction in well: No	
PID reading: 0 ppm	
Active pump in well: No	
Comments: None	

Well ID: MW-13S	Date: 5/28/2015
Type: Flushmount	
Stickup Height: NA	-
As Built Well Depth: 96 ft	Stickup Material: NA
Riser Diameter: 2 inch	Stickup Diameter: NA
Riser Material: PVC	
Riser Appearance: Ok	Inspector: C Foster (AECOM)
CONDITION	
Signs of Vandalism: No	
Cannot Locate: No	
Locked: Yes	
Inner Cap: Yes	
Protective Casing Loose: No	
Concrete Pad: Ok	
Soil Erosion: No	
Ponded Water: No	
Well Marked: No	
Cannot Identify: No	
Depth to water from TOC: 43.97 ft	
Depth to bottom from TOC: NM	
Does well appear: SILTED UP [No] HARD BOTTOM	[No] OTHER: None
Obstruction in well: No	
PID reading: 0 ppm	
Active pump in well: No	
Comments: None	

Well ID: MW-13D	Date: 5/28/2015
Type: Flushmount	
Stickup Height: NA	
As Built Well Depth: 126 ft	Stickup Material: NA
Riser Diameter: 2 inch	Stickup Diameter: NA
Riser Material: PVC	_
Riser Appearance: Ok	Inspector: C Foster (AECOM)
CONDITION	
Signs of Vandalism: No	
Cannot Locate: No	
Locked: Yes	
Inner Cap: Yes	
Protective Casing Loose: No	
Concrete Pad: Ok	
Soil Erosion: No	
Ponded Water: No	
Well Marked: No	
Cannot Identify: No	
Depth to water from TOC: 44.11 ft	
Depth to bottom from TOC: NM	
Does well appear: SILTED UP [No] HARD BOTTOM	[No] OTHER: None
Obstruction in well: No	
PID reading: 0 ppm	
Active pump in well: No	
Comments: None	

Well ID: NC-12	Date: 5/28/2015
Type: Flushmount	
Stickup Height: NA	_
As Built Well Depth: 54 ft	Stickup Material: NA
Riser Diameter: 2 inch	Stickup Diameter: NA
Riser Material: PVC	
Riser Appearance: Ok	Inspector: C Foster (AECOM)
CONDITION	
Signs of Vandalism: No	
Cannot Locate: No	
Locked: No	
Inner Cap: Yes	
Protective Casing Loose: No	
Concrete Pad: Ok	
Soil Erosion: No	
Ponded Water: No	
Well Marked: No	
Cannot Identify: No	
Depth to water from TOC: 47.44 ft	
Depth to bottom from TOC: NM	
Does well appear: SILTED UP [No] HARD BOTTOM	[No] OTHER: None
Obstruction in well: No	
PID reading: 0 ppm	
Active pump in well: No	
Comments: None	

APPENDIX B

Data Usability Summary Reports

DATA USABILITY SUMMARY REPORT UTILITY MANUFACTURING/WONDER KING, NEW CASSELL, NEW YORK

Client:	AECOM Technical Services, Inc., Chestnut Ridge, New York
SDG:	AECOM238
Laboratory:	Pace Analytical, Melville, New York
Site:	Utility Manufacturing/Wonder King, New Cassell, New York
Date:	July 30, 2015

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	MW-11S	1505J73-001	Water
1MS	MW-11SMS	1505J73-001MS	Water
1MSD	MW-11SMSD	1505J73-001MSD	Water
2	MW-11D	1505J73-002	Water
3	MW-12S	1505J73-003	Water
4	MW-12D	1505J73-004	Water
5	MW-1D	1505J73-005	Water
6	MW-61S	1505J73-006	Water
7	TRIP BLANK	1505J73-007	Water
8	MW-1S	1505L06-001	Water
9	MW-13D	1505L06-002	Water
10	MW-13S	1505L06-003	Water
11	NC-12	1505L06-004	Water
12	TB	1505L06-005	Water
13	STORAGE BLANK	1505L06-006	Water

A Data Usability Summary Review was performed on the analytical data for ten water samples, two aqueous trip blank samples, and one aqueous storage blank sample collected on May 27-28, 2015 by AECOM at the Utility Manufacturing/Wonder King site in New Cassell, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions".

Specific method references are as follows:

<u>Analysis</u>	<u>Method References</u>
VOCs	USEPA SW-846 Method 8260B

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

- SOP Number HW-24, Revision 4, September 2014: Validating Volatile Organic Compounds by SW-846 Method 8260B & 8260C;
- and the reviewer's professional judgment.

The following items/criteria were reviewed for this report:

Organics

- Data Completeness
- Holding times and sample preservation
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample (LCS) recoveries
- Method blank and field blank contamination
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning
- Initial and continuing calibration summaries
- Compound Quantitation
- Internal standard area and retention time summary forms
- Field Duplicate sample precision

Overall Usability Issues:

There were no rejections of data.

Overall the data is acceptable for the intended purposes as qualified for the following deficiencies.

- cis-1,2-Dichloroethene was qualified as estimated in one sample due to a high MS/MSD recovery.
- Two compounds were qualified as estimated in all samples due to high continuing calibration %D values.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedences of QC criteria.

Data Completeness

• The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

Volatile Organic Compounds (VOCs)

Holding Times

• All samples were analyzed within 14 days for preserved water samples.

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The following table presents MS/MSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified and qualified (J). Results are valid and usable, however possibly biased.

MS/MSD Sample ID	Compound	MS %R/MSD %R/RPD	Qualifier
1	Bromomethane	143%/147%/OK	None - Sample ND
	Trichlorofluoromethane	166%/166%/OK	None - Sample ND
	1,1-Dichloroethene	144%/147%/OK	None - Sample ND
	1,1,1-Trichloroethane	130%/135%/OK	None - Sample ND
	trans-1,2-Dichloroethene	OK/137%/OK	None - ND
	cis-1,2-Dichloroethene	OK/135%/OK	J

Laboratory Control Samples

• The LCS samples exhibited acceptable recoveries.

Method Blank

• The method blanks were free of contamination.

<u>Field Blank</u>

• Field QC samples are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
TRIP BLANK	ND	-	-	
ТВ	ND	-		-
STORAGE BLANK	ND	-	_	-

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The following table presents compounds that exceeded 30 percent difference (%D) and/or RRF values <0.05 (0.01 for poor performers) in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D/RRF	Qualifier	Affected Samples
06/03/15	Dichlorodifluoromethane	50.6%	J/UJ	All Samples
	Bromomethane	35.2%	J/UJ	-

Compound Quantitation

• All criteria were met.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Field Duplicate Sample Precision

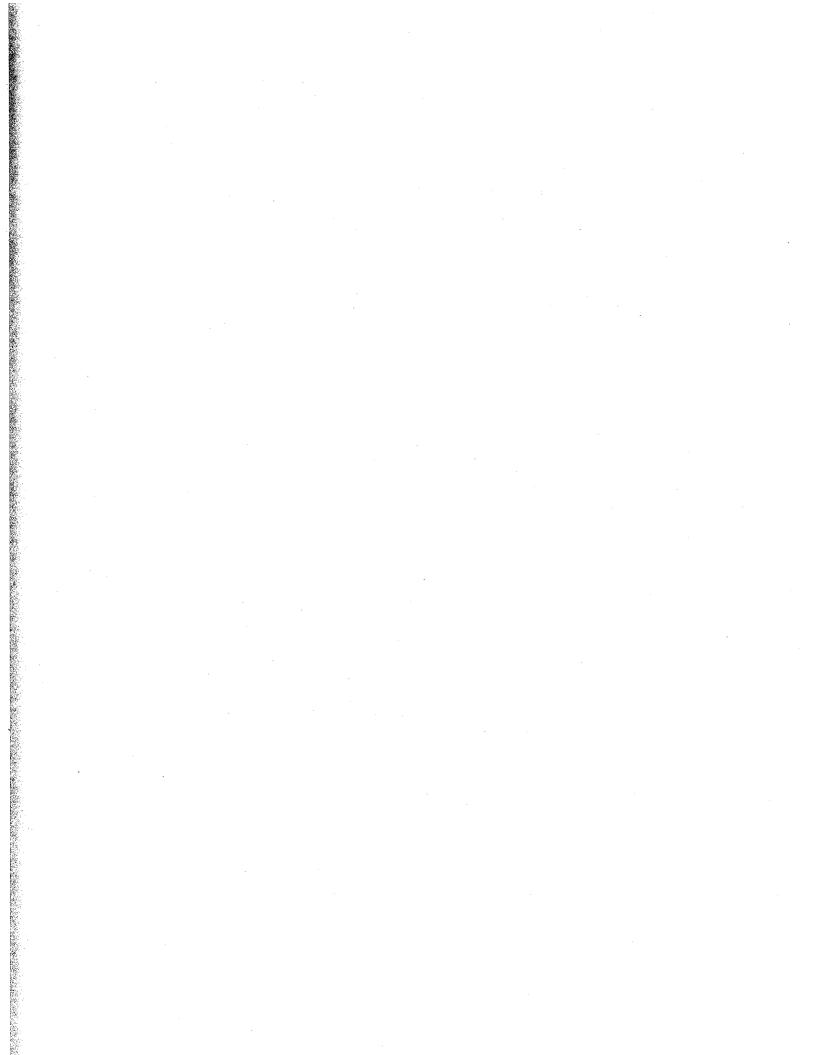
• Field duplicate results are summarized below. The precision is acceptable.

		VOC		
Compound	MW-11S ug/L	MW-61S ug/L	RPD	Qualifier
1,2-Dichloroethene (total)	2	2	0%	None
cis-1,2-Dichloroethene	2	2	0%	
Tetrachloroethene	2	2	0%	

Tentatively Identified Compounds (TICs)

• TICs were not reported.

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.


Signed:

ancy Meaver Dated: 7/31/15 Nancy Weaver

Senior Chemist

Data Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

1B

EFA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

MW-11S

Lab Name: PACE ANAI	YTICAL	Contract:	
Lab Code: <u>10478</u>	Case No.: AECOM	<u>1-N</u> SAS No.:	SDG No.: AECOM238
Matrix: (soil/water)	WATER	Lab Sample	ID: <u>1505J73-001A</u>
Sample wt/vol: <u>5</u>	(g/mL) <u>mL</u>	Lab File I	D: <u>315\G32978</u>
Level: (low/med)	TOM	Date Recei	ved: 05/27/15
% Moisture: not dec.		Date Analy	zed: 06/03/15
GC Column: <u>Rtx-624</u>	ID: <u>.18</u>	(mm) Dilution F	actor: <u>1.00</u>
Soil Extract Volume:	(µ1	L) Soil Aliqu	ot Volume (pL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q
75-71	8 Dichlorodifluoromethane	5	¥
74-87	3 Chloromethane	5	Ū
75-01	4 Vinyl chloride	5	υ
74-83	9 Bromomethane	5	Y
75-00	3 Chloroethane	5	U
75-69	4 Trichlorofluoromethane	5	U
75-35	4 1,1-Dichloroethene	5	υ
67-64	1 Acetone	5	U
75-15	0 Carbon disulfide	5	U
79-20	9 Methyl Acetate	5	U
75-09	2 Methylene chloride	5	U
156-60	5 trans-1,2-Dichloroethene	5	U
1634-04	4 Methyl tert-butyl ether	5	U
75-34		5	U
540-59	0 1,2-Dichloroethene (total)	2	
156-59		2	1
78-93		5	U
67-66	-3 Chloroform	5	U
71-55	-6 1,1,1-Trichloroethane	5	U
110-82	-7 Cyclohexane	5	υ
56-23	-5 Carbon tetrachloride	5	υ
71-43	-2 Benzene	5	υ
107-06	-2 1,2-Dichloroethane	5	U
79-01	-6 Trichloroethene	5	υ
108-87	-2 Methylcyclohexane	5	U
78-87	-5 1,2-Dichloropropane	5	U
75-27	-4 Bromodichloromethane	5	Ţ
10061-01	-5 cis-1,3-Dichloropropene	5	υ
108-10	-1 4-Methyl-2-pentanone	5	U
108-88	-3 Toluene	5	υ
10061-02	-6 trans-1,3-Dichloropropene	5	υ
79-00	-5 1,1,2-Trichloroethane	5	U
127-18	-4 Tetrachloroethene	2	J
591-78	-6 2-Hexanone	5	Ŭ
124-48	-1 Dibromochloromethane	5	υ

FORM I VOA - 1 M 7/30/15

OLM04.2

AECOM238 V20

1в

EPA SAMPLE NO.

l

VOLATILE ORGANICS ANALYSIS DATA SHEET

MW-115

Lab Name: PACE ANALY	TICAL Co	ntract:	
Lab Code: <u>10478</u>	Case No.: <u>AECOM-N</u>	SAS No.:	SDG No.: AECOM238
Matrix: (soil/water)	WATER	Lab Sample ID:	<u>1505J73-001A</u>
Sample wt/vol: 5	(g/mL) mL	Lab File ID:	<u>315\G32978</u>
Level: (low/med)	LOW	Date Received:	05/27/15
% Moisture: not dec.		Date Analyzed:	06/03/15
GC Column: <u>Rtx-624</u>	ID: <u>.18</u> (mr	n) Dilution Factor:	1.00
Soil Extract Volume:	(µL)	Soil Aliquot Vol	ume (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q
106-93-4	1,2-Dibromoethane	5	U
108-90-7	Chlorobenzene	5	Ŭ
100-41-4	Ethylbenzene	5	U
1330-20-7	Xylene (total)	5	U
100-42-5	Styrene	5	U
75-25-2	Bromoform	5	U
98-82-8	Isopropylbenzene	5	U
79-34-5	1,1,2,2-Tetrachloroethane	5	U
541-73-1	1,3-Dichlorobenzene	5	υ
106-46-7	1,4-Dichlorobenzene	5	υ
95-50-1	1,2-Dichlorobenzene	5	ΰ
96-12-8	1,2-Dibromo-3-chloropropane	5	υ
120-82-1	1,2,4-Trichlorobenzene	5	U

AECOM238 V21

ļ

18

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW-11D

Lab Name: PACE ANAL	YTICAL	Contract:	
Lab Code: <u>10478</u>	Case No.: AECOM-N	SAS No.:	SDG No.: AECOM238
Matrix: (soil/water)	WATER	Lab Sample ID:	1505J73-002A
Sample wt/vol: 5	(g/mL) <u>mL</u>	Lab File ID:	315\G32982
Level: (low/med)	LOW	Date Received:	05/27/15
% Moisture: not dec.		Date Analyzed:	06/03/15
GC Column: Rtx-624	ID: <u>.18</u>	(mm) Dilution Factor:	1.00
Soil Extract Volume:	(µL)	Soil Aliquot Vol	lume (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q	
75-71-8	B Dichlorodifluoromethane	5	×	ี น:
74-87-3	3 Chloromethane	5	Ū	
75-01-4	Vinyl chloride	5	υ	
74-83-9	Bromomethane	5	كلر	<u> </u>
75-00-3	3 Chloroethane	5	U	
75-69-4	1 Trichlorofluoromethane	5	U	
75-35-4	1,1-Dichloroethene	4	J	
67-64-3	l Acetone	5	U	
75-15-0	Carbon disulfide	5	U	
79-20-9	9 Methyl Acetate	5	U	
75-09-2	2 Methylene chloride	5	U	-1.
156-60-5	5 trans-1,2-Dichloroethene	5	U	
1634-04-4	4 Methyl tert-butyl ether	5	ΰ	
75-34-3	3 1,1-Dichloroethane	2	J	
540-59-0	0 1,2-Dichloroethene (total)	2		
156-59-3	2 cis-1,2-Dichloroethene	2	J	
78-93-3	3 2-Butanone	5	ΰ	
67-66-3	3 Chloroform	5	U	
71-55-0	5 1,1,1-Trichloroethane	5	υ	
110-82-	7 Cyclohexane	5	υ	
56-23-	5 Carbon tetrachloride	5	U	
71-43-	2 Benzene	5	U	
107-06-	2 1,2-Dichloroethane	5	υ	
79-01-	5 Trichloroethene	4	J	
108-87-2	2 Methylcyclohexane	5	υ	
78-87-	5 1,2-Dichloropropane	5	U	
75-27-	4 Bromodichloromethane	5	υ	
10061-01-	5 cis-1,3-Dichloropropene	5	U	
108-10-	1 4-Methyl-2-pentanone	5	U	
108-88-	3 Toluene	5	U	
10061-02-	6 trans-1,3-Dichloropropene	5	υ	
79-00-	5 1,1,2-Trichloroethane	5	υ	
127-18-	4 Tetrachloroethene	13		
591-78-	6 2-Hexanone	5	υ	
124-48-	1 Dibromochloromethane	5	U	

÷.

AECOM238 V29

2

1B

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW-11D

Lab Name: PACE ANALY	FICAL Contra		
Lab Code: <u>10478</u>	Case No.: AECOM-N SAS	No.:	SDG No.: ABCOM238
Matrix: (soil/water)	WATER	Lab Sample ID:	1505J73-002A
Sample wt/vol: <u>5</u>	(g/mL) <u>mL</u>	Lab File ID:	315\G32982
Level: (low/med)	LOW	Date Received:	05/27/15
% Moisture: not dec.		Date Analyzed:	06/03/15
GC Column: <u>Rtx-624</u>	ID: <u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume:	(µL)	Soil Aliquot Volu	ıme (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q
106-93-4	1,2-Dibromoethane	5	U
108-90-7	Chlorobenzene	5	U
100-41-4	Ethylbenzene	5	U
1330-20-7	Xylene (total)	5	U
100-42-5	Styrene	5	σ
75-25-2	Bromoform	5	υ
98-82-8	Isopropylbenzene	5	U
. 79-34-5	1,1,2,2-Tetrachloroethane	5	Ų
541-73-1	1,3-Dichlorobenzene	5	U
106-46-7	1,4-Dichlorobenzene	5	υ
95-50-1	1,2-Dichlorobenzene	5	U
96-12-8	1,2-Dibromo-3-chloropropane	5	U
120-82-1	1,2,4-Trichlorobenzene	5	υ

OLM04.2

FORM I VOA - 2 M 7130/15

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW-125

Lab Name:	PACE ANALY	ICAL	Contra	ct:	
Lab Code:	10478	Case No.: A	ABCOM-N SAS	No.:	SDG No.: AECOM238
Matrix: (so	il/water)	WATER		Lab Sample ID:	1505J73-003A
Sample wt/v	ol: <u>5</u>	(g/mL)	mL	Lab File ID:	315\G32983
Level: (1	ow/med)	LOW		Date Received:	05/27/15
% Moisture:	not dec.			Date Analyzed:	06/03/15
GC Column:	<u>Rtx-624</u>	ID:	<u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extrac	t Volume:		(µL)	Soil Aliquot Volu	ume (µL)

CONCENTRATION UNITS:

AS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q
75-71-8	Dichlorodifluoromethane	5	کل
74-87-3	Chloromethane	5	U
75-01-4	Vinyl chloride	5	υ
74-83-9	Bromomethane	5	ø
75-00-3	Chloroethane	5	U
75-69-4	Trichlorofluoromethane	5	ΰ
75-35-4	1,1-Dichloroethene	5	Ŭ
67-64-1	Acetone	5	U
75-15-0	Carbon disulfide	5	U
79-20-9	Methyl Acetate	5	U
75-09-2	Methylene chloride	5	U
156-60-5	trans-1,2-Dichloroethene	5	U
1634-04-4	Methyl tert-butyl ether	5	U
75-34-3	1,1-Dichloroethane	5	U
540-59-0	1,2-Dichloroethene (total)	5	U
156-59-2	cis-1,2-Dichloroethene	5	Ų
78-93-3	2-Butanone	5	U
67-66-3	Chloroform	5	U
71-55-6	1,1,1-Trichloroethane	5	U
110-82-7	Cyclohexane	5	U
56-23-5	Carbon tetrachloride	5	U
71-43-2	Benzene	5	υ
107-06-2	1,2-Dichloroethane	5	U
79-01-6	Trichloroethene	5	U
108-87-2	Methylcyclohexane	5	υ
78-87-5	1,2-Dichloropropane	5	υ
75-27-4	Bromodichloromethane	5	υ
10061-01-5	cis-1,3-Dichloropropene	5	U
108-10-1	4-Methyl-2-pentanone	5	υ
108-88-3	Toluene	5	U
10061-02-6	trans-1,3-Dichloropropene	5	υ
79-00-5	1,1,2-Trichloroethane	5	U
127-18-4	Tetrachloroethene	5	U
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	5	Ų

AECOM238 V39

1B

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW-125

Lab Name:	PACE ANALYI	ICAL	Contra	ct:	
Lab Code:	10478	Case No.:	AECOM-N SAS	No.:	SDG No.: AECOM238
Matrix: (so	il/water)	WATER		Lab Sample ID:	1505J73-003A
Sample wt/v	ol: <u>5</u>	(g/mL)	mL	Lab File ID;	<u>315\G32983</u>
Level: (1	ow/med)	LOW		Date Received:	05/27/15
% Moisture:	not dec.			Date Analyzed:	06/03/15
GC Column:	<u>Rtx-624</u>	ID:	<u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extrac	t Volume:		(pL)	Soil Aliquot Volu	ume(µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q
106-93-4	1,2-Dibromoethane	5	U
108-90-7	Chlorobenzene	5	υ
100-41-4	Ethylbenzene	5	U
1330-20-7	Xylene (total)	5	υ
100-42-5	Styrene	5	U
75-25-2	Bromoform	: 5	U
98-82-8	Isopropylbenzene	, 5	U
79-34-5	1,1,2,2-Tetrachloroethane	5	U
541-73-1	1,3-Dichlorobenzene	5	U
106-46-7	1,4-Dichlorobenzene	5	U
95-50-1	1,2-Dichlorobenzene	5	U
96-12-8	1,2-Dibromo-3-chloropropane	5	U
120-82-1	1,2,4-Trichlorobenzene	5	U

3

OLM04.2

AECOM238 V40

:

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW-12D

Ц

 Lab Name:
 PACE ANALYTICAL
 Contract:

 Lab Code:
 10478
 Case No.:
 AECOM-N
 SAS No.:
 SDG No.:
 AECOM238

 Matrix:
 (soil/water)
 WATER
 Lab Sample ID:
 1505J73-004A

 Sample wt/vol:
 5
 (g/mL) mL
 Lab File ID:
 315\G32984

 Level:
 (low/med)
 LOW
 Date Received:
 05/27/15

 % Moisture: not dec.
 Date Analyzed:
 06/03/15

 GC Column:
 Rtx-624
 ID: .18 (mm)
 Dilution Factor:
 1.00

 Soil Extract Volume:
 (µL)
 Soil Aliquot Volume ______(µL)

CONCENTRATION UNITS:

AS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q
75-71	-8 Dichlorodifluoromethane	5	V
74-87	-3 Chloromethane	5	Ū
75-01	-4 Vinyl chloride	5	U
74-83	-9 Bromomethane	5	¥
75-00	-3 Chloroethane	5	Ū
75-69	-4 Trichlorofluoromethane	5	U
75-35	-4 1,1-Dichloroethene	2	J
67-64	-1 Acetone	5	U
75-15	-0 Carbon disulfide	5	U
79-20	-9 Methyl Acetate	5	U
75-09	-2 Methylene chloride	5	U
156-60	-5 trans-1,2-Dichloroethene	5	U
1634-04	-4 Methyl tert-butyl ether	5	ΰ
75-34	-3 1,1-Dichloroethane	5	Ū
540-59	-0 1,2-Dichloroethene (total)	5	Ū
156-59	-2 cis-1,2-Dichloroethene	5	U
78-93	-3 2-Butanone	5	U
67-66	-3 Chloroform	5	υ
71-55	-6 1,1,1-Trichloroethane	1	J
110-82		5	ע
56-23	-5 Carbon tetrachloride	5	υ
71-43	-2 Benzene	5	U
107-06	-2 1,2-Dichloroethane	5	U
79-01	-6 Trichloroethene	2	J
108-87	-2 Methylcyclohexane	5	Ū
78-87	-5 1,2-Dichloropropane	5	U
75-27	-4 Bromodichloromethane	5	U
10061-01	-5 cis-1,3-Dichloropropene	5	U
108-10	-1 4-Methyl-2-pentanone	5	U
108-88		5	ΰ
10061-02	-6 trans-1,3-Dichloropropene	5	U
79-00	-5 1,1,2-Trichloroethane	5	υ
127-18	-4 Tetrachloroethene	2	J
591-78	-6 2-Hexanone	5	U
124-48	-1 Dibromochloromethane	5	U

OLM04.2

FORM I VOA - 1 W7/30/15

AECOM238 V46

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

4

MW-12D

Lab Name: PACE ANALY	TICAL	Contra	ct:	
Lab Code: <u>10478</u>	Case No.: 1	AECOM-N SAS	No.:	SDG No.: AECOM238
Matrix: (soil/water)	WATER		Lab Sample ID:	1505J73-004A
Sample wt/vol: 5	(g/mL)	mL	Lab File ID:	315\G32984
Level: (low/med)	LOW		Date Received:	05/27/15
% Moisture: not dec.			Date Analyzed:	06/03/15
GC Column: Rtx-624	ID:	<u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume:		(µL)	Soil Aliquot Volu	ime (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q
106-93-4	1,2-Dibromoethane	5	U
108-90-7	Chlorobenzene	5	υ
100-41-4	Ethylbenzene	5	ΰ
1330-20-7	Xylene (total)	5	U
100-42-5	Styrene	5	ΰ
75-25-2	Bromoform	5	U
98-82-8	Isopropylbenzene	5	บ
79-34-5	1,1,2,2-Tetrachloroethane	5	ΰ
541-73-1	1,3-Dichlorobenzene	5	U
106-46-7	1,4-Dichlorobenzene	5	υ
95-50-1	1,2-Dichlorobenzene	5	U
96-12-8	1,2-Dibromo-3-chloropropane	5	U
120-82-1	1,2,4-Trichlorobenzene	5	υ

FORM I VOA - 2 M 7/30/15

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW-1D

YSIS DATA SHEET

Lab Name:PACE ANALYTICALContract:Lab Code:10478Case No.:AECOM-N SAS No.:SDG No.:AECOM238Matrix:(soil/water)WATERLab Sample ID:1505J73-005ASample wt/vol:5(g/mL) mLLab File ID: $315 \setminus G32986$ Level:(low/med)LOWDate Received:05/27/15% Moisture:not dec.Date Analyzed:06/03/15GC Column:Rtx-624ID: .18 (mm)Dilution Factor:1.00Soil Extract Volume:(µL)Soil Aliquot Volume(µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q	
75-71	-8 Dichlorodifluoromethane	5	¥	Πu
74-87	-3 Chloromethane	5	U	'
75-01	-4 Vinyl chloride	5	σ	
74-83	-9 Bromomethane	5	Y	u:
75-00	-3 Chloroethane	5	Ū	
75-69	-4 Trichlorofluoromethane	5	U	
75-35	-4 1,1-Dichloroethene	16		
67-64	-1 Acetone	5	U	
75-15	-0 Carbon disulfide	5	U	
79-20	-9 Methyl Acetate	5	υ	
75-09		5	υ	
156-60		5	υ	
1634-04		5	υ	-
75-34		2	J	-1
540-59		5		
156-59	-2 cis-1,2-Dichloroethene	5		
78-93	-3 2-Butanone			
67-66	-3 Chloroform	5	U	
71-55	-6 1,1,1-Trichloroethane	4	J	
110-82	-7 Cyclohexane	5	U	_
56-23	-5 Carbon tetrachloride	5	U	
71-43	-2 Benzene	5	U	
107-06	-2 1,2-Dichloroethane	5	ប	
79-01	-6 Trichloroethene	61		
108-87	-2 Methylcyclohexane	5	ΰ	
78-87		5	U	
75-27		5	U	
10061-01		5	U	
108-10		5	υ	
108-88		5	υ	
10061-02	-6 trans-1,3-Dichloropropene	5	υ	
79-00		5	U	
127-18		12		
591-78	-6 2-Hexanone	5	υ	
124-48	-1 Dibromochloromethane	5	υ	

OLM04.2

M 7/30/15

FORM I VOA - 1

AECOM238 V55

4 · · · 4

VOLATILE ORGANICS ANALYSIS DATA SHEET

1B

.

MW-1D

Lab Name: PACE ANAL	YTICAL	Contra	ct:	
Lab Code: <u>10478</u>	Case No.:	AECOM-N SAS	No.:	SDG No.: AECOM238
Matrix: (soil/water)	WATER		Lab Sample ID:	1505J73-005A
Sample wt/vol: 5	(g/mL) <u>mL</u>	Lab File ID:	315\G32986
Level: (low/med)	LOW		Date Received:	05/27/15
% Moisture: not dec.			Date Analyzed:	06/03/15
GC Column: <u>Rtx-624</u>	ID:	. <u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume:		(µL)	Soil Aliquot Volu	ume (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg,	/L or µg/Kg) <u>µg/L</u>	Q
106-93-4	1,2-Dibromoethane		5	U
108-90-7	Chlorobenzene		5	U
100-41-4	Ethylbenzene		5	U
1330-20-7	Xylene (total)		5	U
100-42-5	Styrene		5	ប
75-25-2	Bromoform		5	υ
98-82-8	Isopropylbenzene		5	U
79-34-5	1,1,2,2-Tetrachloroethane		5	U
541-73-1	1,3-Dichlorobenzene		5	υ
106-46-7	1,4-Dichlorobenzene		5	υ
95-50-1	1,2-Dichlorobenzene		5	Ũ
96-12-8	1,2-Dibromo-3-chloropropane		5	U
120-82-1	1,2,4-Trichlorobenzene		5	U

FORM I VOA - 2 M 7/30/15

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW-615

Lab Name:	PACE ANALYI	ICAL	C	ontrac	:t:	
Lab Code:	10478	Case No.:	AECOM-N	SAS	No.:	SDG No.: AECOM238
Matrix: (so	il/water)	WATER			Lab Sample ID:	1505J73-006A
Sample wt/v	ol: <u>5</u>	(g/mL)	mL		Lab File ID:	<u>315\G32985</u>
Level: (1	ow/med)	LOW			Date Received:	05/27/15
% Moisture:	not dec.				Date Analyzed:	06/03/15
GC Column:	Rtx-624	ID:	<u>18</u> (n	am)	Dilution Factor:	1.00
Soil Extrac	t Volume:		(µL)		Soil Aliquot Volu	ume (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q	
75-71-8	Dichlorodifluoromethane	5	¥	
74-87-3	Chloromethane	5	Ŭ	
75-01-4	Vinyl chloride	5	U	
74-83-9	Bromomethane	5	¥	
75-00-3	Chloroethane	5	Ū	
75-69-4	Trichlorofluoromethane	5	υ	
75-35-4	1,1-Dichloroethene	5	U	
67-64-1	Acetone	5	Ŭ	
75-15-0	Carbon disulfide	5	υ	
79-20-9	Methyl Acetate	5	U	
75-09-2	Methylene chloride	5	υ	
156-60-5	trans-1,2-Dichloroethene	5	U	
1634-04-4	Methyl tert-butyl ether	5	υ	
75-34-3	1,1-Dichloroethane	5	U	
540-59-0	1,2-Dichloroethene (total)	2		_
156-59-2	cis-1,2-Dichloroethene	2	J	
78-93-3	2-Butanone	5	υ	
67-66-3	Chloroform	5	υ	
71-55-6	1,1,1-Trichloroethane	5	U	
110-82-7	Cyclohexane	5	U	-
56-23-5	Carbon tetrachloride	5	υ	
71-43-2	Велzепе	5	U	
107-06-2	1,2-Dichloroethane	5	U	
79-01-6	Trichloroethene	5	U	
108-87-2	Methylcyclohexane	5	υ	
78-87-5	1,2-Dichloropropane	5	U	
75-27-4	Bromodichloromethane	5	Ũ	
10061-01-5	cis-1,3-Dichloropropene	5	ΰ	
108-10-1	4-Methyl-2-pentanone	5	U	
108-88-3	Toluene	5	U	
10061-02-6	trans-1,3-Dichloropropene	5	U	
79-00-5	1,1,2-Trichloroethane	5	υ	
127-18-4	Tetrachloroethene	2	J	
591-78-6	2-Hexanone	5	U	
124-48-1	Dibromochloromethane	5	U	

OLM04.2

M 71301.5

 φ

6

1B VOLATILE ORGANICS ANALYSIS DATA SHEET

SFA SAMPUS M

MW-615

Lab Name:	PACE ANALYI	TICAL	Contra	ct:	
Lab Code:	10478	Case No.:	ABCOM-N SAS	No.:	SDG NO.: AECOM238
Matrix: (so	il/water)	WATER		Lab Sample ID:	1505J73-006A
Sample wt/v	ol: <u>5</u>	(g/mL)	mL	Lab File ID:	<u>315\G32985</u>
Level: (1	ow/med)	LOW		Date Received:	05/27/15
% Moisture:	not dec.			Date Analyzed:	06/03/15
GC Column:	<u>Rtx-624</u>	ID:	<u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extrac	t Volume:		(µL)	Soil Aliquot Volu	ume (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q
106-93-4	1,2-Dibromoethane	5	υ
108-90-7	Chlorobenzene	5	U
100-41-4	Ethylbenzene	5	U
1330-20-7	Xylene (total)	5	U
100-42-5	Styrene	5	υ
75-25-2	Bromoform	5	U
98-82-8	Isopropylbenzene	5	U
79-34-5	1,1,2,2-Tetrachloroethane	5	U
541-73-1	1,3-Dichlorobenzene	5	U
106-46-7	1,4-Dichlorobenzene	5	U
95-50-1	1,2-Dichlorobenzene	5	U
96-12-8	1,2-Dibromo-3-chloropropane	5	U
120-82-1	1,2,4-Trichlorobenzene	5	υ

AECOM238 V67

÷

1A VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

7

Trip Blank

Lab Name: PACE ANAL	TICAL Contra	act:	
Lab Code: <u>10478</u>	Case No.: <u>AECOM-N</u> SAS	No.:	SDG No.: AECOM238
Matrix: (soil/water)	WATER	Lab Sample ID:	1505J73-007A
Sample wt/vol: 5	(g/mL) <u>mL</u>	Lab File ID:	315\G32977
Level: (low/med)	LOW	Date Received:	05/27/15
% Moisture: not dec.		Date Analyzed:	06/03/15
GC Column: <u>Rtx-624</u>	ID: <u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume:	(µL)	Soil Aliquot Vol	ume (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q
75-71-8	Dichlorodifluoromethane	5	y
74-87-3	Chloromethane	5	Ū
75-01-4	Vinyl chloride	5	U
74-83-9	Bromomethane	5	J.
75-00-3	Chloroethane	5	U
75-69-4	Trichlorofluoromethane	5	ט
75-35-4	1,1-Dichloroethene	5	υ
67-64-1	Acetone	5	U
75-15-0	Carbon disulfide	5	U
79-20-9	Methyl Acetate	5	υ
75-09-2	Methylene chloride	5	U
156-60-5	trans-1,2-Dichloroethene	5	ΰ
1634-04-4	Methyl tert-butyl ether	5	U
75-34-3	1,1-Dichloroethane	5	U
540-59-0	1,2-Dichloroethene (total)	5	υ
156-59-2	cis-1,2-Dichloroethene	5	υ
78-93-3	2-Butanone	5	υ
67-66-3	Chloroform	5	υ
71-55-6	1,1,1-Trichloroethane	5	U
110-82-7	Cyclohexane	5	U
56-23-5	Carbon tetrachloride	5	U
71-43-2	Benzene	5	U
107-06-2	1,2-Dichloroethane	5	υ
79-01-6	Trichloroethene	5	U
108-87-2	Methylcyclohexane	5	U
78-87-5	1,2-Dichloropropane	5	U
75-27-4	Bromodichloromethane	5	ប
10061-01-5	cis-1,3-Dichloropropene	5	υ
108-10-1	4-Methyl-2-pentanone	5	U
108-88-3	Toluene	5	U
10061-02-6	trans-1,3-Dichloropropene	5	U
79-00-5	1,1,2-Trichloroethane	5	U
127-18-4	Tetrachloroethene	5	U
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	5	Ū

OLM04.2

FORM I VOA - 1 M 7 30 lug

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

7

Trip Blank

Lab Name:	PACE ANALY	ICAL	Cont	tract:	
Lab Code:	10478	Case No.:	AECOM-N S	AS No.:	SDG No.: AECOM238
Matrix: (so	il/water)	WATER		Lab Sample ID:	1505J73-007A
Sample wt/v	ol: <u>5</u>	(g/mL)) mL	Lab File ID:	<u>315\G32977</u>
Level: (1	ow/med)	LOW		Date Received:	05/27/15
% Moisture:	not dec.			Date Analyzed:	06/03/15
GC Column:	<u>Rtx-624</u>	ID:	<u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extrac	t Volume:		(µL)	Soil Aliquot Vol	ume (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q
106-93-4	1,2-Dibromoethane	5	υ
108-90-7	Chlorobenzene	5	U
100-41-4	Ethylbenzene	5	υ
1330-20-7	Xylene (total)	5	U
100-42-5	Styrene	5	U
75-25-2	Bromoform	5	U
98-82-8	Isopropylbenzene	5	U
79-34-5	1,1,2,2-Tetrachloroethane	5	U
541-73-1	1,3-Dichlorobenzene	5	U
106-46-7	1,4-Dichlorobenzene	5	υ
95-50-1	1,2-Dichlorobenzene	5	υ
96-12-8	1,2-Dibromo-3-chloropropane	5	U
120-82-1	1,2,4-Trichlorobenzene	5	U

AECOM238 V76

÷

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW-18

q

Lab Name: PACE ANALY	TICAL Contra	act:	
Lab Code: <u>10478</u>	Case No.: <u>AECOM-N</u> SAS	No.:	SDG No.: AECOM238
Matrix: (soil/water)	WATER	Lab Sample ID:	1505L06-001A
Sample wt/vol: 5	(g/mL) <u>mL</u>	Lab File ID:	315\G32990
Level: (low/med)	TOM	Date Received:	05/28/15
% Moisture: not dec.		Date Analyzed:	06/03/15
GC Column: <u>Rtx-624</u>	ID: <u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume:	(µL)	Soil Aliquot Vol	ume (µL)

CONCENTRATION UNITS:

AS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q
75-71	8 Dichlorodifluoromethane	5	V
74-87	3 Chloromethane	5	U
75-01	4 Vinyl chloride	5	U
74-83		5	¥
75-00	3 Chloroethane	5	U
75-69	4 Trichlorofluoromethane	5	U
75-35	4 1,1-Dichloroethene	5	U
67-64	1 Acetone	, 5	υ
75-15	0 Carbon disulfide	5	U
79-20	9 Methyl Acetate	5	U
75-09	2 Methylene chloride	5	U
156-60	5 trans-1,2-Dichloroethene	5	U
1634-04	4 Methyl tert-butyl ether	5	υ
75-34	-3 1,1-Dichloroethane	5	υ
540-59	-0 1,2-Dichloroethene (total)	3	
156-59	-2 cis-1,2-Dichloroethene	3	J
78-93	-3 2-Butanone	5	U
67-66	-3 Chloroform	5	U
71-55	-6 1,1,1-Trichloroethane	5	ប
110-82	-7 Cyclohexane	5	U
56-23	-5 Carbon tetrachloride	5	U
71-43	-2 Benzene	5	υ
107-06	-2 1,2-Dichloroethane	5	U
79-01		5	υ
108-87	-2 Methylcyclohexane	5	υ
78-87	-5 1,2-Dichloropropane	5	U
75-27	-4 Bromodichloromethane	5	υ
10061-01	-5 cis-1,3-Dichloropropene	5	U
108-10	-1 4-Methyl-2-pentanone	5	U
108-88		5	U
10061-02		5	U
79-00	the second s	5	U
127-18		3	J
591-78	-6 2-Hexanone	5	U
124-48	-1 Dibromochloromethane	5	U

OLM04.2

FORM I VOA - 1 M 7/30/15

EPA SAMPLE NO.

q

VOLATILE ORGANICS ANALYSIS DATA SHEET

MW-1S

Lab Name:	PACE ANALY	ICAL	Contra	ct:	
Lab Code:	10478	Case No.:	AECOM-N SAS	No.:	SDG No.: AECOM238
Matrix: (so	il/water)	WATER		Lab Sample ID:	1505L06-001A
Sample wt/v	ol: <u>5</u>	(g/mL)	mL	Lab File ID:	315\G32990
Level: (1	ow/med)	LOW		Date Received:	05/28/15
% Moisture:	not dec.			Date Analyzed:	06/03/15
GC Column:	<u>Rtx-624</u>	ID:	<u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extrac	t Volume:		(µL)	Soil Aliquot Volu	me (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q
106-93-4	1,2-Dibromoethane	5	U
108-90-7	Chlorobenzene	5	U
100-41-4	Ethylbenzene	5	U
1330-20-7	Xylene (total)	5	υ
100-42-5	Styrene	5	U
75-25-2	Bromoform	5	U
98-82-8	Isopropylbenzene	5	υ
79-34-5	1,1,2,2-Tetrachloroethane	5	U
541-73-1	1,3-Dichlorobenzene	5	υ
106-46-7	1,4-Dichlorobenzene	5	υ
95-50-1	1,2-Dichlorobenzene	5	υ
96-12-8	1,2-Dibromo-3-chloropropane	5	U
120-82-1	1,2,4-Trichlorobenzene	5	U

MW-13D

Lab Name:PACE ANALYTICALContract:Lab Code:10478Case No.:AECOM-NSAS No.:SDG No.:AECOM238Matrix:(soil/water)WATERLab Sample ID:1505L06-002ASample wt/vol:5(g/mL) mLLab File ID: $315 \setminus G32991$ Level:(low/med)LOWDate Received:05/28/15% Moisture:not dec.Date Analyzed:06/03/15GC Column:Rtx-624ID:.18 (mm)Dilution Factor:1.00Soil Extract Volume:(µL)Soil Aliquot Volume(µL)

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

CONCENTRATION UNITS:

CAS NO.		COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q	
75-71	-8	Dichlorodifluoromethane	: 5	¥	UJ
74-87	-3	Chloromethane	5	Ū	7
75-01	-4	Vinyl chloride	5	υ	
74-83	-9	Bromomethane	5	¥	ルゴ
75-00	-3	Chloroethane	5	υ	
75-69	-4	Trichlorofluoromethane	5	υ	
75-35	-4	1,1-Dichloroethene	1	J	
67-64	-1	Acetone	5	U	
75-15	-0	Carbon disulfide	5	υ	
79-20	- 9	Methyl Acetate	5	U	
75-09	-2	Methylene chloride	5	U	
156-60	-5	trans-1,2-Dichloroethene	5	U	
1634-04	-4	Methyl tert-butyl ether	5	U	
75-34	-3	1,1-Dichloroethane	5	U	
540-59	-0	1,2-Dichloroethene (total)	2		
156-59	-2	cis-1,2-Dichloroethene	2	J	
78-93	-3	2-Butanone	5	U	
67-66	-3	Chloroform	5	U	
71-55	- 6	1,1,1-Trichloroethane	5	υ	
110-82	-7	Cyclohexane	5	υ	
56-23	- 5	Carbon tetrachloride	5	U	
71-43	-2	Benzene	5	U	
107-06	-2	1,2-Dichloroethane	5	U	
79-01	-6	Trichloroethene	11		
108-87	-2	Methylcyclohexane	5	U	
78-87	-5	1,2-Dichloropropane	5	U	
75-27	-4	Bromodichloromethane	5	U	
10061-01	-5	cis-1,3-Dichloropropene	5	U	
108-10)-1	4-Methyl-2-pentanone	5	ប	
108-88	3-3	Toluene	5	บ	
10061-02	2-6	trans-1,3-Dichloropropene	5	U	
79-00) - 5	1,1,2-Trichloroethane	5	U	
127-18	3-4	Tetrachloroethene	2	J	
591-78	3-6	2-Hexanone	5	υ	
124-48	3-1	Dibromochloromethane .	5	U	

FORM I VOA - 1

OLM04.2

AECOM238 V91

M7130115

9

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

9

MW-13D

Lab Name: PACE ANAL	YTICAL Contr	act:	
Lab Code: <u>10478</u>	Case No.: <u>AECOM-N</u> SA	3 No.:	SDG No.: AECOM238
Matrix: (soil/water)	WATER	Lab Sample ID:	1505L06-002A
Sample wt/vol: 5	(g/mL) <u>mL</u>	Lab File ID:	<u>315\G32991</u>
Level: (low/med)	LOW	Date Received:	05/28/15
% Moisture: not dec.		Date Analyzed:	06/03/15
GC Column: <u>Rtx-624</u>	ID: <u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume:	(µL)	Soil Aliquot Vol	ume (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q
106-93-4	1,2-Dibromoethane	5	υ
108-90-7	Chlorobenzene	5	Ū
100-41-4	Ethylbenzene	5	U
1330-20-7	Xylene (total)	5	U
100-42-5	Styrene	5	U
75-25-2	Bromoform	5	U
98-82-8	Isopropylbenzene	5	U
79-34-5	1,1,2,2-Tetrachloroethane	5	ប
541-73-1	1,3-Dichlorobenzene	5	υ
106-46-7	1,4-Dichlorobenzene	5	U
95-50-1	1,2-Dichlorobenzene	5	U
96-12-8	1,2-Dibromo-3-chloropropane	5	υ
120-82-1	1,2,4-Trichlorobenzene	5	υ

AECOM238 V92

1

lo

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW-135

Lab Name: PACE ANALY	TICAL Contra	ict:	
Lab Code: <u>10478</u>	Case No.: AECOM-N SAS	No.:	SDG No.: AECOM238
Matrix: (soil/water)	WATER	Lab Sample ID:	1505L06-003A
Sample wt/vol: <u>5</u>	(g/mL) mL	Lab File ID:	315\G32992
Level: (low/med)	LOW	Date Received:	05/28/15
% Moisture: not dec.		Date Analyzed:	06/03/15
GC Column: <u>Rtx-624</u>	ID: <u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume:	(µL)	Soil Aliquot Vol	ume (µL)

CONCENTRATION UNITS:

AS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q
75-71-	8 Dichlorodifluoromethane	5	K
74-87-	3 Chloromethane	5	ΰ
75-01-	4 Vinyl chloride	5	U
74-83-	9 Bromomethane	5	X
75-00-	3 Chloroethane	5	υ
75-69-	4 Trichlorofluoromethane	5	υ
75-35-	4 1,1-Dichloroethene	1	J
67-64	1 Acetone	5	υ
75-15-	0 Carbon disulfide	5	U
79-20-	9 Methyl Acetate	5	υ
75-09-	2 Methylene chloride	5	U
156-60	5 trans-1,2-Dichloroethene	5	U
1634-04	4 Methyl tert-butyl ether	5	U
75-34	3 1,1-Dichloroethane	10	
540-59	0 1,2-Dichloroethene (total)	18	
156-59	2 cis-1,2-Dichloroethene	17	
78-93	3 2-Butanone	5	U
67-66	3 Chloroform	5	U
71-55	6 1,1,1-Trichloroethane	4	J
110-82	7 Cyclohexane	5	υ
56-23	5 Carbon tetrachloride	5	υ
71-43	2 Benzene	5	U
107-06	2 1,2-Dichloroethane	5	υ
79-01	6 Trichloroethene	5	
108-87	2 Methylcyclohexane	5	Ŭ
78-87	5 1,2-Dichloropropane	5	U
75-27	4 Bromodichloromethane	5	υ
10061-01	5 cis-1,3-Dichloropropene	5	υ
108-10	1 4-Methyl-2-pentanone	5	ប
108-88	-3 Toluene	5	U
10061-02	-6 trans-1,3-Dichloropropene	5	U
79-00	-5 1,1,2-Trichloroethane	5	υ
127-18	-4 Tetrachloroethene	6	
591-78	-6 2-Hexanone	5	U
124-48	1 Dibromochloromethane	5	U

No 7130/15

OLM04.2

ţ

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW-135

Lab Name: PACE ANALY	TICAL	Contra	ct:	
Lab Code: <u>10478</u>	Case No.: A	LECOM-N SAS	No.:	SDG No.: AECOM238
Matrix: (soil/water)	WATER		Lab Sample ID:	1505L06-003A
Sample wt/vol: 5	(g/mL)	mL	Lab File ID:	315\G32992
Level: (low/med)	LOW		Date Received:	05/28/15
% Moisture: not dec.			Date Analyzed:	06/03/15
GC Column: <u>Rtx-624</u>	ID:	<u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume:		(µL)	Soil Aliquot Volu	ume (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q
106-93-4	1,2-Dibromoethane	5	υ
108-90-7	Chlorobenzene	5	υ
100-41-4	Ethylbenzene	5	υ
1330-20-7	Xylene (total)	5	υ
100-42-5	Styrene	5	U
75-25-2	Bromoform	5	υ
98-82-8	Isopropylbenzene	5	U
79-34-5	1,1,2,2-Tetrachloroethane	5	υ
541-73-1	1,3-Dichlorobenzene	5	U
106-46-7	1,4-Dichlorobenzene	5	ប
95-50-1	1,2-Dichlorobenzene	5	U
96-12-8	1,2-Dibromo-3-chloropropane	5	U
120-82-1	1,2,4-Trichlorobenzene	5	υ

FORM I VOA - 2 M 730/15

٢

OLM04.2

0

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: PACE ANALYTICAL

EPA SAMPLE NO.

Contract:

Lab Code: <u>10478</u>	Case No.: <u>AECOM-N</u> SAS	No.:	SDG No.: AECOM238
Matrix: (soil/water)	WATER	Lab Sample ID:	1505L06-004A
Sample wt/vol: 5	(g/mL) <u>mL</u>	Lab File ID:	315\G32989
Level: (low/med)	LOW	Date Received:	05/28/15
% Moisture: not dec.		Date Analyzed:	06/03/15
GC Column: <u>Rtx-624</u>	ID: <u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume:	(µL)	Soil Aliquot Volu	ume(µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q	
75-71	-8 Dichlorodifluoromethane	5	y	J
74-87	-3 Chloromethane	5	Ŭ	
75-01	-4 Vinyl chloride	5	U	
74-83		5	×	٦ı
75-00	-3 Chloroethane	5	Ū	
75-69	-4 Trichlorofluoromethane	5	U	
75-35	-4 1,1-Dichloroethene	5	U	
67-64	-1 Acetone	5	υ	
75-15	-0 Carbon disulfide	5	U	_
79-20	-9 Methyl Acetate	5	U	
75-09	-2 Methylene chloride	5	U	
156-60	-5 trans-1,2-Dichloroethene	5	U	
1634-04	-4 Methyl tert-butyl ether	5	U	
75-34	-3 1,1-Dichloroethane	5	υ	
540-59	-0 1,2-Dichloroethene (total)	5	U	
156-59	-2 cis-1,2-Dichloroethene	5	υ	
78-93	-3 2-Butanone	5	U	
67-66	-3 Chloroform	1	J	
71-55	-6 1,1,1-Trichloroethane	5	υ	
110-82	-7 Cyclohexane	5	U	
56-23	-5 Carbon tetrachloride	5	U	
71-43	-2 Benzene	5	U	_
107-06	-2 1,2-Dichloroethane	5	U	
79-01	-6 Trichloroethene	5	U	
108-87	-2 Methylcyclohexane	5	U	_
78-87	-5 1,2-Dichloropropane	5	Ū	
75-27	-4 Bromodichloromethane	5	Ũ	
10061-01	-5 cis-1,3-Dichloropropene	5	υ	
108-10	-1 4-Methyl-2-pentanone	5	U	
108-88	-3 Toluene	5	υ	
10061-02	-6 trans-1,3-Dichloropropene	5	υ	
79-00	-5 1,1,2-Trichloroethane	5	υ	
127-18	-4 Tetrachloroethene	5	U	
591-78	-6 2-Hexanone	5	υ	
124-48	-1 Dibromochloromethane	5	U	

OLM04.2

:

11

1B VOLATILE ORGANICS ANALYSIS DATA SHEET

NC-12

Lab Name: PACE	ANALYTICAL	Contra	ct:	
Lab Code: <u>10478</u>	Case No.:	AECOM-N SAS	No.:	SDG No.: AECOM238
Matrix: (soil/wat	er) <u>WATER</u>		Lab Sample ID:	1505L06-004A
Sample wt/vol:	<u>5</u> (g/mL) <u>mL</u>	Lab File ID:	315\G32989
Level: (low/med) <u>LOW</u>		Date Received:	05/28/15
% Moisture: not d	ec.		Date Analyzed:	06/03/15
GC Column: <u>Rtx-</u>	<u>624</u> ID	: <u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volu	me:	(µL)	Soil Aliquot Volu	ume (JT)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q
106-93-4	1,2-Dibromoethane	5	ΰ
108-90-7	Chlorobenzene	5	ΰ
100-41-4	Ethylbenzene	5	υ
1330-20-7	Xylene (total)	5	Ũ
100-42-5	Styrene	5	U
75-25-2	Bromoform	5	U
98-82-8	Isopropylbenzene	5	U
79-34-5	1,1,2,2-Tetrachloroethane	5	σ
541-73-1	1,3-Dichlorobenzene	5	υ
106-46-7	1,4-Dichlorobenzene	5	υ
95-50-1	1,2-Dichlorobenzene	5	U
96-12-8	1,2-Dibromo-3-chloropropane	5	U
120-82-1	1,2,4-Trichlorobenzene	5	U

.

;

1**A**

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: PACE ANALY	FICAL Contra	ct:	
Lab Code: <u>10478</u>	Case No.: <u>AECOM-N</u> SAS	No.:	SDG No.: AECOM238
Matrix: (soil/water)	WATER	Lab Sample ID:	1505L06-005A
Sample wt/vol: 5	(g/mL) <u>mL</u>	Lab File ID:	<u>315\G32988</u>
Level: (low/med)	LOW	Date Received:	05/28/15
% Moisture: not dec.		Date Analyzed:	06/03/15
GC Column: <u>Rtx-624</u>	ID: <u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume:	(µL)	Soil Aliquot Volu	ume(pL)

CONCENTRATION UNITS:

EPA SAMPLE NO.

тв

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q	
75-71	8 Dichlorodifluoromethane	5	y	านร
74-87	3 Chloromethane	5	Ū	
75-01	4 Vinyl chloride	5	U	-
74-83	9 Bromomethane	5	ÿ	U:
75-00	-3 Chloroethane	5	ΰ	
75-69	4 Trichlorofluoromethane	5	υ	1
75-35	4 1,1-Dichloroethene	5	U	
67-64	1 Acetone	5	σ	
75-15	-0 Carbon disulfide	5	υ	
79-20	-9 Methyl Acetate	5	υ	
75-09	-2 Methylene chloride	5	υ	
156-60	-5 trans-1,2-Dichloroethene	5 ·	U	
1634-04	-4 Methyl tert-butyl ether	5	U	
75-34	-3 1,1-Dichloroethane	5	υ	
540-59	-0 1,2-Dichloroethene (total)	5	U	
156-59	-2 cis-1,2-Dichloroethene	5	υ	
78-93	-3 2-Butanone	5	U	
67-66	-3 Chloroform	5	U	_
71-55	-6 1,1,1-Trichloroethane	5	υ	
110-82	-7 Cyclohexane	5	υ	
56-23	-5 Carbon tetrachloride	5	υ	
71-43	-2 Benzene	5	U	
107-06	-2 1,2-Dichloroethane	5	υ	
79-01	-6 Trichloroethene	5	U	
108-87	-2 Methylcyclohexane	5	U	
78-87	-5 1,2-Dichloropropane	5	U	-
75-27	-4 Bromodichloromethane	5	υ	-1
10061-01	-5 cis-1,3-Dichloropropene	5	U	
108-10	-1 4-Methyl-2-pentanone	5	U	
108-88	-3 Toluene	5	υ	
10061-02	-6 trans-1,3-Dichloropropene	5	U	
79-00	-5 1,1,2-Trichloroethane	5	ΰ	
127-18	-4 Tetrachloroethene	5	U	
591-78	-6 2-Hexanone	5	U	
124-48	-1 Dibromochloromethane	5	Ŭ	

FORM I VOA - 1 MU7130/15

OLM04.2

1B

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name:PACE ANALYTICALContract:Lab Code:10478Case No.:AECOM-NSAS No.:SDG No.:AECOM238Matrix:(soil/water)WATERLab Sample ID:1505L06-005ASample wt/vol:5(g/mL) mLLab File ID: $315 \setminus G32988$ Level:(low/med)LOWDate Received:05/28/15% Moisture:not dec.Date Analyzed:06/03/15GC Column:Rtx-624ID:18 (mm)Dilution Factor:1.00Soil Extract Volume:(µL)Soil Aliquot Volume(µL)

CONCENTRATION UNITS:

тв

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q
106-93-4	1,2-Dibromoethane	5	U
108-90-7	Chlorobenzene	5	U
100-41-4	Ethylbenzene	5	U
1330-20-7	Xylene (total)	5	U
100-42-5	Styrene	5	U
75-25-2	Bromoform	5	υ
98-82-8	Isopropylbenzene	5	υ
79-34-5	1,1,2,2-Tetrachloroethane	5	υ
541-73-1	1,3-Dichlorobenzene	5	U
106-46-7	1,4-Dichlorobenzene	5	υ
95-50-1	1,2-Dichlorobenzene	5	U
96-12-8	1,2-Dibromo-3-chloropropane	5	υ
120-82-1	1,2,4-Trichlorobenzene	5	υ

12

FORM I VOA - 2 NU 7/30/15 OLM04.2

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: PACE ANAL	YTICAL Contra	act:	
Lab Code: <u>10478</u>	Case No.: <u>AECOM-N</u> SAS	No.:	SDG No.: AECOM238
Matrix: (soil/water)	WATER	Lab Sample ID:	1505L06-006A
Sample wt/vol: 5	(g/mL) <u>mL</u>	Lab File ID:	<u>315\G32987</u>
Level: (low/med)	LOW	Date Received:	05/28/15
% Moisture: not dec.		Date Analyzed:	06/03/15
GC Column: <u>Rtx-624</u>	ID: <u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume:	(µL)	Soil Aliquot Vol	ume (µL)

CONCENTRATION UNITS:

EPA SAMPLE NO.

STORAGE BLANK

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q	
75-71-8	Dichlorodifluoromethane	5	7	าน
74-87-3	Chloromethane	5	Ū	
75-01-4	Vinyl chloride	5	U	7
74-83-9	Bromomethane	5	×	u
75-00-3	Chloroethane	5	U	
75-69-4	Trichlorofluoromethane	5	U	
75-35-4	1,1-Dichloroethene	5	υ	
67-64-1	Acetone	5	υ	7
75-15-0	Carbon disulfide	5	υ	
79-20-9	Methyl Acetate	5	υ	
75-09-2	Methylene chloride	5	υ	
156-60-5	trans-1,2-Dichloroethene	5	U	
1634-04-4	Methyl tert-butyl ether	5	U	
75-34-3	1,1-Dichloroethane	5	U	-
540-59-0	1,2-Dichloroethene (total)	5	U	
156-59-2	cis-1,2-Dichloroethene	5	U	
78-93-3	2-Butanone	5	U	
67-66-3	Chloroform	5	U	
71-55-6	1,1,1-Trichloroethane	5	υ	-
110-82-7		5	υ	
56-23-5	Carbon tetrachloride	5	υ	
71-43-2	Benzene	5	U	
107-06-2	1,2-Dichloroethane	5	ט	
79-01-6	Trichloroethene	5	ט	
108-87-2	Methylcyclohexane	5	υ	
78-87-5	1,2-Dichloropropane	5	υ	
75-27-4	Bromodichloromethane	5	υ	
10061-01-5	cis-1,3-Dichloropropene	5	U	•
108-10-1	4-Methyl-2-pentanone	5	U	
108-88-3	Toluene	5	U	
10061-02-6	trans-1,3-Dichloropropene	5	Ū	
79-00-5		5	U	
127-18-4	Tetrachloroethene	5	ប	
591-78-6	2-Hexanone	5	U	
124-48-1	Dibromochloromethane	5	U	

OLM04.2

FORM I VOA - 1 MJ 30/15

1

1в

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

STORAGE BLANK

Lab Name: P	ACE ANALYT	ICAL	Contrac	et:	
Lab Code: 1	0478	Case No.:	ABCOM-N SAS	No.:	SDG No.: AECOM238
Matrix: (soil	l/water)	WATER		Lab Sample ID:	1505L06-006A
Sample wt/vol	1: <u>5</u>	(g/mL)	mL	Lab File ID:	<u>315\G32987</u>
Level: (low	w/med)	LOW		Date Received:	05/28/15
% Moisture: 1	not dec.			Date Analyzed:	06/03/15
GC Column:	<u>Rtx-624</u>	ID:	<u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extract	Volume:		(µL)	Soil Aliquot Volu	ume (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>µg/L</u>	Q
106-93-4	1,2-Dibromoethane	5	U
108-90-7	Chlorobenzene	5	U
100-41-4	Ethylbenzene	5	U
1330-20-7	Xylene (total)	5	U
100-42-5	Styrene	5	U
75-25-2	Bromoform	5	U
98-82-8	Isopropylbenzene	5	U
79-34-5	1,1,2,2-Tetrachloroethane	5	ប
541-73-1	1,3-Dichlorobenzene	5	U
106-46-7	1,4-Dichlorobenzene	5	U
95-50-1	1,2-Dichlorobenzene	5	U
96-12-8	1,2-Dibromo-3-chloropropane	5	U
120-82-1	1,2,4-Trichlorobenzene	5	U

•

FORM I VOA - 2 M7130/15

ţ