

WALDEN ASSOCIATES

WALDEN ENVIRONMENTAL ENGINEERING, PLLC
d.b.a. WALDEN ASSOCIATES
16 SPRING STREET
OYSTER BAY, NEW YORK 11771
(516) 624-7200, FAX (516) 624-3219
EMAIL: INQUIRIES@WALDENENVIRONMENTAL.COM

Via e-mail 7/4/08 to J. Dyber
Certified Mail # 7007 2680 0002 4501 6947
August 4, 2008

Mr. Jeffrey Dyber, PE
NYSDEC, Remedial Bureau A
Division of Environmental Remediation
625 Broadway
Albany, New York 12233-7015

Re: Progress Report: July 2008
Frost Street Sites: Site ID #'s 1-30043 I, L, M
New Cassel Industrial Area, Westbury, New York

Dear Mr. Dyber:

Walden Associates (Walden) is pleased to submit the Progress Report for the above-referenced Site.

July Work Completed

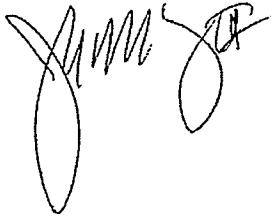
The following tasks were completed in July 2008:

SVE/AS System O&M

Refer to Appendix A for a summary of SVE/AS System O&M procedures. During periodic O&M visits, system parameters were logged on dedicated O&M log forms (Refer to Appendix B).

- Monthly SVE/AS remedial system O&M.
- Monthly individual SVE well lines and combined effluent flow monitoring at the interior system sampling ports for VOC concentrations utilizing a calibrated PID.
- Monthly PID readings of the sampling ports at the GAC system influent and effluent points.
- Quantitative sampling of influent and effluent SVE system air flow conducted on July 23, 2008. Results of quantitative sampling with one liter summa canisters for TO-15 analysis are summarized in Table D-1 in Appendix D.
- The slow recharge rates at MW-10B and MW-9A were addressed by re-developing these wells on July 17, 2008. Additional re-development to minimize the silting of the screens will continue in August 2008.

August Work Items


The following is a list of work scheduled to be completed during the month of August:

SVE/AS System O&M

- Monthly operation and maintenance visits to monitor SVE system parameters.
- Monthly individual SVE well line and combined effluent flow monitoring at the interior system sampling ports for VOC concentrations utilizing a calibrated PID.
- Monthly readings of the sampling ports at the influent and effluent points of the GAC system with a PID.
- Quantitative sampling of influent and effluent SVE system air for analysis scheduled for August 20, 2008.
- The re-development of MW-10B and MW-9A will continue and will be completed before the next annual sampling event.

Please contact Kristin Scroope or me if you have any questions or require additional information.

Very truly yours,
Walden Associates

Joseph M. Heaney, III P.E.

Principal

cc: A. Tamuno, Esq.
 G. Bobersky
 G. Litwin
 A. Cava
 J. Nealon
 R. Weitzman
 D. Engel, Esq.
 H. Szenicer, Esq.
 F. Werfel
 K. Maldonado

\Server\disk1\Spg1100 - Frost St\Monthly-Report\FS July 08 report.doc

Appendix A

Summary of SVE/AS System O & M Procedures

Frost Street Sites - Site ID #s1-30043 I, L, M
New Cassel Industrial Area, Westbury, New York

Summary of SVE/AS System O&M Activities

During periodic O&M visits, system parameters were logged on dedicated O&M log forms (Refer to Appendix B). The following summarizes SVE/AS system O&M procedures:

Periodic SVE/AS Remedial System O&M

- All SVE well lines and the combined effluent air flow were monitored at the interior system sampling ports for volatile organic compounds (VOCs) using a calibrated photo-ionization detector PID to assess the remedial performance of the SVE/AS system.
- Mechanical checks of the SVE/AS system were performed periodically in accordance with the O&M Manual maintenance schedule.

Vapor Phase Granular Activated Carbon Treatment System Monitoring

- Monthly readings at the influent and effluent sampling ports were made with a calibrated PID to check the GAC system to detect carbon breakthrough. Qualitative VOC monitoring with a PID was utilized to record the performance of the GAC absorption system.
- PID-recorded VOC concentrations (reported in calibrant-gas-equivalents) were used to determine when the GAC in the lead unit requires replacement. The flow from the SVE lines to the lead carbon unit was typically changed to a new lead unit when the intermediate VOC reading is 25 percent or greater of the influent VOC concentration.
- Refer to Appendix C for a log of spent GAC totals to date.

Appendix B

SVE/AS System O & M Log Forms

Frost Street Sites - Site ID #s1-30043 I, L, M
New Cassel Industrial Area, Westbury, New York

O & M CHECKLIST FOR SVE/AIR SPARGE SYSTEM
101 Frost Street, Westbury, New York

Inspected By:	SMS & EJL	Date:	7/17/2008	Weather: Sunny, Humid, ~85F	
Arrival Time:	12:15	SVE 1 Clock:	135648	SVE 2 Clock: 110552	
Departure Time:	13:15	SVE 1 Clock:		SVE 2 Clock:	
CONTROL PANEL		Arrival	Departure	AIR SPARGE SYSTEM	
AS System	On	On		Cleaned Particulate Filter No	
SVE System	On	On		Drained Filter/collector 1 Yes	
Surge Protection	Lit	Lit		Drained Filter/collector 2 Yes	
Lightning Protection	White	White		Compressor Discharge Pressure 25 psi	
Sensaphone	On	On		Compressor Holding tank Pressure 100 psi	
PID				SVE SYSTEM	
Calibrated	Yes			Knockout Tank Level 0 gallons	
Concentration:	100 ppb			Knockout Discharge to Sewer NA gallons	
Carbon Vessels	Pre-Carbon PID	Post Carbon PID	Bypassed	Monitoring Well Depth to Water Readings	
Carbon Vessel 1	ppm	0.0 ppm	No	2a	
Carbon Vessel 2	ppm	0.0 ppm	No	4a	
Carbon Vessel 3	ppm	ppm	Yes	6a	
SVE WELL READINGS (INSIDE TRAILER)					
SVE	Velocity	Flow	Vacuum	PID Concentration	
V1	8000 FPM	scfm	50 inch H ₂ O	ppm	
V2	5600 FPM	scfm	52 inch H ₂ O	ppm	
V3a	4800 FPM	scfm	42 inch H ₂ O	ppm	
V3	6000 FPM	scfm	42 inch H ₂ O	ppm	
V4	4900 FPM	scfm	42 inch H ₂ O	ppm	
V6	4000 FPM	scfm	40 inch H ₂ O	ppm	
V5	3500 FPM	scfm	42 inch H ₂ O	ppm	
V7	3800 FPM	scfm	40 inch H ₂ O	ppm	
re-Knockout Port			inch Hg vac	ppm	
VE Flow Rate	FPM	scfm			
S WELL READINGS (INSIDE TRAILER)					
S WELL #	Pressure	Air Flow	AS WELL #	Pressure	Air Flow
S Well #1	13 psi	SCFM	AS Well #16	13 psi	SCFM
S Well #2	13 psi	SCFM	AS Well #12	13.5 psi	SCFM
S Well #4	13.25 psi	2.5 SCFM	AS Well #10	14 psi	SCFM
S Well #3	14.5 psi	4 SCFM	AS Well #13	0 psi	SCFM
S Well #5	13.75 psi	2.5 SCFM	AS Well #14	13.5 psi	2.75 SCFM
S Well #7	13 psi	SCFM	AS Well #18	13.25 psi	2.5 SCFM
S Well #9	13.5 psi	2.75 SCFM	AS Well #17	14 psi	SCFM
S Well #8	12.25 psi	2.75 SCFM	AS Well #15	13.75 psi	3.25 SCFM
S Well #6	13.5 psi	2.5 SCFM	AS Well #19	13.5 psi	SCFM
S Well #11	13 psi	SCFM			

NOTES

O & M CHECKLIST FOR SVE/AIR SPARGE SYSTEM
101 Frost Street, Westbury, New York

Inspected By:	SMS & EJL	Date:	7/23/2008	Weather: High 80's F, Humid, Light Rain
Arrival Time:	7:00	SVE 1 Clock:	136343	SVE 2 Clock: 111236
Departure Time:	10:30	SVE 1 Clock:		SVE 2 Clock:

CONTROL PANEL	Arrival	Departure
AS System	On	On
SVE System	On	On
Surge Protection	Lit	Lit
Lightning Protection	White	White
Sensaphone	On	On

PID	
Calibrated	Yes
Concentration:	100 ppm

Carbon Vessels	Pre-Carbon PID	Post Carbon PID	Bypassed
Carbon Vessel 1	3.1 ppm	0.0 ppm	No
Carbon Vessel 2	0.0 ppm	0.0 ppm	No
Carbon Vessel 3	ppm	ppm	Yes

SVE WELL READINGS (INSIDE TRAILER)

SVE	Velocity	Flow	Vacuum	PID Concentration	
V1	8000 FPM	scfm	46	inch H ₂ O	2.7 ppm
V2	5400 FPM	scfm	50	inch H ₂ O	3.6 ppm
V3a	4600 FPM	scfm	42	inch H ₂ O	2.9 ppm
V3	2000 FPM	scfm	40	inch H ₂ O	2.6 ppm
V4	4700 FPM	scfm	40	inch H ₂ O	2.0 ppm
V6	3700 FPM	scfm	40	inch H ₂ O	1.1 ppm
V5	3400 FPM	scfm	42	inch H ₂ O	2.0 ppm
V7	3200 FPM	scfm	40	inch H ₂ O	0.0 ppm
Pre-Knockout Port			3.75	inch Hg vac	0.0 ppm
SVE Flow Rate	4200 FPM	scfm			

AS WELL READINGS (INSIDE TRAILER)

AS WELL #	Pressure	Air Flow	AS WELL #	Pressure	Air Flow
AS Well #1	15 psi	3 SCFM	AS Well #16	15 psi	3 SCFM
AS Well #2	14.5 psi	3 SCFM	AS Well #12	15 psi	3 SCFM
AS Well #4	15.5 psi	3 SCFM	AS Well #10	15.5 psi	3 SCFM
AS Well #3	16 psi	2 SCFM	AS Well #13	0 psi	SCFM
AS Well #5	15.5 psi	3 SCFM	AS Well #14	15 psi	3 SCFM
AS Well #7	15 psi	3 SCFM	AS Well #18	14 psi	2 SCFM
AS Well #9	15 psi	5 SCFM	AS Well #17	15.5 psi	2 SCFM
AS Well #8	14 psi	5 SCFM	AS Well #15	15 psi	4 SCFM
AS Well #6	15 psi	4 SCFM	AS Well #19	15 psi	3 SCFM
AS Well #11	15.5 psi	4 SCFM			

NOTES

08:11 - Collect Effluent 7/23/08 sample

09:10 - Collect Influent 7/23/08 sample

Appendix C

Log of Spent Vapor Phase GAC Totals to Date

Frost Street Sites - Site ID #s1-30043 I, L, M
New Cassel Industrial Area, Westbury, New York

**Frost Street Sites
Westbury, New York**

**Table C1
Spent Vapor Phase GAC Totals**

Date of Transport from Site	Spent GAC Weight (pounds)	Carbon Facility	RCRA Facility #
January 19, 2006	7,500	Giant Resource Recovery-Sumter Inc.	SCD036275626
February 2, 2006	11,441	Envirotrol Inc.	PAD987270725
April 7, 2006	6,486	Envirotrol Inc.	PAD987270725
August 25, 2006	5,923	Envirotrol Inc.	PAD987270725
December 5, 2006	5,691	Envirotrol Inc.	PAD987270725
<i>2006 Total</i>	<i>37,041</i>		
March 30, 2007	6,913	Envirotrol Inc.	PAD987270725
September 20, 2007	6,164	Envirotrol Inc.	PAD987270725
<i>2007 Total</i>	<i>13,077</i>		
January 16, 2008	8,750	Siemens Water Technologies	PAD987270725
April 29, 2008	7,814	Siemens Water Technologies	PAD987270725
<i>2008 Total</i>	<i>16,564</i>		
Project Total	66,682		

Appendix D

Summary of SVE System Influent/Effluent Results (TO-15)

Frost Street Sites - Site ID #s1-30043 I, L, M
New Cassel Industrial Area, Westbury, New York

TABLE I
SUMMARY OF SVL SYSTEM INFLUENT/EFFLUENT AIR SAMPLE RESULTS (TO-15)

Target Compound	Influent											
	10/23/2006	12/7/2006	1/18/2007	4/4/2007	5/16/2007	6/15/2007	7/18/2007	8/15/2007	10/10/2007	11/19/2007	12/1/2007*	6/27/2008
	$\mu\text{g}/\text{m}^3$											
Vinyl Chloride	460 <u>u</u>	430 <u>u</u>	0.25 <u>u</u>	60.2 <u>U</u>	60.2 <u>U</u>	23.5 <u>U</u>	1.22 <u>U</u>	1.22 <u>U</u>	ND	ND	ND	ND
1,1-Dichloroethene	710 <u>u</u>	670 <u>u</u>	0.39 <u>u</u>	43.7 <u>U</u>	43.7 <u>U</u>	11.0 <u>U</u>	1.01 <u>U</u>	1.01 <u>U</u>	ND	ND	ND	ND
trans-1,2-Dichloroethene	710 <u>u</u>	670 <u>u</u>	0.39 <u>u</u>	49.7 <u>U</u>	49.7 <u>U</u>	12.5 <u>U</u>	0.99 <u>U</u>	0.99 <u>U</u>	ND	ND	ND	ND
1,1-Dichloroethane	730 <u>u</u>	690 <u>u</u>	0.40 <u>u</u>	42.6 <u>U</u>	42.6 <u>U</u>	10.5 <u>U</u>	0.85 <u>U</u>	0.85 <u>U</u>	ND	ND	ND	ND
cis-1,2-Dichloroethene	710 <u>u</u>	670 <u>u</u>	0.39 <u>u</u>	63.6 <u>U</u>	63.6 <u>U</u>	16.0 <u>U</u>	1.27 <u>U</u>	1.27 <u>U</u>	ND	ND	ND	ND
1,2-Dichloroethane	730 <u>u</u>	690 <u>u</u>	0.40 <u>u</u>	349 <u>U</u>	349 <u>U</u>	86.0 <u>U</u>	1.01 <u>U</u>	1.01 <u>U</u>	ND	ND	ND	ND
1,1,1-Trichloroethane	980 <u>u</u>	930 <u>u</u>	0.53 <u>u</u>	82.0 <u>U</u>	82.0 <u>U</u>	15.0 <u>U</u>	1.64 <u>U</u>	1.64 <u>U</u>	ND	ND	ND	ND
Trichloroethene	2,700	3,200	110	1,480	4,690	1,120	1.35 <u>U</u>	1.35 <u>U</u>	1,900	1,100	970	330
1,1,2-Trichloroethane	980 <u>u</u>	930 <u>u</u>	0.53 <u>u</u>	68.4 <u>U</u>	68.4 <u>U</u>	12.5 <u>U</u>	1.37 <u>U</u>	1.37 <u>U</u>	ND	ND	ND	ND
Tetrachloroethene	90,000	180,000	10,000	129,000	116,000	13,700	145,000	37,500	13,500	92,000	73,000	27,000
1,1,2,2-Tetrachloroethane	1,200 <u>u</u>	1,200 <u>u</u>	0.67 <u>u</u>	53.4 <u>U</u>	53.4 <u>U</u>	12.5 <u>U</u>	1.07 <u>U</u>	1.07 <u>U</u>	ND	ND	ND	ND
1,2-Dichloroethene (total)	710 <u>u</u>	670 <u>u</u>	0.39 <u>u</u>	50.7 <u>U</u>	50.7 <u>U</u>	12.5 <u>U</u>	0.87 <u>U</u>	0.87 <u>U</u>	ND	ND	ND	ND

Target Compound	Effluent											
	12/7/2006	1/19/2007	4/4/2007	5/16/2007	6/15/2007	7/18/2007	8/15/2007*	10/19/2007	11/19/2007	12/18/2007	1/21/2008	6/27/2008
	$\mu\text{g}/\text{m}^3$											
NYSDEC DAR-1 SGC												
Vinyl Chloride	180,000	0.51 <u>u</u>	0.51 <u>u</u>	0.51 <u>u</u>	1.20 <u>U</u>	0.47 <u>U</u>	1.22 <u>U</u>	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.79 <u>u</u>	0.79 <u>u</u>	0.79 <u>u</u>	0.79 <u>u</u>	0.87 <u>U</u>	0.22 <u>U</u>	1.01 <u>U</u>	1.01 <u>U</u>	ND	ND	ND	ND
trans-1,2-Dichloroethene	0.79 <u>u</u>	0.79 <u>u</u>	0.79 <u>u</u>	0.79 <u>u</u>	0.99 <u>U</u>	0.25 <u>U</u>	0.99 <u>U</u>	0.99 <u>U</u>	ND	ND	ND	ND
1,1-Dichloroethane	none	0.81 <u>u</u>	0.81 <u>u</u>	0.81 <u>u</u>	0.85 <u>U</u>	0.21 <u>U</u>	0.85 <u>U</u>	0.85 <u>U</u>	ND	ND	ND	ND
cis-1,2-Dichloroethene	0.79 <u>u</u>	0.79 <u>u</u>	0.79 <u>u</u>	1.27 <u>U</u>	1.27 <u>U</u>	0.32 <u>U</u>	1.27 <u>U</u>	1.27 <u>U</u>	ND	ND	ND	ND
1,2-Dichloroethane	0.81 <u>u</u>	0.81 <u>u</u>	0.81 <u>u</u>	6.98 <u>U</u>	6.98 <u>U</u>	1.72 <u>U</u>	1.01 <u>U</u>	1.01 <u>U</u>	ND	ND	ND	ND
1,1,1-Trichloroethene	68,000	1,1 <u>u</u>	1,1 <u>u</u>	1,1 <u>u</u>	1,64 <u>U</u>	0.30 <u>U</u>	1,64 <u>U</u>	1,64 <u>U</u>	ND	ND	ND	ND
Trichloroethene	54,000	4.1	1.4	1.4	1.35 <u>U</u>	2.75	1.35 <u>U</u>	1.35 <u>U</u>	3,000	ND	690	80
1,1,2-Trichloroethane	none	1.1 <u>u</u>	1.1 <u>u</u>	1.1 <u>u</u>	1.37 <u>U</u>	0.25 <u>U</u>	1.37 <u>U</u>	1.37 <u>U</u>	ND	ND	ND	ND
Tetrachloroethene	1,000	55	26	8.8	54.4	196	2.84	1,680	107	9,580	25	9,2
1,1,2,2-Tetrachloroethane	1,4 <u>u</u>	1.4 <u>u</u>	1.4 <u>u</u>	1.07 <u>U</u>	0.25 <u>U</u>	1,07 <u>U</u>	1.07 <u>U</u>	1.07 <u>U</u>	ND	ND	ND	ND
1,2-Dichloroethene (total)	0.79 <u>u</u>	0.79 <u>u</u>	0.79 <u>u</u>	1.01 <u>U</u>	0.25 <u>U</u>	0.87 <u>U</u>	0.87 <u>U</u>	0.87 <u>U</u>	ND	ND	ND	ND

SGC = short-term guideline concentration

u = compound not detected at concentration above the listed reporting limit

U = compound not detected at concentration above the Method Detection Limit (MDL)

ND = Compound was analyzed for but not detected above the laboratory reporting limit.

10/23/06 - 1/18/07 results analyzed by Seven Trent Laboratories

4/4/07 - 8/15/07 data analyzed by United Chemists

9/26/07 to present data analyzed by Columbia Analytical Services

Note: Lower concentrations detected on 1/18/07, 5/16/07, 7/18/07, 8/15/07 likely due to Air Sparging System component fault - System temporarily down around time of sampling event.

* Effluent sample secured post primary carbon vessel.

** Suma canister leaked after filling

FILE ON EDOC'S YES NO

SITE NAME _____

SITE # _____

COUNTY _____ TOWN _____

FOILABLE YES NO

SC/PSA _____ RI/FS _____

RD _____ RA _____

SM _____ OTHER _____

NAME DESCRIPTION:

