



WALDEN ASSOCIATES

WALDEN ASSOCIATES
16 SPRING STREET
OYSTER BAY, NY 11771
PHONE: (516) 624-7200
FAX (516) 624-3219
INFO@WALDEN-ASSOCIATES.COM

Via e-mail 1/9/09 to J. Dyber
Certified Mail # 7008 1140 0000 1771 8412

January 9, 2009

Mr. Jeffrey Dyber, PE
NYSDEC, Remedial Bureau A
Division of Environmental Remediation
625 Broadway
Albany, New York 12233-7015

Re: Progress Report: December 2008
Frost Street Sites: Site ID #'s 1-30043 I, L, M
New Cassel Industrial Area, Westbury, New York

Dear Mr. Dyber:

Walden Associates (Walden) is pleased to submit the Progress Report for the above-referenced Site.

December Work Completed

The following tasks were completed in December 2008:

SVE/AS System O&M & Groundwater Sampling

Refer to Appendix A for a summary of SVE/AS System O&M procedures. During periodic O&M visits, system parameters were logged on dedicated O&M log forms (Refer to Appendix B).

- Monthly SVE/AS remedial system O&M.
- Monthly individual SVE well lines and combined effluent flow monitoring at the interior system sampling ports for VOC concentrations utilizing a calibrated PID.
- Monthly PID readings of the sampling ports at the GAC system influent and effluent points.

- Quantitative sampling of influent and effluent SVE system air flow conducted on December 23, 2008. Results of quantitative sampling with one liter summa canisters for TO-15 analysis are summarized in Table D-1 in Appendix D.
- 4th quarter 2008 groundwater monitoring sampling event (quarterly sampling of 8 Site related wells) was completed December 9 and 10, 2008.

GCW System

Full remedial design containing plans and specifications for construction of the in-well stripping systems was submitted to NYSDEC for review on December 26, 2008 in accordance with the dispute resolution decision received on September 29, 2008.

January Work Items

The following is a list of work scheduled to be completed during the month of January:

SVE/AS System O&M

- Monthly operation and maintenance visits to monitor SVE system parameters.
- Monthly individual SVE well line and combined effluent flow monitoring at the interior system sampling ports for VOC concentrations utilizing a calibrated PID.
- Monthly readings of the sampling ports at the influent and effluent points of the GAC system with a PID.
- Quantitative sampling of influent and effluent SVE system air for analysis scheduled for January 22, 2009.
- 3rd quarter 2008 groundwater monitoring sampling event (annual sampling of 29 Site related wells – completed in September 2008) and 4th quarter 2008 groundwater monitoring sampling event (quarterly sampling of 8 Site related wells – completed in December 2008) results will be presented in forthcoming quarterly groundwater monitoring reports following receipt, evaluation, and data validation of quarterly groundwater sample analysis.

Mr. Jeffrey Dyber, PE
New York State Department of Environmental Conservation
January 9, 2009

-3-

Please contact Kristin Scroope or me if you have any questions or require additional information.

Very truly yours,
Walden Associates

Joseph M. Heaney, III P.E.

Principal

cc: A. Tamuno, Esq.
 G. Bobersky
 G. Litwin
 A. Cava
 J. Nealon
 R. Weitzman
 D. Engel, Esq.
 H. Szenicer, Esq.
 F. Werfel
 K. Maldonado

Z:\Spg1100 - Frost St\Monthly Report\2008\December 2008\FS Dec 08 report.doc

Appendix A

Summary of SVE/AS System O & M Procedures

Frost Street Sites - Site ID #s1-30043 I, L, M
New Cassel Industrial Area, Westbury, New York

Summary of SVE/AS System O&M Activities

During periodic O&M visits, system parameters were logged on dedicated O&M log forms (Refer to Appendix B). The following summarizes SVE/AS system O&M procedures:

Periodic SVE/AS Remedial System O&M

- All SVE well lines and the combined effluent air flow were monitored at the interior system sampling ports for volatile organic compounds (VOCs) using a calibrated photo-ionization detector PID to assess the remedial performance of the SVE/AS system.
- Mechanical checks of the SVE/AS system were performed periodically in accordance with the O&M Manual maintenance schedule.

Vapor Phase Granular Activated Carbon Treatment System Monitoring

- Monthly readings at the influent and effluent sampling ports were made with a calibrated PID to check the GAC system to detect carbon breakthrough. Qualitative VOC monitoring with a PID was utilized to record the performance of the GAC absorption system.
- PID-recorded VOC concentrations (reported in calibrant-gas-equivalents) were used to determine when the GAC in the lead unit requires replacement. The flow from the SVE lines to the lead carbon unit was typically changed to a new lead unit when the intermediate VOC reading is 25 percent or greater of the influent VOC concentration.
- Refer to Appendix C for a log of spent GAC totals to date.

Appendix B

SVE/AS System O & M Log Forms

Frost Street Sites - Site ID #s1-30043 I, L, M
New Cassel Industrial Area, Westbury, New York

O & M CHECKLIST FOR SVE/AIR SPARGE SYSTEM
101 Frost Street, Westbury, New York

Inspected By:	GLW	Date:	12/23/2008	Weather:	Sunny ~22F
---------------	-----	-------	------------	----------	------------

Arrival Time:	800	SVE 1 Clock:	152669	SVE 2 Clock:	127216
Departure Time:		SVE 1 Clock:		SVE 2 Clock:	

CONTROL PANEL	Arrival	Departure
AS System	Off	Off
SVE System	On	On
Surge Protection	Lit	Lit
Lightning Protection	White	White
Sensaphone	On	On

PID	
Calibrated	Yes
Concentration:	101 ppm

Carbon Vessels	Pre-Carbon PID	Post Carbon PID	Bypassed
Carbon Vessel 1	ppm	ppm	Yes
Carbon Vessel 2	8.6 ppm	0.8 ppm	No
Carbon Vessel 3	0.6 ppm	0.0 ppm	No

AIR SPARGE SYSTEM		
Cleaned Particulate Filter		No
Drained Filter/collector 1		Yes
Drained Filter/collector 2		Yes
Compressor Discharge Pressure	30	psi
Compressor Holding tank Pressure	90	psi

SVE SYSTEM		
Knockout Tank Level	1/3 full inside	
Knockout Discharge to Sewer	NA	gallons

Monitoring Well Depth to Water Readings		
2a	Covered with ice	
4a	49.85	
6a	45.59	

SVE WELL READINGS (INSIDE TRAILER)

SVE	Velocity	Flow	Vacuum	PID Concentration
V1	8250 FPM	scfm	50 inch H ₂ O	4.8 ppm
V2	5500 FPM	scfm	54 inch H ₂ O	15.6 ppm
V3a	4400 FPM	scfm	46 inch H ₂ O	0.3 ppm
V3	>4000 FPM	scfm	45 inch H ₂ O	1.8 ppm
V4	4400 FPM	scfm	45 inch H ₂ O	0.1 ppm
V6	3650 FPM	scfm	45 inch H ₂ O	0.0 ppm
V5	3100 FPM	scfm	47 inch H ₂ O	0.0 ppm
V7	2900 FPM	scfm	46 inch H ₂ O	0.0 ppm
Pre-Knockout Port			4 inch Hg vac	6.2 ppm
SVE Flow Rate	4100 FPM	scfm		

AS WELL READINGS (INSIDE TRAILER)

AS WELL #	Pressure	Air Flow	AS WELL #	Pressure	Air Flow
AS Well #1	17.5 psi	3 SCFM	AS Well #16	17.75 psi	3 SCFM
AS Well #2	18.25 psi	3 SCFM	AS Well #12	19 psi	-- SCFM
AS Well #4	18 psi	4 SCFM	AS Well #10	19.25 psi	-- SCFM
AS Well #3	17.25 psi	4 SCFM	AS Well #13	19 psi	-- SCFM
AS Well #5	18 psi	4.5 SCFM	AS Well #14	17.5 psi	3.5 SCFM
AS Well #7	17.5 psi	4 SCFM	AS Well #18	17.25 psi	4.5 SCFM
AS Well #9	17.5 psi	7 SCFM	AS Well #17	18.25 psi	3.5 SCFM
AS Well #8	17 psi	5 SCFM	AS Well #15	18 psi	6 SCFM
AS Well #6	17.5 psi	5 SCFM	AS Well #19	17 psi	4 SCFM
AS Well #11	17 psi	3.5 SCFM			

NOTES

Effluent 12/23/08 sample collected at 0907

Influent 12/23/08 sample collected at 0932

Put approx. 1/2 qt. oil into AS#1 and approx. 1 qt. oil into AS#2

AS is set to pulse 6 hours on and 6 hours off - AS was off upon arrival, switched on by hand to collect AS and compressor tank readings, then switched back

to auto

Outside KO tank has approx. 350 gallons of water in it (tank holds ~625 ga)

Appendix C

Log of Spent Vapor Phase GAC Totals to Date

Frost Street Sites - Site ID #s1-30043 I, L, M
New Cassel Industrial Area, Westbury, New York

**Frost Street Sites
Westbury, New York**

**Table C1
Spent Vapor Phase GAC Totals**

Date of Transport from Site	Spent GAC Weight (pounds)	Carbon Facility	RCRA Facility #
January 19, 2006	7,500	Giant Resource Recovery-Sumter Inc.	SCD036275626
February 2, 2006	11,441	Envirotrol Inc.	PAD987270725
April 7, 2006	6,486	Envirotrol Inc.	PAD987270725
August 25, 2006	5,923	Envirotrol Inc.	PAD987270725
December 5, 2006	5,691	Envirotrol Inc.	PAD987270725
<i>2006 Total</i>	<i>37,041</i>		
March 30, 2007	6,913	Envirotrol Inc.	PAD987270725
September 20, 2007	6,164	Envirotrol Inc.	PAD987270725
<i>2007 Total</i>	<i>13,077</i>		
January 16, 2008	8,750	Siemens Water Technologies	PAD987270725
April 29, 2008	7,814	Siemens Water Technologies	PAD987270725
September 12, 2008	5,469	Siemens Water Technologies	PAD987270725
<i>2008 Total</i>	<i>22,033</i>		
Project Total	72,151		

Appendix D

Summary of SVE System Influent/Effluent Results (TO-15)

Frost Street Sites - Site ID #s1-30043 I, L, M
New Cassel Industrial Area, Westbury, New York

FROST STREET SITES
WESTBURY, NEW YORK

TABLE 1
SUMMARY OF SVE SYSTEM INFLUENT/EFFLUENT AIR SAMPLE RESULTS (TO-15)

		Influent												
Target Compound		10/23/2006	12/7/2006	1/18/2007	4/4/2007	4/27/2007	5/16/2007	6/15/2007	7/18/2007	8/15/2007	10/10/2007	10/19/2007	11/19/2007	12/18/2007
		$\mu\text{g}/\text{m}^3$												
Vinyl Chloride		460u	430u	0.25u	60.2u	60.2u	23.5u	1.22u	1.22u	1.22u	ND	ND	ND	ND
1,1-Dichloroethane		710u	670u	0.39u	43.7u	43.7u	11.0u	1.01u	1.01u	1.01u	ND	ND	ND	ND
trans-1,2-Dichloroethene		710u	670u	0.39u	49.7u	49.7u	12.5u	0.99u	0.99u	0.99u	ND	ND	ND	ND
1,1-Dichloroethane		730u	690u	0.40u	42.6u	42.6u	10.5u	0.85u	0.85u	0.85u	ND	ND	ND	ND
cis-1,2-Dichloroethene		710u	670u	0.39u	63.6u	63.6u	16.0u	1.27u	1.27u	1.27u	ND	ND	ND	ND
1,2-Dichloroethane		730u	690u	0.40u	34.9u	34.9u	86.0u	1.01u	1.01u	1.01u	ND	ND	ND	ND
1,1,1-Trichloroethane		930u	930u	0.53u	82.0u	82.0u	15.0u	1.64u	1.64u	1.64u	ND	ND	ND	ND
Trichloroethene		2,700	3,200	1.10	1,480	4,690	1,120	1,35u	1,35u	1,35u	1,900	1,100	970	330
1,1,2-Trichloroethane		980u	930u	0.53u	68.4u	68.4u	12.5u	1.37u	1.37u	1.37u	ND	ND	ND	ND
Tetrachloroethene		190,000	180,000	10,000	129,000	116,000	13,700	145,000	37,500	13,500	92,000	73,000	62,000	27,000
1,1,2,2-Tetrachloroethane		1200u	1,200u	0.67u	53.4u	53.4u	12.5u	1.07u	1.07u	1.07u	ND	ND	ND	ND
1,2-Dichloroethene (total)		710u	670u	0.39u	50.7u	50.7u	12.5u	0.87u	0.87u	0.87u	ND	ND	ND	ND

		Effluent												
Target Compound		10/19/2006	12/7/2006	1/18/2007	4/4/2007	4/27/2007	5/16/2007	6/15/2007	7/18/2007*	8/15/2007*	10/19/2007	11/19/2007	12/18/2007	
		$\mu\text{g}/\text{m}^3$												
Vinyl Chloride		180,000	0.51u	0.51u	0.51u	1,20u	1,20u	0.47u	1,22u	1,22u	ND	ND	ND	ND
1,1-Dichloroethene		0.79u	0.79u	0.79u	0.87u	0.87u	0.22u	1.01u	1.01u	1.01u	ND	ND	ND	ND
trans-1,2-Dichloroethene		0.79u	0.79u	0.79u	0.99u	0.99u	0.25u	0.99u	0.99u	0.99u	ND	ND	ND	ND
1,1-Dichloroethane		none	0.81u	0.81u	0.85u	0.85u	0.21u	0.85u	0.85u	0.85u	ND	ND	ND	ND
cis-1,2-Dichloroethene		0.79u	0.79u	0.79u	1.27u	1.27u	0.32u	1.27u	1.27u	1.27u	ND	ND	ND	ND
1,2-Dichloroethane		0.81u	0.81u	0.81u	6.98u	6.98u	1.01u	1.01u	1.01u	1.01u	ND	ND	ND	ND
1,1,1-Trichloroethane		68,000	1.1u	1.1u	1.64u	1.64u	0.30u	1.64u	1.64u	1.64u	ND	ND	ND	ND
Trichloroethene		54,000	4.1	1.4	1.35u	16.6	2.75	1.35u	3,000	3,000	ND	ND	690	80
1,1,2-Trichloroethane		none	1.1u	1.1u	1.37u	1.37u	0.25u	1.37u	1.37u	1.37u	ND	ND	ND	ND
Tetrachloroethene		1,000	53	26	8.8	54.4	196	2.84	1,680	107	9,580	25	912	21,000
1,1,2,2-Tetrachloroethane		1,4u	1.4u	1.4u	1,07u	1,07u	0.25u	1,07u	1,07u	1,07u	ND	ND	ND	ND
1,2-Dichloroethene (total)		none	0.79u	0.79u	1.01u	1.01u	0.25u	0.87u	0.87u	0.87u	ND	ND	ND	ND

SGC = short-term guideline concentration

u = compound not detected at concentration above the listed reporting limit

U = compound not detected at concentration above the Method Detection Limit (MDL)

ND = Compound was analyzed for but not detected above the laboratory reporting limit.

10/23/06 - 1/18/07 results analyzed by Severn-Treat Laboratories

4/4/07 - 8/15/07 data analyzed by United Chemists

9/26/07 to present data analyzed by Columbia Analytical Services

* Effluent sample secured post primary carbon vessel.

** Sample canister leaked after filling

Note: Lower concentrations detected on 1/18/07, 5/16/07, 7/18/07, 8/15/07 likely due to Air Sparging System component fault - System temporarily down around time of sampling event.

FROST STREET SITES
WESTBURY, NEW YORK

TABLE 1 (cont.)
SUMMARY OF SVE SYSTEM INFLUENT/EFFLUENT AIR SAMPLE RESULTS (TO-15)

Influent		1/21/2008**	2/28/2008	3/20/2008	4/30/2008	5/28/2008	6/27/2008	7/23/2008	8/20/2008	9/29/2008	10/20/2008	11/17/2008
Target Compound		$\mu\text{g}/\text{m}^3$										
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	9.4	80,000	65,000	60,000	61,000	58,000	ND	57,000	73,000	66,000	55,000	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene (total)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Effluent		1/21/2008	2/28/2008	3/20/2008	4/30/2008	5/28/2008	6/27/2008	7/23/2008	8/20/2008	9/29/2008	10/20/2008	11/17/2008
Target Compound		$\mu\text{g}/\text{m}^3$										
Vinyl Chloride	180,000	ND										
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	none	ND										
cis-1,2-Dichloroethene	ND	16	49	49	ND	8.7						
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	68,000	ND										
Trichloroethene	54,000	ND	17	480	480	ND						
1,1,2-Trichloroethane	none	ND										
Tetrachloroethene	1,000	15	580	7,000	1,700	49	41	ND	12	4.7	ND	2.6
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene (total)	none	ND										

SGC = short-term guideline concentration

ND = compound not detected at concentration above the listed reporting limit

U = compound not detected at concentration above the Method Detection Limit (MDL)

ND = Compound was analyzed for but not detected above the laboratory reporting limit.

10/23/06 - 1/18/07 data analyzed by Severn Trent Laboratories

4/4/07 - 8/15/07 data analyzed by United Chemists

9/26/07 to present data analyzed by Columbia Analytical Services

Note: Lower concentrations detected on 1/18/07, 5/16/07, 7/18/07, 8/15/07 likely due to Air Sparging System component fault - System temporarily down around time of sampling event.

* Effluent sample secured post primary carbon vessel.

** Suma canister leaked after filling