

a global professional services company

creative thinking. **custom solutions.**®

1233 Silas Deane Highway | Wethersfield, Connecticut 06109 | Telephone 860-665-1140 | Fax 860-665-9445 | www.ensafe.com

Via email to Jeffrey.dyber@dec.ny.gov

February 9, 2018

Mr. Jeffrey Dyber, P.E.
NYSDEC, Remedial Bureau A
Division of Environmental Remediation
625 Broadway
Albany, New York 12233-7015

Re: Progress Report: January 2018
Frost Street Sites: Site ID #s 1-30043 I, L, M
New Cassel Industrial Area, Westbury, New York

Dear Mr. Dyber:

EnSafe Inc. is pleased to submit this revised Progress Report for the Frost Street Sites (Site ID #s 1-30043 I, L, M) for work completed in January 2018.

Soil Vapor Extraction (SVE)/Air Sparge (AS) System Operation and Maintenance (O&M) (OU1)

- Operations continued this month, per the O&M Manual. During periodic O&M visits, system parameters were logged on dedicated O&M forms (**Appendix A**). The air compressor was repaired on January 12, 2018.
 - The SVE transfer pump failed this month, causing high levels in the moisture separator which led to system downtime. The SVE transfer pump is scheduled to be replaced along with the semiannual compressor service, on February 9, 2018.
- Quantitative sampling of the SVE system granular activated carbon influent and effluent air flow was conducted on February 1, 2018, using Summa canisters. These samples were obtained by EnviroTrac, submitted to Phoenix Environmental Laboratories, and analyzed by Method TO-15. Results are included in **Appendix B**.
 - Influent concentrations of Frost Street-related contaminants of concern (tetrachloroethene, trichloroethene, cis-1,2-dichloroethene, and vinyl chloride) continue to indicate significant mass extraction.
 - Due to effluent concentrations exhibiting breakthrough (December/November PID readings and November analytical data), a carbon exchange was performed on January 8, 2018.

Frost Street Sites Effluent Compliance			
System Flow Rate =	800 ft ³ /m		
Compound	Annual Mass Emission Limit (lbs/year)	Allowable Continuous Annual Concentration (µg/m ³)	January 2018 Effluent Concentration (µg/m ³)
Trichloroethene	500	19,000	ND
Tetrachloroethene	1,000	38,000	ND
Vinyl Chloride	100	3,800	ND
Cis-1,2-Dichloroethene	100	3,800	ND

Notes:

Source of Mass Emission Limit: Part 212-2.2 Table 2 - High Toxicity Air Contaminant List

Cis-1,2-dichloroethene is not a listed HTAC, so the default is 100 lbs/year.

These limits were calculated based on Frost Street-specific system operations (i.e., flow rate) in order to remain below the annual HTAC emissions listed in Part 212-2.2 Table 2. Remaining below these concentrations ensures that annual emissions will not exceed the limit which demonstrates compliance with Part 212 without having to perform compound-specific analyses.

- On January 17, 2018, approximately 500 gallons of system condensate water was discharged from the holding tank to the sewer via the onsite connection. All water is treated via activated carbon adsorption prior to discharge. Groundwater concentrations did not exceed applicable permit limits, as shown in **Appendix C**. An additional discharge of 250 gallons occurred on January 24, 2018.

Groundwater Extraction/Hydraulic Containment System Installation (OU2)

- Removal of sediment from the extraction wells and select monitoring wells was performed the week of January 2, 2018 and the pumps were installed in the shallow wells on January 12, 2018, as described in the attached daily reports (**Appendix D**) .
- The Frost Street Parties are awaiting NYSDEC response to a letter submitted on February 5, 2018, regarding the scope of the pumping test. Once resolution is reached on the scope of the revised pumping test, system startup and the pumping test can begin in three weeks. A schedule showing this and the subsequent activities is included as **Appendix E**; the schedule assumes resolution will be reached on March 1, 2018 and presents the duration of the proposed modified pumping test.

Quarterly/Annual Groundwater Monitoring

- The fourth quarter 2017 groundwater sampling event was completed the week of December 18, 2017, results will be submitted in a forthcoming report, when available.

If you have any questions or require additional information, please do not hesitate to contact me at 860-665-1140 or astark@ensafe.com.

Sincerely,

EnSafe, Inc., by

Alexandra Stark, P.E.

Copies: A. Tamuno, Esq., NYSDEC

G. Bobersky, NYSDEC

C. Bethoney, NYSDOH

J. Nealon, NYSDOH

R. Putnam, NCDOH

T. Pupilla, Sanders Equities

K. Maldonado, Esq.

J. Privitera, Esq.

J. LaPoma, U.S. EPA

J. Heaney, Walden Associates

P. Coop, EnSafe

J. Parillo, EnSafe

J. Wilkinson, Envirotrac

Via email to amtamuno@gw.dec.state.ny.us

Via email to gtbobers@gw.dec.state.ny.us

Via email to charlotte.bethoney@health.ny.gov

Via email to jacquelyn.nealon@health.ny.gov

Via email to rputnam@nassaucountyny.gov

Via email to tpupilla@sandersecurities.com

Via email to kevinmaldonado64@yahoo.com

Via email to privitera@mltw.com

Via email to lapoma.jennifer@epa.gov

Via email to jheaney@walden-associates.com

Via email to pcoop@ensafe.com

Via email to jparillo@ensafe.com

Via email to jamesw@envirotrac.com

Appendix A
SVE/AS System O&M Logs

Operation & Maintenance Data Sheet
EnSafe-Frost Street
101 Frost Street
Westbury, NY

EnviroTrac Environmental Services
5 Old Dock Road, Yaphank, NY 11980
(631)924-3001, Fax (631)924-5001

Date: 5-Jan
Weather / Temp: Clear / 16 DEG
Technician / Operator: DW

Arrival Time: 12:00
Departure Time: 13:00

System Status							
	Arrival	Departure		Arrival	Departure		
SVE Blower 1 (ON/OFF)	ON	ON	Sensaphone (ON/OFF)	ON	ON		
SVE Blower 2 (ON/OFF)	OFF	OFF	Surge Protection (ON/OFF)	ON	ON		
AS Compressor 1 (ON/OFF)	OFF	OFF	Lightning Protection (White/Black)	White	White		
AS Compressor 2 (ON/OFF)	OFF	OFF					
Soil Vapor Extraction System							
Blower Air Velocity/Flow Rate (fpm)/(cfm)	3200	628	Blower 1 Total Runtime (hrs)	49,208.8			
Blower 1 Fresh Air Valve Open (%)	0		Blower 2 Total Runtime (hrs)	49,039.5			
Blower 2 Fresh Air Valve Open (%)	0		Blower 1 Air Filter Differential Pressure ("H2O)	0			
Moisture Separator Vacuum ("Hg)	3		Blower 2 Air Filter Differential Pressure ("H2O)	0			
VGAC-1 Influent Vacuum ("H2O)	64		VGAC-1 Influent PID (ppm)	6.8			
VGAC-1 Effluent Vacuum ("H2O)	56		VGAC-1 Effluent PID (ppm)	0.0			
VGAC-2 Influent Vacuum ("H2O)	54		VGAC-2 Influent PID (ppm)	0.2			
VGAC-2 Effluent Vacuum ("H2O)	54		VGAC-2 Effluent PID (ppm)	0.0			
VGAC-3 Influent Pressure ("H2O)	6		VGAC-3 Influent PID (ppm)	0.0			
VGAC-3 Effluent Pressure ("H2O)	3		VGAC-3 Effluent PID (ppm)	0.0			
VGAC-2 Influent Temp (DegF)	106		Blower Effluent PID (ppm)	0.0			
Blower Effluent Pressure ("H2O)	10						
Transfer Pump Total Runtime (hrs)	25,026.8		Condensate Storage Tank Level (gal)	250			
SVE Manifold Legs - Vacuum/Flow Rate/PID							
	Vacuum	Velocity	Flow Rate	PID			
SVE-1 ("H2O)/(FPM)/(cfm)/(ppm)	40	6500	142	SVE-4 ("H2O)/(FPM)/(cfm)/(ppm)	34		
SVE-2 ("H2O)/(FPM)/(cfm)/(ppm)	42	3500	76	SVE-5 ("H2O)/(FPM)/(cfm)/(ppm)	34		
SVE-3 ("H2O)/(FPM)/(cfm)/(ppm)	36	3600	79	SVE-6B ("H2O)/(FPM)/(cfm)/(ppm)	34		
SVE-3A ("H2O)/(FPM)/(cfm)/(ppm)	36	4400	96	SVE-7 ("H2O)/(FPM)/(cfm)/(ppm)	34		
Air Sparge System							
Compressor 1 Pressure (psi)	Off for repairs		Compressor 2 Pressure (psi)	Off for repairs			
Compressor 1 Temperature (degF)	Off for repairs		Compressor 2 Temperature (degF)	Off for repairs			
Compressor 1 Runtime (hrs)	27,317		Compressor 2 Runtime (hrs)	25,116			
Manifold Regulator Pressure (psi)							
AS Manifold Legs - Pressure/Flow Rate							
	Pressure	Flow Rate		Pressure	Flow Rate		
AS-1 (psi)/(cfm)				AS-11 (psi)/(cfm)			
AS-2 (psi)/(cfm)				AS-12B (psi)/(cfm)			
AS-3 (psi)/(cfm)				AS-13B (psi)/(cfm)			
AS-4 (psi)/(cfm)				AS-14 (psi)/(cfm)			
AS-5 (psi)/(cfm)				AS-15 (psi)/(cfm)			
AS-6 (psi)/(cfm)				AS-16B (psi)/(cfm)			
AS-7 (psi)/(cfm)				AS-17 (psi)/(cfm)			
AS-8 (psi)/(cfm)				AS-18 (psi)/(cfm)			
AS-9 (psi)/(cfm)				AS-19 (psi)/(cfm)			
AS-10B (psi)/(cfm)							

Notes, Comments & Observations: _____

Operation & Maintenance Data Sheet
EnSafe-Frost Street
101 Frost Street
Westbury, NY

EnviroTrac Environmental Services
5 Old Dock Road, Yaphank, NY 11980
(631)924-3001, Fax (631)924-5001

Date: 8-Jan
Weather / Temp: Clear / 18 DEG
Technician / Operator: DW

Arrival Time: 7:00
Departure Time: 13:30

System Status							
	Arrival	Departure		Arrival	Departure		
SVE Blower 1 (ON/OFF)	ON	ON	Sensaphone (ON/OFF)	ON	ON		
SVE Blower 2 (ON/OFF)	OFF	OFF	Surge Protection (ON/OFF)	ON	ON		
AS Compressor 1 (ON/OFF)	OFF	OFF	Lightning Protection (White/Black)	White	White		
AS Compressor 2 (ON/OFF)	OFF	OFF					
Soil Vapor Extraction System							
Blower Air Velocity/Flow Rate (fpm)/(cfm)	4500	884	Blower 1 Total Runtime (hrs)	49,245.0			
Blower 1 Fresh Air Valve Open (%)	0		Blower 2 Total Runtime (hrs)	49,075.5			
Blower 2 Fresh Air Valve Open (%)	0		Blower 1 Air Filter Differential Pressure ("H2O)	0			
Moisture Separator Vacuum ("Hg)	4		Blower 2 Air Filter Differential Pressure ("H2O)	0			
VGAC-1 Influent Vacuum ("H2O)	74		VGAC-1 Influent PID (ppm)	0.0			
VGAC-1 Effluent Vacuum ("H2O)	78		VGAC-1 Effluent PID (ppm)	0.0			
VGAC-2 Influent Vacuum ("H2O)	74		VGAC-2 Influent PID (ppm)	0.0			
VGAC-2 Effluent Vacuum ("H2O)	84		VGAC-2 Effluent PID (ppm)	0.0			
VGAC-3 Influent Pressure ("H2O)	6		VGAC-3 Influent PID (ppm)	0.0			
VGAC-3 Effluent Pressure ("H2O)	3		VGAC-3 Effluent PID (ppm)	0.0			
VGAC-2 Influent Temp (DegF)	110		Blower Effluent PID (ppm)	0.0			
Blower Effluent Pressure ("H2O)	17						
Transfer Pump Total Runtime (hrs)	25,027.0		Condensate Storage Tank Level (gal)	250			
SVE Manifold Legs - Vacuum/Flow Rate/PID							
	Vacuum	Velocity	Flow Rate	PID			
SVE-1 ("H2O)/(FPM)/(cfm)/(ppm)	50	7500	164	SVE-4 ("H2O)/(FPM)/(cfm)/(ppm)	42		
SVE-2 ("H2O)/(FPM)/(cfm)/(ppm)	52	4500	98	SVE-5 ("H2O)/(FPM)/(cfm)/(ppm)	44		
SVE-3 ("H2O)/(FPM)/(cfm)/(ppm)	44	5000	109	SVE-6B ("H2O)/(FPM)/(cfm)/(ppm)	42		
SVE-3A ("H2O)/(FPM)/(cfm)/(ppm)	42	4200	92	SVE-7 ("H2O)/(FPM)/(cfm)/(ppm)	44		
Air Sparge System							
Compressor 1 Pressure (psi)	Off for repairs		Compressor 2 Pressure (psi)	Off for repairs			
Compressor 1 Temperature (degF)	Off for repairs		Compressor 2 Temperature (degF)	Off for repairs			
Compressor 1 Runtime (hrs)	27,317		Compressor 2 Runtime (hrs)	25,116			
Manifold Regulator Pressure (psi)							
AS Manifold Legs - Pressure/Flow Rate							
	Pressure	Flow Rate		Pressure	Flow Rate		
AS-1 (psi)/(cfm)				AS-11 (psi)/(cfm)			
AS-2 (psi)/(cfm)				AS-12B (psi)/(cfm)			
AS-3 (psi)/(cfm)				AS-13B (psi)/(cfm)			
AS-4 (psi)/(cfm)				AS-14 (psi)/(cfm)			
AS-5 (psi)/(cfm)				AS-15 (psi)/(cfm)			
AS-6 (psi)/(cfm)				AS-16B (psi)/(cfm)			
AS-7 (psi)/(cfm)				AS-17 (psi)/(cfm)			
AS-8 (psi)/(cfm)				AS-18 (psi)/(cfm)			
AS-9 (psi)/(cfm)				AS-19 (psi)/(cfm)			
AS-10B (psi)/(cfm)							

Notes, Comments & Observations: _____

Operation & Maintenance Data Sheet
Ensafe-Frost Street
101 Frost Street
Westbury, NY

EnviroTrac Environmental Services
5 Old Dock Road, Yaphank, NY 11980
(631)924-3001, Fax (631)924-5001

Date: 17-Jan
Weather / Temp: Snow / 30 DEG
Technician / Operator: MA, JL

Arrival Time: 12:40
Departure Time: 13:30

System Status							
	Arrival	Departure		Arrival	Departure		
SVE Blower 1 (ON/OFF)	ON	ON	Sensaphone (ON/OFF)	ON	ON		
SVE Blower 2 (ON/OFF)	OFF	OFF	Surge Protection (ON/OFF)	ON	ON		
AS Compressor 1 (ON/OFF)	OFF	OFF	Lightning Protection (White/Black)	White	White		
AS Compressor 2 (ON/OFF)	ON	ON					
Soil Vapor Extraction System							
Blower Air Velocity/Flow Rate (fpm)/(cfm)	4500	884	Blower 1 Total Runtime (hrs)	49,354.0			
Blower 1 Fresh Air Valve Open (%)	0		Blower 2 Total Runtime (hrs)	49,181.0			
Blower 2 Fresh Air Valve Open (%)	0		Blower 1 Air Filter Differential Pressure ("H2O)	0			
Moisture Separator Vacuum ("Hg)	3		Blower 2 Air Filter Differential Pressure ("H2O)	0			
VGAC-1 Influent Vacuum ("H2O)	72		VGAC-1 Influent PID (ppm)	0.2			
VGAC-1 Effluent Vacuum ("H2O)	70		VGAC-1 Effluent PID (ppm)	0.0			
VGAC-2 Influent Vacuum ("H2O)	84		VGAC-2 Influent PID (ppm)	0.2			
VGAC-2 Effluent Vacuum ("H2O)	84		VGAC-2 Effluent PID (ppm)	0.0			
VGAC-3 Influent Pressure ("H2O)	7.2		VGAC-3 Influent PID (ppm)	0.0			
VGAC-3 Effluent Pressure ("H2O)	2.3		VGAC-3 Effluent PID (ppm)	0.0			
VGAC-2 Influent Temp (DegF)	128		Blower Effluent PID (ppm)	0.0			
Blower Effluent Pressure ("H2O)	20						
Transfer Pump Total Runtime (hrs)	25,027.6		Condensate Storage Tank Level (gal)	500 → 0			
SVE Manifold Legs - Vacuum/Flow Rate/PID							
	Vacuum	Velocity	Flow Rate	PID			
SVE-1 ("H2O)/(FPM)/(cfm)/(ppm)	48	7500	164	SVE-4 ("H2O)/(FPM)/(cfm)/(ppm)	42		
SVE-2 ("H2O)/(FPM)/(cfm)/(ppm)	50	4250	93	SVE-5 ("H2O)/(FPM)/(cfm)/(ppm)	42		
SVE-3 ("H2O)/(FPM)/(cfm)/(ppm)	42	5000	109	SVE-6B ("H2O)/(FPM)/(cfm)/(ppm)	40		
SVE-3A ("H2O)/(FPM)/(cfm)/(ppm)	42	4000	87	SVE-7 ("H2O)/(FPM)/(cfm)/(ppm)	44		
Air Sparge System							
Compressor 1 Pressure (psi)	Off for repairs		Compressor 2 Pressure (psi)				
Compressor 1 Temperature (degF)	Off for repairs		Compressor 2 Temperature (degF)				
Compressor 1 Runtime (hrs)	27,317		Compressor 2 Runtime (hrs)	25,120			
Manifold Regulator Pressure (psi)							
AS Manifold Legs - Pressure/Flow Rate							
	Pressure	Flow Rate		Pressure	Flow Rate		
AS-1 (psi)/(cfm)	18.5	8	AS-11 (psi)/(cfm)	17.5	12		
AS-2 (psi)/(cfm)	17	11	AS-12B (psi)/(cfm)	18	8		
AS-3 (psi)/(cfm)	16.5	10	AS-13B (psi)/(cfm)	15.5	8		
AS-4 (psi)/(cfm)	15	6	AS-14 (psi)/(cfm)	16.5	9		
AS-5 (psi)/(cfm)	18	14	AS-15 (psi)/(cfm)	16.5	10		
AS-6 (psi)/(cfm)	18	11	AS-16B (psi)/(cfm)	15.5	10		
AS-7 (psi)/(cfm)	18	11	AS-17 (psi)/(cfm)	17	4.5		
AS-8 (psi)/(cfm)	18	11	AS-18 (psi)/(cfm)	15	11		
AS-9 (psi)/(cfm)	17.5	16	AS-19 (psi)/(cfm)	16.5	15		
AS-10B (psi)/(cfm)	16	8					

Notes, Comments & Observations: _____

Collected water sample, drained tank.

Operation & Maintenance Data Sheet
Ensafe-Frost Street
101 Frost Street
Westbury, NY

EnviroTrac Environmental Services
5 Old Dock Road, Yaphank, NY 11980
(631)924-3001, Fax (631)924-5001

Date: 24-Jan
Weather / Temp: Clear / 45 DEG
Technician / Operator: JL

Arrival Time: 14:00
Departure Time: 15:00

System Status							
	Arrival	Departure		Arrival	Departure		
SVE Blower 1 (ON/OFF)	ON	ON	Sensaphone (ON/OFF)	ON	ON		
SVE Blower 2 (ON/OFF)	OFF	OFF	Surge Protection (ON/OFF)	ON	ON		
AS Compressor 1 (ON/OFF)	OFF	OFF	Lightning Protection (White/Black)	White	White		
AS Compressor 2 (ON/OFF)	OFF	ON					
Soil Vapor Extraction System							
Blower Air Velocity/Flow Rate (fpm)/(cfm)	4200	825	Blower 1 Total Runtime (hrs)	49,438.8			
Blower 1 Fresh Air Valve Open (%)	0		Blower 2 Total Runtime (hrs)	49,262.0			
Blower 2 Fresh Air Valve Open (%)	0		Blower 1 Air Filter Differential Pressure ("H2O)	0			
Moisture Separator Vacuum ("Hg)	3.5		Blower 2 Air Filter Differential Pressure ("H2O)	0			
VGAC-1 Influent Vacuum ("H2O)	70		VGAC-1 Influent PID (ppm)	0.0			
VGAC-1 Effluent Vacuum ("H2O)	72		VGAC-1 Effluent PID (ppm)	0.0			
VGAC-2 Influent Vacuum ("H2O)	70		VGAC-2 Influent PID (ppm)	0.0			
VGAC-2 Effluent Vacuum ("H2O)	80		VGAC-2 Effluent PID (ppm)	0.0			
VGAC-3 Influent Pressure ("H2O)	9.9		VGAC-3 Influent PID (ppm)	0.0			
VGAC-3 Effluent Pressure ("H2O)	2.5		VGAC-3 Effluent PID (ppm)	0.0			
VGAC-2 Influent Temp (DegF)	126		Blower Effluent PID (ppm)	0.0			
Blower Effluent Pressure ("H2O)	20						
Transfer Pump Total Runtime (hrs)	25,027.6		Condensate Storage Tank Level (gal)	250			
SVE Manifold Legs - Vacuum/Flow Rate/PID							
	Vacuum	Velocity	Flow Rate	PID			
SVE-1 ("H2O)/(FPM)/(cfm)/(ppm)	46	7100	155	SVE-4 ("H2O)/(FPM)/(cfm)/(ppm)	40		
SVE-2 ("H2O)/(FPM)/(cfm)/(ppm)	48	4000	87	SVE-5 ("H2O)/(FPM)/(cfm)/(ppm)	40		
SVE-3 ("H2O)/(FPM)/(cfm)/(ppm)	40	4600	100	SVE-6B ("H2O)/(FPM)/(cfm)/(ppm)	38		
SVE-3A ("H2O)/(FPM)/(cfm)/(ppm)	40	4000	87	SVE-7 ("H2O)/(FPM)/(cfm)/(ppm)	42		
Air Sparge System							
Compressor 1 Pressure (psi)	Off for repairs		Compressor 2 Pressure (psi)				
Compressor 1 Temperature (degF)	Off for repairs		Compressor 2 Temperature (degF)				
Compressor 1 Runtime (hrs)	27,317		Compressor 2 Runtime (hrs)	25,123			
Manifold Regulator Pressure (psi)							
AS Manifold Legs - Pressure/Flow Rate							
	Pressure	Flow Rate		Pressure	Flow Rate		
AS-1 (psi)/(cfm)	15	6		AS-11 (psi)/(cfm)	15		
AS-2 (psi)/(cfm)	14	5		AS-12B (psi)/(cfm)	15		
AS-3 (psi)/(cfm)	13	5		AS-13B (psi)/(cfm)	13		
AS-4 (psi)/(cfm)	13	5		AS-14 (psi)/(cfm)	15		
AS-5 (psi)/(cfm)	15	6		AS-15 (psi)/(cfm)	15		
AS-6 (psi)/(cfm)	15	5		AS-16B (psi)/(cfm)	13.5		
AS-7 (psi)/(cfm)	15	6		AS-17 (psi)/(cfm)	16		
AS-8 (psi)/(cfm)	15	5		AS-18 (psi)/(cfm)	14		
AS-9 (psi)/(cfm)	15	5		AS-19 (psi)/(cfm)	15.5		
AS-10B (psi)/(cfm)	13.5	5			8		

Notes, Comments & Observations: _____

Operation & Maintenance Data Sheet
Ensafe-Frost Street
101 Frost Street
Westbury, NY

EnviroTrac Environmental Services
5 Old Dock Road, Yaphank, NY 11980
(631)924-3001, Fax (631)924-5001

Date: 31-Jan
Weather / Temp: Clear / 30 DEG
Technician / Operator: JW

Arrival Time: 14:00
Departure Time: 16:00

System Status							
	Arrival	Departure		Arrival	Departure		
SVE Blower 1 (ON/OFF)	OFF	ON	Sensaphone (ON/OFF)	ON	ON		
SVE Blower 2 (ON/OFF)	OFF	OFF	Surge Protection (ON/OFF)	ON	ON		
AS Compressor 1 (ON/OFF)	OFF	OFF	Lightning Protection (White/Black)	White	White		
AS Compressor 2 (ON/OFF)	OFF	ON					
Soil Vapor Extraction System							
Blower Air Velocity/Flow Rate (fpm)/(cfm)	4200	825	Blower 1 Total Runtime (hrs)	49,450.9			
Blower 1 Fresh Air Valve Open (%)	0		Blower 2 Total Runtime (hrs)	49,268.6			
Blower 2 Fresh Air Valve Open (%)	0		Blower 1 Air Filter Differential Pressure ("H2O)	0			
Moisture Separator Vacuum ("Hg)	3.5		Blower 2 Air Filter Differential Pressure ("H2O)	0			
VGAC-1 Influent Vacuum ("H2O)	74		VGAC-1 Influent PID (ppm)	0.0			
VGAC-1 Effluent Vacuum ("H2O)	78		VGAC-1 Effluent PID (ppm)	0.0			
VGAC-2 Influent Vacuum ("H2O)	74		VGAC-2 Influent PID (ppm)	0.0			
VGAC-2 Effluent Vacuum ("H2O)	84		VGAC-2 Effluent PID (ppm)	0.0			
VGAC-3 Influent Pressure ("H2O)	6		VGAC-3 Influent PID (ppm)	0.0			
VGAC-3 Effluent Pressure ("H2O)	3		VGAC-3 Effluent PID (ppm)	0.0			
VGAC-2 Influent Temp (DegF)	100		Blower Effluent PID (ppm)	0.0			
Blower Effluent Pressure ("H2O)	15						
Transfer Pump Total Runtime (hrs)	25,029.2		Condensate Storage Tank Level (gal)	0			
SVE Manifold Legs - Vacuum/Flow Rate/PID							
	Vacuum	Velocity	Flow Rate	PID			
SVE-1 ("H2O)/(FPM)/(cfm)/(ppm)	50	7500	164	0.0	SVE-4 ("H2O)/(FPM)/(cfm)/(ppm)		
SVE-2 ("H2O)/(FPM)/(cfm)/(ppm)	52	4500	98	0.0	SVE-5 ("H2O)/(FPM)/(cfm)/(ppm)		
SVE-3 ("H2O)/(FPM)/(cfm)/(ppm)	44	5000	109	0.0	SVE-6B ("H2O)/(FPM)/(cfm)/(ppm)		
SVE-3A ("H2O)/(FPM)/(cfm)/(ppm)	42	4200	92	0.0	SVE-7 ("H2O)/(FPM)/(cfm)/(ppm)		
Air Sparge System							
Compressor 1 Pressure (psi)	Off for repairs		Compressor 2 Pressure (psi)				
Compressor 1 Temperature (degF)	Off for repairs		Compressor 2 Temperature (degF)				
Compressor 1 Runtime (hrs)	27,317		Compressor 2 Runtime (hrs)	25,127			
Manifold Regulator Pressure (psi)							
AS Manifold Legs - Pressure/Flow Rate							
	Pressure	Flow Rate		Pressure	Flow Rate		
AS-1 (psi)/(cfm)	18	6		AS-11 (psi)/(cfm)	16		
AS-2 (psi)/(cfm)	16	4		AS-12B (psi)/(cfm)	16		
AS-3 (psi)/(cfm)	16	8		AS-13B (psi)/(cfm)	15		
AS-4 (psi)/(cfm)	15	4		AS-14 (psi)/(cfm)	15		
AS-5 (psi)/(cfm)	17	10		AS-15 (psi)/(cfm)	15		
AS-6 (psi)/(cfm)	17	7		AS-16B (psi)/(cfm)	15		
AS-7 (psi)/(cfm)	17	7		AS-17 (psi)/(cfm)	16		
AS-8 (psi)/(cfm)	17	8		AS-18 (psi)/(cfm)	15		
AS-9 (psi)/(cfm)	17	12		AS-19 (psi)/(cfm)	15		
AS-10B (psi)/(cfm)	15	6			9		

Notes, Comments & Observations:

System off upon arrival due to high level in moisture separator. Transfer pump not working properly.

Collected monthly air samples.

Appendix B
SVE System Influent/Effluent Sampling (TO-15)
Laboratory Analytical Results

Wednesday, February 07, 2018

Attn: James Wilkinson
EnviroTrac
5 Old Dock Rd
Yaphank, NY 11980

Project ID: ENSAFE-WESTBURY
Sample ID#s: BZ84200 - BZ84201

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

A handwritten signature in black ink that reads "Phyllis Shiller".

Phyllis Shiller

Laboratory Director

NELAC - #NY11301
CT Lab Registration #PH-0618
MA Lab Registration #M-CT007
ME Lab Registration #CT-007
NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003
NY Lab Registration #11301
PA Lab Registration #68-03530
RI Lab Registration #63
UT Lab Registration #CT00007
VT Lab Registration #VT11301

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 07, 2018

FOR: Attn: James Wilkinson
EnviroTrac
5 Old Dock Rd
Yaphank, NY 11980

Sample Information

Matrix: AIR
Location Code: ENVIROTR
Rush Request: 72 Hour
P.O.#:
Canister Id: 722
Project ID: ENSAFE-WESTBURY
Client ID: SVE INFLUENT

Custody Information

Collected by: JW
Received by: SW
Analyzed by: see "By" below

Date

Time

02/01/18 15:59

02/02/18 16:39

SDG ID: GBZ84200

Phoenix ID: BZ84200

Laboratory Data

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	By	Dilution
Volatiles (TO15)							
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	02/03/18	KCA	1
1,1,1-Trichloroethane	0.428	0.183	2.33	1.00	02/03/18	KCA	1
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	02/03/18	KCA	1
1,1,2-Trichloroethane	ND	0.183	ND	1.00	02/03/18	KCA	1
1,1-Dichloroethane	ND	0.247	ND	1.00	02/03/18	KCA	1
1,1-Dichloroethene	ND	0.051	ND	0.20	02/03/18	KCA	1
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	02/03/18	KCA	1
1,2,4-Trimethylbenzene	ND	0.204	ND	1.00	02/03/18	KCA	1
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	02/03/18	KCA	1
1,2-Dichlorobenzene	ND	0.166	ND	1.00	02/03/18	KCA	1
1,2-Dichloroethane	ND	0.247	ND	1.00	02/03/18	KCA	1
1,2-dichloropropane	ND	0.217	ND	1.00	02/03/18	KCA	1
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	02/03/18	KCA	1
1,3,5-Trimethylbenzene	ND	0.204	ND	1.00	02/03/18	KCA	1
1,3-Butadiene	ND	0.452	ND	1.00	02/03/18	KCA	1
1,3-Dichlorobenzene	ND	0.166	ND	1.00	02/03/18	KCA	1
1,4-Dichlorobenzene	ND	0.166	ND	1.00	02/03/18	KCA	1
1,4-Dioxane	ND	0.278	ND	1.00	02/03/18	KCA	1
2-Hexanone(MBK)	ND	0.244	ND	1.00	02/03/18	KCA	1
4-Ethyltoluene	ND	0.204	ND	1.00	02/03/18	KCA	1
4-Isopropyltoluene	ND	0.182	ND	1.00	02/03/18	KCA	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	ND	1.00	02/03/18	KCA	1
Acetone	10.4	0.421	24.7	1.00	02/03/18	KCA	1
Acrylonitrile	ND	0.461	ND	1.00	02/03/18	KCA	1
Benzene	ND	0.313	ND	1.00	02/03/18	KCA	1
Benzyl chloride	ND	0.193	ND	1.00	02/03/18	KCA	1

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	By	Dilution
Bromodichloromethane	ND	0.149	ND	1.00	02/03/18	KCA	1
Bromoform	ND	0.097	ND	1.00	02/03/18	KCA	1
Bromomethane	ND	0.258	ND	1.00	02/03/18	KCA	1
Carbon Disulfide	ND	0.321	ND	1.00	02/03/18	KCA	1
Carbon Tetrachloride	0.084	0.032	0.53	0.20	02/03/18	KCA	1
Chlorobenzene	ND	0.217	ND	1.00	02/03/18	KCA	1
Chloroethane	ND	0.379	ND	1.00	02/03/18	KCA	1
Chloroform	ND	0.205	ND	1.00	02/03/18	KCA	1
Chloromethane	ND	0.485	ND	1.00	02/03/18	KCA	1
Cis-1,2-Dichloroethene	74.9	6.31	297	25.0	02/05/18	KCA	125
cis-1,3-Dichloropropene	ND	0.221	ND	1.00	02/03/18	KCA	1
Cyclohexane	ND	0.291	ND	1.00	02/03/18	KCA	1
Dibromochloromethane	ND	0.118	ND	1.00	02/03/18	KCA	1
Dichlorodifluoromethane	ND	0.202	ND	1.00	02/03/18	KCA	1
Ethanol	2.52	0.531	4.75	1.00	02/03/18	KCA	1
Ethyl acetate	ND	0.278	ND	1.00	02/03/18	KCA	1
Ethylbenzene	ND	0.230	ND	1.00	02/03/18	KCA	1
Heptane	ND	0.244	ND	1.00	02/03/18	KCA	1
Hexachlorobutadiene	ND	0.094	ND	1.00	02/03/18	KCA	1
Hexane	ND	0.284	ND	1.00	02/03/18	KCA	1
Isopropylalcohol	1.30	0.407	3.19	1.00	02/03/18	KCA	1
Isopropylbenzene	ND	0.204	ND	1.00	02/03/18	KCA	1
m,p-Xylene	ND	0.230	ND	1.00	02/03/18	KCA	1
Methyl Ethyl Ketone	7.39	0.339	21.8	1.00	02/03/18	KCA	1
Methyl tert-butyl ether(MTBE)	ND	0.278	ND	1.00	02/03/18	KCA	1
Methylene Chloride	ND	0.864	ND	3.00	02/03/18	KCA	1
n-Butylbenzene	ND	0.182	ND	1.00	02/03/18	KCA	1
o-Xylene	ND	0.230	ND	1.00	02/03/18	KCA	1
Propylene	0.949	0.581	1.63	1.00	02/03/18	KCA	1
sec-Butylbenzene	ND	0.182	ND	1.00	02/03/18	KCA	1
Styrene	ND	0.235	ND	1.00	02/03/18	KCA	1
Tetrachloroethene	2190	4.61	14800	31.2	02/05/18	KCA	125
Tetrahydrofuran	4.94	0.339	14.6	1.00	02/03/18	KCA	1
Toluene	0.269	0.266	1.01	1.00	02/03/18	KCA	1
Trans-1,2-Dichloroethene	2.04	0.252	8.08	1.00	02/03/18	KCA	1
trans-1,3-Dichloropropene	ND	0.221	ND	1.00	02/03/18	KCA	1
Trichloroethene	338	4.66	1820	25.0	02/05/18	KCA	125
Trichlorofluoromethane	0.300	0.178	1.68	1.00	02/03/18	KCA	1
Trichlorotrifluoroethane	ND	0.131	ND	1.00	02/03/18	KCA	1
Vinyl Chloride	ND	0.078	ND	0.20	02/03/18	KCA	1
<u>QA/QC Surrogates</u>							
% Bromofluorobenzene	105	%	105	%	02/03/18	KCA	1

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	By	Dilution
-----------	----------------	------------	-----------------	-------------	-----------	----	----------

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL
BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If there are any questions regarding this data, please call Phoenix Client Services.
This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

February 07, 2018

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 07, 2018

FOR: Attn: James Wilkinson
EnviroTrac
5 Old Dock Rd
Yaphank, NY 11980

Sample Information

Matrix: AIR
Location Code: ENVIROTR
Rush Request: 72 Hour
P.O.#:
Canister Id: 835
Project ID: ENSAFE-WESTBURY
Client ID: SVE EFFLUENT

Custody Information

Collected by: JW
Received by: SW
Analyzed by: see "By" below

Date

Time

02/01/18 15:56

02/02/18 16:39

SDG ID: GBZ84200

Phoenix ID: BZ84201

Laboratory Data

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	By	Dilution
Volatiles (TO15)							
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	02/05/18	KCA	1
1,1,1-Trichloroethane	ND	0.183	ND	1.00	02/05/18	KCA	1
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	02/05/18	KCA	1
1,1,2-Trichloroethane	ND	0.183	ND	1.00	02/05/18	KCA	1
1,1-Dichloroethane	ND	0.247	ND	1.00	02/05/18	KCA	1
1,1-Dichloroethene	ND	0.051	ND	0.20	02/05/18	KCA	1
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	02/05/18	KCA	1
1,2,4-Trimethylbenzene	ND	0.204	ND	1.00	02/05/18	KCA	1
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	02/05/18	KCA	1
1,2-Dichlorobenzene	ND	0.166	ND	1.00	02/05/18	KCA	1
1,2-Dichloroethane	ND	0.247	ND	1.00	02/05/18	KCA	1
1,2-dichloropropane	ND	0.217	ND	1.00	02/05/18	KCA	1
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	02/05/18	KCA	1
1,3,5-Trimethylbenzene	ND	0.204	ND	1.00	02/05/18	KCA	1
1,3-Butadiene	ND	0.452	ND	1.00	02/05/18	KCA	1
1,3-Dichlorobenzene	ND	0.166	ND	1.00	02/05/18	KCA	1
1,4-Dichlorobenzene	ND	0.166	ND	1.00	02/05/18	KCA	1
1,4-Dioxane	ND	0.278	ND	1.00	02/05/18	KCA	1
2-Hexanone(MBK)	ND	0.244	ND	1.00	02/05/18	KCA	1
4-Ethyltoluene	ND	0.204	ND	1.00	02/05/18	KCA	1
4-Isopropyltoluene	ND	0.182	ND	1.00	02/05/18	KCA	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	ND	1.00	02/05/18	KCA	1
Acetone	2.00	S 0.421	4.75	1.00	02/05/18	KCA	1
Acrylonitrile	ND	0.461	ND	1.00	02/05/18	KCA	1
Benzene	ND	0.313	ND	1.00	02/05/18	KCA	1
Benzyl chloride	ND	0.193	ND	1.00	02/05/18	KCA	1

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	By	Dilution	
Bromodichloromethane	ND	0.149	ND	1.00	02/05/18	KCA	1	
Bromoform	ND	0.097	ND	1.00	02/05/18	KCA	1	
Bromomethane	ND	0.258	ND	1.00	02/05/18	KCA	1	
Carbon Disulfide	ND	0.321	ND	1.00	02/05/18	KCA	1	
Carbon Tetrachloride	ND	0.032	ND	0.20	02/05/18	KCA	1	
Chlorobenzene	ND	0.217	ND	1.00	02/05/18	KCA	1	
Chloroethane	ND	0.379	ND	1.00	02/05/18	KCA	1	
Chloroform	ND	0.205	ND	1.00	02/05/18	KCA	1	
Chloromethane	ND	0.485	ND	1.00	02/05/18	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	ND	0.20	02/05/18	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	ND	1.00	02/05/18	KCA	1	
Cyclohexane	ND	0.291	ND	1.00	02/05/18	KCA	1	
Dibromochloromethane	ND	0.118	ND	1.00	02/05/18	KCA	1	
Dichlorodifluoromethane	ND	0.202	ND	1.00	02/05/18	KCA	1	
Ethanol	0.802	0.531	1.51	1.00	02/05/18	KCA	1	1
Ethyl acetate	ND	0.278	ND	1.00	02/05/18	KCA	1	1
Ethylbenzene	ND	0.230	ND	1.00	02/05/18	KCA	1	
Heptane	ND	0.244	ND	1.00	02/05/18	KCA	1	
Hexachlorobutadiene	ND	0.094	ND	1.00	02/05/18	KCA	1	
Hexane	ND	0.284	ND	1.00	02/05/18	KCA	1	
Isopropylalcohol	1.25	0.407	3.07	1.00	02/05/18	KCA	1	
Isopropylbenzene	ND	0.204	ND	1.00	02/05/18	KCA	1	
m,p-Xylene	ND	0.230	ND	1.00	02/05/18	KCA	1	
Methyl Ethyl Ketone	ND	0.339	ND	1.00	02/05/18	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	ND	1.00	02/05/18	KCA	1	
Methylene Chloride	ND	0.864	ND	3.00	02/05/18	KCA	1	
n-Butylbenzene	ND	0.182	ND	1.00	02/05/18	KCA	1	1
o-Xylene	ND	0.230	ND	1.00	02/05/18	KCA	1	
Propylene	0.867	0.581	1.49	1.00	02/05/18	KCA	1	1
sec-Butylbenzene	ND	0.182	ND	1.00	02/05/18	KCA	1	1
Styrene	ND	0.235	ND	1.00	02/05/18	KCA	1	
Tetrachloroethene	ND	0.037	ND	0.25	02/05/18	KCA	1	
Tetrahydrofuran	ND	0.339	ND	1.00	02/05/18	KCA	1	1
Toluene	ND	0.266	ND	1.00	02/05/18	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	ND	1.00	02/05/18	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	ND	1.00	02/05/18	KCA	1	
Trichloroethene	ND	0.037	ND	0.20	02/05/18	KCA	1	
Trichlorofluoromethane	ND	0.178	ND	1.00	02/05/18	KCA	1	
Trichlorotrifluoroethane	ND	0.131	ND	1.00	02/05/18	KCA	1	
Vinyl Chloride	ND	0.078	ND	0.20	02/05/18	KCA	1	
<u>QA/QC Surrogates</u>								
% Bromofluorobenzene	100	%	100	%	02/05/18	KCA	1	

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	By	Dilution
-----------	----------------	------------	-----------------	-------------	-----------	----	----------

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL
BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller

Phyllis Shiller, Laboratory Director

February 07, 2018

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

February 07, 2018

QA/QC Data

SDG I.D.: GBZ84200

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
QA/QC Batch 418872 (ppbv), QC Sample No: BZ83844 (BZ84200 (125X) , BZ84201)												
Volatiles												
1,1,1,2-Tetrachloroethane	ND	0.500	ND	3.43	96	ND	ND	ND	ND	NC	70 - 130	25
1,1,1-Trichloroethane	ND	0.500	ND	2.73	107	ND	ND	ND	ND	NC	70 - 130	25
1,1,2,2-Tetrachloroethane	ND	0.500	ND	3.43	99	ND	ND	ND	ND	NC	70 - 130	25
1,1,2-Trichloroethane	ND	0.500	ND	2.73	111	ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethane	ND	0.500	ND	2.02	103	ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethene	ND	0.500	ND	1.98	92	ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trichlorobenzene	ND	0.500	ND	3.71	92	ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trimethylbenzene	ND	0.500	ND	2.46	114	3.37	4.19	0.686	0.852	NC	70 - 130	25
1,2-Dibromoethane(EDB)	ND	0.500	ND	3.84	112	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorobenzene	ND	0.500	ND	3.00	106	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichloroethane	ND	0.500	ND	2.02	107	ND	ND	ND	ND	NC	70 - 130	25
1,2-dichloropropane	ND	0.500	ND	2.31	110	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorotetrafluoroethane	ND	0.500	ND	3.49	104	ND	ND	ND	ND	NC	70 - 130	25
1,3,5-Trimethylbenzene	ND	0.500	ND	2.46	115	ND	ND	ND	ND	NC	70 - 130	25
1,3-Butadiene	ND	0.500	ND	1.11	100	ND	ND	ND	ND	NC	70 - 130	25
1,3-Dichlorobenzene	ND	0.500	ND	3.00	103	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dichlorobenzene	ND	0.500	ND	3.00	104	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dioxane	ND	0.500	ND	1.80	119	ND	ND	ND	ND	NC	70 - 130	25
2-Hexanone(MBK)	ND	0.500	ND	2.05	113	ND	ND	ND	ND	NC	70 - 130	25
4-Ethyltoluene	ND	0.500	ND	2.46	114	ND	ND	ND	ND	NC	70 - 130	25
4-Isopropyltoluene	ND	0.500	ND	2.74	110	ND	ND	ND	ND	NC	70 - 130	25
4-Methyl-2-pentanone(MIBK)	ND	0.500	ND	2.05	127	7.78	9.9	1.90	2.43	NC	70 - 130	25
Acetone	ND	0.500	ND	1.19	97	145	172	61.0	72.3	17.0	70 - 130	25
Acrylonitrile	ND	0.500	ND	1.08	66	ND	ND	ND	ND	NC	70 - 130	25
Benzene	ND	0.500	ND	1.60	115	2.19	2.65	0.686	0.830	NC	70 - 130	25
Benzyl chloride	ND	0.500	ND	2.59	111	ND	ND	ND	ND	NC	70 - 130	25
Bromodichloromethane	ND	0.500	ND	3.35	105	ND	ND	ND	ND	NC	70 - 130	25
Bromoform	ND	0.500	ND	5.17	101	ND	ND	ND	ND	NC	70 - 130	25
Bromomethane	ND	0.500	ND	1.94	100	ND	ND	ND	ND	NC	70 - 130	25
Carbon Disulfide	ND	0.500	ND	1.56	112	ND	ND	ND	ND	NC	70 - 130	25
Carbon Tetrachloride	ND	0.500	ND	3.14	108	ND	ND	ND	ND	NC	70 - 130	25
Chlorobenzene	ND	0.500	ND	2.30	99	ND	ND	ND	ND	NC	70 - 130	25
Chloroethane	ND	0.500	ND	1.32	96	ND	ND	ND	ND	NC	70 - 130	25
Chloroform	ND	0.500	ND	2.44	104	ND	ND	ND	ND	NC	70 - 130	25
Chloromethane	ND	0.500	ND	1.03	99	ND	ND	ND	ND	NC	70 - 130	25
Cis-1,2-Dichloroethene	ND	0.500	ND	1.98	114	8.99	10.5	2.27	2.65	NC	70 - 130	25
cis-1,3-Dichloropropene	ND	0.500	ND	2.27	117	ND	ND	ND	ND	NC	70 - 130	25
Cyclohexane	ND	0.500	ND	1.72	118	ND	ND	ND	ND	NC	70 - 130	25
Dibromochloromethane	ND	0.500	ND	4.26	105	ND	ND	ND	ND	NC	70 - 130	25
Dichlorodifluoromethane	ND	0.500	ND	2.47	105	2.56	3.04	0.519	0.615	NC	70 - 130	25
Ethanol	ND	0.500	ND	0.94	99	288	345	153	183	17.9	70 - 130	25

QA/QC Data

SDG I.D.: GBZ84200

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
Ethyl acetate	ND	0.500	ND	1.80	122	ND	ND	ND	ND	NC	70 - 130	25
Ethylbenzene	ND	0.500	ND	2.17	118	27.1	33.8	6.24	7.78	22.0	70 - 130	25
Heptane	ND	0.500	ND	2.05	115	ND	ND	ND	ND	NC	70 - 130	25
Hexachlorobutadiene	ND	0.500	ND	5.33	90	ND	ND	ND	ND	NC	70 - 130	25
Hexane	ND	0.500	ND	1.76	126	ND	ND	ND	ND	NC	70 - 130	25
Isopropylalcohol	ND	0.500	ND	1.23	91	74.2	86.2	30.2	35.1	15.0	70 - 130	25
Isopropylbenzene	ND	0.500	ND	2.46	104	ND	ND	ND	ND	NC	70 - 130	25
m,p-Xylene	ND	1.00	ND	4.34	121	97.6	125	22.5	28.8	24.6	70 - 130	25
Methyl Ethyl Ketone	ND	0.500	ND	1.47	105	10.7	12.7	3.63	4.32	17.4	70 - 130	25
Methyl tert-butyl ether(MTBE)	ND	0.500	ND	1.80	121	ND	ND	ND	ND	NC	70 - 130	25
Methylene Chloride	ND	0.500	ND	1.74	86	ND	ND	ND	ND	NC	70 - 130	25
n-Butylbenzene	ND	0.500	ND	2.74	114	ND	ND	ND	ND	NC	70 - 130	25
o-Xylene	ND	0.500	ND	2.17	114	22.3	28.3	5.15	6.53	23.6	70 - 130	25
Propylene	ND	0.500	ND	0.86	103	ND	ND	ND	ND	NC	70 - 130	25
sec-Butylbenzene	ND	0.500	ND	2.74	106	ND	ND	ND	ND	NC	70 - 130	25
Styrene	ND	0.500	ND	2.13	117	ND	ND	ND	ND	NC	70 - 130	25
Tetrachloroethene	ND	0.500	ND	3.39	103	78.6	99.0	11.6	14.6	22.9	70 - 130	25
Tetrahydrofuran	ND	0.500	ND	1.47	117	ND	ND	ND	ND	NC	70 - 130	25
Toluene	ND	0.500	ND	1.88	119	3.37	4.18	0.896	1.11	NC	70 - 130	25
Trans-1,2-Dichloroethene	ND	0.500	ND	1.98	111	7.29	8.64	1.84	2.18	NC	70 - 130	25
trans-1,3-Dichloropropene	ND	0.500	ND	2.27	119	ND	ND	ND	ND	NC	70 - 130	25
Trichloroethene	ND	0.500	ND	2.69	110	29.2	36.9	5.43	6.87	23.4	70 - 130	25
Trichlorofluoromethane	ND	0.500	ND	2.81	109	ND	ND	ND	ND	NC	70 - 130	25
Trichlorotrifluoroethane	ND	0.500	ND	3.83	100	ND	ND	ND	ND	NC	70 - 130	25
Vinyl Chloride	ND	0.500	ND	1.28	102	ND	ND	ND	ND	NC	70 - 130	25
% Bromofluorobenzene	100		100		96	109	111	109	111	NC	70 - 130	25

QA/QC Batch 418746 (ppbv), QC Sample No: BZ83847 (BZ84200)

Volatiles

1,1,1,2-Tetrachloroethane	ND	2.50	ND	17.2	113	ND	ND	ND	ND	NC	70 - 130	25
1,1,1-Trichloroethane	ND	2.50	ND	13.6	106	ND	ND	ND	ND	NC	70 - 130	25
1,1,2,2-Tetrachloroethane	ND	2.50	ND	17.2	114	ND	ND	ND	ND	NC	70 - 130	25
1,1,2-Trichloroethane	ND	2.50	ND	13.6	111	ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethane	ND	2.50	ND	10.1	105	ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethene	ND	2.50	ND	9.9	98	ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trichlorobenzene	ND	2.50	ND	18.5	92	ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trimethylbenzene	ND	2.50	ND	12.3	107	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dibromoethane(EDB)	ND	2.50	ND	19.2	112	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorobenzene	ND	2.50	ND	15.0	111	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichloroethane	ND	2.50	ND	10.1	104	ND	ND	ND	ND	NC	70 - 130	25
1,2-dichloropropane	ND	2.50	ND	11.5	110	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorotetrafluoroethane	ND	2.50	ND	17.5	115	ND	ND	ND	ND	NC	70 - 130	25
1,3,5-Trimethylbenzene	ND	2.50	ND	12.3	111	ND	ND	ND	ND	NC	70 - 130	25
1,3-Butadiene	ND	2.50	ND	5.53	101	ND	ND	ND	ND	NC	70 - 130	25
1,3-Dichlorobenzene	ND	2.50	ND	15.0	113	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dichlorobenzene	ND	2.50	ND	15.0	114	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dioxane	ND	2.50	ND	9.00	122	ND	ND	ND	ND	NC	70 - 130	25
2-Hexanone(MBK)	ND	2.50	ND	10.2	104	ND	ND	ND	ND	NC	70 - 130	25
4-Ethyltoluene	ND	2.50	ND	12.3	110	ND	ND	ND	ND	NC	70 - 130	25
4-Isopropyltoluene	ND	2.50	ND	13.7	101	ND	ND	ND	ND	NC	70 - 130	25
4-Methyl-2-pentanone(MIBK)	ND	2.50	ND	10.2	103	ND	ND	ND	ND	NC	70 - 130	25
Acetone	ND	2.50	ND	5.93	111	1220	1230	516	519	0.6	70 - 130	25
Acrylonitrile	ND	2.50	ND	5.42	101	ND	ND	ND	ND	NC	70 - 130	25

QA/QC Data

SDG I.D.: GBZ84200

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
Benzene	ND	2.50	ND	7.98	108	ND	ND	ND	ND	NC	70 - 130	25
Benzyl chloride	ND	2.50	ND	12.9	102	ND	ND	ND	ND	NC	70 - 130	25
Bromodichloromethane	ND	2.50	ND	16.7	107	ND	ND	ND	ND	NC	70 - 130	25
Bromoform	ND	2.50	ND	25.8	133	ND	ND	ND	ND	NC	70 - 130	25
Bromomethane	ND	2.50	ND	9.7	108	ND	ND	ND	ND	NC	70 - 130	25
Carbon Disulfide	ND	2.50	ND	7.78	118	ND	ND	ND	ND	NC	70 - 130	25
Carbon Tetrachloride	ND	2.50	ND	15.7	112	ND	ND	ND	ND	NC	70 - 130	25
Chlorobenzene	ND	2.50	ND	11.5	118	ND	ND	ND	ND	NC	70 - 130	25
Chloroethane	ND	2.50	ND	6.59	100	ND	ND	ND	ND	NC	70 - 130	25
Chloroform	ND	2.50	ND	12.2	108	ND	ND	ND	ND	NC	70 - 130	25
Chloromethane	ND	2.50	ND	5.16	109	ND	ND	ND	ND	NC	70 - 130	25
cis-1,3-Dichloropropene	ND	2.50	ND	11.3	107	ND	ND	ND	ND	NC	70 - 130	25
Cyclohexane	ND	2.50	ND	8.60	100	ND	ND	ND	ND	NC	70 - 130	25
Dibromochloromethane	ND	2.50	ND	21.3	117	ND	ND	ND	ND	NC	70 - 130	25
Dichlorodifluoromethane	ND	2.50	ND	12.4	115	ND	ND	ND	ND	NC	70 - 130	25
Ethanol	ND	2.50	ND	4.71	116	130	144	68.8	76.4	10.5	70 - 130	25
Ethyl acetate	ND	2.50	ND	9.00	102	ND	ND	ND	ND	NC	70 - 130	25
Ethylbenzene	ND	2.50	ND	10.8	112	ND	ND	ND	ND	NC	70 - 130	25
Heptane	ND	2.50	ND	10.2	108	ND	ND	ND	ND	NC	70 - 130	25
Hexachlorobutadiene	ND	2.50	ND	26.6	88	ND	ND	ND	ND	NC	70 - 130	25
Hexane	ND	2.50	ND	8.81	112	ND	ND	ND	ND	NC	70 - 130	25
Isopropylalcohol	ND	2.50	ND	6.14	105	161	186	65.7	75.8	14.3	70 - 130	25
Isopropylbenzene	ND	2.50	ND	12.3	112	ND	ND	ND	ND	NC	70 - 130	25
m,p-Xylene	ND	5.00	ND	21.7	118	ND	ND	ND	ND	NC	70 - 130	25
Methyl Ethyl Ketone	ND	2.50	ND	7.37	106	12.9	13.0	4.39	4.42	NC	70 - 130	25
Methyl tert-butyl ether(MTBE)	ND	2.50	ND	9.01	117	ND	ND	ND	ND	NC	70 - 130	25
Methylene Chloride	ND	2.50	ND	8.68	102	ND	ND	ND	ND	NC	70 - 130	25
n-Butylbenzene	ND	2.50	ND	13.7	94	ND	ND	ND	ND	NC	70 - 130	25
o-Xylene	ND	2.50	ND	10.8	115	ND	ND	ND	ND	NC	70 - 130	25
Propylene	ND	2.50	ND	4.30	106	ND	ND	ND	ND	NC	70 - 130	25
sec-Butylbenzene	ND	2.50	ND	13.7	102	ND	ND	ND	ND	NC	70 - 130	25
Styrene	ND	2.50	ND	10.6	118	ND	ND	ND	ND	NC	70 - 130	25
Tetrahydrofuran	ND	2.50	ND	7.37	101	ND	ND	ND	ND	NC	70 - 130	25
Toluene	ND	2.50	ND	9.42	115	ND	ND	ND	ND	NC	70 - 130	25
Trans-1,2-Dichloroethene	ND	2.50	ND	9.9	110	12.4	12.6	3.14	3.19	NC	70 - 130	25
trans-1,3-Dichloropropene	ND	2.50	ND	11.3	106	ND	ND	ND	ND	NC	70 - 130	25
Trichlorofluoromethane	ND	2.50	ND	14.0	106	ND	ND	ND	ND	NC	70 - 130	25
Trichlorotrifluoroethane	ND	2.50	ND	19.1	107	ND	ND	ND	ND	NC	70 - 130	25
Vinyl Chloride	ND	2.50	ND	6.39	105	ND	ND	ND	ND	NC	70 - 130	25
% Bromofluorobenzene	126		126		103	99	102	99	102	NC	70 - 130	25

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis Shiller, Laboratory Director

February 07, 2018

Wednesday, February 07, 2018

Criteria: None

State: NY

Sample Criteria Exceedances Report

GBZ84200 - ENVIROTR

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Analysis Units
*** No Data to Display ***								

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

February 07, 2018

SDG I.D.: GBZ84200

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report:

AIRSIM

CHEM20 02/05/18-1: BZ84200, BZ84201

The following Initial Calibration compounds did not meet RSD% criteria: Ethyl acetate 88% (30%)

The following Initial Calibration compounds did not meet maximum RSD% criteria: Ethyl acetate 88% (30%)

Appendix C
Water Sample
Laboratory Analytical Results

American Analytical Laboratories, LLC.
56 Toledo Street
Farmingdale, New York 11735
TEL: (631) 454-6100 FAX: (631) 454-8027
Website: www.American-Analytical.com

January 19, 2018

Jim Wilkinson
Envirotrac
5 Old Dock Road
Yaphank, NY 11980
TEL: (631) 924-3001
FAX (631) 924-5001

RE: Frost Street, 101 Frost St, Westbury, NY Order No.: 1801058

Dear Jim Wilkinson:

American Analytical Laboratories, LLC. received 1 sample(s) on 1/17/2018 for the analyses presented in the following report.

Samples were analyzed in accordance with the test procedures documented on the chain of custody and detailed throughout the text of this report. The results reported herein relate only to the items tested or to the samples as received by the laboratory. This report may not be reproduced, except in full, without the approval of American Analytical Laboratories, LLC and is not considered complete without a cover page and chain of custody documentation. The limits (LOQ) provided in the data package are analytical reporting limits and not Federal or Local mandated values to which the sample results should be compared.

There were no problems with the analyses and all data for associated QC met laboratory specifications. If there are any exceptions a Case Narrative is provided in the report or the data is qualified either on the sample results or in the QC section of the report. This package has been reviewed by American Analytical Laboratories' QA Department/Laboratory Director to comply with NELAC standards prior to report submittal.

If you have any questions regarding these tests results, please do not hesitate to call (631) 454-6100 or email me directly at lbeyer@american-analytical.com.

Sincerely,

Tom Bleyer

Lori Beyer
Lab Director
American Analytical Laboratories, LLC.

American Analytical Laboratories, LLC.
56 Toledo Street
Farmingdale, New York 11735
TEL: (631) 454-6100 FAX: (631) 454-8027
Website: www.American-Analytical.com

Workorder
Sample Summary
WO#: **1801058**
19-Jan-18

CLIENT: Envirotrac
Project: Frost Street, 101 Frost St, Westbury, NY

Lab SampleID	Client Sample ID	Tag No	Date Collected	Date Received	Matrix
1801058-001A	Discharge Water		1/17/2018 1:00:00 PM	1/17/2018 2:15:00 PM	Liquid

Original

CHAIN OF CUSTODY

56 Toledo Street, Farmingdale NY 11735
(T) 631-454-6100 (F) 631-454-8027
www.american-analytical.com

CERTIFICATIONS

NY ELAP - 11418 PA DEP - 68-00573
NJ DEP - NY050 CT DOH - PH-0205

Client Information

Client Information		Project Information										Analytical Test / Information																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
Company Name	EnviroTrace LTD.	Project Name	Frost Street									NY ELAP - 11418 PA DEP - 68-00573																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
Address	5 Old Dock Road	Street	101 Frost Street									NJ DEP - NY050 CT DOH - PH-0205																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
City	Yaphank	State	NY	Zip	City	Westport	State	CT	Zip																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
Project Contact	Jim Wilson																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
Phone #	631-924-3001	Project # / Purchase Order #																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
E-mail	JamesW@envirotrace.com	Sampler's Name / Company									Josh Lewin / ETO																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
LAB	Sample Information										Sample Collection		Sample Containers																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
SAMPLE #	Client Sample ID	Sample Type	Matrix Code	Date	Time	Glass / Plastic	Total # of bottles	UNO	HCl	NaOH	NaCl	NaOAc	NaNO ₂	Na ₂ CO ₃	Na ₂ SO ₄	Na ₃ PO ₄	Na ₂ SiO ₃	Na ₂ EDTA	Na ₂ CrO ₄	Na ₂ SO ₃	Na ₂ SeO ₃	Na ₂ SeO ₄	Na ₂ SeO ₅	Na ₂ SeO ₇	Na ₂ SeO ₈	Na ₂ SeO ₉	Na ₂ SeO ₁₀	Na ₂ SeO ₁₁	Na ₂ SeO ₁₂	Na ₂ SeO ₁₃	Na ₂ SeO ₁₄	Na ₂ SeO ₁₅	Na ₂ SeO ₁₆	Na ₂ SeO ₁₇	Na ₂ SeO ₁₈	Na ₂ SeO ₁₉	Na ₂ SeO ₂₀	Na ₂ SeO ₂₁	Na ₂ SeO ₂₂	Na ₂ SeO ₂₃	Na ₂ SeO ₂₄	Na ₂ SeO ₂₅	Na ₂ SeO ₂₆	Na ₂ SeO ₂₇	Na ₂ SeO ₂₈	Na ₂ SeO ₂₉	Na ₂ SeO ₃₀	Na ₂ SeO ₃₁	Na ₂ SeO ₃₂	Na ₂ SeO ₃₃	Na ₂ SeO ₃₄	Na ₂ SeO ₃₅	Na ₂ SeO ₃₆	Na ₂ SeO ₃₇	Na ₂ SeO ₃₈	Na ₂ SeO ₃₉	Na ₂ SeO ₄₀	Na ₂ SeO ₄₁	Na ₂ SeO ₄₂	Na ₂ SeO ₄₃	Na ₂ SeO ₄₄	Na ₂ SeO ₄₅	Na ₂ SeO ₄₆	Na ₂ SeO ₄₇	Na ₂ SeO ₄₈	Na ₂ SeO ₄₉	Na ₂ SeO ₅₀	Na ₂ SeO ₅₁	Na ₂ SeO ₅₂	Na ₂ SeO ₅₃	Na ₂ SeO ₅₄	Na ₂ SeO ₅₅	Na ₂ SeO ₅₆	Na ₂ SeO ₅₇	Na ₂ SeO ₅₈	Na ₂ SeO ₅₉	Na ₂ SeO ₆₀	Na ₂ SeO ₆₁	Na ₂ SeO ₆₂	Na ₂ SeO ₆₃	Na ₂ SeO ₆₄	Na ₂ SeO ₆₅	Na ₂ SeO ₆₆	Na ₂ SeO ₆₇	Na ₂ SeO ₆₈	Na ₂ SeO ₆₉	Na ₂ SeO ₇₀	Na ₂ SeO ₇₁	Na ₂ SeO ₇₂	Na ₂ SeO ₇₃	Na ₂ SeO ₇₄	Na ₂ SeO ₇₅	Na ₂ SeO ₇₆	Na ₂ SeO ₇₇	Na ₂ SeO ₇₈	Na ₂ SeO ₇₉	Na ₂ SeO ₈₀	Na ₂ SeO ₈₁	Na ₂ SeO ₈₂	Na ₂ SeO ₈₃	Na ₂ SeO ₈₄	Na ₂ SeO ₈₅	Na ₂ SeO ₈₆	Na ₂ SeO ₈₇	Na ₂ SeO ₈₈	Na ₂ SeO ₈₉	Na ₂ SeO ₉₀	Na ₂ SeO ₉₁	Na ₂ SeO ₉₂	Na ₂ SeO ₉₃	Na ₂ SeO ₉₄	Na ₂ SeO ₉₅	Na ₂ SeO ₉₆	Na ₂ SeO ₉₇	Na ₂ SeO ₉₈	Na ₂ SeO ₉₉	Na ₂ SeO ₁₀₀	Na ₂ SeO ₁₀₁	Na ₂ SeO ₁₀₂	Na ₂ SeO ₁₀₃	Na ₂ SeO ₁₀₄	Na ₂ SeO ₁₀₅	Na ₂ SeO ₁₀₆	Na ₂ SeO ₁₀₇	Na ₂ SeO ₁₀₈	Na ₂ SeO ₁₀₉	Na ₂ SeO ₁₁₀	Na ₂ SeO ₁₁₁	Na ₂ SeO ₁₁₂	Na ₂ SeO ₁₁₃	Na ₂ SeO ₁₁₄	Na ₂ SeO ₁₁₅	Na ₂ SeO ₁₁₆	Na ₂ SeO ₁₁₇	Na ₂ SeO ₁₁₈	Na ₂ SeO ₁₁₉	Na ₂ SeO ₁₂₀	Na ₂ SeO ₁₂₁	Na ₂ SeO ₁₂₂	Na ₂ SeO ₁₂₃	Na ₂ SeO ₁₂₄	Na ₂ SeO ₁₂₅	Na ₂ SeO ₁₂₆	Na ₂ SeO ₁₂₇	Na ₂ SeO ₁₂₈	Na ₂ SeO ₁₂₉	Na ₂ SeO ₁₃₀	Na ₂ SeO ₁₃₁	Na ₂ SeO ₁₃₂	Na ₂ SeO ₁₃₃	Na ₂ SeO ₁₃₄	Na ₂ SeO ₁₃₅	Na ₂ SeO ₁₃₆	Na ₂ SeO ₁₃₇	Na ₂ SeO ₁₃₈	Na ₂ SeO ₁₃₉	Na ₂ SeO ₁₄₀	Na ₂ SeO ₁₄₁	Na ₂ SeO ₁₄₂	Na ₂ SeO ₁₄₃	Na ₂ SeO ₁₄₄	Na ₂ SeO ₁₄₅	Na ₂ SeO ₁₄₆	Na ₂ SeO ₁₄₇	Na ₂ SeO ₁₄₈	Na ₂ SeO ₁₄₉	Na ₂ SeO ₁₅₀	Na ₂ SeO ₁₅₁	Na ₂ SeO ₁₅₂	Na ₂ SeO ₁₅₃	Na ₂ SeO ₁₅₄	Na ₂ SeO ₁₅₅	Na ₂ SeO ₁₅₆	Na ₂ SeO ₁₅₇	Na ₂ SeO ₁₅₈	Na ₂ SeO ₁₅₉	Na ₂ SeO ₁₆₀	Na ₂ SeO ₁₆₁	Na ₂ SeO ₁₆₂	Na ₂ SeO ₁₆₃	Na ₂ SeO ₁₆₄	Na ₂ SeO ₁₆₅	Na ₂ SeO ₁₆₆	Na ₂ SeO ₁₆₇	Na ₂ SeO ₁₆₈	Na ₂ SeO ₁₆₉	Na ₂ SeO ₁₇₀	Na ₂ SeO ₁₇₁	Na ₂ SeO ₁₇₂	Na ₂ SeO ₁₇₃	Na ₂ SeO ₁₇₄	Na ₂ SeO ₁₇₅	Na ₂ SeO ₁₇₆	Na ₂ SeO ₁₇₇	Na ₂ SeO ₁₇₈	Na ₂ SeO ₁₇₉	Na ₂ SeO ₁₈₀	Na ₂ SeO ₁₈₁	Na ₂ SeO ₁₈₂	Na ₂ SeO ₁₈₃	Na ₂ SeO ₁₈₄	Na ₂ SeO ₁₈₅	Na ₂ SeO ₁₈₆	Na ₂ SeO ₁₈₇	Na ₂ SeO ₁₈₈	Na ₂ SeO ₁₈₉	Na ₂ SeO ₁₉₀	Na ₂ SeO ₁₉₁	Na ₂ SeO ₁₉₂	Na ₂ SeO ₁₉₃	Na ₂ SeO ₁₉₄	Na ₂ SeO ₁₉₅	Na ₂ SeO ₁₉₆	Na ₂ SeO ₁₉₇	Na ₂ SeO ₁₉₈	Na ₂ SeO ₁₉₉	Na ₂ SeO ₂₀₀	Na ₂ SeO ₂₀₁	Na ₂ SeO ₂₀₂	Na ₂ SeO ₂₀₃	Na ₂ SeO ₂₀₄	Na ₂ SeO ₂₀₅	Na ₂ SeO ₂₀₆	Na ₂ SeO ₂₀₇	Na ₂ SeO ₂₀₈	Na ₂ SeO ₂₀₉	Na ₂ SeO ₂₁₀	Na ₂ SeO ₂₁₁	Na ₂ SeO ₂₁₂	Na ₂ SeO ₂₁₃	Na ₂ SeO ₂₁₄	Na ₂ SeO ₂₁₅	Na ₂ SeO ₂₁₆	Na ₂ SeO ₂₁₇	Na ₂ SeO ₂₁₈	Na ₂ SeO ₂₁₉	Na ₂ SeO ₂₂₀	Na ₂ SeO ₂₂₁	Na ₂ SeO ₂₂₂	Na ₂ SeO ₂₂₃	Na ₂ SeO ₂₂₄	Na ₂ SeO ₂₂₅	Na ₂ SeO ₂₂₆	Na ₂ SeO ₂₂₇	Na ₂ SeO ₂₂₈	Na ₂ SeO ₂₂₉	Na ₂ SeO ₂₃₀	Na ₂ SeO ₂₃₁	Na ₂ SeO ₂₃₂	Na ₂ SeO ₂₃₃	Na ₂ SeO ₂₃₄	Na ₂ SeO ₂₃₅	Na ₂ SeO ₂₃₆	Na ₂ SeO ₂₃₇	Na ₂ SeO ₂₃₈	Na ₂ SeO ₂₃₉	Na ₂ SeO ₂₄₀	Na ₂ SeO ₂₄₁	Na ₂ SeO ₂₄₂	Na ₂ SeO ₂₄₃	Na ₂ SeO ₂₄₄	Na ₂ SeO ₂₄₅	Na ₂ SeO ₂₄₆	Na ₂ SeO ₂₄₇	Na ₂ SeO ₂₄₈	Na ₂ SeO ₂₄₉	Na ₂ SeO ₂₅₀	Na ₂ SeO ₂₅₁	Na ₂ SeO ₂₅₂	Na ₂ SeO ₂₅₃	Na ₂ SeO ₂₅₄	Na ₂ SeO ₂₅₅	Na ₂ SeO ₂₅₆	Na ₂ SeO ₂₅₇	Na ₂ SeO ₂₅₈	Na ₂ SeO ₂₅₉	Na ₂ SeO ₂₆₀	Na ₂ SeO ₂₆₁	Na ₂ SeO ₂₆₂	Na ₂ SeO ₂₆₃	Na ₂ SeO ₂₆₄	Na ₂ SeO ₂₆₅	Na ₂ SeO ₂₆₆	Na ₂ SeO ₂₆₇	Na ₂ SeO ₂₆₈	Na ₂ SeO ₂₆₉	Na ₂ SeO ₂₇₀	Na ₂ SeO ₂₇₁	Na ₂ SeO ₂₇₂	Na ₂ SeO ₂₇₃	Na ₂ SeO ₂₇₄	Na ₂ SeO ₂₇₅	Na ₂ SeO ₂₇₆	Na ₂ SeO ₂₇₇	Na ₂ SeO ₂₇₈	Na ₂ SeO ₂₇₉	Na ₂ SeO ₂₈₀	Na ₂ SeO ₂₈₁	Na ₂ SeO ₂₈₂	Na ₂ SeO ₂₈₃	Na ₂ SeO ₂₈₄	Na ₂ SeO ₂₈₅	Na ₂ SeO ₂₈₆	Na ₂ SeO ₂₈₇	Na ₂ SeO ₂₈₈	Na ₂ SeO ₂₈₉	Na ₂ SeO ₂₉₀	Na ₂ SeO ₂₉₁	Na ₂ SeO ₂₉₂	Na ₂ SeO ₂₉₃	Na ₂ SeO ₂₉₄	Na ₂ SeO ₂₉₅	Na ₂ SeO ₂₉₆	Na ₂ SeO ₂₉₇	Na ₂ SeO ₂₉₈	Na ₂ SeO ₂₉₉	Na ₂ SeO ₃₀₀	Na ₂ SeO ₃₀₁	Na ₂ SeO ₃₀₂	Na ₂ SeO ₃₀₃	Na ₂ SeO ₃₀₄	Na ₂ SeO ₃₀₅	Na ₂ SeO ₃₀₆	Na ₂ SeO ₃₀₇	Na ₂ SeO ₃₀₈	Na ₂ SeO ₃₀₉	Na ₂ SeO ₃₁₀	Na ₂ SeO ₃₁₁	Na ₂ SeO ₃₁₂	Na ₂ SeO ₃₁₃	Na ₂ SeO ₃₁₄	Na ₂ SeO ₃₁₅	Na ₂ SeO ₃₁₆	Na ₂ SeO ₃₁₇	Na ₂ SeO ₃₁₈	Na ₂ SeO ₃₁₉	Na ₂ SeO ₃₂₀	Na ₂ SeO ₃₂₁	Na ₂ SeO ₃₂₂	Na ₂ SeO ₃₂₃	Na ₂ SeO ₃₂₄	Na ₂ SeO ₃₂₅	Na ₂ SeO ₃₂₆	Na ₂ SeO ₃₂₇	Na ₂ SeO ₃₂₈	Na ₂ SeO ₃₂₉	Na ₂ SeO ₃₃₀	Na ₂ SeO ₃₃₁	Na ₂ SeO ₃₃₂	Na ₂ SeO ₃₃₃	Na ₂ SeO ₃₃₄	Na ₂ SeO ₃₃₅	Na ₂ SeO ₃₃₆	Na ₂ SeO ₃₃₇	Na ₂ SeO ₃₃₈	Na ₂ SeO ₃₃₉	Na ₂ SeO ₃₄₀	Na ₂ SeO ₃₄₁	Na ₂ SeO ₃₄₂	Na ₂ SeO ₃₄₃	Na ₂ SeO ₃₄₄	Na ₂ SeO ₃₄₅	Na ₂ SeO ₃₄₆	Na ₂ SeO ₃₄₇	Na ₂ SeO ₃₄₈	Na ₂ SeO ₃₄₉	Na ₂ SeO ₃₅₀	Na ₂ SeO ₃₅₁	Na ₂ SeO ₃₅₂	Na ₂ SeO ₃₅₃	Na ₂ SeO ₃₅₄	Na ₂ SeO ₃₅₅	Na ₂ SeO ₃₅₆	Na ₂ SeO ₃₅₇	Na ₂ SeO ₃₅₈	Na ₂ SeO ₃₅₉	Na ₂ SeO ₃₆₀	Na ₂ SeO ₃₆₁	Na ₂ SeO ₃₆₂	Na ₂ SeO ₃₆₃	Na ₂ SeO ₃₆₄	Na ₂ SeO ₃₆₅	Na ₂ SeO ₃₆₆	Na ₂ SeO ₃₆₇	Na ₂ SeO ₃₆₈	Na ₂ SeO ₃₆₉	Na ₂ SeO ₃₇₀	Na ₂ SeO ₃₇₁	Na ₂ SeO ₃₇₂	Na ₂ SeO ₃₇₃	Na ₂ SeO ₃₇₄	Na ₂ SeO ₃₇₅	Na ₂ SeO ₃₇₆	Na ₂ SeO ₃₇₇	Na ₂ SeO ₃₇₈	Na ₂ SeO ₃₇₉	Na ₂ SeO ₃₈₀	Na ₂ SeO ₃₈₁	Na ₂ SeO ₃₈₂	Na ₂ SeO ₃₈₃	Na ₂ SeO ₃₈₄	Na ₂ SeO ₃₈₅	Na ₂ SeO ₃₈₆	Na ₂ SeO ₃₈₇	Na ₂ SeO ₃₈₈	Na ₂ SeO ₃₈₉	Na ₂ SeO ₃₉₀	Na ₂ SeO ₃₉₁	Na ₂ SeO ₃₉₂	Na ₂ SeO ₃₉₃	Na ₂ SeO ₃₉₄	Na ₂ SeO ₃₉₅	Na ₂ SeO ₃₉₆	Na ₂ SeO ₃₉₇	Na ₂ SeO ₃₉₈	Na ₂ SeO ₃₉₉	Na ₂ SeO ₄₀₀	Na ₂ SeO ₄₀₁	Na ₂ SeO ₄₀₂	Na ₂ SeO ₄₀₃	Na ₂ SeO ₄₀₄	Na ₂ SeO ₄₀₅	Na ₂ SeO ₄₀₆	Na ₂ SeO ₄₀₇	Na ₂ SeO ₄₀₈	Na ₂ SeO ₄₀₉	Na ₂ SeO ₄₁₀	Na ₂ SeO ₄₁₁	Na ₂ SeO ₄₁₂	Na ₂ SeO ₄₁₃	Na ₂ SeO ₄₁₄	Na ₂ SeO ₄₁₅	Na ₂ SeO ₄₁₆	Na ₂ SeO ₄₁₇	Na ₂ SeO ₄₁₈	Na ₂ SeO ₄₁₉	Na ₂ SeO ₄₂₀	Na ₂ SeO ₄₂₁	Na ₂ SeO ₄₂₂	Na ₂ SeO ₄₂₃	Na ₂ SeO ₄₂₄	Na ₂ SeO ₄₂₅	Na ₂ SeO ₄₂₆	Na ₂ SeO ₄₂₇	Na ₂ SeO ₄₂₈	Na ₂ SeO ₄₂₉	Na ₂ SeO ₄₃₀	Na ₂ SeO ₄₃₁	Na ₂ SeO ₄₃₂	Na ₂ SeO ₄₃₃	Na ₂ SeO ₄₃₄	Na ₂ SeO ₄₃₅	Na ₂ SeO ₄₃₆	Na ₂ SeO ₄₃₇	Na ₂ SeO ₄₃₈	Na ₂ SeO ₄₃₉	Na ₂ SeO ₄₄₀	Na ₂ SeO ₄₄₁	Na ₂ SeO ₄₄₂	Na ₂ SeO ₄₄₃	Na ₂ SeO ₄₄₄	Na ₂ SeO ₄₄₅	Na ₂ SeO ₄₄₆	Na ₂ SeO ₄₄₇	Na ₂ SeO ₄₄₈	Na ₂ SeO ₄₄₉	Na ₂ SeO ₄₅₀	Na ₂ SeO ₄₅₁	Na ₂ SeO ₄₅₂	Na ₂ SeO ₄₅₃	Na ₂ SeO ₄₅₄	Na ₂ SeO ₄₅₅	Na ₂ SeO ₄₅₆	Na ₂ SeO

American Analytical Laboratories, LLC.
56 Toledo Street
Farmingdale, New York 11735
TEL: (631) 454-6100 FAX: (631) 454-8027
Website: www.American-Analytical.com

Sample Log-In Check List

Client Name: **ENVIROTRAC** Work Order Number: **1801058** RcptNo: **1**

Logged by: Lori Beyer	1/17/2018 2:15:00 PM	
Completed By: Lori Beyer	1/17/2018 2:38:27 PM	
Reviewed By: Karen Kelly	1/17/2018	

Chain of Custody

1. Is Chain of Custody complete? Yes No Not Present
2. How was the sample delivered? Client

Log In

3. Coolers are present? Yes No NA
4. Shipping container/cooler in good condition? Yes No
Custody seals intact on shipping container/cooler? Yes No Not Present
No. **Seal Date:** **Signed By:**
5. Was an attempt made to cool the samples? Yes No NA
6. Were all samples received at a temperature of >0° C to 6.0°C Yes No NA
7. Sample(s) in proper container(s)? Yes No
8. Sufficient sample volume for indicated test(s)? Yes No
9. Are samples (except VOA and ONG) properly preserved? Yes No
10. Was preservative added to bottles? Yes No NA
11. Is the headspace in the VOA vials less than 1/4 inch or 6 mm? Yes No No VOA Vials
12. Were any sample containers received broken? Yes No
13. Does paperwork match bottle labels?
(Note discrepancies on chain of custody) Yes No
14. Are matrices correctly identified on Chain of Custody? Yes No
15. Is it clear what analyses were requested? Yes No
16. Were all holding times able to be met?
(If no, notify customer for authorization.) Yes No

Special Handling (if applicable)

17. Was client notified of all discrepancies with this order? Yes No NA

Person Notified:	<input type="text"/>	Date	<input type="text"/>
By Whom:	<input type="text"/>	Via:	<input type="checkbox"/> eMail <input type="checkbox"/> Phone <input type="checkbox"/> Fax <input type="checkbox"/> In Person
Regarding:	<input type="text"/>		
Client Instructions:	<input type="text"/>		

18. Additional remarks:

Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
-----------	---------	-----------	-------------	---------	-----------	-----------

American Analytical Laboratories, LLC.
56 Toledo Street
Farmingdale, New York 11735
TEL: (631) 454-6100 FAX: (631) 454-8027
Website: www.American-Analytical.com

Case Narrative

WO#: 1801058
Date: 1/19/2018

CLIENT: Envirotrac
Project: Frost Street, 101 Frost St, Westbury, NY

Sample Discharge Water was analyzed using EPA Method 624.

Volatile LCS are analyzed with preservatives - HCL/NaHSO4/Methanol depending on level of analysis (high/low) similar to sample analysis. Outliers can be attributed to the presence of chemical preservatives. 2-Chloroethyl vinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

The test results meet the requirements of the NYSDOH and NELAC standards, except where noted. The information contained in this analytical report is the sole property of American Analytical Laboratories, LLC. or the client for which this report was issued. The results contained in this report are only representative of the samples received. The sample receipt checklist is included as part of this lab report. Conditions can vary at different times and at different sampling conditions. American Analytical is not responsible for the use or interpretation of the data included herein.

Original

American Analytical Laboratories, LLC.
56 Toledo Street
Farmingdale, New York 11735
TEL: (631) 454-6100 FAX: (631) 454-8027
Website: www.American-Analytical.com

Definition Only

WO#: 1801058
Date: 1/19/2018

Definitions:

Sample Result and QC Summary Qualifiers - Level I and Level II Reports

ND - Not detected at the reporting limit/Limit of Quantitation

B - The analyte was detected in the associated method blank. For volatiles, methylene chloride and acetone are common lab contaminants. Data users should consider anything <5x the blank value as artifact.

E - The value is above the quantitation range

D - Analyte concentration was obtained from diluted analysis or from analysis using reduced sample volume.

J - The analyte was detected below the limit of quantitation but greater than the established Limit of Detection (LOD). There is greater uncertainty associated with these results and data should be considered as estimated.

U - The compound was analyzed for but not detected.

H - Holding time for preparation or analysis has been exceeded.

S - Spike recovery is outside accepted recovery limits.

R - RPD is outside accepted recovery range.

P - Secondary column exceeds 40% difference for GC test.

* - Calibration exceeds method requirement. Due to the large number of analytes for organic testing, the method allows 10% of analytes to have %RSD and/or %D to be >20%.

LOD - Limit of Detection; the lowest level the analyte can be determined to be statistically different from a blank.

LOQ - Limit of Quantitation; the lowest amount of analyte in a sample that can be quantitatively determined with suitable precision and accuracy.

PQL - Practical Quantitation Limit; the lowest level that can be reliably achieved within the specific limits of Precision and accuracy. Listed on the QC Summary Forms.

m - Analyte was manually integrated for GC/MS.

+ - Concentration exceeds regulatory level for TCLP

Original

American Analytical Laboratories, LLC.**Date: 19-Jan-18****ELAP ID : 11418**

CLIENT: Envirotrac
Lab Order: 1801058
Project: Frost Street, 101 Frost St, Westbury, NY
Lab ID: 1801058-001A

Client Sample ID: Discharge Water
Collection Date: 1/17/2018 1:00:00 PM
Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOLATILE EPA METHOD 624							
				E624	E624		Analyst: LA
1,1,1-Trichloroethane	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
1,1,2,2-Tetrachloroethane	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
1,1,2-Trichloroethane	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
1,1-Dichloroethane	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
1,1-Dichloroethene	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
1,2-Dichlorobenzene	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
1,2-Dichloroethane	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
1,2-Dichloropropane	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
1,3-Dichlorobenzene	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
1,4-Dichlorobenzene	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
2-Chloroethyl vinyl ether	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
Benzene	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
Bromodichloromethane	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
Bromoform	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
Bromomethane	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
Carbon tetrachloride	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
Chlorobenzene	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
Chloroethane	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
Chloroform	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
Chloromethane	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
cis-1,3-Dichloropropene	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
Dibromochloromethane	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
Ethylbenzene	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
Methylene chloride	ND	5.0	5.0	U	µg/L	1	1/18/2018 7:11:00 PM
Tetrachloroethene	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
Toluene	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
trans-1,2-Dichloroethene	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
trans-1,3-Dichloropropene	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
Trichloroethene	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
Trichlorofluoromethane	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
Vinyl chloride	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
Xylenes, Total	ND	0.60	6.0	U	µg/L	1	1/18/2018 7:11:00 PM
Acetone	ND	5.0	5.0	U	µg/L	1	1/18/2018 7:11:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, New York, Zip - 11735

Tel - (631) 454-6100 Fax - (631) 454-8027 www.american-analytical.com

Original

American Analytical Laboratories, LLC.

Date: 19-Jan-18

ELAP ID : 11418

CLIENT: Envirotrac
Lab Order: 1801058
Project: Frost Street, 101 Frost St, Westbury, NY
Lab ID: 1801058-001A

Client Sample ID: Discharge Water
Collection Date: 1/17/2018 1:00:00 PM
Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOLATILE EPA METHOD 624							
				E624		E624	
m,p-Xylene	ND	0.40	4.0	U	µg/L	1	1/18/2018 7:11:00 PM
Methyl tert-butyl ether	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM
o-Xylene	ND	0.20	2.0	U	µg/L	1	1/18/2018 7:11:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, New York, Zip - 11735
Tel - (631) 454-6100 Fax - (631) 454-8027 www.american-analytical.com

Original

Appendix D
Daily Reports

Frost Street Sites
Groundwater Extraction Hydraulic Containment
Daily Summary
Tuesday, January 2, 2018

- Summit Drilling mobilized to the site to begin sediment removal.
 - Sediment was removed until hard bottom was measured in wells EX-1A and EX-1B as shown below.

Well	Design	Depth to Bottom			
		After Redevelopment October 2017	Inspection November 2017	Prior to Removal January 2018	After Removal January 2018
EX-1A	110	107.75	106.50	106.05	108.35
EX-1B	160	157.49	157.13	156.52	158.30

EX-1B sediment

Frost Street Sites
Groundwater Extraction Hydraulic Containment
Daily Summary
Wednesday, January 3, 2018

- Summit Drilling continued sediment removal.
 - Sediment was removed until hard bottom was measured in wells FSMW-8C, 8D, and 19C as shown below.

Well	Design	Depth to Bottom			
		After Redevelopment October 2017	Inspection November 2017	Prior to Removal January 2018	After Removal January 2018
FSMW-8C	182	Not measured	177.00	177.00	183.45
FSMW-8D	235	Not measured	227.25	228.90	235.90
FSMW-19C	182	Not measured	180.18	179.85	182.76

Frost Street Sites
Groundwater Extraction Hydraulic Containment
Daily Summary
Friday, January 12, 2018

Envirotrac mobilized to the site to hang the pumps in the two shallow extraction wells, EX-1A and EX-1B.

Appendix E
Revised Schedule

ID	Task Name	Duration	Start	Finish	Predecessors	Feb 11, 2018	Mar 18, 2018	Apr 22, 2018	May 27, 2018	Jul 1, 2018	Aug 5, 2018	Sep 9, 2018	Oct 14, 2018	Nov 1, 2018				
						F	S	S	M	T	W	T	F	S	S	M	T	W
1	1 Resolution of Pumping Test Scope	1 day	Thu 3/1/18	Thu 3/1/18														
2	2 Post-Construction Performance Monitoring and Optimization	93 days	Fri 3/2/18	Tue 7/10/18														
3	2.1 Field Preparation	3 wks	Fri 3/2/18	Thu 3/22/18	1													
4	2.2 Temporary System Startup and Testing	2 days	Fri 3/23/18	Mon 3/26/18	3													
5	2.3 Pumping Test	7 wks	Tue 3/27/18	Mon 5/14/18	4													
6	2.4 Develop and Submit Letter Report to NYSDEC	4 wks	Tue 5/15/18	Mon 6/11/18	5													
7	2.5 NYSDEC Review and Approval of Letter Report and Proposed Pumping Rates	2 wks	Tue 6/12/18	Mon 6/25/18	6													
8	2.6 Procure and Install EX-1C and/or EX-1D Pumps (If Required)	2 wks	Tue 6/26/18	Mon 7/9/18	7													
9	2.7 Full System Startup	1 day	Tue 7/10/18	Tue 7/10/18	8													
10	3 Final Engineering Report	40 days	Wed 7/11/18	Tue 9/4/18	9													
11	3.1 Develop FER	8 wks	Wed 7/11/18	Tue 9/4/18	9													
12	3.2 Submit FER to NYSDEC	0 days	Tue 9/4/18	Tue 9/4/18	11													
13	4 Site Management Plan	40 days	Wed 7/11/18	Tue 9/4/18	9													
14	4.1 Develop SMP	8 wks	Wed 7/11/18	Tue 9/4/18	9													
15	4.2 Submit SMP to NYSDEC	0 days	Tue 9/4/18	Tue 9/4/18	14													
16	5 Environmental Easement	40 days	Wed 7/11/18	Tue 9/4/18	9													
17	5.1 Develop Environmental Easement	8 wks	Wed 7/11/18	Tue 9/4/18	9													
18	5.2 Submit Environmental Easement to NYSDEC	0 days	Tue 9/4/18	Tue 9/4/18	17													

Schedule

February 2018

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress