

MULTISITE REVIEW NEW CASSEL INDUSTRIAL AREA

Sites No. 130043 and 330043A, B, C, D, E, F, G, H, I, K, L, M, N, P, S, U and V

MULTISITE REVIEW NEW CASSEL INDUSTRIAL AREA OBJECTIVES

- Determine the approach for completion of the Soil Vapor Intrusion Investigations for the seven Soil Vapor Intrusion Legacy Sites within the New Cassel Industrial Area
- Determine what is needed to achieve reclassification for the Legacy Sites and several other sites. Actions needed may include finishing SVI investigations, obtaining Environmental Easements and obtaining PRR reports
- Determining the need for further EC investigations

New Cassel Industrial Area Composite Site Site 130043

The NCIA is located in an urban and industrial area with level topography and is bounded to the north by a residential area and to the south be commercial and institutional establishments along Old Country Road. The site encompasses approximately 170 acres of land.

NEW CASSEL INDUSTRIAL AREA Geology and Hydrology

- UNSATURATED AND SATURATED ZONES CONSIST OF STRATIFIED SAND AND GRAVEL WITH SOME SILT AND CLAY LENSES
- GROUNDWATER ABOUT 65 FT BGS
- GROUNDWATER FLOW PREDOMINANTLY SSW

Department of Environmental Conservation

COMPOSITE SITE HISTORY SITE 130043

- The New Cassel Industrial Area was listed on the Registry in 1988 as a Class 2 site due to the presence of high levels of VOCs in groundwater
- In 1995, based on a Site Investigation Report by LMS, the entire NCIA was removed from the registry and replaced by seven individual sites. The number if individual sites would eventually reach 17. Thirteen sites eventually became Class 2.

COMPOSITE SITE HISTORY' SITE 130043

- In 2000 thru 2002, a Remedial Investigation was conducted for Off-Site Groundwater migrating from the NCIA
- Water supply wells for the Bowling Green Water District lie directly downgradient from the NCIA

COMPOSITE SITE HISTORY SITE 130043

- In 2003 a ROD was issued for Off-Site Groundwater South of the New Cassel Industrial Area Sites.
- The ROD specified full plume remediation
- The ROD has not, as of this time, been implemented.
 Responsibility for Off-Site Groundwater Remediation at the NCIA has been transferred to the EPA.
- Currently, 8 individual sites remain as Class 2 sites

SVI LEGACY SITES Sites 130043 A, B, C, F, K, N and V

- In 2007, 7 Sites were designated as SVI legacy sites. These were sites 130043A, B, C, F, K, N and V.
- Remedial parties were approached to carry out investigations, and none of them elected to do so.
- In 2008 DEC's consultant (CD&M) conducted an SVI investigation at these sites. This investigation sampled soil vapor at the site peripheries, and also provided for Groundwater sampling at each site.

nt of intal on

SVI LEGACY SITES CONTINUED

- In 2010 the DEC's consultant (MACTEC) conducted further SVI investigations at the legacy sites. This investigation provided indoor air and subslab sampling at each site. Additionally, soil borings were conducted at the 130043V site.
- The report for this investigation was completed in 2011.
- The 2008 and 2011 reports were not deemed sufficient as a basis for closing the SVI investigations.

• IMC MAGNETICS SITE 130043A

- Current Class 2 Site.
- Soil and Groundwater Remedial Investigations were completed in 1997 and 1999 respectively. The Remedial Investigations found VOC contamination in soils near the NW corner of the property and in On-Site Groundwater.
- In 1998 an OU-1 On-Site Soils ROD was issued. The Seclected Remedy was Air Sparging applied to an area near the NW corner of the property.

• IMC MAGNETICS CONTINUED Site 130043A

- In 2000, an OU 2 On Site Groundwater ROD was issued. The selected remedy was In-Situ Oxidation, applied in an area near the NW corner of the Property.
- The selected remedies in the On-Site Soils and On-Site Groundwater RODS were implemented in 1999 and 2001 respectively.

IMC MAGNETICS CONTINUED Site 130043A

- A Vapor Intrusion Investigation Report for the Site (and the other legacy sites) was completed in 2008. This investigation sampled locations on the site periphery.
- PCE in concentrations as high as 224,000 ppb was found at 45 ft bgs in the NW corner of the site.
- Groundwater samples taken in the same area showed 14ppb total VOCs. (Groundwater depth was approximately 65 ft bgs).

IMC MAGNETICS CONTINUED Site 130043A

- A followup investigation of indoor air and subslab vapor intrusion was finished in 2011.
- Subslab soil vapor contained concentrations of PCE as high as 400,000 ug/m3. PCE concentrations in indoor air were as high as 220 ug/m3.
- Subsequently, modifications to the site building's heating system were made with the intention of mitigating indoor air concentrations.

NEW YORK STATE OF OPPORTUNITY PROPERTY OF Environmental Conservation

Created by: BAS 04/27/2010

Checked by: LJB 04/28/2010

Table 3.1 - IMC Magnetics (130043A) - 2010 Vapor Intrusion Results

Site Name and NYSDEC Site Number	IMC Magnetics (130043A)													
Site		Structure A												
Location ID	A-S	S-01	A-S	S-02	A-S	S-03	A-L	A-01	A-L	1-02				
Sample Date	2/15/2010		2/15/2010		2/15/2010		2/15/2010		2/15/2010					
Sample ID	130043	A-SS-01	130043	A-SS-02	130043	A-SS-03	130043.	A-IA-01	130043	A-IA-02				
QC Code	FS		FS		FS		FS		FS					
Parameter Name	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifie				
1,1,1-Trichloroethane	240		2,8		95		0.83	UJ	0.83	UJ				
1,1,2-Trichloro-1,2,2-Trifluoroethane	11		2.3		470	EJ:	1.2	U	1.8					
1,1,2-Trichlomethane	1.9	J	0.83	U	0.83	U	0.83	UJ	0.83	UJ				
1,1-Dichloroethane	19		0.62	U	0.62	U	0.62	U	0.62	U				
1,2,4-Trimethylbenzene	2.9	J	1.3	J	6.7	J	19	J	7	J				
1,3,5-Trimethylbenzene	0.9	J	0.75	UJ	2.3	J	4.6	J	7.3	J				
2-Butanone	13		2.9		4		0.9		5.2					
2-Hexanone	1.2	UJ	1.2	U	1.1	J	1.2	UJ	1.2	UJ				
2-Propagol	260		40		53		120		0.37	U				
1-Ethyltoluene	0.75	UJ	0.75	U	1.3		7.8	J	13	J				
1-Methyl-2-pentanone	4.9	J	1	J.	1	J	3.4	J	3.2	J				
Acetone	170		28		46		39		49					
Benzene	17		0.62		4.3		8.4	J	11					
Bromodichloromethane	1	UJ	1	U	1	U	- 1	UJ	3.7	J				
Carbon disulfide	6.8		0.98		1.3		0.47	Ū	0.47	U				
Carbon tetrachloride	0.96	UJ	0.96	U	0.96	U	0.45	J	0.51	J				
Chloroform	210		29		10		1.1		88					
Chloromethane	0.31	U	0.31	U	0.31	U	0.99		1.5					
Cis-1,2-Dichloroethene	2800	EJ	0.6	U	0.6	U	1.6		0.6	U				
Cyclohexane	23		4.2		0.52	U	14		18					
Dichlorodifluoromethane	0.75	U	3.8		2.3		2.4		2.3					
Ethyl acetate	0.92	U	0.92	U	0.92	U	0.92	U	0.92	U				
Ethyl benzene	8.3		0.62		1.8		12	J	11	J				
Heptane	0.62	UJ	0.62	U	3.6		13		27					
Hexane	5.9		1		3.7		21		29					
Isooctane	2.5	J	0.71	U	0.47	J	16		11					
Methylene chloride	71		0.53	U	0.53	U	3.5		1.2					
Styrene	1.6	J	0.65	U	0.69		0.65	UJ	0.65					
Tetrachloroethene	400000		4600		42000		74	J	220	J				
Toluene	19		3		7,7		41		47					
rans-1,2-Dichloroethene	420		0.6	U	0.6	U	0.6	U	0.6	U				
Prichloroethene	4400	J	81		19		5.6	J	1.6	J				
Prichlorofluoromethane	0.86		1.4		2.1		1.1		1					
Xylene, m/p	32		1.8		3.4		16		35					
Xvlene, o	8	J	0.62	J	1.5		13	J	10	J				

NYSDEC = New York State Department of Environmental Conservation

Results in microgram per cubic meter (ug/m3)

Samples analyzed for VOCs by USEPA Method TO-15. Location Name: SV = Soil Vapor, IA = Indoor Air

OC Code:

FS = Field Sample

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

E = Detected at a concentration greater than the calibration range

J = Estimated value

Bold = analyte detection

Reference:

New York State Department of Health, Center for Environmental Health, Bureau of Environmental Exposure Investigation, "FINAL Guidance for Evaluating Soil Vapor Intrusion in the State of New York*, October 2006.

Highlighted results within the guidance criteria for Mitigate, as established in "Guidance for Evaluating Soil Vapor Intrusion in the State of New York (New York State Department of Health, 2006).

Highlighted results within the criteria for Monitor, as established in "Guidance for Evaluating Soil Vapor Intrusion in the State of New York (New York State Department of Health, 2006).

Highlighted results recommend that resonable and practical actions are taken to identify the source(s) and reduce exposure, as established in "Guidance for Evaluating Soil Vapor Intrusion in the State of New York"; or no further action to be taken (New York State Department

NEW YORK Department of Environmental Conservation

4.1 Table 3.1.xls Page 1 of 1

Emerging Contaminant Sampling Initiative	
EC Form 1: Initial Groundwater Sampling Results Evaluati	on

te Name:IMC Ma	ignetics				Site ID:	30043A				
ate(s) Sampled:N										
umber of Monitorin	ng Wells: 2			(at	tach figure showing san	nplinglocations)				
roundwater Sc	reening									
Themical			creening level Recommended MC	Lj	Max. concentration detected	Check box if level exceeded				
L,4-dioxane in groun	dwater		1 ug/L (ppb)		.18J					
PFOA in groundwate	r		10 ng/L (ppt)		23.5	✓				
FOS in groundwate	r		10 ng/L (ppt)		26.6	✓				
Awareness										
Other PFAS (not PFO	A/PFOS)	Any one c	ompound over 100 i	ng/L	7.28 (PFPeA)					
otal PFAS (incl. PFO	A/PFOS)	Total cond	entration over 500	ng/L	66.11					
OP here if no scree	ening levels are	exceeded	No further action	require	ed at this time.					
roximity to Wa	7 6			10						
Vater supply type	Any wells within				ethod(s) used to confirm locations	sed to confirm water supply well locations				
ublic well(s)	Yes		1,600 ft		GIS					
rivate well(s)	по									
	pply Sampling _I				or sampling these suppl r sampling efforts as dir					
hemical	Past use or sto		Describe	reasor	ns for suspecting apparen	t source(s)				
,4-dioxane	21034130190402410									
FAS										
urther action r	equired at tl	h i s tim e to summa	?	s	o ongoing remedial prog No s or provide rationale fo	-				
oject Manager		 #	Sec	tion Chi	ief					

Department of Environmental Conservation

ATLAS GRAPHICS Site 130043B

- Current Class 2 Site
- The RI was completed in 1999. Groundwater and soils at the site were found to be contaminanted with VOCs including PCE, TCE and breakdown products thereof. Total VOCs in groundwater were as high as 4819ppb. Soil contamination was concentrated near a cesspool located near the SW corner of the property

Atlas Graphics Continued Site 130043B

- In 2000 an OU-1 ROD was issued
- The Selected remedy was AS/SVE with semiannual groundwater monitoring and institutional controls.
- The AS/SVE system was installed in 2001. The IC is in place, however, there is no record of GW monitoring until 2008.

Atlas Graphics Continued Site 130043B

- The Vapor Intrusion Investigation for the Site was completed in 2008. This investigation sampled locations on the site periphery.
- PCE and TCE were found in concentrations as high as 12,200 and 21,000 ug/m3 respectively were found in borings taken from the SW (downgradient) portion of the site.

Atlas Graphics Continued Site 130043B

- The Indoor Air and Subslab Soil Vapor Intrusion investigation was completed in 2011.
- PCE and TCE were detected in sub-slab samples in concentrations as high as 4,200 ug/m3 and 4,100 ug/m3 respectively

All units in µg\m3.

ND=Non-detect

CDM

Figure 4-2 Site B Soil Vapor Chlorinated VOC Detections 567 Main Street New Cassel Industrial Area North Hempstead, New York

NEW YORK
STATE OF
OPPORTUNITY
Environmental
Conservation

CDM

nt of intal on

North Hempstead, New York

May 2011

Table 3.2 - Atlas Graphics (130043B) - 2010 Vapor Intrusion Results

Site Name and NYSDEC Site Number	r Atlas Graphics (130043B)												
Site	Structure B												
Location ID	B-S	S-01	B-SS-02 F			S-03	B-L	A-01	B-I.	A-02			
Sample Date	2/16/2010		2/16/2010		2/16/2010			/2010	2/16/2010				
Sample ID	130043	B-SS-01	130043B-SS-02		130043B-SS-03		130043	B-IA-01	130043B-IA-				
QC Code			FS		FS		FS		FS				
Parameter Name	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Oualifie			
1.1.1-Trichloroethane	180	EJ	240		160	EJ	0.83	U	0.83	U			
1.1.2-Trichloro-1.2.2-Triffuoroethane	35		3.2		44		1.2	U	1.2	U			
1.1.2-Trichloroethane	0.83	U	3.8		1.1		0.83	U	0.83	U			
1.1-Dichloroethane	56		3.5		22		0.62	U	0.62	U			
1,1-Dichloroethene	0.6	U	2.5		0.6	U	0.6	U	0.6	U			
1,2,4-Trimethylbenzene	1.8	J	40	J	3.1	J	0.8	J	1.4	J			
1,3,5-Trimethylbenzene	0.75	UJ	12	J	0.75	J	0.75		0.5	J			
1,4-Dioxane	1.1	U	17		1.1	U	1.1	U	1.1	U			
2-Butanone	6.6	J	7.8		5.7		1.5		0.9				
2-Hexanone	1.3		1.2		1.2		1.2		1.2	UJ			
2-Propanol	71	EJ	230	J	60	EJ	38		110				
4-Ethyltoluene	0.55	J	9.7	J	1.3	J	0.5	J	1	J			
4-Methyl-2-pentanone	2.1		3.2	J	1.2		1.2	UJ	1.2	UJ			
Acetone	110	EJ	610		82	EJ	180		360				
Benzene	1.5				1.8		1.3		2.1				
Carbon disulfide	10		10		3.2		0.47		0.47				
Chloroform	4.6		31		17		0.74	U	0.74	U			
Chloromethane	0.31	U	0.31	U	0.31	U	0.73		0.59				
Cis-1,2-Dichloroethene	19		26		8.5		0.6	U	0.6	U			
Cyclohexane	0.52	U	0.52	U	0.52	U	0.52	U	3.3				
Dichlorodifluoromethane	2.3		2.6		2.8		2		2				
Ethyl acetate	0.92	U	0.92	U	0.92		0.92		1.4				
Ethyl benzene	22	9	270		180		1300	EJ	2300	EJ			
Heptane	0.62		0.62		0.62		1.2		2.5				
Hexane	0.54		0.54		0.54		2.1		4.9				
sooctane	0.71		0.71		0.71		1.1		2.2				
Methylene chloride	0.53	U	0.53		0.53		0.42		0.42				
Styrene	2.6		0.65	UJ	0.65		0.65		0.65				
Tetrachloroethene	4200		1400		1700	J	1.9		1.6				
Toluene	17		76		46	1	600		1300				
trans-1,2-Dichloroethene	0.6	U	5.1		0.6	U	0.6	U	0.6	U			
Trichloroethene	16000		31000		4100		27		28				
Trichlorofluoromethane	3.5		53		42		0.97		0.97				
Xylene, m/p	92		1200		740	EJ	4600		6900				
Xylene, o	10		150		80		430		900	J			

NYSDEC - New York State Department of Environmental Conservation

Results in microgram per cubic meter (µg/m3)

Samples analyzed for VOCs by USEPA Method TO-15.

Location Name: AA = Ambient Air, SV = Soil Vapor; IA = Indoor Air

OC Code:

FS = Field Sample

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

E = Detected at a concentration greater than the calibration range

J = Estimated value

Bold = analyte detection

Reference:

New York State Department of Health, Center for Environmental Health, Bureau of Environmental Exposure Investigation, "FINAL

Guidance for Evaluating Soil Vapor Intrusion in the State of New York", October 2006.

Criteria:

Highlighted results within the guidance criteria for Mitigate, as established in "Guidance for Evaluating Soil Vapor Intrusion in the State of New York (New York State Department of Health, 2006).

Highlighted results within the criteria for Monitor, as established in "Guidance for Evaluating Soil Vapor Intrusion in the State of New York (New York State Department of Health, 2006).

Highlighted results recommend that resonable and practical actions are taken to identify the source(s) and reduce exposure, as established in "Guidance for Evaluating Soll Vapor Intrusion in the State of New York"; or no further action to be taken (New York State Department of Health, 2006)

4.1 Table 3.2xis Page 1 of 1 Created by: BAS 04/27/2010 Checked by: 1JB 04/28/2010

Emerging Contaminant Sampling Initiative

EC Form 1: Initial Groundwater Sampling Results Evaluation

NI		10		Site ID:						
Date(s) Sampled: <u>N</u>	ovember 14, 20	18		Class: _2						
Number of Monitoria	ng Wells: 1)	_ (attach figure showing sa	mplinglocations)					
Groundwater Sc	reening									
Chemical			creening level Recommended MCL)	Max. concentration detected	Check box if level exceeded					
1,4-dioxane in groun	ndwater		1 ug/L (ppb)	0.039						
PFOA in groundwate	er	į	10 ng/L (pp t)	9.83						
PFOS in groundwate	r	į	10 ng/L (ppt)	5.59						
Awareness										
Other PFAS (not PFC	A/PFOS) A	Апу опе со	mpound over 100 ng	/L 8.89						
Total PFAS (incl. PFO	A/PFOS) T	otal conce	entration over 500 ng,	/L 42.68						
STOP here if no scre	ening levels are e	exceeded.	No further action red	quired at this time.						
Proximity to Wa	A CONTRACTOR OF THE CONTRACTOR									
Water supply type	Any wells within 1/2 mile of sites	26	Distance (ft)	Method(s) used to confirm water supply well locations						
Public well(s)	Yes		2,150	GIS						
Private well(s)	по									
				eed for sampling these supp water sampling efforts as di						
Apparent Source										
Chemical	Past use or stor chemical on-		Describe re	easons for suspecting apparer	nt source(s)					
1,4-dioxane	по									
PFAS	по									
If an apparent on-sit Further action r			10 - CONTROL C	k into ongoing remedial pro	gram if possible.					
	ottom of page 2 to	summar	ize site-specific next	steps or provide rationale f	ornot					
				Section Chief						
Project Manager			Section	on Chief						

Department of Environmental Conservation

Tishcon Corporation @ 125 State Street Site 130043C

- Currently a Class 4 site.
- The RI found chloroform as high as 160ppm in an on-site storm drain. The principal groundwater contaminants were PCE and TCE, found in concentrations as high as 66 and 61 ppb in downgradient groundwater.

Tishcon @ 125 State St. Continued Site 130043C

- 1998 ROD. The selected remedy was excavation of the source area located near a storm drain located on the south (downgradient) side of the on-site building, groundwater monitoring, and ICs.
- The excavation was completed in 1999. Some groundwater monitoring was done in 2008, and an environmental easement is expected to be in place, along with an SMP sometime in 2020.

Tishcon @ 125 State St. Continued Site 130043C

- The 2008 SVI investigation found concentrations of PCE as high as 13,600 ug/m3 and TCA as high as 2,730 ug/m3 in soil vapor in the SW area of the site.
- The 2011 indoor air and sub-slab SVI investigation found concentrations of PCE as high as 9,800 ug/m3 and TCE as high as 3,300 ug/m3 in subslab samples
- Concentrations of PCE as high as 2.0ug/m3 and TCE as high as 0.55 ug/m3 were found in indoor air samples.

Sampling Location

Potential Historical Source Area Based on Previous Documentation

C:\New Cassel\MXD\C Site Air Results.mxd

Notes: All units in μg\m3 ND=Non-detect Figure 4-3 Site C Soil Vapor Chlorinated VOC Detections 125 State Street New Cassel Industrial Area North Hempstead, New York

CDM

Sampling Location

Potential Historical Source Area Based on Previous Documentation

C:\New Casse\\MXD\C Site GW Results.mxd

All units in µg\L.
All exceedances highlighted and bolded.

Toluene	5
Tetrachloroethene	5
cis-1,2-Dichloroethene	5
1,1,1-Trichloronthane	5
Methylene chloride	5
1,1-Dichloroethane	5
1.1- Dichloroethene	5
Trichlorofluoromethane	5
Trichloroethene	5
Chloroform	7
Methyl t-Butyl Ether	10
Metylcyclohexane	50
Acetone	50

Figure 4-10 Site C Groundwater VOC Exceedances 125 State Street New Cassel Industrial Area North Hempstead, New York

CDM

Created By: RCM 4/14/2011

Checked By: BAS 04/16/2011

Table 3.3 Tishcon Corp. (130043C) - 2011 Vapor Intrusion Results

Site Nume and NYSDEC Site Number	Tishcon Corp. (130043C)														
Site	Structure C														
Location ID	C-S	S-01	C-S	C-SS-01										C-IA-03	
Sample Date	2/1/	2011	2/1/2011		2/1/2011		2/1/2011		2/1/	2011	2/1/	2011	2/1/2011		
Sample ID	130043	C-SS-01	1300430	-SS-01 D	130043	C-SS-02	130043	C-SS-03	130043	C-IA-01	130043	C-IA-02	130043	C-IA-0	
QC Code	F	S	FD		FS		FS		F	S	F	S	F	S	
Parameter Name	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualif	
Tetrachloroethene	9,800	J	7,500	J	860		4,600		2		2		2		
Frichloroethene	17)	20		3.3		22	3	0.55		0.27	3	0.38		
,1.1-Trichloroethane	3,300	J	2,300		440		850	8	1	J	1	J	- 1		
,1,2-Trichloro-1,2,2-Trifluoroethane	1	J	1	J	0.86	J	1.2	U	1.2	U	1.2	U	1.2	U	
,1-Dichloroethane	38		41		18		18		0.62	U	0.62	U	0.62	U	
,1-Dichloroethene	2.2		2.4		0.6		0.6	U	0.6	U	0.6	U	0.6	U	
,2,4-Trimethylbenzene	1.3		1		1.4		0.65	J	1.7		1.3		1.3		
.2-Dichloroethane	0.62	U	0.62	U	1.5		0.62	U	0.62	U	0.62	U	0.62	U.	
3,5-Trimethylbenzene	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.65	J	
,4-Dichlorobenzene	0.92	U	0.92	U	0.86	J	0.92	U	0.92	U	0.92	U	0.92	U	
,4-Dioxane	34	J	37	J	1.1	IJ		IJ	1.1	UJ	1.1	UJ	1.1	UJ	
2-Butanone	2.8		2.8		11		5.2		17		31		47		
2-Hexanone	1.2	UJ	1.2	UJ	0.46	J	1.2	UJ	1.2	UJ	1.2	UJ	1.2	UJ	
2-Propanol	44		52		130		40	8	2.7		4.5	8	3.8		
I-Ethyltoluene	0.75	U	0.75	U	0.75	U	0.55	J	0.75	U	0.75	U	0.8		
Acetone	29		23		42		59		22		51		63		
Benzene	0.62		0.45	J	1.1		1		1.2		1.1		1.2		
Carbon disulfide	2.2		2.2		2.1		1.9		0.47	U	0.47	U	0.47	U	
Carbon tetrachloride	0.96	U	0.96	U	0.96	U	0.96	U	0.64		0.64		0.51		
Chloroform	2.2		2		1.1		2.1	8	0.74	U	0.74	U	0.74	U	
hloromethane	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.94		
Ss-1,2-Dichloroethene	0.6	U	0.6	U	0.6	U	0.48	J	0.6	U	0.6	U	0.6	U	
Cyclohexane	0.49	J	0.49	J	0.94		0.52	U	0.56		0.52	U	0.52	U	
Dichlorodifluoromethane	3.7		3.7		2.9		0.75	U	0.75	U	2.8		2.8		
Ethyl benzene	0.53	J	0.66	U	1.4		0.62	J	0.71		0.62	J	0.62	J	
Teptane	1	1	1		2.9		1.8	0	0.92		0.54	J	0.79		
Hexane	0.54	U	0.54	U	3.8		1		3.5		7.5		8.6		
Methylene chloride	1.3		1.2		1.8		0.56		1.3		5.5		4.4		
Styrene	0.48	J	0.52	J	1.1		0.91		0.43	J	0.69		0.56	J	
Tetrahydrofuran	0.45	IJ	0.45	IJ	2.4		0.45	IJ	3.1	J	16		15		
Foluene	4.5		3.9		9.2		6	8	3.4		3.7	- 8	3.4		
Frichlorofluoromethane	3.7		3.7		2.9		2.8	8	0.86	U	2.6		2.5		
Kylene, m/p	1.4		1.3		3.4		1.9		1.4		1.4		1.3		
(vlene, o	0.44	J	0.66	U	1.1		0.44	J	0.66		0.57	1	0.62	J	

NYSDEC = New York State Department of Environmental Conservation

Results presented in microgram per cubic meter (µg/M3)

Samples analyzed for VOCs by USEPA Method TO-15. VOC = volatile organic compound

Location Name: AA = Ambient Air; SV = Soil Vapor; IA = Indoor Air

QC Code:

NYSDEC - Site No. 130043

FS = Field Sample

Qualifiers:

U - Not detected at a concentration greater than the reporting limit J=Estimated value

Bold - analyte detection

New York State Department of Health, Center for Environmental Health, Bureau of Environmental Exposure Investigation, "FINAL Guidance for Evaluating Soil Vapor Intrusion in the State of New York", October 2006.

Criteria:

Highlighted results within the guidance criteria for Mittgate, as established in "Guidance for Evaluating Soil Vapor Intrusion in the State of New York (New York State Department of Health, 2006).

Highlighted results within the criteria for Monitor, as established in "Guidance for Evaluating Soil Vapor Intrusion in the State of New York (New York State Department of Health, 2006).

Highlighted results recommend that resonable and practical actions are taken to identify the source(s) and reduce exposure, as established in "Guidance for Evaluating Soil Vapor Intrusion in the State of New York"; or no further action to be taken (New York State Department of Health, 2006)

NEW YORK Department of STATE OF Environmental Conservation

4.1 Table 3.3.xls Page 1 of 1

Former Tishcon Site 130043F

- Class N site.
- The March 1996 RI did not identify an on-site source area
- Groundwater contamination was attributed to upgradient or cross-gradient sources.
- The selected remedy in the 1998 ROD was no action.

Former Tishcon Continued Site 130043F

- The 2008 SVI investigation found PCE as high as 1,080 ug/m3 in a soil vapor sample in the NE corner of the site. In the same location TCE was found at 145 ug/m3. Note that this is the upgradient corner of the site.
- The 2011 sub-slab and indoor air SVI investigation found a maximum of 290 ug/m3 of PCE in sub-slab sampling.
- Maximum VOC level for indoor air was 3.2 ug/m3 of TCE

*Previous investigations failed to locate source areas (e.g. cesspools, drainage structures)

All units in µg\m3. ND=Non-detect

Figure 4-4 Site F Soil Vapor Chlorinated VOC Detections 68 Kinkel Street New Cassel Industrial Area North Hempstead, New York

*Previous investigations failed to locate source areas (e.g. cesspools, drainage structures)

C:\New_Cassef\MXD\F_Site_GW_Results.mxd

CDM

All units in µg\L.
All exceedances highlighted and bolded.
ND=Non-detect

Toluene	5
Tetrachloroethene	5
cis-1,2-Dichloroethene	5
1,1,1-Trichloroethane	5
Methylene chloride	5
1,1-Dichloroethane	5
1,1- Dichloroethene	5
Trichlorofluoromethane	5
Trichloroethene	5
Chloroform	7
Methyl t-Butyl Ether	10
Metylcyclohexane	50
Acetone	50

Figure 4-11 Site F Groundwater VOC Exceedances 68 Kinkel Street New Cassel Industrial Area North Hempstead, New York

nt of ntal on

Table 3.4 - Former Tishcon Corp. (130043F) - 2010 Vapor Intrusion Results

Site Name and NYSDEC Site Number				Forme	r Tishcon	Corp (130	043F)				
Site					Struc	ture F					
Location ID	F-SS-01		F-S	S-02	F-SS-03		F-IA-01		F-I.	A-02	
Sample Date	2/16	2/16/2010 130043F-SS-01		2/16/2010 130043F-SS-02		2/16/2010 130043F-SS-03		2/16/2010 130043F-IA-01		2/16/2010 130043F-IA-02	
Sample ID	130043										
QC Code	Į.	FS		FS		FS		FS		S	
Parameter Name	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifie	
1,1,1-Trichloroethane	60		9.9		110		0.83	U	0.83	UJ	
1,2,4-Trimethylbenzene	1	J	7.4	J	1.2		7.4	J	2.7	J	
1,3,5-Trimethylbenzene	0.75	UJ	2.7	J	0.75	UJ	1.6	J	1.2	J	
1,4-Dioxane	0.4	J	1.1	U	1.1	U	1.1	Ü	1.1	UJ	
2-Butanone	4.7		12		1.7		8.3		0.9	U	
2-Hexanone	1.2	U	1.4	J	1.2	U	1.2	UJ	1.2	UJ	
2-Propanol	66	EJ	59		25		5.5		0.37	U	
4-Ethyltoluene	0.75	U	1.8	J	0.75	U	3.4	J.	1.7	J	
4-Methyl-2-pentanone	0.96	J	3.1	J	0.75	J		J	1.6	J	
Acetone	63	EJ	300		43		24	EJ	24	EJ	
Benzene	0.78		3.2		0.42	J	1.4		1.6	J	
Carbon disulfide	1.2		5.6		0.57		0.47		0.6		
Carbon tetrachloride	0.96		0.96	U	0.96		0.51		0.45		
Chloroform	0.74		0.94		0.74		0.74		0.74		
Chloromethane	0.31		0.31	U	0.31		0.86		0.76		
Cyclohexane	0.52	n	14		0.52		0.52	U	36		
Dichlorodifluoromethane	5.7		2.4			Ü	2.3		2.2		
Ethyl acetate	0.92	U	0.92	U		U	0.92		26		
Ethyl benzene	1.7		2.5	J	1.1		7.3		3.8		
Heptane	0.62		8.3		0.46		1.7		3.1		
Hexane	0.54		7.5		0.54		0.54		16		
Isooctane	0.71		0.71			U	0.71		0.57		
Methylene chloride	0.53	U	0.53		0.53	U	0.42		1.6		
Styrene	0.61	J	0.65	UJ		U	0.65		1.3		
Tetrachloroethene	280		110	J	290		1.7		1.9		
Toluene	2.8		12		1.4		7.2			EJ	
Trichloroethene	0.6	J	4.2		0.82		3.2		1.8		
Trichlorofluoromethane	5.7		2.3		5.5		1.2			J	
Xylene, m/p	5.4		14		3		5.5		9.7		
Xylene, o	0.88	3 3	3.8	J	0.53	J	2.6	J	2.7	J	

NYSDEC = New York State Department of Environmental Conservation

Results in microgram per cubic meter (µg/m³)

ork State Department of Health, 2006)

Samples analyzed for VOCs by USEPA Method TO-15. Location Name: AA = Ambient Air, SV = Soil Vapor, IA = Indoor Air

QC Code:

FS = Field Sample

Qualifiers: U = Not detected at a concentration greater than the reporting limit

E = Detected at a concentration greater than the calibration range

J = Estimated value

Bold = analyte detection

Reference:

New York State Department of Health, Center for Environmental Health, Bureau of Environmental Exposure Investigation, "FINAL

Guidance for Evaluating Soil Vapor Intrusion in the State of New York", October 2006.

Highlighted results within the criteria for Monitor, as established in "Guidance for Evaluating Soil Vapor Intrusion in the State of New York (New York State Department of Health, 2006).

Highlighted results recommend that resonable and practical actions are taken to identify the source(s) and reduce exposure, as stablished in "Guidance for Evaluating Soil Vapor Intrusion in the State of New York"; or no further action to be taken (New

Created by: BAS 04/27/2010

Checked by: LJB 04/28/2010

4.1 Table 3.4.xls Page 1 of 1

Former Laka Industries Inc. Site 130043K

- Class 2 Site.
- The 1998 RI found extensive metals and VOC contamination in a former cesspool located on the southern border of the site. TCE was found in soil samples in concentrations as high as 3.5 ppm. Arsenic, Mercury and Nickel were found above TAGM levels.
- Samples from monitoring wells located downgradient of the site had total VOC concentrations as high as 340 ppb.

Former Laka Industries Inc. Continued Site 130043K

- The selected remedy in the 2000 ROD (on-site soils and groundwater) was excavation of the source area to 25 feet bgs with institutional controls and semi-annual groundwater monitoring.
- The remedy was implemented in 2003. There are no institutional controls or deed restrictions on file.

Former Laka Industries Inc. Continued Site 130043K

- The 2008 SVI investigation found PCE as high as 746 ug/m3 and TCE as high as 537 ug/m3.
- The 2011 sub-slab and indoor air SVI investigation found TCE as high as 10,000 ug/m3 and TCA as high as 2,100 ug/m3 in sub-slab soil vapor
- PCE was as high as 5.4 ug/m3 and TCE was as high as .87 ug/m3 in indoor air.

	130043K-DP01-SD08 1: 03/04/2008	30043K-DP01-SV08 13- 03/04/2008	043K-DP01-SV25 130 03/04/2008	0043K-DP01-SV45 03/04/2008					3	1-1	
	K-DP01	K-DP01	K-DP01	K-DP01		2000 1000000000000000000000000000000000		100		Burn Branch	
Tetrachloroethene	88.2 J	74.6 J	170 J	292 J		With Column 1			100	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN	
cis-1,2-Dichloroethene	ND	ND	ND	6.34 J		TOTAL STREET, ST. ST.	3 000000000		-		
1,1,1-Trichloroethane	13.6 J	13.6 J	37.6 J	60 J	DESCRIPTION OF REAL PROPERTY.	STREET,	9 TERROR TO 10	10001	A STATE OF THE PARTY OF THE PAR		
Methylene Chloride	4.17 J	4.86 J	5.21 J	4.17 J	The second second		2000	A RESIDEN	100		
1,1-Dichloroethane	ND	ND	ND	15.8 J			100000				
Groundwater Flow	5.91 J 6.91 J	2008 03/05/2	08	K-DP02 K-DP	K	-CDPUS			City L	9	E all
Tetrachloroethene	21 264	387	4		THE RESERVE TO SERVE THE PARTY OF THE PARTY	N. Carlotte			RESERVE BEIGHT	and a	4
is -1,2-Dichloroethene	ND 6.34 J		The same of	K-DP03	CERCITATION OF THE PERSON OF T				130043K-DP05-SV08	130043K-DP05-SV25	
,1,1-Trichloroethane	8.18 76.4	54.6	-		THE RESERVE	Table 1		/06/2008	03/06/2008	03/06/2008	03/06/2
,1-Dichloroethane	1.62 J ND	21.9 J				Tetrachloroethene		-DP05	K-DP05 74.6 J	K-DP05 644	K-DP 746
Trichloroethene	6.99 86 J	113		THE RESERVE		cis-1,2-Dichloroethene		ID	ND ND	9.91 J	25.8
		The latest		THE RESIDENCE OF THE PARTY OF T		Carbon tetrachioride	0.		ND	ND	ND
	MANUFACTURE IN CO.			A STREET, STRE		1,1,1-Trichloroethane			ND	39.8	147
	DECEMBER OF	1				Vinyl Chloride		77 J	ND	ND	ND
	ASSESSED A		Access to the second			Methylene Chloride	1.	39 J	18.1 J	ND	6.95 J
			TOTAL CONT.	A STATE OF THE PARTY OF THE PAR	THE RESERVED TO SERVED TO	1.1-Dichloroethane	(i.4 J	ND	37.2	312
	CONTRACTOR OF STREET					Trichloroethene	N	ID	40.8 J	403	258
				130043K-DP03-SV45	MINCHAR	130043K-DP04-SV08 03/06/2008	130043K-DP04-SV25 03/06/2008	03/06/200	18	A	
	130043K-DP03-AA 03/05/2008 K-DP03	130043K-DP03-SV08 03/05/2008 K-DP03	130043K-DP03-SV25 03/05/2008 K-DP03	03/05/2008 K-DP03		K-DP04	K-DP04	K-DP04			
Tetrachioroethene	03/05/2008	03/05/2008	03/05/2008	03/05/2008	Tetrachloroethene	K-DP04 102	K-DP04 244	373 J	28/1/2/10	15	
cis-1,2-Dichloroethene	03/05/2008 K-DP03 0.68 J ND	03/05/2008 K-DP03 74.6 ND	03/05/2008 K-DP03 217 15.1 J	03/05/2008 K-DP03 359 18.2 J	cis-1,2-Dichloroethene	K-DP04 102 ND	K-DP04 244 ND	373 J 39.3	- W	T	3
cis-1,2-Dichloroethene Carbon tetrachloride	03/05/2008 K-DP03 0.68 J ND 0.5	03/05/2008 K-DP03 74.6 ND ND	03/05/2008 K-DP03 217 15.1 J ND	03/05/2008 K-DP03 359 18.2 J ND	cis-1,2-Dichloroethene Chloroform	K-DP04 102 ND ND	K-DP04 244 ND ND	373 J 39.3 12.2 J	14	40	-
cis-1,2-Dichloroethene Carbon tetrachloride Chloroform	03/05/2008 K-DP03 0.68 J ND 0.5 ND	03/05/2008 K-DP03 74.6 ND ND	03/05/2008 K-DP03 217 15.1 J ND ND	03/05/2008 K-DP03 359 18.2 J ND 6.35 J	cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	K-DP04 102 ND ND ND 18.6 J	K-DP04 244 ND ND ND 39.3	373 J 39.3 12.2 J 104	18	- Ou	
cis-1,2-Dichloroethene Carbon tetrachloride Chloroform 1,1,1-Trichloroethane	03/05/2008 K-DP03 0.68 J ND 0.5 ND ND	03/05/2008 K-DP03 74.6 ND ND ND ND 7.09 J	03/05/2008 K-DP03 217 15.1 J ND ND ND 40.4 J	03/05/2008 K-DP03 359 18.2 J ND 6.35 J 52.4	cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane Methylene Chloride	K-DP04 102 ND ND 18.6 J 3.82 J	K-DP04 244 ND ND 39.3 5.56 J	373 J 39.3 12.2 J 104 ND	19	_ g	
cis-1,2-Dichloroethene Carbon tetrachloride Chloroform 1,1,1-Trichloroethane Methylene Chloride	03/05/2008 K-DP03 0.68 J ND 0.5 ND ND 1.04 J	03/05/2008 K-DP03 74.6 ND ND ND ND 7.09 J 4.86 J	03/05/2008 K-DP03 217 15.1 J ND ND ND 40.4 J ND	03/05/2008 K.DP03 359 18.2 J ND 6.35 J 52.4 ND	cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane Methylene Chloride 1,1-Dichloroethane	K-DP04 102 ND ND ND 18.6 J 3.82 J ND	K-DP04 244 ND ND 39.3 5.56 J 8.09 J	373 J 39.3 12.2 J 104 ND 56.7	13	- g	
cis-1,2-Dichloroethene Carbon tetrachloride Chloroform 1,1,1-Trichloroethane	03/05/2008 K-DP03 0.68 J ND 0.5 ND ND	03/05/2008 K-DP03 74.6 ND ND ND ND 7.09 J	03/05/2008 K-DP03 217 15.1 J ND ND ND 40.4 J	03/05/2008 K-DP03 359 18.2 J ND 6.35 J 52.4	cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane Methylene Chloride	K-DP04 102 ND ND 18.6 J 3.82 J	K-DP04 244 ND ND 39.3 5.56 J	373 J 39.3 12.2 J 104 ND	Tà /	9.	1

*Previous investigations failed to locate source areas (e.g. cesspools, drainage structures)

Notes: All units in µg\m3. ND=Non-detect

Figure 4-5 Site K Soil Vapor Chlorinated VOC Detections 62 Kinkel Street New Cassel Industrial Area North Hempstead, New York

*Previous investigations failed to locate source areas (e.g. cesspools, drainage structures)

Notes:

All units in µg\L.
All exceedances highlighted and bolded.
ND=Non-detect

Site Specific Groundwater Delineation Crite						
Toluene	5					
Tetrachloroethene	5					
cis-1,2-Dichloroethene	5					
1.1.1-Trichloroethane	5					
Methylene chloride	5					
1,1-Dichloroethane	5					
1.1- Dichloroethene	5					
Trichlorofluoromethane	5					
Trichloroethene	5					
Chloroform	7					
Methyl t-Butyl Ether	10					
Metylcyclohexane	50					
Acetone	50					

Figure 4-12 Site K Groundwater VOC Exceedances 62 Kinkel Street New Cassel Industrial Area North Hempstead, New York

Metykyciohexane 50
Acetone 50

Created by: BAS 04/27/2010

Checked by: LJB 04/28/2010

Table 3.5 - Former LAKA Industries, Inc. (130043K) - 2010 Vapor Intrusion Results

Site Name and NYSDEC Site Number	Former LAKA Industries, Inc. (130043K)										
Site					Struc	ture K					
Location ID	K-S	S-01	K-S	S-02	K-SS-03		K-IA-01		K-I	A-02	
Sample Date	2/16	2010	2/16/2010 130043K-SS-02		2/16/2010 130043K-SS-03		2/16/2010 130043K-IA-01		2/16/2010 130043K-IA-02		
Sample ID	130043	K-SS-01									
QC Code	FS		FS		FS		FS		FS		
Parameter Name	Result	Qualifier	Result	Qualifier	Result	Qualifier		Qualifier	Result	Qualifie	
1,1,1-Trichloroethane	77		36		2100		0.83		0.83		
1,1,2-Trichloro-1,2,2-Trifluoroethane	1.2	U	1.2	U	5	1	1.2		1.2		
1,1-Dichloroethane	1.9		1.2		35		0.62	U	0.62		
1,2,4-Trimethylbenzene	2.7		0.75		54		1.3	5.1	1.8		
1,3,5-Trimethylbenzene	0.8	J	0.75		21	J			0.55		
1,4-Dioxane	1.1	U	1.1	U	6	J	1.1	U	1.1		
2-Butanone	6.6		2		57		4.1		2.3		
2-Hexanone	1.2		1.2	U	26		1.2		1.2		
2-Propanol	32	8	39		0.37	UJ	58	EJ	51	EJ	
4-Ethyltoluene	0.95	J	0.75		15	J	0.75		0.8		
4-Methyl-2-pentanone	1.2	J	1.2	U	12		1.2		1.2		
Acetone	96		32		200	EJ	29	EJ	74	EJ	
Benzene	4.3		0.58		67		1.2		1.8		
Carbon disulfide	14		1.5		11		0.47	U	0.47	U	
Carbon tetrachloride	0.7	J	0.96	U	0.96	UJ	0.51	J	0.51	J	
Chloroform	20		8.9		23		0.74	U	0.74	U	
Chloromethane	0.31	U	0.31	U	0.31	U	0.86	- 3	0.8		
Cis-1,2-Dichloroethene	1.3		2.8		120		0.6	U	0.6	U	
Cyclohexane	0.52		0.52	U	16		0.52	U	0.52		
Dichlorodifluoromethane	0.75	U	9.4		0.75	U	2.4		2.3		
Ethyl benzene	58		4.3		19	J	1.1		2.1		
Heptane	- 4		0.62		66		1.9		1.2		
Hexane	4.1	- 6	0.54	U	56		0.54		0.54	U	
Isooctane	0.71	U	0.71			UJ	0.71		1.1		
Methylene chloride	0.53	Ü	0.53	U	0.53	Ü	0.46	J	0.39	J	
Styrene	3.6	J	0.65	U		UJ	0.48	J	1.4		
Tetrachloroethene	280		650		1500		1.7		5.4	1	
Toluene	46		5.1		36	J		EJ		EJ	
Trichloroethene	930	3	490		10000	1	0.87		0.6		
Trichlorofluoromethane	4.4		37		10		1.1	- 8	1.7		
Xylene, m/p	220		15		50	J	3.3		7.1		
Xylene, o	17		1.6		17	J	1.1		2.2		

NYSDEC = New York State Department of Environmental Conservation

Results in microgram per cubic meter (µg/m3)

Samples analyzed for VOCs by USEPA Method TO-15. Location Name: AA = Ambient Air; SV = Soil Vapor; IA = Indoor Air

QC Code:

FS = Field Sample

Qualifiers:

- U = Not detected at a concentration greater than the reporting limit
- E = Detected at a concentration greater than the calibration range
- J = Estimated value
- Bold = analyte detection

Reference:

New York State Department of Health, Center for Environmental Health, Bureau of Environmental Exposure Investigation, "FINAL Guidance for Evaluating Soil Vapor Intrusion in the State of New York", October 2006.

Criteria:

Highlighted results within the guidance criteria for Mitigate, as established in "Guidance for Evaluating Soil Vapor Intrusion in the State of New York (New York State Department of Health, 2006).

Highlighted results within the criteria for Monitor, as established in "Guidance for Evaluating Soil Vapor Intrusion in the State of New York (New York State Department of Health, 2006).

Highlighted results recommend that resonable and practical actions are taken to identify the source(s) and reduce exposure, as established in "Guidance for Evaluating Soil Vapor Intrusion in the State of New York", or no further action to be taken (New York State Department of Health, 2006)

4.1 Table 3.5.xls Page 1 of 1

EC Form 1: Initial Groundwater Sampling Results Evaluation

Site Name: Former	Laka		Site ID:	130043K						
Date(s) Sampled:No	ovember 14, 20:	18								
Number of Monitorin	ig Wells: 1			(a	ttach figure showing s	amplinglocations)				
Groundwater Sci	reening									
Chemical		S	creening Level		Max. Concentration Detected	Check Box if Screening Level Exceeded				
1,4-dioxane in groun	dwater	0).35 ug/L (ppb)		0.091					
PFOA + PFOS in groui	ndwater	70 ng/L (ppt)		29.2						
Awareness										
Other PFAS (not PFO	A/PFOS) A	iny one co	ompound over 100	ng/L	7.44					
Total PFAS (incl. PFO.	A/PFOS) T	otal conc	entration over 500	ng/L	73.73					
Stophere if no screen	ninglevels are ex	ceeded :	d at this time.							
Dogramita to 14/2:	tan Cumuliaa									
Proximity to Wat Water Supply Type	Any wells withi		Distance (ft)	IVI	Method(s) used to confirm water supp					
Public well(s)	Yes		3,100		GIS					
Private well(s)	по									
					for sampling these sup					
		roject in I	UIS to track drinkir	ig wate	er sampling efforts as o	lirected.				
Apparent Source		2002/2008								
Chemical	Past use or stor chemical on-		Describe	reaso	ns for suspecting appare	ent source(s)				
1,4-dioxane	по									
PFAS	по									
incorporate into ong	oingremedial pr	ogram if	possible.		site contaminant migr	ation and				
Further action re If yes, summarize site					☑ No ge 2 of this form.					
Project Manager		%	Sec	tion Ch	nief	<u> </u>				
Bureau Director			Dat	te Signe	ed					

EZ-EM Site 130043N

- Class 4 Site, listed as such in 1997 based on the 1997 NCIA multisite RI. The primary on-site contaminants were PCE and TCA. Records indicate that in 1985 contaminated sludge had been removed from a degreasing operation at the SW corner of the site. No requirements for future remediation were specified. Groundwater monitoring, however, was required.
- No ROD. Site management to be discontinued with completion of SVI legacy project.

EZ-EM Continued Site 130043N

- The 2008 Soil Vapor Intrusion investigation PCE in soil vapor in concentrations as high as 5,500 ug/m3.
- The 2011 sub-slab and indoor air SVI investigation found TCA in concentrations as high as 53,000 ug/me and PCE in concentrations as high as 15,000 ug/m3 in sub-slab SVI samples.
- PCE and TCA were found concentrations as high as 1.6 ug/m3 and 1.2 ug/m3 respectively in indoor air.

Potential Historical Source Area
Based on Previous Documentation

Notes: All units in µg\m3. ND=Non-detect Figure 4-6 Site N Soil Vapor Chlorinated VOC Detections 750 Summa Avenue New Cassel Industrial Area North Hempstead, New York

Potential Historical Source Area Based on Previous Documentation

CDM

All units in µg\L.
All exceedances highlighted and bolded.

Toluene	5
Tetrachloroethene	5
cis-1.2-Dichloroethene	5
1.1.1-Trichloroethane	5
Methylene chloride	5
1.1-Dichloroethane	5
1.1- Dichloroethene	5
Trichlorofluoromethane	5
Trichloroethene	5
Chloroform	7
Methyl t-Buryl Ether	10
Metylcyclohexane	50
Acetone	50

Figure 4-13 Site N Groundwater VOC Exceedances 750 Summa Avenue New Cassel Industrial Area North Hempstead, New York

nt of intal on

May 2011

Created by: BAS 04/27/2010

Checked by: LJB 04/28/2010

55

Table 3.6 - Former EZ-EM, Inc. (130043N) - 2010 Vapor Intrusion Results

Site Name and NYSDEC Site Number	EZ-EM, Inc. (130043N)											
Site					Struc	ture N						
Location ID	N-S	S-01	N-S	S-02	N-SS-03		N-I.	A-01	N-I.	A-02		
Sample Date	2/16	/2010	2/16/2010 130043N-SS-02		2/16/2010 130043N-SS-03		2/16/2010 130043N-IA-01		2/16/2010 130043N-IA-02			
Sample ID	130043	N-SS-01										
QC Code	F	S	F	S	F	S	F	S	F	S		
Parameter Name	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifie		
1,1,1-Trichloroethane	390		53000		640		1.2		1.2			
1,1,2-Trichloro-1,2,2-Trifluoroethane	1.9		26		3		1.2	U	1.2	U		
1,1-Dichloroethane	2.1		10		0.78		0.62	U	0.62	U		
1,1-Dichloroethene	0.6	U	32		0.6	U	0.6	U	0.6	U		
1,2,4-Trimethylbenzene	2.1	J	660	EJ	3.9	1	1		0.75	U		
1,3,5-Trimethylbenzene	1	J	380	EJ	1.7	1	0.75	U	0.75	U		
1,4-Dioxane	1.1	U	20		1.1	U	1.1	U	1.1	U		
2-Butanone	9.6		140	EJ	3.4		1.6		0.78	1		
2-Hexanone	2.4	J	31		1.3		1.2	U	1.2	U		
2-Propanol	64		87	J	68	J	2		2			
4-Ethvltoluene	0.75	J	280	EJ	1.3		0.75	U	0.75	U		
4-Methyl-2-pentanone	1.3	J	17		0.75	J	1.2	U	1.2	U		
Acelone	110		1100	EJ	35		14	EJ	12	EJ		
Benzene	2.6		9.4		0.65		0.81		0.78			
Carbon disulfide	6.2		15		1.9		0.47	U	0.47	U		
Carbon tetrachloride	0.96	U	0.96	UJ	0.96	U	0.58	J	0.7	1		
Chlorobenzene	0.7	UJ	0.51	l	0.7	U	0.7	U	0.7	U		
Chloroform	2.8		15		0.69	J	0.74	U	0.74	U		
Chloromethane	0.31	U	0.31	U	0.31	U	1		0.78			
Cis-1.2-Dichloroethene	2		0.64		0.6	U	0.6	U	0.6	U		
Cyclohexane	3.3		0.52	UJ	0.52	U	0.52	U	0.52	U		
Dichlorodifluoromethane	2		0.75	U	0.75	U	2.3		2.3			
Ethyl acetate	0.92	U	0.73	J	0.92	U	0.92	U	0.92	U		
Ethyl benzene	1.9	J	230	EJ	2.8		0.66	U	0.66	U		
Heptane	1.5		7.3	J	0.79		0.62	Ü	0.62	Ü		
Isooctane	0.71	U	1.3	1	0.71	U	0.71	U	0.71	U		
Methylene chloride	0.53	U	0.53		0.53		0.53		0.39	J		
Styrene	0.87	J	0.65	UJ	0.65		0.65	U	0.65	U		
Tetrachloroethene	15000		9400		1200		1.6		1			
Tetrahydrofuran	1.7	J	50	J	18	J	0.45	U	0.45	U		
Toluene	2.8	J	38		2.8		1.5		1.4			
Trichloroethene	1000		3200	J	80		0.22	Ü	0.33			
Trichlorofluoromethane	1.1		0.86	U	1.2		0.97		1.1			
Xylene, m/p	5.7	J	1500	EJ	12		0.79	J	0.66	J		
Xvlene, o	1.6	J	640	EJ	3		0.66	U	0.66	U		

Notes:

NYSDEC = New York State Department of Environmental Conservation

Results in microgram per cubic meter (ug/m2)

Samples analyzed for VOCs by USEPA Method TO-15.

Location Name: AA = Ambient Air; SV = Soil Vapor; IA = Indoor Air

QC Code:

FS = Field Sample Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J - Estimated value

Bold = analyte detection

Deferen

New York State Department of Health, Center for Environmental Health, Bureau of Environmental Exposure Investigation, "FINAL Guidance for Evaluating Soil Vapor Intrusion in the State of New York", October 2006.

Criteria:

Highlighted results within the guidance criteria for Mittgate, as established in "Guidance for Evaluating Soil Vapor Intrusion in the State of New York (New York State Department of Health, 2006).

Highlighted results recommend that resonable and practical actions are taken to identify the source(s) and reduce exposure, as earbilisted in "Guidance for Hvaluaring Soil Vapor Intrusion in the State of New York", or no further action to be taken (New York State Department of Health, 2006).

NEW YORK
STATE OF OPPORTUNITY
OPPORTUNITY
Conservation

4.1 Table 3.6.xls Page 1 of 1

Tishcon @ 29 New York Ave Continued Site 130043V

- Class C Site.
- The 2000 FRI found no elevated levels of VOCs in on-site soils. Low levels of VOC and metals contamination were found in on on-site dry well. Downgradient levels of VOCs were less than upgradient levels.
- The on-site dry well was remediated in 2000 by an IRM (sludge removal).
- In 2002 a No Further Action ROD was issued.

Tishcon @ 29 New York Avenue Continued Site 130043V

- The 2008 Soil Vapor Intrusion Investigation found TCE in concentrations as high as 147,000 ug/m3 and 1,1-DCA in concentrations as high as 98,200 ug/m3. PCE was as high as 5,760 ug/m3.
- The 2011 sub-slab and indoor air SVI investigation found TCA in concentrations as high as 27,000 ug/m3 in subslab soil vapor, but only 2.5 ug/m3 in indoor air. PCE was found at 1,500 ug/m3 sub-slab and 1,600 ug/m3 in indoor air.

Potential Historical Source Area Based on Previous Documentation

Notes: All units in μg\m3. ND=Non-detect Figure 4-7 Site V Soil Vapor Chlorinated VOC Detections 29 New York Avenue New Cassel Industrial Area North Hempstead, New York

- Potential Historical Source Area Based on Previous Documentation

All units in µg\L.
All exceedances highlighted and bolded. ND=Non-detect

oluene	5
ctrachloroethene	5
is-1.2-Dichloroethene	5
1.1-Trichloroethane	5
fethylene chloride	5
1-Dichloroethane	5
1- Dichloroethene	5
richlorofluoromethane	5
richloroethene	5
hloroform	7
fethyl t-Butyl Ether	10
fetylcyclohexane	50
cetone	50

29 New York Avenue New Cassel Industrial Area North Hempstead, New York

Created by: BAS 04/27/2010

Checked by: LJB 04/28/2010

Table 3.7 - Tishcon Corp, New York Ave. (130043V) - 2010 Vapor Intrusion Results

Site Name and NYSDEC Site Number	Tishcon Corp, New York Ave. (130043V)											
Site						Struct	ure V					
Location ID	V-S	S-01	V-S	S-02	V-S	S-02	V-S	S-03	V-L	A-01	V-L	A-02
Sample Date	2/18	/2010	2/18	2010	2/18/2010		2/18/2010		2/18/2010		2/18	2010
Sample ID	130043	V-SS-01	130043V-SS-02		130043V-SS-02D		130043V-SS-03		130043V-IA-01		130043V-IA-02	
QC Code	F	S	F	S	F	D	F	S	F	S	F	S
Parameter Name	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1,1-Trichloroethane	5500		3800	J	290	J	27000		4.2	J	4.7	J
1,1,2-Trichloro-1,2,2-Trifluoroethane	8.3		2.1		0.93	J	12		1.2	U	1.2	U.
1,1,2-Trichloroethane	0.83	U	0.83	U	0.83	UJ	1.8		0.83	UJ	0.83	UJ
1,1-Dichloroethane	72		79	J	8.2	J	7900		1.5		1.6	
1,1-Dichloroethene	54		780	J	25	J	240	EJ	0.6	U	0.6	U
1,2,4-Trimethylbenzene	5	J	16	J	2.7	J	7	J	1	J	1.3	J
1,3,5-Trimethylbenzene	3.7		13	J	1.3	J	4.5		0.75		0.75	UJ
1,4-Dichlorobenzene	0.92		0.86	J	1.7		0.92		1.8		1.6	
1,4-Dioxane	7.5		27	J	1.1	UJ	10	EJ	1.1	UJ	1.1	UJ
2-Butanone	2.7		4.9		4.5		2.8		4.9		4.4	
2-Hexanone	1.2		0.92	J	1.2		1	J		UJ	1.2	
2-Propanol	95	EJ	21	J	0.37	UJ	42		28		0.37	U
4-Ethyltoluene	1.1		0.75	UJ	1.6	Ţ	6.6		0.55	J	0.55	J
4-Methyl-2-pentanone	12			EJ	31	J	13	Y Y	2.6		3.6	J
Acetone	30		350		170		49	3 - 5	140		280	
Benzene	1.3		1.6	- 3	1.6	J	2.1	9	1.3	C	1.3	J
Carbon disulfide	0.79		9.2	3	0.98		4.1	ğ	0.47		0.47	
Carbon tetrachloride	0.9	J	0.96		0.96	UJ	0.96		0.51		0.51	
Chlorobenzene	0.7	U	0.7	UJ	0.51	J	0.7	U		UJ	0.47	
Chloroform	8.7		1.3		0.74		40		0.74	U	0.74	U
Chloromethane	0.31	U	0.31	U		U	0.31	U	1.4		1.1	
Cis-1,2-Dichloroethene	1.8		0.6	U	0.6		49		0.6		0.6	U
Dichlorodifluoromethane	0.75		2.2		0.75	U	0.75		3		3.2	
Ethyl acetate	0.92		1.1		2.3	3	0.92		3.5		3.5	
Ethyl benzene	15		390		68	- 3	55	EJ	41		59	
Heptane	1.2		3.1	J	9.7	J	1.8	40	9.2		8.7	
Hexane	0.54		3.5		10		0.54	U	6.4		5.4	
Methylene chloride	0.53	U	0.53	U	1.6		0.53	U	1.5		1.7	
Tetrachloroethene	1100		780	J	1500		1500		610		1600	J
Toluene	5.1		320		110		12		59		68	
trans-1,2-Dichloroethene	0.6	U	0.6		0.6		2.9		0.6		0.6	
Trichloroethene	1000		43	J	5.8	J	800	S 2	2.5		2.5	
Trichlorofluoromethane	3		2.6		6.7	- 0	2.7	- 8	4.2		4.6	
Xylene, m/p	59		1500		250		200		83		290	
Xylene, o	10		360	J	80	J	53	EJ	27		38	

NYSDEC = New York State Department of Environmental Conservation

Results in microgram per cubic meter (µg/m³)

Samples analyzed for VOCs by USEPA Method TO-15.

Location Name: AA = Ambient Air, SV = Soil Vapor, IA = Indoor Air

QC Code:

FS = Field Sample

FD = Field Duplicate Sample

U = Not detected at a concentration greater than the reporting limit

E = Detected at a concentration greater than the calibration range

J = Estimated value Bold = analyte detection

Reference:

New York State Department of Health, Center for Environmental Health, Bureau of Environmental Exposure Investigation, "FINAL Guidance for Evaluating Soil Vapor Intrusion in the State of New York", October 2006.

Highlighted results within the guidance criteria for Mitteate, as established in "Guidance for Evaluating Soil Vapor Intrusion in the State of New York (New York State Department of Health, 2006).

Highlighted results within the criteria for Monitor, as established in "Guidance for Evaluating Soil Vapor Intrusion in the State of New York (New York State Department of Health, 2006).

Highlighted results recommend that resonable and practical actions are taken to identify the source(s) and reduce exposure, as established in "Guidance for Evaluating Soil Vapor Intrusion in the State of New York", or no further action to be taken (New York State Department of Health, 2006)

NEW YORK Department of STATE OF OPPORTUNITY Environmental Conservation

4.1 Table 3.7.xls Page 1 of 1

NCIA EMERGING CONTMINANTS Available Data

- We have EC Form 1s for 6 sites
- We have EC data for one additional site.

nt of intal on

EC Form 1: In	itial Groundwater Sampl	ing Results Evalu	ation
Site Name: IMC Magnetics		Site ID:1	30043A
Date(s) Sampled:_Nov. 14, 2018			
Number of Monitoring Wells: 2		(attach figure showing sa	mplinglocations)
Groundwater Screening			
Chemical	Screening level (DWQC Recommended MCL)	Max. concentration detected	Check box if level exceeded
1,4-dioxane in groundwater	1 ug/L (ppb)	.18J	
BCOA :	20 (1 (+)	225	[7]

Chemical	Screening level (DWQC Recommended MCL)	Max. concentration detected	Check box if level exceeded
1,4-dioxane in groundwater	1 ug/L (ppb)	.18j	
PFOA in groundwater	10 ng/L (ppt)	23.5	V
PFOS in groundwater	10 ng/L (ppt)	26.6	
Awareness			20 20 20
Other PFAS (not PFOA/PFOS)	Any one compound over 100 ng/L	7.28 (PFPeA)	
Total PFAS (incl. PFOA/PFOS)	Total concentration over 500 ng/L	66.11	

STOP here if no screening levels are exceeded. No further action required at this time.

Proximity to Water Supplies

Water supply type	Any wells within ½ mile of site?	Distance (ft)	Method(s) used to confirm water supply well locations
Public well(s)	Yes	1,600 ft	GIS
Private well(s)	по		

If water supply wells are confirmed within ½ mile of site, discuss need for sampling these supply wells with DOH.

Greate a EC Water Supply Sampling project in UIS to track drinking water sampling efforts as directed.

Apparent Source(s)

Chemical	Past use or storage of chemical on-site?	Describe reasons for suspecting apparent source(s)
1,4-dioxane		
PFAS		

If an apparent on-site source is suspected, incorporate further work into ongoing remedial program if possible.

Further action required at this ti Use the box at the bottom of page 2 to sur recommending further action if screening	mmarize site-specific next steps or provide rationale for not
Project Manager	Section Chief
Bureau Director	Date Signed

Department of Environmental Conservation

EC Form 1: Initial Groundwater Sampling Results Evaluation

	Screening level	Class: (attach figure showing s		
ing (D		(attach figure showing s	amplinglocations)	
(D)	Screening level			
	Screening level			
	WQC Recommended MCL)	Max. concentration detected	Check box if level exceeded	
er	1 ug/L (ppb)	0.039		
	10 ng/L (ppt)	9.83		
	10 ng/L (ppt)	5.59		
OS) Any o	ne compound over 100 ng/L	8.89		
OS) Total	concentration over 500 ng/L	42.68		
levels are exce	eded. No further action requ	ired at this time.	- X\$	
Supplies				
wells within mile of site?	Distance (ft)	Method(s) used to confirm water supply locations		
Yes	2,150	GIS		
по				
t use or storage hemical on-site?		sons for suspecting appar	ent source(s)	
по				
	DS) Total levels are exceeding piles (wells within mile of site? Yes no confirmed within Sampling project tuse or storage	Any one compound over 100 ng/L Total concentration over 500 ng/L levels are exceeded. No further action requirements of the state of	Any one compound over 100 ng/L 8.89 Total concentration over 500 ng/L 42.68 levels are exceeded. No further action required at this time. Supplies wells within Distance (ft) Method(s) used to confirmille of site? location yes 2,150 GIS no confirmed within ½ mile of site, discuss need for sampling these sup Sampling project in UIS to track drinking water sampling efforts as confirmed within ½ mile of site, discuss need for sampling these sup Sampling project in UIS to track drinking water sampling efforts as confirmed within 42 mile of site, discuss need for sampling these sup Sampling project in UIS to track drinking water sampling efforts as confirmed within 42 mile of site, discuss need for sampling these sup Sampling project in UIS to track drinking water sampling efforts as confirmed within 42 mile of site, discuss need for sampling these sup Sampling project in UIS to track drinking water sampling efforts as confirmed within 42 mile of site, discuss need for sampling these sup Sampling project in UIS to track drinking water sampling efforts as confirmed within 42 mile of site, discuss need for sampling these sup Sampling these sup Sampling project in UIS to track drinking water sampling efforts as confirmed within 42 mile of site, discuss need for sampling these sup Samplin	

	Einer Sing Cor	manimant samping minarive
EC Forn	ı 1: Initial Grou	undwater Sampling Results Evaluation

	te Name: Arkwin					Site ID:130043D	
ate(s) Sampled:November 14, 2018					Qass: 2		
Number of Monitori			· · · · · · · · · · · · · · · · · · ·	attach figure shov		plinglocations)	
Groundwater Sc	creening						
Chemical			creening level Recommended MCL)	Max. concentr	500000000	Check box if level exceeded	
1,4-dioxane in grou	ndwater		1 ug/L (ppb)		1.5	V	
PFOA in groundwate	er		10 ng/L (ppt)		47	4	
PFOS in groundwate	er 3		10 ng/L (ppt)		124	✓	
Awareness				<i>*</i>	***		
Other PFAS (not PFC	DA/PFOS)	Any one co	mpound over 100 ng/L	1370 PFB	Acid	<	
Total PFAS (incl. PFC	DA/PFOS)	Total conc	entration over 500 ng/L	+	1538	✓	
Water supply type	Any wells wit ½ mile of site	62,00	Distance (ft)	Viethod(s) used to confirm water supply locations		vater supply well	
Proximity to Wa	ater Supplies	e e					
Public well(s)	Yes	EE	1,800	GIS			
Private well(s)	по						
reate a EC Water S	upply Sampling e(s) Past use or st	project in U orage of	nile of site, discuss need JIS to track drinking wa Describe reas		ts as dire	ected.	
Treate a EC Water St Apparent Sourc Chemical	e(s) Past use or st	project in U orage of	JIS to track drinking wa	ter sampling effor	ts as dire	ected.	
Greate a EC Water St Apparent Sourc	upply Sampling e(s) Past use or st	project in U orage of	JIS to track drinking wa	ter sampling effor	ts as dire	ected.	
Apparent Sourc Chemical 1,4-dioxane PFAS If an apparent on-sit	ppily Sampling Past use or st chemical or no no te source is susp required at tl ottom of page 2	project in U orage of n-site? pected, income to summan	Describe reas Describe reas rporate further work in Yes rize site-specific next st	ter sampling effor ons for suspecting: uto ongoing remed	apparent	source(s) ram if possible.	
Apparent Sourc Chemical 1,4-dioxane PFAS If an apparent on-sit Further action r Use the box at the bo	ppily Sampling Past use or st chemical or no no te source is susp required at tl ottom of page 2	project in U orage of n-site? pected, income to summan	Describe reas Describe reas rporate further work in Yes rize site-specific next st	ons for suspecting ons for suspecting on the ongoing remed No opps or provide rati	apparent	source(s) ram if possible.	

EC F	orm 1: Ini	tial Gro	undwater Sampl	ling Results Ev	aluat	ion
Site Name: Utility	Manufacturin	3		Site l	D: 130	0043H
Date(s) Sampled: D	ecember 7, 2	018			2	il
Number of Monitorin	ng Wells: 1		79	(attach figure showi		olinglocations)
Chemical Chemical	reening	(DWQ)	Screening level C Recommended MCL)	Max. concentral	ion .	Check box if level exceeded
1,4-dioxane in groun	idwater		1 ug/L (ppb)		6.1	✓
PFOA in groundwate	in groundwater 1		10 ng/L (ppt)	1	3.1	✓
PFOS in groundwate	г		10 ng/L (ppt)	6	.04	
Awareness						
Other PFAS (not PFO	A/PFOS)	Any one	ompound over 100 ng/L	1	0.5	
Total PFAS (incl. PFO	A/PFOS)	Total con	centration over 500 ng/L	56	.68	
Proximity to Wa Water supply type	Any wells w 3 mile of si	ithin	Distance (ft)		lethod(s) used to confirm water supply well locations	
Public well(s)	¾ mile of si	te?	1,650 ft	loc	locations GIS	
Private well(s)	по	-	1,05010		0.5	
	ip ply Sampling	project in	mile of site, discuss nee UIS to track drinking w	ater sampling efforts	as dire	cted.
Chemical	chemical o		Describe rea	Describe reasons for suspecting apparent source(s		
1,4-dioxane	по	8	-			
PFAS	по	94				
Further action r Use the box at the bo recommending furth	equired at at	this tim e 2 to summ:	arize site-specific next si rels are exceeded.	☐ No teps or provide ration		Charles Annual Annua
Project Manager			Section	Chief		

Date Signed

Bureau Director

EC Form 1: Initial Groundwater Sampling Results Evaluation

ite Name: Former	ier Laka				Site ID: 130043K		
ate(s) Sampled:No	(s) Sampled:_November 14, 2018						
umber of Monitorin	ig Wells: 1			(a	ttach figure showing san	nplinglocations)	
roundwater Sci	reening						
Chemical		Screening Level			Max. Concentration Detected	Check Box if Screening Level Exceeded	
1,4-dioxane in groun	dwater	D.	0.35 ug/L (ppb)		0.091		
PFOA + PFOS in grou	A + PFOS in groundwater		Ong/L (ppt)		29.2		
Awareness							
Other PFAS (not PFO	er PFAS (not PFOA/PFOS) Any one cor			ng/L	7.44		
Total PFAS (incl. PFO	A/PFOS) To	tal conce	ntration over 500	ng/L	73.73		
Water Supply Type	Any wells within % mile of site?				Method(s) used to confirm water supply well locations		
Public well(s)	½ mile of site?		3,100	locations			
Private well(s)	по	1					
	pply Sampling pro e(s)	ject in U			for sampling these suppl rr sampling efforts as dir		
Chemical	Past use or stora chemical on-si		Describe	reasor	ns for suspecting apparen	t source(s)	
1,4-dioxane	по						
PFAS	по						
an apparent on-site corporate into ong Surther action re Yes, summarize site	oingremedial pro equired at this	gram if p s tim e?	oossibleYe	s	esite contaminant migrat No ge 2 of this form.	cion and	
roject Manager		_%	Sec	tion Ch	ief		
ureau Director		_%	Dat	e Signe	ed .		

_
NEW
YORK
STATE
1

te Name:118-131	0 Swalm Stree	t		Site ID:	30043P		
ate(s) Sampled:N	ovember 14, :	2018		Class: _2			
umber of Monitoria	ng Wells: 1		(at	tach figure showing san	nplinglocations)		
roundwater Sc	reening						
Chemical			ening level commended MCL)	Max. concentration detected	Check box if level exceeded		
L,4-dioxane in grour	idwater	1	ıg/L (ppb)	0.14			
PFOA in groundwate	vater 1		ng/L (ppt)	38.1	✓		
PFOS in groundwate	oundwater 1		ng/L (ppt)	8.11			
Awareness							
Other PFAS (not PFC	A/PFOS)	Any one com	pound over 100 ng/L	10.7			
Fotal PFAS (incl. PFO	A/PFOS)	Total concent	ration over 500 ng/L	97.83	✓		
Public well(s)	½ mile of si	te?	2,400	locations GIS			
Water supply type	Any wells wi		Distance (ft) Method(s) used to confirm w		water supply well		
Private well(s)	по	+	2,400	GIS			
	are confirme	d within ½ mil		or sampling these suppl			
reate a EC Water Si	apply Sampling	project in UIS	to track drinking wate	r sampling erforts as dir	ectea.		
reate a EC Water Si	apply Sampling	torage of		r sampling errores as cur is for suspecting apparen	900 Pro C 1000		
pparent Source	upply Sampling e(s) Past use or s	torage of on-site?			900 Pro C 1000		
water supply wells reate a EC Water Si pparent Source Chemical L,4-dioxane	e(s) Past use or s chemical o	torage of on-site?			900 Pro C 1000		

Date Signed

Bureau Director

NCIA SITES NEEDING ENVIRONMENTAL EASEMEMTS OR ICS

- IMC Magnetics 130043A
- Atlas Graphics 130043B In place but need current confirmation
- Tishcon @ 125 State St. 130043C currently in progress
- 130043 I, L, and M checking with R. Decandia will know by next Thursday - didn't find them in DECDOCS

NCIA SITES WITH PENDING PRRs Bob, still investigating this- will know by nex

- 130043A tracking down current RP
- 130043B tracking down current RP
- 130043C working with site owner to get EE and SMP
- 130043D _ This site needs completion of RP SVI investigation
- 130043H not very familiar with site
- 130043N not very familiar with site
- 130043P should be OK

Thank You

Joseph Jones
Engineering Geologist 2
12th Floor, 625 Broadway
Albany NY 12233
joseph.jones@dec.ny.gov
518-402-9621

Connect with us:

Facebook: www.facebook.com/NYSDEC

Twitter: twitter.com/NYSDEC

Flickr: www.flickr.com/photos/nysdec

