OPERATION, MAINTENANCE AND MONITORING REPORT MAY 2009 SEMIANNUAL GOUNDWATER SAMPLING

118 – 130 SWALM STREET SITE SITE # 1-30-043P

WORK ASSIGNMENT NO. D004444-20

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

MACTEC Engineering and Consulting, P.C. Portland, Maine

MACTEC Project No. 3612072097

JULY 2009

engineering and constructing a better tomorrow

July 13, 2009

Mr. Joseph Jones New York State Department of Environmental Conservation 625 Broadway, 12th Floor Albany, NY 12233-7016

Subject: **118-130 Swalm Street (Site 1-30-043P)**

Interim Operation, Maintenance and Monitoring Report - May 2009

Semiannual Groundwater Sampling

Dear Mr. Jones:

On behalf of the New York State Department of Conservation and Work Assignment D004444-20, MACTEC Engineering and Consulting, P.C. (MACTEC) is submitting this Interim Operation, Maintenance and Monitoring Report (OM&M) report for the May 2009 semiannual groundwater sampling conducted at the 118-130 Swalm Street site (Site) (Site 1-30-043P) in North Hempstead, Nassau County, New York. This report summarizes the groundwater sampling activities undertaken at the Site on May 20, 2009 and provides tabulated results compared to New York State (NYS) Class GA groundwater standards.

Sampling and Analysis

MACTEC completed the second of four scheduled semiannual sampling events on May 20, 2009. A synoptic round of water levels and groundwater samples were collected from each of the three-Site monitoring wells. Groundwater samples were collected using low flow sampling procedures described in the Final Site Management Work Plan (MACTEC, 2008). Field data records used to document the groundwater sampling activities are provided in Attachment 1.

Samples were submitted to Columbia Analytical Services for volatile organic compound (VOC) analysis using Method 8260B. Groundwater sample results are provided in Attachment 2 and the Data Usability Summary Report is included in Attachment 3.

Findings

Groundwater elevation data from the May 2009 event is summarized on Table 1. Interpreted groundwater flow direction (see Figure 1) using the elevations obtained in May 2009 is consistent with previous findings; groundwater flow at the Site is to the southwest.

Groundwater analytical results from the initial round of groundwater sampling were compared to the NYS Class GA Groundwater Quality Standards, 6 New York Codes, Rules, and Regulations Part 703, (NYS, 1999). Reported concentrations of individual analytes indicating a contravention of standards are presented in Table 2. As shown in this table and on Figure 1, chlorinated VOCs were detected in groundwater from wells recently installed at the Site. Tetrachloroethene (PCE) detected in groundwater from location MW-3 (downgradient well) was observed at 17 micrograms per liter (μ g/L). This concentration exceeds the Class GA standard of 5 μ g/L. These results are consistent with results from samples collected after the installation of the wells (November 2008), PCE was detected above the downgradient well (MW-3) at 14 μ g/L.

Summary

The second of four groundwater sampling events was completed at the 118-130 Swalm Street site in May 2009. Groundwater flow direction and concentrations of VOCs detected were comparable to findings noted for the November 2008 sampling event.

Two additional groundwater sampling events are scheduled (November 2009 and April 2010). A final comprehensive report will be generated at the completion of the OM&M implementation phase.

Please let us know if you have any questions on the material provided within.

Sincerely,

MACTEC Engineering and Consulting, P.C.

Jayme P. Connolly

Tupe P. G

Project Manager

John W. Peterson

Principal Professional

Enclosures (3)

REFERENCES

- MACTEC Engineering and Consulting, P.C. (MACTEC), 2008. "Final Site Management Work Plan 118-130 Swalm Street". Prepared for New York State Department of Environmental Conservation, Albany, New York. June, 2008.
- New York State (NYS), 1999. New York Codes, Rules, and Regulations, Title 6, Part 700-705 Water Quality Regulations Surface Water and Groundwater Classifications and Standards. Amended August 1999.

Table 1 Groundwater Elevation Data - May 2009

Exploration ID	Ground Elevation	Casing Elevation	Riser Elevation	Depth to Water 10/10/08 (ft TOR)	Groundwater Surface Elevation 10/10/08	Depth to Water 11/11/08 (ft TOR)	Groundwater Surface Elevation 11/11/08	Depth to Water 5/20/09 (ft TOR)	Groundwater Surface Elevation 5/20/09
MW-1	124.93	124.93	124.74	51.56	73.18	51.74	73.00	51.67	73.26
MW-2	123.81	123.81	123.56	50.67	72.89	50.81	72.75	50.71	73.10
MW-3	121.96	121.96	121.56	48.91	72.65	51.74	69.82	48.99	72.97

Notes:

TOR = Top of Riser

Elevations in feet above mean sea level.

MW = monitoring well

Horizontal Datum: NAD83(CORS)- NYSPCS, Long Island

Vertical Datum: NAVD88 Units: U.S. Survery feet $NYSDEC-Site\ No.\ 1-30-043P$

MACTEC Engineering and Consulting, P.C., Project No. 3612072097

Table 2 - Summary of Volatile Organic Compounds Detected in Groundwater Samples - May 2009

	Location MW-1		1	MW-2		MW-2		MW-3	
	Sample Date			5/20/2009		5/20/2009		5/20/2	
	Sample ID	130043P-MW1-GWXX2		130043P-MW2-GWXX2		30043P-MW2-GWDUP		130043P-MW	3-GWXX2
	Media	GW		GW		GW	r	GW	I
	QC Code	FS		FS		FD		FS	
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Tetrachloroethene	5	0.53 J		2.3		2.3	3	1'	7
Trichloroethene	5	1	U	1	U	1	U	3.	7

Notes:

Results in microgram per liter (µg/L)

Samples analyzed for VOCs by USEPA Method 8260B

Media:

GW = Groundwater

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected above the reporting limit

J = Estimated value

Criteria = Values from Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and Groundwater Effluent Limitations (NYSDEC, 1998).

Detections are indicated in BOLD

Highlighted results exceed criteria

Created by: BAS 6/24/2009 Checked by: JPC 6/24/2009

ATTACHMENT 1

FIELD DATA RECORDS

PROJECT NYSDEC Swalm Street	
ACTIVITY START 1 2 3 0 END 1 2 0 0 SAMPLE TIME	
WATER LEVEL / PUMP SETTINGS MEASUREMENT POINT AT DO OF WELL RISER TOP OF WELL RISER TOP OF WELL RISER TOP OF PROTECTIVE CASING STICKUP (FROM GROUND) WELL DEPTH (TOP) TOTAL DEPTH TO WATER (INTO) SCREEN (TOP) PID WELL MOUTH PPM CASING STICKUP (FROM GROUND) WELL INTERGRITY:	_
NITIAL DEPTH TO POF WELL RISER TOP OF WELL RISER TOP OF PROTECTIVE CASING TOWATER TOP OF PROTECTIVE CASING TOWATER TOWAT	
INITIAL DEPTH	FT
FINAL DEPTH TO WATER 51.67 FT SCREEN (TOR) DRAWDOWN VOLUME (initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) TOTAL VOL. PURGED (ourge volume (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter) PURGE DATA PURGE TEMP. CONDUCTANCE (MS/cm) (units) TIME WATER (III) RATE (III/IM) (deg. c) (mS/cm) (units) (mg/L) (inits) (i	二
TO WATER S(.6 / FT	IN
DRAWDOWN	N/A
(initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) RATIO OF DRAWDOWN VOLUME TO TOTAL VOL. PURGED PURGED PURGED TO O O O O O O O O O O O O O O O O O O	
TOTAL VOL. PURGED (purge volume (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter) PURGE DATA SPECIFIC TIME DEPTH TO PURGE (deg. c) (mS/cm) (units) (mg/L) (ntu) (mv) (comments) [038 51.66 51.67 200 14.8 1.94 12.8 5.7 110 29 115 51.68 14.8 5.6 53 21 115 51.68 14.9 14.9 14.9 14.9 14.9 51.69 51.67 200 14.9 14.9 14.9 51.69 51.67 200 14.5 1.92 12.8 5.6 53 21 115 51.68 14.9 14.9 14.9 14.9 51.69 51.67 200 14.9 14.9 14.9 51.69 51.67 200 14.5 1.94 12.8 5.7 110 29 1115 51.68 14.9 14.9 14.9 14.9 51.69 51.67 200 14.9 14.9 14.9 51.69 51.67 200 14.9 14.9 14.9 51.69 51.69 51.67 200 14.9 14.9 14.9 51.09 51.67 200 14.9 14.9 14.9 51.09 51.67 200 14.9 14.9 14.9 51.09 51.67 200 14.9 14.9 14.9 51.09 51.67 200 14.9 14.9 14.9 51.09 51.67 200 14.9 14.9 14.9 51.09 51.67 200 14.9 14.9 14.9 14.9 51.09 51.67 200 14.9 14.9 14.9 14.9 14.9 51.09 51.67 200 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9	
PURGED CONTINUED CONTINUED CONTINUED CONDUCTANCE	
PURGE DATA DEPTH TO PURGE TEMP. CONDUCTANCE PH DISS. 02 TURBIDITY REDOX (my) COMMENTS	
TIME WATER (ft) RATE (ml/m) (deg. c) (mS/cm) (units) (mg/L) (ntu) (mv) COMMENTS (D38 51.66 51.67 200 14.8 1.95 12.8 6.3 180 43 1050 51.67 200 14.8 1.94 12.8 5.9 160 37 100 51.67 200 14.5 1.92 12.8 5.7 150 33 105 51.67 105 14.5 1.92 12.8 5.7 110 29 1115 51.68 4 14.5 1.91 12.8 5.6 53 21 (130 51.67 200 14.5 1.91 12.8 5.6 53 21 (141 51.68 4 14.5 1.91 12.8 5.6 26 15 (130 51.67 200 14.5 1.93 12.8 5.6 22 13 (131 51.68 4 14.4 1.93 12.8 5.6 22 13	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u></u> .
1050 51.67 200 14.8 1.95 12.8 6.3 180 43 1056 51.68 — 14.5 1.94 12.8 5.9 160 37 1100 51.67 200 14.5 1.92 12.8 5.7 150 33 1105 51.67 [14.5 1.91 12.8 5.7 110 29 1115 51.68 V 14.5 1.91 12.8 5.6 53 21 1130 51.67 200 14.5 1.93 12.8 5.6 26 13 1135 51.68 V 14.4 1.93 12.8 5.6 22 13	·
1056 57.68 - 14.5 1.94 12.8 5.9 160 37 1700 51.67 200 14.5 1.92 12.8 5.7 150 33 105 51.67 1 14.5 1.91 12.8 5.7 110 29 1115 51.68 \ 14.5 1.91 12.8 5.6 53 21 1125 51.67 200 14.5 1.93 12.8 5.6 26 15 1130 51.67 14.4 1.93 12.8 5.6 22 13 1135 51.68 \ 14.4 1.92 12.8 5.6 21 1/1	
1105 51.67 14.5 1.92 12.8 5.7 110 29 1115 51.68 14.5 1.91 12.8 5.6 53 21 1125 51.67 200 14.5 1.93 12.8 5.6 26 15 1130 51.67 14.4 1.73 12.8 5.6 22 /3 1135 51.68 14.4 1.92 12.8 5.6 21 //	
1115 51.68 1 14.5 1.91 12.8 5.6 53 21 1125 51.67 200 14.5 1.93 12.8 5.6 26 15 1130 51.67 14.4 1.73 12.8 5.6 22 13 1135 51.68 1 14.4 1.92 12.8 5.6 21 1/1	
1130 5167 14.4 1.93 12.8 5.6 22 13 1135 5168 V 14.4 1.92 12.8 5.6 21 11	
1135 51.68 1 14.4 1.92 12.8 5.6 21 11	
1148 5667 200 145 1.92 128 5.6 19 7	
1150 51.67 1 14.5 1.91 12.8 5.6 26 6	
14 191 128 5.6 26 10	
EQUIPMENT DOCUMENTATION	
TYPE OF PUMP ATERIAL TYPE OF TUBING TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL TYPE OF BLADDER MATERIAL TYPE OF BLADDER MATERIAL TYPE OF BLADDER MATERIAL OTHER OTHER OTHER OTHER OTHER	
ANALYTICAL PARAMETERS	
METHOD PRESERVATION VOLUME SAMPLE NUMBER METHOD REQUIRED COLLECTED USEPA-8260B HCL / 4 DEG. C 3 X 40 ML	*
NOTES: All parametos shelle-forbiday slightly clareted but LOCATION SKETCH / 5 (500	
wal to the child	
Britains	
1 / BAS 06/11/2009	~
1 3AS 06/11/2009	
SIGNATURE: YUM Kauliff AMACT	EC
LOWFLOW,XLS/LF Swalm 5/18/2009	

ſ

J

FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING JOB NUMBER 3612072097-03.1										
PROJECT	NYSDEC Swalt	m Street		FIELD SAM	PLE NUMBE	R 130043	p-mw2-0	o/c xxw	1UP2/MS2/MD2	
SITE ID	mw-a	<u> </u>			SITE TYPI	E WELL			DATE 5/20/09	
ACTIVITY	START U75	END	1030	SAMPLE TI	ме	1010				
	EVEL / PUMP S			REMENT POINT	······································	PROTECTIVE			SING/WELL 0.27 FT	
INITIAL DEF		7/	TOF	OF WELL RISER OF PROTECTIVE	CASING	CASING STIC (FROM GROU		FT WE	ELL 32	
FINAL DEF		173	WELL DEPT (TOR)	65.2	FT	PID AMBIENT AIF		PPM	AM. [
DRAWDO VOLU	1 6 6	003 . 6	SCREEN LENGTH		FT	PID WELL MOUTH			YES NO N/A CAP <u>A</u> ASING <u>X</u>	
(initial -	final x 0.16 {2-inc		ch}) RATIO (DE DRAWDOWN VOTAL VOLUME PUF		PRESSURE TO PUMP	35		ASING X COCKED A COCK	
PURC	SED 2		AL ne duration (minu	v 0 0 0 3 rtes) x 0.00026 gal/n	nilliliter)	REFILL SETTING	11.3	DIS	SCHARGE 3,5	
PURGE DA	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	SPECIFIC CONDUCTANCE (mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	COMMENTS	
0800	53-50		+ Aug c	wheet ru	6.6	8.2	סטטוד	229	Very turbil- yellow	
0831	50.72	225	14.0	0.452	6.6	8.0	310	310	brown court betinge	
0845	50.72	225	14.0	, 485	6.7	7.7	240	306	while Iget Witchiels	
0400	50.73	170	14.1	<u> </u>	6.7	7.5	240 280	301		
0405	50.74	200	14.4	1525	9.7	5.0	>1000	223		
0910	50.74	210	14.2	1509	811	6.3	71000	256		
0415	50.74	225	14.3	.492	10.9	7.5	950	269		
0920	50.74	Ψ	14.3	,495	6.6	12.7	430	<i>473</i>		
0975	50.74	325	/4.3 /4.3	1508	6.6	7.6	370	275		
0435	50.73	210	14.5	1529	6.6	7.5	330	276		
0940	50.73	U	14.4	1533	6.6	7.4	310	277		
0945	50.73	200	14.4	.536	(0.6	7.4	280	277		
0950	50173		14.4	.536	6.7	7.4	360	276		
1000	50.73	200	14,4	1542 1551	6.7	7.3	430	276		
7000	30.73	20			/		7.0			
			14	1.551	6.7	73		TKO		
					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				1	
			_	209						
		16	5/0	0,0				·		
			<u> </u>			-				
		1 								
TYPE	OF PUMP		TYPE OF TUBI	NG SITY POLYETHYLE		PE OF PUMP N			PE OF BLADDER MATERIAL EFLON	
	EOPUMP (perist ED BLADDER		OTHER_	C.,,,, OL, ETTINE		OTHER	J.LLL	<u></u>	THER	
	CAL PARAMET	TERS	<u>NU</u>	THOD MBER	<u>v</u>	SERVATION METHOD		SAMPLE COLLECTED		
NOTES:				EPA-8260B	HCI	L/4 DEG. C	3 X 40 ML			
M (Turbidir	y will no	of come	down.	.	LOCATION	SKETCH	mw	-2 . mw-3	
Recou	javanuter	5 502400 E. Low 100	Acoula	arein to				2 Cool	du Sireet	
colle	it suple	despite h	ish turb	whichy, going to sign of m's D my	10.	143	ľ	Bu	المنكا	
Also (collected	ourlingt	cux w .1	BAS ob	[ii] w	jq.				
SIGNATUI	71 /	Kauff	<u> </u>					edw.1	NACTEC -	
L	owflow.xLs/	ri- Swalm / /						م	5/18/2009	

ſ	FIELD I	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING			JOB NUMBER	3612072097-03.1
	PROJECT	NYSDEC Swaln	m Street		FIELD SAM	PLE NUMBER	1300	43P-MW	3-GUXX	2	
	SITE ID	WW-	3			SITE TYPE	WELL	•		DATE	5/20/09
ļ	ACTIVITY	START /20	5 END	1350	SAMPLE TI	ME	1320)			
	WATER LE	EVEL / PUMP S	ETTINGS		REMENT POINT OF WELL RISER		PROTECTIVE CASING STICE	KUD		CASING / WEL	L O.Y FT
	INITIAL DEF	TH U	3.98	TOP	OF WELL RISER OF PROTECTIVE		(FROM GROU		FT	WELL I	
	TO WAT			FT WELL DEPT	H 62.b		PID			DIAM.	2 IN
	FINAL DEF		8.99	(TOR)	<u> </u>		AMBIENT AIR		PPM	WELL INTERC	
	DRAWDO	WN		SCREEN LENGTH			PID WELL MOUTH		PPM	CAP	S NO N/A
Ì	VOLU		G ch} or x 0.65 {4-in	GAL RATIO C	OF DRAWDOWN V	OLUME	PRESSURE	0	-		
	TOTAL V				TAL VOLUME PUF		TO PUMP	35	PSI	COLLAR	2
	PURO	GED ろ。		SAL	tes) x 0.00026 gal/n		REFILL SETTING	11.5		DISCHARGE SETTING	3.5
	PURGE DA		per minute/ x un	ie daration (mina	SPECIFIC	minicory .	OLI (III O				!
		DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)		COMMENTS
	1214	48.98	Struton	my curs	setonte						COMMENTO
	1220	48.99	1201	17.9	0.258	6.7	9.0	115	200		
	1230	48,99	100	16.5	1253	6.6	8.4	1-	191		
	1240	48.99	180	16.3	1241	و.و و،و	8,3	120	163		
	1245	48.99	180	16.2	1738	6.6	8.3	54	144		
B	1300	48.99	150	16.0	1233	6.6	8.3	40	139		
	1305	48.99	+	16.3	1232	\$. G	8.3	25	134		
i	1310	48.94	180	16.4	1231	6.6	8.2	20	132	1	,
	1320	48.44	180	16.3	1229	6.6	8-1	18	132		
				16.	1779	10.60	81	18	130.	<u> </u>	· .
				rv.	11301	W-W	1		100		
					120/04						
					5100						
				/				· · · · · · · · · · · · · · · · · · ·			
	EQUIPME	NT DOCUMEN	ITATION			<u> </u>			1	<u> </u>	V-7.//
	TYPE	OF PUMP		TYPE OF TUBI			E OF PUMP M			TYPE OF BLA	DDER MATERIAL
		SEOPUMP (perist ED BLADDER	taitic)	OTHER_	SITY POLYETHYLE	NE X	STAINLESS			OTHER	-11-
• •	ANALYTI	CAL PARAME	TERS	ME	THOD	DDES	SERVATION	VOLUME	SAMPLE	,	
) C		<u>NUI</u>	MBER EPA-8260B	<u>M</u>	ETHOD ./4 DEG. C		COLLECT		
	1						- A DEG. G	0 X 40 WIL	4		1
	NOTES:	All permetos	sthe-out	mility slight	ly cheveredlen	<i>-</i>	LOCATION	SKETCH ر	W	w-3	
	1 200	W.			·	ļ	FV	My 2		. •	
			06/11/0		,		اندا	ا آ	Cic	7	1
		RAS	ob/11/0	2009.		j	153	Swalm	>#	18	
	"	グビ	2/11/	۸۸.			Rushmore Str	Swalm Build	in)		
		1	\bigcap	[]]]			shu	Borr	,	walm	
	SIGNATU	RE: \\ MUL	Keuli	VYn			Ru			15	MACTEC
	L	LOWFLOW XLS/	/LF Swalm	//			<u> </u>			 	5/18/2009
		- V- "\7"		V						. •	1

ATTACHMENT 2

GROUNDWATER SAMPLE RESULTS

Attachment 2: Groundwater Sample Results - May 2009

Sample I	Delivery Group	R09028	84	R0902	884	R09028	84	R09028	884	R09028	84
<u>k</u>	Location	MW-1		MW-		MW-1		MW-		QC	
	Sample Date	5/20/20		5/20/20		5/20/20		5/20/20		5/20/20	09
	Sample ID	130043P-MW2	-GWXX2	130043P-MW2	2-GWDUP2	130043P-MW1	-GWXX2	130043P-MW3	3-GWXX2	130043P-TB	1-52009
	Qc Code	FS		FD		FS		FS		TB	
Analysis Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260 1,1,1-Trichloroethane	ug/l	1	U	1	U	1	U	1	U	1	U
SW8260 1,1,2,2-Tetrachloroethane	ug/l		U	1	U		U		U		U
SW8260 1,1,2-Trichloro-1,2,2-Trifluoroethan	ug/l	1	U	1	U	1	U		U	1	U
SW8260 1,1,2-Trichloroethane	ug/l		U	_	U		U		U		U
SW8260 1,1-Dichloroethane	ug/l		U		U		U		U		U
SW8260 1,1-Dichloroethene	ug/l		U		U		U		U		U
SW8260 1,2,4-Trichlorobenzene	ug/l		U		U		U		U		U
SW8260 1,2-Dibromo-3-chloropropane	ug/l		U		U		U		U		U
SW8260 1,2-Dibromoethane	ug/l		U		U		U		U		U
SW8260 1,2-Dichlorobenzene	ug/l		U		U		U		U		U
SW8260 1,2-Dichloroethane	ug/l	1			U		U		U		U
SW8260 1,2-Dichloropropane	ug/l		U		U		U		U		U
SW8260 1,3-Dichlorobenzene	ug/l		U		U		U		U		U
SW8260 1,4-Dichlorobenzene SW8260 2-Butanone	ug/l	5	U		U U		U U		U	4.4	~
SW8260 2-Hexanone	ug/l	5			U		U		U		U
SW8260 2-Hexanone SW8260 4-Methyl-2-pentanone	ug/l	5			U		U		U		U
SW8260 Acetic acid, methyl ester	ug/l ug/l	10			U	10		10		10	
SW8260 Acetone SW8260 Acetone	ug/l	10			U	10		10		42	
SW8260 Benzene	ug/l		U		U		U		U		U
SW8260 Bromodichloromethane	ug/l		U		U		U		U		U
SW8260 Bromoform	ug/l		U	_	U		U		U		U
SW8260 Bromomethane	ug/l		U		U		U		U		U
SW8260 Carbon disulfide	ug/l		U		U		U		U		U
SW8260 Carbon tetrachloride	ug/l	1	U	1	U	1	U	1	U	1	U
SW8260 Chlorobenzene	ug/l	1	U	1	U	1	U	1	U	1	U
SW8260 Chlorodibromomethane	ug/l	1	U	1	U	1	U	1	U	1	U
SW8260 Chloroethane	ug/l	2	U	2	U	2	U	2	U	2	U
SW8260 Chloroform	ug/l	1	U	1	U	1	U	1	U	1	U
SW8260 Chloromethane	ug/l	2	U	2	U	2	U	2	U	2	U
SW8260 Cis-1,2-Dichloroethene	ug/l	1	U	1	U	1	U	1	U	1	U
SW8260 cis-1,3-Dichloropropene	ug/l		U		U		U		U		U
SW8260 Cyclohexane	ug/l		U		U		U		U		U
SW8260 Dichlorodifluoromethane	ug/l		U		U		U		U		U
SW8260 Ethyl benzene	ug/l		U		U		U		U		U
SW8260 Isopropylbenzene	ug/l		U		U		U		U		U
SW8260 Methyl cyclohexane	ug/l		U		U		U		U		U
SW8260 Methyl Tertbutyl Ether	ug/l		U		U		U		U		U
SW8260 Methylene chloride	ug/l		U		U		U		U	0.86	
SW8260 Styrene	ug/l	_	U	2.3	U		U	17	U		U
SW8260 Tetrachloroethene SW8260 Toluene	ug/l	2.3	U		U	0.53	U		U		U U
SW8260 Toluene SW8260 trans-1,2-Dichloroethene	ug/l ug/l		U		U		U		U		U
SW8260 trans-1,2-Dichloropenee	ug/l ug/l		U		U		U		U		U
SW8260 Trichloroethene	ug/l ug/l		U	_	U		U	3.7			U
SW8260 Trichlorofluoromethane	ug/l		U	_	U		U		U		U
SW8260 Vinyl chloride	ug/l	1	_		U		U		U		U
SW8260 Xylene, m/p	ug/l		U	_	U		U		U		U
SW8260 Xylene, o	ug/l		U		U		U		U		U
· o pragramo, o	~g/1	1	-	1	~		7	1	~	1	

Notes:

ug/l = micrograms per liter FS = field sample FD = field duplicate sample

 $U = \text{not detected}; \ value \ represents \ the \ sample \ quantitation \ limit \ (SQL)$ $J = estimated \ value$

QC = quality control sample TB = trip blank

Created by: BJS 06/17/2009 Checked by: BAS 06/23/2009

ATTACHMENT 3

DATA USABILITY SUMMARY REPORT

DATA USABILITY SUMMARY REPORT 118-130 SWALM STREET SITE OM&M IMPLEMENTATION MONITORING RESULTS NORTH HEMPSTEAD, NEW YORK

1.0 Introduction:

Three groundwater samples were collected at the 118-130 Swalm Street Site in North Hempstead, New York in May 2009 and submitted for off-site laboratory analyses. Groundwater samples were analyzed by Columbia Analytical Services of Rochester, New York. A listing of samples included in this investigation is presented in Table 1. A summary of the analytical results is presented in Table 2. Groundwater samples were analyzed for volatile organic compounds (VOCs) by USEPA Method SW-846 8260B.

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005).

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2002). Laboratory QC limits were used during the data evaluation unless noted otherwise. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification. With the exception of the items discussed below, results are interpreted to be usable as reported by the laboratory. The following laboratory or data validation qualifiers are used in the final data presentation.

U = target analyte is not detected at the reported detection limit J = concentration is estimated

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

2.0 Groundwater Samples

Detections of 2-butanone (4.4 J), acetone (42), and dichloromethane (0.86 J) were found in the trip blank associated with all samples in the SDG. Acetone and 2-butanone are considered common volatile laboratory contaminants, so an action limit was calculated at ten times the detection reported in the blank for these compounds. An action limit was calculated at five times the detection for dichloromethane reported in the blank.

2-Butanone and dichloromethane were non-detect in the three samples and therefore required no qualifications. Acetone was detected (2.6 J) in one sample (130043P-MW1-GWXX2) below the calculated action level; therefore results were qualified as non-detect (10 U).

TABLE 1 SUMMARY OF SAMPLES

SDG	Field Sample ID	Lab Sample ID	Collection Date	Analysis Method	Parameter	Туре
R0902884	130043P-MW1-GWXX2	R0902884-005	05/20/2009	SW8260	VOC	FS
R0902884	130043P-MW2-GWDUP2	R0902884-002	05/20/2009	SW8260	VOC	FD
R0902884	130043P-MW2-GWMS2	R0902884-003	05/20/2009	SW8260	VOC.	MS
R0902884	130043P-MW2-GWMD2	R0902884-004	05/20/2009	SW8260	VOC	MSD
R0902884	130043P-MW2-GWXX2	R0902884-001	05/20/2009	SW8260	VOC	FS
R0902884	130043P-MW3-GWXX2	R0902884-006	05/20/2009	SW8260	VOC	FS
R0902884	130043P-TB1-52009	R0902884-007	05/20/2009	SW8260	VOC	TB

Notes: FS = Field Sample; TB = Trip Blank; FD = Field Duplicate; MS = Matrix Spike; MSD = Matrix Spike Duplicate

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2002. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; Draft DER-10; Division of Environmental Remediation; December 2002.

Data Validator: Brandon Shaw

Date June 17, 2009

Reviewed by: Jayme Connolly

Signature:

Signature:

Date:

me 1. 5/17/09