

APPENDIX K

ROUX ASSOCIATES AQUIFER PERFORMANCE TEST

AQUIFER TESTING AND ANALYTICAL MODELING INVESTIGATION AT THE UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

Great Neck Facility Great Neck, New York

April 17, 1991

Prepared for:

Unisys Corporation 3199 Pilot Knob Road Eagan, Minnesota

Prepared by:

ROUX ASSOCIATES, INC. 775 Park Avenue Huntington, New York 11743

CONTENTS

1.0	INTRODUCTION	1
2.0	BACKGROUND	2
3.0	 METHODOLOGY 3.1 Description of Aquifer Tests 3.1.1 Step Test, and Pumping and Recovery Tests 3.2 Step Test 3.3 Pumping Test 	3 3 3 4 5
4.0	HYDROGEOLOGY4.1 Regional Hydrogeology4.2 Geology of the Site4.3 Hydrology of the Site	8 8 9 9
5.0	HYDRAULIC COEFFICIENT AND FLOW SYSTEM EVALUATION 5.1 Step Test 5.2 Pumping Test 5.2.1 Neuman Delayed Gravity Response and Partial Penetration Method 5.2.1.1 Pumping Test Results 5.2.1.1 Pumping Well No. 2 5.2.1.1.2 Monitoring Well 1MI 5.2.1.1.3 Monitoring Well 12MI 5.2.1.1.4 Remaining Monitoring Wells 5.2.1.3 Comparison of Site-Specific Data to Published Information 5.3 Recovery Test	12 12 14 16 20 21 21 23 24 28 29 30
6.0	CAPTURE ZONE ANALYSIS	31 31 33
7.0	SUMMARY OF FINDINGS AND CONCLUSIONS	35
8.0	RECOMMENDATIONS	38
9.0	REFERENCES	39

TABLES

- 1. Summary of Water-Level Measurements in Monitoring Wells at the Unisys Corporation Great Neck Facility, Great Neck, New York.
- 2. Step-Drawdown (Step) Test Data for Unisys Production Well No. 2, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 3. Constant-Rate (Pumping) Test Data and Recovery Test Data for Unisys Production Well No. 2, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 4. Public Supply Wells within a 3-Mile Radius of the Unisys Corporation Great Neck Facility, Great Neck New York.
- 5. Summary of the Hydraulic Coefficient from the August 20, 1990 through August 23, 1990 Pumping Test at the Unisys Corporation Great Neck Facility, Great Neck, New York.

FIGURES

- 1. Location of the Unisys Corporation Great Neck Facility, Great Neck, New York.
- 2. Locations of Monitoring Wells, Production Wells, and Diffusion Wells at the Unisys Corporation Great Neck Facility, Great Neck, New York.
- 3. Schematic Regional Hydrogeologic Cross Section through Unisys Corporation Great Neck Facility, Great Neck, New York.
- 4. Equipotential Map of the Magothy Aquifer Based Upon Intermediate Magothy Aquifer Monitoring Wells, August 16, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 5. Water-Table Elevation Map Based Upon Upper Glacial Aquifer Monitoring Wells, August 16, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 6. Linear Plot of Time Versus Pumping Rate for Unisys Production Well No. 2, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 7. Linear Plot of Time Versus Drawdown for Monitoring Well 1GU, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 8. Linear Plot of Time Versus Drawdown for Monitoring Well 1GL, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.

- 9. Linear Plot of Time Versus Drawdown for Monitoring Well 1MI, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 10. Linear Plot of Time Versus Drawdown for Monitoring Well 1MI/L, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 11. Linear Plot of Time Versus Drawdown for Monitoring Well 1ML, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 12. Linear Plot of Time Versus Drawdown for Monitoring Well 2GL, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 13. Linear Plot of Time Versus Drawdown for Monitoring Well 2MI, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 14. Linear Plot of Time Versus Drawdown for Monitoring Well 3GL, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 15. Linear Plot of Time Versus Drawdown for Monitoring Well 4GL, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 16. Linear Plot of Time Versus Drawdown for Monitoring Well 4MI, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 17. Linear Plot of Time Versus Drawdown for Monitoring Well 5GL, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 18. Linear Plot of Time Versus Drawdown for Monitoring Well 5MI, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 19. Linear Plot of Time Versus Drawdown for Monitoring Well 6GL, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 20. Linear Plot of Time Versus Drawdown for Monitoring Well 7GL, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 21. Linear Plot of Time Versus Drawdown for Monitoring Well 8GU, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.

- 22. Linear Plot of Time Versus Drawdown for Monitoring Well 8GL, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 23. Linear Plot of Time Versus Drawdown for Monitoring Well 9GL, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 24. Linear-Plot-of-Time Versus-Drawdown for Monitoring Well 10GL, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 25. Linear-Plot-of-Time Versus-Drawdown for Monitoring Well 11GL, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 26. Linear Plot of Time Versus Drawdown for Monitoring Well 11MI, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 27. Linear Plot of Time Versus Drawdown for Monitoring Well 12MI, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 28. Linear Plot of Time Versus Drawdown for Monitoring Well 12ML, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 29. Logarithmic Plot of Time Versus Drawdown as Collected from Data Logger for Monitoring Well 1MI, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 30. Logarithmic Plot of Time Versus Drawdown as Collected from Data Logger for Monitoring Well 12MI, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 31. Logarithmic Plot of Time Versus Drawdown as Collected Manually for Monitoring Well 1MI, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 32. Logarithmic Plot of Time Versus Drawdown as Collected Manually for Monitoring Well 12MI, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York.
- 33. Logarithmic Plot of Time versus Drawdown for Neuman Partial Penetration Analysis Using AQTESOLV Type Curve Option, for Monitoring Well 1MI, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York (Type Curve Match 1).

- 34. Logarithmic Plot of Time versus Drawdown for Neuman Partial Penetration Analysis Using AQTESOLV Type Curve Option, for Monitoring Well 1MI, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York (Type Curve Match 2).
- 35. Logarithmic Plot of Time versus Drawdown for Neuman Partial Penetration Analysis Using AQTESOLV Type Curve Option, for Monitoring Well 12MI, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York (Type Curve Match 1).
- 36. Logarithmic Plot of Time versus Drawdown for Neuman Partial Penetration Analysis Using AQTESOLV Type Curve Option, for Monitoring Well 12MI, August 20, 1990 through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York (Type Curve Match 2).
- 37. Theoretical Capture Zones for Unisys Production Well Nos. 1, 2, and 3 Pumping 500 Gallons Per Minutes Per Well, Unisys Corporation Great Neck Facility, Great Neck, New York.

PLATES

1. Public Supply Wells within a 3 Mile Radius of the Unisys Corporation Great Neck Facility, Great Neck, New York.

APPENDICES

- A. Standard Operating Procedure for Conducting a Step-Drawdown Test, and Standard Operating Procedure for conducting a Constant-Rate (Pumping) Test and Recovery Test.
- B. Standard Operating Procedure for Measuring Water Levels and Sounding a Well with a Steel Tape, and Standard Operating Procedure for Measuring Water Levels Using an Electronic Sounding Device (M-Scope).
- C. August 2, 1990 Step-Drawdown Data, Unisys Corporation Great Neck Facility, Great Neck, New York.
- D. August 20, 1990 through August 23, 1990 Pumping Test and Recovery Test Data, Unisys Corporation Great Neck Facility, Great Neck, New York.
- E. Barometric Pressure from July 20, 1990 through September 6, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.
- F. Borehole Core, Geologic and Well Construction Logs for the Unisys Corporation Great Neck Facility, Great Neck, New York.

1.0 INTRODUCTION

Roux Associates, Inc. (Roux Associates) was retained by Unisys Corporation (Unisys) to conduct aquifer testing at the Unisys Corporation Great Neck Facility, Great Neck, New York (Site). The aquifer testing consisted of the implementation of a step-drawdown (step) test, and a constant-rate (pumping) and recovery test. The step test was run on Thursday, August 2, 1990, and the pumping test was run from Monday, August 20, 1990 through Thursday, August 23, 1990. The recovery test commenced immediately with the termination (shut down) of the pumping test on Thursday, August 23, 1990 (at 10:30 a.m.) and water-level data were collected for an additional 4.5 hours after the recovery test began.

The purpose for conducting the step test was to determine the pumping rate for the pumping test. The objectives for implementing the pumping test included the following:

- providing "quantitative" results of the analysis of the time versus drawdown data collected from Monitoring Well 1MI and from Monitoring Well 12MI;
- providing qualitative information of the evaluation of the time versus drawdown data from the remaining wells at the Site; and
- using the results obtained from the analysis of the pumping test to perform an analytical capture-zone analysis (model) for Unisys Production Wells Nos. 1, 2, and 3 to assist in determining the feasibility of using these wells to contain off-site migration of constituent-impacted ground water (Roux Associates, Inc. 1990)

2.0 BACKGROUND

The Site is located in western Nassau County, near the border between Nassau County and Queens County (Figure 1). The Site encompasses an area of approximately 3,800,000 square feet (87 acres).

In the Spring of 1988, Unisys initiated a subsurface investigation at the Site, and 19 monitoring wells were installed as part of the subsurface investigation. The 19 monitoring wells were to determine ground-water elevations and direction of flow, and ground-water quality at the Site.

In the Summer of 1990, Unisys installed an additional three monitoring wells at the Site. The three new monitoring wells were for aquifer testing purposes, and to determine the saturated thickness of the Magothy aquifer beneath the Site (i.e., the bottom of the Magothy aquifer/top of the Raritan Clay contact). As part of the aquifer testing program, all 22 monitoring wells would be used to collect water-level data.

The aquifer tests were conducted to provide quantitative hydrogeologic data to characterize the flow system. Hydraulic coefficients characterizing the flow system were to be obtained from the aquifer tests, and incorporated into a capture zone analysis.

3.0 METHODOLOGY

The pumping test employed the Neuman Method (1975) for conducting a pumping test in, and analyzing pumping test data from, an anisotropic unconfined aquifer considering delayed gravity response. A description of the analytical approach is discussed in Section 5.2.1, (Neuman Delayed Gravity Response and Partial Penetration Method).

This analytical technique was chosen based upon hydrogeologic data evidenced during monitoring well drilling and installation procedures that indicate that the flow system exists under unconfined conditions. A description of the hydrogeologic conditions in and around the Site is provided in Section 4.0 (Hydrogeology). Moreover, the Neuman Method provides the flexibility of analyzing pumping test (time versus drawdown) data collected from partially penetrating wells (i.e., from wells that do not fully penetrate the entire saturated thickness of the aquifer), as is the case at the Site.

3.1 Description of Aquifer Tests

In accordance with the Roux Associates proposal to provide aquifer testing services at the Site (Roux Associates, Inc. 1990), aquifer testing consisting of a step test, and a pumping test and recovery test were implemented at the Site. The step test, and pumping and recovery tests are discussed below and in Section 5.0 (Hydraulic Coefficient Determination and Flow System Evaluation). Additional information on the implementation of these aquifer tests are provided in the Roux Associates standard operating procedures (SOPs) for conducting a step test, and for conducting a pumping test and a recovery test (Appendix A).

3.1.1 Step Test, and Pumping and Recovery Tests

A pumping test was conducted at the Site in an attempt to obtain data from which aquifer (hydraulic) parameters, including the horizontal hydraulic conductivity and vertical hydraulic conductivity (permeability), the transmissivity, the storage coefficient (elastic and water-table), and the degree of anisotropy could be calculated. These data were to be used to construct a capture zone model.

-3-

Prior to the pumping test, a step test was conducted to assess the performance characteristics of the pumping well. The step test consisted of pumping the pumping well (Unisys Production Well No. 2 [Well No. 2]) at successively greater discharge (pumping) rates for relatively short periods of time (e.g., 1-hour to 2-hour intervals). Data from the step test were used for selecting an optimum pumping rate for the pumping test.

Due to cooling water requirements of the facility it was not feasible to terminate pumping from the aquifer for an extended period of time. In recognition of this requirement and the need to establish nonpumping conditions at Pumping Well No. 2 it was decided that Pumping Well No. 3 would be pumped for cooling water requirements, and Pumping Well No. 2 would be shut down. By taking this action, quasi-steady conditions were established at Pumping Well No. 2 prior to initiating the aquifer pumping test.

Three additional monitoring wells (1ML, 12MI, and 12ML) were installed prior to undertaking the aquifer testing. The objective of these wells was to collect water-level data under pumping conditions. Quantitative water-level data could not be collected from Pumping Well Nos. 1, 2, or 3 due to well head construction and configuration of the turbine pumps. The 19 monitoring wells at the Site were also used to collect ground-water level data.

In accordance with the Groundwater Withdrawal Permit, 75 percent of the water extracted from the aquifer must be re-injected. The diffusion wells are located approximately 1000 feet "upgradient" of the pumping wells. The diffusion wells are screened in the middle of the Magothy Aquifer.

3.2 Step Test

The step test was run on Well No. 2 on Monday, August 2, 1990. Unisys Production Well No. 3 (Well No. 3) continued to pump during the step test to supply the facility with required process water. Well No. 3 reportedly pumped at a constant and continuous rate at the beginning of the step test (Wojciak, pers. comm. 1990a).

The step test consisted of pumping the pumping well at a series of increasing pumping rates for approximately 6 hours while qualitatively monitoring water levels using an air line (attached to a bicycle pump to maintain pressure in the air line). Water levels in the monitoring wells at the Site were also measured to provide preliminary information on the impact of the pumping stress. Measurements obtained during the step test included the pumping rate, the static water levels just before the test was started, the time since the pump started, the pumping or dynamic water levels during the pumping period, and the time the pump stopped.

Prior to the start of the step test, static water levels were determined with either a steel tape and chalk or an electric sounding device (m-scope). (The Roux Associates SOPs for measuring water levels with a steel tape, and for measuring water levels using a m-scope are provided in Appendix B.) In addition, synoptic rounds of water levels were measured prior to beginning the step test. Although specific wells had specific water-level measuring devices dedicated to them, all water-level measuring devices used during the pumping test (i.e., a steel tape and chalk and/or a m-scope) were compared to ensure they were measuring water levels similarly.

The pumping (discharge) rate for the test was measured using an in-line digital flow meter, from Data Instrumental Corporation, Pocasset, Massachusetts. This arrangement allows the discharge rate to be accurately and instantaneously determined. Discharged water from the pumping well was piped through the facility and recharged to the flow system through diffusion wells upgradient (and on the south side) of the Site (Figure 2).

A detailed discussion on the implementation of a step test is provided in the Roux Associates SOP for conducting a step test (Appendix A). All the data recorded during the step test are presented in Appendix C.

3.3 Pumping Test

The pumping test consisted of pumping Well No. 2 continuous rate for 72 hours (Monday, August 20, 1990 through Thursday, August 23, 1990). For reasons described in Section 5.2 (Pumping Test) Well No. 2 could not be pumped at a constant rate for the 72-hour period. Drawdown (i.e., the difference between static water levels and pumping water levels) was recorded in the monitoring wells at the Site throughout the test. Drawdown measurements were taken at times that were as close as possible to those specified in the Roux Associates' SOP for conducting a pumping test (Appendix A).

As previously stated, Well No. 2 was only equipped with an air line which would not accommodate a pressure transducer or a m-scope. Therefore, only water-level "measurements" relative to changes in pressure in the pumping well were estimated using the air line (i.e., near steady-state conditions could be determined when pressure values achieved near stabilization). Measurements required for the pumping test included the pumping rate, the relative static water levels just before the test was started, the time since the pump started, the pumping or dynamic water levels at designated intervals during the pumping period (time versus air pressure data), and the time the pump stopped. The distances between the pumping well, and the monitoring wells were either measured with a tape measure or estimated from the base map (Figure 2). All time versus drawdown data from the pumping test are presented in Appendix D.

As discussed above, static water levels and several synoptic rounds of water levels were measured prior to the beginning of the pumping test, the discharge rate for the test was measured using an in-line digital flow meter such that the discharge rate could be accurately and instantaneously determined, and discharged water from Well No. 2 was piped through the facility and recharged to the aquifer through diffusion wells upgradient (and on the south side) of the Site (Figure 2).

Drawdown in the monitoring wells was measured using several methods including: 1) calibrated steel tapes; 2) m-scopes; and 3) a pressure transducer and data logger (from Instrumentation Northwest, Inc., Redmond, Washington). The latter method was used to collect a continuous record of drawdown measurements. Regular synoptic rounds of water levels were measured in all of the monitoring wells at the Site during the pumping test with the steel tape or the m-scope, as well as being used to check the water levels being monitored by the pressure transducers and the data loggers. The manual measurements also served as a "back-up" in the event of a transducer and/or data logger failure, and/or the inability of the data logger software to convert water-level measurements into a usable form for plotting and/or input to analytical aquifer test software packages (programs).

A detailed discussion on the implementation of a pumping test is provided in the Roux Associates SOP for conducting a pumping test and a recovery test (Appendix A). All the data recorded during the pumping test are presented in Appendix D.

The data provided by the pumping test required interpretation by the Neuman (1975) method accounting for partially penetrating wells to estimate aquifer parameters. Details of the pumping test and its results are discussed in Section 5.0 (Hydraulic Coefficient Determination and Flow System Evaluation).

4.0 HYDROGEOLOGY

The principal regional aquifers of Long Island are designated the Lloyd, Magothy, Jameco, and Upper Glacial (deep to shallow, respectively). They are mainly derived from unconsolidated clastic sediments of glacial origin. The most significant aquitards (i.e., units having low hydraulic conductivity) are the Raritan Clay which overlies the Lloyd aquifer; interbedded clay and silt lenses in the Magothy deposits; and the Gardiners Clay which overlies the Jameco aquifer and locally the Magothy aquifer (McClymonds and Franke 1972).

4.1 Regional Hydrogeology

The Site is located within the glaciated part of the Atlantic Coast Plain physiographic province and lies along a line of east-trending hills known as the Harbor Hill Moraine.

Long Island is underlain by crystalline bedrock that slopes southeastward at about 65 feet per mile forming the base of the ground-water system. Overlying the bedrock are Cretaceous fluvo-deltaic and Pleistocene glacial sedimentary deposits which developed interlayered wedges of unconsolidated course clastic material and fine clay. These sedimentary wedges thicken southward forming several perched aquifers separated by clayey aquitards. Overlying these sedimentary wedges are near horizontal glacial deposits which truncate the older sedimentary units by an angular relationship and generally form the water-table aquifer throughout Nassau County (McClymonds and Franke 1972).

The Magothy Formation which comprises the Magothy aquifer is made up of mainly fine to medium quartzose sand with lenses and layers of coarse sand and sandy and solid clay. The Magothy aquifer is generally under artesian (confined) conditions throughout much of Long Island, but can be locally under water-table (unconfined) conditions. Regionally, the Magothy aquifer is encountered at land surface to 600 feet below land surface, and can be up to 1,100 feet thick in places. It is generally low to moderately permeable with specific capacities ranging from 1 gallon per minute per foot (gpm/ft) to about 30 gpm/ft, but can have high permeability locally where specific capacity can be as high as 80 gpm/ft. The Magothy aquifer is the principal aquifer for public-supply wells and water quality is generally excellent, however, high iron and salt concentrations have been encountered along the north and south shores (McClymonds and Franke 1972). The Upper Pleistocene deposits which comprise the Upper Glacial aquifer are made up of mostly till composed of clay, sand and gravel. Boulders mainly form the Harbor Hill and Ronkonkoma terminal moraines. Outwash deposits of fine to very course quartzose sand and gravel are interbedded with till and occasionally occur with glauconitic clay. The Upper Glacial aquifer is generally under water-table (unconfined) conditions throughout Long Island. Regionally, the Upper Glacial aquifer is encountered from land surface to 50 feet below land surface, and can be up to 600 feet thick in places. Outwash deposits are generally moderately to highly permeable with specific capacities ranging from about 10 gpm/ft to more than 200 gpm/ft. Infiltration characteristics are good to excellent (McClymonds and Franke 1972).

4.2 Geology of the Site

The Magothy Formation underlying the Site is comprised of an admix of unconsolidated gravel, sand, silt, and clay deposits. Approximately 275 feet of the Magothy Formation was encountered below the Site. These sediments are interpreted as being deposited by glacial meltwater streams in outwash plains. Overall, the Magothy sediments encountered below the Site appear to become more fine-grained from bottom to top. This relationship can be inferred as signifying a retreating glacial ice-front cycle, and is indicative of decreasing hydraulic conductivity from bottom to top (Swarzenski 1963, and Anderson 1989).

The Upper Pleistocene deposits underlying the Site are composed of unconsolidated cobbles, gravel, and sand. Approximately 120 feet of Upper Pleistocene deposits were encountered below the Site. These sediments are interpreted as till deposited directly from glacial ice with little or no sorting by meltwater. Overall, the Upper Pleistocene sediments encountered below the Site appear to become more course-grained from bottom to top. This relationship can be inferred as signifying an advancing glacial ice-front cycle and is indicative of increasing hydraulic conductivity from bottom to top (Swarzenski 1963, and Anderson 1989).

4.3 Hydrology of the Site

Based upon on-site drilling activities, the Upper Glacial and Magothy aquifers are not separated by a confining unit at the Site, and therefore act, for the most part, as hydraulically connected unconfined flow system (Figure 3).

Water-level measurements taken on August 16, 1990 (Table 1) were used to construct ground-water elevation (equipotential) maps for the Upper Glacial and Magothy aquifers (Figures 5 and 6, respectively).

Ground water in the Magothy aquifer flows generally in a north-northwesterly direction below the Site (Figure 4), with a horizontal hydraulic gradient of approximately 0.002 foot/foot (ft/ft) as calculated from the water-level measurements taken August 16, 1990.

Ground water in the Upper Glacial aquifer flows generally in a northerly direction below the Site (Figure 5), with a horizontal hydraulic gradient of approximately 0.002 ft/ft as calculated from the water-level measurements taken August 16, 1990.

The estimated average hydraulic conductivity for the flow system is 384 gallons per day per square foot (gpd/ft^2) , as discussed in Section 5.2.1.2 (Summary of Pumping Test Results). A representative porosity for the unconsolidated sediments of 30 percent (0.30) was obtained from Franke and Cohen (1972), and Freeze and Cherry (1979).

A ground-water flow (velocity) analysis (model) was conducted for ground water flowing beneath the Site. The analytical ground-water flow model is based on an equation to calculate ground-water velocity, which is a modified form of the Darcy equation described by Franke and Cohen (1972) as follows.

$$v_s = K_s I/n$$

where:

- v_s = the velocity of ground water along a segment of a flow line s, in feet per day (ft/day),
- K_s = the horizontal hydraulic conductivity of the aquifer along the segment of the flow line s, in gpd/ft²
- I = the hydraulic gradient along the segment of the flow line s, in feet per feet (ft/ft), and
- n = the porosity of the aquifer, dimensionless.

Using the estimated average hydraulic conductivity for the flow system 384 gpd/ft², an average horizontal hydraulic gradient of 0.002 ft/ft, and a representative porosity of 30 percent (Franke and Cohen 1972, and Freeze and Cherry 1979), the estimated average ground-water velocity is calculated to be 0.34 ft/day. However, as also presented in Section 5.2.1.2 (Summary of Pumping Test Results), estimated hydraulic conductivity values range from 302 gpd/ft² to 502 gpd/ft², and result in an estimated range of ground-water velocities from 0.27 ft/day to 0.45 ft/day, respectively.

5.0 HYDRAULIC COEFFICIENT AND FLOW SYSTEM EVALUATION

The pumping test was conducted at the Site in an attempt to determine the hydraulic coefficients of transmissivity (T), horizontal hydraulic conductivity (K_r) and vertical hydraulic conductivity (K_z) and the ratio between them (i.e., the anisotropy), and storage coefficients (S [elastic storage] and Sy [water-table storage/specific yield]). Additionally, the time versus drawdown data measured in the monitoring wells at the Site were used to qualitatively evaluate the flow system responses to the pumping stress.

5.1 Step Test

The step test was run on Well No. 2 on Monday, August 2, 1990. Well No. 3 continued to pump during the step test to supply the facility with required process water.

Water levels (drawdown) in Monitoring Wells 1MI, 1MI/L, 1ML, 12MI, and 12ML (Figure 2) were measured automatically using Instrumentation Northwest, Inc. Redmond, Washington pressure transducers and data loggers, and manually using m-scopes. Manual drawdown measurements taken with dedicated m-scopes provided drawdown data from the step test for these five wells because the data logger remained in a "monitor" mode and, thus, did not record drawdown. Manual water-level measurements in the remainder of the wells at the Site (1 GU, 1GL, 2GL, 2MI, 3GL, 4GL, 4MI, 5GL, 5MI, 6GL, 7GL, 8GU, 8GL, 9GL, 10GL, 11GL, and 11MI [Figure 2]) were taken with a dedicated m-scope and a dedicated steel tape (refer to the Roux Associate SOPs for measuring water levels with a m-scope and with a steel tape [Appendix D]).

Water levels in Well No. 2 could not be quantitatively measured because there was no access for a pressure transducer or a m-scope. Instead, qualitative "measurements" were taken using an air line. However, the air line leaked and pressure had to be maintained using bicycle pump. Regardless, when the pressure reached near stabilization, it was assumed that near steady-state conditions were achieved in Well No. 2, and the pumping rate could be increased (stepped up).

Information pertaining to air-pressure data collected for Well No. 2, and the drawdown data collected from the monitoring wells are provided in Appendix C.

Based upon information by Unisys' facility personnel to Mr. R.A. Wojciak, Well No. 3 was reported to be pumping at a constant rate (Wojciak, pers. comm. 1990a). With the discharge from Well No. 3 being held constant, the step test in Well No. 2 began at 11:30 a.m. on August 2, 1990. The initial pumping rate was to be 500 gallons per minute (gpm). For the first 3 minutes of the step test, the pumping rate in Well No. 2 fluctuated between 500 gpm and 700 gpm. From 3 minutes to 60 minutes into the step test, the pumping rate fluctuated slightly (from 489 gpm to 500 gpm, with one measurement at 570 gpm), but essentially remained at 500 gpm (Table 2). Thus, the initial impacts on water levels in the monitoring wells were affected by the fluctuating pumping rate, and water-level measurements may not be representative of a pumping stress of 500 gpm.

After 60 minutes, the pumping rate was stepped up to 600 gpm. Again, the pumping rate fluctuated slightly (from 585 gpm to 612 gpm) but essentially remained at 600 gpm. The affects of the slight fluctuations in pumping rate were not likely to alter the pumping rate/water-level response relationship. This rate was maintained for 1 hour (from 60 minutes to 120 minutes into the step test) (Table 2).

An attempt was made to increase the pumping rate of Well No. 2 from 600 gpm to 700 gpm 2 hours into the step test. However, with the valve fully opened, a pumping rate of 700 gpm could not be achieved. For approximately 25 minutes (from 120 minutes to 145 minutes into the test) the pumping rate varied from 646 gpm to 697 gpm, and "averaged" 672 gpm within that 25-minute time span (Table 2).

At 2:05 p.m. (155 minutes into the test), Well No. 3 shut down and the pumping rate for Well No. 2 responded by increasing to 1,068 gpm. Because the facility requires approximately 1,000 gpm for process water (Wojciak, pers. comm. 1990b), the pumping rate for Well No. 2 could not be decreased (valved down) to the desired value of 700 gpm, and then stepped up in 100 gpm increments. Thus, the remainder of the step test (from 2:05 p.m. to 5:20 p.m.) was run at this higher rate. The pumping rate during this 195 minute interval fluctuated from 915 gpm to 1,101 gpm, and "averaged" 1,021 gpm (Table 2).

As stated above, water-level measurements were collected from all of the on-site monitoring wells. Preliminary results of the step test indicated that Monitoring Wells 1GU, 1GL, 1MI, 1MI/L, 1ML, 4MI, 5MI, 12MI, and 12ML were impacted by the pumping stress. Although there was some fluctuation in water levels, drawdown was evidenced in all nine of the wells (Appendix C). Conversely, preliminary results of the step test indicated that water levels in Monitoring Wells 2GL, 2MI, 3GL, 4GL, 5GL, 6GL, 7GL, 8GL, 8GU, 9GL, and 10GL were not affected by pumping Well No. 2. Water levels fluctuated between drawdown and recovery (i.e., increasing above static conditions), declining only several hundredths of a foot,

remaining constant, or recovering throughout the step test (Appendix C).

Monitoring Wells 11GL and 11MI appeared to be impacted by something other than the pumping stress of Well No. 2. Water levels in this well cluster were essentially unaffected during the first 1.25 hours of the test, as they fluctuated between drawdown of 0.01 foot and 0.07 foot (11GL) and recovery of 0.20 foot to 0.44 foot (11MI). However, during the remainder of the step test, water levels in both wells drew down to a maximum on the order of low- to mid-40s feet. This impact is clearly not the result of pumping Well No. 2 because of the distance between Well No. 2 and Well Cluster 11 (relative to the magnitude of the impact to wells closer to Well No. 2).

Thus, of the 22 monitoring wells monitored during the step test, preliminary results indicated that as many as nine wells have been impacted enough by Well No. 2. to yield sufficient drawdown data to quantitatively analyze for hydraulic coefficients during the upcoming pumping test. Obtaining useful data for pumping test analysis would depend upon Unisys' capability to maintain the pumpage rate for Well No. 2 at a constant and continuous rate on the order of 1,000 gpm (i.e., to meet the pumpage needs of the facility and to maintain Well No. 2 pumping at that rate for 72 hours [3 days]). Maintaining a constant and continuous pumping rate needed to stress the aquifer adequately is key to establishing and maintaining relationships between the pumping stress and water-level responses (drawdown) required to analyze the pumping test data.

5.2 Pumping Test

The pumping test was conducted at the Site beginning on Monday, August 20, 1990 and ending on Thursday, August 23, 1990, lasting approximately 72 hours (3 days). Well No. 2

served as the pumping well. All 22 monitoring wells at the Site served as the water-level monitoring wells. Quantitative water-level measurements were measured in the monitoring wells throughout the duration of the pumping test, and water-level measurements/relative changes in pressure were monitored in the pumping well at the same time using the air line and bicycle pump.

The optimal pumping rate for the pumping test, which is on the order of 1,000 gpm, was determined from the step test run on Monday, August 2, 1990 (prior to the pumping test). Details of the step test were previously discussed in Section 5.1 (Step Test). The actual rate for the pumping test was approximately 950 gpm. Pumping rates fluctuated throughout the pumping test, from a low of 726 gpm to a high of 1,090 gpm; however, the majority of the pumping rates recorded apparently ranged around 950 gpm (Table 3 and Figure 6), and averaged 949.6 gpm. Thus, a pumping rate of 950 gpm was used for the Neuman analytical technique.

The fluctuating pumping rate of Well No. 2 had an adverse effect on the outcome of the test, because water levels in key monitoring wells (1MI and 12MI) fluctuated and rendered the majority of the drawdown data unanalyzable (as discussed below). Consequently, the quantification of hydraulic coefficients (also discussed below) are considered estimates at best.

For the analysis of the pumping test, the drawdown (decline in ground-water level) observed in the 22 monitoring wells (1GU, 1GL, 1MI, 1MI/L, 1ML, 2GL, 2MI, 3GL, 4GL, 4MI, 5GL, 5MI, 6GL, 7GL, 8GU, 8GL, 9GL, 10GL, 11GL, 11MI, 12MI, and 12ML) was plotted against time (Figures 7 through 28, respectively). Where pumping test site conditions and drawdown were conducive to attempt an analysis of the time versus drawdown data, pumping test analyses were performed. These criteria were met for only Monitoring Wells 1MI and 12MI (Figures 9 and 27, respectively), but only for the first 40 minutes when drawdown increased and then stabilized. After approximately 40 minutes, water levels recovered and eventually went through cyclic fluctuations resulting in unusable data for quantitative analysis. This is better evidence on the logarithmic plots of time versus drawdown for Monitoring Wells 1MI and 12MI (Figures 29 and 30, respectively), from data collected by the data logger. (These data logger data are corroborated with the manual measurements of water levels taken in Monitoring Wells 1MI and 12 MI [Figures 31 and 32, respectively]).

The data from the remaining 20 monitoring wells could not be analyzed for a variety of reasons which include the following: 1) fluctuating water levels throughout the test; 2) relative constant water levels throughout the test; and 3) recovering water levels above pretest conditions (which will be presented in detail in Section 5.2.1.1.4 [Remaining Monitoring Wells]). Additionally, logarithmic plots for the time versus drawdown data from the remaining 20 monitoring wells could not be generated as water levels rose above pretest (static) conditions (i.e., values of zero and/or negative drawdown [recovery] cannot be plotted on logarithmic paper).

During the course of the pumping test, no precipitation was recorded. Barometric pressure remained relatively constant (Appendix E); thus, water levels were not affected by the changes in barometric pressure and barometric efficiencies did not have to be calculated to correct the drawdown data for pumping test analysis (Walton 1962). (The barometer charts for August 2, 1990 [step test], and August 20, 1990 through August 23, 1990 [pumping test] were set up on 1-day charts for better resolution during the aquifer tests, while the remaining days were set up on 7-day charts to monitor pre- and post-aquifer tests pressure.)

The pumping test analytical methodology employed the Neuman analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response and partially penetrating wells. This analysis was facilitated by the use of AQTESOLV™ (Duffield and Rumbaugh 1989), an aquifer test solving software package.

A description of the analytical technique is provided below.

5.2.1 Neuman Delayed Gravity Response and Partial Penetration Method

For the analysis of pumping test data from unconfined aquifers, the drawdowns vary at different rates from those predicted by the traditional Theis (1935) equation. When these drawdown data are plotted versus time on logarithmic paper, the data usually delineate an

S-shape curve consisting of a steep segment at early times, followed by a flat segment at intermediate times, with a return to a somewhat steeper segment at later times. The physical phenomenon that causes this behavior is known as delayed yield, delayed drainage, or delayed gravity response (Neuman 1975).

Neuman developed an analytical model for the delayed response process characterizing flow to a pumping well in an unconfined aquifer. This technique is used to determine the hydraulic properties of an anisotropic water-table aquifer from time versus drawdown data collected during a pumping test (Neuman 1975). For a detailed description of the theory and methodology employed, refer to Neuman (1975).

The Neuman method employed for the analysis of the pumping test data from the Site used the type curve matching technique whereby time versus drawdown data collected during the pumping test is matched to theoretical type curves. However, for this particular pumping test, only partially penetrating wells (test and monitoring) were available, which necessitated the use of a special set of theoretical curves to be developed for each pumping well and observation well configuration analyzed.

To facilitate the use of the Neuman analysis on time versus drawdown data from partially penetrating wells, the aquifer test analysis software package (computer program) AQTESOLVTM (Duffield and Rumbaugh 1989) was employed. AQTESOLVTM is an interactive menu-driven program that provides the user complete control over the analysis of aquifer test data. AQTESOLVTM provides the analyst with the option to interactively match type curves to aquifer test data directly on the screen while providing instantaneous quantification of the transmissivity (T) and the storage coefficients (i.e., the elastic storage coefficient [S] and the specific yield/water-table storage [S_y]) as well as the value of beta (β) corresponding to the type curve.

Prior to performing the type curve matching on the computer screen, AQTESOLV^M calculates the pumping well/observation well configuration-specific partial penetration type curves for $\beta = 0.001$ to $\beta = 7.0$ (see Neuman 1975, Figure 1 as examples of the type curves) using the equations accounting for partially penetrating wells (see Neuman 1975, Equations 26, 27, and 28). Additionally, the program automatically estimates aquifer parameters using

the Marquardt nonlinear least-squares technique to provide the best match between observed and calculated water levels (using the Gauss-Newton procedure [Draper and Smith 1981] with the Marquardt modifications [Marquardt 1963]).

When the type curve option of AQTESOLVTM is used, water-level drawdown data collected from an observation well is plotted versus time on a logarithmic scale on the computer screen. If the time versus drawdown plot delineates the characteristic S-shaped curve, then the time versus drawdown data is first matched to the type B curves (see Neuman 1975, Figure 1 as examples of type B curves), and the value of β corresponding to this type curve is displayed along with the calculated values for the transmissivity and the water-table storage coefficient. For the same value of β , the time versus drawdown data is then matched to the type A curves (see Neuman 1975, Figure 1 as examples of type A curves), and the calculated values for the transmissivity and the water-table storage coefficient are displayed. The transmissivity initially obtained from the data fit to the type B curve is "fine tuned" (refined) when matched to the type A curve to be representative of the entire type curve. Thus, values for T, S, Sy and β are calculated.

If the time versus drawdown plot delineates only the initial steep segment at early times and the flat segment at intermediate times (without returning to a steep segment at later times), then the data can only be matched to the type A curve. The absence of a steep portion late in the time versus drawdown curve precludes the use of the type B curve, and, thus, no calculation of Sy is possible.

The values for the T and the Sy are calculated using the following equations from Neuman (1975)

 $T = Qs_D'/s'$

 $S_v = Tt'/r^2t_v$

where:

and

T = transmissivity of the aquifer $[L^2T^{-1}]$

Q = discharge rate of the pumping well $[L^3T^1]$

- s_D = dimensionless drawdown match point value from the type B Neuman type curves, equal to $4\pi Ts/Q$
- S' = drawdown match point value from the time versus drawdown plot corresponding to the type B Neuman type curves [L]
- S_v = specific yield/water-table storage coefficient [dimensionless]
- t = time match point value from the time versus drawdown plot corresponding to the type B Neuman type curves [T]

$$t_y$$
 = dimensionless time match point value from the type B Neuman type
curves with respect to S_y , equal to Tt/S_yr^2 .

The value for the S is calculated using the following equation from Neuman (1975)

$$S = Tt^{*}/r^{2}t_{s}^{*}$$

where:

- T = transmissivity of the aquifer $[L^2T^{-1}]$
- t = time match point value from the time versus drawdown plot corresponding to the Type A Neuman type curves [T]
- r = radial distance from the observation well to the pumping well [L]
- t_s = dimensionless time match point value from the type B Neuman type curves with respect to S, equal to Tt/Sr^2 .

The horizontal hydraulic conductivity is calculated from the relationship that the horizontal hydraulic conductivity (K_r) is equal to the transmissivity (T) divided by the saturated thickness of the aquifer (b), i.e., $K_r = T/b$.

Finally, the degree of anisotropy and the vertical hydraulic conductivity are calculated using the following equations from Neuman (1975)

$$K_D = \beta b^2/r^2$$

and

$$K_z = K_D K_r$$

where:

 K_D = degree of anisotropy, equal to K_z/K_r [dimensionless] β = the value of beta corresponding to the type curve [dimensionless]

ROUX ASSOCIATES INC

b =	saturated	thickness	of the	aquifer	[L]
-----	-----------	-----------	--------	---------	-----

- r = radial distance from the observation well to the pumping well [L]
- K_z = vertical hydraulic conductivity of the aquifer [LT⁻¹]

 K_r = horizontal hydraulic conductivity of the aquifer [LT⁻¹]

5.2.1.1 Pumping Test Results

The pumping test was conducted on Well No. 2 beginning on August 20, 1990 and ending on August 23, 1990 (i.e., total of approximately 4,320 minutes). At the same time Well No. 2 was turned on, Well No. 3 (which had been supplying the facility demands for process water) was turned off. Thus, Well No. 2 fulfilled a dual role of being the pumping well for the pumping test, and supplying the facility with process water.

An attempt was made by Unisys personnel to maintain the pumping rate at a constant 950 gpm. However, the pumping rate fluctuated throughout the pumping test (Table 3 and Figure 6). Also, a valve(s) was (were) reportedly inadvertently turned between approximately 1,000 minutes and 1,500 minutes into the test resulting in a fluctuation of the pumping rate between approximately 725 gpm and 1,100 gpm (DeCillis, pers. comm. 1990a).

As previously stated, no precipitation occurred during the 72-hour pumping test. Because the pumping test was conducted in an unconfined aquifer, there is no concern regarding barometric efficiency, Walton (1962). Regardless, the barometer, which remained relatively constant throughout the pumping test (Appendix E), was monitored and compared to water levels to verify unconfined aquifer conditions, and to evaluate if any relationships between barometric pressure and ground-water levels was calculated.

Of the 22 monitoring wells observed during the pumping test, water levels in only Monitoring Wells 1MI and 12MI remained below static (prepumping) levels (i.e., revealed a drawdown trend during the pumping test). However, the fluctuating pumping rate of Well No. 2 caused water levels in Monitoring Wells 1MI and 12 MI to fluctuate during the pumping test, and to eventually recover slightly and go through a cyclic drawdown and recovery phase (Figures 9 and 27, and Appendix D). This time versus drawdown relationship limited the use of these data to quantitatively calculate aquifer hydraulic coefficients, restricting the pumping test to best estimates of hydraulic coefficients. Water levels in the remaining 20 monitoring wells either showed almost no response, continually recovered, or fluctuated between drawdown and recovery during the pumping test (Figures 7 and 8, 10 through 26, and 28, Appendix D). Thus, no pumping test analytical technique could be applied to the time versus drawdown data.

Descriptions of the results of the pumping tests analyses for Monitoring Wells 1MI and 12MI are provided in Sections 5.2.1.1.2 (Monitoring Well 1MI) and 5.2.1.1.3 (Monitoring Well 12MI), respectively. AQTESOLVTM (Duffield and Rumbaugh 1989) was used to perform the Neuman (1975) pumping test analysis to "quantify" (i.e., to provide the best estimate) the hydraulic coefficients, within the constraints of the data base.

Qualitative evaluations on the remaining 20 monitoring well are provided in Section 5.2.1.1.4 (Remaining Monitoring Wells). These data were useful in understanding the relationships between water levels on site, and on-site and off-site pumping stresses.

5.2.1.1.1 Pumping Well No. 2

As stated in Section 3.3 (Pumping Test), Well No. 2 was only equipped with an air line to monitor water levels. The air line could not accommodate a m-scope or a pressure transducer; thus, no quantitative water-level measurements could be collected using these water-level measuring devices. Moreover, the air line leaked and pressure had to be continuously maintained with a bicycle pump, and the information on the length of the air line in Well No. 2 was not available from Unisys (DeCillis, pers. comm. 1990b). Consequently, there were no time versus drawdown data available to perform a pumping test analysis for Well No. 2.

5.2.1.1.2 Monitoring Well 1MI

The time versus drawdown data recorded by the data logger for Monitoring Well 1MI is plotted on Figure 29. The water-level data recorded manually for Monitoring Well 1MI is plotted on Figure 31. It is apparent that the drawdown values measured by automated and manual techniques corroborate one another.

As evidenced on the two plots, drawdown increased from the beginning of the test (early time), followed by a flattening trend up to approximately 40 minutes (beginning of the

intermediate time). From approximately 40 minutes through 700 minutes into the test, drawdown fluctuated slightly by decreasing (i.e., recovering) and increasing, and, after approximately 700 minutes, evidenced a general decreasing trend. These fluctuating and decreasing trends in the beginning of the intermediate time through the end of the pumping test, rendered the data unusable for the pumping test analytic technique. The fluctuating drawdown trend appears to corroborate well with the fluctuating pumping rate (Figures 29 and 6, respectively). Thus, in order to derive the best estimate of the hydraulic coefficients, only the first 40 minutes of data could be applied to the analytical method.

AQTESOLV^m (Duffield and Rumbaugh 1989) was used to calculate the Neuman (1975) partial penetration type curves to perform the Neuman analysis. The time and drawdown data for Monitoring Well 1MI were entered into the AQTESOLV^m program, and the option to calculate the Neuman partial penetration type curves for the type curve matching procedure was invoked. Once the type curves were calculated, a logarithmic plot of the time versus drawdown data was plotted on a personal computer (PC) monitor.

Because drawdown during the intermediate time through the end of the test fluctuated and declined, and because the drawdown data never returned to the steep drawdown trend characteristic of late time, the data could only be used to analytically estimate the T and S. Lack of steep drawdown data from late time precluded the analysis for the Sy, and the short period of intermediate time where the curve remained flat restricted the use of the analytic technique to estimate β . Thus, instead of type curve matching data to the type B curves (later data) first (Neuman 1975), the data could only be matched to the type A curves.

Once the Neuman partial penetration type curve had been chosen from the best fit of the early portion of the field data to the type A type curve, AQTESOLVTM calculated and plotted the matched curve (Figure 33). At the same time, AQTESOLVTM calculated and displayed the hydraulic coefficients of T and S. For Monitoring Well 1MI, this resulted in a T of 8.319 square feet per min (ft²/min) (89,606 gpd/ft), and a S of 4.5249 x 10⁴ (approximately 4.5 x 10⁴) (Figure 33 and Table 5). As stated previously, problems resulting from fluctuating drawdown data impeded the determination of an anisotropy ratio with any degree of confidence, and precluded any determination of Sy.

An attempt was made to corroborate the results of the type curve option of AQTESOLV^M by invoking the program's parameter estimation option. However, when all the drawdown data were used, an error message resulted and the parameter estimation algorithm stopped due to the decreasing trend (i.e., recovery) in drawdown, and when the database was reduced to only the first 40 minutes of the pumping test, there were insufficient data to yield system representative results.

Thus, a second, independent type curve match was performed in an attempt to estimate upper and lower bounds for the T and S. The second type curve match resulted in a T of 13.85 ft²/min (149,181 gpd/ft), and a S of 6.2282 x 10⁻⁴ (approximately 6.2 x 10⁻⁴) (Figure 34 and Table 4).

5.2.1.1.3 Monitoring Well 12MI

The time versus drawdown data recorded by the data logger for Monitoring Well 12MI is plotted on Figure 30. The water-level data recorded manually for Monitoring Well 12MI is plotted on Figure 32. It is apparent that the drawdown values measured by automated and manual methods confirm each other. The fluctuating drawdown trend appears to corroborate well with the fluctuating pumping rate (Figures 30 and 6, respectively).

As stated previously, only the first 40 minutes of the data could be used for analysis because of the fluctuating trend. The fluctuating drawdown trend appears to corroborate well with the fluctuating pumping rate (Figures 30 and 7, respectively).

Again, AQTESOLV^m (Duffield and Rumbaugh 1989) was used to calculate the Neuman (1975) partial penetration type curves to perform the Neuman analysis. The time and drawdown data for Monitoring Well 12MI were entered into the AQTESOLV^m program, and the option to calculate the Neuman partial penetration type curves for the type curve matching procedure was invoked. Once the type curves were calculated, a logarithmic plot of the time versus drawdown data was plotted on a PC monitor.

Because drawdown during the intermediate time through the end of the test fluctuated and declined, and because the drawdown data never returned to the steep drawdown trend characteristic of late time, the data could only be used to analytically estimate the T and S.

Lack of steep drawdown data from late time precluded the analysis for the Sy, and the short period of intermediate time where the curve remained flat restricted the use of the analytic technique to estimate β . Thus, instead of type curve matching data to the type B curves (later data) first (Neuman 1975), the data could only be matched to the type A curves.

Once the Neuman partial penetration type curve had been chosen from the best fit of the early portion of the field data to the type A curve, AQTESOLVTM calculated and plotted the matched curve (Figure 35). At the same time, AQTESOLVTM calculated and displayed the hydraulic coefficients of T and S. For Monitoring Well 12MI, this resulted in a T of 9.972 ft^2/min (107,410 gpd/ft), and a S of 0.006205 (approximately 0.0062) (Figure 35 and Table 4). As stated above, problems resulting from fluctuating drawdown impeded the determination of an anisotropy ratio with any degree of confidence, and precluded any determination of Sy.

Again, an attempt was made to corroborate the results of the type curve option of AQTESOLVTM by invoking the program's parameter estimation option which resulted in the following: 1) when all the drawdown data were used, an error message resulted and the parameter estimation algorithm stopped due to the decreasing trend (i.e., recovery) in drawdown; and 2) when the database was reduced to only the first 40 minutes of the pumping test, there were insufficient data to yield system representative results.

Thus, a second, independent type curve match was undertaken to try to estimate upper and lower bounds for the T and S. The second type curve resulted in almost identical results as the first type curve. A T of 10.23 ft^2/min (110,109 gpd/ft), and a S of 0.006649 approximately 0.0066) were estimated (Figure 36 and Table 4).

5.2.1.1.4 Remaining Monitoring Wells

Graphs of times versus drawdown for the remaining monitoring wells (1GU, 1GL, 1MI/L, 1ML, 2GL, 2MI, 3GL, 4GL, 4MI, 5GL, 5MI, 6GL, 7 GL, 8GU, 8GL, 9GL, 10GL, 11GL, 11MI and 12ML) are illustrated on Figures 7 and 8, 10 through 26, and 28, respectively. These data preclude the use of the Neuman method or other pumping test analytical techniques because the plots do not even define the characteristic shapes for the beginning of the drawdown curve. In fact, the data had to be plotted on a linear scale because

drawdown recovered above static conditions or decreased during the pumping test (i.e., negative drawdown [water levels rising above static levels]), and data with values less than or equal to zero cannot be graphed on logarithmic paper. Thus, the data from these monitoring wells were not able to be analyzed to estimate the hydraulic coefficients, and the following discussion is a qualitative evaluation of the pumping test data from the monitoring wells.

Water levels in Monitoring Wells 1GU and 1GL (Figures 7 and 8, respectively) are reacting similarly. Water-level change in Monitoring Well 1GU remain slightly lower in magnitude than those in Monitoring Well 1GL throughout the test (0.4 foot lower at its maximum drawdown). This would be expected because Monitoring Well 1GL is screened deeper than Monitoring Well 1GU (i.e., closer to the screen of Well No. 2), and, thus, should be impacted to a greater degree. Monitoring Wells 1GU and 1GL do not appear to be responding to the pumping of Well No. 2.

Monitoring Wells 1MI/L and 1ML (Figures 10 and 11, respectively) are impacted initially within the first 100 minutes to 200 minutes with water levels lowering a maximum of 0.38 foot and 0.39 foot, respectively. Monitoring Well 12ML (Figure 28) is also impacted initially within the first 100 minutes and is reacting similarly to Monitoring Wells 1MI/L and 1ML, differing only in magnitude. Water levels in all three wells tended to fluctuate thereafter, with water levels rising above static conditions.

The plots of Monitoring Wells 2GL and 2MI (Figures 12 and 13, respectively) exhibit a similar rising water-level trend with water levels remaining above static conditions. The change in water levels in these two monitoring wells are similar in magnitude, and neither well seems to be affected by the pumping stress (Well No. 2).

In Monitoring Wells 9GL and 10GL (Figures 23 and 24, respectively), the water levels remained above static conditions throughout the test, and both wells exhibit a rising water-level trend. These wells do not appear to be impacted by the pumping of Well No. 2.

There is little fluctuation in water levels for Monitoring Wells 3GL, 4GL, 7GL, and 8GU (Figures 14, 15, 20, and 21, respectively). The fluctuations may be attributed to regional

background trends. The plots for Monitoring Wells 3GL and 8GU (Figures 14 and 21, respectively) exhibit a slightly rising water-level trend whereas the plot for Monitoring Well 4GL (Figure 15) exhibits a slightly falling water-level trend. These four wells do not appear to be impacted by the pumping of Well No. 2.

Monitoring Wells 5GL, 5MI, 6GL, 11GL and 11MI, (Figures 17, 18, 19, 25, and 26, respectively) appear to be reacting similarly. Although the change in water levels differ in magnitude, they all exhibit a cyclic fluctuation with water levels rising above static conditions. These wells do not appear to be responding to the pumping stress of Well No. 2.

Water levels rose in Monitoring Well 8GL, (Figure 22) within the first 300 minutes from 1.41 feet above static conditions to 2.47 feet above static water conditions, and continued to fluctuate frequently reaching a maximum of 2.95 feet above static water conditions at approximately 2,300 minutes into the pumping test. Water levels did not fall below static conditions during the test. The initial recovery may have occurred as a result of the shut down of Well No. 3 at the start of the pumping test, as Monitoring Well 8GL is located approximately 160 feet from Well No. 3. However, the reason(s) for the relatively high degree of fluctuation (with respect to the other monitoring wells), and the fact that water levels never reached static conditions throughout the pumping test is (are) unknown. This well was not impacted by the pumping stress (Well No. 2).

Monitoring Wells 4MI and 5MI (Figures 16 and 18, respectively) appear to be reacting similarly from approximately 2,000 minutes to 4,300 minutes since the start of the pumping test. The magnitude of the change in water levels differs substantially with Monitoring Well 4MI showing the greater change in water levels. Initially, water levels in Monitoring Well 4MI (Figure 16) fell below static conditions (0.18 foot) in the first 336 minutes, and then rose to a maximum of 1.14 feet above static conditions 2,418 minutes after the start of the test. The maximum drawdown of 0.25 foot occurred 3,486 minutes after the start of the test, and following this occurrence the water levels again rose above static conditions. Initially,

water levels in Monitoring Well 5MI (Figure 18) rose above static water conditions, and continued to remain above until 3,394 minutes into the test where they reach static conditions and then rose again. These wells do not appear to be reacting to the pumping of Well No. 2.

The fluctuations in water levels in these monitoring wells may be attributed to the close proximity of Long Island Jewish Hospital Well (designated Q1909, Plate 1) or to regional background trends. Well Q1909 is located approximately 1,600 feet west of Monitoring Wells 4MI and 5MI, and has a capacity of 800 gpm. The estimated elevation of the bottom of Well Q1909 is -114 feet relative to msl. The elevation of the bottom of Monitoring Well 4MI is -104.4 feet relative to msl, and the elevation of the bottom of Monitoring Well 5MI is -119.69 feet relative to msl. Thus, Well Q1909 and Monitoring Wells 4MI and 5MI are screened within the same interval and, if the monitoring wells are responding to a pumping stress, then it is possible to be that of Well Q1909.

There does not appear to be any impact on the monitoring wells from the public supply wells or the diffusion wells located within a 3-mile radius of the Site (Plate 2). The actual pumpage rates for these wells were relatively low (Table 4) for 1987 and 1988, yielding or injecting less than 449, 315 gpd (which was the maximum pumpage rate in 1987 for the Jamaica Water Supply Company Well N7445, located approximately 1,800 feet east of the Site. The public supply well having the maximum pumpage rate for 1988 was the Jamaica Water Supply Company Well N4390 (located approximately 1,800 feet east of the Site) yielding 323,287 gpd. These two supply wells are located next to each other. Public Supply Well N4390 is screened from -137 feet to -172 feet relative to msl, and Public Supply Well N7445 is screened from -268 feet to -328 feet relative to msl. Monitoring Wells 2GL, 2MI, 8GU, 8GL, and 9GL, are located approximately 2,000 feet away, and are the closest monitoring wells to the Public Supply Wells N4390 and N7445. The elevations of the screen zones for the public supply wells, with the closest being Monitoring Well 2MI which is screened from -101.43 feet to -121.43 feet relative to msl.

In conclusion, the fluctuations in the water levels may be due to regional background trends rather than the effects of pumpage or injection. With the exception of Monitoring Well 12MI and Monitoring Well 1MI, there does not seem to be any correlation between the water-level change in the monitoring wells and the pumping of Well No. 2 at an "average" rate of 950 gpm.

5.2.1.2 Summary of Pumping Test Results

Representative estimated values for the hydraulic coefficients of the transmissivity and storage coefficient were obtained from the Neuman (1975) analysis performed on Monitoring Wells 1MI and 12MI. Estimated transmissivity values for Monitoring Well 1MI ranged from 89,606 gpd/ft to 149,181 gpd/ft (Table 5, and Figures 33 and 34, respectively), and averaged 119,394 gpd/ft. Using the equation that relates transmissivity to hydraulic conductivity and saturated thickness (i.e., T=Kb) and a saturated thickness from the water-table surface to the Magothy aquifer/Raritan Clay contact of 297 feet, estimated hydraulic conductivity values range from 302 gpd/ft² to 502 gpd/ft², respectively (Table 5), and averaged 402 gpd/ft². Corresponding estimated values of the storage coefficient ranged from 4.5x10⁻⁴ to $6.2x10^{-4}$, respectively (Table 5) and averaged $5.4x10^{-4}$. As previously stated, the insufficient and fluctuating drawdown data precluded the estimation of the β values with any degree of confidence, and, the β values shown on Figures 33 and 34, are considered nonrepresentative for the Magothy aquifer. Moreover, lack of drawdown data to match to the type B curves made it impossible to estimate the specific yield.

Estimated transmissivity values for Monitoring Well 12MI ranged from 107,410 gpd/ft to 110,189 gpd/ft (Table 5, and Figures 35 and 36, respectively), and averaged 108,800 gpd/ft. Using the equation T=Kb and 297 feet for the saturated thickness, estimated hydraulic conductivity values range from 362 gpd/ft² to 371 gpd/ft², respectively (Table 5), and averaged 367 gpd/ft². Corresponding estimated values of the storage coefficient ranged from $6.2x10^{-3}$ to $6.6x10^{-3}$, respectively (Table 5), and averaged $6.4x10^{-3}$. As stated above, the insufficient and fluctuating drawdown data precluded the estimation of the β values with any degree of confidence, and, the β values shown on Figures 35 and 36, are considered nonrepresentative for the Magothy aquifer. Moreover, lack of drawdown data to match to the type B curves made it impossible to estimate the specific yield.

Variations exhibited in the hydraulic coefficients estimated between wells are normal when analyzing field data because of the variability in the hydrogeologic conditions between a pumping well and the well being monitored. Because hydrogeologic conditions are variable (i.e., always deviate from ideal conditions) and because the pumping test integrates this variability throughout the area between the pumping well and the monitoring well, hydraulic conditions for monitoring wells situated in different directions and/or over different distances from the pumping well exhibit different hydraulic coefficients. Thus, average estimated values for the transmissivity, hydraulic conductivity, and storage coefficient within the area pumping tested are 114,097 gpd/ft (approximately 114,100 gpd/ft), 384 gpd/ft², and 3.5x10⁻³, respectively (Table 5).

5.2.1.3 Comparison of Site-Specific Data to Published Information

Based upon the borehole logs and monitoring well construction logs obtained from Unisys for drilling and monitoring well construction activities conducted at the Site (Appendix F), and ground-water elevations measured at the Site, most if not all of the saturated materials penetrated at the Site are part of the Magothy aquifer (i.e., of the 297-foot saturated thickness, approximately 262 feet to 297 feet are in the Magothy aquifer). Published values for the hydraulic conductivity of the Magothy aquifer range from approximately 200 gpd/ft² to 2,000 gpd/ft² (Isbister 1966, Lubke 1964, Lusczynski and Swarzenski 1966, and McClymonds and Franke 1972). Moreover, hydraulic conductivity values for medium, fine, and very fine sand, and sand with silt or clay layers range from 200 gpd/ft² to 1,000 gpd/ft² (McClymonds and Franke 1972).

Because the geologic logs for the monitoring wells at the Site show a predominance of sand, fine- to medium-grained, with silt and clay layers in the saturated zone (especially with increasing depth) (Appendix F), the McClymonds and Franke (1972) range of hydraulic conductivity values from 200 gpd/ft² to 1,000 gpd/ft² is apparently more representative of the Site and area within the pumping test. Thus, the average estimated hydraulic conductivity of 384 gpd/ft² is not considered to be unrealistic as this value falls within the lower end of the published range, and is likely to be characteristic of Site conditions based upon the available drawdown suitable for analysis of the pumping test.
5.3 Recovery Test

Recovery test data was collected following the termination of the pumping test on August 23, 1990 (Appendix D). An attempt was made to analyze the recovery test data, but the data could not be analyzed. With the possible exception of Monitoring Well 12MI, recovery data fluctuated as evidenced during the pumping test (Appendix D). These fluctuations were even occurring in the early stage of recovery, rendering early data and subsequent data unusable. Even the data for Monitoring Well 12MI, which showed an initial recovery trend, was affected by fluctuating water levels which precluded quantitative analysis. Thus, the only data available for the estimates of the transmissivity and storage coefficient were obtained from the pumping test.

6.0 CAPTURE ZONE ANALYSIS

A capture zone analysis was performed for Well Nos. 1, 2, and 3 to assess the feasibility of using these wells to contain constituent-impacted ground water on site (i.e., to prevent the off-site migration of constituent-impacted ground water).

6.1 Capture Zone Model

A preliminary evaluation of the extent of ground-water capture zones from Pumping Well Nos. 1, 2, and 3 and the potential ranges in pumping rates for those wells for these two plumes employed an analytical capture zone model as described by Todd (1980). As with all analytical models, there are inherent assumptions, and the model is constructed using idealized (simplified) hydrogeological parameters. These inherent assumptions include the following:

- 1. A uniform flow field, as indicated by a uniformly sloping potentiometric or watertable surface;
- 2. The drawdown is small in relation to the saturated thickness in a water-table aquifer;
- 3. The well pumps for an infinite time; and
- 4. The well fully penetrates the aquifer (Todd 1980).

Although the model assumptions are violated for Items 1 and 4, Item 4 is the most crucial assumption that is violated because Well Nos. 1, 2, and 3 have short well screens (approximately 30 feet) relative to the saturated thickness of the aquifer (approximately 297 feet). The results of violating this model assumption is discussed in the following section (6.2 [Results of Capture Zone Model]). Thus, the results of the analysis presented below are representative of a fully penetrating well in a uniform flow field.

The model was constructed using data collected during the previous on-site hydrogeological investigations and the hydraulic coefficient estimates obtained from pumping test results in Monitoring Wells 1MI and 12MI.

As explained by Todd (1980), the expression for the boundary of the region producing inflow to a pumping well in a uniform flow field can be derived by superposition of radial and one-dimensional flow fields to yield

$$-\frac{y}{x} = \tan(\frac{2\pi Kbi}{Q}y)$$

where:

x = rectangular coordinate (L),

- y = rectangular coordinate (L),
- K = hydraulic conductivity (L/T),
- b = aquifer thickness (L),
- i = natural piezometric slope (hydraulic gradient) (L/L),
- Q = discharge rate (L^3/T) .

The boundary of the region producing inflow to a pumping well is the capture zone of the pumping well.

An estimated average hydraulic conductivity of 384 gpd/ft^2 as determined from the pumping test, was used in the model. The hydraulic gradients obtained from the water-table and equipotential maps for August 16, 1990 (Figures 4 and 5, respectively) were input to the model. The hydraulic gradient for both maps was determined to be 0.002.

Aquifer saturated thicknesses in the vicinity of the pumping test was obtained from geologic logs for Monitoring Wells 1ML and 12ML (Appendix F) and ground-water elevations measured in August 1990 (Table 1). A value of 297 feet was input to the model for the saturated thickness of the flow system.

Applying the values for the coefficients listed above to the equation from Todd (1980), a range for the pumping rates of Well Nos. 1, 2, and 3 were calculated and the capture zone evaluated. The calculated pumping rates for Well Nos. 1, 2, and 3 to capture ground-water flowing off site to the north are 500 gpm (720,000 gpd) per well, for a total pumping rate of 1,500 gpm (2,160,000 gpd). The resulting capture zone is illustrated on Figure 37. However, because of the inherent assumptions in an analytical model, and the assumptions used to idealize the flow system, the calculated pumping rates for the extraction wells are

not absolute values for partially penetrating well, but preliminary estimates for fully penetrating wells, which may vary from field conditions. Regardless, the calculated pumping rates provide information comparing theoretical pumping rates and field results from pumping Well No. 2 at 950 gpm during the pumping test.

6.2 Comparison Between Capture Zone Analysis and Pumping Test Results

The evaluation of the pumping test indicated that, with the exceptions of Monitoring Wells 1MI and 12MI, the remaining monitoring wells at the Site were not effected. Thus, at a pumping rate of 950 gpm for Well No. 2, and with the exception of Monitoring Well 1MI, the remaining monitoring wells in Well Cluster 1 (1GU, 1GL, 1MI/L, and 1ML) did not respond to the pumping stress. When comparing these results to those of the capture zone analysis, the following results become apparent:

- The capture zone analysis shows that ground water throughout the 297-foot saturated thickness as far north of Well Cluster 1 is captured by pumping Well No. 2 at a rate of 500 gpm because Well No. 2 is simulated as a fully penetrating well (an inherent assumption of the model);
- 2. The pumping test shows that ground water throughout the 297-foot saturated thickness as far north as Well Cluster 1 is not captured by Well No. 2 pumping at a rate of 950 gpm because Well No. 2 only penetrates approximately 10 percent of the flow system (i.e., 30 feet out of 297 feet);
- 3. The capture zone analysis shows that violation of the assumption of a fully penetrating pumping well yields nonsystem-representative results for the hydraulic containment of ground water through the 297-foot saturated thickness;
- 4. The use of a partially penetrating pumping well to contain off-site flow of constituent-impacted ground water through the 297-foot saturated thickness will require pumping rates in excess of 950 gpm (or approximately 1,000 gpm) per well, for a total discharge rate in excess of 3,000 gpm; and

5. The pumpage rate to contain constituent-impacted ground water from migrating off site could be reduced by delineating the zones (i.e., depth intervals) in the aquifer that contain constituent-impacted ground water such that pumpage could be focused on hydraulic control in these zones.

7.0 SUMMARY OF FINDINGS AND CONCLUSIONS

From the hydrogeologic investigation and the capture zone modeling, the following information can be inferred:

- 1. The Site is located in the glaciated part of the Atlantic Coast Plain physiographic province and lies along a line of east-trending hills known as the Harbor Hill Moraine;
- 2. Approximately 120 feet of Upper Pleistocene unconsolidated deposits, consisting primarily of cobbles, gravel, and sand, underlie the Site;
- 3. Approximately 275 feet of the Magothy Formation (unconsolidated deposits), consisting primarily of fine- to medium-grained sand with silts, clays and gravel, underlie the Upper Pleistocene unconsolidated deposits;
- 4. The Upper Pleistocene and Magothy Formation deposits are in hydraulic connection, as no distinct aquitard (confining unit) was evidenced between these deposits;
- 5. The saturated thickness of the flow system beneath the Site is on the order of 300 feet, based upon a 297-foot saturated thickness at Well Clusters 1 and 12;
- 6. Ground water exists entirely or primarily in the Magothy aquifer, as the saturated thickness of the Upper Pleistocene deposits ranges from 0 foot to 30 feet;
- 7. A representative hydraulic gradient (across the Site) of 0.002 ft/ft was obtained from August 16, 1990 ground-water elevation maps;
- Of the 22 monitoring wells observed during the August 20, 1990 through August 23, 1990 pumping test at the Site, only Monitoring Wells 1MI and 12MI yielded some data (i.e., the first 40 minutes of the test) that were applicable to a pumping test analytical technique. Water levels in the remaining 19 monitoring wells

fluctuated continuously, fell below and rose above static conditions, or remained above static conditions throughout the pumping test, which precluded the application of a pumping test analytical method to these data;

- 9. Estimated values for the hydraulic conductivity range from 302 gpd/ft² to 502 gpd/ft², and average 402 gpd/ft². These values are based upon ranges for the estimated transmissivity values of 89,606 gpd/ft to 149,181 gpd/ft obtained from the Neuman (1975) analysis of pumping test data from unconfined aquifers screened by partially penetrating wells. The estimated average transmissivity is 119,394 gpd/ft;
- The estimated hydraulic conductivity values fall with the range of 200 gpd/ft² to 1,000 gpd/ft² reported by McClymonds and Franke (1972) for Magothy deposits consisting of medium, fine, and very fine sand, and sand with silt or clay layers, which predominate in the Magothy aquifer beneath the Site;
- Estimated values for the storage coefficient range from 4.5 x 10⁻⁴ to 6.2 x 10⁻⁴ using the Neuman (1975) analysis of pumping test data from unconfined aquifers screened by partially penetrating wells. The estimated average storage coefficient is 5.4 x 10⁻⁴;
- 12. Values for β and the specific yield (water-table storage coefficient) could not be obtained using the Neuman (1975) analysis because of fluctuating water levels and recovery that occurred in Monitoring Wells 1MI and 12MI from 40 minutes since the start of the pumping test through the end of the pumping test;
- Ground-water velocity estimates beneath the Site range from 0.27 ft/day to 0.45 ft/day, and average 0.34 ft/day;
- 14. An analytical capture zone analysis, which assumes that the pumping well fully penetrates the saturated thickness of the flow system, indicated that the off-site migration of constituent-impacted ground water to the north could be controlled

by pumping the Unisys Production Wells (Nos. 1,2, and 3) at a rate of 500 gpm per well, or a total of 1,500 gpm. However, the violation of this inherent assumption yielded nonsystem-representative results;

- 15. Because the pumping test indicated that ground-water levels in the vicinity of Well Cluster 1 were not impacted by pumping Well No. 2 at a rate of 950 gpm, the use of a partially penetrating pumping well to contain off-site flow of constituentimpacted ground water through the 297-foot saturated thickness will require pumping rates in excess of 950 gpm (approximately 1,000) per well, for a total discharge rate in excess of 3,000 gpm.
- 16. In an attempt to reduce the pumpage rate needed to contain other off-site migration of constituent-impacted ground water, delineation of the zones (i.e., depth intervals) in the aquifer that contain constituent-impacted ground water would focus pumpage such that these zones could be hydraulically controlled.
- 17. There are numerous pumping/diffusion wells located within the vicinity of the Unisys Site. The pumping and injection of ground water near the Site complicates the analysis of ground-water flow patterns.

8.0 RECOMMENDATIONS

Based on the results of the hydrogeologic investigation and analytical capture zone modeling, Roux Associates recommends the following:

- 1. The drilling and geophysical logging of additional boreholes at the Site to collect supplementary lithologic and hydrologic data, especially at depth (i.e., to the Magothy Formation/Raritan Clay contact), in an attempt to better define the hydrogeologic system (e.g., is the flow system one hydraulically connected system, or is [are] there a low-permeability confining zone[s]);
- 2. The installation of additional monitoring wells to delineate the horizontal and vertical extent of the constituent-impacted ground water. The numbers, locations, and depths of the monitoring wells should be determined based upon the results of water-quality sampling;
- 3. A review of all previous hydrogeologic data along with all new hydrogeologic data to refine the characterization of the hydrogeologic system, and to determine if a controlled pumping test (i.e., a separate pumping well not needed to supply the water demands of the facility) should be implemented at the Site; and
- 4. The construction of a detailed, three-dimensional flow and transport model to evaluate head-and-flow relationships relative to solute transport to assist in the development and design of a Site-wide ground-water remedial program, and to help guide future field investigations (e.g., the best estimates for the numbers, locations, and depths of monitoring wells both on site and off site to delineate the extent of constituent-impacted ground water).

Respectfully submitted, ROUX ASSOCIATES, INC.

Michael A. DeCillis Principal Hydrogeologist

ROUX ASSOCIATES INC

- Anderson, M.P. 1989. Hydrogeologic Facies Models to Delineate Large-Scale Spatial Trends in Glacial and Glaciofluvial Sediments. Geological Society of America Bulletin. vol 101. pp. 501-511.
- DeCillis, M.A. 1990a. Roux Associates, Inc. Telephone conversation with R.A. Wojciak, Geologist/Project Manager, Unisys Corporation. August 21, 1990.
- DeCillis, M.A. 1990b. Roux Associates, Inc. Telephone conversation with R.A. Wojciak, Geologist/Project Manager, Unisys Corporation. August 23, 1990.
- DeCillis, M.A. 1991. Roux Associates, Inc. Letter to R.A. Wojciak, Geologist/Project Manager, Unisys Corporation. February 5, 1991.
- Draper, N.R. and H. Smith. 1981. Applied Regression Analysis. Second Edition. John Wiley & Sons. New York. 709 pp.
- Duffield, G.M. and J.D. Rumbaugh III. 1989 AQTESOLV™ Aquifer Test Solver. Geraghty & Miller, Inc. Reston, Virginia.
- Franke, O.L. and P. Cohen. 1972. Regional Rates of Ground-Water Movement on Long Island, New York. United States Geological Survey Professional Paper 800-C. pp. C271-C277.
- Freeze, R.A. and J.A. Cherry. 1479. Groundwater. Prentice-Hall, Inc. New Jersey. 604 pp.
 - Isbister, J. 1966. Geology and Hydrology of Northeastern Nassau County Long Island, New York. United States Geological Survey Water-Supply Paper 1825. 89 pp.
 - Lubke, E.R. 1964. Hydrogeology of the Huntington-Smithtown Area Suffolk County, New York. United States Geological Survey Water-Supply Paper 1669-D. 68 pp.
 - Lusczynski, N.J. and W.V. Swarzenski. 1966. Salt-Water Encroachment in Southern Nassau and Southeastern Queens Counties, Long Island, New York. United States Geological Survey Water-Supply Paper 1613-F, 76 pp.
 - McClymonds, N.E., and O.L. Franke. 1972. Water-Transmitting Properties of Aquifers on Long Island, New York. United States Geological Survey Professional Paper 627-E, 24 pp.
 - Marquardt, D.W. 1963. An Algorithm for Least-Squares Estimation on Nonlinear Parameters. J. Soc. Ind. Appl. Math, vol. 11, no. 2. pp. 431-441.
 - Neuman, S.P. 1975. Analysis of Pumping Test Data from Anisotropic Unconfined Aquifers Considering Delayed Gravity Response. Water Resources Research, vol. 11, no. 2. pp. 329-342.

- Roux Associates, Inc. 1990. Proposal to Provide Aquifer Testing Hydrogeologic Services to Unisys Corporation at the Great Neck, New York Facility. May 15, 1990.
- Swarzenski, W.V. 1963. Hydrogeology of Northeast Nassau and Northeast Queens Counties, Long Island, New York. United States Geological Survey Water-Supply Paper 1657.
- Theis, C.V. 1935. The Relation Between the Lowering of Piezometric Surface and the Rate and Duration of Discharge of Well Using Groundwater Storage. Transactions of American Geophysical Union. 16th Anniversary Meeting. pt. 2.
- Todd, D.K. 1980. Groundwater Hydrogeology. Second Edition. John Wiley & Sons. New York. 535 pp.
- Walton, W.C. 1962. Selected Analytical Methods for Well and Aquifer Evaluation. Illinois State Water Survey. Bulletin 49. 81 pp.
- Wojciak, R.A. 1990a. Unisys Corporation. Conversation with M. A. DeCillis, Principal Hydrogeologist, Roux Associates, Inc. August 2, 1990. approx. 10:30 a.m.
- Wojciak, R.A. 1990b. Unisys Corporation. Conversation with M. A. DeCillis, Principal Hydrogeologist, Roux Associates, Inc. August 2, 1990. approx. 2:15 p.m.

Wali Designation		June	5, 1989	June	8, 1989	January 10, 1990		
	Elevation of Measuring Point (feet above mean sea levei)	Depth to Water (feet below measuring point)	Elevation of Water Level (feet above mean sea level)	Depth to Water (feet below measuring point)	Elevation of Water Level (feet above mean sea Level)	Depth to Water (feet below measuring point)	Elevation of Water Level (feet above mean sea level)	
161	143 77	106 07	37.70	105 84	37.03	101 23		
160	145.77	106.69	37.70	105.84	37.93	102.45	41 96	
195	144.41	105.65	38 74	105.88	38 51	101.85	42 54	
1MT/L	144 55			105.00	50.51	101.05	42.54	
1 MT.	*	٩			2		-2:00	
2GL	128.35	86.40	41.95	86.25	42.10	82.48	45.87	
2MT	128.57	86.61	41 96	86 46	42 11	82 67	45.90	
3GL	139.50	97.96	41.54	97.83	41.67	94.05	45.45	
4GL	144.81	106.21	38.60	105.88	38.93	103.37	41.44	
4MI	145.10	108.50	36.60	108.29	36.81	103.54	41.56	
5GL	130.32	89.85	40.47	89.79	40.53	88.01	42.31	
5MI	130.31	90.48	39.83	90.37	39.94	88.40	41.91	
6GL	128.30	88.12	40.18	88.00	40.30	84.26	44.04	
7GL	149.76	113.72	36.04	113.51	36.25	109.92	39.84	
8GU	120.42	77.58	42.84	77.39	43.03	73.67	46.75	
8GL	120.32	80.06	40.26	79.92	40.40	78.82	41.50	
9GL	126.94	85.40	41.54	85.23	41.71	81.51	45.43	
10GL	126.03	86.36	39.67	86.19	39.84	82.35	43.68	
11GL	129.02	88.38	40.64	88.21	40.81	84.32	44.70	
11MI	129.39	89.23	40.16	89.05	40.34	85.14	44.25	
12MI	*	а	2	2	2	2		
12ML	*	a	2	2	2	2	2	

Table 1. Summary of Water-Level Measurements in Monitoring Wells at the Unisys Corporation Great Neck Facility, Great Neck, New York.

-- Water level measurements were not obtained for Well 1MI/L on 6/5/89 or 6/8/89 because there was a pump set in the well.

a Well installation post-dates time measurements were taken

* Wells not surveyed for elevation of measuring point. Measurements left as depth to water where indicated.

		August	9, 1990	August 16, 1990			
Well Designation	Elevation of Measuring Point (feet above mean sea level)	Depth to Water (feet below measuring point)	Elevation of Water Level (feet above mean sea level)	Depth to Water (feet below measuring point)	Elevation of Water Level (feet above mean sea level)		
101	143.77	100 46		100 40	43.37		
160	144 41	101 15	43.26	101 10	43.37		
1MT	144.39	101.13	42 98	101 39	43.00		
1MT/1.	144.55	105.76	105.76 38.79		42.70		
1ML	*	101.85	*	102.19	*		
2GL	128.35	84.38	43.97	83.53	44.82		
2MI	128.57	83.73	44.84	83.84	44.73		
3GL	139.50	93.63	45.87	93.59	45.91		
4GL	144.81	99.39	45.42	99.16	45.65		
4MI	145.10	103.32	41.78	102.59	42.51		
5GL	130.32	85.00	45.32	84.97	45.35		
5MI	130.31	85.66	44.65	85.62	44.69		
6GL	128.30	83.04	45.26	84.01	44.29		
7GL	149.76	106.45	43.31	106.36	43.40		
8GU	120.42	73.69	46.73	73.85	46.57		
8GL	120.32	78.12	42.20	78.30	42.02		
9GL	126.94	82.98	43.96	82.04	44.90		
10GL	126.03	82.44	43.59	82.59	43.44		
11GL	129.02	82.33	46.69	83.67	45.35		
11MI	129.39	83.26	46.13	84.67	44.72		
12MI	*	89.95	*	89.95	*		
12ML	*	90.58	*	90.58	*		

Table 1. Summary of Water-Level Measurements in Monitoring Wells at the Unisys Corporation Great Neck Facility, Great Neck, New York.

-- Water level measurements were not obtained for Well 1MI/L on 6/5/89 or 6/8/89 because there was a pump set in the well.

a Well installation post-dates time measurements were taken

* Wells not surveyed for elevation of measuring point. Measurements left as depth to water where indicated.

	25.0				_
		0.00	11:30:00	8/2/90	2
	17 5	0.50	$11 \cdot 30 \cdot 30$	0, 2, 70	-
	17.0	1.50	11:31:30		
	21.0	2.00	11:32:00		
	21.0	2.50	11:32:30		
500		3.00	11:33:00		
	21.0	4.00	11:34:00		
570		8.00	11:38:00		
500		10.00	11:40:00		
	21.0	11.00	11:41:00		
498		13.00	11:43:00		
	21.0	14.00	11:44:00		
495		15.00	11:45:00		
494	21.0	20.00	11:50:00		
501		24.00	11:54:00		
489		26.00	11:56:00		
495	21.0	28.00	11:58:00		
473	21.0	40.00	12:10:00		
493	21.0	50.00	12:20:00		
600	20.0	60.00	12:30:00		
	20.0	60.25	12:30:15		
600	19.0	60.50	12:30:30		
	19.0	60.75	12:30:45		
	19.0	61.00	12:31:00		
597	19.5	62.00	12:32:00		
	19.5	67 00	12.27.00		
498 495 494 501 489 495 473 493 600 600 597		21.0 21.0 21.0 21.0 21.0 21.0 20.0 20.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11:41:00 11.00 21.0 $11:43:00$ 13.00 $11:43:00$ 14.00 $11:44:00$ 14.00 $11:50:00$ 20.00 $11:50:00$ 20.00 $11:56:00$ 26.00 $11:56:00$ 26.00 $11:58:00$ 28.00 $12:10:00$ 40.00 $12:20:00$ 50.00 $12:30:00$ 60.25 20.0 $12:30:30$ 60.50 $12:30:45$ 60.75 19.0 $12:31:00$ 61.00 19.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 2.Step-Drawdown (Step) Test Data for Unisys Production Well No. 2, August 2, 1990,
Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Airline Pressure, in pounds per square inch	Pumping Rate (Q), in gallons per minute (gpm)	Comments
2	8/2/90	12.45.00	75.00	19.5		numned air line
L	0/2/00	12:43:00	82 00	19.5	612	numped air line
		$13 \cdot 12 \cdot 00$	102.00	19.0	593	numped air line
		$13 \cdot 22 \cdot 00$	112 00	19.0	585	numped air line/increased 0 to 600 gpm
		13.22.00 13.27.00	117 00	19.0	600	pumped air line
		13:30:00	120 00	19.5	000	new step/increased 0 to 700 gpm
		13:30:15	120.25	19.0	669	
		13:30:30	120.50	19.0	007	
		13:30:45	120.75	19.0	679	
		13:31:00	121.00	18.0	693	
		13:32:00	122.00	18.0	697	
		13:34:00	124.00	18 0	655	valve opened full, can't get 700 gpm
		13:35:00	125.00	18.0	674	arte spence rarr; sam e Bee / se Bem
		13:36:00	126.00	18.0	664	
		13:37:00	127.00	18.0	669	numped air line
		13:39:00	129.00	18.0	664	pumped air line
		13.47:00	137.00	18.0	665	numped air line
		13:55:00	145.00	18.0	646	
		14:05:00	155.00	15.0	1068	pumped air line. Well No. 3 went down
		11105100	200100	1010	2000	O in Well No. 2 increased to 1.068 gpm
						valve opened to maximum
		14:18:00	168.00	15.0	1077	pumped air line
		14:28:00	178.00	15.0	1101	pumped air line
		14:34:00	184.00	15.5	1090	pumped air line
		14:42:00	192.00	16.0	1045	pumped air line
		14:46:00	196.00	15.5	1066	pumped air line

Table 2. Step-Drawdown (Step) Test Data for Unisys Production Well No. 2, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

UN17504Y.1.13

Well Number	Date	Time	Time, in minutes from start of test	Airline Pressure, in pounds per square inch	Pumping Rate (Q), in gallons per minute (gpm)	Comments
2	8/2/90	14:48:00	208.00	15.5		pumped air line
_	-, -,	14:53:00	213.00	15.5	1093	pumped air line
		14:57:00	217.00		915	
		14:58:00	218.00		980	
		14:59:00	219.00		1000	
		15:02:00	222.00	15.5	995	pumped air line
		15:05:00	225.00		1025	
		15:31:00	251.00		1009	pumped air line
		15:40:00	260.00		995	pumped air line
		15:51:00	271.00	16.0	986	pumped air line
		15:56:00	276.00	16.0	989	pumped air line
		16:00:00	280.00	16.0	994	pumped air line
		16:06:00	286.00	15.5	1000	pumped air line
		16:08:00	288.00		978	
		16:15:00	295.00		983	
		17:20:00	360.00	15.5	992	pumped air line

Table 2.	Step-Drawdown (Step) Test Data for Unisys Production Well No. 2, August 2, 19	90,
	Unisys Corporation Great Neck Facility, Great Neck, New York.	

Well Number	Date	Time	Time, in minutes from start of test	Airline Pressure, in pounds per square inch	Pumping Rate, in gallons per minute
2	s (00 (00	0.75		25	
Z	8/20/90	8:45	2	25	1012
		9:50	2		1013
		9:52	4 5	17	
		9:55	2 2	17	002
		9:54	0	14 5	992
		9:57	9 10	10.5	961
		9:00	10	17	909
		9:59	11	17	5/4
		10.00	13	17	968
		10.01	14		974
		10.02	15	17	980
		10.05	17	17	976
		10.05	19	1	981
		10.07	20	17	960
		10.00	20	±/	975
		10.11	24	17	575
		10.12	24	1	985
		10.15	25	17	982
		10.19	27	17	975
		10.17	30	17	975
		10.20	34	17	991
		10.22	37		990
		10.25	38	17	935
		10.20	30	17	931
		10.27	40		941
		10:29	40	17	
		10:30	42		954
		10:33	45		950
		10:34	46	17	951
		10:35	47		954
		10:44	56	17	944
		10:48	60	_	919
		10:50	62	17	932
		10:57	69	17	926
		10:59	71		936
		11:00	72		930
		11:05	77		924
		11:08	80		928
		11:10	82	17	

Well Number	Date	Time	Time, in minutes from start of test	Airline Pressure, in pounds per square inch	Pumping Rate, in gallons per minute
2	8 (20 (00	11.11	0.2		0/3
2	8/20/90		20		945
		11:10	00	17	724
		11:17	07	17	0.2.8
			91		920
		11.21	55 70	17	010
		11.25	100	17	919
		11.20	108	17	938
		11.38	110	17	929
		11.30	115		939
		11.45	117		926
		11:50	122	17	933
		12:00	132	-	932
		12:04	136	17	930
		12:16	148	17	940
		12:22	154		938
		12:25	157		942
		12:40	172		949
		12:53	185	17	940
		13:40	232	16.5	9 90
		13:43	235		9 98
		14:33	285	16.5	995
		14:41	293		993
		14:55	307		994
		15:25	337		999
		15:33	345	16.5	1002
		15:54	366		983
		17:48	480	16.5	1003
		17:55	487		973
		18:30	522	16.5	965
		19:26	578		967
		19:27	579	16.5	
		20:23	635		959
		20:25	637	16.5	
		21:46	718	16	970
		22:36	768	16	961
	0.000	23:35	827	16	955
	8/21/90	0:45	897	16	956
		1:37	949	16	990
		2:35	1007	16	1080

Well Number	Date	Time	Time, in minutes from start of test	Airline Pressure, in pounds per square inch	Pumping Rate, in gallons per minute
2	8/21/90	3:40	1072	16	966
		4:38	1130	16	955
		5:36	1188	17	931
		6:32	1244	17	935
		7:34	1306	17	937
		8:36	1368	17	900
		8:55	1387	10	360
		9:40	1432	18	750
		10:15	1467		762
		10:20	14/2		726
		10:30	1482		778
		10:35	1487	16 5	/01
		11,10	1527	10.5	8/5
		11:28	1540		947
		12.52	1605	17	051
		12.35	1625	17	955
		13.55	1685	17	931
		15:40	1792	17	956
		16.52	1864	17	948
		17.52	1924	17	955
		18.45	1977	16 5	948
		19.45	2037	16.5	952
		20.45	2037	16.5	946
		21:58	2170	16.5	945
		22:58	2230	16.5	945
		23:56	2288	16.5	940
	8/22/90	0:46	2338	16.5	942
	, ,	1:58	2410	17.5	946
		2:42	2454	17.5	936
		3:59	2531	17	944
		4:43	2575	17	933
		5:58	2650	17.5	940
		6:40	2692	17	937
		7:45	2757	17	945
		8:30	2862	16.5	941
		9:55	2887	15.5	948
		11:03	2955	16.5	966
		11:45	2997	16.5	9 80
		13:45	3117	16	9 86

Page 4 of 4

			Time, in minutes	Airline Pressure,	Pumping Rate, in
Well			from start	in pounds per	gallons per
Number	Date	Time	of test	square inch	minute
2	8/23/90	14:45	3177	16.5	966
		15:50	3242	16.5	972
		17:05	3317	16.5	954
		17:55	3367	16.5	963
		18:45	3417	16.5	960
		18:46	3418		878
		19:45	3477	16.5	958
		20:44	3536	16.5	961
		21:55	3607	17	954
		22:45	3657	17	951
		23:48	3720	17	950
		0:45	3777	17	945
		1:55	3847	16.5	1002
		3:10	3922	16	1090
		3:55	3967	17	962
		4:45	4017	17	982
		5:54	4086	17	955
		6:52	4144	17	960
		7:55	4207	17	967
		8:42	4254	17	947
		9:32	4304	17	953
		10:20	4352	17	952
	End of Pu August 23	mping Test, , 1990	/Start of Rec	covery Test at 10	0:30 am on
2	8/23/90	10:30:15	0.25	21	0
-	-,,,,	10.30:30	0 50	26	0
		10:30:45	0.75	25	Õ
		10:31	1	25	Ő
		10:32	2	25	Ő
		10:33	3	25	Õ
		10:34	4	25	Õ
		10:35	5	25	Õ
		11:00	30	25	õ
					.

Water District	NYSDEC Well Designation	NYSDEC Permit Number	Capacity	Aquifer	Depth (2)	Pumpage 1984 (3)	Pumpage 1985 (3)	Pumpage 1986 (3)	Pumpage 1987 (3)	Pumpage 1988 (3)
Albertson	N-4327	2388	1,000	Magothy	430	60,315	67,974	50,327	140,895	95,179
	N-5947	2920	1,200	Magothy	504	123,478	245,429	440,958	426,674	516,510
Citizen Water Supply Corp.	N-22	804	1,090	Magothy	NA	80,867	143,998	117,230	68,931	83,563
	N-700	951	1,050	Glacial	NA	194,526	194,526	165,190	117,994	113,219
	N-4388	2431	1,050	Magothy	NA	76,148	288,318	292,535	231,241	185,229
	N-8342	5336	1,050	Lloyd	NA	242,047	50,131	239,999	264,324	314,960
Garden City Park	N-650	1301	700	Magothy	350	721	132	207	0	0
	N-651	1301	800	Magothy	348	719	119	198	0	0
	N-5603	2766	1,000	Magothy	452	0	0	165,951	190,616	78,294
	N-6945	3818	1,240	Magothy	514	366,924	286,181	293,075	323,269	252,928
	N-7512	4493	1,200	Magothy	380	432,828	529,856	608,313	438,221	548,921
	N-8409	5464	1,200	Magothy	405	20,758	11,740	16,298	13,798	5,293
	N-9768	7004	1,200	Magothy	477	319,055	290,378	144,672	174,594	225,679
Jamaica Water Supply Co. (Nassau)	N-14	604	1,200	Glacial	108	3,000	12,200	16,000	34,600	5,400
	N-17	1151	1,200	Glacial	100	171,100	117,500	192,000	41,800	117,100
	N-1958	1596	1,200	Lloyd	737	569,700	499,100	313,600	45,500	144,800
	N-4077	2413	1,400	Glacial	538	160,700	116,400	105,500	17,400	60,800
	N-4298	5123	400	Magothy	390	318,200	312,500	237,700	523,200	621,600
	N-4390	5123	1,400	Magothy	301	555,500	623,600	655,300	663,900	118,000

Table 4. Public Supply Wells within a 3-Mile Radius of the Unisys Corporation Great Neck Facility, Great Neck, New York Page 1 of 3

NA Not Available.

Units of capacity are gallons per minute.
 Units of depth are feet below mean sea level.
 Pumpage is reported in thousands of gallons.

ROUX ASSOCIATES INC

UN17504Y.1.13

Water District	NYSDBC Well Designation	NYSDEC Permit Number	Capacity (1)	Aquifer	Depth (2)	Pumpage 1984 (3)	Pumpage 1985 (3)	Pumpage 1986 (3)	Pumpage 1987 (3)	Pumpage 1988 (3)
	N-7445	4327	1,200	Magothy	453	96,100	40,500	74,100	164,000	90,700
	N-7649	4643	1,200	Magothy	210	100	16,700	0	126,400	467,000
	N-7650	4643	1,200	Magothy	445	316,100	308,100	454,800	337,500	342,000
Manhasset-Lakeville (3)	N-1328	1393	1,500	Lloyd	770	290,127	383,086	397,682	397,793	325,274
	N-1618	1393	1,500	Lloyd	589	371,701	388,129	505,374	531,341	479,474
	N-1802	1515	1,050	Lloyd	750	46,187	22,522	96,590	54,517	101,137
	N-2028	1647	1,450	Magothy	610	214,426	173,929	184,809	160,787	179,417
	N-3905	1991	1,050	Magothy	259	0	0	1,608	28,645	0
	N-5099	2660	1,050	Magothy	434	310,872	411,721	22,148	0	390,228
	N-5528	2660	1,070	Magothy	515	128,577	86,761	172,768	74,349	56,389
	N-5710	2879	1,400	Magothy	390	6,062	0	0	0	0
	N-7126	3966	1,400	Magothy	829	266,996	209,966	224,669	229,656	205,967
	N-7651	4689	1,400	Magothy	573	360,189	451,301	665,896	572,307	498,475
	N-7892	4801	1,400	Magothy	455	19,051	6,514	91,196	4,039	71,153
	N-7971	4772	0	Glacial	NA	•	82,579	79,742	81,351	170,623
	N-9308	6765	1,400	Lloyd	410	45,964	89,332	98,390	87,069	138,166
Rostyn	N-4623	2502	1,050	Magothy	503	8,366	39,067	84,644	38,349	287,114
Village of Garden City	N-3881	2196	1,200	Magothy	470	212,869	96,484	97,420	0	0
	N-5163	2648	1,370	Magothy	480	212,390	143,431	158,870	119,050	136,540

Table 4. Public Supply Wells within a 3-Mile Radius of the Unisys Corporation Great Neck Facility, Great Neck, New York Page 2 of 3

NA Not Available.

Units of capacity are gallons per minute.
 Units of depth are feet below mean sea level.
 Pumpage is reported in thousands of gallons.

ROUX ASSOCIATES INC

UN17504Y.1.13

Water District	NYSDEC Well Designation	NYSDEC Permit Number	Capacity (1)	Aquifer	Depth (2)	Pumpage 1984 (3)	Pumpage 1985 (3)	Pumpage 1986 (3)	Pumpage 1987_(3)	Pumpage 1988 (3)
				-						
	N-7058	3956	1,500	Magothy	445	328,544	333,284	314,490	296,630	367,010
	N-8339	5325	1,400	Magothy	363	309,050	289,038	281,060	184,260	1,190
Village of Mincola	N-3185	804	1,000	Magothy	499	116,016	177,383	215,186	211,318	132,978
	N-8576	5642	1,000	Magothy	551	311,677	289,473	256,447	209,846	277,764

Table 4. Public Supply Wells within a 3-Mile Radius of the Unisys Corporation Great Neck Facility, Great Neck, New York Page 3 of 3

NA Not Available.

Units of capacity are gallons per minute.
 Units of depth are feet below mean sea level.
 Pumpage is reported in thousands of gallons.

Pumping Test Site	Monitoring Well	Method of Analysis	Transmissivity, in gallons per day per foot (gpd/ft)	Storage Coefficient	Hydraulic Conductivity, In gallons per square foot (gpd/ft²)
Unisys Production Well No. 2	1Mi	Neuman Partial Penetration (Type Curve Match 1)	89,606	4.5 x 10 ⁴	302
	1 Mi	Neuman Partial Penetration (Type Curve Match 2)	149,181	6.2 x 10 ⁻	502
	12 MI	Neuman Partial Penetration (Type Curve Match 1)	107,410	6.2 x 10 ⁻³	362
	12 MI	Neuman Partial Penetration (Type Curve Match 2)	110,189	6.6 x 10 ⁻³	371
Average			114,097	3.5 x 10 ⁻³	384

Table 5.Summary of the Hydraulic Coefficients from the August 20, 1990 through August 23, 1990 Pumping Test
at the Unisys Corporation Great Neck Facility, Great Neck, New York.

ROUX ASSOCIATES INC

UN17504Y.1.13

ساور د^{ر به}ا مردر و روستان می مرد از در مرد می می میر

and a second second

القارب المحدو وللمع الملقون

LINEAR PLOT OF TIME VERSUS PUMPING RATE FOR UNISYS PRODUCTION WELL NO. 2, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

FIGURE ____6___

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 1GU, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

FIGURE _7___

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 1GL, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

FIGURE <u>8</u>

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 1MI, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

FIGURE 9

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 1MI/L, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

FIGURE _10_

TIME, in minutes

FIGURE 11

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 2GL, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

FIGURE 12
LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 2MI, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

FIGURE 13

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 3GL, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

FIGURE _14_

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 4GL, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

FIGURE _15_

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 4MI, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

FIGURE 16

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 5GL, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

FIGURE _17_

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 5MI, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

FIGURE _18_

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 6GL, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

FIGURE _19_

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 7GL, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

FIGURE _20_

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 8GU, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

FIGURE _21_

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 8GL, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

FIGURE _22_

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 9GL, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

FIGURE _23_

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 10GL, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

FIGURE <u>24</u>

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 11GL, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

FIGURE _25_

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 11MI, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

,

FIGURE _26_

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 12MI, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME, in minutes

FIGURE 27

LINEAR PLOT OF TIME VERSUS DRAWDOWN FOR MONITORING WELL 12ML, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME. in minutes

FIGURE <u>28</u>

LOGARITHMIC PLOT OF TIME VERSUS DRAWDOWN AS COLLECTED FROM DATA LOGGER FOR MONITORING WELL 1MI, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION, GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME, in minutes

FIGURE _29_

LOGARITHMIC PLOT OF TIME VERSUS DRAWDOWN AS COLLECTED FROM DATA LOGGER FOR MONITORING WELL 12MI, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION, GREAT NECK FACILITY, GREAT NECK, NEW YORK

FIGURE <u>30</u>

LOGARITHMIC PLOT OF TIME VERSUS DRAWDOWN AS COLLECTED MANUALLY FOR MONITORING WELL 1MI, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION, GREAT NECK FACILITY, GREAT NECK, NEW YORK

TIME, in minutes

FIGURE <u>31</u>

LOGARITHMIC PLOT OF TIME VERSUS DRAWDOWN AS COLLECTED MANUALLY FOR MONITORING WELL 12MI, AUGUST 20, 1990 THROUGH AUGUST 23, 1990 PUMPING TEST, UNISYS CORPORATION, GREAT NECK FACILITY, GREAT NECK, NEW YORK

FIGURE <u>32</u>

ES, INC.

Figure 33. Logarithmic Plot Of Time Versus Drawdown For Neuman Partial Penetration Analysis Using Aqtesolv Type Curve Option, For Monitoring Well 1MI, August 20, 1990 Through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York(Type Curve Match 1).

TES, INC.

Figure 34. Logarithmic Plot Of Time Versus Drawdown For Neuman Partial Penetration Anaysis Using Aqtesolv Type Curve Option, For Monitoring Well 1MI, August 20, 1990 Through August 23, 1990, Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York(Type Curve Match 2)

Figure 35. Logarithmic Plot Of Time Versus Drawdown for Neuman Partial Penetration Anaylsis Using Aqtesolv Type Curve Option, For Monitoring Well 12MI, August 20, 1990 Through August 23, 1990, Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York(Type Curve Match 1)

S, INC.

Figure 36. Logarithmic Plot Of Time Versus Drawdown For Neuman Partial Penetration Analysis Using Aqtesolv Type Curve Option For Monitoring Well 12MI, August 20, 1990 Through August 23, 1990 Pumping Test, Unisys Corporation Great Neck Facility, Great Neck, New York(Type Curve Match 2)

APPENDIX A

.

Standard Operating Procedures for Conducting a Step-Drawdown Test, and Standard Operating Procedure for Conducting a Constant-Rate (Pumping) Test and Recovery Test.

STANDARD OPERATING PROCEDURE FOR CONDUCTING A STEP-DRAWDOWN TEST

Date: December 21, 1989

Revision Number: 0

Corporate QA/QC Manager: Michael A. De Cillin

1.0 PURPOSE

The purpose for this standard operating procedure (SOP) is to describe the methods to be used for conducting step-drawdown (step) tests. A step test is used for any, or all, of the following: 1) to select an appropriate pumping rate for a constant-rate (pumping) test; 2) to estimate long-term well yield; 3) to evaluate well efficiency; and 4) to calculate hydraulic conductivity.

Pumping is started at a low discharge rate (based on the results of well development) and is then increased in steps to stress the aquifer. It is important that the steps be of equal duration and that a fairly wide range in pumping rates be developed from the first step to the last step. Step-drawdown tests are extremely useful in bedrock wells to estimate the depth to the most productive water-bearing fracture zone and provide an indication of the well efficiency. Water-level behavior in the pumping well should be closely watched during the test. If at a second or third step, the pumping water level drops sharply and approaches the maximum available drawdown, then clearly the pumping rate has exceeded the capacity of the formation and the longterm pumping rate must be reduced accordingly.

2.0 EOUIPMENT AND MATERIALS

- 2.1 The following items may be needed for conducting a step-drawdown test:
 - a. Electronic sounding device (m-scope).
 - b. Steel tape (in 0.01-foot increments) and chalk (e.g., blue carpenter's).
 - c. Data loggers and pressure transducers.
 - d. Field forms (i.e., Daily Log, Pumping Test, and Well Inspection Checklist) and study notebook.
 - e. Rain gauge.
 - f. Barometer.
 - g. Stop watch or watch with second display/hand.
 - h. Pump.
 - i. Generator and fuel/power supply.

ROUX ASSOCIATES INC

- j. Water-level recorders (e.g., Stevens type).
- k. Flashlights/illumination.
- 1. Stream gauge and/or tide gauge.

m. Shelter.

- n. In-line flow meter and/or orifice and manometer.
- o. Valve(s).
- p. On-site holding tanks or tank trucks, or treatment capability.
- q. Discharge line (leak free).
- r. Water-quality meters (pH, conductivity, temperature).
- s. Extra batteries (flashlight, meters).
- t. Non-absorbent cord (e.g., polypropylene).
- u. Portable personal computer (PC), appropriate cables, software, and floppy disks.
- v. Five-gallon bucket.
- w. Clean cloth or paper towel.
- x. Non-phosphate, laboratory-grade detergent solution.
- y. Distilled or deionized water and potable water.

3.0 DECONTAMINATION

- 3.1 Make sure all equipment that enters the well(s) is(are) decontaminated and cleaned before use. Use new, clean materials when decontamination is not appropriate (e.g., non-absorbent cord, disposable gloves). Document, and initial and date the decontamination procedures on the appropriate field form (e.g., Daily Log) and in the field notebook.
 - a. Decontaminate a pump by: 1) wearing disposable gloves, 2) flushing it and the discharge hose (if not disposable) with non-phosphate, laboratory-grade detergent and distilled/deionized or potable water solution, 3) rinsing with potable water, and 4) rinsing or wiping pump-related equipment (electrical lines, cables, discharge hose) with a clean cloth and potable water. If a turbine pump is used, then ensure that all materials that are set in the well or above it (well head) are steam cleaned for decontamination purposes.

- b. Decontaminate a transducer and cable by: 1) wearing disposable gloves, 2) wiping transducer-related equipment (e.g., probe, cables) with a clean cloth and non-phosphate, laboratory-grade detergent solution, and 3) rinsing or wiping equipment with a clean cloth and distilled/deionized water or potable water.
- c. Decontaminate a float/probe and cable (water-level recorder) by: 1) wearing disposable gloves, 2) wiping equipment with a clean cloth and non-phosphate, laboratory-grade detergent solution, and 3) rinsing or wiping equipment with a clean cloth and distilled/deionized water or potable water.
- d. Decontaminate a steel measuring tape or electronic sounding device (m-scope) by: 1) wearing disposable gloves, 2) wiping water-level measurement equipment with a clean cloth and non-phosphate, laboratory-grade detergent solution, and 3) rinsing or wiping equipment with a clean cloth and distilled/deionized water or potable water.

4.0 PROCEDURE

- 4.1 Inspect the protective casings of the wells and the well casings, and note any items of concern such as a missing lock, or bent or damaged casing(s). Complete a Well Inspection Checklist for each well, and initial and date upon completion.
- 4.2 Enter all pertinent data concerning the pumping well, piezometers and/or observation wells, to be measured on the Pumping Test form, appropriate field forms (e.g. Daily Log form) and in the field notebook. Use one Pumping Test form for each well measured.
- 4.3 Measure water levels (the depth to water below the predetermined measuring point [MP]) in the test well, and all piezometers and/or observation wells to be monitored during the test (synoptic round of water-level measurements) to an accuracy of 0.01 foot prior to the step test. Document the water levels, and initial and date data entries. The synoptic round of water-level measurements will include wells and piezometers inside and outside of the influence (impact) of the area tested.
- 4.4 Sound (measure the total depth) the test well, and each observation well and/or piezometer measured in the synoptic round to an accuracy of 0.01 foot. Document the sounded depth, and initial and date data entries. Compare the sounded depth to the as-built total depth of the well/piezometer to ensure no appreciable sanding or silting (clogging) has occurred. If appreciable clogging has taken place, then the well or piezometer must be redeveloped to re-establish good hydraulic connection between the well or piezometer and the aquifer. Wells and piezometers must respond quickly to changes in water levels.

- 4.5 Determine if the step test is to be conducted in an area where water levels can fluctuate during the course of the test (e.g., near pumping or recharge wells, tidal influences, shallow aquifers subject to quick response to precipitation events, etc.); if so, then establish a background well(s) or piezometer(s) to measure water-level trends outside the influence of the test well. Water-level fluctuation data may be needed to correct step-test data.
- 4.6 Set up a rain gauge, a continuous recording barometer, and/or a continuous recording stream or tide gauge to measure, respectively, precipitation, barometric pressure, and/or surface-water elevation, if site conditions warrant monitoring these parameters (i.e., if any of these stresses have the potential to affect test results). If needed, data from these instruments will be used to correct step-test data for changes in ground-water levels associated with recharge from precipitation, barometric pressure, and/or changes in surface-water elevation.
- 4.7 Ensure that the pumping system selected for the test is properly installed including the power supply and leak-free discharge line complete with a valve(s), flow meter, and manometer and orifice.
- 4.8 Make arrangements to dispose of the pumped water in an appropriate manner. If the pumped water is contaminated, then disposal may be via treatment and discharge, trucking offsite, etc. Water that is discharged onsite must be a substantial distance from the test site to preclude adversely affecting the test (e.g., artificially recharging the aquifer during testing and influencing water levels).
- 4.9 Make sure that the proper transducers (data loggers) and gear ratios (water-level recorders) are used to measure the full anticipated range of drawdown in the well(s) and/or piezometer(s).
- 4.10 Install a precleaned transducer (which is preferred over manual measurement devices, e.g., steel tape and chalk or m-scope) in the test well, connect it to the data logger, and verify that the equipment is working. Program the data logger accordingly, using the PC and appropriate software.
- 4.11 Install precleaned transducers and program data loggers, and/or install precleaned floats/probes and set up recorders in select piezometers and/or observation wells to be monitored during the test (e.g., those impacted by the test, those serving as background), and verify that the equipment is working.
- 4.12 Synchronize all watches prior to the test (if more than one individual is involved in the test).
- 4.13 Begin the step test on the hour or half-hour and pump at a constant, low rate (e.g., 25 percent of the estimated capacity determined during development).
- 4.14 Maintain the pumping rate until the water level approaches or achieves stabilization (which usually, but not necessarily, occurs within one to four hours).

- 4.15 Collect water-level (drawdown) measurements to an accuracy of 0.01 foot on a specified schedule. This schedule will be established based on the response (drawdown versus time) of the well to the pumping stress.
- 4.16 Check the drawdown measurements obtained with the automated water-level measuring devices (on a regular basis) manually using a m-scope and/or a steel tape and chalk to an accuracy of 0.01 foot. If recorders are used, then "tick" the recorder and document the time next to each "tick" on the chart. Record this data on the Pumping Test form and in the field notebook, and initial and date data entry.
- 4.17 Check the discharge rate using a 5-gallon bucket and stopwatch or watch with second display/hand, the in-line flow meter and/or manometer (depending on the set-up and pumping rate) on a regular basis. Record readings and adjustments (if made) on the Pumping Test form and in the field notebook, and initial and date data entry.
- 4.18 Measure temperature, pH, and conductivity of discharged water on a periodic, regular basis. Record data on the Pumping Test form and the field notebook, and initial and date data entry.
- 4.19 Note any changes, throughout the step test, that are pertinent to the test such as changes in water color or turbidity, time and length of any temporary pump shut down, effects of any nearby pumping wells, precipitation events, etc. Document these notes on the Pumping Test form and in the field notebook, and initial and date data entry.
- 4.20 Increase the discharge rate incrementally after stabilization or near-stabilization is achieved and maintain the increased rate for the same length of time, if the well can sustain the increased rate. In general, four or more incremental steps follow, such as two, three, four (100 percent of the estimated capacity), and greater than four times the initial rate. The key factors are that the steps be of equal duration and that a fairly wide range in pumping rates be developed from the first step to the last.
- 4.21 Shut down the step test after the last step and/or the capacity of the well has been exceeded, or when sufficient data has been collected to analyze the step test. Close the valve closest to the pump as quickly as possible to prevent back flow of water into the pumping well.
- 4.22 Measure recovery (rise in water levels) to an accuracy of 0.01 foot until water levels return as close as possible to pretest levels. The identical measurement schedule followed for the drawdown phase should be followed during the recovery phase. Automated water-level recorders may be left in the test well and select wells/piezometers to monitor water levels for an extended period of time (one or more days) depending on the data collected or data base required. If observation

wells and/or piezometers were also monitored during the step test, then collect at least one round of synoptic water-level measurements after water levels have recovered following the test.

- 4.23 Transfer the data to the PC, if the pressure transducer(s) and data logger were used, on a periodic basis during the test and before monitoring water levels for an extended period of time. This will prohibit loss of test data and "wrapping" (writing over) of data if the storage capacity of the data logger is exceeded.
- 4.24 Secure the test well, and observation wells and/or piezometers if used, after the collection of water-level data is completed (i.e., replace cap and/or cover, and lock).
- 4.25 Clean (decontaminate) all test equipment that came in contact with the ground water according to the appropriate protocol given in Section 3.0. Dispose of all materials that cannot be decontaminated in an appropriate manner (e.g., discharge hose, etc.).

STANDARD OPERATING PROCEDURE FOR CONDUCTING A CONSTANT-RATE (PUMPING) TEST AND RECOVERY TEST

Date: December 21, 1989

Revision Number: 0

Corporate QA/QC Manager: michael A. De Cillio

1.0 PURPOSE

The purpose for this standard operating procedure (SOP) is to describe the methods to be used for conducting constant-rate (pumping) tests and recovery tests. Constantrate tests are designed to measure the response of an aquifer to stress imposed on it (i.e., pumping or injection of water). In the constant-rate test, the well is pumped or recharged at a constant rate for a significant period of time, usually 24 hours or longer. Pumping tests are conducted to quantify hydraulic coefficients and characterize boundary conditions. Pumping tests can also be used to qualitatively or quantitatively evaluate the degree of hydraulic connection between and within flow systems which is particularly applicable to bedrock ground-water systems where hydraulic parameter determination may not be possible.

Drawdown is measured throughout the test at preselected time intervals to provide the data necessary to quantitatively characterize the aquifer. Automatic water-level records may be used which provide a detailed, continuous drawdown record and are periodically checked by manually measuring the water level with a steel tape and chalk or an electronic sounding device (m-scope).

Pumping tests are generally the easiest aquifer tests to interpret, and can provide the most accurate, quantitative information; thus pumping tests are favored when conditions are suitable (i.e., when hydrogeologic conditions are such that the system can sustain a properly designed constant-rate pumping test).

Measurements of water-level recovery after the pump is shutdown may be used to confirm the results of the drawdown test. Additionally, problems such as those created by a fluctuating pumping rate and corresponding drawdown measurements during the drawdown phase can be eliminated during the recovery phase (which is not effected by pumpage). Therefore, data loggers and/or the automatic recorders should remain in operation to measure the extended recovery period of the water levels to provide a suitable database in the event that recovery data analysis is undertaken.

2.0 EOUIPMENT AND MATERIALS

- 2.1 The following items may be needed for aquifer testing:
 - a. Electronic sounding device (m-scope).
 - b. Steel tape (in 0.01-foot increments) and chalk (e.g., blue carpenter's).
 - c. Data loggers and pressure transducers.

- d. Field forms (i.e., Daily Log, Pumping Test, and Well Inspection Checklist) and study notebook.
- e. Rain gauge.
- f. Barometer.
- g. Stop watch or watch with second display/hand.
- h. Pump.
- i. Extension cord(s) or generator and fuel/power supply.
- j. Water-level recorders (e.g., Stevens type).
- k. Flashlights/illumination.
- 1. Stream gauge and/or tide gauge.
- m. Shelter.
- n. In-line flow meter and/or orifice and manometer.
- o. Valve(s).
- p. On-site holding tanks or tank trucks, or treatment capability.
- q. Discharge line (leak free).
- r. Water-quality meters (pH, conductivity, temperature).
- s. Extra batteries (flashlight, meters).
- t. Non-absorbent cord (e.g., polypropylene).
- u. Portable personal computer (PC), appropriate cables, software, and floppy disks.
- v. Five-gallon bucket.
- w. Clean cloth or paper towel.
- x. Non-phosphate, laboratory-grade detergent solution.
- y. Distilled or deionized water and potable water.

ROUX ASSOCIATES INC

3.0 **DECONTAMINATION**

- 3.1 Make sure all equipment that enters the well(s) is(are) decontaminated and cleaned before use. Use new, clean materials when decontamination is not appropriate (e.g., non-absorbent cord, disposable gloves). Document, and initial and date the decontamination procedures on the appropriate field form (e.g., Daily Log) and in the field notebook.
 - a. Decontaminate a pump by: 1) wearing disposable gloves, 2) flushing it and the discharge hose (if not disposable) with non-phosphate, laboratory-grade detergent and distilled/deionized or potable water solution, 3) rinsing with potable water, and 4) rinsing or wiping pump-related equipment (electrical lines, cables, discharge hose) with a clean cloth and potable water. If a turbine pump is used, then ensure that all materials that are set in the well or above it (well head) are steam cleaned for decontamination purposes.
 - b. Decontaminate a transducer and cable by: 1) wearing disposable gloves, 2) wiping transducer-related equipment (e.g., probe, cables) with a clean cloth and non-phosphate, laboratory-grade detergent solution, and 3) rinsing or wiping equipment with a clean cloth and distilled/deionized water or potable water.
 - c. Decontaminate a float/probe and cable (water-level recorder) by: 1) wearing disposable gloves, 2) wiping equipment with a clean cloth and non-phosphate, laboratory-grade detergent solution, and 3) rinsing or wiping equipment with a clean cloth and distilled/deionized water or potable water.
 - d. Decontaminate a steel measuring tape or electronic sounding device (m-scope) by: 1) wearing disposable gloves, 2) wiping water-level measurement equipment with a clean cloth and non-phosphate, laboratory-grade detergent solution, and 3) rinsing or wiping equipment with a clean cloth and distilled/deionized water or potable water.

4.0 PROCEDURE

- 4.1 Inspect the protective casings of the wells and the well casings, and note any items of concern such as a missing lock, or bent or damaged casing(s). Complete a Well Inspection Checklist for each well, and initial and date upon completion.
- 4.2 Enter all pertinent data concerning the pumping well, piezometers and/or observation wells, to be measured on the Pumping Test form, appropriate field forms (e.g. Daily Log form) and the study notebook.
- 4.3 Measure water levels (depth to water below a predetermined measuring point [MP]) in the pumping well and all piezometers and/or observation wells (synoptic round of water-level measurements) to an accuracy of 0.01 foot at least one day

prior to the pumping test. Document the water levels, and initial and date data entries. The synoptic round of water-level measurements will include wells and piezometers inside and outside of the influence (impact) of the area tested.

- 4.4 Sound (measure the total depth) the test well and each well and/or piezometer measured in the synoptic round to an accuracy of 0.01 foot. Document the sounded depth, and initial and date data entries. Compare the sounded depth to the as-built total well/piezometer depth to ensure no appreciable sanding or silting (clogging) has occurred. If appreciable clogging has taken place, then the well or piezometer must be redeveloped to re-establish good hydraulic connection between the well or piezometer and the aquifer. Wells and piezometers must respond quickly to changes in water levels.
- 4.5 Establish background wells and/or piezometers to measure water-level trends outside the influence of the pumping well.
- 4.6 Install precleaned transducers and program data loggers, and/or install precleaned floats/probes and set up recorders on several, select wells and/or piezometers for an extended period of time (e.g., one week) prior to the test to monitor water-level trends throughout the test area. At least two hours of readings at quarter-hour to half-hour intervals should be collected immediately prior to start-up of the test. If water levels in the aquifer are fluctuating, then more readings will be necessary. Water-level fluctuation data may be needed to correct aquifer test data.
- 4.7 Obtain as many pretest (nonpumping), synoptic water-level readings as possible to provide a sound background water-level data base. If available, dedicate an individual to collect continuous, synoptic water-level measurements on the day of the test, from the time of arrival onsite to the start of the test.
- 4.8 Set up a rain gauge onsite to measure precipitation before, during, and after the test. Monitor the rain gauge on a regular basis, particularly if the tested aquifer is shallow. If precipitation is occurring at the beginning of the test, then the test should be postponed until optimum meteorological conditions prevail and water levels, if changing, return to static conditions. If needed, precipitation data collected during the test (after start-up) will be used to correct aquifer test data affected by recharge.
- 4.9 Set up a continuous recording barometer onsite to measure barometric pressure before, during, and after the test. If needed, data from this instrument will be used to correct aquifer test data for changes in barometric pressure during the pumping test.
- 4.10 Install a stream or tide gauge to measure changes in stream stage or tidal fluctuations before, during, and after the test if the pumping test site is located near a surface-water body. If needed, this data will be used to correct aquifer test data for changes in surface-water body elevations.
- 4.11 Ensure that the pumping system selected for the test is properly installed including the power supply and leak-free discharge line complete with a valve(s), flow meter, or manometer and orifice.
- 4.12 Make arrangements to dispose of the pumped water in an appropriate manner. If the pumped water is contaminated, then disposal may be via treatment and discharge, trucking offsite, etc. Water that is discharged onsite must be a substantial distance from the test site to preclude adversely affecting the test (e.g., recharging the aquifer during testing and influencing water levels).
- 4.13 Make sure that the proper transducers (data loggers) and gear ratios (water-level recorders) are used to measure the full anticipated range of drawdown in the wells and/or piezometers.
- 4.14 Install a precleaned transducer (which is preferred over manual measurement devices, e.g., steel tape and chalk or m-scope) in the test well, connect it to the data logger, and verify that the equipment is working. Program the data logger accordingly, using the PC and appropriate software.
- 4.15 Install precleaned transducers and program data loggers, and/or install precleaned floats/probes and set up recorders in select piezometers and/or observation wells to be monitored during the test (e.g., those impacted by the test, those serving as background). Verify that the equipment is working.
- 4.16 Conduct a step-drawdown (step) test several days before the scheduled constantrate pumping test to check the performance of the pumping well and establish the pumping rate to be used for the final test. (Refer to the SOP for conducting a step-drawn test.) Use both automatic and manual water-level measuring devices to measure water levels in the wells and record appropriate measurements on the Pumping Test form and in the field notebook. The rate chosen for the pumping test will be the maximum rate the well can produce and sustain in order to stress the aquifer as much as possible.
- 4.17 Set the discharge line valve(s) so they will be preset and marked for the desired pumping rate (obtained from the step test).
- 4.18 Check that the in-line flow meter and/or manometer is indicating that the pumping rate is the same as that selected from the step test. It is preferred to use both devices to measure and monitor discharge to provide a check and a back up.
- 4.19 Begin the pumping test only after the water level in the aquifer has returned to the nonpumping (static) conditions observed prior to the step test.
- 4.20 Check that all equipment is functioning properly before starting the test (e.g., transducers and data loggers, automated water-level recorders, m-scopes, valves in proper position, generator running properly and sufficient fuel [if needed], power supply, etc.)

ROUX ASSOCIATES INC

- 4.21 Synchronize all watches prior to the test.
- 4.22 Begin the pumping test on the hour or half-hour and pump at a constant rate until sufficient data is collected to analyze the test (at least 24 hours or longer if needed). Some pumping tests may require several days (sometimes up to and exceeding 1 week) to collect the data needed to analyze the test.
- 4.23 Measure water levels (drawdown) on a specified schedule. An example of the frequency of measurements to produce a uniform plot of water-level data on a logarithmic scale follows:

Elapsed Time (minutes)	Frequency of Measurement		
0 - 1	Every 15 seconds		
1 - 5	Every 30 seconds		
5 - 10	Every minute		
10 - 30	Every 2 minutes		
30 - 60	Every 5 minutes		
60 - 1 2 0	Every 10 minutes		
120 - 180	Every 20 minutes		
180 - 360	Every 30 minutes		
360 - 1,440	Every hour		
1,440 - 2,880	Every 2 hours		
2,880 - end of test	Every 4 hours		

- 4.24 Check the drawdown measurements obtained with the automated water-level measuring devices (on a regular basis) manually using a m-scope and/or a steel tape and chalk to an accuracy of 0.01 foot. If a recorder is used, then "tick" recorders and document the time next to each "tick" in the chart. Manual measurements should be made as close to the established schedule as possible. However, if a reading is missed, then take a measurement as soon as possible after the scheduled reading and record the actual time. This will maintain the time versus drawdown relationship needed to analyze the test data. Record water-level data on the Pumping Test form, and initial and date data entry.
- 4.25 Check the discharge rate using the in-line flow meter and/or manometer on a regular basis. If adjustments have to be made to maintain the constant pumping rate, then adjust the valve. Record readings and adjustments (if made) on the Pumping Test form and the field notebook, and initial and date data entry.
- 4.26 Measure temperature, pH, and conductivity of discharged water on a periodic, regular basis. Record data on the Pumping Test form and in the field notebook, and initial and date data entry.

- 4.27 Note any changes, throughout the pumping test, that are pertinent to the test such as changes in water color or turbidity, time and length of any temporary pump shut down, effects of any nearby pumping wells, precipitation events, etc. Document these notes on the Pumping Test form and in the field notebook, and initial and date data entry.
- 4.28 Measure water levels in the pumping well and as many piezometers and/or wells as practical (to an accuracy of 0.01 foot) following recovery procedures if there is a shutdown, no matter how brief.
- 4.29 Measure water levels together during a change in personnel for at least one period of measurement to ensure consistency. Note the personnel change and time on the Pumping Test form and in the field notebook, and initial and date data entry.
- 4.30 Begin plotting the drawdown verses time data, when time allows, on the appropriate graph paper (semi-logarithmic and/or full logarithmic) to perform a preliminary analysis of the data for hydraulic coefficients and determine if the pumping test can be terminated or has to be extended. Correct drawdown data as needed before plotting (e.g., for dewatering, barometric efficiency, tidal fluctuations, regional trends, etc.)
- 4.31 Shut down the pumping test at the specified time or when sufficient data has been collected to analyze the pumping test data. Shut down should occur on the hour or half-hour so that recovery starts on the hour or half-hour.
- 4.32 Close the valve (closest to the pump) as quickly as possible to prevent back flow of water into the pumping well.
- 4.33 Measure recovery (rise in water levels) to an accuracy of 0.01 foot until water levels return as close as possible to pretest levels. The identical measurement schedule followed for the drawdown phase should be followed during the recovery phase. Automated water-level recorders should be left in select wells and/or piezometers (same ones monitored during pretest) to monitor water levels for an extended period of time (one or more days).
- 4.34 Collect at least one round of synoptic water-level measurements after water levels have recovered following the test.
- 4.35 Secure all wells and/or piezometers after the collection of water-level data is completed (i.e., replace cap and/or cover, and lock).
- 4.36 Clean (decontaminate) all test equipment that came in contact with the ground water according to the appropriate protocol given in Section 3.0. Dispose of all materials that cannot be decontaminated in an appropriate manner (e.g., discharge hose, etc.).

APPENDIX B

Standard Operating Procedure for Measuring Water Levels and Sounding a Well with a Steel Tape, and Standard Operating Procedure for Measuring Water Levels Using an Electronic Sounding Device (M-Scope).

STANDARD OPERATING PROCEDURE FOR MEASURING WATER-LEVELS AND SOUNDING A WELL WITH A STEEL TAPE

Date: December 21, 1989

Revision Number: 0

Corporate QA/QC Manager: Michael A. De Eilling

1.0 PURPOSE

The purpose for this standard operating procedure (SOP) is to establish the guidelines for using steel measuring tapes. A steel tape is used to measure the depth to ground water below an established (surveyed) measuring point (MP) and/or to sound a well (i.e., to measure the depth of well). Measuring the depth to water (DTW) below the surveyed MP provides information for calculating ground-water elevations needed to construct ground-water elevation maps and determine the direction of ground-water flow. A well is sounded to determine the total depth of the well (i.e., to provide information regarding potential siltation problems [filling-in with sediment]). This can be used to eliminate possible confusion concerning identification of the well in cases where there are several similar, adjacent, unlabeled wells. Depth to water and sounding data can also be used to calculate the volume of standing water in the well (which is a prerequisite for purging a well before well sampling, and will be addressed in respective SOPs).

A steel tape is the preferred water-level measuring device because it is the most accurate, especially when measurements are taken under static conditions. However, this technique may be inappropriate under nonstatic (changing) conditions such as aquifer tests when water levels may be changing rapidly or when water is cascading into a well. These conditions would require the use of an electronic sounding device (refer to SOP for Measuring Water Levels using an Electronic Sounding Device (M-Scope).

2.0 DECONTAMINATION

The steel tape must be precleaned (decontaminated) using a non-phosphate, laboratorygrade solution and rinsed with copious amounts of distilled or deionized water. This process is repeated before each measurement and following the final measurement.

3.0 <u>PROCEDURE</u>

- 3.1 If the well is not vented, then remove the cap and wait several minutes for the water level to equilibrate. Take several measurements to ensure that the water level measured is in equilibrium with the aquifer (i.e., not changing substantially).
- 3.2 The tape will be equipped with a weight to ensure the tape is held vertically and is kept taut when lowered into the well. Measure and record the distance from the bottom of the tape to the bottom of the weight to ensure the proper depth is measured when sounding a well.

- 3.3 If a water-level measurement is to be taken, then apply chalk (e.g., carpenter's chalk) to the bottom few feet of the tape and lower it into the water.
- 3.4 The top of the tape is held at an even-foot increment at the MP. This is the "held" value, and is recorded as such.
- 3.5 The tape is rolled up, and the cut (i.e., the mark between the dry and wet chalk) is noted. This "wet" value is measured accurately to the nearest 0.01 foot, and is recorded as such. The difference between the "held" value and the "wet" value is the DTW.
- 3.6 Always remeasure at least one well, preferably the first well measured, to see if the static water level has changed (e.g., due to pumping in the area, tidal effects, etc.).
- 3.7 If there are previous water-level measurements available for the wells, then have these data available to compare the measurements with those just taken. Use these data to see if water levels are similar or if they have changed. If water levels have changed, then check if the changes are consistent (i.e., all up or all down) and make sense.
- 3.8 Water-level elevations are calculated by subtracting the DTW from the MP and a water-elevation map is constructed (contoured) on a well location map. This also provides a check to evaluate if the water levels make sense (or anomalies are evidenced). Remeasure the well(s) where anomalies are found as a check on the initial measurement(s).
- 3.9 If anomalies persist or water-level trends are different from the historical database, then check to see if hydrogeologic conditions and/or stresses have changed (e.g., discharge areas, pumping and/or injection wells, etc.).
- 3.10 If the well is being sounded (depth measured), then lower the tape to the bottom of the well and measure its length accurately from the MP to the nearest 0.01 foot. Compare the sounded depth to the as-built well construction log (diagram). This will determine if siltation has occurred and redevelopment is necessary to establish a good hydraulic connection between the well screen and the aquifer.
- 3.11 All pertinent data will be recorded in the field notebook and on appropriate field forms, and initialed and dated.

STANDARD OPERATING PROCEDURE FOR MEASURING WATER LEVELS USING AN ELECTRONIC SOUNDING DEVICE (M-SCOPE)

Date: December 21, 1989

Revision Number: 0

Corporate QA/QC Manager: Michael A. DeCilli

1.0 PURPOSE

The purpose for this standard operating procedure (SOP) is to establish the guidelines for using m-scopes. A m-scope is an electronic sounding device used to measure the depth to ground water below an established (surveyed) measuring point (MP). Measuring the depth to water (DTW) below the surveyed MP provides information for calculating ground-water elevations needed to construct ground-water elevation maps and determine the direction of ground-water flow.

M-scopes can be less accurate than a steel tape because the wire can kink, measurement increment marks can shift, and the tip may have been cut off and replaced without proper documentation. Thus, it is mandatory that a m-scope be calibrated before use.

2.0 DECONTAMINATION

The m-scope must be precleaned (decontaminated) using a non-phosphate, laboratorygrade solution and rinsed with copious amounts of distilled or deionized water. This process is repeated before each measurement and following the final measurement.

3.0 CALIBRATION

The m-scope must be calibrated before being used to measure water levels. Calibration is accomplished by measuring the water level with the m-scope followed by a measurement using a steel tape. This dual measurement procedure is continued until the individual is confident that measurements taken using both devices are similar and the m-scope is reliable. The calibration procedure is documented in the field notebook or on an appropriate field form, and initialed and dated.

4.0 PROCEDURE

- 4.1 If the well is not vented, then remove the cap and wait several minutes for the water level to equilibrate. Take several measurements to ensure that the water level measured is in equilibrium with the aquifer (i.e., not changing substantially).
- 4.2 The manufacturer's model must be noted because some have switches, lights, beepers, or a combination of the above.
- 4.3 The 1-foot or 5-foot marked intervals on the electrical line must be checked to ensure that they have not shifted, and the bottom of the probe has not been cut. Check on a periodic basis that the cord has not kinked.

- 4.4 The water-level measurement is taken by lowering the probe into the well until the instrument-specific detection method (e.g., light, beeper, or both) is activated by contacting the water.
- 4.5 The electrical line is held at the MP and, using a ruler (e.g., carpenter's folding ruler) or an engineer's scale, the distance from the "held" point to the nearest marked interval is measured. The distance measured is added to, or subtracted from, the marked interval reading. The result is the DTW.
- 4.6 Measurements will be taken accurately and to the nearest 0.01 foot.
- 4.7 Always remeasure at least one well, preferably the first well measured, to see if the static water level has changed (e.g., due to pumping in the area, tidal effects, etc.)
- 4.8 If there are previous water-level measurements available for the wells, then have these data available to compare the measurements with those just taken. Use these data to see if water levels are similar or if they have changed. If water levels have changed, then check if the changes are consistent (i.e., all up or all down) and make sense.
- 4.9 Water-level elevations are calculated by subtracting the DTW from the MP and a water-elevation map is constructed (contoured) on a well location map. This also provides a check to evaluate if the water levels make sense (or anomalies are evidenced). Remeasure the well(s) where anomalies are found as a check on the initial measurement(s).
- 4.10 If anomalies persist or water-level trends are different from the historical database, then check to see if hydrogeologic conditions and/or stresses have changed (e.g., discharge areas, pumping and/or injection wells, etc.).
- 4.11 All pertinent data will be documented in the field notebook, and initialed and dated.

APPENDIX C

August 2, 1990 Step-Drawdown Data, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Airline Pressure, in pounds per square inch	Pumping Rate (Q), in gallons per minute (gpm)	Comments
2	8/2/90	11.30.00	0 00	25.0		No distinct 0. O ranged from 700 gpm
-	0/2/90	$11 \cdot 30 \cdot 30$	0.50	17.5		to 500 gpm for 3 minutes
		$11 \cdot 31 \cdot 30$	1 50	17 0		00 500 BPm 101 5 millio00
		11:32:00	2 00	21.0		
		11:32:30	2.50	21.0		
		11:33:00	3.00		500	
		11:34:00	4.00	21.0		
		11:38:00	8.00		570	
		11:40:00	10.00		500	
		11:41:00	11.00	21.0		pumped air line
		11:43:00	13.00		498	• •
		11:44:00	14.00	21.0		pumped air line
		11:45:00	15.00		495	
		11:50:00	20.00	21.0	494	pumped air line
		11:54:00	24.00		501	
		11:56:00	26.00		489	
		11:58:00	28.00	21.0	495	pumped air line
		12:10:00	40.00	21.0	473	pumped air line/adjust Q to 499 gpm
		12:20:00	50.00	21.0	493	pumped air line
		12:30:00	60.00	20.0	600	pumped air line
		12:30:15	60.25	20.0		new step/increased Q to 600 gpm
		12:30:30	60.50	19.0	600	
		12:30:45	60.75	19.0		
		12:31:00	61.00	19.0		
		12:32:00	62.00	19.5	597	pumped air line
		12:37:00	67.00	19.5		pumped air line

Table C-1. Step-Drawdown (Step) Test Data for Unisys Production Well No. 2, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

UN17504Y.1.13

Well Number	Date	Time	Time, in minutes from start of test	Airline Pressure, in pounds per square inch	Pumping Rate (Q), in gallons per minute (gpm)	Comments
2	8/2/90	12:45:00	75.00	19.5	607	pumped air line
	, ,	12:52:00	82.00	19.5	612	pumped air line
		13:12:00	102.00	19.0	593	pumped air line
		13:22:00	112.00	19.0	585	pumped air line/increased Q to 600 gpm
		13:27:00	117.00	19.0	600	pumped air line
		13:30:00	120.00	19.5		new step/increased Q to 700 gpm
		13:30:15	120.25	19.0	669	
		13:30:30	120.50	19.0		
		13:30:45	120.75	19.0	679	
		13:31:00	121.00	18.0	693	
		13:32:00	122.00	18.0	697	
		13:34:00	124.00	18.0	655	valve opened full, can't get 700 gpm
		13:35:00	125.00	18.0	674	
		13:36:00	126.00	18.0	664	
		13:37:00	127.00	18.0	669	pumped air line
		13:39:00	129.00	18.0	664	pumped air line
		13:47:00	137.00	18.0	665	pumped air line
		13:55:00	145.00	18.0	646	
		14:05:00	155.00	15.0	1068	pumped air line, Well No. 3 went down Q in Well No. 2 increased to 1,068 gpm
			1 (0 0 0		1075	valve opened to maximum
		14:18:00	168.00	15.0	1077	pumped air line
		14:28:00	178.00	15.0	1101	pumped air line
		14:34:00	184.00	15.5	1090	pumped air line
		14:42:00	192.00	16.0	1045	pumped air line
		14:46:00	196.00	15.5	1066	pumped air line

Table C-1. Step-Drawdown (Step) Test Data for Unisys Production Well No. 2, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Airline Pressure, in pounds per square inch	Pumping Rate (Q), in gallons per minute (gpm)	Comments
2	8/2/90	14:48:00	208.00	15.5	1087	pumped air line
-	0/2//0	14:53:00	213.00	15.5	1093	pumped air line
		14:57:00	217.00		915	
		14:58:00	218.00		980	
		14:59:00	219.00		1000	
		15:02:00	222.00	15.5	995	pumped air line
		15:05:00	225.00		1025	
		15:31:00	251.00		1009	pumped air line
		15:40:00	260.00		995	pumped air line
		15:51:00	271.00	16.0	986	pumped air line
		15:56:00	276.00	16.0	989	pumped air line
		16:00:00	280.00	16.0	994	pumped air line
		16:06:00	286.00	15.5	1000	pumped air line
		16:08:00	288.00		978	
		16:15:00	295.00		983	
		17:20:00	360.00	15.5	992	pumped air line

Table C-1. Step-Drawdown (Step) Test Data for Unisys Production Well No. 2, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
1GU 8/2/90	8:17 11:05 11:34 11:45 11:55 12:06 12:22 12:34 12:46 12:58 13:13 13:28 13:40 13:54 14:09 14:25 14:42 14:57 15:35 15:58 16:14 16:29 16:45	pretest pretest 4 15 25 36 52 64 76 88 103 118 130 144 159 175 192 207 245 268 284 299 315	100.53 100.52 100.51 100.55 100.57 100.60 100.615 100.62 100.65 100.64 100.645 100.66 100.66 100.68 100.68 100.655	NA NA -0.01 0.03 0.05 0.08 0.095 0.10 0.13 0.12 0.125 0.13 0.12 0.125 0.13 0.14 0.14 0.12 0.14 0.14 0.16 0.17 0.16 0.135 0.135 0.135 0.135

Table C-2. Step-Drawdown (Step) Test Data for Monitoring Well 1GU, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
1GL	8/2/90	8:13 11:07 11:32 11:42 11:57 12:12 12:26 12:37 12:48 13:04 13:16 13:30 13:43 13:57 14:11 14:28 14:45 15:00	pretest pretest 2 12 27 42 56 67 78 94 106 120 133 147 161 177 194 209	101.25 101.23 101.24 101.23 101.26 101.31 101.32 101.34 101.34 101.37 101.37 101.37 101.37 101.37 101.38 101.38 101.40 101.425	NA NA 0.01 0 0.03 0.03 0.03 0.03 0.03 0.09 0.11 0.11 0.11 0.14 0.14 0.14 0.14 0.14
		15:38 16:00 16:18 16:33	247 269 287 302	101.39 101.38 101.385 101.385	0.16 0.15 0.155 0.155

Table C-3. Step-Drawdown (Step) Test Data for Monitoring Well 1GL, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.47				101 / 2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IWI	8/2/90	8:20	pretest	101.43	NA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			11:01	pretest	101.42	NA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			11:40	10	102.01	0.59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			11:52	22	102.05	0.63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			12:04	34	102.08	0.66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			12:19	49	102.15	0.73
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			12:32	62	102.22	0.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			12:44	74	102.32	0.90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			12:56	86	102.34	0.92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			13:11	101	102.35	0.93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			13:23	113	102.36	0.94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			13:38	128	102.44	1.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			13:51	141	102.47	1.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			14:05	155	102.665	1.245
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			14:22	172	102.815	1.395
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			14:36	186	102.79	1.37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			14:54	204	102.775	1.355
15:32242102.651.2315:47257102.631.2115:55265102.611.1916:10280102.601.1816:27297102.5851.16516:42312102.581.165			15:08	218	102.67	1.25
15:47257102.631.2115:55265102.611.1916:10280102.601.1816:27297102.5851.16516:42312102.581.165			15:32	242	102.65	1.23
15:55265102.611.1916:10280102.601.1816:27297102.5851.16516:42312102.581.16			15:47	257	102.63	1.21
16:10280102.601.1816:27297102.5851.16516:42312102.581.16			15:55	265	102.61	1.19
16:27 297 102.585 1.165 16:42 312 102.58 1.16			16:10	280	102.60	1.18
16.42 312 102.58 1.16			16:27	297	102,585	1.165
			16:42	312	102.58	1.16

Table C-4. Step-Drawdown (Step) Test Data for Monitoring Well 1MI, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
		0.07			
IMI/L	8/2/90	8:27	pretest	101.81	NA
		10:56	pretest	101.92	NA
		11:36	6	101.92	0
		11:48	18	101.95	0.03
		11:59	29	102.00	0.08
		12:14	43	102.05	0.13
		12:28	57	102.09	0.17
		12:40	69	102.12	0.20
		12:50	79	102.11	0.19
		13:06	95	102.22	0.30
		13:18	107	102.25	0.33
		13:33	122	102.28	0.36
		13:46	135	102.32	0.40
		13:59	148	102.35	0.43
		14:17	166	102.38	0.46
		14:30	179	102.42	0.50
		14:48	197	102.46	0.54
		15:03	212	102,445	0.525
		15:41	250	102.46	0.54
		16:04	273	102.44	0.52
		16:21	290	102.43	0.51
		16:36	305	102.41	0.49

Table C-5. Step-Drawdown (Step) Test Data for Monitoring Well 1MI/L, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
	- <u> </u>			100.05	
IML	8/2/90	8:23	pretest	102.25	NA
		10:58	pretest	102.25	NA
		11:38	8	102.40	0.15
		11:49	19	102.53	0.28
		12:02	24	102.57	0.32
		12:16	38	102.615	0.365
		12:30	52	102.65	0.40
		12:42	64	102.71	0.46
		12:53	75	102.72	0.47
		13:09	91	102.76	0.51
		13:21	103	102.76	0.51
		13:35	117	102.78	0.53
		13:48	130	102.81	0.56
		14:02	144	102.80	0.55
		14:20	162	102.87	0.62
		14:34	176	102.855	0.605
		14:52	194	102 84	0.59
		15:07	209	102 79	0.54
		15.44	246	102 72	0 47
		16:08	270	102 69	0 44
		16.24	286	102.68	0 43
		16:40	302	102.655	0.405
		10.40	502	102.011	0.405

Table C-6. Step-Drawdown (Step) Test Data for Monitoring Well 1ML, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
2GL	8/2/90	8:30	pretest	82.91	
	-, -,	10:00	pretest	85.94	NA
		10:44	pretest	82.88	NA
		11:37	. 7	82.91	0.03
		12:27	57	82.95	0.07
		13:16	106	82.97	0.09
		14:40	190	82.75	-0.13
		15:25	235	82.76	-0.12

Table C-7. Step-Drawdown (Step) Test Data for Monitoring Well 2GL, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
2MI	8/2/90	8:37 9:50 10:39 11:31 12:23 13:06 14:33 15:15	pretest pretest pretest 1 53 96 183 225	83.22 91.95 83.15 82.90 83.02 83.20 82.86 82.77	NA NA -0.25 -0.13 0.05 -0.29 -0.38

Table C-8. Step-Drawdown (Step) Test Data for Monitoring Well 2MI, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
301	8 /2 /90	8.50	protost	93 68	NA
J01	0/2/00	11.59	29	93 65	-0.03
		12:29	59	93.65	-0.03
		12:55	85	93.65	-0.03
		13:50	140	93.64	-0.04
		14:55	205	93.64	-0.04
		15:14	224	93.68	0

Table C-9. Step-Drawdown (Step) Test Data for Monitoring Well 3GL, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
4GL	8/2/90	8:35	pretest	99.53	NA
		10:15	pretest	99.53	NA
		11:17	pretest	99.54	NA
		11:38	. 8	99.53	-0.01
		11:52	22	99.53	-0.01
		12:07	37	99.53	-0.01
		12:29	59	99.53	-0.01
		12:49	79	99.53	-0.01
		13:12	102	99.53	-0.01
		13:49	133	99.53	-0.01
		14:09	153	99.53	-0.01
		15:05	209	99.53	-0.01
		15:42	246	99.53	-0.01
		16:05	268	99.53	-0.01

Table C-10. Step-Drawdown (Step) Test Data for Monitoring Well 4GL, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
4MI	8/2/90	8:27 10:10 10:41 11:46 12:03 12:23 12:54 13:13 13:55 14:15 14:59 15:36 16:09	pretest pretest pretest 16 33 53 86 105 147 167 211 248 281	102.88 102.88 102.93 102.99 103.00 103.03 103.05 103.07 103.10 103.18 103.20 103.21	NA NA 0.05 0.11 0.12 0.15 0.17 0.19 0.22 0.30 0.32 0.33

Table C-11. Step-Drawdown (Step) Test Data for Monitoring Well 4MI, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
SGL	8/2/90	8:23	pretest	85.08	NA
		9:56	pretest	85.06	NA
		10:07	pretest	85.06	NA
		10:24	pretest	85.06	NA
		10:39	pretest	85.06	NA
		10:52	pretest	85.06	NA
		11:32	2	85.07	0.01
		11:45	15	85.07	0.01
		12:03	33	85.07	0.01
		12:19	49	85.07	0.01
		12:33	63	85.07	0.01
		12:45	75	85.07	0.01
		12:57	87	85.09	0.03
		13:07	97	85.08	0.02
		13:19	109	85.08	0.02
		13:32	122	85.08	0.02
		13:45	135	85.08	0.02
		14:02	152	85.08	0.02
		14:19	169	85.08	0.02
		14:41	191	85.12	0.06
		14:58	208	85.12	0.06
		15:13	223	85.13	0.07
		15.29	236	85 13	0.07
		15:45	252	85.14	0.08

Table C-12. Step-Drawdown (Step) Test Data for Monitoring Well 5GL, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
5MI	8/2/90	8:32	pretest	85.68	NA
	, _,	10:03	pretest	85.66	NA
		10:14	pretest	85.66	NA
		10:27	pretest	85.66	NA
		10:42	pretest	85.66	NA
		11:35	5	85.67	0.01
		11:50	20	85.65	-0.01
		12:07	37	85.67	0.01
		12:22	52	85.68	0.02
		12:36	66	85.69	0.03
		12:48	78	85.70	0.04
•		13:00	90	85.73	0.07
		13:10	100	85.73	0.07
		13:22	112	85.73	0.07
		13:35	125	85.73	0.07
		13:49	139	85.72	0.06
		14:05	155	85.72	0.06
		14:25	175	85.81	0.15
		14:43	193	85.84	0.18
		15:01	211	85.86	0.20
		15:16	226	85.87	0.21
		15:36	246	85.88	0.22
		15:48	258		

Table C-13. Step-Drawdown (Step) Test Data for Monitoring Well 5MI, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
6GL	8/2/90	10:24 11:04 12:08 12:55 14:05 15:06	pretest pretest 38 85 155 216	83.18 83.23 83.23 83.21 83.21 83.36	NA NA 0 -0.02 -0.02 0.13

Table C-14.	Step-Drawdown (Step) Test Data for Monitoring Well 6GL,
	August 2, 1990, Unisys Corporation Great Neck Facility,
	Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
7GL	8/2/90	8:46 11:28 11:33 11:55 12:16 12:39 13:00 13:14 14:01 14:30 15:25 15:50	pretest pretest 3 25 46 69 90 109 151 280 235 250	106.66 106.67 106.68 106.68 106.68 106.68 106.68 106.68 106.68 106.68 106.68	NA NA 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Table C-15. Step-Drawdown (Step) Test Data for Monitoring Well 7GL, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
8GU	8/2/90	8:32	pretest	73.83	NA
		9:26	pretest	73.83	NA
		11:38	8	73.82	-0.01
		12:11	41	73.80	-0.03
		12:41	71	73.78	-0.05
		13:08	98	73.76	-0.07
		14:04	154	73.74	-0.09
		14:41	191	73.72	-0.11
		15:04	214	73.72	-0.11
		15:29	239	73.73	-0.10

Table C-16. Step-Drawdown (Step) Test Data for Monitoring Well 8GU, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
8GL	8/2/9Ö	8:22 9:24 11:33 12:08 12:38 13:05 14:01 14:38 15:01 15:25	pretest pretest 3 38 68 65 121 158 181 205	78.29 78.35 78.25 78.06 77.97 78.06 77.98 76.54 76.37 76.23	NA NA -0.10 -0.29 -0.38 -0.29 -0.37 -1.81 -1.98 -2.12

Table C-17. Step-Drawdown (Step) Test Data for Monitoring Well 8GL, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
9GL	8/2/90	8:45 11:51 12:21 12:48 13:56 14:47 15:08	pretest 21 51 78 146 147 168	82.32 82.24 82.28 82.24 82.25 81.76 81.67	NA - 0.08 - 0.04 - 0.08 - 0.07 - 0.56 - 0.65

Table C-18. Step-Drawdown (Step) Test Data for Monitoring Well 9GL, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
10GL	8/2/90	8:40	pretest	82.39	NA
		11:35	- 5	82.47	0.08
		11:47	17	82.55	0.16
		12:00	30	82.60	0.21
		12:13	43	82.61	0.22
		12:25	55	82.61	0.22
		12:39	69	82.64	0.25
		12:51	81	82.67	0.28
		13:06	96	82.69	0.30
		13:25	115	82.70	0.31
		13:37	127	82.71	0.32
		13:50	140	82.66	0.27
		14:05	155	82.70	0.31
		14:18	168	82.51	0.12
		14:35	185	82.46	0.07
		14:48	198	82.46	0.07
		15:19	229	82.34	-0.05
		15:31	241	82.31	-0.08
		15:44	254	82.32	-0.07
		15:58	268	82.30	-0.09
		16:10	280	82.27	-0.12

Table C-19. Step-Drawdown (Step) Test Data for Monitoring Well 10GL, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
11GL	8/2/90	8:20 10:15 10:58 11:57 12:45 13:30 14:50 15:35	pretest pretest 27 102 147 227 272	83.68 83.72 83.66 83.73 83.67 129.62 128.15 118.30	NA NA 0.07 0.01 45.96 44.19 34.64

Table C-20.	Step-Drawdown (Step) Test Data for Monitoring Well 11GL,
	August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck New York

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
11MI	8/2/90	8:13 10:07 10:54 11:52 12:39 13:57 14:58 15:43	pretest pretest 22 69 147 208 253	84.67 84.61 84.95 84.51 84.75 105.37 127.09 122.50	NA NA -0.44 -0.20 20.42 42.14 37.55

Table C-21. Step-Drawdown (Step) Test Data for Monitoring Well 11MI, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
1.047					
12MI	8/2/90	8:46	pretest	89.84	
		11:33	3	90.07	0.23
		11:43	13	91.43	1.59
		11:55	25	91.49	1.65
		12:07	37	91.54	1.70
		12:20	50	91.67	1.83
		12:35	65	91.91	2.07
		12:46	76	92.04	2.20
		13:00	90	92.01	2.17
		13:16	106	92.01	2.17
		13:33	123	92.20	2.36
		13:45	135	92.29	2.45
		13:52	142	92.28	2.44
		14:13	163	92.38	2.54
		14:25	175	93.55	3.71
		14:42	192	93.04	3.20
		14:55	205	93.56	3.72
		15:25	235	93.33	3.49
		15:39	249	93.35	3.51
		15:52	262	93.23	3.39
		16:05	275	93.22	3.38
		16:32	302	93.19	3.35
		16:41	311	93.18	3.34
		16:57	327	93.20	3.36

Table C-22. Step-Drawdown (Step) Test Data for Monitoring Well 12MI, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
12MI	8/2/90	8.55	nretest	90 46	NA
	0/2/20	11.31	1	90.43	-0.03
		11.40	10	90.75	0.29
		11:51	21	90.80	0.34
		12:04	34	90.88	0.42
		12:16	46	90,90	0.44
		12:30	60	90.81	0.35
		12:44	74	90.97	0.51
		12:52	82	91.00	0.54
		13:12	102	91.03	0.57
		13:31	121	91.05	0.59
		13:41	131	91.09	0.63
		13:55	145	91.11	0.65
		14:10	160	91.20	0.74
		14:22	172	91.22	0.76
		14:39	189	91.23	0.77
		14:52	202	91.18	0.72
		15:22	232	91.06	0.60
		15:35	245	91.08	0.62
		15:49	259	91.05	0.59
		16:03	273	91.03	0.57

Table C-23. Step-Drawdown (Step) Test Data for Monitoring Well 12ML, August 2, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

APPENDIX D

August 20, 1990 through August 23, 1990 Pumping Test Data, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Airline Pressure, in pounds per square inch	Pumping Rate, in gallons per minute
	<u>-</u> -	0.75	-		
2	8/20/90	8:45	0	25	1012
		9:50	Z		1015
		9:52	4	17	900
		9:53	5	17	000
		9:54	6	16 5	992
		9:57	9	10.5	981
		9:58	10	1 7	969
		9:59	11	17	974
		10:00	12	17	0(0
		10:01	13		968
		10:02	14		974
		10:03	15	17	980
		10:05	1/	1/	976
		10:07	19		981
		10:08	20	17	960
		10:11	23		975
		10:12	24	17	
		10:13	25		985
		10:15	27	17	982
		10:19	31	17	975
		10:20	32	17	971
		10:22	34		991
		10:25	37		990
		10:26	38	17	935
		10:27	39		931
		10:28	40		941
		10:29	41	17	
		10:30	42		954
		10:33	45		950
		10:34	46	17	951
		10:35	47		954
		10:44	56	17	944
		10:48	60		919
		10:50	62	17	932
		10:57	69	17	926
		10:59	71		936
		11:00	72		930
		11:05	77		924
		11:08	80		928
		11:10	82	17	

Table D-1. Constant-Rate (Pumping) Test Data and Recovery Test Data for Unisys Production Well No. 2, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.
Well Number	Date	Time	Time, in minutes from start of test	Airline Pressure, in pounds per square inch	Pumping Rate, in gallons per minute
2	8/20/90	11:11	83		943
		11:16	88		934
		11:17	89	17	
		11:19	91		928
		11:21	93		939
		11:25	97	17	919
		11:28	100	17	922
		11:36	108	17	938
		11:38	110		929
		11:43	115		939
		11:45	117		926
		11:50	122	17	933
		12:00	132		932
		12:04	136	17	930
		12:16	148	17	940
		12:22	154		938
		12:25	157		942
		12:40	172		949
		12:53	185	17	940
		13:40	232	16.5	990
		13:43	235		998
		14:33	285	16.5	995
		14:41	293		993
		14:55	307		994
		15:25	337		999
		15:33	345	16.5	1002
		15:54	366		983
		17:48	480	16.5	1003
		17:55	487		973
		18:30	522	16.5	965
	·	19:26	578		967
		19:27	579	16.5	
		20:23	635		959
		20:25	637	16.5	
		21:46	718	16	970
		22:36	768	16	961
		23:35	827	16	955
	8/21/90	0:45	897	16	956
	, -,	1:37	949	16	990
		2:35	1007	16	1080

Table D-1. Constant-Rate (Pumping) Test Data and Recovery Test Data for Unisys Production Well No. 2, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Airline Pressure, in pounds per square inch	Pumping Rate, in gallons per minute
2	o (01 (00	2.40	1070	16	044
2	0/21/90	5:40	1072	16	900
		4:30	1100	10	9001
		2:30	1266	17	931
		0:32	1244	17	935
		7:34	1306	17	937
		0:30	1308	17	900
		8:55	1387	1.0	750
		9:40	1432	18	750
		10:15	1467		762
		10:20	14/2		/20
		10:30	1482		//0
		10:35	148/	16 5	/81
		11:15	1527	16.5	0/5
		11:28	1540		947
		11:51	1563	1 7	051
		12:53	1625	17	951
		13:35	1667		955
		13:53	1685	17	931
		15:40	1/92	17	956
		16:52	1864	17	948
		17:52	1924	17	955
		18:45	1977	16.5	948
		19:45	2037	16.5	952
		20:45	2097	16.5	946
		21:58	2170	16.5	945
		22:58	2230	16.5	945
	0 (00 (00	23:56	2288	16.5	940
	8/22/90	0:46	2338	16.5	942
		1:58	2410	17.5	946
		2:42	2454	17.5	936
		3:59	2531	17	944
		4:43	2575	1/	933
		5:58	2650	1/.5	940
		6:40	2692	1/	937
		/:45	2/5/		945
		8:30	2862	16.5	941
		9:55	2887	15.5	948
		11:03	2955	16.5	966
		11:45	2997	16.5	980
		13:45	31 1 7	16	986

Table D-1. Constant-Rate (Pumping) Test Data and Recovery Test Data for Unisys Production Well No. 2, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minut from sta of tes	Airline es Pressure, ert in pounds pe t square incl	Pumping Rate, in r gallons per n minute
2	8/23/90	14:4515:5017:0517:5518:4518:4619:4520:4421:5522:4523:480:451:553:103:554:455:546:527:558:429:3210:20	3177 3242 3317 3367 3417 3418 3477 3536 3607 3657 3720 3777 3847 3922 3967 4017 4086 4144 4207 4254 4304 4352	16.5 16.5 16.5 16.5 16.5 16.5 16.5 17 17 17 17 17 17 17 17 17 17 17 17 17	966 972 954 963 960 878 958 961 954 951 950 945 1002 1090 962 982 955 960 967 947 953 952
	End of Pu August 23	mping Test/ , 1990	Start of	Recovery Test at	10:30 am on
2	8/23/90	10:30:1510:30:3010:30:4510:3110:3210:3310:3410:3511:00	0.25 0.50 0.75 1 2 3 4 5 30	21 26 25 25 25 25 25 25 25 25	

Table D-1. Constant-Rate (Pumping) Test Data and Recovery Test Data for Unisys Production Well No. 2, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
1GU	8/20/90	9:02 9:53 10:01 10:08 10:15 10:22 10:37 10:54 11:14 11:24 11:14 11:24 11:14 11:24 11:14 11:24 11:14 11:24 11:14 11:24 11:14 11:24 11:25 13:30 13:57 14:58 15:54 17:03 18:04 19:03 21:14 22:08 1:20 2:304 12:45 12:45 12:08 1:20 2:34 12:45 12:45 12:20 3:34 12:20 2:34 12:45 12:45 12:45 12:45 12:45 12:45 12:45 12:45 12:45 12:45 12:45 12:45 12:44 12:44 12:44 12:44 12:55 12:45 12:45 12:20 2:304 12:45 12:44 12:38 4:42 12:38	5 13 20 27 34 40 49 57 66 76 86 96 106 116 126 149 192 222 249 279 308 340 366 435 496 555 615 686 740 804 802 1006 1132 1209 1275 1360 1447 1501 1615 1737 18573 2086 2216 2332 2450 2574 2930 3050	$\begin{array}{c} 100.55\\ 100.45\\ 100.47\\ 100.47\\ 100.47\\ 100.45\\ 100.51\\ 100.52\\ 100.52\\ 100.52\\ 100.52\\ 100.52\\ 100.55\\ 100.61\\ 100.60\\ 100.55\\ 100.61\\ 100.60\\ 100.55\\ 100.60\\ 100.55\\ 100.52\\ 100.52\\ 100.52\\ 100.52\\ 100.60\\$	$\begin{array}{c} -0.10\\ -0.14\\ -0.08\\ -0.08\\ -0.08\\ -0.09\\ -0.04\\ -0.06\\ -0.02\\ -0.01\\ -0.02\\ -0.01\\ -0.02\\ -0.01\\ -0.05\\ -0.06\\ -0.02\\ -0.01\\ -0.05\\ -0.06\\ -0.05\\ -0.05\\ -0.06\\ -0.05\\ -0.05\\ -0.00\\ -0.03\\ -0$

Table D-2. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 1GU, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Table D-2. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 1GU, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
1GU	8/22/90 8/23/90	14:39 16:38 20:22 22:39 0:35 2:32 4:56 6:30 7:59 8:13 8:47 9:15 9:43	3171 3290 3514 3651 3767 3884 4028 4122 4211 4225 4259 4287 4315	100.45 100.44 100.45 100.35 100.31 100.33 100.36 100.45 100.45 100.46 100.46 100.47	-0.10 -0.11 -0.10 -0.22 -0.24 -0.22 -0.19 -0.10 -0.10 -0.10 -0.09 -0.09 -0.08
	End of Pum August 23,	ping Test/S 1990	tart of Recov	ery Test a	at 10:30 am on
Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet
1GU	8/23/90	10:30 10:35 10:41 10:48 10:53 10:59 11:05 11:14 11:19 11:26 11:43 11:53 12:05 12:15 12:29 12:40 12:54 13:14 13:32 14:50	0 5 11 18 23 29 35 44 49 56 73 93 95 105 119 130 144 164 182 260	100.41 100.38 100.35 100.31 100.28 100.20 100.27 100.25 100.26 100.26 100.33 100.31 100.31 100.34 100.31 100.24 100.27 100.29 100.25	0.00 0.03 0.03 0.10 0.13 0.11 0.14 0.16 0.15 0.15 0.15 0.15 0.08 0.10 0.07 0.10 0.17 0.13 0.14 0.12 0.16

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
1GL	8/20/90	9:05 9:59 10:07 10:14 10:22 10:34 10:44 10:52 11:03 11:23 11:23 11:23 11:43 11:53 12:15 12:34 12:58 13:26 13:54 14:23 14:52 15:253 17:05 18:05 19:06 20:05 21:16 22:11 1:23 12:33 3:37 4:43 5:56 8:30 9:57 10:51 12:46 14:47 16:45 18:44 20:36 2:42 4:48	$\begin{array}{c} 11\\ 19\\ 26\\ 34\\ 39\\ 46\\ 56\\ 64\\ 74\\ 85\\ 95\\ 105\\ 115\\ 125\\ 147\\ 166\\ 190\\ 218\\ 246\\ 275\\ 306\\ 338\\ 365\\ 437\\ 497\\ 558\\ 617\\ 688\\ 743\\ 807\\ 863\\ 934\\ 1005\\ 1069\\ 1135\\ 1210\\ 1278\\ 1362\\ 1449\\ 1503\\ 1618\\ 1739\\ 1857\\ 1976\\ 2088\\ 2218\\ 2334\\ 2452\\ 2576\\ 2700\\ \end{array}$	$\begin{array}{c} 101.19\\ 101.08\\ 101.09\\ 101.13\\ 101.13\\ 101.13\\ 101.24\\ 101.23\\ 101.22\\ 101.22\\ 101.22\\ 101.22\\ 101.22\\ 101.22\\ 101.22\\ 101.22\\ 101.22\\ 101.22\\ 101.22\\ 101.22\\ 101.22\\ 101.22\\ 101.24\\ 101.32\\ 101.24\\ 101.32\\ 101.24\\ 101.32\\ 101.24\\ 101.25\\ 101.24\\ 101.25\\ 101.24\\ 101.25\\ 101.26\\ 101.24\\ 101.26\\ 101.26\\ 101.26\\ 101.26\\ 101.26\\ 101.26\\ 101.17\\ 101.16\\ 101.06\\ 101.08\\ 101.11\\ 101.05\\ 101.05\\ 101.05\\ 101.05\\ 101.08\\ 101.01\\ 101.08\\ 101.03\\$	$\begin{array}{c} -0.11\\ -0.10\\ -0.06\\ -0.05\\ -0.06\\ -0.05\\ -0.06\\ 0.05\\ -0.04\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.04\\ 0.13\\ 0.05\\ 0.12\\ 0.11\\ 0.06\\ 0.10\\ 0.07\\ 0.05\\ 0.00\\ -0.04\\ -0.03\\ 0.00\\ -0.04\\ -0.03\\ 0.01\\ -0.02\\ -0.02\\ -0.02\\ -0.03\\ -0.09\\ -0.10\\ -0.08\\ -0.13\\ -0.11\\ -0.08\\ -0.09\\ -0.09\\ -0.09\\ -0.09\\ -0.09\\ -0.09\\ -0.09\\ -0.09\\ -0.09\\ -0.09\\ -0.09\\ -0.09\\ -0.09\\ -0.09\\ -0.09\\ -0.09\\ -0.09\\ -0.09\\ -0.09\\ -0.00\\ -0.11\\ -0.08\\ -0.09\\ -0.09\\ -0.09\\ -0.09\\ -0.00\\ -0.11\\ -0.12\\ -0.15\\ -0.16\\ -0.$

Table D-3. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 1GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	in fro Time	Time, minutes om start of test	Depth to Water, in feet	Drawdown, in feet
1GL	8/22/90 8/23/90 End of Pump	8:42 10:40 12:40 14:41 16:40 20:24 22:40 0:37 2:34 4:58 6:34 8:01 8:16 8:49 9:17 9:45 ing Test/Start	2814 2932 3052 3173 3292 3516 3652 3769 3886 4030 4126 4213 4228 4261 4289 4317 of Recov	101.10 101.11 101.15 101.11 101.14 101.19 101.15 101.15 101.07 101.07 101.09 101.19 101.19 101.19 101.17 101.16 101.22 101.21 rery Test a	-0.09 -0.08 -0.04 -0.08 -0.05 0.00 -0.04 -0.04 -0.04 -0.12 -0.12 -0.12 -0.12 -0.12 -0.10 0.00 -0.02 -0.03 0.03 0.02 t 10:30 am on
	August 23,	1990	OI RECOV		
Well		in fro	Time, minutes om start	Depth to Water,	Recovery,

Table D-3. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well IGL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	in minutes from start of test	to Water, in feet	Recovery, in feet
lGL	8/23/90	$10:31 \\ 10:36 \\ 10:43 \\ 10:49 \\ 10:55 \\ 11:00 \\ 11:07 \\ 11:15 \\ 11:21 \\ 11:27 \\ 11:46 \\ 11:56 \\ 12:07 \\ 12:17 \\ 12:31 \\ 12:41 \\ 12:56 \\ 13:16 \\ 13:35 \\ 14:52 \\ 14:52 \\ 14:52 \\ 10:36 \\ 10:3$	1 6 13 19 25 30 37 45 51 57 76 86 97 107 121 131 146 166 185 262	101.12 101.12 101.11 101.10 101.09 101.07 101.09 101.05 101.04 101.03 101.10 101.10 101.10 101.05 101.11 101.05 101.05 101.08 101.05 100.97	0.09 0.09 0.10 0.11 0.12 0.14 0.12 0.14 0.12 0.16 0.17 0.18 0.11 0.11 0.11 0.17 0.16 0.10 0.14 0.13 0.16 0.24

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
1MI	8/20/90	$\begin{array}{c}9:05\\9:54\\9:55\\9:56\\9:57\\9:56\\9:57\\9:50\\10:02\\10:03\\10:05\\10:07\\10:12\\10:123\\10:228\\10:228\\10:228\\10:228\\10:228\\10:228\\10:228\\10:228\\10:228\\1122252\\12225222\\122252222\\122252225$. $56789100111122131415179212325729313354055560657559510551255145518662152242273336249226122422733366224925526122422733366224925526122492552612249925526122499255261224999810641130$	$\begin{array}{c} 101.41\\ 102.30\\ 102.35\\ 102.42\\ 102.42\\ 102.45\\ 102.74\\ 102.61\\ 102.72\\ 102.41\\ 102.30\\ 102.40\\ 102.30\\ 102.48\\ 102.50\\ 102.48\\ 102.50\\ 102.48\\ 102.50\\ 102.48\\ 102.50\\ 102.48\\ 102.50\\ 102.48\\ 102.50\\ 102.48\\ 102.50\\ 102.48\\ 102.50\\ 102.48\\ 102.50\\ 102.48\\ 102.50\\ 102.48\\ 102.50\\ 102.48\\ 102.50\\ 102.48\\ 102.50\\ 102.48\\ 102.52\\ 102.48\\ 102.52\\ 102.48\\ 102.52\\ 102.45\\$	0.89 0.94 0.99 1.01 1.04 1.33 1.20 1.31 1.00 0.99 0.89 1.19 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.08 0.91 1.12 1.11 1.104 1.02 0.98 0.94 0.96 1.04 1.02 0.98 0.91 1.12 1.11 1.03 1.04 1.02 0.98 0.94 0.96 1.04 1.07 1.01 1.02 0.98 0.94 0.96 1.04 1.07 1.01 1.02 0.98 0.94 0.96 1.04 1.07 1.07 1.03 1.00 0.95 1.03 1.00 0.92 0.92 0.92 0.92 0.92 0.59

Table D-4. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 1MI, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
1MI	8/21/90 8/22/90 8/23/90	5:53 7:00 8:25 9:53 10:47 12:40 14:42 16:39 18:38 20:32 22:42 0:37 2:35 4:41 6:44 8:38 10:35 12:36 14:37 16:35 18:39 20:20 22:31 4:59 7:57 8:45 9:14	$\begin{array}{c} 1205\\ 1272\\ 1357\\ 1445\\ 1499\\ 1612\\ 1734\\ 1851\\ 1970\\ 2084\\ 2214\\ 2329\\ 2447\\ 2573\\ 2696\\ 2810\\ 2927\\ 3048\\ 3169\\ 3287\\ 3411\\ 3512\\ 3650\\ 3765\\ 3883\\ 4026\\ 4121\\ 4209\\ 4224\\ 4257\\ 4286\end{array}$	102.04 102.07 101.95 101.84 101.83 102.12 102.15 102.24 102.08 102.05 101.80 101.80 101.87 101.99 102.07 102.18 102.21 102.22 102.24 102.32 102.24 102.37 102.10 102.02 102.10 102.02 102.10 102.17 102.17 102.18	$\begin{array}{c} 0.63\\ 0.66\\ 0.54\\ 0.43\\ 0.42\\ 0.71\\ 0.74\\ 0.83\\ 0.67\\ 0.64\\ 0.49\\ 0.39\\ 0.49\\ 0.39\\ 0.43\\ 0.46\\ 0.58\\ 0.66\\ 0.77\\ 0.80\\ 0.91\\ 0.83\\ 0.89\\ 0.96\\ 0.61\\ 0.69\\ 0.61\\ 0.61\\ 0.66\\ 0.75\\ 0.76\\ 0.76\\ 0.77\\ 0.76\\ 0.77\\$
	End of Pump August 23,	9:40 ing Test/S 1990	4312 tart of Recov	102.21 very Test a	0.80 t 10:30 am on

Table D-4. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 1MI, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet
1МІ	8/23/90	10:30:0010:30:1510:30:3010:30:4510:31:0010:31:3010:32:0010:32:3010:33:0010:33:30	$\begin{array}{c} 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.50 \\ 2.00 \\ 2.50 \\ 3.00 \\ 3.50 \end{array}$	102.20 102.20 102.20 102.20 102.20 102.30 102.19 101.78 101.68 101.62	0.00 0.00 0.00 0.00 -0.10 0.01 0.42 0.52 0.58

-

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet
lMI	8/23/90	$\begin{array}{c} 10:34:00\\ 10:34:30\\ 10:35:00\\ 10:35:00\\ 10:35:00\\ 10:37:00\\ 10:38:00\\ 10:39:00\\ 10:40:00\\ 10:40:00\\ 10:44:00\\ 10:44:00\\ 10:44:00\\ 10:44:00\\ 10:50:00\\ 10:52:00\\ 10:52:00\\ 10:55:00\\ 10:55:00\\ 10:55:00\\ 10:55:00\\ 10:55:00\\ 11:00:00\\ 11:00:00\\ 11:15:00\\ 11:25:00\\ 11:25:00\\ 11:25:00\\ 11:25:00\\ 11:25:00\\ 11:30:00\\ 11:40:00\\ 11:53:00\\ 12:02:00\\ 12:37:00\\ 12:37:00\\ 12:50:00\\ 13:10:00\\ 13:30:00\\ 14:48:00\\ \end{array}$	$\begin{array}{c} 4.00\\ 4.50\\ 5.00\\ 6.00\\ 7.00\\ 8.00\\ 9.00\\ 10.00\\ 12.00\\ 14.00\\ 16.00\\ 12.00\\ 20.00\\ 22.00\\ 24.00\\ 26.00\\ 22.00\\ 24.00\\ 26.00\\ 28.00\\ 30.00\\ 35.00\\ 40.00\\ 28.00\\ 30.00\\ 35.00\\ 40.00\\ 45.00\\ 55.00\\ 60.00\\ 70.00\\ 83.00\\ 92.00\\ 103.00\\ 116.00\\ 127.00\\ 140.00\\ 160.00\\ 180.00\\ 258.00\end{array}$	101.56 101.51 101.47 101.13 101.42 101.35 101.15 101.24 101.15 101.14 101.11 101.09 101.08 101.07 101.07 101.07 101.07 101.07 101.07 101.07 101.07 101.07 101.07 101.07 101.08 101.07 101.08 101.09 101.08 101.09 101.10 101.10 101.11 101.11	0.64 0.69 0.73 1.07 0.78 0.85 1.05 0.96 0.99 1.05 1.06 1.09 1.10 1.09 1.10 1.09 1.11 1.12 1.13 1.13 1.13 1.13 1.13 1.13

Table D-4. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 1MI, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

ROUX ASSOCIATES INC

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
lMI/L	8/20/90	9:02 9:55 10:03 10:10 10:16 10:23 10:27 10:40 10:51 11:07 11:18 11:27 11:37 11:47 11:57 12:20 12:39 13:03 13:33 14:00 14:28 14:58 15:56 17:08 18:09 20:07 21:18 22:13 23:17 0:15 1:24 23:17 0:15 1:24 23:17 0:15 1:24 23:17 0:15 1:24 23:59 3:40 4:45 6:01 7:10 8:35 9:59 10:53 12:49 14:48 16:47 18:46 20:38 22:48	7 15 22 28 35 39 52 59 63 79 90 90 99 109 119 129 152 171 195 225 252 280 310 362 368 440 500 561 619 690 745 809 867 936 1007 1072 1137 1213 1282 1367 1451 1505 1621 1740 1859 1978 2090 2220	$\begin{array}{c} 101.89\\ 101.98\\ 101.96\\ 102.03\\ 102.10\\ 102.12\\ 102.15\\ 102.23\\ 102.23\\ 102.23\\ 102.23\\ 102.22\\ 102.24\\ 102.18\\ 102.22\\ 102.27\\ 102.27\\ 102.27\\ 102.27\\ 102.27\\ 102.27\\ 102.27\\ 102.27\\ 102.27\\ 102.27\\ 102.27\\ 102.27\\ 102.27\\ 102.27\\ 102.27\\ 102.27\\ 102.27\\ 102.27\\ 102.27\\ 102.26\\ 102.18\\ 102.77\\ 102.68\\ 102.68\\ 102.65\\ 101.62\\ 101.65\\ 101.52\\ 101.63\\ 101.52\\ 101.66\\ 101.68\\ 101.69\\ 101.68\\ 101.90\\ 101.68\\ 101.90\\ 101.93\\ 101.95\\ 101.71\\ 101.51\\ \end{array}$	$\begin{array}{c} 0.09\\ 0.07\\ 0.14\\ 0.21\\ 0.23\\ 0.26\\ 0.36\\ 0.34\\ 0.34\\ 0.34\\ 0.34\\ 0.35\\ 0.29\\ 0.33\\ 0.29\\ 0.38\\ 0.38\\ 0.38\\ 0.38\\ 0.38\\ 0.38\\ 0.38\\ 0.38\\ 0.38\\ 0.38\\ 0.29\\ 0.29\\ 0.29\\ 0.29\\ 0.29\\ 0.29\\ 0.29\\ 0.29\\ 0.38\\ 0.38\\ 0.37\\ 0.29\\ 0.20\\ 0.19\\ 0.16\\ 0.05\\ 0.01\\ -0.07\\ -0.12\\ -0.24\\ -0.37\\ -0.26\\ -0.37\\ -0.29\\ -0.20\\ -0.21\\ -0.09\\ -0.21\\ -0.09\\ -0.21\\ -0.09\\ -0.13\\ -0.01\\ 0.01\\ 0.08\\ -0.3$

Table D-5. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 1MI/L, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

ROUX ASSOCIATES INC

UN17504Y.1.13

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
lmı/l	8/22/90 8/23/90	0:45 2:42 4:46 6:52 8:44 10:43 12:43 14:44 16:45 20:26 22:24 0:39 2:36 5:00 6:36 8:04 8:18 8:52 9:20 9:48	2337 2454 2578 2704 2816 2935 3055 3176 3297 3514 3656 3771 3888 4032 4128 4032 4128 4216 4230 4264 4292 4320	101.39 101.43 101.48 101.61 101.84 102.02 102.01 102.02 101.99 101.68 101.57 101.57 101.57 101.57 101.57 101.93 101.94 101.92 101.95	-0.50 -0.46 -0.41 -0.28 -0.05 -0.05 -0.13 0.12 0.13 0.12 0.13 0.10 -0.21 -0.29 -0.32 -0.32 -0.32 -0.16 0.04 0.05 0.03 0.08 0.06

Table D-5. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 1MI/L, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

End of Pumping Test/Start of Recovery Test at 10:30 am on August 23, 1990.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet
lmı/L	8/23/90	10:32 10:38 10:45 10:50 10:56 11:02 11:09 11:16 11:22 11:29 11:49 11:58 12:09 12:19 12:33 12:44 12:59 13:19 13:37 14:53	2 8 15 20 26 32 39 46 52 59 79 88 99 109 123 134 149 169 187 263	101.92 101.83 101.75 101.66 101.55 101.51 101.49 101.49 101.49 101.51 101.51 101.59 101.57 101.57 101.57 101.68 101.63 101.62 101.55	$\begin{array}{c} 0.03\\ 0.12\\ 0.20\\ 0.29\\ 0.33\\ 0.40\\ 0.44\\ 0.46\\ 0.46\\ 0.47\\ 0.48\\ 0.44\\ 0.36\\ 0.43\\ 0.38\\ 0.43\\ 0.38\\ 0.43\\ 0.38\\ 0.27\\ 0.32\\ 0.33\\ 0.40\end{array}$

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
1ML	8/20/90	9:03 9:57 10:05 10:12 10:14 10:24 10:49 11:09 11:14 11:29 11:39 11:20 11:14 11:29 11:39 11:49 11:59 12:22 13:35 14:03 14:31 15:32 15:58 17:10 18:10 19:12 20:217 23:217 1:28 3:43 4:49 6:055 14:53 16:50 12:51 14:53 16:50 12:51 14:53 16:50 12:51 14:53 16:50 12:51 14:53 16:50 12:51 14:53 16:50 12:51 14:53 16:50 12:51 14:53 16:50 12:51 14:53 16:50 12:51 14:53 16:50 12:51 14:53 16:50 12:51 14:53 16:50 12:51 14:53 16:50 12:52 14:53 16:50 12:52 14:53 16:50 12:52 14:53 16:50 12:52 12:46 12:52	$\begin{array}{c} 9\\ 17\\ 24\\ 30\\ 36\\ 44\\ 53\\ 61\\ 71\\ 81\\ 86\\ 101\\ 111\\ 121\\ 131\\ 154\\ 174\\ 198\\ 227\\ 255\\ 283\\ 312\\ 344\\ 370\\ 442\\ 502\\ 564\\ 621\\ 693\\ 749\\ 813\\ 869\\ 940\\ 1012\\ 1075\\ 1141\\ 1217\\ 1286\\ 1370\\ 1453\\ 1507\\ 1623\\ 1745\\ 1862\\ 1981\\ 2092\\ 2224\\ 2339\\ 2458\\ 2580\\ 2706\\ 2819\\ 2938\\ 3057\end{array}$	102.19 102.35 102.45 102.50 102.50 102.51 102.47 102.50 102.47 102.50 102.46 102.46 102.46 102.46 102.46 102.46 102.45 102.51 102.52 102.52 102.51 102.52 102.52 102.42 102.42 102.51 102.52 102.55 102.42 102.42 102.42 102.51 102.52 102.52 102.52 102.52 102.42 102.42 102.41 102.32 102.61 102.60 101.87 101.81 101.81 101.93 101.92 102.22 102.	$\begin{array}{c} 0.16\\ 0.26\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.32\\ 0.31\\ 0.30\\ 0.26\\ 0.27\\ 0.26\\ 0.27\\ 0.26\\ 0.27\\ 0.32\\ 0.33\\ 0.38\\ 0.39\\ 0.36\\ 0.26\\ 0.23\\ 0.22\\ 0.13\\ 0.22\\ 0.13\\ 0.22\\ 0.13\\ 0.22\\ 0.13\\ 0.22\\ 0.13\\ 0.26\\ 0.23\\ 0.22\\ 0.13\\ 0.26\\ 0.23\\ 0.22\\ 0.13\\ 0.26\\ 0.23\\ 0.22\\ 0.13\\ 0.22\\ 0.13\\ 0.22\\ 0.13\\ 0.22\\ 0.13\\ 0.22\\ 0.041\\ 0.01\\ 0.029\\ 0.35\\ -0.41\\ -0.38\\ -0.35\\ -0.43\\ -0.35\\ -0.43\\ -0.32\\ -0.26\\ -0.27\\ -0.13\\ -0.22\\ 0.06\\ -0.01\\ 0.03\\ 0.02\\ -0.26\\ -0.27\\ -0.13\\ -0.22\\ 0.06\\ -0.01\\ 0.03\\ 0.02\\ -0.26\\ -0.27\\ -0.13\\ -0.22\\ 0.06\\ -0.01\\ 0.03\\ 0.02\\ -0.26\\ -0.01\\ -0.03\\ -$

Table D-6. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 1ML, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Table D-6. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 1ML, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
1ML	8/22/90	14:47 16:47 20:28 22:46	3179 3299 3520 3658	102.34 102.34 102.27 101.95	0.15 0.15 0.08 -0.24
	8/23/90	0:41 2:40 5:02 6:38 8:05 8:20 8:54 9:23 9:50	3773 3892 4034 4130 4217 4232 4266 4295 4322	101.80 101.82 101.82 101.96 102.22 102.22 102.24 102.25 102.25	-0.39 -0.37 -0.23 0.03 0.03 0.05 0.06 0.06
	End of Pump August 23,	ping Test/S 1990	tart of Recov	very Test	at 10:30 am on
Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet
1ML	8/23/90	$10:34 \\ 10:39 \\ 10:46 \\ 10:52 \\ 10:57 \\ 11:04 \\ 11:11 \\ 11:18 \\ 11:24 \\ 11:31 \\ 11:51 \\ 12:00 \\ 12:11 \\ 12:22 \\ 12:35 \\ 12:45 \\ 13:00 \\ 13:21 \\ 13:39 \\ 14:54 \\ \end{cases}$	4 9 16 22 27 34 41 48 54 61 81 90 101 112 125 135 150 171 189 264	102.15 101.93 101.82 101.77 101.77 101.77 101.79 101.76 101.76 101.78 101.89 101.96 101.91 101.94 102.05 101.96 101.92	0.10 0.32 0.43 0.48 0.48 0.48 0.46 0.49 0.48 0.47 0.40 0.36 0.29 0.30 0.34 0.31 0.20 0.29 0.29 0.29 0.29 0.33

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
2GL	8/20/90 8/21/90 8/22/90 8/22/90	$\begin{array}{c} 8:46\\ 12:20\\ 15:45\\ 17:16\\ 18:07\\ 19:05\\ 20:03\\ 21:18\\ 22:10\\ 23:07\\ 0:07\\ 1:09\\ 2:10\\ 3:14\\ 4:13\\ 5:10\\ 6:11\\ 7:11\\ 8:11\\ 9:10\\ 10:18\\ 12:10\\ 14:10\\ 16:08\\ 18:02\\ 20:04\\ 22:19\\ 0:11\\ 2:14\\ 4:13\\ 6:12\\ 8:05\\ 10:15\\ 12:12\\ 14:14\\ 16:10\\ 18:06\\ 20:09\\ 22:09\\ 0:09\\ \end{array}$	$ \begin{array}{c} 152\\357\\448\\499\\557\\615\\690\\742\\799\\859\\921\\982\\1046\\1105\\1162\\1223\\1283\\1343\\1402\\1470\\1582\\1702\\1820\\1934\\2056\\2191\\2303\\2426\\2545\\2664\\2777\\2907\\3024\\3146\\3262\\3378\\3501\\3621\\3741\end{array} $	82.70 82.32 82.29 82.14 82.14 82.17 82.18 82.38 82.29 82.24 82.23 82.29 82.24 82.23 82.29 82.24 82.23 82.17 81.97 81.96 81.95 82.00 82.04 82.04 82.04 82.04 82.04 82.04 82.04 82.04 82.10 82.11 82.15 82.11 81.90 81.81 81.92 81.99 81.99 81.99 81.99 81.99 81.99 81.99 81.99 81.99 81.99 81.99 81.99 81.99 81.99 81.99 81.99 82.11 82.11 82.11 81.90 81.81 81.99 81.99 81.99 82.11 82.11 82.11 81.90 81.81 81.92 81.99 81.99 82.11 82.11 82.12 82.11 82.12 82.11 82.12 82.11 82.12 82.11 82.12 82.22 82.12 82.22	$\begin{array}{c} -0.38\\ -0.41\\ -0.56\\ -0.56\\ -0.53\\ -0.52\\ -0.32\\ -0.41\\ -0.46\\ -0.47\\ -0.53\\ -0.73\\ -0.74\\ -0.53\\ -0.73\\ -0.74\\ -0.75\\ -0.70\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.55\\ -0.55\\ -0.59\\ -0.55\\ -0.59\\ -0.55\\ -0.59\\ -0.76\\ -0.78\\ -0.72\\ -0.71\\ -0.71\\ -0.71\\ -0.57\\ -0.57\\ -0.57\\ -0.57\\ -0.57\\ -0.57\\ -0.57\\ -0.57\\ -0.57\\ -0.57\\ -0.57\\ -0.57\\ -0.56\\ -0.56\\ -0.56\\ -0.56\\ -0.56\\ -0.56\\ -0.56\\ -0.56\\ -0.56\\ -0.56\\ -0.56\\ -0.56\\ -0.55\\ -0$
	-,-,-	2:46 4:04 6:08 7:57 8:56	3898 3976 4100 4209 4268	81.89 81.81 81.92 81.89 81.90	-0.81 -0.89 -0.78 -0.81 -0.80

Table D-7. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 2GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

End of Pumping Test/Start of Recovery Test at 10:30 am on August 23, 1990

_

Well Number	 Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet
2GL	8/23/90	11:49 13:58	 208	82.34 82.45	-0.44 -0.55

Table D-7. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 2GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
2MI	8/20/90	8:46 12:17 15:43	149	82.95 82.60 82.50	-0.35
		17:15	447	82.38	-0.57
		18:05 19:03	497	82.35	-0.60
		20:01	613	82.41	-0.54
		21:15	687	82.63	-0.32
		22:09	741	82.53	-0.42
	8/21/90	23:04	/96 857	82.46	-0.47
	•,==,,,	1:07	919	82.40	-0.55
		2:08	980	82.16	-0.79
		3:11	1043	82.16	-0.79
		5:08	1160	82.21	-0.74
		6:09	1221	82.26	-0.69
		7:09	1281	82.26	-0.69
		8:09	1341	82.29	-0.66
		10:15	1467	82.34	-0.61
		12:07	1579	82.39	-0.56
		14:07	1699	82.40	-0.55
		18:01	1933	82.26	-0.69
		20:02	2054	82.27	-0.68
	a (00 (00	22:17	2189	82.41	-0.54
	8/22/90	2.10	2300	82.37	-0.58
		4:10	2542	82.04	-0.91
		6:10	2662	82.16	-0.79
		8:03	2775	82.14	-0.81
		12:10	3022	82.25	-0.70
		14:10	3142	82.24	-0.71
		16:07	3259	82.32	-0.63
		20:07	3499	82.44	-0.51
		22:07	3619	82.48	-0.47
	8/23/90	0:07	3739	82.38	-0.57
		2:44	3076 3974	82.07 82.01	-0.88
		6:06	4098	82.15	-0.80
		7:56	4208	82.10	-0.85
		8:55	4267	82.10	-0.85

Table D-8. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 2MI, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

End of Pumping Test/Start of Recovery Test at 10:30 am on August 23, 1990

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet
2MI	8/23/90	11:46 13:57	76 131	82.55 82.66	-0.45 -0.56

Table D-8. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 2MI, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
3GL	8/20/90	8:46 13:15 15:15 17:50 18:39 19:35 20:35 21:49 22:56	207 327 482 531 587 647 721 788	93.64 93.53 93.56 93.47 93.48 93.50 93.49 93.50	-0.11 -0.08 -0.17 -0.16 -0.14 -0.15 -0.14
	8/21/90	22:35 0:56 2:03 3:18 4:20 5:34 6:39 7:57 9:32	847 908 975 1050 1112 1186 1251 1329 1424	93.50 93.45 93.46 93.47 93.45 93.45 93.45 93.46 93.48 93.48 93.46	-0.14 -0.19 -0.18 -0.17 -0.19 -0.19 -0.19 -0.18 -0.16 -0.18
	8/22/90	10:34 12:25 14:26 16:27 18:27 20:20 22:25 0:27 2:25 4:27 6:28 8:25 10:24 12:26	1486 1597 1718 1839 1959 2072 2197 2319 2437 2559 2680 2797 2916 3038	93.44 93.49 93.45 93.47 93.43 93.38 93.43 93.43 93.41 93.38 93.41 93.38 93.44 93.41 93.38	-0.20 -0.15 -0.19 -0.17 -0.21 -0.26 -0.21 -0.23 -0.23 -0.26 -0.20 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.26
	8/23/90	14:26 16:26 18:27 20:10 22:26 0:21 2:20 4:40 6:20 8:21 9:15	3158 3278 3399 3502 3638 3753 3872 4012 4112 4233 4287	93.42 93.40 93.40 93.45 93.45 93.41 93.35 93.34 93.37 93.38 93.38	-0.22 -0.22 -0.24 -0.24 -0.19 -0.23 -0.29 -0.30 -0.27 -0.26 -0.26

Table D-9. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 3GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

End of Pumping Test/Start of Recovery Test at 10:30 am on August 23, 1990

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet
3GL	8/23/90	12:17 14:17	107 227	93.35 93.34	0.03 0.04

Table D-9. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 3GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
4GL	8/20/90 8/21/90 8/22/90	8:47 12:53 15:26 17:27 18:23 19:21 20:20 21:32 22:32 23:35 0:36 1:43 2:55 3:56 5:07 6:19 7:30 9:14 10:13 12:08 14:08 16:07 18:04 20:05 22:04 23:05 0:07 2:06 4:09 6:10 8:06 10:06 12:07 14:07 16:07 18:08 19:56	185 338 459 515 573 632 704 764 827 888 955 1027 1088 1159 1231 1302 1406 1465 1580 1700 1819 1936 2057 2176 2237 2299 2418 2541 2662 2778 2898 3019 3139 3259 3380 3488	99.28 99.16 99.29 99.16 99.14 99.14 99.13 99.20 99.18 99.20 99.18 99.20 99.18 99.20 99.18 99.10 99.18 99.16 99.18 99.16 99.18 99.11 99.16 99.12 99.14 99.14 99.14 99.14 99.14 99.14 99.14 99.15 99.12 99.14 99.13 99.15 99.12 99.14 99.13 99.15 99.13 99.15 99.13 99.13 99.13 99.13 99.13 99.13 99.13 99.13 99.13 99.13 99.13 99.13 99.13 99.13 99.13 99.13 99.23 99.23 99.23 99.28 99.28 99.28 99.28 99.28 99.28 99.28 99.28 99.28 99.28 99.28 99.20	$\begin{array}{c} -0.12\\ 0.01\\ -0.12\\ -0.14\\ -0.14\\ -0.15\\ -0.08\\ -0.09\\ -0.10\\ -0.08\\ -0.09\\ -0.10\\ -0.12\\ -0.10\\ -0.12\\ -0.10\\ -0.14\\ -0.17\\ -0.12\\ -0.13\\ -0.16\\ -0.14\\ -0.14\\ -0.14\\ -0.14\\ -0.16\\ -0.14\\ -0.15\\ -0.15\\ -0.15\\ -0.15\\ -0.15\\ -0.15\\ -0.15\\ -0.10\\ -0.15\\ -0.15\\ -0.10\\ -0.16\\ -0.05\\ -0.01\\ -0.05\\ -0.01\\ -0.00\\ -0.$
	8/23/90	22:07 0:08 2:08 4:15 6:05 8:06 8:59	3619 3740 3860 3987 4097 4218 4271	99.32 99.32 99.32 99.37 99.37 99.30 99.30 99.32	0.04 0.04 0.09 0.09 0.09 0.02 0.04

Table D-10. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 4GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

End of Pumping Test/Start of Recovery Test at 10:30 am on August 23, 1990

_

New York.					
Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet
4GL	8/23/90	12:44 15:15	134 285	99.33 99.31	-0.01 0.01

Table D-10. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 4GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
4MI	8/20/90 8/21/90 8/22/90	8:46 12:53 15:24 17:25 18:20 19:18 20:17 21:30 22:29 23:32 0:32 1:40 2:52 3:53 5:04 6:16 7:28 9:10 10:10 12:05 14:04 16:04 18:03 20:02 22:02 0:05 2:06 4:07 6:07 8:04 10:04 12:05 14:04 16:04 18:04	185 336 457 512 570 629 702 761 824 884 952 1024 1085 1156 1228 1300 1402 1462 1577 1696 1816 1935 2054 2174 2297 2418 2539 2659 2775 2896 3017 3136 3256 3376	102.50 102.41 102.68 102.61 102.53 102.46 102.48 102.48 102.15 101.92 101.81 101.76 101.89 101.88 102.00 102.03 102.03 102.04 102.04 102.04 102.04 102.04 102.03 102.04 102.04 102.04 102.03 102.04 102.04 102.04 102.04 102.04 102.03 102.04 102.04 102.04 102.03 102.04 102.04 102.04 102.04 102.03 102.04 102.04 102.04 102.04 102.03 102.04 102.02 102.04 102.02 102.	$\begin{array}{c} -0.09\\ 0.18\\ 0.11\\ 0.03\\ -0.04\\ -0.02\\ -0.02\\ -0.35\\ -0.58\\ -0.69\\ -0.74\\ -0.61\\ -0.62\\ -0.20\\ -0.27\\ -0.47\\ -0.61\\ -0.62\\ -0.20\\ -0.53\\ -0.53\\ -0.46\\ -0.46\\ -0.46\\ -0.46\\ -0.46\\ -0.46\\ -0.46\\ -0.46\\ -0.47\\ -0.46\\ -0.46\\ -0.50\\ -1.07\\ -1.14\\ -1.08\\ -0.58\\ -0.07\\ 0.13\\ 0.11\\ 0.16\\ 0.24\\ 0.23\end{array}$
	8/23/90	19:54 22:04 0:05 2:05 4:10 6:03 8:04 8:57	3486 3616 3737 3857 3982 4095 4216 4269	102.75 102.25 102.11 101.92 101.84 102.38 102.38 102.46	0.25 -0.25 -0.39 -0.58 -0.66 -0.12 -0.12 -0.04

Table D-11. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 4MI, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

End of Pumping Test/Start of Recovery Test at 10:30 am on August 23, 1990

	New York.					
Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet	
4MI	8/23/90	12:46 15:11	136 281	102.20 102.38	0.26 0.08	

Table D-11. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 4MI, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
5GL	8/20/90 8/21/90 8/22/90 8/22/90	$\begin{array}{c} 8:46\\ 12:37\\ 16:07\\ 17:38\\ 18:21\\ 19:19\\ 20:15\\ 21:38\\ 22:26\\ 23:24\\ 0:25\\ 1:28\\ 2:26\\ 3:30\\ 4:30\\ 5:29\\ 6:26\\ 7:25\\ 8:28\\ 9:25\\ 10:38\\ 12:30\\ 14:30\\ 16:28\\ 18:16\\ 20:17\\ 22:41\\ 0:29\\ 2:32\\ 4:33\\ 6:29\\ 8:21\\ 10:36\\ 12:35\\ 14:34\\ 16:34\\ 18:20\\ 20:24\\ 22:24\\ 0:28\\ 3:01\\ \end{array}$	$\begin{array}{c} 169\\ 379\\ 470\\ 513\\ 571\\ 627\\ 710\\ 758\\ 816\\ 877\\ 940\\ 998\\ 1062\\ 1122\\ 1181\\ 1238\\ 1297\\ 1360\\ 1417\\ 1490\\ 1602\\ 1722\\ 1840\\ 1948\\ 2069\\ 2213\\ 2321\\ 2444\\ 2565\\ 2681\\ 2793\\ 2928\\ 3047\\ 3166\\ 3286\\ 3392\\ 3516\\ 3636\\ 3760\\ 3913\\ \end{array}$	84.84 85.05 84.95 84.84 84.83 84.84 84.84 84.80 84.79 84.75 84.75 84.75 84.75 84.75 84.75 84.75 84.75 84.77 84.75 84.77 84.78 84.84 84.83 84.83 84.83 84.83 84.83 84.83 84.80 84.70 84.70 84.70 84.70 84.70 84.70 84.70 84.70 84.70 84.70 84.70 84.70 84.70 84.70 84.80 84	$\begin{array}{c} 0.21\\ 0.11\\ 0.00\\ -0.01\\ 0.00\\ -0.04\\ -0.05\\ -0.09\\ -0.09\\ -0.09\\ -0.09\\ -0.11\\ -0.10\\ -0.10\\ -0.09\\ -0.08\\ -0.06\\ -0.07\\ -0.06\\ -0.07\\ -0.06\\ -0.07\\ -0.06\\ -0.07\\ -0.06\\ -0.07\\ -0.06\\ -0.01\\$
		4:19 6:20 8:15 9:15	3991 4112 4227 4287	84.69 84.75 84.77 84.77	-0.15 -0.09 -0.07 -0.07

Table D-12. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 5GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

End of Pumping Test/Start of Recovery Test at 10:30 am on August 23, 1990

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet
5GL	8/23/90	12:08 14:16	98 226	84.82 84.82	-0.05 -0.05

Table D-12. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 5GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
	8/20/90	8:46		85.58	
	-//	12:20	152	85.72	0.14
		17:40	472	85.46	-0.12
		18:24	516	85.44	-0.14
		19:21	573	85.46	-0.12
		20:17	639	85.45	-0.13
		21:40	712	85.40	-0.18
		22:30	/62	85.36	-0.22
	8 /21 /00	23:30	822	85.27	-0.31
	0/21/90	1.30	0/9 0/2	85 22	-0.33
		2.29	1001	85 24	-0.34
		3:33	1065	85.24	-0.34
		4:33	1125	85.27	-0.31
		5:31	1183	85.32	-0.26
		6:28	1240	85.34	-0.24
		7:27	1299	85.32	-0.26
		8:31	1363	85.34	-0.24
		9:28	1420	85.41	-0.17
		10:40	1492	85.44	-0.14
		12:34	1505	85.41	-0.17
		16.33	1845	85 39	-0.10
		18.18	1950	85 36	-0.12
		20:20	2072	85.35	-0.23
		22:50	2222	85.25	-0.33
	8/22/90	0:33	2325	85.14	-0.44
		2:34	2446	85.11	-0.47
		4:35	2567	85.14	-0.44
		6:32	2684	85.28	-0.30
		8:23	2795	85.34	-0.24
		10:39	2931	85.5/	-0.01
		12:37	3049	85 56	-0.03
		16.37	3289	85 57	-0.02
		18:22	3394	85.58	0.00
		20:26	3518	85.58	0.00
		22:27	3639	85.44	-0.14
	8/23/90	0:31	3763	85.42	-0.16
		3:03	3915	85.18	-0.40
		4:21	3993	85.21	-0.37
		6:24	4116	85.32	-0.26
		8:1/	4229	85.34	-0.24
	End of Pump	ing Test/S	4209 tart of Recov	very Test at	-0.22 : 10:30 am on

Table D-13.	Constant-Rate (Pumping) Test Data and Recovery Test Data
	for Well 5MI, August 20, 1990 through August 23, 1990,
	Unisys Corporation Great Neck Facility, Great Neck,
	New York.

ROUX ASSOCIATES INC

New York.						
Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet	
5MI	8/23/90	12:07 14:17	97 227	85.32 85.32	0.04 0.04	

Table D-13. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 5MI, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
6GL	8/20/90 8/21/90	$\begin{array}{c} 8:46\\ 12:45\\ 16:01\\ 17:32\\ 18:17\\ 19:15\\ 20:11\\ 21:30\\ 22:21\\ 23:19\\ 0:19\\ 1:21\\ 2:21\\ 3:24\\ 4:25\\ 5:24\\ 6:20\end{array}$	177 373 464 509 567 623 702 753 811 871 933 993 1056 1117 1176	83.03 83.14 83.12 82.95 82.94 82.93 82.96 82.89 82.88 82.83 82.82 82.80 82.80 82.80 82.81 82.81 82.81 82.81	0.11 0.09 -0.08 -0.09 -0.10 -0.07 -0.14 -0.15 -0.20 -0.21 -0.23 -0.23 -0.22 -0.22 -0.22 -0.17
	8/22/90	7:20 8:22 9:19 10:32 12:25 14:25 16:22 18:12 20:14 22:41 0:23 2:27 4:27 6:24 8:16 10:32 12:30 14:29 16:30 14:29 16:30 18:15 20:19 22:20 0:22 2:56	1292 1354 1411 1484 1597 1717 1834 1944 2066 2213 2315 2439 2559 2676 2788 2924 3042 3161 3282 3387 3511 3632 3754 3908	82.82 82.83 82.93 82.90 82.89 82.89 82.88 82.88 82.88 82.86 82.74 82.70 82.70 82.70 82.70 82.70 82.70 82.70 82.95 82.98 82.95 82.98 82.99 82.99 82.99 82.99 82.90 82.84 82.75	-0.21 -0.20 -0.14 -0.10 -0.13 -0.14 -0.15 -0.15 -0.15 -0.15 -0.17 -0.23 -0.29 -0.33 -0.29 -0.33 -0.29 -0.33 -0.25 -0.17 -0.08 -0.05 -0.05 -0.05 -0.06 -0.04 -0.04 -0.13 -0.19 -0.28

Table D-14. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 6GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

End of Pumping Test/Start of Recovery Test at 10:30 am on August 23, 1990

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet
6GL	8/23/90	12:01 14:12	91 131	82.89 82.90	-0.02 -0.03

.

Table D-14. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 6GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
7GL	8/20/90	8:52		106.42	
		13:00	192	106.46	0.04
		15:30	342	106.38	-0.04
		17:18	450	106.37	-0.05
		18:15	507	106.37	-0.05
		19:14	500	106.33	-0.07
		20:14	620	106.39	-0.03
		22:23	755	106.38	-0.04
		23:26	818	106.33	-0.09
	8/21/90	0:24	876	106.38	-0.04
		1:34	946	106.33	-0.09
		2:46	1018	106.36	-0.06
		3:49	1081	106.36	-0.06
		4:59	1151	106.30	-0.12
		6:11 7:22	1223	106.33	-0.09
		9:00	1294	106.25	-0.17
		10.07	1459	106 22	-0.20
		12:00	1572	106.31	-0.11
		14:00	1692	106.28	-0.14
		16:00	1812	106.27	-0.15
		18:00	1932	106.25	-0.17
		20:00	2052	106.25	-0.17
	0 (00 (00	22:00	2172	106.24	-0.18
	8/22/90	0:00	2292	106.23	-0.19
		2:00	2412	106,24	-0.18
		6.00	2552	106 25	-0.17
		8:00	2772	106.28	-0.14
		10:00	2892	106.31	-0.11
		12:00	3012	106.31	-0.11
		14:00	3132	106.30	-0.12
		16:00	3252	106.31	-0.11
		18:00	3372	106.31	-0.11
		22.00	3483	106.40	-0.02
	8/23/90	0.00	3732	106.30	-0.12
	-,, , , ,	2:00	3852	106.33	-0.09
		4:00	3972	106.27	-0.15
		6:00	4092	106.36	-0.06
		8:00	4212	106.37	-0.05
		8:55	4267	106.37	-0.05

Table D-15. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 7GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet
7GL	8/23/90	12:38 15:05	128 147	106.29 106.30	0.08 0.07

Table D-15. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 7GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
8GU	8/20/90	8:46 9:58 10:03 10:07 10:13 10:17 10:36 11:21 11:36 11:48 12:03 12:18 12:38 13:28 13:28 13:28 13:28 13:28 13:28 13:28 13:28 13:28 13:28 13:28 13:28 13:28 13:29 10:21 11:40 11:40 12:30 12:14 12:30 12:42 23:43 0:46 1:53 7:43 0:23 12:15 14:17 16:17 10:23 12:15 14:17 16:17 10:23 12:18 12:38 13:28 13:28 13:28 13:27 21:40 22:42 23:43 0:46 1:53 7:43 10:23 10:23 10:17 10:23 10:17 10:21 11:21 11:36 11:21 11:36 11:21 11:36 11:21 11:36 12:38 13:28 13:28 13:28 13:28 13:27 21:40 20:27 21:40 22:14 1:53 10:23 10:17 10:23 10:17 10:36 11:21 11:36 11:21 11:36 11:21 11:36 11:21 11:36 12:38 13:28 13:28 13:28 13:28 13:27 21:40 20:27 12:14 12:23 12:15 12:23 1	$\begin{array}{c} 10\\ 15\\ 19\\ 25\\ 29\\ 48\\ 62\\ 78\\ 93\\ 108\\ 120\\ 135\\ 150\\ 170\\ 190\\ 220\\ 250\\ 280\\ 318\\ 472\\ 524\\ 582\\ 639\\ 712\\ 774\\ 835\\ 898\\ 965\\ 1039\\ 1102\\ 1174\\ 1245\\ 1315\\ 1419\\ 1475\\ 1587\\ 1709\\ 1829\\ 1948\\ 2064\\ 2185\end{array}$	74.02 73.90 73.90 73.90 73.90 73.90 73.90 73.90 73.90 73.90 73.90 73.90 73.90 73.89 73.889 73.889 73.889 73.889 73.889 73.889 73.889 73.889 73.889 73.889 73.889 73.889 73.881 73.881 73.881 73.881 73.881 73.881 73.881 73.881 73.881 73.881 73.73.73 73.73.71 73.71 73.71 73.71 73.71 73.751	$\begin{array}{c} -0.12\\ -0.14\\ -0.14\\ -0.14\\ -0.14\\ -0.24\\ -0.23\\ -0.24\\ -0.23\\ -0.16\\ -0.21\\ -0.24\\ -0.24\\ -0.23\\ -0.16\\ -0.21\\ -0.24\\ -0.23\\ -0.16\\ -0.21\\ -0.24\\ -0.23\\ -0.16\\ -0.21\\ -0.24\\ -0.23\\ -0.16\\ -0.21\\ -0.24\\ -0.23\\ -0.16\\ -0.21\\ -0.24\\ -0.23\\ -0.16\\ -0.21\\ -0.30\\ -0.32\\ -0.31\\ -0.33\\ -0.33\\ -0.27\\ \end{array}$
	0/22/30	2:14 4:17 6:18 8:15 10:15 12:17 14:18 16:18 18:18 20:03 22:16	2309 2426 2549 2670 2787 2907 3029 3150 3270 3390 3495 3628	73.73 73.67 73.65 73.70 73.73 73.72 73.72 73.71 73.71 73.68 73.64	-0.31 -0.29 -0.35 -0.37 -0.32 -0.29 -0.30 -0.30 -0.31 -0.31 -0.34 -0.38

Table D-16. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 8GU, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

_

Table D-16. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 8GU, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
8GU	8/23/90	0:16 2:16 4:28 6:12 8:14 9:07	3748 3868 4000 4104 4226 4279	73.60 73.63 73.61 73.57 73.57 73.57 73.58	-0.42 -0.39 -0.41 -0.45 -0.45 -0.45
	End of Pum August 23,	ping Test/S 1990	tart of Recov	ery Test a	t 10:30 am on
Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet
8GU	8/23/90	$\begin{array}{c} 10:31:30\\ 10:33:47\\ 10:36:00\\ 10:38:00\\ 10:40:30\\ 10:42:30\\ 10:45:00\\ 10:45:00\\ 10:47:30\\ 10:49:45\\ 10:51:45\\ 10:54:00\\ 10:56:15\\ 10:58:45\\ 11:01:00\\ 11:12:00\\ 11:21:00\\ 11:21:00\\ 11:29:00\\ 11:29:00\\ 11:59:00\\ 11:59:00\\ 12:9:00\\ 12:9:00\\ 12:9:00\\ 12:39:00\\ 12:59:00\\ 12:59:00\\ 13:19:00\\ 13:39:00\\ 14:42:00\end{array}$	$\begin{array}{c} 1.50\\ 3.78\\ 6.00\\ 8.00\\ 10.50\\ 12.50\\ 15.00\\ 17.50\\ 19.75\\ 21.75\\ 24.00\\ 26.25\\ 28.75\\ 31.00\\ 42.00\\ 51.00\\ 59.00\\ 69.00\\ 79.00\\ 89.00\\ 99.00\\ 109.00\\ 119.00\\ 129.00\\ 149.00\\ 149.00\\ 169.00\\ 189.00\\ 252.00\end{array}$	73.60 73.59 73.58 73.59 73.57 73.58 73.58 73.57 73.58 73.59 73.59 73.59 73.59 73.59 73.59 73.59 73.59 73.59 73.59 73.59 73.59 73.59 73.59 73.59 73.59 7	$\begin{array}{c} -0.02\\ -0.01\\ 0.00\\ -0.01\\ 0.00\\ -0.01\\ -0.00\\ -0.01\\ -0.02\\ -0.01\\ -0.02\\ -0.02\\ -0.01\\ -0.02\\ -0.0$

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
8GL	8/20/90 8/21/90	$\begin{array}{c} 8:46\\ 9:56\\ 10:00\\ 10:05\\ 10:11\\ 10:15\\ 10:34\\ 10:47\\ 11:03\\ 11:18\\ 11:32\\ 11:45\\ 12:00\\ 12:15\\ 12:35\\ 13:25\\ 13:25\\ 13:25\\ 13:55\\ 14:25\\ 15:04\\ 17:37\\ 18:30\\ 19:26\\ 20:23\\ 21:38\\ 22:40\\ 23:41\\ 0:43\\ 1:51\\ 3:03\\ 4:07\\ 5:18\\ 6:30\\ 7:40\\ 9:25\\ 10:20\\ 12:13\\ 14:14\\ 16:14\\ 18:13\\ 20:10\\ 22:11\\ 0:14\\ \end{array}$	8 12 17 23 27 46 59 75 90 104 117 132 147 167 187 217 247 277 316 469 522 578 635 710 772 833 895 963 1035 1099 1170 1242 1312 1417 1472 1585 1706 1826 1945 2062 2183	78.49 77.08 76.86 76.69 76.54 76.29 76.21 76.15 76.11 76.10 76.04 76.04 76.02 76.04 76.02 76.04 76.02 76.02 76.04 76.02 76.04 76.02 76.12 76.12 76.14 75.92 75.75.68 75.65 75.98 76.05 76.05 76.05 75.82 76.05 75.67 75.62	$\begin{array}{c} -1.41\\ -1.63\\ -1.95\\ -1.99\\ -2.05\\ -2.20\\ -2.28\\ -2.34\\ -2.36\\ -2.38\\ -2.39\\ -2.42\\ -2.45\\ -2.46\\ -2.47\\ -2.46\\ -2.51\\ -2.81\\ -2.84\\ -2.51\\ -2.84\\ -2.51\\ -2.48\\ -2.51\\ -2.48\\ -2.51\\ -2.48\\ -2.51\\ -2.48\\ -2.51\\ -2.48\\ -2.51\\ -2.48\\ -2.51\\ -2.48\\ -2.51\\ -2.48\\ -2.51\\ -2.48\\ -2.51\\ -2.48\\ -2.51\\ -2.67\\ -2.02\\ -2.03\\ -2.49\\ -2.44\\ -2.44\\ -2.67\\ -2.01\\ -2.82\\ -2.95\end{array}$
		4:12 4:14 6:16 8:12 10:13 12:15 14:15 16:15 18:15 20:01 22:14	2424 2546 2668 2784 2905 3027 3147 3267 3387 3493 3626	76.18 76.34 75.78 75.85 75.85 75.84 75.86 75.85 75.85 75.72 75.77	- 2.31 - 2.15 - 2.71 - 2.64 - 2.64 - 2.65 - 2.63 - 2.64 - 1.77 - 2.72

Table D-17. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 8GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Table D-17. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 8GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
8GL	8/23/90	0:13 2:13 4:25 6:10 9:12 10:05	3745 3865 3997 4102 4284 4337	75.63 75.97 76.29 76.34 75.65 75.75	- 2.86 - 2.52 - 2.20 - 2.15 - 2.84 - 2.74
	End of Pun August 23,	ping Test/S 1990	tart of Recov	ery Test a	t 10:30 am on
Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet
8GL	8/23/90	10:30:00 10:32:15 10:34:24 10:36:30 10:38:30 10:41:00 10:43:30 10:46:00 10:48:00 10:50:15 10:52:15 10:52:15 10:54:45 10:57:15 10:59:15 11:02:00 11:19:00 11:27:00 11:27:00 11:27:00 12:07:00 12:57:00 12:57:00 13:17:00 13:37:00 14:40:00	$\begin{array}{c} 0.00\\ 2.25\\ 4.40\\ 6.50\\ 8.50\\ 11.00\\ 13.50\\ 16.00\\ 18.00\\ 20.00\\ 22.00\\ 24.00\\ 26.00\\ 24.00\\ 26.00\\ 28.00\\ 32.00\\ 40.00\\ 26.00\\ 32.00\\ 40.00\\ 57.00\\ 67.00\\ 57.00\\ 67.00\\ 17.00\\ 17.00\\ 17.00\\ 147.00\\ 167.00\\ 187.00\\ 250.00\end{array}$	75.83 75.89 76.27 76.65 76.94 77.12 77.22 77.34 77.44 77.51 77.60 77.63 77.73 77.82 77.90 78.00 78.00 78.00 78.00 78.00 78.00 78.00 78.00 78.00 78.00 78.00	$\begin{array}{c} 0.00\\ -0.06\\ -0.44\\ -0.82\\ -1.11\\ -1.29\\ -1.39\\ -1.51\\ -1.61\\ -1.68\\ -1.71\\ -1.77\\ -1.80\\ -1.83\\ -1.88\\ -1.86\\ -1.84\\ -1.90\\ -1.95\\ -1.99\\ -2.03\\ -2.07\\ -2.10\\ -2.13\\ -2.17\\ -2.18\\ -2.21\\ -2.24\\ -2.26\\ -2.35\end{array}$
Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
----------------	---------	---	--	--	--
9GL	8/20/90	$\begin{array}{c} 8:46\\ 10:22\\ 10:26\\ 10:28\\ 10:40\\ 10:56\\ 11:10\\ 11:26\\ 11:32\\ 11:52\\ 12:09\\ 12:26\\ 12:46\\ 13:06\\ 13:36\\ 14:06\\ 14:36\\ 15:09\\ 17:45\\ 18:35\\ 19:33\\ 20:31\\ 21:45\\ 22:50\\ 23:50\\ 0:52\\ 1:59\\ 3:13\\ 4:15\\ 5:30\\ 6:36\\ 7:51\\ 9:32\\ 10:28\\ 12:20\\ 14:22\\ 16:23\\ 18:22\\ 20:17\\ 22:21\\ \end{array}$	$\begin{array}{c} 34\\ 38\\ 40\\ 52\\ 68\\ 82\\ 98\\ 104\\ 124\\ 141\\ 158\\ 178\\ 198\\ 228\\ 258\\ 288\\ 321\\ 477\\ 527\\ 585\\ 643\\ 717\\ 782\\ 842\\ 904\\ 971\\ 1045\\ 1107\\ 1182\\ 1248\\ 1323\\ 1424\\ 1480\\ 1592\\ 1714\\ 1835\\ 1954\\ 2069\\ 2193\\ \end{array}$	82.11 81.44 81.42 81.38 81.34 81.32 81.29 81.24 81.24 81.24 81.24 81.24 81.22 81.21 81.20 81.20 81.20 81.20 81.20 81.22 81.18 81.17 81.29 81.29 81.29 81.29 81.29 81.29 81.29 81.29 81.29 81.29 81.29 81.15 81.16 81.15 81.16 81.15 81.18 81.11 81.20 81.22 81.18 81.15 81.16 81.15 81.11 81.20 81.23 81.21 81.29 81.15 81.16 81.15 81.16 81.10 81.10 81.10 81.10 81.10 81.10 81.10 81.10 81.20 81.20 81.10 81.10 81.10 81.10 81.10 81.10 81.20 81.20 81.10 81.10 81.10 81.10 81.10 81.10 81.10 81.10 81.10 81.10 81.20 81.20 81.10 81.10 81.10 81.10 81.10 81.10 81.20 81.20 81.10 81.10 81.10 81.10 81.00 81.00 81.00	$\begin{array}{c} -0.67\\ -0.69\\ -0.73\\ -0.77\\ -0.79\\ -0.82\\ -0.87\\ -0.87\\ -0.87\\ -0.87\\ -0.87\\ -0.87\\ -0.90\\ -0.90\\ -0.90\\ -0.90\\ -0.90\\ -0.90\\ -0.91\\ -0.85\\ -0.89\\ -0.93\\ -0.93\\ -0.94\\ -0.82\\ -0.82\\ -0.82\\ -0.82\\ -0.82\\ -0.82\\ -0.96\\ -0.95\\ -0.96\\ -0.95\\ -0.96\\ -0.95\\ -0.96\\ -0.95\\ -0.96\\ -0.93\\ -0.93\\ -0.93\\ -0.93\\ -0.93\\ -0.93\\ -0.93\\ -0.93\\ -0.93\\ -0.88\\ -1.10\\ -0.95\\ -1.03\\ \end{array}$

Table D-18. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 9GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
9GL	8/22/90	0:23	2315 2435	81.04 80.81	-1.07 -1.30
		4:22	2554	80.94	-1.17
		6:24	2676	81.05	-1.06
		8:20	2792	80.97	-1.14
		10:20	2912	81.00	-1.11
		12:22	3034	81.00	-1.11
		14:23	3155	81.05	-1.06
		16:22	3274	81.24	-0.87
		18:23	3395	81.20	-0.91
		20:06	3498	81.35	-0.76
	0 (01 (00	22:20	3632	81.21	-0.90
	8/23/90	0:18	3/50	81.07	-1.04
		2:18	3870	80.85	-1.20
		4:33	4005	00.94 91 A9	-1.1/
		0:14	4100	01.00	-1.05
		0:1/	4229	80.95 80.04	-1.10
		2.11	4200	00.94	/

Table D-18. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 9GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

End of Pumping Test/Start of Recovery Test at 10:30 am on August 23, 1990

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet
9GL	8/23/90	11:07 11:15 11:23 11:33 11:43 11:53 12:03 12:13 12:23 12:33 12:53 13:13 13:33 14:34	37 45 53 63 73 83 93 103 113 123 143 163 183 244	81.48 81.57 81.59 81.62 81.64 81.67 81.70 81.71 81.74 81.75 81.76 81.77 81.79 81.88	-0.54 -0.63 -0.65 -0.68 -0.70 -0.73 -0.76 -0.77 -0.80 -0.81 -0.82 -0.83 -0.85 -0.94

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
10GL	8/20/90	8:46 9:54 10:00 10:15 10:25 10:36 10:44 11:04 11:20 11:34 11:48 12:07 12:25 12:45 14:40 15:20 15:45 17:00 18:00 19:00 20:00 21:08 22:03 23:00 0:00 1:01 2:03 3:07 4:05 5:04	6 12 27 37 48 56 76 92 106 120 139 157 177 292 332 357 432 492 552 612 680 735 792 852 912 975 1039 1097 1156	82.46 82.40 82.40 82.40 82.40 82.38 82.36 82.34 82.33 82.30 82.27 82.29 82.27 82.29 82.27 82.29 82.27 82.29 82.27 82.29 82.27 82.29 82.27 82.25 82.27 82.09 82.09 82.09 82.09 82.09 82.09 82.09 82.15 82.19 82.15 82.19 82.15 82.19 82.15 82.00 81.91 81.88 81.83 81.85 81.81 81.87 81.93	$\begin{array}{c} -0.06\\ -0.06\\ -0.06\\ -0.08\\ -0.10\\ -0.12\\ -0.13\\ -0.16\\ -0.19\\ -0.17\\ -0.19\\ -0.21\\ -0.19\\ -0.21\\ -0.19\\ -0.37\\ -0.37\\ -0.38\\ -0.41\\ -0.28\\ -0.27\\ -0.31\\ -0.46\\ -0.55\\ -0.58\\ -0.63\\ -0.63\\ -0.61\\ -0.65\\ -0.59\\ -0.53\\ -0$
	8/22/90	7:05 8:06 9:04 10:09 12:00 14:00 16:00 18:00 20:00 22:11 0:05 2:01 4:05 6:05 7:59 10:05 12:01	1277 1338 1396 1461 1572 1692 1812 1932 2052 2183 2297 2413 2537 2657 2771 2897 3013	81.97 81.99 81.80 81.85 81.98 82.00 81.99 81.93 82.02 81.81 81.75 81.73 81.75 81.75 81.89 81.82 81.90 81.95	-0.49 -0.47 -0.66 -0.61 -0.48 -0.46 -0.47 -0.53 -0.44 -0.65 -0.71 -0.73 -0.71 -0.57 -0.57 -0.64 -0.56 -0.51

Table D-19. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 10GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

_

Table D-19. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 10GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
10GL	8/22/90	14:00	3132	81.94 81.99	-0.52
		18:00 20:03 22:03	3372 3495 3615	82.01 82.18 81.93	-0.45 -0.28 -0.53
	8/23/90	0:02 2:39 3:58 6:03 7:00 8:49	3734 3891 3970 4095 4152 4261	81.82 81.81 81.77 81.90 81.79 81.81	-0.64 -0.65 -0.69 -0.56 -0.67 -0.65

End of Pumping Test/Start of Recovery Test at 10:30 am on August 23, 1990

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet
_	8/23/90	10.30		81 96	
	0/23/30	10.30	0 7	81 95	0.00
		10.44	14	81 98	-0.02
		10.44 10.52	22	81 95	0.01
		11:01	31	82.03	-0.07
		11:12	42	82.05	-0.09
		11:22	52	82.10	-0.14
		11:31	61	82.09	-0.13
		11:43	73	82.10	-0.14
		12:01	91	82.08	-0.12
		12:12	102	82.13	-0.17
		12:22	112	82.15	-0.19
		12:48	138	82.18	-0.22
		13:12	162	82.19	-0.23
		13:34	184	82.21	-0.25
		13:48	198	82.17	-0.21

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
11GL	8/20/90 8/21/90 8/22/90 8/22/90	$\begin{array}{c} 8:46\\ 12:28\\ 15:53\\ 17:26\\ 18:14\\ 19:10\\ 20:07\\ 21:25\\ 22:16\\ 23:14\\ 0:14\\ 1:15\\ 2:16\\ 3:20\\ 4:19\\ 5:16\\ 6:17\\ 7:16\\ 8:17\\ 9:15\\ 10:26\\ 12:19\\ 14:19\\ 16:16\\ 18:08\\ 20:09\\ 22:28\\ 0:18\\ 2:21\\ 4:21\\ 6:19\\ 8:11\\ 10:25\\ 12:23\\ 14:23\\ 16:25\\ 18:12\\ 20:15\\ 22:15\\ 0:16\\ 2:51\\ \end{array}$	160 365 458 506 562 613 697 748 806 866 927 988 1052 1111 1168 1229 1288 1349 1407 1478 1591 1711 1828 1349 1407 1478 1591 1711 1828 1940 2061 2200 2310 2433 2553 2671 2783 2917 3035 3155 3277 3384 3507 3627 3748 3903	83.58 83.80 83.73 83.60 83.60 83.60 83.60 83.60 83.57 83.55 83.48 83.45 83.45 83.45 83.43 83.45 83.43 83.45 83.43 83.50 83.50 83.50 83.50 83.50 83.50 83.50 83.51 83.57 83.55	$\begin{array}{c} 0.22\\ 0.15\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.01\\ 0.03\\ 0.01\\ 0.03\\ 0.10\\ -0.13\\ -0.15\\ -0.13\\ -0.15\\ -0.13\\ -0.15\\ -0.08\\ -0.00\\ -0.08\\ -0.00\\ -0.08\\ -0.02\\ 0.03\\ -0.01\\ -0.02\\ 0.01\\ -0.02\\ -0.03\\ -0.04\\ -0.12\\ -0.20\\ \end{array}$
		6:14 8:05 9:04	4106 4217 4276	83.44 83.46 83.48	-0.14 -0.12 -0.10

Table D-20. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 11GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

End of Pumping Test/Start of Recovery Test at 10:30 am on August 23, 1990

	New York.				
Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet
11GL	8/23/90	11:56 14:04	86 214	83.39 83.39	0.09 0.09

Table D-20. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 11GL, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
11MI	8/20/90 8/21/90 8/22/90 8/23/90	8:46 15:51 17:23 18:10 19:08 20:05 21:23 22:14 23:11 0:11 1:13 2:14 3:18 4:16 5:15 6:15 7:14 8:15 9:13 10:22 12:15 14:16 16:14 18:06 20:07 22:25 0:15 2:18 4:18 6:17 8:09 10:22 12:22 14:22 12:25 14:23 10:22 12:25 14:16 16:14 18:06 20:07 22:25 14:16 16:14 18:06 20:17 22:22 14:23 10:22 12:25 14:16 16:14 18:06 20:12 12:22 12:22 12:22 12:25 14:16 16:14 18:06 20:12 22:25 14:22 12:22 12:25 14:23 10:22 22:25 14:23 12:25 14:22 12:25 14:22 12:25 14:22 12:25 14:22 12:25 14:22 12:25 14:22 12:25 14:22 12:25 14:22 12:25 14:22 12:22 14:25 14:2	$\begin{array}{c} 363\\ 455\\ 502\\ 560\\ 617\\ 695\\ 746\\ 803\\ 863\\ 925\\ 986\\ 1050\\ 1050\\ 108\\ 1167\\ 1227\\ 1286\\ 1347\\ 1405\\ 1474\\ 1587\\ 1708\\ 1826\\ 1938\\ 2059\\ 2197\\ 2307\\ 2430\\ 2550\\ 2669\\ 2781\\ 2914\\ 3034\\ 3152\\ 3274\\ 3382\\ 3504\\ 3625\\ 3746\\ 3902\\ 3980\\ 4104 \end{array}$	84.55 84.69 84.76 84.69 84.67 84.67 84.67 84.61 84.67 84.65 84.40 84.44 84.40 84.44 84.40 84.55 84.61 84.65 84.55 84.65 84.55 84.65 84.55 84.65 84.55 84.55 84.65 84.55 88.85 84.55 85 84.55 85 85 85 85 85 85 85 85 85 85 85 85 8	$\begin{array}{c} 0.31\\ 0.15\\ 0.21\\ 0.14\\ 0.16\\ 0.12\\ 0.06\\ -0.03\\ -0.09\\ -0.12\\ -0.14\\ -0.15\\ -0.11\\ -0.06\\ -0.01\\ -0.04\\ -0.03\\ 0.04\\ -0.03\\ 0.04\\ -0.03\\ 0.04\\ -0.03\\ 0.04\\ -0.03\\ 0.01\\ -0.11\\ -0.20\\ -0.17\\ -0.28\\ -0.12\\ -0.04\\ 0.09\\ 0.17\\ -0.28\\ -0.12\\ -0.04\\ 0.09\\ 0.17\\ -0.28\\ -0.12\\ -0.04\\ 0.09\\ 0.17\\ -0.21\\ 0.22\\ -0.03\\ -0.17\\ -0.20\\ -0.03\\ -0.17\\ -0.20\\ -0.03\\ -0.17\\ -0.20\\ -0.07\\ -0.07\\ -0.20\\ -0.07\\ -0.07\\ -0.07\\ -0.07\\ -0.07\\ -0.07\\ -0.07\\ -0.07\\ -0.07\\ -0.07\\ -0.07\\ -0.07\\ -0.00\\ -0.07\\ -0.07\\ -0.00\\ -0.07\\ -0.00\\ -0.07\\ -0.00\\ -0.07\\ -0.00\\ $
		8:03 9:02	4215	84.52 84.54	-0.03

Table D-21. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 11MI, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

End of Pumping Test/Start of Recovery Test at 10:30 am on August 23, 1990

	New York.					
Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet	
11MI	8/23/90	11:54 14:05	84 215	84.30 84.31	0.24 0.23	

Table D-21. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 11MI, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Table D-22.	Constant-Rate (Pumping) Test Data and Recovery Test Data
	for Well 12MI, August 20, 1990 through August 23, 1990,
	Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
12MI	8/20/90	9:10:00 9:54:00 9:54:00 9:54:15 9:54:45 9:55:00 9:55:30 9:55:30 9:55:30 9:55:30 9:55:30 9:55:30 9:55:30 9:57:30 9:57:30 9:57:30 9:57:30 9:59:30 10:00:00 10:01:00 10:02:00 10:02:00 10:04:00 10:05:00 10:05:00 10:07:00 10:07:00 10:07:00 10:14:00 10:14:00 10:22:00 10:24:00 10:24:00 10:24:00 10:24:00 10:22:00 10:24:00 10:32:00 10:34:00 10:34:00 10:35:00 10:35:00 10:55:00 11:00:00 11:40:00 11:40:00 11:50:00 12:00:00	$\begin{array}{c} 6.00\\ 6.25\\ 6.50\\ 6.75\\ 7.00\\ 7.50\\ 8.00\\ 8.50\\ 9.00\\ 9.50\\ 10.00\\ 10.50\\ 11.00\\ 10.50\\ 11.00\\ 12.00\\ 13.00\\ 14.00\\ 15.00\\ 14.00\\ 15.00\\ 14.00\\ 15.00\\ 14.00\\ 21.00\\ 22.00\\ 24.00\\ 24.00\\ 24.00\\ 24.00\\ 24.00\\ 24.00\\ 24.00\\ 24.00\\ 24.00\\ 30.00\\ 34.00\\ 36.00\\ 38.00\\ 40.00\\ 44.00\\ 46.00\\ 44.00\\ 46.00\\ 44.00\\ 46.00\\ 50.00\\ 52.00\\ 57.00\\ 62.00\\ 57.00\\ 62.00\\ 122.0$	89.86 91.91 92.30 92.42 92.51 92.73 92.77 92.77 92.82 92.82 92.82 92.82 92.82 92.82 92.93 92.95 92.87 92.87 92.881 92.81	2.05 2.44 2.56 2.65 2.72 2.79 2.85 2.91 2.94 2.96 2.97 2.98 3.01 3.03 3.03 3.04 3.05 3.07 3.07 3.07 3.08 3.09 3.12 3.11 3.14 3.14 3.14 3.14 3.14 3.14 3.14

Table D-22.	Constant-Rate (Pumping) Test Data and Recovery Test Data
	for Well 12MI, August 20, 1990 through August 23, 1990,
	Unisys Corporation Great Neck Facility, Great Neck,
	New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
12MI	8/20/90	12:20:00 12:40:00 13:00:00 13:30:00 14:00:00 14:30:00 15:00:00 15:30:00 16:00:00 17:55:00	152.00 172.00 192.00 222.00 252.00 282.00 312.00 342.00 372.00 487.00	92.81 92.80 92.99 92.99 92.99 92.99 92.95 92.93 92.90 92.90 92.96	2.95 2.94 2.95 3.13 3.13 3.12 3.09 3.07 3.04 3.10
	8/21/90	18:40:00 19:40:00 20:42:00 21:54:00 23:01:00 0:01:00 1:07:00 2:09:00 3:25:00 4:25:00 5:44:00 6:44:00 8:04:00 9:43:00 10:39:00 12:32:00	532.00 592.00 654.00 726.00 793.00 853.00 919.00 981.00 1057.00 1117.00 1196.00 1256.00 1336.00 1435.00 1491.00 1604.00	92.91 92.98 92.91 92.80 92.73 92.65 92.72 92.81 92.57 92.57 92.57 92.57 92.57 92.57 92.57 92.92	3.05 3.12 3.05 2.94 2.87 2.79 2.86 2.95 2.61 2.64 2.71 2.73 2.71 2.73 2.71 2.22 2.19 3.06
	8/22/90	14:32:00 16:33:00 18:32:00 20:26:00 20:33:00 0:30:00 2:30:00 4:32:00 6:35:00 8:29:00 10:29:00 12:31:00 14:32:00 16:30:00	1724.00 1845.00 1964.00 2078.00 2205.00 2322.00 2442.00 2564.00 2687.00 2801.00 2921.00 3043.00 3164.00 3282.00	92.81 92.79 92.67 92.50 92.38 92.38 92.44 92.63 92.63 92.93 92.93 92.93	2.95 2.93 2.81 2.83 2.64 2.52 2.52 2.52 2.58 2.70 2.77 2.93 3.07 3.07 3.08
	8/23/90	18:32:00 20:14:00 22:30:00 0:26:00 2:24:00 4:45:00 6:22:00 8:25:00 9:18:00	3404.00 3506.00 3642.00 3758.00 3876.00 4017.00 4114.00 4237.00 4290.00	92.92 92.96 92.69 92.63 92.63 92.64 92.66 92.81 92.68	3.06 3.10 2.83 2.77 3.03 2.78 2.80 2.95 2.82 at 10:30 am op

August 23, 1990

Table D-22.	Constant-Rate (Pumping) Test Data and Recovery Test Data
	for Well 12MI, August 20, 1990 through August 23, 1990,
	Unisys Corporation Great Neck Facility, Great Neck,

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Recovery, in feet
12MI	8/23/90	$\begin{array}{c} 10:30:00\\ 10:30:15\\ 10:30:30\\ 10:30:45\\ 10:31:00\\ 10:31:30\\ 10:32:00\\ 10:32:30\\ 10:33:30\\ 10:33:30\\ 10:34:00\\ 10:34:30\\ 10:35:00\\ 10:35:30\\ 10:35:00\\ 10:35:30\\ 10:35:00\\ 10:35:00\\ 10:35:00\\ 10:35:00\\ 10:35:00\\ 10:35:00\\ 10:35:00\\ 10:35:00\\ 10:50:00\\ 10:40:00\\ 10:44:00\\ 10:44:00\\ 10:44:00\\ 10:44:00\\ 10:44:00\\ 10:50:00\\ 10:50:00\\ 10:55:00\\ 10:55:00\\ 10:55:00\\ 10:55:00\\ 11:05:00\\ 11:05:00\\ 11:05:00\\ 11:10:00\\ 11:25:00\\ 11:20:00\\ 11:25:00\\ 11:20:00\\ 11:20:00\\ 11:25:00\\ 11:30:00\\ 12:20:00\\ 12:30:00\\ 12:30:00\\ 13:10:00\\ 13:30:00\\ 15:23:00\\ \end{array}$	0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.50 6.00 7.00 8.00 9.00 10.00 12.00 14.00 16.00 22.00 24.00 22.00 24.00 22.00 24.00 22.00 24.00 22.00 24.00 22.00 24.00 25.00 5.50 6.00 7.00 8.00 9.00 10.00 12.00 14.00 16.00 25.00 5.50 6.00 7.00 8.00 9.00 10.00 12.00 14.00 25.00 25.00 25.00 25.00 26.00 25.00 55.00 60.00 70.00 80.00 90.00 10.00 10.00 10.00 10.00 12.00 14.00 20.00 21.00 22.00 24.00 20.00 25.00 50.00 50.00 50.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 29.00 293.00	92.63 92.61 92.36 92.36 92.00 91.45 91.279 90.741 90.3777 90.497 90.497 90.377 89.437 89.442 89.442 89.440 89.39 89.389 89.389 89.4412 89.444 89.444	0.00 0.02 0.27 0.63 0.95 1.18 1.36 1.54 1.67 1.89 2.246 2.36 2.466 2.80 2.882 2.97 3.02 3.07 3.125 3.158 3.223 3.224 3.225 3.226 3.227 3.229 3.297 3.977

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
12ML	8/20/90	9:11 10:11 10:21 10:30 10:40 10:54 11:10 11:28 11:40 12:00 12:18 12:38 14:38 15:16 15:40 17:58 18:43 19:43 20:44 21:57 23:05 0:05 1:10 2:12 3:28 4:30 5:45 6:50 8:10 9:48 10:41 12:35 14:35 16:35 18:43	23 33 42 52 66 82 100 112 132 150 170 290 328 352 490 535 595 656 729 797 857 922 984 1060 1122 1197 1262 1342 1440 1493 1607 1727 1847	90.45 90.85 91.00 91.01 90.99 90.75 90.74 90.96 90.97 90.94 90.93 90.94 90.93 90.70 90.75 90.77 90.69 90.69 90.69 90.63 90.24 90.25 90.20 90.22 90.25 90.20 90.29 90.45 90.45 90.45 90.45 90.45 90.47 90.51 90.69 90.68 90.68	0.40 0.55 0.56 0.54 0.30 0.29 0.51 0.52 0.49 0.49 0.48 0.25 0.31 0.30 0.32 0.24 0.24 0.24 0.18 -0.03 -0.12 -0.17 -0.21 -0.20 -0.25 -0.16 0.00 0.03 0.02 -0.25 -0.16 0.00 0.03 0.02 -0.25 -0.16 0.00 0.03 0.02 -0.25 -0.16 0.00 0.03 0.02 -0.25 -0.16 0.02 0.24 0.03 -0.25 -0.16 0.02 0.36 0.24 0.02 0.03 0.02 0.03 0.02 0.0
	8/22/90	20:28 22:35 0:33 2:34 4:38 6:37 8:32 10:31	2080 2207 2325 2446 2570 2689 2804 2923	90.49 90.21 90.13 90.08 90.18 90.36 90.57 90.71	0.04 -0.24 -0.32 -0.37 -0.27 -0.09 0.12 0.26

Table D-23. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 12ML, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	Time, in minutes from start of test	Depth to Water, in feet	Drawdown, in feet
12MT	8/22/90	12.33	3045	90.76	0.31
12.112	0/22/00	14:34	3166	90.75	0.30
		16:33	3285	90.82	0.37
		18:35	3407	90.85	0.40
		20:16	3508	90.74	0.29
		22:32	3644	90.42	-0.03
	8/23/90	0:28	3760	90.28	-0.17
		2:26	3878	90.34	-0.11
		4:49	4021	90.31	-0.14
		6:24	4116	90.43	-0.02
		8:29	4241	90.64	0.19
		9:22	4294	90.59	0.14
	End of Pump August 23,	ing Test/S 1990	tart of Recov	ery Test at	10:30 am on
			Time,	Depth	
Well			from start	Water.	Recovery
Number	Date	Time	of test	in feet	in feet

Table D-23. Constant-Rate (Pumping) Test Data and Recovery Test Data for Well 12ML, August 20, 1990 through August 23, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

Well Number	Date	Time	from start of test	Water, in feet	Recovery, in feet
12ML	8/23/90	10:32	2	90.59	0.00
	. ,	10:40	10	90.00	0.59
		10:48	18	90.00	0.59
		10:56	26	90.07	0.52
		11:06	36	90.07	0.52
		11:16	46	90.11	0.48
		11:27	57	90.12	0.47
		11:36	66	90.12	0.47
		11:48	78	90.14	0.45
		12:07	97	90.16	0.43
		12:17	107	90.19	0.40
		12:28	118	90.17	0.42
		12:53	143	90.20	0.39
		13:30	180	90.23	0.36
		15:21	291	90.23	0.36

APPENDIX E

Barometric Pressure from July 20, 1990 through September 6, 1990, Unisys Corporation Great Neck Facility, Great Neck, New York.

		AUG	UST 2, 1990		
	12	18	24	6	
	30.90 In. of Hg.				
	(11:05)	(17:15)			
	30.00				
	29.00				
•	28.00		1		

AUGUST 20, 1990					
12	18	24	6		
30.90 In. of Hg.		1			
30.00				•	
29.00					
		1			

	AUG	JST 21, 1990		
12	18	24	6	
30.90 In. of Hg.				
(10:48)				(9:52)
30.00				
29.00				

	AUGL	IST 22, 1990	
12	18	24	6
30.90 In. of Hg.			
(9:55)			(6:40)
30.00			
29.00			

	AUGUST 23, 1990					
	12	18	24	6		
	30.90 In. of Hg.					
(8:42)	(13:35)					
	30.00					
	29.00					
L	28.00	\	l	1		

APPENDIX F

Borehole Core, Geologic and Well Construction Logs, Unisys Corporation Great Neck Facility, Great Neck, New York.

Geraghty and Miller, Inc. Well Designations	Unisys Corporation Well Designations
GM-1S	1GU
GM-1D	1GL
GM-1M	1MI
GM-1MD	1MI/L
	1ML
GM-2	2GL
GM-2M	2MI
GM-3	3GL
GM-4	4GL
GM-4M	4MI
GM-5	5GL
GM-5M	5MI
GM-6	6GL
GM-7	7GL
GM-8S	8GU
GM-8	8GL
GM-9	9GL
GM-10	10GL
GM-11	11GL
GM-11M	11MI
	12MI
	12ML

----- Not installed by Gergahty and Miller, Inc.

ĺ

GERAGHTY & MILLER, INC. ---

SAMPLE/CORE LOG

BORING/WELL:	GM-1	LM PR	OJECT NO: NY1230GN10 PAGE: 1 of 2
SITE LQCATION:	Great	NISYS Neck, NY	DRILLING STARTED: 3/29/89 DRILLING COMPLETED: 6-29
TOTAL DEPTH DRILLED:	240	HOLE DIAMETER	t: 6 TYPE OF SAMPLE/ CORING DEVICE: Split Spoon
LENGTH & DIA OF CORING DE	METER VICE:	2 FT x	2 IN. SAMPLING INTERVAL: 20 FT
LAND-SURFACE ELEVATION:	<u> </u>		() SURVEYED () ESTIMATED DATUM: Land Surface
DRILLING FLUID USED:	F	Sentonite	Slurry METHOD: Mud Rotary
DRILLING CONTRACTOR:	Envir Drill	ing, Inc.	DRILLER: Scott HELPER: Kevin
PREPARED BY:	<u> </u>	Iby	HAMMER WEIGHT: 140 lbs HAMMER DROP: 30 inches
SAMPLE DEPTH (FT BELOW LAND SURFACE)	CORE RECVRY (FT)	BLOW COUNTS PER 6 INCHES	SAMPLE/CORE DESCRIPTION
FROM TO			
20 22	.5	10 / 38 / 47	Sandy gravel; gravel (80%) fine to coarse subrounded to
		50/2	subangular; sand (20%) very fine to very coarse; trace
			silt, dark brown, very poorly sorted (till), cobbles.
40 41	-	50/3	No recovery, bounced on cobbles (gravelly sand &
			cobbles).
60 61	-	50/0	No recovery, bounc ing on cobble (gravelly sand &
			cobbles).
80 82	1.0	6 7 54 7 46 7	Gravelly sand; sand (90%) mostly fine to medium, some
		39	coarse, brown; gravel (\$0 %) fine to medium, subangular
			to subrounded; poorly sorted, cobbles.
100 101	. 3	32-50/3	Gravelly sand; sand (70%) fine to very coarse, brown;
			gravel (30%) fine to medium, subrounded to subangular,
			poorly sorted.
120 121.5	1.0	37 // 49 /-	Sand (100%), fine, tan to light brown, very well sorted
		50/4	(Magothy?).
140 141	.5	57-50/3	Sand (100%), medium to fine, tan to light brown; traces
			white clay, well sorted.
160 161	. 5	72-50/3	Gravelly sand; sand (90%), very fine to very coarse, tan
			to light borwn, trace of silt; gravel (10%), fine,
			subangular to subrounded, quartz; poorly sorted.
180 181	.5	100/5	Sand (100%), fine to medium, light brown/orange,
			slightly silty, very well sorted.
200 201	.5	100/5	Sand (100%), fine to medium, light whitish gray, some-

GERACHTY & MILLER, INC. SAMPLE/CORE LOG (Cont.d)

BORING/WELL: GM-1M PREPARED BY: R. Eby PAGE: 2 of 2

.

SAMPLE (FT_L LAND S	DEPTH ELOW URFACE)	CORE RECVRY (FT)	BLOW COUNTS PER 6 INCHES	SAMPLE/CORE DESCRIPTION	
FROM	TO		INCAES		
				what silty.	
220	221.5	-	23 / 32-	Sandy silt (100%), sand fine to very fine whitish gray,	
		l	50/4	soft plastic, very poor recovery.	
240	241	. 5	75-50/2	Sand (100%), light gray to tank, medium to very fine,	
				silty.	
L					
		ļ			
L		<u> </u>			
L		L		· · · · · · · · · · · · · · · · · · ·	
		<u> </u>			
	<u> </u>				
		<u> </u>			
L	<u> </u>	ļ			
		<u> </u>			
ļ		ļ		<u> </u>	
		\		·	
	<u></u>	ļ			
	<u> </u>	ļ			
	ļ				
		ļ			
	ļ	↓			
L					
l	1		1		

GERAGHTY & MILLER, INC.

1

1

SAMPLE/CORE LOG

BOR	ING/WELL:	GM-1	LMD PF	COJECT NO: NY1230GN10 PAGE: 1 of 1
SIT	E ATION:	U Great	NISYS Neck, NY	DRILLING STARTED: 5/5/89 DRILLING COMPLETED: 5/12/89
TOT	AL DEPTH LLED: 34	10 FT	HOLE DIAMETER	t: 6 IN. TYPE OF SAMPLE/ CORING DEVICE: Split Spoon
LEN(OF (CORING DE	METER	2 FT 3	2 IN. SAMPLING INTERVAL: 20 FT
LANI ELEV	D-SURFACE	2	<u> </u>	() SURVEYED () ESTIMATED DATUM: Land Surface
DRI FLU	LLING ID USED:	P	Sentonite	Slurry METHOD: Mud Rotary
DRII CON	LLING TRACTOR:	Envir Drill	ronmental ling, Inc.	DRILLER: Scott HELPER: Kevin
PRE	PARED BY	R. 1	Eby	HAMMER WEIGHT: 140 1bs HAMMER DROP: 30 inches
SAMPLE (FT BI LAND SI	DEPTH ELOW JRFACE)	CORE RECVRY (FT)	BLOW COUNTS PER 6 INCHES	SAMPLE/CORE DESCRIPTION
FROM	TO			
0	240			See Sample/Core Log for Well GM-1M.
260	261	1.0	82-100/5	Sand (95%) fine to medium, some very fine, whitish gray;
	ļ			Silt (5%) tan/orange, occurs in thin layers mixed with
				sand.
280	281	.5	96-100/2	Sand (100%) fine to very fine, slightly silty, whitish
			57.300.0	gray with streaks of tan.
300	301	.5	57-100/3	Sand (100%) fine to very fine, silty, whitish gray with
320	321	5	65-100 //	
340	341	5	100/5	Sand (100%) medium with some coarse and some very
			10075	fine, tan to light orange, clean.
 	ļ		 	
	<u> </u>			
	 _	 	 	· · · · · · · · · · · · · · · · · · ·
	┨────		 	<u> </u>
			{	
	 		<u> </u>	
	<u> </u>	<u> </u>		
			<u> </u>	
	†			

Date <u>6126190 Day Tucs</u>	Start Timeo_	_a. Wojciae 7/12/90 (20 Look) _Finish Time <u>530</u>
EDI environmental drilling, inc.	EDI Job. No. 10 (851	Rig No. <u>80-90</u> Driller <u>T. Lysch</u> Helper <u>B. Ph. II. ps</u>
Daily Drill Log	D Borin	ng ⊠ Well # <u>1M L</u> SOIL LOG
Client: <u>UNISUS</u>		

Depth

0-22 22-100 100-150

Quantity

Un le Cu

Formation

Sand, cobbles coapee Suid agoant

Sand

MATERIALS USED

De'scription

.

Job Name and Address: DDBys, Lake
No. of wells/borings installed today:
Total footage drilled today:52
Dia. of borehole(s):
Depth of borehole(s):
S.S. samples on ctrs. Extra samples:
Type, dia., length of casing(s):
ength, slot of screen(s):
Drilling method:
🗆 HSA 🖻 Mud Rotary 🛛 Air Rotary 🗆 Other
Static water level: Well yield:
Today: I MOB I DEMOB B Continue
Drill hours reg.: 8 0.T. 2 2
Travel hours: St. by hours:
Man hours reg.: O.T
Comments/delays - explain: Started
deilling hole (waited Tops waters.
FROM (7:00-8:30)
Driller

Verified Contractor

.

-

Date <u>(2 אים</u> Day <u>שנא</u> Star EDI Jo ENVIRONMENTAL DRILLING, INC.	t Time <u>ヿ:00</u> b. No. <u>レィ</u> タ	Finish Time <u>530</u> Finish Time <u>530</u> Rig No. <u>80-90</u> Driller <u>Type</u> Helper B. Hullips
Daily Drill Log		
Client: 021545		
Job Name and Address: Disys, Lake	Depth	Formation
Sociess, LT, D.Y	WHIML	
	150-312	Sand with lenses of
No. of wells/borings installed today:		clay
Total footage drilled today:		· · · · · · · · · · · · · · · · · · ·
Dia. of borehole(s):		
Depth of borehole(s): <u>342</u>		
S.S. samples on ctrs. Extra samples:		
Type, dia., length of casing(s):		
Length, slot of screen(s):		
Drilling method:		
🗆 HSA 😰 Mud Rotary 🛛 Air Rotary 🗆 Other		
Static water level: Well yield:		
Today: D MOB D DEMOB S Continue		MATERIALS USED
Travel hours: St. by hours:	Quantity	Description
Man hours reg.: O.T.		
Comments/delays - explain:		
		·
·		Į
		↓
		<u>ا</u> ـــــا
		↓↓
Driller .		1

Verified Contractor

· -		
-		Da Wizuah
Date 62890 Day Thue Start	Time <u>7:00</u>	Finish Time <u>8:30</u>
EDI Joi Environmental drilling, inc.	D. No. <u>レイ</u> 名	BI Rig No. <u>80-90</u> Driller <u>Thusch</u> Helper <u>B</u> Phillips
Daily Drill Log	 D B	oring B Well # IML
Olienti INSE C		SOIL LOG
Job Name and Address: JOISUS, Lake	Depth	Formation
Success, L.I. D.J.	WH IML	
	350-396	conese sund appavel
No. of wells/borings installed today:		with lesses of Clay
Total footage drilled today:63`	396-405	clay.
Dia. of borehole(s):8		·
Depth of borehole(s): <u>405</u>		
S.S. samples on <u>3</u> ctrs. Extra samples:		
Type, dia., length of casing(s):		
ength, slot of screen(s);		,,
Drilling method:		
□ HSA 12 Mud Rotary □ Air Rotary □ Other		
Static water level: Well yield:		
Today: I MOB I DEMOB B Continue		MATERIALS USED
	Quantity	Description
Man hours reg : OT		
Comments/delays - explain: Polled dell		· · · · · · · · · · · · · · · · · · ·
pipe chase bit to sample. 1st sample 2 hrs		
24 3ed samples 1/2 hres each.		
Thomas Inal		
Driller		
Verified Contractor		

-

·--- ·

(

٠.

Ĉ

SAMPLE/CORE LOG

BO	RING/WELL:	GM-2	M PR	OJECT NO: NY1230GN10 PAGE: 1 of 2					
SI LO	TE CATION:	U Great	NISYS Neck, NY	DRILLING STARTED: 2/27/89 DRILLING COMPLETED: 3/9/89					
to Dr	TAL DEPTH ILLED:	240	HOLE DIAMETER	.: 6 TYPE OF SAMPLE/ CORING DEVICE: Split Spoon					
LE OF	NGTH & DIA CORING DE	METER	2 FT x	2 IN. SAMPLING INTERVAL: 20 FT					
LA EL	ND-SURFACE EVATION:	2 		() SURVEYED () ESTIMATED DATUM: Land Surface					
DR Fl	ILLING UID USED:	E	Sentonite	Slurry METHOD: Mud Rotary					
DR CO	ILLING NTRACTOR:	Envir Drill	ing, Inc.	DRILLER: Scott HELPER: Jim					
PR	EPARED BY:	R. 1	lby	HAMMER WEIGHT: 140 lbs HAMMER DROP: 30 inches					
SAMPL (FT LAND	E DEPTH BELOW SURFACE)	CORE RECVRY (FT)	BLOW COUNTS PER 6 INCUES	SAMPLE/CORE DESCRIPTION					
FROM	TO		INCHES						
20	22	1.0	4 / 10/28/	Sand, fine to medium with some coarse, light brown, sub-					
			25	rounded, clean, trace of fine gravel.					
40	42	1.0	15 / 27/	Sand (90%), fine to medium, dark brown, gravel (10%),					
			34+47	fine to medium; trace of coarse sand and silt, bottom					
				2 inches clean, white medium sand with gravel.					
60	62	-	11#15-	No recovery, wash.					
			50/2						
80	82	.5	1 ,43,43,45	Sand (95%), medium to coarse, some fine, orange/tan to					
				light brown; gravel (5%), fine, subangular, poorly					
100	102			sorted. He SAMPLE SOULD NOT WASH HOLE SE					
120	122	1.0	33 / 29 /	Sand (90%), fine to very coarse; gravel (10%), fine,					
			45-50/5	subrounded, tan to orange, poorly sorted, trace of					
			[silt.					
140	142	1.0	14+40+	Same. Upper Glacial; less gravel <5%).					
			50-50/5						
160	162	.1	21 7'3 2-	Sand (60%), fine to coarse; gravel (40%), fine, sub-					
			50/3	rounded to subangular; light gray to tan. (Poor					
				sample, mostly wash).					
180	182	.5	42 / 81-	Sand (70%), fine to very coarse, slightly silty, orange/					
			100/5	light brown; gravel (30%), fine to medium, subrounded,					
		[very poorly sorted. Upper Glacial.					
202	204	.5	17-450-	Same, Sand (-85%); gravel (15%).					
202		1							
	GERAGHTY	& HILL	ER, INC.	[s	MPLE/CORI	E LOG (Cont.d)	$\overline{\mathbf{b}}$		
---	-----------------------------	-------------------------	------------------------	-----------------------------------	------------	--	-------------------------	--------	---------------------------------------
	BORI	ING/WELL:	GM-2	!M PREI	RED BY:	R. Eby	P	AGE:	2 of 2
	SAMPLE (FT BE LAND SU	DEPTH Low JRFACE)	CORE RECVRY (FT)	BLOW COUNTS PER 6 INCHES		SAMPI	LE/CORE D	ESCRIP	PTION
l	FROM	то]	Invalo					
	220	222	.3	15+48-	ame. Hi	gher amount of	f medium	sand.	
		·		100/3					
l	240	242	.3	15+11+	Same, darl	k brown, silty	у.		
				66-100/1	Same, darl	k brown, silty	 У.		
			[
			{			······································	-		
		<u> </u>	<u> </u>			<u></u>			
ł			{	[_			<u> </u>		
				<u> </u>					
			<u> </u>						
			<u> </u>						
						· · · · · · · · · · · · · · · · · · ·	<u> </u>		
			_	<u> </u>				_	
		 	1						
				<u></u>					
			<u> </u>						· · · · · · · · · · · · · · · · · · ·
	<u> </u>	{		∮					
		[·····		<u> </u>					
			<u> </u>						
		<u> </u>		 					
			 						
		<u> </u>							
6				 					
2			┟────						
				l	•		_		

GERACHTY_& MILLER, INC.

(

SAMPLE/CORE LOG

BOR	ING/WELL:	GM-4	M PE	ROJECT NO: NY1230GN10 PAGE: 1 of 2
SIT	TION:	l Great	NISYS Neck, Ni	y DRILLING DRILLING STARTED: 3/14/89 COMPLETED: 3/22/89
TOT DRII	LLED:	240	HOLE. DIAMETER	R: 6 TYPE OF SAMPLE/ CORING DEVICE: Split Spoon
LENC OF (CORING DE	METER	2 FT >	x 2 IN. SAMPLING INTERVAL: 20 FT
LANI	D-SURFACE VATION:			() SURVEYED () ESTIMATED DATUM: Land Surface
DRII FLUI	FLUID USED: Bentonite			Slurry METHOD: Mud Rotary
DRII	LLING TRACTOR:	Envir Drill	conmental ling, Inc.	DRILLER: Scott HELPER: Kevin
PREI	PARED BY:	R. 1	Ъу	HAMMER WEIGHT: 140 1bs HAMMER DROP: 30 inches
SAMPLE (FT BI LAND SU	DEPTH ELOW JRFACE)	CORE RECVRY (FT)	BLOW COUNTS PER 6 INCHES	SAMPLE/CORE DESCRIPTION
FROM	то		INORES	
20	22	.5	3 7 26-	Gravelly sand; sand (80%), fine to very coarse, silty,
			50/4	light brown; gravel (20%), fine to coarse, subangular
				to subrounded, poorly sorted; cobbles.
40	41	.5	24-50/5	Bouncing on cobble; Sand (90%), mostly medium, some fine
·				and coarse to very coarse, slightly silty, light
				brown; gravel (10%), fine to medium, subangular to
				subrounded, cobbles, spoon bound
60	62	•	9 78797 13	No sample, only wash.
80	82	-		No sample, too much wash in hose.
100	102	.75	16 / 36 /	Silty sand (100%), fine to very fine, tan/orange,
			60-50/3	mottled site layer of light and dark gray clayey silt.
120	122	.2	20 / 25 /	Sand (100%), very fine, light gray to white, dicassional
			50/5	orange stains, slightly silty (Magothy).
140	141	.1	24-50/3	Sand (100%), very fine to medium, trace of silt, tan to
				light gray.
160	161.5	1.0	23 /4 4-	Sand (90%), fine to very fine, silty, whitish to light
			50/4	light gray with tan/orange mottling clay (10%), gray,
				dense, plastic, cohesive, occurs in very thin layers
				(up to 1" thick).
180	181.5	1.0	2 3,/24 -	Sand (50%), very fine to medium, silty, light gray with
			50/5	with tan/orange mottling; clay (50%), dense, plastic,
				moist, cohesive, gray. Clay in layers (
				to several inches thick).

SAMPLE/CORE LOG (Cont.d)

SAMPI (FT LAND	LE DEPTH BELOW SURFACE)	CORE RECVRY (FT)	BLOW COUNTS PER 6	SAMPLE/CORE DESCRIPTION
FROM	TO	1	INCHES	
200	201	.5	69-100/5	Sand (75%), fine to very fine, light gray to tan color
			†	clean; clay (25%), light gray, dense, hard, in layer
		1		approximately 2" thick.
220	221.5	1.0	33 74 0-	Sand (75%), fine to very fine, silty, light gray to
			50/5	yellow; clayey silt (25%), light gray mottled with
			T	red, (thin leyers)
240	241	.5	100/5	Sand (100%), medium to very fine, trace silt, light gr
			1	to tan.
		1		
		1	1	
	-		<u></u>	
			† -	
<u> </u>			<u> </u>	
			<u> </u>	
		┨────	╉─────	
		{	<u> </u>	
 			╉╼╌╼╼	
		{ -		
		┨-────	<u> </u>	
		<u> </u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·
 			┦────	<u> </u>
		╂	┼	<u> </u>
}		┼	╀─────	<u> </u>
		╉╌──╾	<u> </u>	
		<u> </u>		
		<u> </u>	<u> </u>	
			<u> </u>	
 			 	
		ļ		
		<u> </u>		<u></u>
		ļ	<u> </u>	
1		1	1	

()

SAMPLE/CORE LOG

SITE UNISYS DRILLING DRILLING DRILLING LOCATION: Great Neck, NY STARTED: 1/30/89 COMPLETED: 2/7/89 TOTAL DEPTH HOLE TYPE OF SAMPLE/ Split Spoon DRILLED: 250 DIAMETER: 4 CORING DEVICE: Split Spoon LENGTH & DIAMETER 0F CORING DEVICE: 2 FT x 2 IN. SAMPLING 20 FT LAND-SURFACE () SURVEYED INTERVAL: 20 FT LAND-SURFACE () SURVEYED Land Surface DRILLING Bentonite Slurry METHOD: Mud Rotary DRILLING Environmental DRILLER: Scott HELPER: PREPARED BY: R. Eby HAMMER WEIGHT: 140 lbs HAMMER DROF: 30 inche	Kevin
TOTAL DEPTH DRILLED:HOLE DIAMETER:TYPE OF SAMPLE/ CORING DEVICE:Split SpoonLENGTH & DIAMETER OF CORING DEVICE:2 FT x 2 IN.SAMPLING INTERVAL:20 FTLAND-SURFACE ELEVATION:() SURVEYED () ESTIMATED DATUM:Land SurfaceDRILLING FLUID USED:Bentonite SlurryDRILLING METHOD:Mud RotaryDRILLING FLUID USED:Environmental Drilling, Inc.DRILLER:ScottHELPER:PREPARED BY:R. EbyHAMMER WEIGHT:140 lbsHAMMER DROP:30 inche	Kevin
LENGTH & DIAMETER OF CORING DEVICE: 2 FT x 2 IN. SAMPLING INTERVAL: 20 FT LAND-SURFACE ELEVATION: () SURVEYED () ESTIMATED DATUM: Land Surface DRILLING FLUID USED: Bentonite Slurry DRILLING METHOD: Mud Rotary DRILLING FLUID USED: Environmental Drilling, Inc. DRILLER: Scott HELPER: PREPARED BY: R. Eby HAMMER WEIGHT: 140 lbs HAMMER DROP: 30 inche	Kevin
LAND-SURFACE () SURVEYED ELEVATION: () ESTIMATED DATUM: Land Surface DRILLING Bentonite Slurry DRILLING FLUID USED: Bentonite Slurry DRILLING DRILLING Environmental DRILLER: CONTRACTOR: Drilling, Inc. DRILLER: PREPARED BY: R. Eby HAMMER WEIGHT:	Kevin
DRILLING FLUID USED:Bentonite SlurryDRILLING METHOD:Mud RotaryDRILLING CONTRACTOR:Environmental Drilling, Inc.DRILLER:ScottHELPER:PREPARED BY:R. EbyHAMMER WEIGHT:140 lbsHAMMER DROP:30 inche	Kevin es
DRILLING CONTRACTOR:Environmental Drilling, Inc.DRILLER:ScottHELPER:PREPARED BY:R. EbyHAMMER WEIGHT:140 lbsHAMMER DROP:30 inche	Kevin es
PREPARED BY: R. Eby HAMMER WEIGHT: 140 lbs HAMMER DROP: 30 inche	es
SAMPLE DEPTH (FT BELOW LAND SURFACE)CORE RECVRY (FT)BLOW COUNTS PER 6 DECURY FOUNTS PER 6 DECURY FOUNTS SAMPLE/CORE DESCRIPTION	
FROM TO INCHES	
20 22 1.0 9+12+48+ Sand (65%), fine to very coarse, brown; gravel ((35%),
50/4 fine to medium, subrounded to subangular, poor	rly
sorted.	
40 42 .5 $9+6+6+6$ Sand (50%), fine to very coarse, brown; gravel	(50%),
fine to medium, subrounded to subangular, poor	rly
sorted.	
60 WASH - Sand: fine to very coarse with fine to medium gr	ravel,
occasional cobbles.	
80 WASH - Sand: fine to very coarse; gravel, fine to media	. <u>.</u>
100 WASH - Same.	
120 WASH - Same, trace of yellow silt.	
120 130 WASH - Clayey silt, light gray with some fine sand, pla	astic,
cohesive (Top of Magothy?).	
140 142 1.5 557817 Sand (100%), fine to medium, light gray to white	e, minor
72/56 tan/orange, clean, well sorted, (Magothy).	
160 162 .5 10-**** Sand (100%), fine to medium, gray with streaks of	of
1200 PSI orange, slightly silty. (*****10-hydraulic pu	ush)
185 186 Clay seam.	
220 WASH Sand (100%), fine to very coarse, slighly silty.	•
250 WASH Same.	

GERAGHTY & MILLER, INC.

(3

SAMPLE/CORE LOG

BORI	NG/WELL:	GM-1	IM PR	NOJECT NO: NY1230GN10 PAGE: 1 of 2				
SITE Loca	TION:	l Great	NISYS Neck, NY	DRILLING STARTED: 4/25/89 DRILLING COMPLETED: 4/28/89				
TOTA DRII	L DEPTH LED:	240	HOLE DIAMETER	type OF SAMPLE/ CORING DEVICE: Split Spoon				
LENG OF C	TH & DIA ORING DE	METER VICE:	2 FT x	2 IN. SAMPLING INTERVAL: 20 FT				
LANI ELEV	-SURFACE	<u> </u>		() SURVEYED () ESTIMATED DATUM: Land Surface				
DRII FLUI	DRILLING FLUID USED:		Sentonite	Slurry METHOD: Mud Rotary				
DRILLING Envi CONTRACTOR: Dril		Envir Drill	ing. Inc.	DRILLER: Scott HELPER: Kevin				
PREF	ARED BY:	R. 1	by	HAMMER WEIGHT: 140 lbs HAMMER DROP: 30 inches				
			r					
SAMPLE (FT BE LAND SU	DEPTH LOW RFACE)	CORE RECVRY (FT)	BLOW COUNTS PER 6	SAMPLE/CORE DESCRIPTION				
FROM	TO		INCRES					
20	22	. 5	14 787 35-	Gravelly sand; sand (60%), fine to very coarse, brown,				
			50/4	poorly sorted; gravel (40%), fine to				
				medium subangular to subrounded.				
40	42	1.0	31 4 32 /	Clayey silt (50%), dense, dark brown; sand (40%), very				
			34,448	fine to medium; subangular; dense and very poorly				
				sorted. Appears to be till.				
60	61	.5	25-50/3	Sand (100%), very fine to medium with some coarse and				
	 			very coarse, brown, poorly sorted.				
80	82	-	-	No sample, too much wash in hole; could not clear.				
100	101.5	.5	11 / 35-	Sand (100%), fine to very fine, silty, whitish gray with				
_			50/5	tan/orange streaks, (Magothy).				
120	121	.5	33-50/5	Sand (100%), fine to medium, whitish gray with tan/				
				orange sträks, silty.				
140	141.5	•5	39-47-	Sand (95%), very fine to medium, silty; whitish gray				
	l		50/5	with tan/orange streaks; silty clay (5%), gray				
		<u> </u>		(occurred (in thin layers).				
160	161	1.0	31-50/5	Sand (100%), fine to very fine, whitish gray with				
				streaks of orange/tan, slightly silty.				
180	181	.5	36-50/3	Sand (95%), very fine to medium, whitish gray mottled				
				with tan/orange; clayey silt (5%), dark gray,				
				cohesive.				
200	201.5	1.0	10735-	Sand (60%), fine to very fine, tan to light gray in thin				
			50/3	layers alternating color; clay (40%), light gray,				

.

GERACHTY_& MILLER, INC.

SAMPLE/CORE LOG (Cont.d)

TROY	URFACE)	RECVRY (FT)	COUNTS PER 6	SAMPLE/CORE DESCRIPTION
FROM	TO	1	INCHES	
				dense, cohesive, occurs in 1 to 2 inch layers.
220	220.5	.3	50/3	Sand (100%), very fine to medium, silty, light gray
	0	V		mottled with tan.
240	240.5X	.3	100/4	Sand (100%), medium, silty, light brown, well sorte
_				
		[·······	
		 		
			_	
		{		
		{		
		{		
	┼───	 		
		ļ		
	<u> </u>			· · · · · · · · · · · · · · · · · · ·
·		ļ		
			·	
		ļ		
	1			
	1			
	1	1		
	-	t		1
		<u> </u>		
		{		
	╺╁───	┟────		
┝				

Date <u>data</u> Day <u>service</u> Start Tir EDI Job. ENVIRONMENTAL DRILLING, INC.	me <u>∠⊘</u> ⊘ No. <u>∧</u> У	Finish Time <u>Yach</u> Rig No. ² <u>HAL</u> Driller <u>Scort HAL</u> Helper MAC Z TAC
Daily Drill Log		Boring D Well # 1912 - B.
Client: کانی کا		
Job Name and Address: $\underline{PARE PROE}$		DRILLED MW-12
No. of wells/borings installed today:		
Total footage drilled today:		COBBLES ALL THE
Depth of borehole(s): S.S. samples on ctrs. Extra samples:		
Type, dia., length of casing(s):		
Length, slot of screen(s):		
Drilling method:		· · · · · · · · · · · · · · · · · · ·
🗆 HSA 🗇 Mud Rotary 🗅 Air Rotary 🗅 Other		
Static water level: Well yield:		
Today: MOB D DEMOB D Continue		MATERIALS USED
Drill hours reg.: O.T	Quantity	Description
Travel hours: St. by hours:		
Man hours reg.: O.T	<u>_</u>	Later Later - Later -
Comments/delays - explain: <u>UPC (A (2E)</u>		
MAUL INVER AND,		
		· · · · · · · · · · · · · · · · · · ·
USED WATER TRUCK		
Driller		
P. C. Work		
Verified Contractor		

۰.,

EDI Job. ENVIRONMENTAL DRILLING, INC.	No. <u>19</u>	857 Rig No. <u>776</u> Driller <u>Scatt Have</u> Helper <u>6(86 <u>70-7</u>6)</u>
Daily Drill Log		Boring @ Well #2
		SOIL LOG
	Depth	Formation
		$\widehat{\mathcal{A}}_{\mathcal{A}}(\mathcal{A}, \mathcal{S}_{\mathcal{A}}) = \mathcal{M}_{\mathcal{A}}(\mathcal{A} - \mathcal{A})$
		FARMI 24 - 115
No. of wells/borings installed today:		0.043.18 (A)
Total footage drilled today:		
Dia. of borehole(s):		
Depth of borehole(s):		HIT SMALL CLEY
S.S. samples on ctrs. Extra samples:		DEAM AT KE
Type, dia., length of casing(s):		
		· · · · · · · · · · · · · · · · · · ·
Length, slot of screen(s):		المحمدين المحالي المعان المحالي الم
Length, slot of screen(s): Drilling method:		The contract of the second of
Length, slot of screen(s): Drilling method: I HSA I Mud Rotary I Air Rotary I Other		There of Areasi The DArea CHE Chull The Chull
Length, slot of screen(s): Drilling method: HSA I Mud Rotary I Air Rotary I Other Static water level: Well yield:		The case of the Provent
Length, slot of screen(s): Drilling method: I HSA I Mud Rotary I Air Rotary I Other Static water level: Well yield: Today: I MOB I DEMOB I Continue		MATERIALS USED
Length, slot of screen(s):	Quantity	MATERIALS USED
Length, slot of screen(s):	Quantity	MATERIALS USED
Length, slot of screen(s):	Quantity	MATERIALS USED
Length, slot of screen(s): Drilling method: HSA Mud Rotary Air Rotary Other Static water level: Well yield: Today: MOB DEMOB Continue Drill hours reg.: O.T. Travel hours: St. by hours: Man hours reg.: O.T. Comments/delays - explain:	Quantity	MATERIALS USED Description MATERIALS USED MATERIALS USED
Length, slot of screen(s): Drilling method: I HSA I Mud Rotary I Air Rotary I Other Static water level: Well yield: Today: MOB I DEMOB I Continue Drill hours reg.: O.T. Travel hours: St. by hours: Man hours reg.: O.T. Comments/delays - explain:	Quantity	MATERIALS USED Description MATERIALS USED MATERIALS USED M
Length, slot of screen(s): Drilling method: I HSA I Mud Rotary I Air Rotary I Other Static water level: Well yield: Today: MOB I DEMOB I Continue Drill hours reg.: O.T. Travel hours: St. by hours: Man hours reg.: O.T. Comments/delays - explain:	Quantity	MATERIALS USED Description Description Description Description Description Description Description Description Description Description Description Description Description Description
Length, slot of screen(s): Drilling method: I HSA I Mud Rotary I Air Rotary I Other Static water level: Well yield: Today: I MOB I DEMOB I Continue Drill hours reg.: O.T. Travel hours: St. by hours: Man hours reg.: O.T. Comments/delays - explain: HAD	Quantity	MATERIALS USED MATERIALS USED Description MATERIALS USED MATERIALS USED MATERI
Length, slot of screen(s): Drilling method: I HSA I Mud Rotary I Air Rotary I Other Static water level: Well yield: Today: I MOB I DEMOB I Continue Drill hours reg.: O.T. Travel hours: St. by hours: Man hours reg.: O.T. Comments/delays - explain: HAD Arright Arrow St. Difference	Quantity	MATERIALS USED MATERIALS USED Description MATERIALS USED MATERIALS U
Length, slot of screen(s): Drilling method: I HSA I Mud Rotary I Air Rotary I Other Static water level: Well yield: Today: I MOB I DEMOB I Continue Drill hours reg.: O.T. Travel hours: St. by hours: Man hours reg.: O.T. Comments/delays - explain: HAD Table St. Descore St. Descore St. Descore St. Descore Drill hours reg.: O.T. St. Descore St. Des	Quantity	MATERIALS USED MATERIALS USED Description MATERIALS USED MATERIALS USED Description MATERIALS USED Description MATERIALS USED Description MATERIALS USED MATERIALS USED MAT
Length, slot of screen(s): Drilling method: Image:		MATERIALS USED Description De
Cength, slot of screen(s): Drilling method: I HSA I Mud Rotary I Air Rotary I Other Static water level: Well yield: Today: MOB I DEMOB I Continue Drill hours reg.: Continue Drill hours reg.: O.T. Man hours reg.: O.T. Comments/delays - explain: HAD Table Static K Man hours reg.: O.T. Comments/delays - explain: HAD Today: Today: Today: Drill hours reg.: O.T. Comments/delays - explain: HAD Today: Today: Today: Today: Drill hours reg.: O.T. Comments/delays - explain: HAD Today: Today: Today: Today: Today: Today: Drill hours reg.: O.T. Comments/delays - explain: HAD Today: Today: Today: Today: Today: Today: Today: Drill hours reg.: O.T. Comments/delays - explain: HAD Today: Today: Today: Today: Today: Today: Today: Today: Today: </td <td>Quantity</td> <td>MATERIALS USED MATERIALS USED Description MATERIALS USED Description MATERIALS USED Description MATERIALS USED MATERIALS USED MATERIA</td>	Quantity	MATERIALS USED MATERIALS USED Description MATERIALS USED Description MATERIALS USED Description MATERIALS USED MATERIALS USED MATERIA
Cength, slot of screen(s): Drilling method: I HSA I Mud Rotary I Air Rotary I Other Static water level: Well yield: Today: MOB I DEMOB I Continue Drill hours reg.: O.T. Travel hours: St. by hours: Man hours reg.: O.T. Comments/delays - explain: HAD Table - Continue Driller	Quantity	MATERIALS USED MATERIALS USED Description
Cength, slot of screen(s): Drilling method: I HSA I Mud Rotary I Air Rotary I Other Static water level: Well yield: Today: MOB I DEMOB I Continue Drill hours reg.: O.T. Travel hours: St. by hours: Man hours reg.: O.T. Man hours reg.: O.T. Comments/delays - explain: HAD Table - St. by hours: Man hours reg.: O.T. Comments/delays - explain: HAD Total Total <		MATERIALS USED MATERIALS USED Description MATERIALS USED Description MATERIALS USED Description MATERIALS USED MATERIALS USED MATERIA

- --- --- -----

• •

Ŧ.,

EDI Job. ENVIRONMENTAL DRILLING, INC.	. No. <u>N7 9</u>	Rig No. <u>#6</u> Driller <u>Scott AA</u> Helper <u>a G6</u> P15
Daily Drill Log		Boring I Well # 1914 - 12
		SOIL LOG
Client: $(7.57.5)$ (27.5) (27.5)	Depth	Formation
$\frac{1}{10} \qquad \frac{1}{10} $		DULLED MU-12
		FLO.N 105' -
		2401
Total factors drilled today:		
Death of borehole(s):		
SS samples ontra samples:		HIT CLAY AT
S.S. samples on cits. Extra samples		170' - 197'
rype, ula., length of cashig(s)		
enath slot of screen(s):		
Drilling method:	<u>×</u>	
\square HSA \square Mud Botary \square Air Botary \square Other		
Static water level: Well vield:		
Today:		
Drill hours reg.: O.T		MATERIALS USED
	Our and the	Description
Travel hours: St. by hours:	Quantity	
Travel hours: St. by hours: Man hours reg.: O.T	Guantity	BAGS WUIK GRC
Travel hours: St. by hours: Man hours reg.: O.T Comments/delays - explain:	<u>Guantity</u>	SAGE QUIC GRC
Travel hours: St. by hours: Man hours reg.: O.T Comments/delays - explain:		5A65 WUK 68C
Travel hours: St. by hours: Man hours reg.: O.T Comments/delays - explain:		5A65 WUNK 68C
Travel hours: St. by hours: Man hours reg.: O.T Comments/delays - explain:		5A65 WUNK 68C
Travel hours:		5A65 WUNK 68C
Travel hours:		5A65 WUNK 68C
Travel hours:		5A65 WUK 68C
Travel hours:		5A65 WUK 68C
Travel hours:		5A65 WUK 68C
Travel hours:		5A65 Wuik 68C
Travel hours: St. by hours: Man hours reg.:O.T Comments/delays - explain: 		5A65 Work 68C

	ne	<u> ////////////////////////////////////</u>
EDI Job. I	No. 🚉 🥹	Rig No
ENVIRONMENTAL DRILLING, INC.		Helper Adria 2-27
Daily Drill Log		Boring Q_Well # <u>19703-1</u> 2-
Client: $\nabla \nabla f \ge \nabla f = C \otimes f^2$		SOIL LOG
Job Name and Address: <u>A A A C C A CC</u>	Depth	Formation
20 . ANE SURCESS		MARRED FRAN
		040 - 250
No. of wells/borings installed today:		STALLED PLANAL
Total footage drilled today:		13.65 X1.75 PT 10 0
Dia. of borehole(s):		- 1 Julion Foll
Depth of borehole(s):		SANTLE 250
S.S. samples on ctrs. Extra samples:		<u> </u>
Type, dia., length of casing(s):	'z	
•	<u></u>	
Length, slot of screen(s):		
Drilling method:		
HSA Mud Rotary Air Rotary Other		
Static water level: Well yield:		
Today: MOB DEMOB COntinue		MATERIALS USED
Drill hours reg.: O.T/	Quantity	Description
Travel hours: St. by hours:		
Travel hours:		· · · · · · · · · · · · · · · · · · ·
Travel hours:		· · · · · · · · · · · · · · · · · · ·
Travel hours:		
Travel hours: St. by hours: Man hours reg.: O.T. Comments/delays - explain: $Max = 124$ Max = 126 $Max = 126$ Max		
Travel hours: St. by hours: Man hours reg.: O.T. Comments/delays - explain: $Max = 124$ Max = 124 $Max = 124$ Max		
Travel hours: St. by hours: Man hours reg.: O.T. Comments/delays - explain: $Max = 120$ Max = 120 $Max = 120$ Max		
Travel hours:		
Travel hours: St. by hours: Man hours reg.:O.T Comments/delays - explain: $here = \frac{1}{2000}$ $here = \frac{1}{2000}$ $here = \frac{1}{2000}$ Driller $here = \frac{1}{2000}$		

Date 7/2/90 Day FRIDAY Start T	īme	Finish Time⁄ெம்ம்
EDI Job ENVIRONMENTAL DRILLING, INC.	. No. <u>∩17 8</u>	Rig No. Image: Constraint of the second
Daily Drill Log	= = = = = = = = = = = = = = = = =	Boring D'Well # <u>/// w ~ / </u> 2
Client: UNINGS COLC		SOIL-LOG
Job Name and Address: <u>LARED REE</u> AD	Depth	Formation
1 P122 TUS- ETS 10 12		MOUSD 216 OTF
÷		HOE AND
No. of wells/borings installed today:		111-17D Aug-12
Total footage drilled today:		*****
Dia of borehole(s):	·	
Depth of borehole(s):		S2T . UP 16
SS samples on		and dew tore
Type dia length of casing(s):		(<u>Au</u> -12)
		3.47-65 0 70 15
		Com States
	·	
		The North End of the start ()
		MATERIALS USED
	Quantity	Description
Man hours: St. by Hours:	18	BACS CRAIGNEDT
		BE Existing 1200
This share And in the Anges	1 3	ROES WALL CALL
		1.
		<u>۴</u> ۰۰۰ ۲۹
$\frac{1}{2}$		
priller ()		
Ka wyerak		<u> </u>
Verified Contractor	L	

Date 7/9/90 Day month Start T	ime <u>6'0</u> _	Finish Time
EDI Job ENVIRONMENTAL DRILLING, INC.	. No. <u>M7</u>	851 Rig No Driller <u>Scott</u> Hack Helper
Daily Drill Log		Boring E Well # <u>19-12</u>
Client:		SOIL LOG
Job Name and Address: <u>LARE DECCESS</u>	Depth	Formation)(142) 11-0-12 Flom 15-00'
No. of wells/borings installed today:		
Total footage drilled today:		FILL LONENT
Dia. of borehole(s):		<u>COB3085 ON 701</u>
Depth of borehole(s):		
S.S. samples on ctrs. Extra samples:		
Type, dia., length of casing(s):		
ength, slot of screen(s):		
Drilling method:	·····	
□ HSA □ Mud Rotary □ Air Rotary □ Other	•	
Static water level: Well yield:		
Today: D MOB D DEMOB D Continue		MATERIALS USED
Travel hours: St. by hours:	Quantity	Description
Man hours reg.: 0.7	<u> </u>	BASS QUIL GOC
Comments/delays - explain: <u>PAD</u>		·
CHANIE TO STABLINER		·
NWO LET US LUTTON		
BIT TO DUC THROUGH		
ی ن سیلینان <u>۲</u> می از بر از بر جود		
		<u> </u>
Scott i thenk		
Driller / /		
12. C. Worcah 7/20/90		↓
Verified Contractor		

ż

.

Date <u>Marillo</u> Day <u>Juss AM</u> Start Tir	ne	Finish Time 30
EDI Job. Environmental drilling, inc.	No. <u>Ny 9</u>	Rig No. FG Driller Sum marks Helper Stats
Daily Drill Log		Boring 1 Well # 19:0 - 12
		SOIL LOG
Client:	Depth	Formation
Job Name and Address:		$\frac{\partial f(u, x)}{\partial x} = \frac{\partial f(u, x)}{\partial x}$
KE AKE SIX CESS ALTS		
· · · · · · · · · · · · · · · · · · ·		
No. of wells/borings installed today:	·	WIT CLAY AT 101
Total footage drilled today:		- /
Dia. of borehole(s):		1 2 - D - C BAUM C P
Depth of borehole(s):		11/1 11/1 1/5'
S.S. samples on ctrs. Extra samples:		- 182
Type, dia., length of casing(s):		
		70 201
ength, slot of screen(s):		
Drilling method:	· ·	
HSA Mud Rotary Air Rotary Other		
Static water level: Well yield:	•	· ·
Today: MOB DEMOB Continue	-	MATERIALS USED
Drill hours reg.: O.T		
Travel hours: St. by hours:	Quantity	Description
Man hours reg.: O.T	4	THE'S WHIT OFC
Comments/delays - explain: Har 10 CHA-C		· · · · · · · · · · · · · · · · · · ·
IT ON STABILIESK PACK		
TO SOFT FORMATION		
NOO GINUSED FROM 4/2		
1075 TO 4- 10DS. BERIS		
STARTING TO DRILL.		
Scatt of Hand		
Driller		
l a meria c		
Verified Contractor		

EDI Job. ENVIRONMENTAL DRILLING, INC.	No. <u>NY 85</u>	Sig No. #(1) Driller Support Helper Size
Daily Drill Log		Boring B Well #_mw - 1)
		SOIL LOG
Client: $\underline{-}$ $\underline{-}$ $\underline{-}$ $\underline{-}$ $\underline{-}$ $\underline{-}$ $\underline{-}$ $\underline{-}$ $\underline{-}$	Depth	Formation
Job Name and Address: <u>Not Constraint</u>		MILLED 140-12 510M 210'- 356'
No. of wells/borings installed today:		5.000
Total footage drilled today:/4/0´		
Dia. of borehole(s):		1 for 2 1 1 2 2 2
Depth of borehole(s):	^	
S.S. samples on ctrs. Extra samples:		
Type, dia., length of casing(s):		
ength, slot of screen(s):		
Drilling method:		
□ HSA ☑ Mud Rotary □ Air Rotary □ Other		
Static water level: Well yield:		
Today: 🗆 MOB 🗆 DEMOB 🗆 Continue		MATERIALS USED
Drill hours reg.: O.T	Quantity	Description
Travel hours: St. by hours:	<u>duantity</u>	
Man hours reg.: O.T	<u>ت</u>	DTAN GUIL CEL
Comments/delays • explain:		· · · · · · · · · · · · · · · · · · ·
	ļ	
, 		
- At in themas		
Driller		
Driller Rege Warrie Qualon		

Verified Contractor

.

EDI Job. environmental drilling, inc.	. No. <u>///</u>	Driller <u>Scott He</u> Helper <u>6446</u>
 Daily Drill Log		Boring D Well #/1w-/>
		SOIL LOG
Client: <u>CRUNTS</u> CORE	Depth	Formation
Job Name and Address:		
10) LANC SULLESS NT.		KRIM 350' - 373
yo. of wells/borings installed today:		
Total footage drilled today:	·	TOOK J SMOU
Dia. of borehole(s):		<u> </u>
Depth of borehole(s):		(35.37 ERAJEL
S.S. samples on ctrs. Extra samples:		
Type, dia., length of casing(s):		100142 - FUIA 275
		TONK THE STREET
Length, slot of screen(s):		71.26 67 24.4
Drilling method:		TATI STR
□ HSA □∽Mud Rotary □ Air Rotary □ Other		11- bas in Staple
Static water level: Well yield:		
Today: □ MOB □ DEMOB ⊡ Continue		MATERIALS USED
	Quantity	Description
	8	RALS DUIK GOV
Man nours reg.: 0.1		Trisiaces) we
comments/delays - explain:		97 386 1/2
	345	4" PUC CAMUL
	1.0	LUP PUC SEREEAL
	7	BALS BEANED
	1	LAG MIX -
	<u>(</u>	BRITONITE CLUCKY
		<u> </u>

\sim	_		•	•	~
ビ	G.	12	S	a	L
•		0-	0		

	And the second sec	
Date <u>TIS190</u> Day Thue:	Start Time <u>~1 00</u>	Finish Time <u>5:00</u>
	FDL Job No 151 (95)	Rig No. <u>80-90</u>
-EDI		Driller T. Lysch
ENVIRONMENTAL DRILLING, INC	· · ·	Helper <u>B. Phillips</u>

.4

κ.

Daily Drill Log

.

Client: UDisys
Job Name and Address: UDISUS, bale
Euccess, Long Island, D.Y.
No. of wells/borings installed today:O
Total footage drilled today:5
Dia. of borehole(s):8
Depth of borehole(s):
S.S. samples on ctrs. Extra samples:
Type, dia., length of casing(s):
_ength, slot of screen(s):
Drilling method:
🗆 HSA 🔁 Mud Rotary 🛛 Air Rotary 🖾 Other
Static water level: Well yield:
Today: 🗆 MOB 🖾 DEMOB 🖪 Continue
Drill hours reg.: O.T
Travel hours: St. by hours:
Man hours reg.: O.T
Comments/delays - explain: Moved and
hole + start deilling
- 6
Thomas Repair
Driller

Boring Well # 12 MT

SOIL LOG

Depth	Formation
LONE	
0-5-	F.II
32	TIL saddy cobkles
32-75	coase sand & consel
_	

MATERIALS USED

Quantity	Description
	,

Verified Contractor

† •~	-4	R.a. Wyciak
Date <u>The 90</u> Day <u>Fei</u> Start	Time <u>5'00</u>	Finish Time <u>(` 00</u>
EDI JO ENVIRONMENTAL DRILLING, INC.	b. No. <u>24</u> 8	51 Rig No. <u>80-90</u> Driller <u>T.Lypch</u> Helper <u>B.F.h.II.ps</u>
Daily Drill Log		pring B Well #12MI
		SOIL LOG
Client: <u>UNISUS</u>	Depth	Formation
Job Name and Address: UDIEUS, Lote	1.049	
Success, Long Island, D.4.	75-95	(mase sodianoval
	95-105	course and course
No. of wells/borings installed today:	105-160	Sand
Total footage drilled today:	160-162	Clay
Dia. of borehole(s):	162-168	Saudrapauch
Depth of borehole(s):	168-170	clay
S.S. samples on ctrs. Extra samples:	170-172	sand
Type, dia., length of casing(s):	172-173	clay
	173-175	Saida lenses of chy
ength, slot of screen(s):	177-182	GRAY SIHY Clay
Drilling method:	182-207	5003
HSA 🖻 Mud Rotary Air Rotary Other		
Static water level: Well yield:		
Today: D MOB D DEMOB 2 Continue		MATERIALS USED
Drill hours reg.: O.T	Quantity	Description
Travel hours: St. by hours:		
Man hours reg.: O.T		
Comments/delays-explain: CODE NOC		
denning		
	├────┤	

	Thomas	Ly	L.
-		0	Driller

Verified Contractor

EDI Job. No. D. (851 EDI Job. No. D. (851 Briller T. Luxh Helper B Phillips Daily Drill Log	Data 719100 Day Mar	Start Time 7:00	K. a. Woscar	く
Daily Drill Log	EDI ENVIRONMENTAL DRILLING, INC.	EDI Job. No. 24851	Rig No. <u>80-90</u> Driller <u>Thach</u> Helper <u>B Phillips</u>	
2 m j 2 m 2 v B	Daily Drill Log	D Boring	g & Well # <u>12MI</u>	

Client: <u>Unisus</u>
Job Name and Address: Upisus, Good
Neck Long Island.
No. of wells/borings installed today:
Total factors drilled today:
S.S. samples on ctrs. Extra samples:
Type, dia., length of casing(s):
Length, slot of screen(s): 10×4×020
Drilling method:
HSA 53 Mud Rotary D Air Rotary D Other
Static water level: Well yield:
Today: MOB DEMOB B Continue
Drill hours reg.:8 O.T3/2
Travel hours: St. by hours:
Man hours reg.: O.T
Comments/delays - explain: Doilled to
well denth took sample the
Installed well- Delayed the:
because of lightening.
7
Them & Rungl
Driller

Verified Contractor

.

Depth Formation Dag 207- 210 Sand with lesses of chy 210-250 conese Sanda apavel

MATERIALS USED

.

Appenda

WELL CONSTRUCTION LOG (UNCONSOLIDATED)

Measuring Point is Top of Well Casing Unless Otherwise Noted.

Unisys/	'NY1230GN3	Well	GM-1S
Town/City Gr	reat Neck		
CountyNa	issau	State	New York
Permit NoN/	'A		
Land-Surface Elevat	tion		
and DatumN/A	feet	Surve	eyed
		🗆 Estin	nated
Installation Date(s)	4/28 - 5/4/88		
Drilling Method	Mud Rotary		
Drilling Contractor	Environmental	Drilling,	Inc.
Drilling Fluid	Bentonite		<u> </u>
Fluid Loss During Dr	illingN/A		gallo
Water Removed Dur	ing Development	<u> </u>	gallo:
Static Depth to Wate	r		feet below M.
Pumping Depth to W	ater		feet below M.
Pumping Duration _	N/A ho	ours	
Yield	gpm		Date
Specific Capacity Well Purpose	Monitoring Wel	_ gpm/ft 1	
Remarks			
	Doug Newton	· ·	
Prepared by .			

-

. . .

WELL CONSTRUCTION LOG (UNCONSOLIDATED)

Measuring Point is Top of Well Casing Unless Otherwise Noted.

Project Unitys/NY1230GN1	Well GM-1
Town/City Great Neck	······
County <u>Nassau</u>	State New York
Permit No. <u>N/A</u>	
Land-Surface Elevation	
and Datum <u>N/A</u> feet	
	Estimated
Installation Date(s) _5/20/88 - 5	/24/88
Drilling Method <u>Mud Rotary</u>	
Drilling ContractorEnvironment	al_Drilling,_Inc
Drilling Fluid Rentonite_a	nd_potable_water
Development Technique(s) and Date	(S)
Eluid Loop During Drilling N/A	
Motor Removed During Courses	gallo
water Removed During Development	gallor
Castin Denth to Motor	feet below he
Static Depth to Water	feet below M.
Static Depth to Water Pumping Depth to Water	feet below M.
Static Depth to Water Pumping Depth to Water Pumping Duration	feet below M. feet below M. hours
Static Depth to Water Pumping Depth to Water Pumping Duration Yield gpm	feet below M. feet below M. . hours Date
Static Depth to Water Pumping Depth to Water Pumping Duration Yield gpm Specific Capacity Well PurposeMonitoring We	feet below M. feet below M. . hours Date gpm/ft
Static Depth to Water Pumping Depth to Water Pumping Duration Yield gpm Specific Capacity Well PurposeMonitoring We	feet below M. feet below M. . hours gpm/ft 11
Static Depth to Water Pumping Depth to Water Pumping Duration Yield gpm Specific Capacity Well PurposeMonitoring We	feet below M. feet below M. feet below M. Date gpm/ft 11
Static Depth to Water Pumping Depth to Water Pumping Duration Yield gpm Specific Capacity Well PurposeMonitoring We Bemarks	feet below M. feet below M. feet below M. Date gpm/ft 11
Static Depth to Water Pumping Depth to Water Pumping Duration Yieldgpm Specific Capacity Well PurposeMonitoring We Remarks	feet below M. feet below M. feet below M. Date gpm/ft 11
Static Depth to Water Pumping Depth to Water Pumping Duration Yieldgpm Specific Capacity Well PurposeMonitoring We Remarks	feet below M. feet below M. feet below M. Date gpm/ft 11
Static Depth to Water Pumping Depth to Water Pumping Duration Yield gpm Specific Capacity Well PurposeMonitoring We Remarks	feet below M. feet below M. feet below M. gpm/ft 11
Static Depth to Water Pumping Depth to Water Pumping Duration Yield gpm Specific Capacity Well PurposeMonitoring We Remarks	feet below M. feet below M. feet below M. gpm/ft 11
Static Depth to Water Pumping Depth to Water Pumping Duration Yield gpm Specific Capacity Well PurposeMonitoring We Remarks	feet below M. feet below M. gpm/ft 11
Static Depth to Water Pumping Depth to Water Pumping Duration Yield gpm Specific Capacity Well PurposeMonitoring We Remarks 	feet below M. feet below M. gpm/ft 11
Static Depth to Water Pumping Depth to Water Pumping Duration Yieldgpm Specific Capacity Well PurposeMonitoring We Remarks Prepared byDoug Newto	feet below M. feet below M. gpm/ft 11
Static Depth to Water Pumping Depth to Water Pumping Duration Yieldgpm Specific Capacity Well PurposeMonitoring We Remarks Prepared byDoug Newton	feet below M. feet below M. hours gpm/ft 11

مرجوا التبيت عربان

- - -

WELL CONSTRUCTION LOG (UNCONSOLIDATED)

Measuring Point is Top of Well Casing Unless Otherwise Noted.

Project	NY1230GN	110		Well	GM-1M	
Town/City	Lake Suc	cess				
County	Nassau			State	New Y	ork
Permit No.						
Land-Surfac	e Elevation					
and Datum		_ feet] Surve	yed	
			C] Estima	ated	
Installation [Date(s)	April 10), 1989			
Drilling Meth	od	Mud Rota	iry			
Drilling Cont	ractor	Environ	<u>mental Dr</u>	<u>illing</u>	<u>. Inc</u>	•
Drilling Fluid		Bentonit	e Slurry			
- pump				: 		
Fluid Loss D	uring Drillina					callor
Water Remo	ved During D	Developme	nt_approx	ximate	<u>1v 80</u>	calloi
Static Depth	to Water		<u>105.6</u>		fee	t below M.
Pumping De	pth to Water.			175	fee	t below M.
Pumping Du	ration <u>2</u>		_ hours			
Yield	8	jpm			Date_	5/31/89
Specific Cap	acity		gpm/f	t		
Well Purpose	<u>Monit</u>	oring We				
			· · · · · · · · · · · · · · · · · · ·			
Remarks	Finish	ed with	locking,	prote	ctive	standpi
(<u>Master 24</u>	U2)				

_

.

.

WELL CONSTRUCTION LOG (UNCONSOLIDATED)

•

Measuring Point is Top of Well Casing Unless Otherwise Noted.

Project	NY1230GN10	Well GM-1	MD
Town/City	Lake Success		
County	Nassau	StateNew	York
Permit No.			
Land-Surfac	ce Elevation		
and Datum	feet	Surveyed	
<u></u>		Estimated	
Installation I	Date(s) <u>May 19</u> ,	1989	
Drilling Met	nod Mud Rota	iry	
Drilling Con	tractor <u>Environmenta</u>	<u>l Drilling, In</u>	<u>c. </u>
Drilling Fluid	Bentonite Sl	urry	
Developmen May 31	nt Technique(s) and Date(s)	20 21	اسمعينيم ام
Developmen May 31	nt Technique(s) and Date(s)	20 21 50000	d surged
	, ound 1, 0, 19,	Lo, Li, purge	u, suiyea
phospha	<u>ce and pumped with su</u>	omersible pump	•
			
Fluid Loss D	ouring Drilling		galio
Water Remo	oved During Development	<u>N/A</u>	gallo
Static Depth	to Waterapproximater	<u>y 105</u>	feet below M
Pumping De	epth to Water	330	feet below M
Pumping Du	uration <u>N/A</u> h	ours	6/21/8
Yield <u>1-2</u>	gpm	Dat	te
Specific Ca	pacity	_ gpm/ft	
Well Purpos	e <u>Monitoring Wel</u>	1	
<u> </u>	Finished with locki		
Remarks	(Macton #2402)	ing protective	
	(Mascer #2402).		
<u>_</u>			
-	Dich Eby		
Prepa	ared byRICH_EDY		

. . . .

_ . .

WELL CONSTRUCTION LOG

(UNCONSOLIDATED)

Unisys/NY1230GN3

Measuring Point is Top of Well Casing Unless Otherwise Noted.

*Depth Below Land Surface

Town/City Great Neck	
County Nassau	State New York
Permit NoN/A	
Land-Surface Elevation	
and Datum <u>N/A</u> feet	
	Estimated
Installation Date(s)	8 - 5/12/88
Drilling Method Mud_Ro	tary
Drilling ContractorEnviron	nmental Drilling, Inc.
Drilling Fluid	
Development Technique(s) and I 5/11/88: pumped well with	Date(s) n submersible at 7 gpm; pumpe
clear after 1.5 hours.	
Fluid Loss During Drilling	N/A gallo
Water Removed During Developm	pent 970 gallor
Static Depth to Water	feet below M.
Pumping Depth to Water N//	feet below M.
Pumping Duration 2.5	hours
Yield7 gpm	Date
Specific Capacity	apm/ft
Well Purpose Monitoring	Well
	· · · · · · · · · · · · · · · · · · ·
Remarks	
Prepared by	ewton
·····	

__Well ___GM-2

WELL CONSTRUCTION LOG (UNCONSOLIDATED)

Measuring Point is Top of Well Casing Unless Otherwise Noted.

*Depth Below Land Surface

	Well <u>GM-2M</u>
Town/City Great Neck	
County Nassau	State New York
Permit No	
Land-Surface Elevation	
and Datum feet	□ Surveyed
	Estimated
Installation Date(s) March 13, 14	<u> </u>
Drilling Method Mud_Rotary	
Drilling Contractor	al Drilling Inc.
Drilling Fluid Bentonite	Slurry
Eluid Loop During Drilling	
	galic
Water Removed During Development	galicgalicgalic
Water Removed During Development Static Depth to Water86.6	gallo gallo feet below M
Water Removed During Development Static Depth to Water86.6 Pumping Depth to Water225	gallo gallo feet below M feet below M
Water Removed During Development Static Depth to Water 86.6 Pumping Depth to Water 9 Pumping Duration4	gallo gallo feet below M feet below M s
Water Removed During Development Static Depth to Water 86.6 Pumping Depth to Water 9umping Duration 4 Yield 4-5 9pm	gallo gallo feet below M feet below M s Date4_11_5
Water Removed During Development Static Depth to Water 86.6 Pumping Depth to Water 9 Pumping Duration 4 Yield 9 Specific Capacity Monit for ing	galic galic feet below M feet below M s Date <u>4-11-6</u> gpm/ft
Water Removed During Development Static Depth to Water Pumping Depth to Water Pumping Duration Yield 4 Power 9pm Specific Capacity Well Purpose	galk galk feet below M feet below M s Datefeet below M s feet below M
Water Removed During Development Static Depth to Water Pumping Depth to Water Pumping Duration Yield 4 box Yield 4-5 gpm Specific Capacity Well Purpose	galic feet below M feet below M feet below M s Date <u>4-11-</u> f gpm/ft e11
Water Removed During Development Static Depth to Water Pumping Depth to Water Pumping Duration 4 Pumping Duration Yield 4-5 gpm Specific Capacity Well Purpose Monitoring Weight	galic feet below M feet below M feet below M s Datefeet below M s feet below M feet below M
Water Removed During Development Static Depth to Water Pumping Depth to Water Pumping Duration Yield 4 hour Yield 4-5 gpm Specific Capacity Well Purpose Monitoring Weil Remarks Finished with proteins	gallo feet below M feet below M ss Date4_11_f gpm/ft ell
Water Removed During Development	galic feet below M feet below M s Datefeet below M s ppm/ft ell ective locking 2402)

Prepared by _____ Eby

.

WELL CONSTRUCTION LOG (UNCONSOLIDATED)

Measuring Point is Top of Well Casing Unless Otherwise Noted.

*Depth Below Land Surface

Project Unisys/NY1230GN3	Well9
Town/City Great Neck	
County Nassau	State New York
Permit NoN/A	
Land-Surface Elevation	
and Datum <u>N/A</u> feet	
	Estimated
Installation Date(s)5/12/88	5/17/88
Drilling Method Mud_Rotary	У
Drilling ContractorEnvironmen	ntal Drilling, Inc
Drilling Fluid Bentonite	<u>potable water</u>
Fluid Loss During Drilling	N/Agallo
Water Removed During Developmen	nt gailo
Static Depth to Water	feet below M.
Pumping Depth to Water	feet below M.
Pumping Duration	_ hours
Yield gpm	Date
Specific Capacity	gpm/ft Well
well Purpose	
	· · · · · · · · · · · · · · · · · · ·
Remarks	
	·····
Deve N	
Prepared by Doug N	

لنشد

WELL CONSTRUCTION LOG (UNCONSOLIDATED)

Unisvs/NV1230GN01

Measuring Point is Top of Well Casing Unless Otherwise Noted.

*Depth Below Land Surface

Project	Well ^{GM} ~4
Town/City Great Neck	
CountyNassau	StateNew York
Permit No	_
Land-Surface Elevation	
and Datum feet	Surveyed
	Estimated
Installation Date(s)5/24 to 5/26/88	
Drilling Method Mud Rotary	<u> </u>
Drilling ContractorEnvironmental	Drilling, Inc.
Drilling Fluid	
Development Technique(s) and Date(s)	
Fluid Loss During Drilling	gallor
Water Removed During Development	gallor
Static Depth to Water	feet below M.F
Pumping Depth to Water	feet below M.F
Pumping Duration hours	
Yield gpm	Date
Specific Capacity gp	m/ft
Well Purpose Monitoring Well	
· · · · · · · · · · · · · · · · · · ·	
Remarks	
	<u></u>
Neil H. Benowitz Prepared by	2

ADDING STORES

÷ ---

WELL CONSTRUCTION LOG (UNCONSOLIDATED)

- - -

Measuring Point is Top of Well Casing Unless Otherwise Noted.

*Depth Below Land Surface

	well4M
Town/City Lake Success	
County <u>Nassau</u>	State_ <u>New_York</u>
Permit No	<u> </u>
Land-Surface Elevation	
and Datum feet	Surveyed
	Estimated
Installation Date(s) <u>March</u>	23, 1980
Drilling MethodMud_Rotary	<u>Y</u>
Drilling ContractorEnviron	mental Drilling Inc.
Drilling Fluid Bentoni	te Slurry
Development Technique(s) and Da	te(s)
<u>May 30, 1989 J</u>	etted and pumped with
submersible_pum	
	E
Fluid Loss During Drilling	gallor
Water Removed During Developme	nt650gallo
Static Depth to Water108.5	feet below M.
Pumping Depth to Water24.0	feet below M.
Pumping Duration	hours
Yield <u>1-2</u> gpm	Date5/30/8
Specific Capacity	gpm/it
Specific Capacity	gpnn ring_Well

Prepared by R. Ebv

G&M Form 05 5-87

.

....

WELL CONSTRUCTION LOG (UNCONSOLIDATED)

NV1 2 2 0 0 1 1 0

Measuring Point is Top of Well Casing Unless Otherwise Noted.

*Depth Below Land Surface

Town/City Lake Success	
County <u>Nassau</u>	State <u>New York_</u>
Permit No	
Land-Surface Elevation	
and Datum feet	Surveyed
	Estimated
Installation Date(s) <u>February</u>	15, 1989
Drilling Method <u>Mud Rotar</u>	¥
Drilling ContractorEnvironme	ntal Drilling Inc.
Drilling Fluid Bentonite	Slurry
Development Technique(s) and Date(s)	
Developed with subm	ersible pump for
15 hours (7.5 gpm)	on March 6, 1989
15 hours (7.5 gpm)	on March 6, 1989
15 hours (7.5 gpm)	on March 6, 1989 gallo
15 hours (7.5 gpm) Fluid Loss During Drilling Water Removed During Development	on March 6, 1989 gallo approximately 500 gallo
15 hours (7.5 gpm) Fluid Loss During Drilling Water Removed During Development Static Depth to Water	on March 6, 1989 gallo approximately 500 gallo feet below M.
15 hours (7.5 gpm) Fluid Loss During Drilling Water Removed During Development Static Depth to Water 100 Pumping Depth to Water	on March 6, 1989 gallo approximately 500 gallo feet below M. feet below M.
15 hours (7.5 gpm) Fluid Loss During Drilling Water Removed During Development Static Depth to Water 89.8 Pumping Depth to Water 100 Pumping Duration	on March 6 1989 gallo approximately 500 gallo feet below M. feet below M.
15 hours (7.5 gpm) Fluid Loss During Drilling Water Removed During Development Static Depth to Water Pumping Depth to Water Pumping Duration 1-1/2 Yield	on March 6 1989 gallo approximately 500 gallo feet below M. feet below M. Date 5/6/89
15 hours (7.5 gpm) Fluid Loss During Drilling Water Removed During Development Static Depth to Water 89.8 Pumping Depth to Water 100 Pumping Duration 1-1/2 hours Specific Capacity	on March 6, 1989 gallo approximately 500 gallo feet below M. feet below M. Date 5/6/89 _ gpm/ft
15 hours (7.5 gpm) Fluid Loss During Drilling Water Removed During Development Static Depth to Water 9.8 Pumping Depth to Water 100 Pumping Depth to Water 101 Pumping Duration 1-1/2 hours Specific Capacity Well Purpose	on March 6, 1989 gallon approximately 500 gallon feet below M. feet below M. Date 5/6/89 gpm/ft g Well
15 hours (7.5 gpm) Fluid Loss During Drilling Water Removed During Development Static Depth to Water 100 Pumping Depth to Water 100 Pumping Duration 1-1/2 Yield 6-7 gpm Specific Capacity Well Purpose	on March 6, 1989 gallo approximately 500 gallo feet below M. feet below M. Date 5/6/89 gpm/ft g Well
15 hours (7.5 gpm) Fluid Loss During Drilling Water Removed During Development Static Depth to Water 89.8 Pumping Depth to Water 100 Pumping Depth to Water 100 Pumping Duration 1-1/2 hours Yield 6-7 gpm Specific Capacity Well Purpose	on March 6, 1989 gallo approximately 500 gallo feet below M. feet below M. feet below M. feet below M. feet below M. feet below M. feet below M.
15 hours (7.5 gpm) Fluid Loss During Drilling Water Removed During Development Static Depth to Water Pumping Depth to Water Pumping Duration 1-1/2 hours Specific Capacity Well Purpose Finished with lockit	on March 6, 1989 gallo approximately 500 gallo feet below M. feet below M.

Prepared by ____R. Eby

.

- -

WELL CONSTRUCTION LOG (UNCONSOLIDATED)

Measuring Point is Top of Well Casing Unless Otherwise Noted.

*Depth Below Land Surface

Project NY1230GN10	Well GM-5M
Town/City Lake Success	
County <u>Nassau</u>	State New York
Permit No	
Land-Surface Elevation	
and Datum feet	□ Surveyed
Installation Date(s)	-13-89
Drilling Method <u>Mud Rotary</u>	,
Drilling Contractor	tal Drilling Inc
Drilling FluidBentonite	Slurry
·	
Development Technique(s) and Date(s	5)
Developed with submers	ible Dump March 30,
<u>and April 3, 1989. Re</u>	moved approximately
600 gallons	· · · · · · · · · · · · · · · · · · ·
Fluid Loss During Drilling	gallor
Water Removed During Development_	approximately 600 gallor
Static Depth to Water90.5	feet below M.I
Pumping Depth to Water2	00 feet below M.I
Pumping Duration6	nours
Yield gpm	Date <u>4/3/89</u>
Specific Capacity	gpm/ft
Well Purpose Monitoring-	Well
Specific Capacity Well PurposeMonitoring -	gpm/tt Well
Finished with lo	cking protecting
standpipe (maste	<u>r #2402)</u>

Prepared by _____R_Eby

.....

. . .

WELL CONSTRUCTION LOG (UNCONSOLIDATED)

Measuring Point is Top of Well Casing Unless Otherwise Noted.

*Depth Below Land Surface

Project	NY1230GN10	Well <u>GM-6</u>
Town/City	Lake Success	
County	Nassau	State_New_York
Permit No		
Land-Surface	Elevation	
and Datum _	feet	Surveyed
		Estimated
Installation D	ate(s) <u>2-23-89/2-2</u>	24-89
Drilling Metho	d <u>Mud Rotary</u>	
Drilling Contra	actor <u>Environment</u>	al Drilling Inc.
Drilling Fluid	Bentonite	
		·
Development	Technique(s) and Date(s)	
Devel	oped with submers	ible pump for
<u>15 ho</u>	urs (7.5 gpm) on	March 6, 1989.
<u></u>		
Fluid Loss Du	ring Drilling	gailo
Water Remov	ed During Development_a	oproximately 600 gallo
Static Depth t	o Water <u>88.1</u>	feet below M.
Pumping Dep	th to Water <u>120</u>	feet below M.
Pumping Dur	ation <u>15</u> ho	urs
Yield7_	<u>–8</u> gpm	Date 5/6/89
Specific Capa	acity	.gpm/ft
Well Purpose	Monitorir	g Well
Remarks	Finished with lockir	ig protective standpipe
	(Master #2402).	
<u> </u>		<u> </u>
<u></u>		
Prepar	edby R. Eby	

. . .

WELL CONSTRUCTION LOG (UNCONSOLIDATED)

Measuring Point is Top of Well Casing Unless Otherwise Noted.

*Depth Below Land Surface

Project <u>NY1230GN10</u>	Well7
Town/City Lake Success	
County <u>Nassau</u>	StateNew_York
Permit No	
Land-Surface Elevation	
and Datum feet	Surveyed
	Estimated
Installation Date(s) <u>3-28-89</u>	<u> </u>
Drilling Method Mud_Rotary	¥
Drilling Contractor <u>Environmen</u>	ntal Drilling Inc.
Drilling Fluid Bentonite	Slurry
Jetting and Submersible	pump (0 3-4 gpm)
Fluid Loss During Drilling	gallor
Water Removed During Development	500 gallor
Static Depth to Water113.7	feet below M.I
Pumping Depth to Water140	feet below M.I
Pumping Duration how	urs
Yield gpm	Date
Specific Capacity	_gpm/ft
Well Purpose Monitoring We	<u>ell</u>
	<u></u>
Demoke Finished with and	
mounted protective	e cover (master
lock #2402)	

.

R. Eby Prepared by ____

.....

. .

WELL CONSTRUCTION LOG (UNCONSOLIDATED)

Measuring Point is Top of Well Casing Unless Otherwise Noted.

Project	<u>NY1230GN10</u>	We	II <u> </u>	<u>GM-85</u>	
Town/City _	Lake Succes	s			
County	Nassau	Sta	le	New	York
Permit No.					
Land-Surfac	ce Elevation				
and Datum	feet	□ s	urvey	yed	
			stima	ated	
Installation	Date(s) <u>April</u>	19, 1989			
Drilling Met	hodMud R	otary			
Drilling Con	tractorEnvir	onmental Dr	111	ing_1	nc
Drilling Flui	dBento	nite Slurry			
Developme: Max	nt Technique(s) and	Date(s)			
<u>May</u>	<u>17, 1989 Sub</u>	mersible pu	αp		
		<u> </u>			
<u> </u>					
Fluid Loss D	During Drilling		<u> </u>		galio
Fluid Loss D Water Remo	During Drilling oved During Develop	ment <u>50</u>	0		galio galio
Fluid Loss E Water Remo Static Deptr	During Drilling oved During Develop in to Water	ment50. 77.6	0	fee	galio galio t below M.
Fluid Loss E Water Remo Static Deptt Pumping De	During Drilling oved During Develop In to Water epth to Water	ment50 77.6 85	0	fee fee	galio galio t below M. t below M.
Fluid Loss E Water Remo Static Deptt Pumping Do Pumping Do	During Drilling oved During Develop In to Water epth to Water uration4-1/2	ment50 77.6 hours	0	fee fee	galio galio t below M. t below M.
Fluid Loss E Water Remo Static Depth Pumping Do Pumping Do Yield <u>3-</u>	During Drilling oved During Develop in to Water epth to Water uration4-1/2 -4 gpm	ment <u>50</u> 77.6 85 hours	0	fee fee fee	galio galio t below M t below M 5/17/89
Fluid Loss E Water Remo Static Deptr Pumping De Pumping D Yield <u>3-</u> Specific Ca	During Drilling oved During Develop in to Water epth to Water uration4-1/2 -4 gpm pacity	ment 50 77,6 85 hours gpm/ft		fee fee Date	galio galio t below M. t below M. 5/17/89
Fluid Loss E Water Remo Static Deptr Pumping Do Yield <u>3-</u> Specific Ca Well Purpos	During Drilling oved During Develop in to Water epth to Water uration4-1/2 -4 gpm pacity seMonito	ment <u>50</u> 77.6 85 hours gpm/ft ring_Well	0	fee fee Date	galio galio t below M. t below M. 5/17/89
Fluid Loss E Water Remo Static Deptr Pumping Do Pumping Do Yield3 Specific Ca Well Purpos	During Drilling oved During Develop in to Water epth to Water uration4-1/2 -4gpm pacity seMonito	ment <u>50</u> 77.6 85 hours gpm/ft ring_Well		fee fee Date	gallo gallo t below M t below M 5/17/89
Fluid Loss E Water Remo Static Deptr Pumping Do Yield3_ Specific Ca Well Purpos Bemarks	During Drilling oved During Develop to Water epth to Water urationgpm pacity seMonito Finished wi	ment <u>50</u> 77.6 85 hours gpm/ft ring_Well th self dra	0	fee fee Date	gallo gallo t below M t below M 5/17/89
Fluid Loss E Water Remo Static Depth Pumping De Pumping De Yield3- Specific Ca Well Purpos Remarks	During Drilling oved During Develop In to Water epth to Water uration4-1/2 -4gpm pacity seMonito Finished_wi box (locking	ment <u>50</u> 77.6 85 hours gpm/ft ring_Well th_self_dra. cap_master	<u>ini</u> ;	fee fee fee 	galio galio t below M. t below M. 5/17/89
Fluid Loss E Water Remo Static Deptr Pumping Do Yield3_ Specific Ca Well Purpos Remarks	During Drilling oved During Develop In to Water epth to Water urationgpm pacity finished wi box_(locking	ment <u>50</u> 77.6 85 hours gpm/ft ring_Well th_self_dra cap_master	<u>i ni</u>	fee fee fee 	galio galio t below M. t below M. 5/17/89
Fluid Loss E Water Remo Static Deptr Pumping Do Yield3_ Specific Ca Well Purpos Remarks	During Drilling oved During Develop In to Water epth to Water urationgpm pacity SeMonito Finished_wi box (locking	ment <u>50</u> 77.6 85 hours gpm/ft ring_Well th_self_dra th_self_dra	ini; #2	fee fee Date	galio galio t below M t below M 5/17/89
Fluid Loss E Water Remo Static Depth Pumping De Pumping De Yield3- Specific Ca Well Purpos Remarks	During Drilling oved During Develop In to Water epth to Water uration4-1/2 -4gpm pacity seMonito Finished_wi box_{locking	ment <u>50</u> 77.6 85 hours gpm/ft ring_Well th_self_dra cap_master	ini; #2	fee fee Date ng 402)	galio galio t below M. t below M. 5/17/89
Fluid Loss E Water Remo Static Deptr Pumping Do Yield3_ Specific Ca Well Purpos Remarks	During Drilling oved During Develop In to Water epth to Water urationgpm pacity Finished wi box (locking	ment <u>50</u> 77.6 85 hours gpm/ft ring Well th self dra. cap master	<u>i ni</u>	fee fee fee 	galio galio t below M. t below M. 5/17/89

.

æ ---

WELL CONSTRUCTION LOG (UNCONSOLIDATED)

Measuring Point is Top of Well Casing Unless Otherwise Noted.

Town/City County Permit No Land-Surface Ele and Datum Installation Date(Drilling Method _ Drilling Contracto Drilling Fluid Development Te	Lake Nassa evation s) chnique May_2 Jetti	Succ au feet <u>Apr</u> Mud Env Ben (s) and (s) and	il l Rot I Rot Date(s	3, 1 ary ment te S	_ State_ - - - - - - - - - - - - - - - - - - -	veyed mated	g Inc.
County Permit No Land-Surface Ele and Datum Installation Date(Drilling Method Drilling Contracto Drilling Fluid Development Te	Nassa evation s) chnique <u>May 2</u> Jetti	feet Mud Env Ben (s) and 	il l Rot Vironi Itoni Date(s	3, 1 ary ment te_S	State_ Surv Estir 989 al_Dr lurry	veyed mated illin	g Inc.
Permit No Land-Surface Ele and Datum Installation Date(Drilling Method Drilling Contracto Drilling Fluid Development Te	evation s) chnique <u>May 2</u> Jetti	feet 	il l Rot Vironi Itoni Date(s	3, 1 ary ment te_S	Surv Estir 989 al Dr lurry	veyed nated illin	g Inc.
Land-Surface Ele and Datum Installation Date(Drilling Method _ Drilling Contracto Drilling Fluid Development Te	evation (s) or chnique May 2 Jetti	feet 	ill Rot vironi toni Date(s	3, 1 ary ment te S s)	Surv Second	veyed nated <u>illin</u>	g Inc.
and Datum Installation Date(Drilling Method _ Drilling Contracto Drilling Fluid Development Te	s) pr chnique <u>May 2</u> Jetti	_ feet 	il l Rot Vironi Itoni Date(s	3, 1 ary ment te_S s)	Surv Setir	veyed mated illin	g Inc.
Installation Date(Drilling Method _ Drilling Contracto Drilling Fluid Development Te	s) or chnique <u>May 2</u> Jetti	<u>Apr</u> <u>Mud</u> Env Ben (s) and	il l Rot Vironi Itoni Date(s	3, 1 ary ment te_S	Estir S S S S	nated	g Inc.
Installation Date(Drilling Method _ Drilling Contracto Drilling Fluid Development Te	s) or chnique <u>May 2</u> Jetti	<u>Apr</u> <u>Mud</u> Env Ben (s) and	il l Rot Vironi Loni Date(s	3, 1 ary ment te S	989 al Dr lurry	<u>illin</u>	g Inc.
Drilling Method _ Drilling Contracto Drilling Fluid Development Te	chnique May 2 Jetti		l Rot vironi toni Date(s	ary ment te S s)	al Dr lurry	illin	g Inc.
Drilling Contracto Drilling Fluid Development Te	chnique May 2 Jetti	<u>Env</u> <u>Ben</u> (s) and 23, <u>2</u>	vironi Itoni Date(:	ment te S s)	al Dr.	<u>illin</u>	<u>g Inc.</u>
Drilling Fluid Development Te	chnique May 2 Jetti	Ben (s) and 23,2	Date(:	<u>te S</u> s)	lurry		
Development Te	chnique May 2 Jetti	(s) and	Date(:	S)			
Fluid Loss During	g Drilling			40	0-500		gall
Mator Romovod	g Drilling During [40	0-500		gan
Static Depth to W	/ater	80	.0			fe	et below M
Pumping Depth t	o Water		145			fe	et below M
Pumping Duratio	n4	4-1/2	ł	nours			
Yield	2 9	gpm				Date.	5/24/89
Specific Capacity	Y			gpn	n/ft		
Well Purpose	Mo	nito	<u>ring</u>	Well	1		
					_:=		
Bemarks	 Finsi	hed	with	Flus	sh Mou		
	drain	ing	curb	box	(mast	er lo	ock
	#2402)					
	_				_		
						_	

a a casa ana ana ana ana ana ana

WELL CONSTRUCTION LOG (UNCONSOLIDATED)

. . .

Measuring Point is Top of Well Casing Unless Otherwise Noted.

Town/City _____Lake_Success County _____ Nassau _____ State ____ Now York Permit No. Land-Surface Elevation and Datum _____ feet Surveyed Estimated Installation Date(s) <u>April 17, 1989</u> Mud Rotary Drilling Method ____ Environmental Drilling Inc. Drilling Contractor Bentonite Slurry Drilling Fluid _____ Development Technique(s) and Date(s) May 23 and 24 by jetting and submersible Fluid Loss During Drilling gallor Water Removed During Development ____approximately 400 _ gallor Static Depth to Water _____85.4 ____ feet below M.I Pumping Depth to Water _____ 150 _____feet below M.F Pumping Duration <u>4</u> hours Date ______5/24/89 Yield _____ 2-3 ____ apm Specific Capacity _____ gpm/ft Well Purpose Monitoring Well Remarks ______ Finished with flush mounted self____ ----draining_curb_box_{master_#2402} --Prepared by <u>R. Eby</u>

Project _____ NY1230GN10 ____ Well _____ Gid=9

æ ---

WELL CONSTRUCTION LOG (UNCONSOLIDATED)

. . .

Measuring Point is Top of Well Casing Unless Otherwise Noted.

*Depth Below Land Surface

ProjectNY1230GN10	Well <u>GM-10</u>
Town/CityLake_Success	
County Nassau	State <u>New-York</u>
Permit No	
Land-Surface Elevation	
and Datum feet	Surveyed
· · ·	Estimated
Installation Date(s)April 24, 19	89
Drilling Method <u>Mud Rotary</u>	
Drilling Contractor	1_Drilling_Inc
Drilling FluidBentonite Slur	ry
<u> </u>	
Development Technique(s) and Date(s)	
Jetting and pumped with sub	mersible pump
(0 = 10 - 12gpm) May 25, 19	<u>89 · · </u>
	gallor
Statia Darth to Water	gallor
	feet below M.F
Pumping Depin to Water	
Fumping Duration $\underline{12777}$ no	Data 5/25/89
Seesific Conscitu	
	- ghuan
Well Purpose <u>Monitoring Well</u>	<u></u>
	·
RemarksFinished with flush	mounted curd, box
(Master Lock #2402	

Prepared by ____R. Eby

.

x –

WELL CONSTRUCTION LOG (UNCONSOLIDATED)

Measuring Point is Top of Well Casing Unless Otherwise Noted.

*Depth Below Land Surface

State_ <u>New_Yo</u>	
State <u>New_Yo</u> _	- 6
_	
Surveyed	
□ Estimated	
Drilling Inc	•
· · · · · · · · · · · · · · · · · · ·	
ersible pump	
oximately 400	gallor gallor et below M
fet	et below M
Date	5/26/89
<u>-</u> m/ft	
-	
	□ Surveyed □ Estimated <u>Drilling Inc</u> :ry ersible pump <u>ximately 400</u> fee fee Datefee

Prepared by _____R. Eby

.....

WELL CONSTRUCTION LOG (UNCONSOLIDATED)

Town/City ____Lake Success _____ County _____ State _____ State ____ Vork Permit No. _____ Land-Surface Elevation and Datum _____ feet □ Surveyed □ Estimated Installation Date(s) _____May 1, 1989 Drilling Method <u>Mud Rotary</u> Drilling Contractor ______Environmental Drilling Inc. Drilling Fluid ______Bentonite_slurry _____ Development Technique(s) and Date(s) May 31, 1989, June 1.2.5, jetting with water, trisodium phosphate and pumping with submersible pump Fluid Loss During Drilling _____ ____ callor Water Removed During Development <u>approximately</u> 600 gallor Static Depth to Water _____89_2 ____ feet below M.I Pumping Depth to Water _____ 245 __ feet below M.F Pumping Duration <u>10-12</u> hours Yield less than 1 gpm Date 6/5/89 Specific Capacity _____ gpm/ft Remarks ______ Finished with locking protective standpipe____ (Master #2402) Prepared by ____R. Eby

Project <u>NY1230GN10</u> Well <u>GM-11M</u>

Measuring Point is Top of Well Casing Unless Otherwise Noted.

*Depth Below Land Surface

Bo		Weli	<u>[]</u>]	(ianix -	Project/No.	SAM UNISY	PLE/CO	RE LO /2300	G CFI	Page	of
		n	60	at .	Neck,	Now Y	rk St	arted(11/2/20	_Completed	1 <u></u> 1
To	tai D	epth	Drille	d	feet	Hole Diame	ter <u>X</u>	_ inches	Coring Devic	¢	
of	Corin	g De			<u>) ++ x</u>	21N,			Sampling	Interval	leet
La	nd-Su	urtaci	e Elev	N	A feet		ed ⊡Ęs	timated	Datum	<u>N/A</u>	
Dri Dri	illing : illing	Fluid	Used		NONE	1.11.	7		Drilling M	ethod fre	How - STON a
Co Pn By	ontrac epare	tor 2 d	D.	Ne	wton		9, 1^{nr}	Driller	D. 119 gu e Hammer Weight	140 Helpe	r <u>A. Kincaid</u> mmer <u>30</u> inches
Sar (teet)	mpia/Ca below L From	ora Des and sur To	pth riace) R	Core ecovery (leet)	TimeAtydrautic Pressure or Stows per 6 inches	_		Same	pla/Core Descripti	•	
1	, 1	-	7 j	_		į	. در	<i>v</i> .3	÷, .	ie. a i	3-4/5
			ļ				A	ر مروارد	t ;	• * *	lege
			;			: !_	6			<u>َ</u>	- Iter li
					İ						
		e 1					Term	valed .	. seh. le		
		!	ļ					- .			
· · · · · · · · · · · · · · · · · · ·		:				· · · · · · · · · · · · · · · · · · ·			E Alter +	4 4 3	is hr
		•	1			· · · · · · · · · · · · · · · · · · ·					
:			1		·						
:											
								<u> </u>			
		ļ						•			
			İ	1	 						
!		ļ			t 1	! !					
		:	,		1	· · · · · · · · · · · · · · · · · · ·					
		ļ	ļ			i	···				
			Ť								
1		-									

AND DESCRIPTION OF A DE

Land-Surface Elev. MA teer Duryoyed Estimated Datum MA Drilling Fluid Used None. Drilling, JAR. Driller S. Hagve Heiper K. Kin Drilling Method Hellow - stre. Drilling Method Hellow - stre. By D. New town Barrener Prove To Barrener P Barrener Prove To Barrener P Barrener Prove To Barrener P Barrener Prove To Barrener P Barrener Prove To Barrener P Drilling SampleCerr Decription SampleCerr Dec	Land-Surface Elev. <u>MA</u> text I Surveyed I Estimated Datum <u>MA</u> Drilling Fluid Used <u>None</u> Drilling, <u>Date</u> Drilling Method <u>Hellew - step</u> Drilling Method <u>Hellew - step</u> Magne <u>D</u> . <u>Newtown</u> <u>Barger</u> By <u>D</u> . <u>Newtown</u> <u>Barger</u> By <u>D</u> . <u>Newtown</u> <u>Barger</u> SampleCar Description <u>SampleCar Description</u> <u>Drop Towney</u> <u>France</u> SampleCar Description <u>SampleCar Description</u> <u>Drop Towney</u> <u>France</u> <u>SampleCar Description</u> <u>Method Hellew - step</u> <u>SampleCar Description</u> <u>Barger</u> <u>SampleCar Description</u> <u>Method Hellew - step</u> <u>SampleCar Description</u> <u>Method Hellew - step</u> <u>Method Hellew - step</u> <u>SampleCar Description</u> <u>Method Hellew - step</u> <u>Method Hellew - step - st</u>	Boring/N Site Location Total De Length a of Coring	Vell	sullanis 3-2 rect ed neter	Project/No. <u>Neck</u> L feet L ff x	SAMPLE/CORE LOG UNISYS/Ngr/230CF1 Page of New York Drilling 3/31/63 Drilling 3/31/64 New York Drilling 3/31/63 Drilling 3/31/64 Hole Diameter 0 inches Coring Device col.d-spress Ziw Sampling Interval S
Symptocon Dech Production Samptocon Dech Treastry for all the Alford and the state and and and and all the state of and and and all the state of and all the state of and all the state of and all the state of and all the state of a state of the state of a state of the state of	SymptoCore Details for the fragment of the service of the service and services for the service and services for the service of	Land-Su Drilling F Drilling Contract Prepared	riace Ele Iluid Use or EAL	w d ///w//	A feet None Mone	Surveyed Estimated Datum <u>N/A</u> Drilling Method <u>Hellow - sten</u> <u>Arilling</u> , <u>Inr.</u> Driller <u>S. Hagve</u> Helper <u>K. Kure</u> Hammer / W. Hammer 30
5 7 2 5-85 SAND (S170) prener - Iroun, prenin the (50000, rodoniel, soried; crew (153) me ' peblics and cover with with (153) sub-roominal 5 10 2 10-35 8 to 9 to 3 to 2 to 2 to 2000 10 12 27-34 8 to 9 to 3 to 2 to 2 to 2 to 2 to 2 to 2 10 12 12 12 12 12 12 12 12 12 12 12 12 12	5 7 2 5-85 SAND (SP20), prener - Iroun, me alon to (50000, robinstel, some i room (1500) sub-roominal 5 10 2 10-33 - 8 2 9 4; some a shoure 10 10 2 10-34 8 2 9 4; some a shoure 11 12/4; FILL (?), can be growing and 11 12/4; FILL (?), can be growing and 10 12 - 10-50 1/5 fri; CLAY, brown, new should arbite 10 12 - 10-50 1/5 fri; CLAY, brown, new should arbite 11,5 the les Sand (1500), under to roome 11,5 the les Sand (1500), under to roome 15 17 21 17 15 SAND; from the come some day, brown 10 12 - 10 to 10, from the come some day, brown 10 12 - 10 to 10, from the come some day, brown 11,5 the les come stand some day brown 15 17 21 17 15 SAND; from the come some day, brown 16 17 21 17 15 SAND; from the come some day, brown 17 17 21 17 15 SAND; from the come some day, brown 17 17 21 17 15 SAND; from the come some day, brown 17 17 21 17 10 19 SAND; from the come some day, brown 17 17 21 17 10 19 SAND; from the come some day, brown 17 17 21 17 10 10 10 10 10 10 10 10 10 10 10 10 10	Sample/Col lost below in From	e Depth nd surface) To	Core Receivery (feet)	Time/Hydraulic Pressure or Blows per 6 inches	Sample/Cere Description
10 12 - 10-20- 10 to 11.5 fr: CLAY brown, Many scall schler 10 10 12 - 10-20- 10 10 10 - 10-20- 10 10 10 - 10-20- 10	10 12 - 17-22. 10 to 1/2 to 1	5	7	2	5-8- 16-28	SAND (3070) prance - troum, me dian the
$\frac{1}{3} \frac{1}{3} \frac{1}$	$\frac{1}{3} = \frac{1}{3} = \frac{1}$					couse, rodoniel, sin ; reaver (157)
$\frac{3 \cdot b - rsonders}{3}$ $\frac{3 \cdot b - rsonders}{3}$ $\frac{3 \cdot 10}{2} = \frac{16 \cdot 3^{3-2}}{-7 \cdot 36} = \frac{3 \cdot t \cdot 9 \cdot 4}{3 \cdot 5} = 3 \cdot a \cdot s \cdot s \cdot s \cdot s \cdot s \cdot s \cdot s \cdot s \cdot s$	$\frac{3 \cdot 10}{10} = \frac{3 \cdot 5}{10} = 3$					me pebbles in a stall while (1523)
4 10 2 10-35- -7-36 8 to 9 to 5 Same as source 11t 10, 10 1 10, 10 10	$\frac{4}{3} 10 \ 2 \ \frac{10 \cdot 3^{3-2}}{-7 \cdot 3^{4}} \ \frac{8}{5} \ 5 \ \frac{1}{5} \ \frac{5}{5} \ \frac{1}{5} \ 1$					sub-rounded
4 10 2 10 3 3 3 5<	$\frac{3}{10} \frac{10}{10} \frac{10}$					
10 12 - 10 to 11.5 fr: CLAY, brown, rang scall scholes 10 12 - 10 to 11.5 fr: CLAY, brown, rang scall scholes 10 12 - 10 to 11.5 fr: CLAY, brown, rang scall scholes 11.5 To 12; SAND (1507.), yodi - To rame 11.5 To 12; SAND (1507.), yodi - To rame 11.5 SAND; Fine to come some day, bro 17 17 2" i "B" SAND; Fine to come some day, bro Areavite Accounts, rang cobble:	10 12 - 10 to 11.5 fr: CLAY, brown, many small whiles 10 12 - 10 to 11.5 fr: CLAY, brown, many small whiles 10 12 - 10 to 11.5 fr: CLAY, brown, many small whiles 11.5 to 12; SAVD (1507.), while - to crawe 11.5 to 12; SAVD (1507.), while - to crawe 15 17 2" i "B" SAVD; Gas to craw, many small whiles 15 17 2" i "B" SAVD; Gas to craw, many small brown 15 17 2" i "B" SAVD; Gas to craw, many small brown 16 from to from some some dow, brown 17 17 2" i "B" SAVD; Gas to craw, many some dow, brown 17 17 2" i "B" SAVD; Gas to craw, many some dow, brown 17 17 2" i "B" SAVD; Gas to craw, many some dow, brown 17 17 2" i "B" SAVD; Gas to craw, many some dow, brown 17 17 2" i "B" SAVD; Gas to craw, many some dow, brown 17 17 2" i "B" SAVD; Gas to craw, many some dow, brown 17 17 2" i "B" SAVD; Gas to craw, many some dow, brown 17 17 2" i "B" SAVD; Gas to craw, many some dow, brown 17 17 2" i "B" SAVD; Gas to craw, many some dow, brown 17 17 2" i "B" SAVD; Gas to craw, many some dow, brown 17 17 2" i "B" SAVD; Gas to craw, many some dow, brown 17 17 2" i "B" SAVD; Gas to craw, many some dow, brown 17 17 2" i "B" SAVD; Gas to craw, many some dow, brown 17 17 2" i "B" SAVD; Gas to craw, many some dow, brown 17 17 2" i "B" SAVD; Gas to craw, many some dow, brown 17 17 2" i "B" SAVD; Gas to craw, many some dow, brown 17 17 2" i "B" SAVD; Gas to craw, many some dow, brown 17 17 2" i "B" SAVD; Gas to craw, many some dow, brown 17 17 2" i "B" SAVD; Gas to craw, many some dow, brown 18 18 18 18 18 18 18 18 18 18 18 18 18 1	4	10	2	16- 3 - 	8 to 9 it Same is show
10 12 - 10 to 11.5 fr: CLAY brown, nony scall whiles 10 12 - 10 to 11.5 fr: CLAY brown, nony scall whiles 10 12 - 10 to 11.5 fr: CLAY brown, nony scall whiles 10 12 - 10 to 11.5 fr: CLAY brown, nony scall whiles 11.5 to 12; SAND (1507.), your - to crew 11.5 to 12; SAND (1507.), your - to crew 15 17 2" i "b" SAND; Gas to crew some ormal some day bro grante france frances, may cobble:	10 12 - in 10 to 11.5 fr: CLAY brown, many scall probles 10 12 - in 10 to 11.5 fr: CLAY brown, many scall probles and grind 11.5 to 12; SAND (1502.), yod, - to raw 11.5 to 12; SAND (1502.), yod, - to raw 11.5 to 12; SAND (1502.), yod, - to raw 15 17 2" i "B" SAND; for the case some brow some day brow Areaste freements, many cobbles					11t 12/4; FILL(?) en la sponte ette
10 12 - 17-25- 10 to 11.5 fr: CLAY, brown, many smill whiles and agod 11.5 to 12; SAND (1507.), under to rame 11.5 to 12; SAND (1507.), under to rame 11.5 to 12; SAND (1507.), under to rame 11.5 to 12; SAND (500 brown 15 17 2"1 1.5 SAND; for the came score some day brown Areartic freements, may cobble:	10 12 = 17-23- 10 12 = 10 to 11.5 fr: CLAY brown, many smill whiles and gavel 11.5 to 12; SAVD (1507.), under to race 11.5 to 12; SAVD (1507.), under to race 11.5 to 12; SAVD; from the case serve day brown 15 17 2" 1"""""" SAVD; from the case serve day brown Areastic from notion some down brown Areastic from notion some down					Later - a porto desur plates
10 12 - 17-25- 10 to 11.5 fr: CLAY brown, Many soull while, and grind 11.5 to 12; SAVD (1507.), year or to came 11.5 to 12; SAVD (1507.), year to came 11.5 to 12; SAVD (1507.), year to came 11.5 to 12; SAVD, brown 15 17 2" i "13" SAVD; Fire 45 came source or or some day bro greative from or to cable:	10 12 = 17-25- 10 to 11.5 fr: CLAY, brown, many smill whiles and grand 11.5 to 12; SAND (1507.), yinds in to reace instil sorted, brown 15 17 2" i "B" SAND; fire the care some some day brow Areaste freements, may cobbles Areaste freements, may cobbles	i i				1778 der a clay
10 1d - 10 to 11.5 fr CLAY brown, Many small wholes me agod 11.5 to 12; SAND (1507.), yedi - to rame 11.5 to 12; SAND (1507.), yedi - to rame 11.5 to 12; SAND (1507.), yedi - to rame 11.5 to 12; SAND (1507.), yedi - to rame 15 17 2'' i "13" SAND; fine to come score some day bro Areastic freenents, May cobble:	10 1d - 15-4. 10 to 11.5 fr. CLAY, brown, Many scall scholes me gavel 11.5 to 12; SAND (1507.), under to rame 11.5 to 12; SAND (1507.), under to rame 11.5 to 12; SAND, brown 15 17 2" 15" SAND; from 45 come second some day brow Areasite from not some down brown Areasite from not some down	 			17-22-	
IT 17 2" SAVD; Fire to come some day bro Areaste Scale some some come day bro Areaste Scale some come some day bro Areaste Scale some come some day bro	IT 17 2" i "B" SAVD; Gas to care some some der brow Areaste freeners, May cobble: Areaste freeners, May cobble:		12		15-4.	10 To 11.5 fr: CLAY brown, Many sciell relibles
11,5 To 12; SAVD (1507.), yrdin To race nell sorted, brown 15 17 2" "B" SAVD; Fine to care show orman some day bro Areante freenets, may cobble:	IT 17 2" SAND; Gar to come some day brown					me aguel
IT 17 2'I i "B" SAVD; Fine to come score some day bro Areastic frances, May cobble:	15 17 2" i "B" SAVD; Gar to come some com some dow brow Areastic freeners, rang cobble:					11,5 (12; SAND (1507.), yedin To race
15 17 2" "B" SAVD; Fine to come since some day bro Areante fronts, May cubble:	17 17 2" i "B" SAND; Gar to come some some day brow areante freenons, may cobbles	 				ILLA SOFATA DECIN
Arenite Trans couble:	Arenite france (contring cobble)	15-1	ן רי	2''	··/2"	<avd' ek="" en="" ha<="" i="" in="" no="" td="" trans=""></avd'>
AIRAITE TERANOIS TRAY CODDIE	$\frac{1}{2} = \frac{1}{2} = \frac{1}$		<u> </u>			seale Security of aller
	2 Ma second (code anima)					AFRAITE TERANOTS, TRAY CODDIES

Boring/ Site Location	Well n epth Dril	B-i neat	Project/No. <u>Neck</u>	SAMPLE/CORE LOG UNISYS Ny /230CF1 Page of New York Drilling /////88 Drilling New York Drilling /////88 Drilling Hole Diameter inches Coring Device
Length of Corin Land-Su Drilling I Drilling	and Dia g Device urface El Fluid Use	meter) ft x MA loot None	ZIN
Contrac Prepare By	d D). N	euton T	<u>UFI((IAg, LAF, Driller S, Hagve</u> Helper <u>K, KIAcc</u> Hammer 140 Hammer <u>30</u> inct Weight 140 Drop <u>30</u> inct
(teet below L From	ne pepu ine surtace To) Cors Receivery (Net)	Pressure or Blows per S inches	Samaia/Core Description
	7		1-2-11-22	SAMERITORI LANG INTER INTER
		 		Shree Solve - Continue
		¦		
10	12	<u> </u>	2.12.13	CLAY (1-1) dark orm to the sound
 		<u> </u>		citta acta una leve internationa
1	 	! 		maddee a day (135, any Elli) and
		1-15	12-1-2-14	TATI AND LA -
		<u>· • /)</u> [
أرز	57	1.0	12-25-11-30	SANGLANTAL COM + Man li min
	 			occassional
			16-14-	
<u></u>	<u> </u> ;	<u> .U</u> 	<u> '2-16</u>	SANZISSE MELINE AND AND AND AND AND AND AND AND AND AND
	l	<u> </u>		(c (57)) / control (c) control (c)
1	i	<u> </u>		
	l	{		sie contract Diece of Coops

GERAGHTY Se MILLER. INC.	-	-
-----------------------------	---	---

Boring/Well <u>3-4</u> Project/No. Site Location <u>Great Neck</u> Total Depth Drilled <u>35</u> feet Length and Diameter of Coring Device <u>2 F4 x</u> Land-Surface Elev. <u>MA</u> feet Drilling Fluid Used <u>None</u> Drilling Contractor <u>Environmental</u>	SAMPLE/CORE LOG <u>UNISYS</u> / <u>NY/Z3OCFI</u> Page of <u>New York</u> Drilling <u>//5/35</u> Drilling <u>/5/38</u> Hole Diameter inches Coring Device <u>Stur-store</u> <u></u> Sampling Interval <u>S</u> feet <u></u>
By D. Newton	Hammer / 46 Hammer 30 inches
Sample/Core Depth Time/Hydraulic (feet below land surface) Core Pressure or Receivery Blows per 6 From To (feet) inches	Sample/Core Description T/f
5 7 .5 1173	SAIL (1973) Comments To Comments I and (PPM
	prevision occasional se conteap
16-12-23-12	
10 12 1,25	SAND (659) care rown gradin to srange -brown
	the \$ ison volving 20th (159) and rown occasion prime " marine ' Sill'? we
17 17 1 14-172-50/3	Eiring carse line and solar.
	sorter medina, 15th
	brown , - the in provide sustained
2) 22 1.5 17-25-	Same as serve 3-11-con Proven 3-1; Not as well some more pubbles
25 27 1.5 25-20-	56/17/1 +3 97) light aroun well aston porch
	irain. "''''' Frances
30 32 2 25-35-35	31 to 31.5 AT come a above
	21.57 2: 10 SILT duk groun, sondy, with some ring

GERAGHTY & MILLER, INC. Ground-Water Consultants

-

SAMPLE/CORE LOG (Cont.d)

2 2 2

SAMPLE/CORE LOG (Cont.d) 2 7
Prepared By <u>D</u> , <u>Neuslos</u>
Sample/Core Depth TBne/Hydraulic (feet aslow tend surface) Core Pressure or Recovery Blows per 6 From To (feet) Inches Sample/Core Description
35 37 2 17-30- 32-35 =5 To 36,75: SAND (6070) work brown lin to
course, prochy suter, very silty (407.)
36.75 to 37; SAMO(15090) modern around. I she brown
rery sall store agost

Southerne 87-1719

Boring/ Site Location Total De	Well	10-5 10-5 10-5	Projeci/No. <u>NecK</u> <u>8</u> teet	VNISYS/NY/Z3OCFI Pageof New York Drilling Started 1/5/88 Drilling Completed 01/3/39 Hole Diameter 8 inches Type of Sample/ Coring Device 2/1/7 SPUSM
Length of Corin Land-St Drilling I Drilling	and Dial g Device urface El Fluid Us	ev	<u>2</u> 4 1001 <u>None</u>	∠IN. Sampling Interval
Contrac Prepare By	tor EN	VIRONI). No	wton	Urilling, Enr. Driller S. Hague Helper K. Kinca Hammer 190 Hammer 30 inch
Sample/Co at below 4 From	ere Depth and aurtace To	Core · Receivery (lest)	Time/Hydrautic Pressure or Blows per 6 inches	Sample/Core Description
5	1		1-1-1-1	SAMO(1202), recours from the sent
		 		occasional - viole, sois-
			25-35-18-	
(0		 	75	SAND(7593) ferre of crarse wark brown sorry
	; ; ; ;	<u> </u>		stand and some (July (Stand Land Stock
15	17	1:5	12 - 10 - 25 - 50/4"	15 to 15, 11 CANDINDED. we we source black grow e
	! 	ļ 		15:11 to 16.25: SAND (10093), water to care it is and
	 			ight Many plaws; occasion jegge, one aller
	119			Paul I I I I I I I I I I I I I I I I I I I
				Durasie termineted of 10 th, UW
	<u></u>			
	1]	

Boring	Vell_ <u>R</u>	- 15	Project/No.	SAMPLE/CORE LOG
Site	6	rect	Neck	Now York Drilling 4/5/88 Drilling 4/11/29
			5	Type of Sample/
Length	and Dian	eo <u> </u>		hole Diameter inches Coring Device
of Corin	g Device		<u>_ ++ x</u> 1/a	< TN. Sampling Interval fee
Land-Su	rface Ele	W	<u>A/-</u> feet	Surveyed Estimated Datum
Drilling f Drilling	Fluid Use	d	_ NONE	λ //· Τ c il
Contract	or ENI	/Iron	mental	Drilling, Inc. Driller S. Hague Helper K. Kincai
By	<u>_</u>	/	ewton	Weight 195 Drop 30 inche
Sample/Co	re Depth	Com	TeneAtydrasiic	
From	Ta	Receivery (lest)	Blows per 6 inches	Sample/Core Description
5	7	(Sto 5 & GANG (1507-1) The To high with score
<u>!</u> !			<u> </u>	A.S.T. 6. SANNY 11 STOL, WORKING IN THE WAL
				sories the your to sure home
				Formation condes (3-4 mile)
ļ				
7	8	·		Fill not challed the must be
	i		<u>.</u>	
	12	70	10-11-10 20	
	· ~	. 15	10.00.0	SAND me EREVEL 1 1901. notion brown,
			 	poor sorre in to rome, love
E	17	1,0	15-19-50/5"	SAND (1:72) light row to where is my
				Very Granne mobile (15 m)
			1	· · · · · · · · · · · · · · · · · · ·
			¦	the dum with the trial
			<u> </u>	rente its 1/2 Infronted the set monded inose
			ļ	preat and start with (<1.1
			1	
70	Fg	3)	12-11-20-3	D_SIND (959.), light from - stenie - store in the

SAMPLE/CORE LOG (Cont.d)

Page 2 of 2

BoringWell____B-G Prepared By_

-

Sample/C (leat below (ore Depth and surface)	Core Recovery	Time/Hydraulic Pressure or Blom per 6	
From	To	(heat)		Sample/Core Description
25	27	2.0	16-22	SAND (1000), licht crow - tan matium year
				well sorted fore skilled same in
				26 K 26.25 La Lank brown silt have claren
30	.37	<u>d.0</u>	30-32	SILT (90%) Jack , 17m clast; 10. 2 (10%), fine
		 		line from sell sorted them lenges
				30.0t 30.5; SAND (100%) ration to warm well
				surled, lak from to more-tran, wet
				Terminited bordicle
<u> </u>				
1			1	

Boring	Well	<u>-7</u>	Project/No.	SAMPLE/CORE LOG UNISYS/NY/Z3OCFI Page 1 of 2
Location Total D Length of Cori	epth Dril and Diar		Neck 2 1001 2 ft x	New York Started /////2 Completed /////8 Hole Diameter 4 inches Coring Device Sample/ ZIN Sampling Integral 5 factor
Land-S Drilling Drilling	urface El Fluid Use	ev	None	□ Surveyed □ Estimated Datum Drilling Method Hellow - sten a
Prepare By	or EA	Viron). N	enter 1	Urilling, Lnr. Driller S. Hagve Helper K. Kucai Hammer 140 Hammer 30 inches
Sample/C (1961 below Fram	iore Depth land surface) To	Core Receivery (leat)	TimeAtydraulic Pressure or Blows per 6 inches	Sample/Core Description
5	1-7	.35	2-7-50/2"	SAND (109.) MUK SIME Live to rout
				inter grind grind + scholes (402.), josein
	1	 		sorred inte some to light point angular
		<u> </u>		to subreamed
ļ	ļ 			
10	12	[.]	1-1-1-15	SAND (959) which brown course will racked point;
ļ	<u> </u>	<u> </u>	 	pobles (570), dank voien estivated finej
		 	<u></u>	some signal, (<2")
			18-12-12-17	
12		0,2		SAND (707), fight sime That sime truck - T
ļ	<u> </u>			tol - internet internet (2021
		 		live and in the second of fine
120		115	10-30-	2n + 1n + 1 + (n + 1) + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
<u> d')</u>	<u> = + + -</u> 	<u> </u>	<u> n-v</u> 	du la du 5 SAMULIOUIN, ARdia de Conse brijn
	1		<u> </u>	10 CT 21 CAUN (100) A. A. Lili
1	- <u> </u>	<u> </u>	+	No deniel cold nerational changes such
		1		
	<u> </u>			Crarsenia mal

GERAGHTY
MILLER, INC.
Ground-Water Consultants

B-7

 \square

5N

SAMPLE/CORE LOG (Cont.d)

Page Z of Z

Prepared By.

Boring/Well_

-

Sample/Core Depth leat below land aurier	a) Core	Time/Hydraulic Pressure or	
From To	(leat)	Blowe per 6 Inches	Sample/Core Description
25 2	1.5	15-7-	SAND (100 %), live to needer will sortel,
			tan to light brown
			25.5 to 26 bi fill cluser dery brown
			have I time some
			•
30 32	1.5	- 21 - 21 51 - 51	31 to 31 fr ' SAND (100%). Fine, very into sand,
			Look black receives with several this
			silt layers, WET
			31 to 31.5/1; SAMD(150%), preme - bram median
			to very well when wer
	,		
			Terrivated Lores 1/2
r i			

Boring/	у)ен <u>Г</u>	-8 rest	Projeci/No.	SAMPLE/CORE LOG UNISYS Ny/230CF1 Page of New York Drilling 1/1/33 Drilling 1/1/35
Total De Length	epth Drill and Diar g Device	ed	<u></u> feet <u></u> f+ x	Hole Diameter inches Coring Device
Land-Su Drilling I Drilling Contract	Inface Ele Fluid Use Ior EAL	ev xd V <i>ironi</i>	A_ 1001 None_ nente/_	Drilling Method Hollow - sten Drilling Method Hollow - sten Drilling Jac, Driller S. Hagve Helper K. Kinca
Prepare By	<u> </u>). <i>Ne</i>	wton	Hammer / 40 Hammer 30 inch
Sample/Co ret below is From	re Depth pré surface) To	Core Receivery (test)	Time/Hydraulic Pressure or Blows per 5 inches	Sample/Core Description
5	1	1.25	-4-30- 34-30	GGAUGE (5095) fine to netion start
	}			sin shales as moder whiles, in 1909
	•			Cluster- marchine the loss from them the
				y dian only said FILL
				1
0)	112	2,0	10-25-30- 50 5"	SAND (1009), melion to come well sorted
	i 1			ten To pranow - brown
15	17	12.0	10-20-B. 31	The inter same as inverted but brow to orong
	 			t, 1) (EFV40 (15 9.1 hald brow (- moure.
				sariel schilles and yed in to reach
				en trong
dis	22	1.0	2-22-21-	1) to 20, 75; GAND (1,529) ink brow menun,
 				A CONTRACTOR
 				2010 1. 11.1 CANTERED Light stam Theory
 	ļ	ļ		the sensed some small prover sand (1923) remains
	<u> </u>			15 cars man with
1	1	1 •	}	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Romania (C	d By	D	5~	Page0
25 27 2 (18-30-1) SANS (1002), $(196+ brown - 4m, medin- (rave. unsile sorted into if fire minutic sorted into if 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -$	(het below (From	ind surface) To	Core Recovery (lest)	Pressure or Biows per 6 Inches	Sample/Core Description
I cave, undit sorted inde its Fire niewell' sorrer inter inter interest interest 30 22 2 2-2-9-20 30 to 30.6; SAND (10092), fire, all sur- sorre Ancereus Antone, look brown 30.6 to 22; cano (10092), light orang-brown fire to came, pourly surled, silly Wet TERA INFIED is HICHESCE.	25	27	2	18-30-40-	SAND (1002), light brown - tax, nodin-
$\frac{1}{12} \qquad \frac{1}{12} $					I TAVE , well sorted take of
30 2 Z 2-2-4-20 30 to 30.6; SAND (100.92), fine, will sure Some Alckeuss minore, book orson 30.6 to 22; SAND (1.0792), light orane-brown fine to come, powly sured, silly Wet THAN INFITO is HILLINGE.				-	Fire newel Sproge sunk war
$30 32 2 \frac{1 \cdot 2 \cdot 4 \cdot 20}{30 t} 30 t} 30 t}{30 t} 30 t} (1009), fine, all sure 30 \cdot 6 t 32; cano (1009), light orane - bran fin to come, pourly surled, sully WeT $					The second second second second second second second second second second second second second second second se
30 32 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
Some Mickey printing, Lonk brown 30:6 to 32; SAND (15092) (1:14t orang-brown from to come, pourly surled, silly WET 	٥٤	32	2	2-2-9-20	30 to 30.6; SAND (10090), fine, well swine
30.6 to 32; SAND (10992) [1.1/4t prane-brown fim to come, pourly suited, s.1/5 Wet TERN INATED is HELITICE.					Some MICACEUSS Minoule, Lond brown
Time to come, pourly sorted, silly WeT THEN IN ATTO WHICH SUF.					30,6 to 22; CAND (10090) light scame-brown,
				· · ·	fin to come noul, suited, silly
					Wet
					- · ·
					TERNINATED BARDING
					·

l

-

	ائم/\	B-9	Dminor/Ma	SAMPLE/CORE LOG
Sile		n.t	No. K	N. V. K Drilling 4/12/22 Drilling 4/12/22
			2	Type of Sample/
Length	and Diar	neter		Hole Diameter inches Coring Device
of Coring	g Device		A in	Sampling Interval
Drilling F	Fluid Use	sv. <u>2 v</u>	None	Datum
Drilling	FAI	VICON	ne to l	Acillia. Inc. Dilles Hoeve usher K Kinge
Prepare		N	ton	Hammer / Hammer 30
5y			Trachatratio	weigni Urop inch
et below te	ne surface)	Core Receivery	Pressure or Slows per 6	
5	- <u>''</u>		4-20-	CAUD (Gr. 4)
		ļ	18-16	JAIN J (15 10) (Jarse Well corried, plane- 1000,
				gland (SE), light from The Prove bysen
<u>!</u>			[]	Signed to well rounded.
			20-34-34-	, 10.77 / V
	12	1,2)	43	10 to 10 fr. SAND (65%) light from to
				arone- room redouirly sorted voy come
				Solonand, pelotos (3570) yodente in come
				how to power charter water water
				10.75 # 11.25 SAND (15070), oreme-by sum course.
				well sorted
15	17	2,0	7-17-21-	SAND (90070) just brown with some money line
	 			and win hours mare & redium will
				print and the line the send
				the week of how weather
				Ũ
		17	15-22-	224 mails (Andle (1909) 1. is in a start
÷)	gy	116	10 - Vini	The Laws M. GRAVEL UNDAY LINK TOWN, THE STATE
÷)	<u>dy</u>	112	<u> </u>	Fire

(

Boring/Well_	13-9
Prepared By	N20

SAMPLE/CORE LOG (Cont.d)

Page Z or Z

-

Sampie/C (feet below	ore Depth and Burlace)	Core Recovery	Time/Hydraulic Preasure or Biome per 6	
10		24	16-27-22-25	$2 \varepsilon + 2 \left(\frac{1}{2} \right)^2 \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} \right)$
<u> </u>	~/	<u> </u>	73-33	2) the Contraction of a start Allows,
				cullent and 14703 A the Mickeys
				$\frac{1}{2(+2)} = \frac{1}{2(+2)} = $
				concerter partition, los polis
				Ury ull sorter
20	27	7	17-27-	
	12	V	23-20	SAND (60 70), Deans - 50000, the D asher.
				porty sorted cher (1010), Clarge dent
				prom front and infection site
				31,676 32, SICT (8043), derk ma, Shad (2020),
				the Alcorphy Mandder in Silt
				Ilsminulal somate
		·		

Boring		5-10 6-10	Project/No.	SAMPLE/CORE LOG UNISYS/NY/Z30CFI Page of
Total D	n epth Dril		2 tool	Hole Diameter inches Coring Device
Length of Corin	and Dia g Device	meter	<u>) f+ x</u>	2 IN. Sampling IntervalS
Land-Se	urface El Fluid Lla	lev. <u></u>	A_teet	Surveyed Estimated Datum
Drilling Contrac		VIRONI	nental	Drilling, Inr. Driller S. Hague Helper K. King
Prepare By	d j). Ne	wton	Hammer 198 Hammer 30 inc
Sampie/Co logt below i	ore Depth and Surface) Core Becare	TemeAlydraulic Pressure or Blows our 6	
From	To		inches 3-25-25-	Sample/Core Description
<u> </u>	·/	,/)	<u>````</u>	10.55(F) in $(>51, chm, 14m)$
	<u> </u>		·····	Dillip brown rorig Some
0	12	R	FFUS	Al CUILLE 45 land aread
	i			
	<u>;</u>			
: 		!		
ļ				
		<u> </u>		
	!	<u> </u>		
	<u> </u>	1		
<u> </u>	<u></u>			
j			 _	
•		1		

L

GE Grownst-		TY , INC.	· -	
Barino		3-11	Design (b)g	SAMPLE/CORE LOG
Sile	L		Ala K	N. V. K Drilling 4/1/29 Drilling 4/1/39
Locatio	n <u></u>	2	D	Type of Sample/
Total Di Length	epth Dni and Diar	led meter	feet	Hole Diameter inches Coring Device
of Corin	g Device	······	<u>) ++ x</u>	ZIN, Sampling Interval 5 feet
Land-Si	urface El	ev	A_feet	Surveyed Estimated Datum
Drilling Drilling	Fluid Use	ed	None	Drilling Method Hollow - ston a
Contrac		VIRN	mental	Drilling, Int. Driller S. Hague Heiper K. Kincaid
By) <u>.</u> N	wton	Weight 160 Drop 30 inches
Sample/Co	ore Depth and surface!	Com	Teneflydraulic Pressure or	
From	Ta	Receivery (lest)	Blows per 6 inches	Sample/Core Description
5	17	,75	5-8-4-5	AN 15 SI car mun fin to crove
				cover sweet and canada and
	· · · · · · · · · · · · · · · · · · ·	 		can list and the second for
 		<u> </u>		
			27-7-5-4	
	12	1,0		Same as above 1455 (Cobbio)
 	(ļ 	(7 - 2) - 21 - 1	
15	/7	1.5	32	SAN: (70%) light provent, orange-proved
; 		<u> </u>		undin Toarse Morison ismon
ļ ļ		ļ		ara-1 (- 5), come annular to subround !
				centiles is To), submitted to rounded i non sta
				,, _,, _,, _,, _,, _, _, _,, _
20	22	1.25	40-30-	CARINE THE ALL A AND AND
				(same all carled from 141 + 501
	<u> </u>	 	<u> </u>	Low here it is it
	<u> </u>		<u>!</u>	HECTUR DEOWN - 14 - 14
	<u> </u>	<u> </u>	<u> </u>	
	<u> </u>			
 	ļ	 		
		1,25	13-17- 7-5	25 \$ 25.75 if AFL("), OFAME - brown come
				Complete the to a complete the second to mar
				Mile and the same shiller

	WellB	<u>,-11</u> D.	Neut-	SAMPLE/CORE LOG (Cont.d)
Sample/C not balow From	Core Depth land surface) To	Core Recovery (feel)	Time/Hydraulic Pressure or Blowe per 6 Inches	Sample/Core Description
5	27	(,2)		Continued
_				25.75 to 26.25 : SAND (1002)
				well surter dark orange - brown
				/
30	32		13-23-23	GRAVEL (757.) Line to reding yolin brown !
				sand (208) have to in source source
				sorted brown ; Acheles (59.) . Leavage
				Rosehale torminated
	<u> </u>			
	<u> </u>			
	<u> </u>			
	<u> </u>			
	ļ			
	ļ			
	ļ			
	1	l	ĺ	,

(

-

ŧ

- . ----

Boring/	Nell	<u>3-/2</u>	Project/No.	SAMPLE/CORE LOG UNISYS NY /230CF1 Page of 2
Location Total De Length a	pth Drill	reter	<u>Veck</u> <u>0</u> ioon 2 ft x	New York Started 7///88 Completed 9///88 Hole Diameter 8 inches Coring Device 3047-50000
Land-Su Drilling F	rtace Ek Fluid Use	ev	None	□ Surveyed □ Estimated DatumN/A □ Drilling Method He //eu - 3 +e/
Drilling Contract Prepared By		VIRON . N	nestal ewton	Drilling, Inc. Driller S. Hagve Helper K. Kunca Harmmer 140 Hammer 30 inch
Sample/Co est below la From	re Depth nd surface) Te	Core Receivery (lest)	Time/Hydrautic Pressure or Blows per 6 Inches	Sample Care Description
5	7	,25	5-6-6-7	SAND (7090), fine to make and some
				derik brown praved (2590), come sub-rom
				persons (5 ?) trac of inte brun clay
10	12	/	9-7-7-42	SAND (809), recim to come tak brow
				orange brown yodentaly sorted clayer, moist
				gravel and with les (2020) come menter
15	רי	.75	/2·2 <i>.</i> 2- 32/0	GRAVEL(9092) ISTUR Inche to in-rouris
	•			Method to many and some
<u>ر ڊ</u>	<u>ينم</u>	.75	41-41-26- 32	SANTI (1002), moin to an well - visit
		 	 	light - prance - prouve grow - frommen-
25	27	1	6-15-17-24	GRAVEL (70%) come juin - annuar to sur-1 sur-
				stre (15 05) fine to row ishardon in

GERAGHTY S.MILLER, INC. Ground-Water Consultants

3-12

P. M.t.

SAMPLE/CORE LOG (Cont.d)

Prepared By_

Boring/Well

1

Sample/C: (Not below is From	re Depth rat auritos) To	Core Recovery	Time/Hydroulic Processo or Bicus per 6 Inches	- Semanta/Core Description
30	32	15	20-21-	SILT notion have a clarant care
				Jer precion shows J. 214414, Sorre
}				Sond of 1.7 going the Silt Medium to
┝───┤				come 12-
├ 				
		-		
├ ───- ┤				

Ć

Page 2 of R

Boring Site Locati	well_	3-13	Project/No.	SAMPLE/CORE LOG <u>UNISYS Ny /230CF1</u> Page of 2 <u>New York Drilling</u> <u>4/1/98</u> Completed <u>1/1/88</u>
Total I Length of Corri	- Depth Dri I and Dia ng Devici	iled Imeter 8	Dien 1 ft x	Hole Diameter inches Type of Sample/ Coring Device Sampling Interval 5 feet
Land-S Drilling	Surface E Fluid Us	iev	None	□ Surveyed □ Estimated DatumN/A Drilling Method Hellew - sten at
Contra Prepar By	ctor EN	VIRON D. N	mental Eurton	Arilling, Inc. Driller S. Hague Heiper K. Kincain Hammer 140 Hammer 30 inches
Sample/ 3 (feat below From	Core Depth Land surface To	e) Core Receivery (test)	TimeRtydrautic Prossore or Biows per 6 Inches	Samala Core Description
5	7	4"	4-2-2-2	SAME (23%) notice to Vicerane ' grad (152)
				corse brown potries (11/3) sibround
10	12	,5	18-9-10-7	5.4. (1 , 9593), your to come brown, notodo,
	 	<u> </u>		-+ stall sebbles; Muls-
			8-8-20-	
15			50/4"	SAND(1), home the arrive so hit town
				-ine al ars
20	ja	2	2-27-	20 to 21,7 6RFUE (?D.), 1900; 1900
			· · ·	Stand the Chill and will gover
		 	13-21- 27-	the consider
32	<u> d'</u>		37	1.46 from, tage if fire your
				7(+ -2 hi 66 + 1:1 (- 1)2) (

SAMPLE/CORE LOG	(Cont.d)
-----------------	----------

202 Page____

Prepared By_____D. Neston

Boring/Wer 3-13

1

Sample/C (bet below From	Sample/Care Depth (Seet below land surface) From To		Time/Hydraulic Pressure or Blowe per 6 instea	Semala/Corp Description		
30	32	$\overline{\mathcal{O}}$	20-14-	No ceraver land addition		
			30-70	Receile Lore H		
				DUICHOLE TY MINING		
			·			
			·			
ļ			 			
						
						
			· · · · · · · · · · · · · · · · · · ·			
			, , , , , , , , , , , , , , , , , , ,			
		1				

Boring	Well <u>R</u>	- HI	Projoci/No.	SAMPLE/CORE LOG UNISYS/NY/Z3OCFI Page of Z New York Drilling 4/12/88 Drilling 4/1/12/88
Total D Length of Corin Land-Su	epth Drill and Diau g Device urface Ek	led <u>3</u> meter ev. <u>A</u>	$\frac{D}{2 \text{ from}}$	Hole Diameter Sample/ Line inches Coring Device JPLIT - Sform Sampling Interval S Surveyed Estimated Datum N/A
Drilling Contrac Prepare By	nor EN	VIRON). N	mental enton	Arilling, Inr. Driller S. Hague Helper K. Kincal Hammer 140 Hammer 30 inche
Sample/Ci bet balow i From	pre Depth and surface) To) Core Receivery (feet)	TimeAtydrastic Promero er Blows per 6 inches	- Sample/Core Description
5	17	ك٦.	10-21- 28-10	6enver (65%), orang - from, resperated ; and ;
 	 	 		542 (357.), crane, fairly well sorted
, , , ,		 		Ocasent couble ad scuble
10	12	ļ	114 35	
10	1)	1.5	50-35	SAND (750) Fine to work orange - brown,
{	 	[parely sorted, Many robbes; clay (2,773)
i 				cark bron to block
			30-5015	NO recovery Ingo coboles
ļ	<u> </u>			(Cobble) collected from Collebole, Subrominit,
	<u> </u>	<u> </u>		Unitan Stre
120	77		22-22-18-	SAND (Pot) light horizon - ton many men and and
	1 200			repole (10) anothine sites and I will
 	<u>. </u>			SM-1 skull (070) isame ligt srung - from inte
1.6	27	2	10-21-21-	25 to 26 for: SAND (1007.) Arene-brown your
	1			
	ļ			"non 20144

Prepared	vel	-14 DS	נ יע	AMPLE/CORE LOG (Cont.d) Paged		
Sampia/C (that balow i From	ore Depth and surface) To	Core Recovery (lest)	Time/Hydraulic Pressure or Bicrus per 6 Inches	Sample/Core Description		
30	32	l	12-30-	GRAVER (10093) fine to retion will so		
				subsourced to sound hat brown)		
		;		Some small isobles law of where so		
				· · · · · · · · · · · · · · · · · · ·		
		<u> </u>				
						
			<u> </u>			
[.]		1	! !			

G&M Form 04 8-85