EPS - SAMPUNG DATA

Report.hw.130050.2002-08-26.EPS Sampling Data.pdf

FRANKLIN EPS SAMPLING /DATA

330 Crossways Park Drive, Woodbury, New York, 11797-2015 516-364-9890 • 718-460-3634 • Fax: 516-364-9045 e-mail: db-eng@worldnet.att.net

August 21, 2002

Principals

Nicholas J. Bartilucci, P.E.

Henry J. Chlupsa, P.E. Executive Vice President

Thomas F. Maher, P.E.

Robert T. Burns, P.E.

Richard M. Walka

Steven A. Fangmann, P.E.

Theodore S. Pytlar, Jr.

Senior Associates

Anthony O. Conetta, P.E.

Dennis F. Koehler, P.E.

Joseph H. Marturano

Kenneth J. Pritchard, P.E.

Brian M. Veith, P.E.

Associates

Joseph F. Baader

Garrett M. Byrnes, P.E.

Rudolph F. Cannavale

Joseph A. Fioraliso, P.E.

Thomas P. Fox, P.G.

Gerald Gould, C.P.G.

William D. Merklin, P.E.

Michael Neuberger, P.E.

Edward J. Reilly

Richard P. Russell, P.E.

Charles J. Wachsmuth, P.E.

Kenneth P. Wenz, Jr., C.P.G.

Jeffery E. Trad, P.E.
Bureau of Construction Services
Division of Environmental Remediation
New York State Department of Environmental Conservation
625 Broadway, 12th Floor
Albany, NY 12233-7013

Re:

Franklin Cleaners Site

NYSDEC Contract No. D004184

Site No. 1-30-050 D&B No. 1851

Dear Mr. Trad:

Attached please find a summary of results of the baseline ambient air sampling performed for the above-referenced site between July 9 and July 11, 2002. Enclosed are the tabulated results (Table 1) as well as Figure 1 which shows the sampling locations.

Ambient air samples were collected from each of the 17 locations plotted on Figure 1. The ambient air samples were collected approximately 2 weeks after the filter media in each of the air purifiers were replaced on June 21, 2002, using Passive Sampling Devices (Model 3500) manufactured by 3M Corporation. After approximately 24 hours of exposure, the samples were submitted for analysis for tetrachloroethene (PCE) by NYSDOH Method 311-9.

The results indicate that the NYSDOH residential guidance value of 100 ug/m3 was exceeded at 6 of the 17 locations. However, none of the samples collected exceeded the NYSDOH action level of 1,000 ug/m3.

Please do not hesitate to contact me at (516) 364-9890 if you have any questions.

Very truly yours,

Frank DeVita Project Manager

FD(t)/ajm Enclosure

cc:

B. Gilday (NYSDOH)

T. Maher (D&B)

M. Wright (D&B)

♦1851\FD02LTR-32.doc

TABLE 1 FRANKLIN CLEANERS SITE

NYSDEC CONTRACT No. D004184 / SITE No. 1-30-050

SUMMARY OF BASELINE AMBIENT AIR SAMPLING RESULTS (JULY 9-11, 2002)

Sample Location	Sample Designation	GPS Coordinates of Sampling Location	Sample Dates and Results * 7/9/01 - 7/11/01	
206 S. Franklin Street -		40°41.940 N (Lat.)		
Laundromat (Basement), Near Work Bench	PSD-1	073°37.378 W (Long.)	729	
206 S. Franklin Street - Laundromat (1st Floor),	PSD-2	40°41.940 N (Lat.)	334	
Door to Basement	1 00 2	073°37.378 W (Long.)		
206-208 S. Franklin Street - Apartment # 2 (2nd Floor),	PSD-3	40°41.940 N (Lat.)	9.5 / 10 ¹	
Living Room	F3D-3	073°37.378 W (Long.)	9.57 10	
206-208 S. Franklin Street - Apartment # 4 (2nd Floor),	PSD-4	40°41.940 N (Lat.)	4.5	
Living Room	r 0D- - 4	073°37.378 W (Long.)		
208 S. Franklin Street - Franklin Deli (North Basement),	PSD-5	40°41.940 N (Lat.)	933	
Near Grease Trap	r 3D-3	073°37.378 W (Long.)		
208 S. Franklin Street - Franklin Deli (South Basement),	PSD-6	40°41.940 N (Lat.)	774	
Near Lighting Fixture	1 00-0	073°37.378 W (Long.)	777	
208 S. Franklin Street - Franklin Deli (1st Floor),	PSD-7	40°41.940 N (Lat.)	31 / 34 ¹	
Deli Kitchen	F30-7	073°37.378 W (Long.)	31/34	
208 S. Franklin Street -	PSD-8	40°41.952 N (Lat.)	12	
Franklin Deli (Rear Yard), Mid	P3D-0	073°37.357 W (Long.)	12	

QUALIFIERS/ABBREVIATIONS:

* - All results reported in ug/m³.

- All samples were analyzed in accordance with New York State Department of Health (NYSDOH) Method 311-9.
- NYSDOH Residential Guidance Value for PCE in air is 100 ug/m³.

¹ Sample collected in duplicate (Sample A/Sample B).

² Field blank concentration recorded in micrograms. NA - Not Applicable.

TABLE 1

FRANKLIN CLEANERS SITE

NYSDEC CONTRACT No. D004184 / SITE No. 1-30-050

SUMMARY OF BASELINE AMBIENT AIR SAMPLING RESULTS (JULY 9-11, 2002)

Sample Location	Sample Designation	GPS Coordinates of Sampling Location	Sample Dates and Results *	
210 S. Franklin Street - Shipman's Pharmacy (Basement),	PSD-9	40°41.934 N (Lat.)	7/9/01 - 7/11/01 566	
Foot of Basement Stairs	1 05-0	073°37.3363 W (Long.)		
210 S. Franklin Street - Shipman's Pharmacy (Basement),	PSD-10	40°41.934 N (Lat.)	831	
Furnace Room		073°37.3363 W (Long.)		
210 S. Franklin Street - Shipman's Pharmacy (1st Floor),	PSD-11	40°41.934 N (Lat.)	27	
Backroom Shelves		073°37.3363 W (Long.)		
212 S. Franklin Street - Chinese Restaurant (1st Floor),	PSD-12	40°41.930 N (Lat.)	34 / 35 ¹	
Kitchen Rear Door		073°37.358 W (Long.)		
7 Marvin Avenue - Former Guiding Light Tabernacle	PSD-13	40°41.935N (Lat.)	7.5	
(2nd Floor), Hallway	1 05 10	073°37.345 W (Long.)		
9 Marvin Avenue - Nate's Hair Salon (1st Floor),	PSD-14	40°41.935N (Lat.)	17	
Backroom	10014	073°37.345 W (Long.)	**	
13 Marvin Avenue - Private Residence (Basement),	PSD-15	40°41.942 N (Lat.)	14 / 16 ¹	
Mid	F3D-13	073°37.357 W (Long.)	147 10	
13 Marvin Avenue - Private Residence (1st Floor),	PSD-16	40°41.942 N (Lat.)	4.3	
Living Room		073°37.357 W (Long.)		

QUALIFIERS/ABBREVIATIONS:

- All samples were analyzed in accordance with New York State Department of Health (NYSDOH) Method 311-9.
- NYSDOH Residential Guidance Value for PCE in air is 100 ug/m³.

^{* -} All results reported in ug/m³.

¹ Sample collected in duplicate (Sample A/Sample B).

² Field blank concentration recorded in micrograms. NA - Not Applicable.

TABLE 1

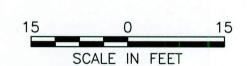
FRANKLIN CLEANERS SITE

NYSDEC CONTRACT No. D004184 / SITE No. 1-30-050

SUMMARY OF BASELINE AMBIENT AIR SAMPLING RESULTS (JULY 9-11, 2002)

Sample Location	Sample Designation	GPS Coordinates of Sampling Location —	Sample Dates and Results * 7/9/01 - 7/11/01		
13 Marvin Avenue - Private Residence (Front Yard), Above Front Door Stoop	PSD-17	40°41.942 N (Lat.) 073°37.357 W (Long.)	1.7		
Field Blank	Field Blank	NA	< 0.03 ²		

QUALIFIERS/ABBREVIATIONS:


- All samples were analyzed in accordance with New York State Department of Health (NYSDOH) Method 311-9.
- NYSDOH Residential Guidance Value for PCE in air is 100 ug/m³.

^{* -} All results reported in ug/m³.

¹ Sample collected in duplicate (Sample A/Sample B).

Field blank concentration recorded in micrograms. NA - Not Applicable.

- 1) 206 S. Franklin Street Laundromat (Basement), Near Workbench
- 2 206 S. Franklin Street Laundromat (1st Floor), Door to Basement
- 3 206—208 S. Franklin Street Apartment # 2 (2nd Floor), Living Room
- 4 206—208 S. Franklin Street Apartment # 4 (2nd Floor), Living Room
- 5 208 S. Franklin Street Franklin Deli (North Basement), Near Grease Trap
- 6 208 S. Franklin Street Franklin Deli (South Basement), Near Lighting Fixture
- 7 208 S. Franklin Street Franklin Deli (1st Floor), Deli Kitchen
- 8 208 S. Franklin Street Franklin Deli (Rear Yard), Mid
- (9) 210 S. Franklin Street Shipman's Pharmacy (Basement), Foot of Basement Stairs
- 10 210 S. Franklin Street Shipman's Pharmacy (Basement), Furnace Room
- 11 210 S. Franklin Street Shipman's Pharmacy (1st Floor), Backroom Shelves
- (12) 212 S. Franklin Street Chinese Restaurant (1st Floor), Kitchen Rear Door
- 13 7 Marvin Avenue Former Guiding Light Tabernacle (2nd Floor), Hallway
- 14 9 Marvin Avenue Nate's Hair Salon (1st Floor), Backroom
- 15 13 Marvin Avenue Private Residence (Basement), Mid
- 13 Marvin Avenue Private Residence (1st Floor), Living Room
- 17 13 Marvin Avenue Private Residence (Front Yard), Above Front Door Stoop

Dvirka and Bartilucci
Consulting Engineers
A Division of William F. Cosulich Associates, P.C.

HEMPSTEAD, NEW YORK

LOCATIONS OF PASSIVE AIR
SAMPLING DEVICES

FRANKLIN CLEANERS SITE

MARVIN AVENUE

Post-It* Fax Note 7671	Date 07/20/07 # of Pages 7
To Jeff TROOL	From Fals (1)
CoJDefie	Co. 10+13
Phone #518 402 9814	Phone #
518 402 9819	Fax #

July 25, 2002

Jeffery E. Trad, P.E.
Bureau of Construction Services
Division of Environmental Remediation
New York State Department of Environmental Conservation
625 Broadway, 12th Floor
Albany, NY 12233-7013

Re:

Franklin Cleaners Site

NYSDEC Contract No. D004184

Site No. 1-30-050 D&B No. 1851

Dear Mr. Trad:

Attached please find a summary of results of the baseline ambient air sampling performed for the above referenced site between July 9 and July 11, 2002. Enclosed are the tabulated results (Table 1) as well as Figure 1 which shows the sampling locations.

Ambient air samples were collected from each of the seventeen locations plotted on Figure 1. The ambient air samples were collected approximately 2 weeks after the filter media in each of the air purifiers was replaced on June 21, 2002, using Passive Sampling Devices (Model 3500) manufactured by 3M Corporation. After approximately 24 hours of exposure, the samples were submitted for analysis for tetrachloroethene (PCE) by NYSDOH Method 311-9.

The results indicate that the NYSDOH residential guidance value of 100 ug/m³ was exceeded at six of the seventeen locations. However, none of the samples collected exceeded the NYSDOH action level of 1,000 ug/m³.

Please do not hesitate to contact me at (516) 364-9890 if you have any questions.

Very truly yours,

Frank DeVita Project Manager

cc:

B. Gilday (NYSDOH)

T. Maher (D&B)

M. Wright (D&B)

TABLE 1 FRANKLIN CLEANERS SITE NYSDEC CONTRACT No. D004184 / SITE No. 1-30-050 SUMMARY OF BASELINE AMBIENT AIR SAMPLING RESULTS (JULY 9-11, 2002)

Sample Location	Sample Designation	GPS Coordinates of Sampling Location	Sample Dates and Results * 7/9/01 - 7/11/01	
206 S. Franklin Street - Laundromat (Basement), , Near Work Bench	PSD-1	40°41.940 N (Lat.) 073°37.378 W (Long.)	729	
206 S. Franklin Street - Laundromat (1st Floor), / PSD-2 Door to Basement		40°41.940 N (Lat.) 073°37.376 W (Long.)	334	
206-208 S. Franklin Street - Apartment # 2 (2nd Floor), Living Room	(2nd Floor), PSD-3		9.5 / 10 ¹	
206-208 S. Franklin Street - Apartment # 4 (2nd Floor), Living Room	PSD-4	40°41.940 N (Lat.) 073°37.378 W (Long.)	4.5	
208 S. Franklin Street - Franklin Deli (North Basement), Near Grease Trap	PSD-5	40°41.940 N (Lat.) 073°37.378 W (Long.)	933	
206 S. Franklin Street - Franklin Deli (South Basement), / Near Lighting Fixture	h Basement), PSD-6		774	
208 S. Franklin Street - Franklin Deli (1st Floor), Deli Kitchen	PSD-7	40°41.940 N (Lat.) 073°37.378 W (Loпg.)	31 / 341	
208 S. Franklin Street - Franklin Deli (Rear Yard), Mid	P\$D-8	40°41.952 N (Lat.) 073°37.357 W (Long.)	12	

QUALIFIERS/ABBREVIATIONS:

- All samples were analyzed in accordance with New York State Department of Health (NYSDOH) Method 311-9.
- NYSDOH Residential Guidance Value for PCE in air is 100 ug/m³.

^{* -} All results reported in ug/m³.

¹ Sample collected in duplicate (Sample A/Sample B).

² Field blank concentration recorded in micrograms. NA - Not Applicable.

TABLE 1 FRANKLIN CLEANERS SITE NYSDEC CONTRACT No. D004184 / SITE No. 1-30-050 SUMMARY OF BASELINE AMBIENT AIR SAMPLING RESULTS (JULY 9-11, 2002)

Sample Location	Sample Designation	GPS Coordinates of Sampling Location	Sample Dates and Results * 7/9/01 - 7/11/01	
210 S. Franklin Street - V Shipman's Pharmacy (Basement),	PSD-9	40°41.934 N (Lat.)	566	
Foot of Basement Stairs 210 S. Franklin Street - Shipman's Pharmacy (Basement), PSD-10 Furnace Room		073°37,3363 W (Long.) 40°41,934 N (Lat.) 073°37,3363 W (Long.)	631	
210 S. Franklin Street - Shipman's Pharmacy (1st Floor), Backroom Shelves	PSD-11	40°41.934 N (Lat.) 073°37,3363 W (Long.)	27	
212 S. Franklin Street - Chinese Restaurant (1st Floor), Kitchen Rear Door	PSD-12	40°41.930 N (Lat.) 073°37.358 W (Long.)	34 / 354	
7 Marvin Avenue - Former Guiding Light Tabernacle (2nd Floor), Hallway	PSD-13	40°41.935N (Lat.) 073°37.345 W (Long.)	7.5	
9 Marvin Avenue - Nate's Hair Salon (1st Floor), Backroom	PSD-14	40°41.935N (Lat.) 073°37.345 W (Long.)	17	
13 Marvin Avenue - Private Residence (Basement), Mid	PSD-15	40°41.942 N (Lat.) 073°37.357 W (Long.)	14 / 161	
13 Marvin Avenue - Private Residence (1st Floor), PSD-16 Living Room		40°41.942 N (Lat.) 073°37.357 W (Long.)	4.3	

QUALIFIERS/ABBREVIATIONS:

- All samples were analyzed in accordance with New York State Department of Health (NYSDOH) Method 311-9.
- NYSDOH Residential Guidance Value for PCE in air is 100 ug/m³.

^{* -} All results reported in ug/m³.

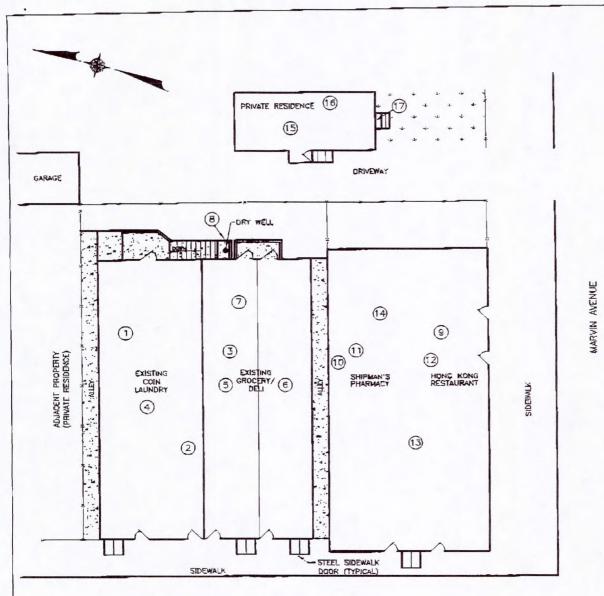
¹ Sample collected in duplicate (Sample A/Sample B).

² Field blank concentration recorded in micrograms. NA - Not Applicable.

Ø 00

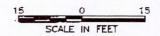
TABLE 1 FRANKLIN CLEANERS SITE NYSDEC CONTRACT No. D004184 / SITE No. 1-30-050 SUMMARY OF BASELINE AMBIENT AIR SAMPLING RESULTS (JULY 9-11, 2002)

Sample Location	Sample Designation GPS Coordinates of		Sample Dates and Results * 7/9/01 - 7/11/01	
13 Marvin Avenue - Private Residence (Front Yard), Above Front Door Stoop	PSD-17	40°41.942 N (Lat.) 073°37.357 W (Long.)	1.7	
Field Blank	Field Blank	NA	< 0.03 ²	


QUALIFIERS/ABBREVIATIONS;

- All samples were analyzed in accordance with New York State Department of Health (NYSDOH) Method 311-9.
- NYSDOH Residential Guidance Value for PCE in air is 100 ug/m³.

^{* -} All results reported in ug/m³.


¹ Sample collected in duplicate (Sample A/Sample B).

Fletd blank concentration recorded in micrograms. NA - Not Applicable.

SOUTH FRANKLIN STREET

- 1 205 S. Franklin Street Laundromat (Basement), Near Workbench
- 2 206 S. Franklin Street Loundromat (1st Floor), Door to Bosement
- 3) 206-208 S. Fronklin Street Apartment # 2 (2nd Floor), Living Room
- 4 (2nd Floor), Living Room
- (5) 208 S. Franklin Street Franklin Deli (North Basement), Near Grease Trap
- 6 208 S. Franklin Street Franklin Dell (South Basement), Near Lighting Fixture
- 7 208 S. Franklin Street Franklin Deli (1st Floor), Deli Kitchen
- 8 208 S. Franklin Street Franklin Deli (Rear Yard), Ma
- (9) 210 S. Franklin Street Shipman's Pharmacy (Basement), Foat of Basement Stairs
- 10 210 S, Franklin Street Shipman's Pharmacy (Basement), Furnace Room
- 1) 210 S. Fronklin Street Shipman's Pharmacy (1st Floor), Backroom Shelves
- (12) 212 S, Franklin Street Chinese Restaurant (1st Floor), Kilchen Rear Door
- 13 7 Marvin Avenue Former Guiding Light Tebernacie (2nd Flabr), Hallway
- (14) 9 Marvin Avanue Note's Hair Salon (1st Floor). Backroom
- (5) 13 Marvin Avenue Private Residence (Basement), Mid
- (6) 13 Marvin Avenue Private Realdence (1st Floor). Living Roam
- 📆 13 Marvin Avenus Private Residence (Front Yard). Above Front Door Stoop

Dvirka and Bartilucci
Consulting Engineers
A Division of William F. Coaulich Agaverates =.0

FRANKLIN CLEANERS SITE HEMPSTEAD, NEW YORK LOCATIONS OF PASSIVE AIR SAMPLING DEVICES

FIGURE 1

FAX

Galson Laboratories 6601 Kirkville Road East Syracuse, NY 13057

Phone: Fax: 315-437-7252 315-437-0571

www.galsonlabs.com

To:

Frank Devita

Company:

ChemTech

Fax:

1-516-364-9045

From:

Report Generation

Subject:

Lab Results for L83628

Memo:

Laboratory Results

This facsimile transmission from Galson Laboratories is intended only for the person(s) addressed on this form. Disclosure, distribution, copying or use of the contents of this facsimile without the consent of Galson Laboratori is prohibited. Please contact us immediately if you have received this facsimile in error by calling (888) 577-5227

IF THERE IS A PROBLEM WITH THIS TRANSMITTAL, OR IF YOU HAVE ANY QUESTIONS, PLEASE CALL (315) 437-7252, EXTENSION 135. THANK YOU!

Date: 07/19/02

Time: 02:06 PM EDT

Pages Sent: 2

7/19/02 02:06 EDT Galson Laboratories via VSI-FAX Page 2 of 2 #24937

Galson aboratories 301 Kirkville Rd. E. Syracuse,NY 13057

LABORATORY ANALYSIS REPORT

Client : ChemTech Site : Franklin : Franklin Cleaners

Project No. : 1851

Date Sampled : 09-JUL-02 - 10-JUL-02 Account No.: 15036 Login No. : L83628

Date Received : 12-JUL-02

Date Analyzed : 17-JUL-02 - 18-JUL-02

perchloroethylene

	Sample ID	Lab ID	Time minutes	Total	Cone yg/m3
	PSD-1 LAUNDRY-WB	L83628-1	1444	30.7	729
*	PSD-2 LNDRY-DR TO BS		1446	14.1	334
Α.		1.83629-3	1445	D.4	9.5
	PSD-3 APT#2	L83628-4	1444	0.43	10
	PSD-3D APT#2	L83628-5	1433	0.19	4.5
	PSD-4 APT#4 PSD-5DELI BSMT N END		1432	39.0	933
*	PSD-SDELI BSMT S END	1.93628-7	1426	32.2	774
*		1,83628-8	1436	1.31	31
	PSD-7 DELI KITCHEN		1431	1.44	34
	PSD-7D DELI KITCHEN PSD-8 DELI REAR YARD		1434	0.52	12
	PSD-9 PHARM BASE ST		1423	23.5	566
	PSD-9 PHARM BASE FR		1435	34.8	831
*	PSD-11 PHARM BASE BR		1424	1.13	27
*			1429	1.43	34
*	PSD-12CHINESE RES K PSD-12DCHINESE RES K	102620 14	1407	1.44	35
		L83628-16	1413	0.31	7.5
	POD-ID / MACCOIL	L83628-17	1415	0.71	17
	EDD TT 3 THE TELE		1515	0_6	14
*	PSD-15 13 MARVIN AVE		1513	0.7	16
·k-	PSD-15D 13MARVIN AVE		1519	0.19	4.3
*	PSD-16 13 MARVIN AVE		1424	0.07	1.7
	PSD-17 13 MARVIN AVE FIELD BLANK	L83628-21	NA.	<0.03	NA

COMMENTS: * Sample caps not attached.

Level of quantitation: 0.03 ug

Analytical Method : NYS DOH 311-9

OSHA PEL (TWA) : 100 ppm

: OVM Collection Media

Submitted by: BW Approved by : jal Date : 19-JUL-02

QC by: QC STAFF NYS DOH # : 11626

< -Less Than

mg -Milligrams ug -Micrograms

m3 -Cubic Meters 1 -Liters

kg -Kilograms NS -Not Specified

> -Greater Than NA -Not Applicable

ND -Not Detected

ppm -Parts per Million

NATIONAL ENVIRONMENTAL SYSTEMS, INC.

36 Maple Avenue, Seekonk, Massachusetts 02771 TEL (508) 761 6611 FAX (508) 761 6898

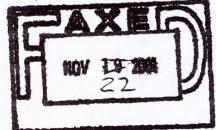
Fax Date 4/20/08

Number of pages including cover sheet 7

☐ For Your Review ☐ Reply ASAP ☐ Please Comment

TO: JOE YAVENDETTI TRAD	From: PIXIE TERREAUL
Phone:	Phone: 508-761-6611 Fax: 508-761-6898
Remarks:	

Urgent


NATIONAL ENVIRONMENTAL SYSTEMS, INC.

36 Maple Avenue, Seekonk, Massachusetts 02771 TEL (508) 761 6611 FAX (508) 761 6898

Date 11/2/02

Number of pages including cover sheet 6

To: Dale Brave

Phone:

Fax: 315 458-0526

From: BOB DAVIS

Phone: 508-761-6611

Fax: 508-761-6898

Remarks:

Urgent W For Your Review Reply ASAP Please Comment

G/Msoffice/Winword/Forms/Faxl

NATIONAL ENVIRONMENTAL SYSTEMS, INC. 36 Maple Avenue, Seekonk, Massachusetts 02771 TEL (508) 761 6611 FAX (508) 761 6898

November 22, 2002

Mr. Dale Braue Environmental Products & Services P.O. Box 369 Liverpool, New York 13088

SUBJECT: National Environmental Systems Proposal No. 01-Q-086-A, REV II
Franklin Cleaners

Dear Mr. Braue:

Thank you for your interest in National Environmental Systems equipment for subsurface hydrocarbon contamination abatement. NES is certified by the New York Port Authority as a Women-owned Business Enterprise and a Disadvantaged Business Enterprise, NY DOT as DBE/WBE, and the State of Massachusetts as WBE/DBE. Per your request for design/quotation information, I am pleased to recommend the following equipment for your remediation project.

Air Sparge Manifold, constructed of 1 inch galvanized steel and including three 1 inch manifold legs. Each leg includes the following major components:

- Flow control valve (1 inch brass ball valve)
- Rotameter, Dwyer VFC Series (5-50 cfm)
- Pressure gauge, Winters Model P802, (0 to 30 psi)
- Temperature gauge, Winters Model 20025 B11, (50 to 500°F)

Air Sparge System, with a Becker Model 3.60 rotary vane compressor with a 5 HP, 208 V, three phase, explosion proof motor.

Sparge system includes:

- Inlet filter
- · Pressure relief valve
- Temperature gauge, Winters Model 20025 B11, (50 to 500°F)
- Pressure gauge, Winters Model P802, (0 to 30 psi)
- · Air bleed valve (1 inch)
- Bleed valve silencer (McMaster Carr Model: 4450K6)

Mr. Dale Braue EP&S - Franklin Cleaners NES Proposal No. 01-Q-086-A, REV II Page 2

SVE Manifold, constructed of 2 inch schedule 80 PVC and including two 1.5 inch manifold legs. Each leg includes the following major components:

- Flow control valve
- Flow meter, comprised of Dwyer 2000 series magnehelic pressure gauge and DS-300-1 1/2 series pitot tube (magnehelic gauge to read in cfm*)
- Temperature gauge, Winters Model 20025 B8, (0 to 250°F)
- Vacuum gauge, Winters Model P304-V, (0 to 100 inches of water column)

Soil Vapor Extraction System, including a Rotron Model EN6F72L regenerative blower with a 5 HP, 208 V, three phase, explosion proof motor.

SVE also includes:

- moisture separator
- > 100 gallon capacity
 - demister
 - sight glass with level indication
- vacuum relief valve, Gast Model AG258
- Flow control valve (located before and after the moisture separator)
- Flow meter, comprised of Dwyer 2000 series magnehelic pressure gauge and DS-300-1 1/2 series pitot tube ({magnehelic gauge to read in cfin*} located before and after the moisture separator)
- inline filter, Solberg Model CSL-851-250HC
- (quantity 3) vacuum gauges, Winters Model P304-V, (0 to 100 inches of water column)
- temperature gauge, Winters Model 20025 B8, (0 to 250°F)
- pressure gauge, Winters Model P302, (0 to 100 inches of water column)
- 1 1/2 inch air dilution valve
- dilution valve silencer (McMaster Carr Model 9850K28)
- inline & discharge silencer, Gast Model AJ121F
- vacuum switch, Dwyer 1950-20
- 2 Vapor Phase Carbon Vessels, Chem-Trade Model DVP-400, cross-linked polyethylene construction, 24 inches in diameter by 36 inches in height, 4 inch inlet and outlet. Each vessel includes 195 pounds of vapor phase carbon. Vessel is rated for a maximum of 400 cfm and a maximum of 10 psi.

Relay Based Control Panel, capable of controlling:

- (quantity 1) 5 HP, 208 V, three phase, explosion proof SVE blower
- (quantity 1) 5 HP, 208 V, three phase, explosion proof Sparge blower

Mr. Dale Braue EP&S – Franklin Cleaners NES Proposal No. 01-Q-086-A, REV II Page 3

Alarms are provided for:

- · moisture separator emergency high sump level
- low vacuum level

208 V, three phase power must be supplied for motors and 120 V, single phase power must be supplied for control.

Features include:

- Individual external alarm pilot lights allow system operator to instantaneously determine source of alarm condition
- Alarms are designed for manual reset so that a system operator must acknowledge alarm condition
- Circuit breakers, motor starters, external pilot lights, and selector switches included
- Controls housed in a NEMA 4 weathertight enclosure
- Timer for intermittent operaton of sparge blower
- · Hour meters provided for blowers
- Variable frequency drives for blower speed control (Allen Bradlley Powerflex model 20AB022A3AYN)
- · Also includes autodialer as described below

Basic Autodialer (Phonetics Model 1104)

- Monitors four dry contacts, ambient temperature, power on/off, and ambient sound level.
- Programs via integral keypad, computer not necessary for programming.
- Automatically dials out in the event of power failure or dry contact change of state. Delivers synthesized voice message. No recording necessary.
- Operates from 120VAC with battery backup.
- Dials up to four numbers upon alarm. User can call unit from ordinary phone to check status of inputs.

The autodialer inputs will monitor the following:

- 1. SVE low vacuum alarm
- 2. Moisture separator hi level alarm
- 3. SVE motor running
- 4. Sparge motor running

Mr. Dale Braue EP&S – Franklin Cleaners NES Proposal No.01-Q-086-A,REVII Page 4

Distribution Panel:

- 3 phase, 230 VAC, NEMA 3R
- Outfitted with branch circuit protection for all motors and utility devices
- Site electrician only required to provide incoming power connection

Wood Enclosure:

- 4 ½ feet by 14 foot insulated wooden enclosure
- Pressure treated plywood floor
- Insulated with R-11
- ½ inch Plywood interior
- T-111 siding
- 20 year asphalt shingles
- single 36 inch side door
- steel reinforced floor for support during lifting and transport

Accessories include:

- Explosion proof heater with thermostat
- · Explosion proof exhaust fan with fan guard and thermostat
- Side vents
- Sound foam
- GFI receptacle
- 2 light fixtures rated for a Class I, Division 2 environmental supplied with bulbs and a light switch

Enclosure to house all equipment described above. Control panel and distribution panel to be mounted on the enclosure exterior.

SVE blower, sparge compressor, moisture separator and vapor carbon are prepiped, pre-wired with rigid conduit, and securely mounted within the shed. Shed is shipped as a fully functional system, completely factory tested, and complete with two Operation and Maintenance Manuals.

Cost also includes additional parts such as miscellaneous hose and fittings, pressure and/or vacuum gauge assemblies as shown on P&ID (dated 11-21-02) necessary to integrate multiple components and provide a functional system to meet NEC standards. Shed is rated for Class I, Division 2 as defined by the NEC. Control panel and distribution panel are mounted on the exterior of the shed

Mr. Dale Braue EP&S - Franklin Cleaners NES Proposal No. 01-Q-086-A, REV II Page 5

Exceptions\Clarifications:

1. NES standard plumbing manufacturers will be used for the above proposal.

2. Major components will be supplied as requested in the specification. However, piping and instrumentation manufacturers may differ from those in the specification.

 NES can not provide pressure gauges as requested under section 00008,3.1,4,e3 / 00008,3.1,4,e5 & 00007,3.1,6,e3. Pressure gauges with maximum increments of 1/10 of an inch of water column. NES will supply gauges as provided within

the above quotation and submittal book.

4. NES can not provide flow meters as requested under section 00008,3.1,4,e2 & 00007,3.1,6,e2. Flow measuring instrumentation will have maximum cfm increments of one cubic foot per minute. NES will instead provide averaging pitot tubes with direct read magnehelic gauges for the SVE system and Dwyer direct read rotometers. Described above and within the submittal book.

5. Start-up assistance can be provided for an additional cost of \$550.00 per man per 8 hour day (weekends and holidays not included) plus expenses (food, travel, lodging, etc.). One weeks notice is required prior to on-site assistance.

6. NES has taken multiple precautions to reduce dba level of above proposed system. However, NES can not guarantee decibel levels without further on-site information.

7. NES to only supply equipment as mentioned within the above quotation. All

other products and services to be provided by others.

8. Pricing is from a prior quote dated August 16, 2002. If system final design is not completed prior to December 31, 2002 costs will increase due to manufacturers cost increases.

9. NES to provide standard one year warranty as attached for your review.

10. See attached sheet for Rotron supplied VFD set-up on standard EN series blowers.

If you have any questions or require additional information, please do not hesitate to contact me.

Very Truly Yours,

Robert Davis For

Pixie Terreault

PT/jb QUOTE VALID FOR 60 DAYS CASH IN ADVANCE TERMS:

FOB: OUR PLANT

330 Crossways Park Drive, Woodbury, New York, 11797-2015 516-364-9890 • 718-460-3634 • Fax: 516-364-9045 e-mail: db-eng@worldnet.att.net

January 6, 2003

Principals

Nicholas J. Bartilucci, P.E.

Henry J. Chlupsa, P.E. Executive Vice President

Thomas F. Maher, P.E.

Robert T. Burns, P.E.

Richard M. Walka

Steven A. Fangmann, P.E.

Theodore S. Pytlar, Jr. Vice President

Senior Associates

Anthony O. Conetta, P.E.

Dennis F. Koehler, P.E.

Joseph H. Marturano

Kenneth J. Pritchard, P.E.

Brian M. Veith, P.E.

Associates

Joseph F. Baader

Garrett M. Byrnes, P.E.

Rudolph F. Cannavale

Joseph A. Fioraliso, P.E.

Thomas P. Fox, P.G.

Gerald Gould, C.P.G.

William D. Merklin, P.E.

Michael Neuberger, P.E.

Edward J. Reilly

Richard P. Russell, P.E.

Charles J. Wachsmuth, P.E.

Kenneth P. Wenz, Jr., C.P.G.

Dale Braue, Project Manager Environmental Products & Service 7280 Caswell Street North Syracuse, NY 13212

Re:

Franklin Cleaners Site

NYSDEC Contract No. D004184

D&B No. 1851

Dear Mr. Braue:

It is understood that EP&S proposes to provide a new independent electrical service for the remediation equipment shed from the existing power feed to the Franklin Cleaners Site. While we do not object, prior to consideration, we request that EP&S provide a detailed description of the temporary electric service installation procedures. Temporary electric service shall be provided in accordance with all applicable codes as listed in Section 00005 (5.2)(B) of the Standard Specifications. Additionally, as indicated in the specifications, it shall be the responsibility of EP&S to ascertain Project Site power requirements and provide appropriate service.

Please do not hesitate to contact me at (516) 364-9890 if you have any questions.

Very truly yours,

Povita

Frank DeVita Project Manager

FD(t)/RH/ld

cc:

J. Trad, NYSDEC

T. Maher, D&B

M. Wright, D&B

R. Heling, D&B

S. Tauss, D&B

♦1851\FD03LTR-05.doc

Address	Owner/Tenant	Contact	Number	
202 So Franklin St	Home	Juan Amaya		
206-208 So Frankl	i Philippo Perna	Philippo Perna	(516)627-3290	(h)
			(718)479-8229	(w)
206 So Franklin	Laundromat	Steven Gregory Paymont	(516)657-6000	(pager)
208 So Franklin	Franklin Deli	Lisa Espanal	(516)538-8069	
Apt 1 206 So Fra	/ Oscar Morales			
	/ (Montinero's sister)			
	/ Adam Calderon		(516)292-0549	
	/ Domingo Montinero		(516)483-4706	
210-212 So Frankl		Henry P. Cunningham	(516)483-1767	
210 So Franklin	Shipman's Pharmacy	Henry P. Cunningham	(516)483-1767	
212 So Franklin	Hong Kong Restuarant		(516)486-8713	
		Michael & Stacey Prince		
	His & Hers Hair Salon	Nathan Burton	(516)486-8621	
13 Marvin Ave	/ Rosa Morales	Alvina Gray (West Hemp	(516)485-5737	(w)
	ray son: Wallace	(Address A Gray 50 Marion A		
21 Marvin Ave	Jovelle Itale Haldo			
213 So. Franklin				
217 So Franklin	Eugene Hull / Raul Gra	у		
OPTIONAL - Grou	ındwater/Indoor Air Stı	udy for PCE		
1910				
Bldgs over ~ 1000) ppb			
6 Marvin/220 So.	Nadeem Hanna			
224 So Franklin				
226 So Franklin				
230 So Franklin				
	??			
D11 400				
Bldgs over ~ 100				
219 So Franklin	Santos Auto Repair			
229 So Franklin	Nadeem Hanna			
231? So Franklin	Home			
233? So Franklin	Home			
4 Linden Ave	Home			
6 Linden	Home			
8 Linden				

NDOOR AIR SAMPL		Hempstead, Nassau County December 10 - 11, 1997		-
	October 29 - 31, 1997	December 10 - 11, 1997		
Address	Owner/Tenant	Contact	Number	
202 So Franklin St	Home	Juan Amaya		
206-208 So Frankli	Philippo Perna	Philippo Perna	(516)627-3290	(h)
			(718)479-8229	(w)
206 So Franklin	Laundromat	Steven Gregory	(516)657-6000	(pager)
208 So Franklin	Franklin Deli	Lisa Espanal	(516)538-8069	
Apt 1 206 So Fra	Oscar Morales?			
	lady leaves @ BAM Flores			
Apt 3 206 So Fra		Ana Elisabeth		
Apt 4 206 So Fra	Mclean?	Concepción Morales	*	
210-212 So Frankli		Henry P. Cunningham	(516)483-1767	
210 So Franklin	Shipman's Pharmacy	Henry P. Cunningham	(516)483-1767	
212 So Franklin	Hong Kong Restuarant		(516)486-8713	
7 Marvin Ave (up	Guiding Light Taberna	Michael & Stacey Prince	(516)292-1278	
9 Marvin Ave (rea	His & Hers Hair Salon	Nathan Burton	(516)486-8621	
o martini tro (rea		(O.M.)	100 000 1 114	1150
13 Maryin Ave	Rosa Morales (tenant)	Alvina Gray (West Hemp	(516)485-5737	(w)
21 Marvin Ave	Jovelle Itale Haldo			
21 11101 1111 7 110		1010		
213 So. Franklin	Airie Floyd 207 Long B	100 1 Ba		
217 So Franklin	Eugene Hall, Raul Gra		Air Baston	
217 00 1 141111111	owners teno	*	CI. Para	
OPTIONAL - Grou	ındwater/Indoor Air St	udy for PCE		
OI HORAL GIOG				
Bldgs over ~ 1000) ppb			
Diags over 1000				
6 Marvin/220 So.	Nadeem Hanna 325 Elv	St. West Hempstand 11552	493-4452	
224 So Franklin	S. A. GROCENES		100.12	
226 So Franklin	DONASA ROTOSPICE CL			
239 So Franklin				
	?? Home owned b	L Nateen Hanne's Brothly	a Kalan Hamas	
230 Su. Frankli.	?? Home owned b	1 Parem Hannes Dis 104	A Parece named	
Bldgs over ~ 100	nnh		100 4423 4421- 40	1-0675 06.71
	Santos Auto Repair	another Publica	483-4433,4434:,48	7
219 So Franklin 229 So Franklin	Nadeem Hanna	J.A. Guerra	292-2290	
	Home			
231? So Franklin		Hanna Market 483-832	he 486-1361	
233? So Franklin		mbrosig in the standish	S Drc 128 LindenA	2 481-5
4 Linden Ave	No. 3 and 1	my Linds Postallis	485-3418	100
6 Linden	Home R. Morris		705-2110	
8 Linden				

Franklin Cleaners Mailing Address List

Dalia or Current Resident 202 South Franklin St. Hempstead, NY 11550

Juan Amaya 200 Westbury Avenue Mineola, NY 11501

Oscar Morales or Current Resident, Apt 1 208 South Franklin St. Hempstead, NY 11550

Mr./Mrs./Ms. Flores Current Resident, Apt 2 208 South Franklin St. Hempstead, NY 11550

Ana Elisabeth or Current Resident, Apt 3 208 South Franklin St. Hempstead, NY 11550

Concepcion Morales or Current Resident, Apt 4 208 South Franklin St. Hempstead, NY 11550

Steve Gregory South Franklin Wash & Dry 206 South Franklin St. Hempstead, NY 11550 Lisa Espanal Franklin Deli 208 South Franklin St. Hempstead, NY 11550

Phil Perna 206-208 South Franklin St. Hempstead, NY 11550

Henry Cunningham Shipman's Pharmacy 210 South Franklin Street Hempstead, NY 11550

Claude Shipman 51 Chauncey Street Brooklyn, NY 11233

Rosa Morales 13 Marvin Avenue Hempstead, NY 11550

Alvina Gray 50 Marion Ave. Hempstead, NY 11550

Franklin Cleaners Mailing Address List, 2nd Round

Phil Perna 206-208 South Franklin St. Hempstead, NY 11550

Henry Cunningham Shipman's Pharmacy 210 South Franklin Street Hempstead, NY 11550

Mr. Chen Hong Kong Restaurant 212 South Franklin Street Hempstead, NY 11550

Michael & Stacey Prince Guiding Light Tabernacle 7 Marvin Avenue Hempstead, NY 11550

Nathan Burton Desmarc Hair Salon 9 Marvin Avenue Hempstead, NY 11550

Claude Shipman 51 Chauncey Street Brooklyn, NY 11233

Rosa Morales 13 Marvin Avenue Hempstead, NY 11550

Alvina Gray 50 Marion Ave. Hempstead, NY 11550 Fileis

SOUTHERN WILLIAM FCADORS 2

Marta Lequino 21 Marvin Avenue Hempstead, NY 11550

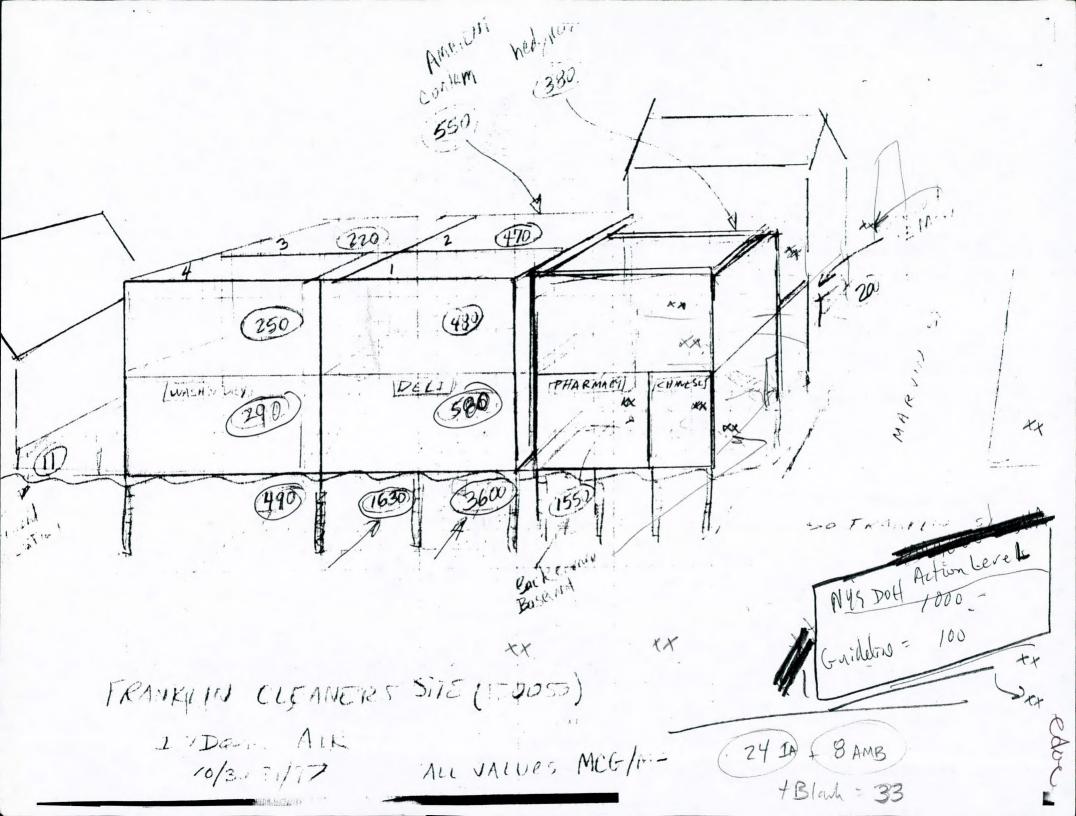
Hildo Roberto Hobel c/o 21 Marvin Avenue Hempstead, NY 11550

Remberto Castro 6 Marvin Avenue Hempstead, NY 11550

J.A. Guerra 229 South Franklin Street Hempstead, NY 11550

Nadeem Hanna 325 Elm Street West Hempstead, NY 11552

Joyce Brock 4 Linden Avenue Hempstead, NY 11550


Greg Buck

Hempstead, NY 11550

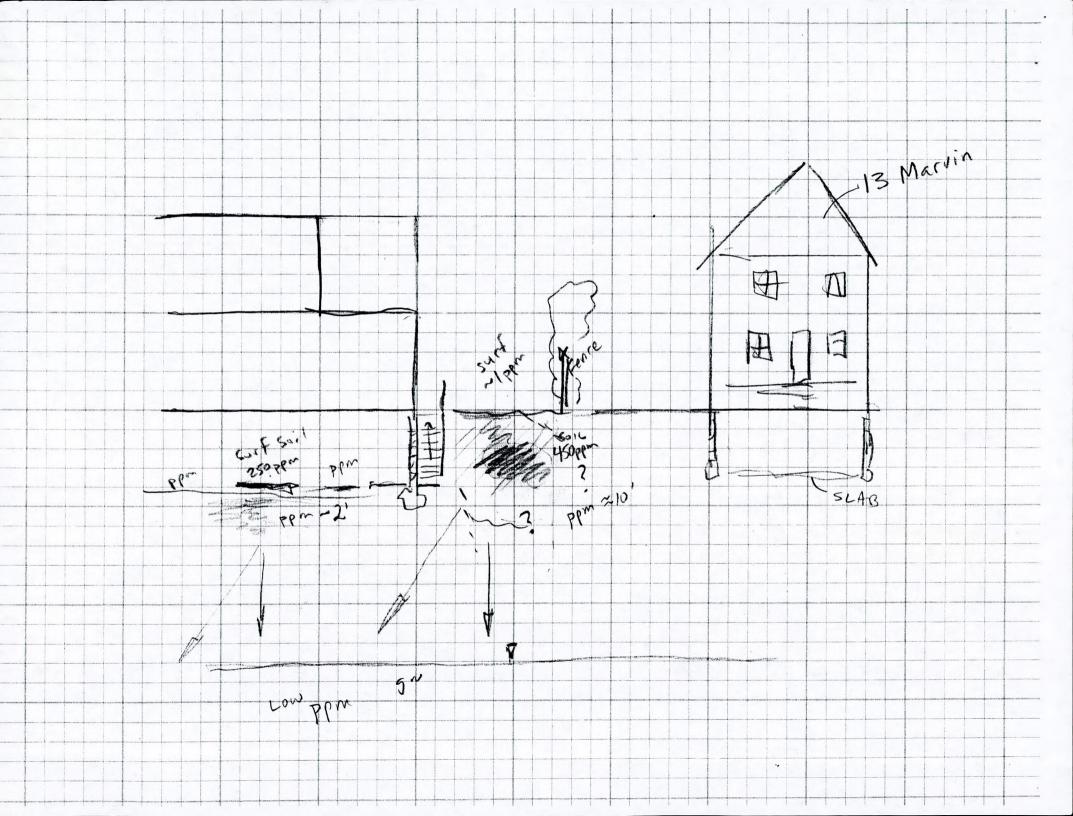
Raul Garay 217 South Franklin Street Hempstead, NY 11550

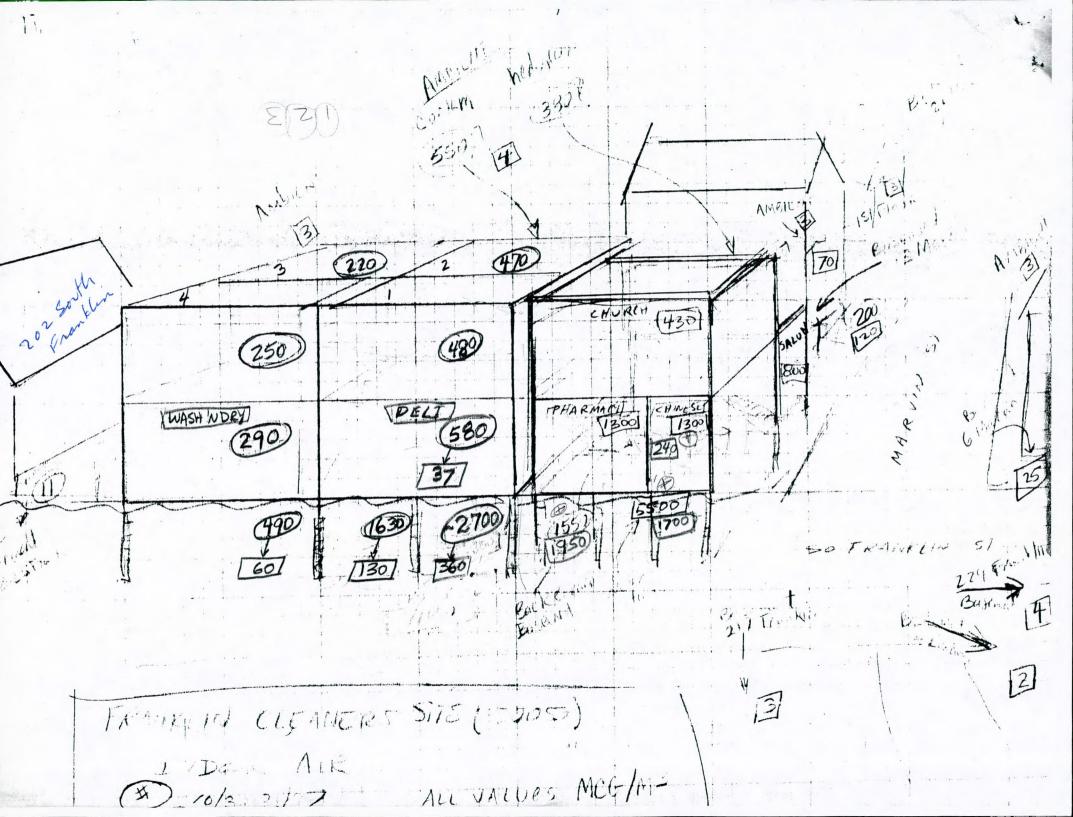
Eugene Hall
43 N Forest Ave

Hempstead NY 11550

FRANKLIN CLEANERS SITE - BUILDINGS AFFECTED ABOVE NYSDOH GUIDELINE FOR PERC (100 ug/m3)

AIR SAMPLING RESULTS FOR PERC (All results reported in ug/m3)


	Sampling Dates, Agency, and Results*								
Air Sampling Locations	Jul-97	10/30/97 -	12/10/97 -	3/10/98 -	05/06/98 -	3/10/99 -	9/21/99 -	10/14/99-	02/29/00-
		10/31/97	12/11/97	3/11/98	5/7/98	3/11/99	9/22/99	10/15/99	3/1/00
	NYSDEC	NYSDOH	NYSDOH	NYSDOH	NYSDOH	NYSDOH	NYSDOH	NYSDEC	NYSDEC
	Before G	AC Filter Unit	s in Basemnt	New 2018		After GAC F	ilter Units in B	asement	
206 S. Franklin - Laundromat, Door to Basement	mat-	280 / 300	<u>-</u>	60 / 60		60			
206 S. Franklin - Laundromat, Basement middle		450 / 520							
208 S. Franklin - Deli Kitchen over sikle pupi		560 / 590		36 / 38		31 / 32		112	
208 S. Franklin - Deli Basement in middle Grease		1600 / 1650		130 / 130		960			
208 S. Franklin - Deli Basement, East End (Frmr Dry Clnrs)		3600 / 3600		340 / 380		510		1077	
208 S. Franklin - Deli Basement, East End (Hole in Slab)			71000/75000			3100			
206-208 S. Franklin - Apartment 1		470 / 520							
206-208 S. Franklin - Apartment 2 7		450 / 480							
206-208 S. Franklin - Apartment 3		210 / 230							
206-208 S. Franklin - Apartment 4		240 / 260							
206 - 208 S. Franklin - Rear Yard, North			1.5 / 3.5						
206 - 208 S. Franklin - Rear Yard, Mid S N+Low		560 / 550	4/<5			< 5 / < 5			
206 - 208 S. Franklin - Rear Yard, South		370 / 390		-					
210 S. Franklin - Shipman's Pharm, Backroom Shelves			1300 / 1300			600 / 600	3/3 *	59 / 46	219 / 377
210 S. Franklin - Shipman's Pharm, Foot of Basement Stair			5000 / 6000		1600 / 1800	3100	1400	1824	1475
210 S. Franklin - Shipman's Pharm, Basement Furnace Rm		1500 / 1600			1900 / 2000	1600	1200 / 1100	938	1209
212 S. Franklin - Hong Kong Restaurant, Kitchen Rear Doo	mp_		1100 / 1500		230 / 250	710 / 730	140 / 130	253	332
7 Marvin Ave - Guiding light Tabernacle (Upstairs, Hall)	'		450 / 400						
9 Marvin Ave - Nate's Hair Salon, Backroom			800 / 800			7 / 10	21 / 20		
9 Marvin Ave - Rear Yard		370 / 390							
	- 3	,					C		
				** No	Filters in Base				
13 Marvin Ave - First floor			65 / 75						
13 Marvin Ave - Basement		200 / 210	115 / 130						
13 Marvin Ave - Outdoors on Front Porch			3.0 / 3.5						


QUALIFIERS/NOTES:

--: Location not sampled.

Samples collected in duplicate (Sample A / Sample B).

*: Pharmacy at 210 S Franklin had separate HVAC unit installed summer 1999.

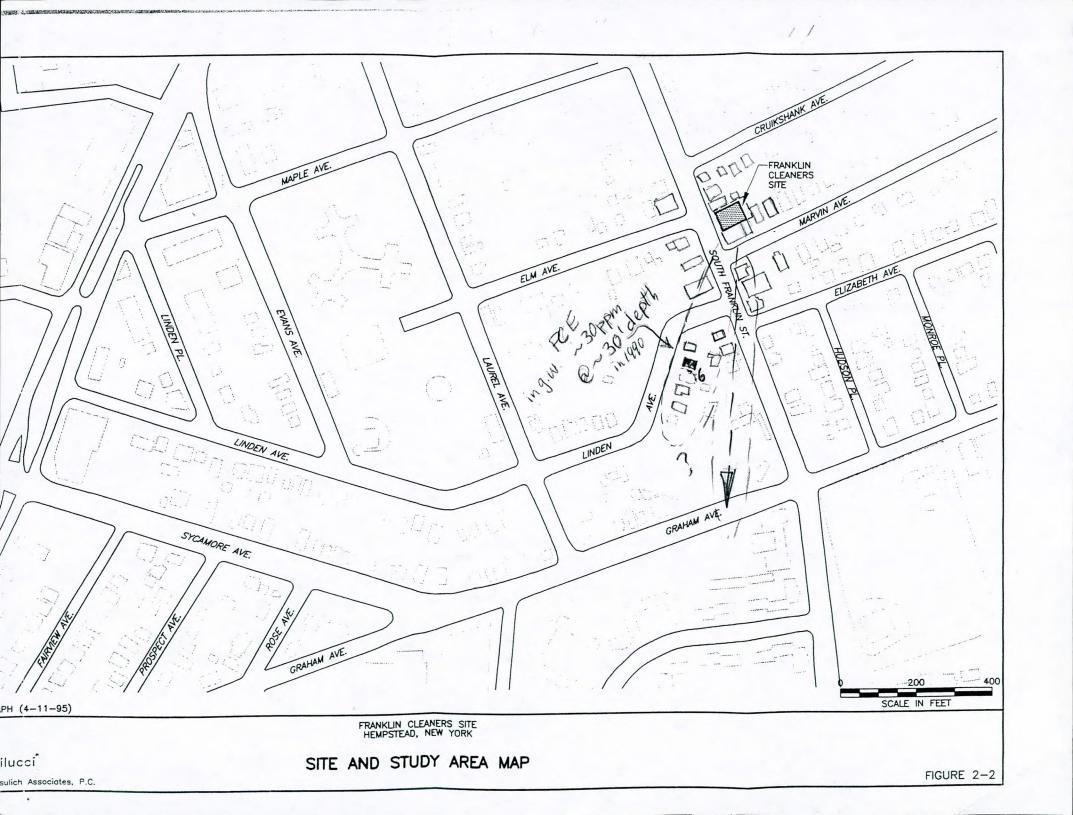


Table 7 columns x 5 Rows

INDOOR AIR SAMPLENG @ Franklin Cleaners 206-208 South FRANKUN ST., Hempstend

Location	Jul 97	sults;	secal	400	Wornas	Approximate Reduction, %
203(SO) BASEMENT	2300	3600	1500/2100		340/380	87 %
208 (NO) BASEMENT	and the second second second second second	1600/1650	and the second s	AFF	130/130	92 %
206 BASEMENT		450/520		U	60/60	88 %
DELI		560/590		49	36/38	94 %
206 Baseneut SUMP				TALLED	70/80	
BLANK	onjana o provincia dell'internazione dell'intern			125	0.015	
	THE PROPERTY OF THE PROPERTY O				portugues and the first of the	

7280 Caswell Street, Hancock Air Park North Syracuse, NY 13212 (315) 458-8033 FAX (315) 458-0249

Post-it® Fax Note 7671	Date 8/26/03 # of pages 11
TO YEAT Trap	From Frank Pallita
Co./Dept. NYSDEC	Co. D.B
Phone # (518) 402 -981 4 -	Phone # 5/6) 364-9580
Fax # (5/8) 402 - 98/9	Fax # (516) 364-9045

"Your Full-Service Analytical Laboratory"

FAX TRANSMITTAL MEMO
From Wendy Underzer Company Date Date
Company Devita Dvirtee + Bertilucci Date 8/25/03
Fax No. (516) 364-9045 Job No.
Telephone No. No. of Pages (including cover page)
Subject Results Fix Franklih Cleaner's Project # 206021 Comments
Comments
Please call if you have any
Please call if you have any
Thanks
Wendy

NOTE: This facsimile and the information it contains are intended to be confidential communication only to the addressee. If you received this facsimile in error, please notify us by telephone and return the original fax to this office by mail.

Environmental

7280 Caswell Street, Hancock Air Park, North Syracuse, NY 13212 (315) 458-8033, FAX (315) 458-0249, (800) 842-4667

EPS - GEOSCIENCE 7280 Caswell Street

North Syracuse, NY 13212 ATTN: Mr. Dale Braue

PO#: 88997

PROJECT #: RECEIVED: LAB LOG#:

206021 08/24/2003 Z03-31

Site Address:

NYSDEC CONTRACT #D004184

FRANKLIN CLEANERS HEMPSTEAD, NY

SVE PERF. TEST DAY 1

CLIENT JOB NUMBER: K0122							
TEST PERFORMED	RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY		
SAMPLE #: 351579 CLIENT SAMPLE ID:	SVE-1 AM			DATE SAMPLED:	08/24/03		
Volutile - TO1							
1,1,1-trichloroethane	<5.00	UG/10L	08/24/03	TO-I	MMA		
1,1,2,2-tetrachloroethane	<5.00	UG/10L	08/24/03	TO-I	MMA		
1,1,2-trichloroethane	<5.00	UG/10L	08/24/03	TO-1	MMA		
1,1-dichloroethane	<5.00	UG/10L	08/24/03	TO-1	MMA		
1,1-dichloroethene	<5.00	UG/10L	08/24/03	TO-1	MMA		
1,2-dichlorobenzene	<5.00	UG/10L	08/24/03	TO-1	MMA		
1,2-dichloroethane	<5.00	UG/10L	08/24/03	TO-1	MMA		
1,2-dichloropropane	<5.00	UG/10L	08/24/03	TO-1	MMA		
1,3-dichlorobenzene	<5.00	UG/10L	08/24/03	TO-1	MMA		
1,4-dichlorobenzene	<5.00	UG/10L	08/24/03	TO-1	MMA		
acetone	<5.00	UG/10L	08/24/03	TO-1	MMA		
benzene	<5.00	UG/10L	08/24/03	TO-1	MMA		
bromodichloromethane	<5.00	UG/10L	08/24/03	TO-1	MMA		
bramoform	<5.00	UG/10L	08/24/03	TO-I	MMA		
bromomelhane	<5.00	UG/10L	08/24/03	TO-1	MMA		
carbon tetrachloride	<5.00	UG/10L	08/24/03	TQ-1	MMA		
chlorobenzene	<5.00	UG/10L	08/24/03	TO-1	MMA		
chlorodibromomethane	<5.00	UG/10L	08/24/03	TO-1	MMA		
chloroethane	<5.00	UG/10L	08/24/03	TO-1	MMA		
chloroform	<5.00	UG/10L	08/24/03	TO-1	MMA		
chloromethane	<5.00	UG/10L	08/24/03	TO-1	MMA		
cis-1,3-dichloropropene	<5.00	UG/10L	08/24/03	TO-1	MMA		
ethylbenzene	< 5.00	UG/10L	08/24/03	TO-1	MMA		
methyl ethyl ketone (mek)	<5.00	UG/10L	08/24/03	TO-1	MMA		
methylene chloride	<5.00	UG/10L	08/24/03	TO-I	MMA		
mtbe	<5.00	UG/10L	08/24/03	TO-1	MMA		
tetrachloroethene	18.1	UG/10L	08/24/03	TO-1	MMA		
toluene	<5.00	UG/10L	08/24/03	10-1	MMA		
trans-1,2-dichloroethene	<5.00	UG/10L	08/24/03	TO-1	MMA		
trans-1,3-dichloropropene	<5.00	UG/10L	08/24/03	TO-1	MMA		
trichloroethene	<5.00	UG/10L	08/24/03	то-1	MMA		
		D 4	5.40				

Page 1 of 10

North Syracuse, NY 13212 ATTN: Mr. Dale Braue

PO#: 88997

CLIENT JOB NUMBER: K0122

PROJECT #:
RECEIVED:

206021 08/24/2003 Z03-31

LAB LOG#:
Site Address:

NYSDEC CONTRACT #D004184

FRANKLIN CLEANERS HEMPSTEAD, NY

SVE PERF. TEST DAY 1

TEST PERFORMED		RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORME!
SAMPLE #: 351578 Volatile - TOI	CLIENT SAMPLE ID:	SVE-1 AM			DATE SAMPLED:	08/24/03
trichlarofluora	methane	<5.00	UG/10L	08/24/03	TO-1	MMA
vinyl chloride		<5.00	UG/10L	08/24/03	TO-1	MMA
xylene, m+p		<5.00	UG/10L	08/24/03	TO-1	MMA
xylene, o		<5.00	UG/10L	08/24/03	TO-1	MMA
SAMPLE #: 351580 Volatile - TO1	CLIENT SAMPLE ID:	SVE-2 AM			DATE SAMPLED:	08/24/03
1,1,1-trichlord	ethane	<5.00	UG/10L	08/24/03	TO-I	MMA
1,1,2,2-tetrac		<5.00	UG/10L	08/24/03	TO-1	MMA
1,1,2-trichlord		<5.00	UG/10L	08/24/03	TO-1	. MMA
1,1-dichloroet	thane	<5.00	UG/10L	08/24/03	TQ-1	MMA
1,1-dichloroet	thene	<5.00	UG/10L	08/24/03	TO-1	MMA
1,2-dichlorobe	enzene	<5.00	UG/10L	08/24/03	10-1	MMA
1,2-dichloroe		<5.00	UG/10L	08/24/03	TO-1	MMA
1,2-dichlorope	ropane	<5.00	UG/10L	08/24/03	TO-1	MMA
1,3-dichlorob		<5.00	UG/10L	08/24/03	10-1	MMA
1,4-dichlorob	enzene	<5.00	UG/10L	08/24/03	1'0-1	MMA
acetone		<5.00	UG/10L	08/24/03	TO-I	MMA
benzene		<5.00	UG/10L	08/24/03	TO-I	MMA
bromodichlore	ometha ne	<5.00	UG/10L	08/24/03	TO-1	MMA
bromoform		<5.00	UG/10L	08/24/03	TO-1	MMA
bromomethar		6.31	UG/10L	08/24/03	TQ-I	MMA
carbon tetraci		<5.00	UG/10L	08/24/03	TO-1	MMA
chlorobenzen		<5.00	UG/10L	08/24/03	TO-1	MMA
chlorodibromo	omethane	<5.00	UG/10L	08/24/03	TO-1	MMA
chloroethane		<5.00	UG/10L	08/24/03	TO-1	MMA
chloroform		<5.00	UG/10L	08/24/03	TO-1	MMA
chloromethan		<5.00	UG/10L	08/24/03	TO-I	MMA
cis-1,3-dichlor		<5.00	UG/10L	08/24/03	TO-I	MMA
ethylbenzene		<5.00	UG/10L	08/24/03	10-1	MMA
methyl ethyl k		<5.00	UG/10L	08/24/03	TO-1	MMA
methylene chi	londe	<5.00	UG/10L	08/24/03	TO-1	MMA
mtbe		<5.00	UG/10L	08/24/03	TO-1	MMA
tetrachloroeth toluene		18.0	UG/10L	08/24/03	TO-I	MMA
4.	Ioroethono	<5,00	UG/10L	08/24/03	TO-1	MMA
trans-1,2-dich trans-1,3-dich		<5.00	UG/10L	08/24/03	TO-1	MMA
trichloroethen		<5.00	UG/10L	08/24/03	TO-1	AMM
trichlorofluoro		10.3 <5.00	UG/10L	08/24/03	TO-1	MMA
vinyl chloride	inerialie		UG/10L	08/24/03	TO-1	MMA
viriyi chloride		<5.00	UG/10L	08/24/03	TO-1	MMA

Page 2 of 10

North Syracuse, NY 13212 ATTN: Mr. Dale Braue

PO#: 88997

CLIENT JOB NUMBER: K0122

PROJECT #: 206021 RECEIVED: 08/24/2003 LAB LOG#: Z03-31

Site Address:

NYSDEC CONTRACT #D004184

FRANKLIN CLEANERS

HEMPSTEAD, NY SVE PERF. TEST DAY 1

TEST PERFORMED	RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE #: 351580 CLIENT SAMPLE ID: Volatile - TOI	SVE-2 AM		1	DATE SAMPLED:	08/24/03
xylene, m+p	<5.00	UG/10L	08/24/03	TO-1	MMA
xylene, o	<5.00	UG/10L	08/24/03	TO-1	MMA
SAMPLE #: 351581 CLIENT SAMPLE ID:	SVM-1 AM			DATE SAMPLED;	08/24/03
Volatile - TO1		Makai	55/54/55	22.0	
1,1,1-trichloroethane	<5.00	UG/10L	08/24/03	TO-1	MMA
1.1.2,2-tetrachloroethane	<5.00	UG/10L	08/24/03	TO-1	MMA
1,1,2-trichloroethane	<5.00	UG/10L	08/24/03	TO-1	MMA
1,1-dichloroethane	<5.00	UG/10L	08/24/03	TO-I	MMA
1,1-dichloroethene	<5.00	UG/10L	08/24/03	TO-1	. MMA
1,2-dichlorobenzene	<5.00	UG/10L	08/24/03	TO-1	MMA
1,2-dichloroethane	<5.00	UG/10L	08/24/03	TO-1	MMA
1,2-dichloropropane	<5.00	UG/10L	08/24/03	TO-1	MMA
1,3-dichlorobenzene	<5.00	UG/10L	08/24/03	TO-I	MMA
1,4-dichlorobenzene	<5.00	UG/10L	08/24/03	TO-1	MMA
acetone	<5.00	UG/10L	08/24/03	TO-1	MMA
benzene	<5.00	UG/10L	08/24/03	TO-1	MMA
bromodichloromethane	<5.00	UG/10L	08/24/03	TO-1	MMA
bromoform	<5.00	UG/10L	08/24/03	TO-1	MMA
bromomethane	<5.00	UG/10L	08/24/03	TQ-I	MMA
carbon tetrachloride	<5.00	UG/10L	08/24/03	TO-I	MMA
chlorobenzene	<5.00	UG/10L	08/24/03	TO-1	MMA
chlorodibromomethane	<5.00	UG/10L	08/24/03	1.0-1	MMA
chlorocthane	<5.00	UG/10L	08/24/03	TO-I	MMA
chloroform	<5.00	UG/10L	08/24/03	TO-1	MMA
chloromethane	<5.00	UG/10L	08/24/03	TO-1	MMA
cis-1,3-dichloropropene	<5.00	UG/10L	08/24/03	·TO-1	MMA
ethylbenzene	<5.00	UG/10L	08/24/03	.TO-1	MMA
methyl ethyl ketone (mek)	<5,00	UG/10L	08/24/03	TO-1	MMA
methylene chloride	<5.00	UG/10L	08/24/03	TO-J	MMA
mtbe	<5.00	UG/10L	08/24/03	TO-1	MMA
tetrachloroethene	16.1	UG/10L	08/24/03	TO-1	MMA
toluene	<5.00	UG/10L	08/24/03	TO-1	MMA
trans-1,2-dichloroethene	<5.00	UG/10L	08/24/03	TO-1	MMA
trans-1,3-dichloropropene	<5.00	UG/10L	08/24/03	TO-1	MMA
trichloroethene	<5.00	UG/10L	08/24/03	TO-1	MMA
trichlorofluoromethane	<5.00	UG/10L	08/24/03	TO-1	MMA
vinyl chloride	<5.00	UG/10L	08/24/03	TO-1	MMA
xylene, m+p	<5.00	UG/10L	08/24/03	TO-1	MMA
xylene, o	<5.00	UG/10L	08/24/03	TO-I	MMA

Page 3 of 10

North Syracuse, NY 13212 ATTN: Mr. Dale Braue

PO#: 88997

206021 PROJECT #: RECEIVED: 08/24/2003

LAB LOG#:

Site Address: NYSDEC CONTRACT #D004184

FRANKLIN CLEANERS HEMPSTEAD, NY

SVE PERF. TEST DAY 1

CLIENT JOB NUMBER:

K0122

DATE/TIME

METHOD

Z03-31

PERFORMED

DEDECIDMED

TEST PERFORMED		RESULTS	UNITS	PERFORMED	NUMBER	BY
SAMPLE #: 351581 Volatile - TO1	CLIENT SAMPLE ID:	SVM-1 AM			DATE SAMPLED;	08/24/03
SAMPLE #: 351582	CLIENT SAMPLE ID:	SVM-2 AM			DATE SAMPLED:	08/24/03
Volatile - TO1 1,1,1-trichlor	mathana	<5.00	UG/10L	08/24/03	TO-1	MMA
	chloroethane	<5.00	UG/10L	08/24/03	TO-1	MMA
1,1,2-Irichlor		<5.00	UG/10L	08/24/03	TO-1	MMA
1,1-dichloroe		<5.00	UG/10L	08/24/03	TO-I	MMA
1,1-dichloroe		<5.00	UG/10L	08/24/03	TO-1	MMA
1,2-dichlorot		<5.00	UG/10L	08/24/03	TO-1	MMA
1,2-dichlorae		<5.00	UG/10L	08/24/03	TO-1	MMA
1,2-dichlorop		<5.00	UG/10L	08/24/03	TO-1	MMA
1,3-dichlorol	•	<5.00	UG/10L	08/24/03	TO-1	MMA
1,4-dichloro		<5.00	UG/10L	08/24/03	TO-1	MMA
acetono	SCI IZZGI IZ	<5.00	UG/10L	08/24/03	TO-1	
benzene		<5.00	UG/10L	08/24/03	TO-1	AMM
bromodichlo	comelhane	<5.00	UG/10L	08/24/03	TO-1	MMA MMA
bromoform	Torregione .	<5.00	UG/10L	08/24/03	TO-1	MMA
bromometha	no.	<5.00	UG/10L	08/24/03	TO-1	
carbon tetrad		<5.00	UG/10L	08/24/03	TO-1	MMA MMA
chlorobenze		117	UG/10L	08/24/03	TO-1	MMA
	tration should be considered					MINIM
chlorodibron		<5.00	UG/10L	08/24/03	TO-1	MMA
chloroethane		≺5.00	UG/10L	08/24/03	TO-1	MMA
chloroform		719	UG/10L	08/24/03	TO-1	MMA
	tration should be considered					MINIM
chlorometha		<5.00	UG/10L	08/24/03	TO-1	MMA
cls-1,3-dichie	50.5	<5.00	UG/10L	08/24/03	TO-1	MMA
ethylbenzen		41.0	UG/10L	08/24/03	TO-1	MMA
Concent	tration should be considered.					IVITAIN
	ketone (mek)	146	UG/10L	08/24/03	TO-I	MMA
	ration should be considered					MINIM
methylene ci		<5.00	UG/10L	08/24/03	TO-1	MMA
mtbe		<5.00	UG/10L	08/24/03	TO-1	MMA
tetrachloroet	hene	17100	UG/10L	08/24/03	TO-1	MMA
	ration should be considered					MINIM
toluene		<5.00	UG/10L	08/24/03	TO-1	MMA
trans-1,2-dic	hloroethene	87.1	UG/10L	08/24/03	TO-1	MMA
	ration should be considered					MINIM
	hloropropene	<5.00	UG/10L	08/24/03	TO-1	MMA
trichloroethe			UG/10L	08/24/03	TO-1	MMA

Page 4 of 10

North Syracuse, NY 13212 ATTN: Mr. Dale Braue

PO#: 88997

PROJECT #:

206021

RECEIVED:

08/24/2003 ZQ3-31

LAB LOG#:

Site Address: NYSDEC CONTRACT #D004184

FRANKLIN CLEANERS

HEMPSTEAD, NY

SVE PERF. TEST DAY 1

CLIENT JOB NUMBER:

K0122

TEST PERFORMED		RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE #: 351582	CLIENT SAMPLE ID:	SVM-2 AM			DATE SAMPLED:	08/24/03
Volatile - TOI						
Concentr	ation should be considered a	an estimate as it e	xceeds the linear	range of the calibration curve	2.	
trichlorofluoro	methane	<5.00	UG/10L	08/24/03	TO-1	MMA
vinyl chloride		<5.00	UG/10L	08/24/03	1.0-1	MMA
xylene, m+p		31.3	UG/10L	08/24/03	10-1	MMA
Concentr	ration should be considered in	an essimate as It e	xceeds the linear	range of the calibration curve		
xylene, o		13.5	UG/10L	08/24/03	TO-1	MMA
Internal s	landard responses were out	side of the establi	shed acceptance l	imlts.		

	SAMPLEID: SVM-3 AM	Λ		DATE SAMPLED:	08/24/03
Volatile - TÓ1					
1,1,1-trichloroethane	<5.0		08/24/03	TO-1	MMA
1,1,2,2-tetrachloroeth			08/24/03	TO-I	MMA
1,1,2-trichloroethane	<5.0		08/24/03	TO-1	MMA
1,1-dichloroethane	<5.0		08/24/03	TO-1	MMA
1,1-dichloroethene	<5.0		08/24/03	TO-I	MMA
1,2-dichlorobenzene	<5.0		08/24/03	TO-I	MMA
1,2-dichloroethane	<5.0		08/24/03	TO-1	MMA
1,2-dichloropropane	<5.0		08/24/03	TO-1	MMA
1,3-dichlorobenzene	<5.0		08/24/03	TO-1	MMA
1,4-dichlorobenzene	<5.0		08/24/03	TO-1	MMA
acetone	<5.0		08/24/03	TO-I	MMA
benzene	<5.0		08/24/03	TO-1	MMA
bromodichloromethan			06/24/03	TO-1	MMA
bromoform	<5.0		08/24/03	TO-I	MMA
bromomethane	<5.0		08/24/03	TO-1	MMA
carbon tetrachloride	<5.0	0 UG/10L	08/24/03	TO-I	MMA
chlorobenzene	<5.0	0 UG/10L	08/24/03	TO-I	MMA
chlorodibromomethan	e <5.0	0 UG/10L	08/24/03	TO-1	MMA
chloroethane	<5.0	0 UG/10L	08/24/03	TO-1	MMA
chloroform	<5.0		08/24/03	TO-1	MMA
chloromethane	<5.0	0 UG/10L	08/24/03	TO-1	MMA
cis-1,3-dichloroproper	ne <5.0	0 UG/10L	08/24/03	TO-1	MMA
ethylbenzene	<5.0	0 UG/10L	08/24/03	TO-I	MMA
methyl ethyl ketone (n	nek) <5.0	0 UG/10L	08/24/03	TO-I	MMA
methylene chloride	<5.0	0 UG/10L	08/24/03	TO-1	MMA
mtbe	<5.0	0 UG/10L	08/24/03	TO-1	MMA
tetrachioroethene	13.	1 UG/10L	08/24/03	TO-I	MMA
toluene	<5.0	0 UG/10L	08/24/03	TO-1	MMA
trans-1,2-dichloroethe		UG/10L	08/24/03	TO-1	MMA
trans-1,3-dichloroprop	ene <5.0	0 UG/10L	08/24/03	TO-I	MMA

Page 5 of 10

08/25/2003 MON 15:44 FAX 3154580526

EPS - GEOSCIENCE 7280 Caswell Street

North Syracuse, NY 13212 ATTN: Mr. Dale Braue

PO#: 88997

LAB LOG#:

PROJECT #:

RECEIVED: 08/24/2003 Z03-31

206021

Site Address:

NYSDEC CONTRACT #D004184

FRANKLIN CLEANERS HEMPSTEAD, NY

SVE PERF. TEST DAY 1

CLIENT JOB NUMBER:

K0122

TEST PERFORMED		RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY-
SAMPLE #: 351583 Volatile - TOI	CLENT SAMPLE ID:	SVM-3 AM			DATE SAMPLED:	08/24/03
trichloroether	ne	<5.00	UG/10L	08/24/03	TO-1	MMA
trichlorofluor		<5.00	UG/10L	08/24/03	TO-1	MMA
vinyl chloride		<5.00	UG/10L	08/24/03	TO-I	MMA
xylene, m+p		<5.00	UG/10L	08/24/03	TO-1	MMA
xylene, o		<5.00	UG/10L	08/24/03	TO-1	MMA
SAMPLE #: 351584 Volatile - TO1	CLENT SAMPLEID:	SVM-4 AM			DATE SAMPLED:	08/24/03
1,1,1-trichlor	oethene	<5.00	UG/10L	08/24/03	TO-1	MMA
1,1,2,2-tetrac	chloroethane	<5.00	UG/10L	08/24/03	TO-1	MMA
1,1,2-trichlor		<5.00	UG/10L	08/24/03	TO-I	MMA
1,1-dichloroe	thane	<5.00	UG/10L	08/24/03	TO-1	MMA
1,1-dichloroe	thene	<5.00	UG/10L	08/24/03	TO-I	MMA
1.2-dichlorob	enzene	<5.00	UG/10L	08/24/03	TO-1	MMA
1,2-dichloroe	thane	<5.00	UG/10L	08/24/03	TO-1	MMA
1,2-dichlorop	ropane	<5.00	UG/10L	08/24/03	TO-I	MMA
1,3-dichlorob		<5.00	UG/10L	08/24/03	TO-1	MMA
1,4-dichlorob	enzene	<5.00	UG/10L	08/24/03	TO-1	MMA
acetone		<5.00	UG/10L	08/24/03	TO-1	MMA
benzene		<5.00	UG/10L	08/24/03	TO-1	MMA
bromodichlor	romethane	<5.00	UG/10L	08/24/03	TO-1	MMA
bromoform		<5.00	UG/10L	08/24/03	TO-1	MMA
bromometha	ne	<5.00	UG/10L	08/24/03	TO-1	MMA
carbon tetrac	chloride	<5.00	UG/10L	08/24/03	TO-I	MMA
chlorobenzer	ne	<5.00	UG/10L	08/24/03	TO-1	MMA
chlorodibrom	omethane	<5.00	UG/10L	08/24/03	TO-1	MMA
chloroethane		<5.00	UG/10L	08/24/03	TO-I	MMA
chloroform		<5.00	UG/10L	08/24/03	TO- 1	MMA
chloromethau	ne	<5.00	UG/10L	08/24/03	TO-1	MMA
cis-1,3-dichlo	огоргореле	<5.00	UG/10L	08/24/03	TO-I	MMA
ethylbenzene	, ,	<5.00	UG/10L	08/24/03	TO-1	MMA
methyl ethyl	ketone (mek)	10200	UG/10L	08/24/03	TO-I	MMA
		an extimate ax it e	xcaeds the linear	range of the culibration curve		
methylene ch		<5.00	UG/10L	08/24/03	TO-1	MMA
mtbe		<5.00	UG/10L	08/24/03	TO-1	MMA
tetrachloroet	hene .	3570	UG/10L	08/24/03	TO-I	MMA
Concent	rution should be considered	an estimate as it e	xceeds the linear	range of the calibration curve		
. toluene		27.6	UG/10L	08/24/03	TO-1	MMA
Concent	ration should be considered a	wı estimate as ir e	xceeds the linear	range of the calibration curve	4	
trope 1 2 dia	hloroethene	<5.00	UG/10L	08/24/03	TO-I	MMA

Page 6 of 10

North Syracuse, NY 13212 ATTN: Mr. Dale Braue

PO#: 88997

CLIENT JOB NUMBER:

K0122

PROJECT #: 206021 RECEIVED: 08/24/2003 LAB LOG#: Z03-31

Site Address:

NYSDEC CONTRACT #D004184

FRANKLIN CLEANERS

HEMPSTEAD, NY SVE PERF. TEST DAY 1

TEST PERFORMED)	RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE #: 351584 Volatile - TOJ	CLIENT SAMPLE ID:	SVM-4 AM			DATE SAMPLED:	08/24/03
trans-1,3-dic	hloropropene	<5.00	UG/10L	08/24/03	TO-1	MMA
trichloroethe	ne	148	UG/10L	08/24/03	I-OT	MMA
Concent	trution should be considered	an estimate as it e	acceds the linear	range of the callbration curve	i,	
trichlorofluor	omethane	<5.00	UG/10L	08/24/03	TO-1	MMA
vinyl chloride	•	<5.00	UG/10L	08/24/03	TO-1	MMA
xylene, m+p		<5.00	UG/10L	08/24/03	TO-I	MMA
xylene, o		<5.00	UG/10L	08/24/03	TO-1	MMA
Internal	standard responses were ou	iside of the establi	shed acceptance l	imits.		

SAMPLE #: 351585	CLIENT SAMPLE ID:	CV-1 INLET	АМ		DATE SAMPLED:	. 08/24/03
Volatile - TOI						
1,1,1-brichlor	oethane	<5.00	UG/10L	08/24/03	TO-1	MMA
1,1,2,2-tetra	chloroethane	<5.00	UG/10L	08/24/03	TO-1	MMA
1,1,2-trichlor	roethane	<5.00	UG/10L	08/24/03	TO-1	MMA
1,1-dichloroe	ethane	<5.00	UG/10L	08/24/03	TO-1	MMA
1,1-dichloros	ethene	<5.00	UG/10L	08/24/03	TO-1	MMA
1,2-dichlorot	enzene	<5.00	UG/10L	08/24/03	TO-I	MMA
1,2-dichloroe	ethane	<5.00	UG/10L	08/24/03	TO-1	MMA
1,2-dichlorop	ropane	<5.00	UG/10L	08/24/03	TO-1	MMA
1,3-dichlorob	penzene	<5.00	UG/10L	08/24/03	TO-1	MMA
1,4-dichlorot	penzene	<5.00	UG/10L	08/24/03	TO-I	MMA
acetone		<5.00	UG/10L	08/24/03	TO-1	MMA
benzene		<5.00	UG/10L	08/24/03	TO-1	MMA
bromodichlor	romethane	<5.00	UG/10L	08/24/03	TO-1	MMA
bromoform		<5.00	UG/10L	08/24/03	TO-1	MMA
bromornetha	ne	<5.00	UG/10L	08/24/03	TO-1	MMA
carbon tetrac	chloride	<5.00	UG/10L	08/24/03	TO-1	MMA
chlorobenzei	ne	<5.00	UG/10L	08/24/03	TO-1	MMA
chlorodibrom	omethane	<5.00	UG/10L	08/24/03	TO-1	MMA
chloroethane	1	<5.00	UG/10L	08/24/03	TO-1	MMA
chloroform		< 5.00	UG/10L	08/24/03	TO-I	MMA
chloromethai	ne	<5.00	UG/10L	08/24/03	TO-1	MMA
cis-1,3-dichlo	огоргорепе	<5.00	UG/10L	08/24/03	TO-1	MMA
ethylbenzene	9	<5.00	UG/10L	08/24/03	TO-1	MMA
methyl ethyl	ketone (mek)	<5.00	UG/10L	08/24/03	TO-1	MMA
methylene ch	nloride	<5.00	UG/10L	08/24/03	TO-I	MMA
mtbe		<5.00	UG/10L	08/24/03	TO-I	MMA
tetrachloroet	hene	15.3	UG/10L	08/24/03	TO-1	MMA
toluene		<5.00	UG/10L	08/24/03	TO-1	MMA
trans-1,2-dicl	hloroethene	<5.00	UG/10L	08/24/03	TO-1	MMA

Page 7 of 10

North Syracuse, NY 13212 ATTN: Mr. Dale Braue

PO#: 88997

PROJECT#: RECEIVED:

206021 08/24/2003

LAB LOG#:

Z03-31

Site Address:

NYSDEC CONTRACT #D004184

FRANKLIN CLEANERS

HEMPSTEAD, NY SVE PERF. TEST DAY 1

CLIENT JOB NUMBER: K0122				SVE PERF.	TEST DAY 1	
TEST PERFORMED		CEO. 11 TO	LINUTE	DATE/TIME	METHOD	PERFORME
1231 FERFORNIED		RESULTS	UNITS	PERFORMED	NUMBER	BY
SAMPLE #: 351585 CLENT Volatile - TO1	SAMPLEID:	CV-1 INLET	AM		DATE SAMPLED:	08/24/03
trans-1,3-dichloroprope	ene .	<5.00	UG/10L	08/24/03	TO-I	MMA
trichloroethene		6.56	UG/10L	08/24/03	TO-1	MMA
trichlorofluoromethane		<5.00	UG/10L	08/24/03	TO-1	MMA
vinyl chloride		<5.00	UG/10L	08/24/03	TO-1	MMA
xylene, m+p		<5.00	UG/10L	08/24/03	TO-1	MMA
xylene, o		<5.00	UG/10L	08/24/03	TO-I	MMA
SAMPLE #: 351586 CLENT: Volatile - TO!	SAMPLE ID:	CV-1 OUTLE	T AM		DATE SAMPLED:	08/24/03
1,1,1-trichloroethane		<5.00	UG/10L	08/25/03	TO-1	MMA
1,1,2,2-tetrachloroetha	ne	<5.00	UG/10L	08/25/03	TO-1	. MMA
1,1,2-trichloroethane		<5.00	UG/10L	08/25/03	TO-1	MMA
1,1-dichloroethane		<5.00	UG/10L	08/25/03	TO-I	
1,1-dichloroethene		<5.00	UG/10L	08/25/03	TO-1	MMA
1,2-dichlorobenzene		<5.00	UG/10L	08/25/03	TO-1	MMA
1,2-dichloroethane		<5.00	UG/10L	08/25/03	TO-1	MMA
1,2-dichloropropane		<5.00	UG/10L	08/25/03		MMA
1,3-dichlorobenzene		<5.00	UG/10L	08/25/03	TO-1 TO-1	MMA
1,4-dichlorobenzene		<5.00	UG/10L	08/25/03	TO-1	MMA
acetone		<5.00	UG/10L	08/25/03	TO-1	MMA
benzene		<5.00	UG/10L	08/25/03	TO-1	MMA
bromodichloromethane		<5.00	UG/10L	08/25/03		MMA
bromoform		<5.00	UG/10L	08/25/03	TO-I	MMA
bromomethane		<5.00	UG/10L	08/25/03	TO-1 TO-1	MMA
carbon tetrachloride		<5.00	UG/10L	08/25/03	TO-1	MMA
chlorobenzene		<5.00	UG/10L	08/25/03		MMA
chlorodibromomethane		<5.00	UG/10L		TO-I	MMA
chloroethane	4	<5.00	UG/10L	08/25/03 08/25/03	TO-1	MMA
chloroform		<5.00	UG/10L		TO-1	MMA
chloromethane		<5.00	UG/10L	08/25/03	TO-1	MMA
cis-1,3-dichloropropene		<5.00	UG/10L	08/25/03	TO-1	MMA
ethylbenzene	•	<5.00	UG/10L	08/25/03	TO-1	MMA
methyl ethyl ketone (me	ak\	<5.00		08/25/03	TO-1	MMA
methylene chloride		<5.00	UG/10L UG/10L	08/25/03	TO-1	MMA
mtbe		<5.00		08/25/03	TO-1	MMA
tetrachloroethene		13,1	UG/10L	09/25/03	TO-1	MMA
toluene		<5.00	UG/10L UG/10L	08/25/03	TO-1	MMA
trans-1,2-dichloroethen	A	<5.00	UG/10L	08/25/03	70-1	MMA
trans-1,3-dichloroprope		<5.00	UG/10L	08/25/03	TO-1	AMM
trichloroethene	iie.	<5.00		08/25/03	TO-1	MMA
dictionoculene		~5,00	UG/10L	08/25/03	1.0-1	MMA

Page 8 of 10

North Syracuse, NY 13212 ATTN: Mr. Dale Braue

PO#: 88997

CLIENT JOB NUMBER: K0122

PROJECT #:

206021 08/24/2003

RECEIVED: LAB LOG#:

Z03-31

Site Address:

NYSDEC CONTRACT #D004184

FRANKLIN CLEANERS

HEMPSTEAD, NY

SVE PERF. TEST DAY 1

TEST PERFORMED	RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE#: 351586 CLIENT SAMPLEID: Volatile - TO1	CV-1 OUTLE	TAM		DATE SAMPLED:	08/24/03
trichlorofluoromethane	<5.00	UG/10L	08/25/03	TO-1	MMA
vinyl chloride	<5.00	UG/10L	08/25/03	TO-1	MMA
xylene, m+p	<5.00	UG/10L	08/25/03	TO-1	MMA
xylene, o	<5.00	UG/10L	08/25/03	TO-1	MMA
SAMPLE #: 351587 CLIENT SAMPLE ID: Volatile - TOI	CV-2 OUTLE	TAM		DATE SAMPLED:	08/24/03
1,1,1-trichloroethane	<5.00	UG/10L	08/25/03	TO-1	MMA
1,1,2,2-tetrachloroethane	<5.00	UG/10L	08/25/03	TO-1	MMA
1,1,2-trichtoroethane	<5.00	UG/10L	08/25/03	TO-1	MMA
1,1-dichloroethane	<5.00	UG/10L	08/25/03	TO-1	MMA
7,1-dichloroethene	<5.00	UG/10L	08/25/03	TO-1	MMA
1,2-dichlorobenzene	<5.00	UG/10L	08/25/03	TO-1	MMA
1,2-dichloroethane	<5.00	UG/10L	08/25/03	TO-1	MMA
1,2-dichloropropane	<5.00	UG/10L	08/25/03	TO-I	MMA
1,3-dichlorobenzene	<5.00	UG/10L	08/25/03	TO-I	MMA
1,4-dichlorobenzene	<5.00	UG/10L	08/25/03	TO-1	MMA
acetone	<5.00	UG/10L	08/25/03	TO-1	MMA
benzene	<5.00	UG/10L	08/25/03	TO-I	MMA
bromodichloromethane	<5.00	UG/10L	08/25/03	TO-1	MMA
bromoform	<5.00	UG/10L	08/25/03	TO-1	MMA
bromomethane	<5.00	UG/10L	08/25/03	TO-1	MMA
carbon tetrachloride	<5.00	UG/10L	08/25/03	TO-1	MMA
chlorobenzene	<5.00	UG/10L	08/25/03	TO-1	MMA
chlorodibromomethane	<5.00	UG/10L	08/25/03	TO-1	MMA
chloroethane	<5.00	UG/10L	08/25/03	TQ-1	MMA
chloroform	<5.00	UG/10L	08/25/03	TO-1	MMA
chloromethane	<5.00	UG/10L	08/25/03	10-1	AMM
cis-1,3-dichloropropene	<5.00	UG/10L	08/25/03	TO-1	MMA
ethylbenzene	<5.00	UG/10L	08/25/03	TO-1	MMA
methyl ethyl ketone (mek)	<5.00	UG/10L	08/25/03	TO-1	MMA
methylene chloride	<5.00	UG/10L	08/25/03	TO-1	MMA
mtbe	<5.00	UG/10L	08/25/03	TO-I	MMA
tetrachloroethene	9.94	UG/10L	08/25/03	TO-I	MMA
toluene	<5.00	UG/10L	08/25/03	TO-I	MMA
trans-1.2-dichloroethene	<5.00	UG/10L	08/25/03	TO-1	MMA
trans-1,3-dichloropropene	<5.00	UG/10L	08/25/03	TO-1	MMA
trichloroethene	<5.00	UG/10L	08/25/03	TO-1	MMA
trichlorofluoromethane	<5.00	UG/10L	08/25/03	TO-I	MMA
vinyl chloride	<5.00	UG/10L	08/25/03	TO-I	MMA

Page 9 of 10

EPS - GEOSCIENCE

7280 Caswell Street

North Syracuse, NY 13212

ATTN: Mr. Dale Braue

PO#: 88997

PROJECT #:

206021

RECEIVED:

08/24/2003

LAB LOG#:

Z03-31

Site Address:

NYSDEC CONTRACT #D004184

FRANKLIN CLEANERS

HEMPSTEAD, NY

SVE PERF. TEST DAY 1

CLIENT JOB NUMBER:

K0122

DATE/TIME

METHOD

PERFORMED

SAMPLE #: 351587

TEST PERFORMED

xylene, m+p

xylene, o

CHENT CAMP CID.

RESULTS

PERFORMED

N

NUMBER

DATE SAMPLED:

BY

08/24/03

Volatile - TO1

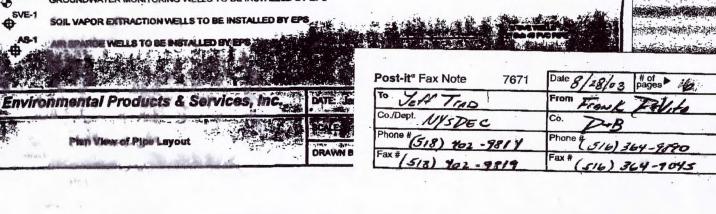
CLIENT SAMPLEID:

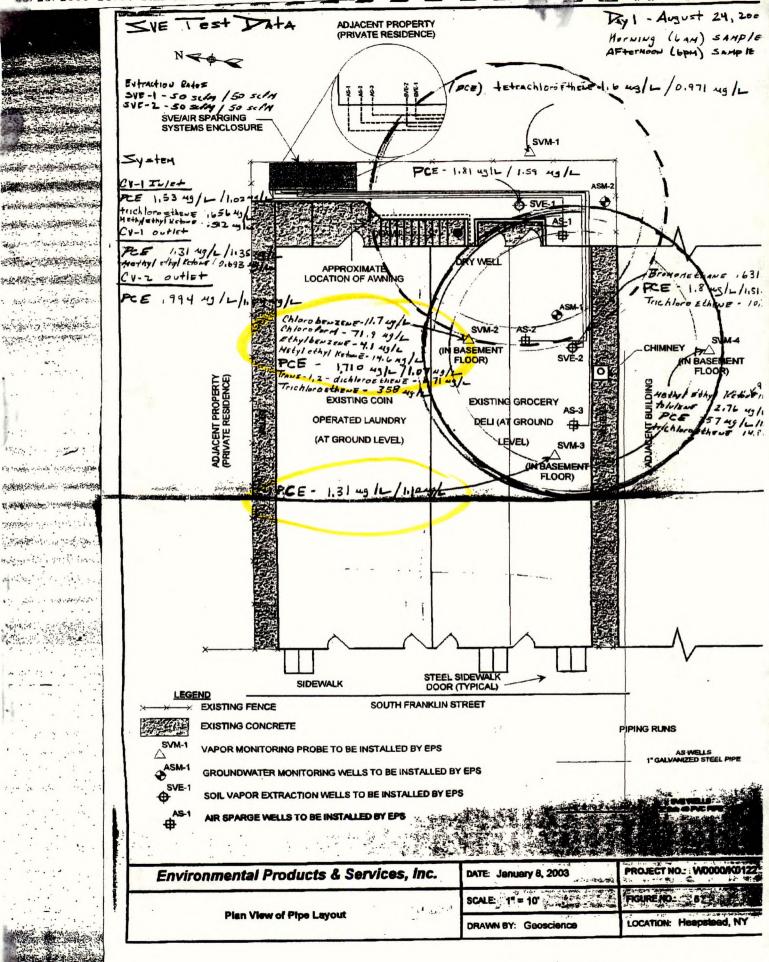
CV-2 OUTLET AM

<5.00

UG/10L UG/10L

UNITS


08/25/03


TO-1 TO-1 MMA

MMA

Wendy J. Umberger Laboratory Bleedtor 08/25/2003 Print Date

All tests performed under NYS ELAP Laboratory Certification # 11375 unless otherwise stated. Report relates only to the samples as received by the laboratory and shall not be reproduced except in full, without written approval from Environmental Laboratory Services.

-time: 0600____

Dale Braue

516-505-8422

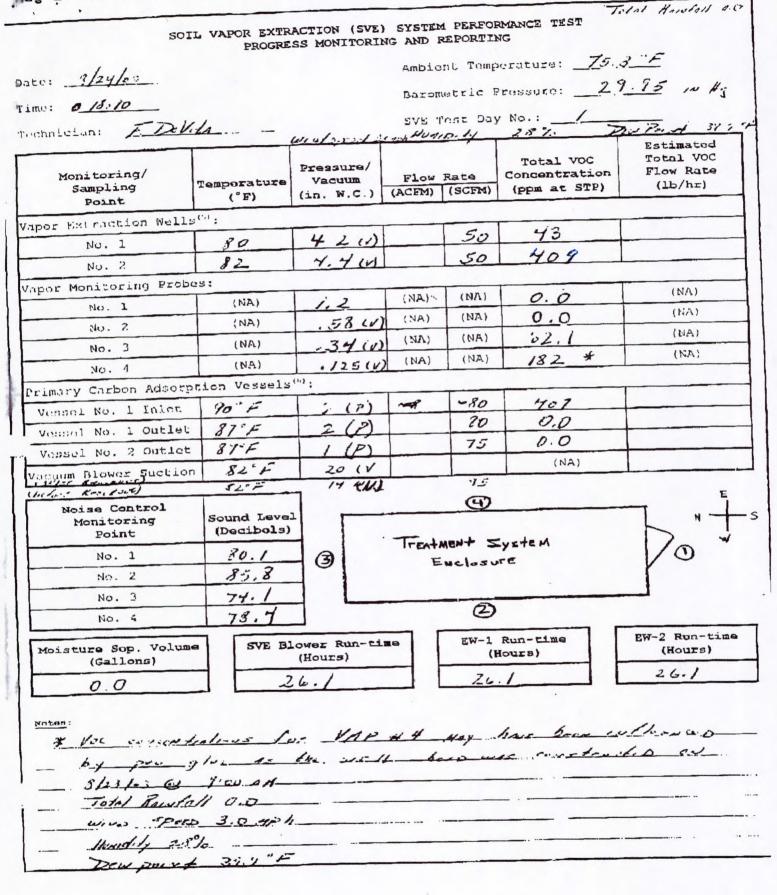
p. 3

SOIL VAPOR EXTRACTION (SVE) SYSTEM PERFORMANCE TEST PROGRESS MONITORING AND REPORTING

Date: _8/24/03

Ambient Temperature: 60.8

Burometric Pressure: 30.01


SVE Test Day No.: _____

Monitoring/ Sampling Point	Temperature	Pressure/ Vacuum (in. W.C.)	Flow (ACFM)	Rate (SCFM)	Total VOC Concentration (ppm at STP)	Estimated Total VOC Flow Rate (lb/hr)
por Extraction Well	a (t) :			T	1111	
No. 1	80	6.0		50	146	
No. 3	82	14.4		50	557	
por Monitoring Prob	cs:				1 .3 5	(NA)
No. 1	(NA)	1.15	(NA)	(NA)	12.2	
No. 2	(NA)	1.57	(NA)	(NA)	16.3	(AA)
No. 3	(NA)	.50	(NA)	(NA)	492	(NA)
No. 4	(NA)	125	(NA)	(NA)	478	(AA)
rimary Carbon Adsorp	tion Vessels	10) :				
Vessel No. 1 Inlet	91	8		10	0 3-6	
Vessel No. 1 Outlet		2		80	D	
Vessel No. 2 Outlet	-	O	1	275	0	
acuul Blower Succion		15		45	(NA)	
Noise Control Monitoring Point No. 1 No. 2 No. 2	(Decibora)	46.1		MENT S		
No. 3 46,3		44.4		2		
Moisture Sep. Volum (Gallons)	e SVE BI	ower Run-ti (Hours) 거.	ne	(I	Run-time Hours)	EW-2 Run-time (Hours)
Notos: TU TEXY SUN-Y MOY Daily (19) Aff	be TAFlum	1 by pu	C 7/4.	From	5041 (w) 510:5103	

Dale Braue

516-505-8422

p. 4

Aug 27 03 05:17p Dale Braue

Time: 0600

SOIL VAPOR EXTRACTION (SVE) SYSTEM PERFORMANCE TEST

PROGRESS MONITORING AND REPORTING Ambient Temperature: 672 Date: 8/25/63

Barometric Pressure: 29,97

Monitoring/ Sampling Point	Temporature (°F)	Pressure/ Vacuum (in. W.C.)	Flow (ACPM)	Rate (SCFM)	Total VOC Concontration (ppm at STP)	Estimated Total VOC Flow Rate (lb/hr)
por Extraction Wells	(5) 2					
No. l	80	5.65		(0	17.7	
No. 2	82	4.4		50	376	*
por Monitoring Probe	15:		,			
No. 1	(NA)	1.05	(NA)	(NA)	0	(KA)
No. 2	(NA)	44. 6D.	(NA)	(NV)	3760	(NA)
No. 3	(NV)	.275	(NA)	(NA)	216	(NA)
No. 4	(AK)	.15	(NA)	(NA)	266	(NV)
rimary Carbon Adnorpt	tion Vessels	(n) ;				A STATE OF THE PARTY OF THE PAR
Vessel No. 1 Thiet	86	7		70	340	
Vensel No. 1 Outlet	84	2		75	0	
Vessel No. 2 Outlet	80	0		15	U	
Hower Succion	2082	19(4)			(NA)	
Patron 1.0	80	19(0)		95		
Noise Control Monitoring Point	Sound Level			<u> </u>		1
No. 1	46.2	3		vent Z		100
No. 2	84.5		E	Melasu	re	
No. 3	71.5					
No. 4	81.8			2	7	
Moisture Sep. Volume (Gallons)	SVE BL	ower Run-tin	re	(H	Run-time ours)	EW-2 Run-time (Hours)

Aug 27 03 05:17p Dale Braue

p.6

SOIL VAPOR EXTRACTION (SVE) SYSTEM PERFORMANCE TEST PROGRESS MONITORING AND REPORTING

Date: 8/25/63

Ambient Température: 82,7

Time: @ /600_

Barometric Pressure: 2984

SVE Test Day No.: ____Z___

Monitoring/ Sampling Point	Temperature (°F)	Pressure/ Vacuum (in. W.C.)	Flow (ACEM)	Rate (SCFM)	Total VOC Concentration (ppm at STP)	Estimated Total VOC Flow Rate (lb/hr)
ipor Extraction Walls	(3):			, , ,		
No. 1	80	7.7		60	64.6	
No. 2	84	6.0		60	418	
apor Monitoring Probe	os t					
No. 1	(NA)	1.40	(NA)	(NV)	0.0	(AA)
No. 2	(NA)	.80	(NA)	(NA)	82.4	(NV)
No. 3	(NA)	.50	(NA)	(NA)	82.4	(NA)
No. 4	(NA)	.22	(NA)	(NA)	8.7	(NV)
rimary Carbon Adsorp	tion Vescels					
Vessel No. 1 Inlet	98	111		105	476	
Vessel No. 1 Outlet	94	4		95.0	111.	
Vessel No. 2 Outlet	97.	0		90.5	32.3	
acuum Blownr Auction		29			(NA)	
premi 10	82	23,90)	120		
Noise Control Monitoring Point	Sound Level (Decibels)	,		9	and the second s	N E
No. 1	60.4	3		IEN+ S		10
No. 2	67.3		E	nclosur	€	7
No. 3	52.1	7 1				
No. 4	49.6			2	A	
Moisture Sep. Volume (Callons)		ower Run-tin (Hours)	ne	(H	Run-time ours)	EW-2 Run-time (Hours)

330 Crossways Park Drive, Woodbury, New York, 11797-2015 516-364-9890 • 718-460-3634 • Fax: 516-364-9045 e-mail: db-eng@worldnet.att.net

September 18, 2003

Principals

Nicholas J. Bartilucci, P.E. President

Henry J. Chlupsa, P.E Executive Vice President

Thomas F. Maher, P.E.

Robert T. Burns, P.E.

Vice President

Richard M. Walka Vice President

Steven A. Fangmann, P.E. Vice President

Theodore S. Pytlar, Jr. Vice President

Senior Associates

Anthony O. Conetta, P.E.

Dennis F. Koehler, P.E.

Joseph H. Marturano

John A. Mirando, P.E.

Kenneth J. Pritchard, P.E.

Brian M. Veith, P.E.

Associates

Joseph F. Baader

Garrett M. Byrnes, P.E.

Rudolph F. Cannavale

Joseph A. Fioraliso, P.E.

Thomas P. Fox, P.G.

Gerald Gould, C.P.G.

William D. Merklin, P.E.

Michael Neuberger, P.E.

Edward J. Reilly

Charles J. Wachsmuth, P.E.

Kenneth P. Wenz, Jr., C.P.G.

Jeffery E. Trad, P.E.

Bureau of Construction Services

Division of Environmental Remediation

New York State Department of Environmental Conservation

625 Broadway, 12th Floor

Albany, NY 12233-7013

Re:

Franklin Cleaners Site

NYSDEC Contract No. D004184

Site No. 1-30-050

D&B No. 1851

Dear Mr. Trad:

Enclosed please find a table summarizing the analytical results for soil vapor samples collected by Environmental Products and Services, Inc. during the morning of September 4, 2003, as part of the Soil Vapor Extraction System Performance Test at the above-referenced site. The table also provides analytical results for the split samples collected by this office. A schematic (Figure 1) showing the sample locations has also been enclosed for your reference.

Please do not hesitate to contact me at (516) 364-9890 if you have any questions.

Very truly yours,

Frank Dolita

Frank DeVita Project Manager

FD(t)/ld Enclosures

cc:

J. Yavonditte, NYSDEC

T. Maher, D&B

M. Wright, D&B

S. Tauss, D&B

D. Braue, EPS

J. Pecori, EPS

♦1851\FD03(B)LTR-23.DOC(R01)

TABLE 1
FRANKLIN CLEANERS SITE
NYSDEC CONTRACT No. D004184 / SITE No. 1-30-050
SOIL VAPOR EXTRACTION (SVE) PERFORMANCE TEST AIR SAMPLE RESULTS

SAMPLE ID		SVE-1	(AM)			SVE-	2 (AM)			SVM-	-1 (AM)				-2 (AM)	
SAMPLE TYPE	AIR		AIF	?	All	R	AIF	3	Al	IR	AIF		Al		Alf	
DATE OF COLLECTION	09/04/2003		09/04/2	2003	09/04/	2003	09/04/2	2003	09/04/	/2003	09/04/2	2003	09/04		09/04/	
COLLECTED BY	EP&S		D&I	В	EP	&S	D&		EP		D&I		EP		D&	
UNITS	(ug/L)		(ug/l	L)	(ug	/L)	(ug/	L)	(ug	1/L)	(ug/	L)	(ug	/L)	(ug/	'L)
VOCs																
1,1,1-trichloroethane		J	0.0260	Α		U		U		U	0.0330	Α		U	0.0007	J
1,1,2,2-tetrachloroethane		J		U		U		U		U		U		U		U
1,1,2-trichloroethane		J		U		U		U		U		U		U		U
1,1-dichloroethane		J	0.0024			U		U	1	U	0.0017			U		U
1,1-dichloroethene		J	0.0053			U	0.0032			U		U		U		U
1,2-dichlorobenzene	3	J		U		U		U		U		U		U		U
1,2-dichloroethane		J		U		U		U		U		U		U		U
1,2-dichloropropane		J		U		U		U		U		U		U		U
1,3-dichlorobenzene		J		U		U		U		U		U		U		U
1,4-dichlorobenzene		J		U		U	0.0018			U	10000	U		U		U
acetone		J	0.0018			U	0.0026			U	0.0024			U	0.0033	
benzene		J	0.0003	JB		U	0.0006	JB		U	0.0006	JB		U	0.0004	JB
bromodichloromethane		J		U		U		U		U	100000000000000000000000000000000000000	U		U		U
bromoform				U		U		U		U		U		U		U
bromomethane			0.0190	В		U	0.0081	В		U	0.0120	В		U	0.0029	В
carbon disulfide	NM		0.0.00	Ū	NM			U	NM			U	NM			U
carbon tetrachloride		ا ر		Ü		U		U		U		U	1	U	0.0004	J
chlorobenzene			0.0055			U	0.0021			U		U		U		U
chlorodibromomethane		ا ر		U		U		U		U		U		U		U
chloroethane		ا ر		Ü		U		U		U		U	1	U		U
chloroform			0.0013			U	0.0025			U	0.0013			U	0.0056	
chloromethane		j	0.0019			U	0.0048			U	0.0010			U	0.0012	
cis-1,2-dichloroethene	NM		0.0480	Α	NM		0.0030		NM			U	NM			U
cis-1,3-dichloropropene		ا ر		Ü		U		U		U		U		U		U
dibromochloromethane	NM			U	NM			U	NM			U	NM			U
ethylbenzene		ا ر	0.0008	J		U	0.0004	J		U	0.0012			U	0.0006	J
methyl ethyl ketone (mek)				U		U		U		U	0.0026			U	0.0008	J
methylene chloride		J	0.0010	•		Ü	0.0013			Ü	0.0005	J		U	0.0021	
mtbe		ا ر	0.0010	U		Ü	0.0006	J		U	0.0012			U	0.0008	J
styrene	NM			Ü	NM	•	0.0000	Ü	NM		0.0002	J	NM			U
tetrachloroethene		ا ر	1.1000	A	1.38		5.0000	A		U	0.4200	Α	1.79		0.9100	Α
toluene			0.0010	^	1.50	U	0.0009	J		Ü	0.0022	,,		U	0.0014	
trans-1,2-dichloroethene			0.0010			U	0.0003	Ü		Ü	0.0022	U		Ü	0.0011	U
trans-1,3-dichloropropene			0.0013	U		U		Ü		U		Ü		Ü		Ŭ
trichloroethene			0.0220	A		U	0.0220	A		U	0.0001	J		Ü	0.0005	J
trichlorofluoromethane			0.0220	A		U	0.0220	J		U	0.0009	J		U	0.0008	J
			0.0013	U		U	0.0003	U		U	0.0003	Ü		Ü	0.0000	Ü
vinyl chloride			0.0040	U		U	0.0015	U		U	0.0054	U		U	0.0020	U
xylene, m+p xylene, o			0.0040			U	0.0015	J		U	0.0034			U	0.0020	J

xylene, o

U: Compound analyzed for but not detected

B: Concentration is between instrument detection limit and contract required detection limit

J: Estimated

A: Concentration exceeds calibration limit

NA: Not Available NM: Not Monitored ug/l = Microgram per liter

TABLE 1 (Continued) FRANKLIN CLEANERS SITE

NYSDEC CONTRACT No. D004184 / SITE No. 1-30-050

SOIL VAPOR EXTRACTION (SVE) PERFORMANCE TEST AIR SAMPLE RESULTS

SAMPLE ID		SVM-	-3(AM)			SVM-	4 (AM)			CV-1 INI	LET (AM)		CV-1 OL	JTLET (AM)	
SAMPLE TYPE	AIR		AIF		All	R	AIF	3	Al	IR	AIR		IR	Alf	
DATE OF COLLECTION	09/04/2	003	09/04/2	2003	09/04/	2003	09/04/2	2003	09/04	/2003	09/04/2003	09/04	1/2003	09/04/	2003
COLLECTED BY	EP&	S	D&		EP8	&S	D&	В	EP	&S	D&B	EP	°&S	D&	В
UNITS	(ug/L)	(ug/	L)	(ug/	/L)	(ug/	L)	(ug	1/L)	(ug/L)	(ug	g/L)	(ug/	L)
VOCs															
1,1,1-trichloroethane		U	0.0001	J		U		U		U	NM		U	0.0970	Α
1,1,2,2-tetrachloroethane		U		U		U		U		U	NM		U		U
1,1,2-trichloroethane		U		U		U		U		U	NM		U		U
1,1-dichloroethane		U		U		U		U		U	NM		U	0.0031	
1,1-dichloroethene		U		U		U		U		U	NM		U	0.0110	
1,2-dichlorobenzene		U		U		U		U		U	NM		U		U
1,2-dichloroethane		U		U		U		U		U	NM		U		U
1,2-dichloropropane		U		U		U		U		U	NM		U		U
1,3-dichlorobenzene		U		U		U		U		U	NM		U		U
1.4-dichlorobenzene		U		U		U		U		U	NM		U		U
acetone		U	0.0042			U	0.0120			U	NM		U	0.0150	
benzene		U	0.0005	JB		U	0.0004	JB		U	NM		U	0.0015	В
bromodichloromethane		U	130000000000	U		U	- 50 900 000 00	U		U	NM		U	100000000000000000000000000000000000000	U
bromoform		U		U		U		U		U	NM		U		U
bromomethane		U	0.0027	В		U	0.0022	В		U	NM		U	0.0110	В
carbon disulfide	NM			Ū	NM			Ū	NM		NM	NM		0.0006	J
carbon tetrachloride		U		U		U		U		U	NM	777	U		U
chlorobenzene		U		U		U		U		U	NM		U		U
chlorodibromomethane		Ü		Ü		U		U		U	NM		U		U
chloroethane		U		U		U		U		U	NM		U		U
chloroform		Ü		Ü		U	0.0026	-		Ü	NM		U	0.0340	Α
chloromethane		U	0.0015			U	0.0011			U	NM		U	0.0081	
cis-1,2-dichloroethene	NM			U	NM		0.0010		NM		NM	NM		0.2100	Α
cis-1,3-dichloropropene		U		Ü		U		U		U	NM		U		U
dibromochloromethane	NM			Ü	NM			U	NM		NM	NM			U
ethylbenzene		U	0.0005	J		U	0.0003	J		U	NM		U	0.0004	J
methyl ethyl ketone (mek)		U	0.0023		2.22	Α	0.0950	Α		U	NM		U		U
methylene chloride		Ü	0.0010			U	0.0020			U	NM		U	0.0025	
mtbe		U	0.0009	J		Ü	0.0012			U	NM		U	0.0040	
styrene	NM		0.0001	J	NM		0.0001	J	NM		NM	NM		3,55.5	U
tetrachloroethene	1.98		0.9000	Ä	1.65		0.8600	Ä	1.54		NM	1.67		5.5000	A
toluene	1.00	U	0.0015	, ,	1.00	U	0.0012		1.01	U	NM		U	0.0020	
trans-1,2-dichloroethene		Ü	0.0010	U		Ü	0.0012	U		Ü	NM		Ü	0.0044	
trans-1,3-dichloropropene		Ü		Ü		Ü		Ü		Ü	NM		Ŭ		U
trichloroethene		U	0.0007	J		Ü	0.0028	0		Ü	NM		Ü	0.4000	A
trichlorofluoromethane		Ü	0.0007	J		Ü	0.0023			Ü	NM		Ü	0.0030	
vinyl chloride		Ü	0.0007	Ü		U	0.0020	U		U	NM		Ü	0.0000	U
xylene, m+p		Ü	0.0019	J		Ü	0.0011	5		Ü	NM		Ü	0.0020	5
xylene, o		U	0.0013	J		U	0.0004	J		Ü	NM		Ü	0.0020	J

xylene, o

U: Compound analyzed for but not detected

B: Concentration is between instrument detection limit and contract required detection limit

J: Estimated

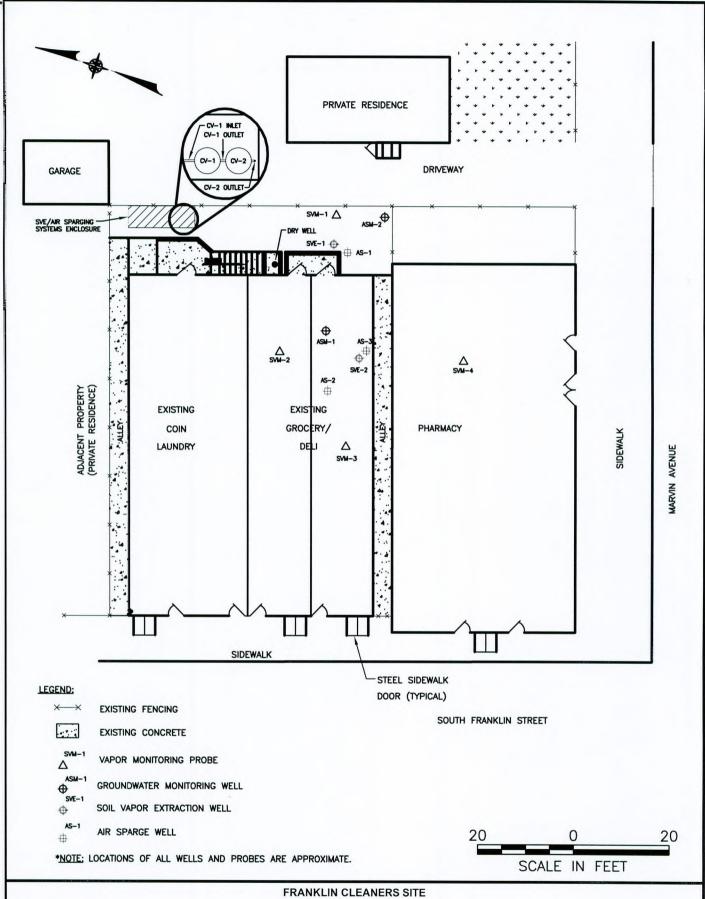
A: Concentration exceeds calibration limit

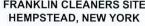
NA: Not Available NM: Not Monitored ug/l = Microgram per liter

TABLE 1 (Continued) FRANKLIN CLEANERS SITE

NYSDEC CONTRACT No. D004184 / SITE No. 1-30-050

SOIL VAPOR EXTRACTION (SVE) PERFORMANCE TEST AIR SAMPLE RESULTS


SAMPLE ID	CV-2 C	OUTLET (AM)				
SAMPLE TYPE	AIR	AIR				
DATE OF COLLECTION	09/04/2003	09/04/2003				
COLLECTED BY	EP&S	D&B				
UNITS	(ug/L)	(ug/L)				
VOCs		, , ,				
1,1,1-trichloroethane	U	NM				
1,1,2,2-tetrachloroethane	U	NM				
1,1,2-trichloroethane	U	NM				
1,1-dichloroethane	U	NM				
1,1-dichloroethene	U	NM		1		
1,2-dichlorobenzene	U	NM		1		
1,2-dichloroethane	U	NM				
1,2-dichloropropane	U	NM				
1,3-dichlorobenzene	U	NM				
1,4-dichlorobenzene	U	NM				
acetone	U	NM				1
benzene	U	NM				
bromodichloromethane	U	NM		1		
bromoform	U	NM		1		
bromomethane	U	NM				
carbon disulfide	NM	NM				1
carbon tetrachloride	U	NM		1		
chlorobenzene	U	NM				
chlorodibromomethane	U	NM				
chloroethane	U	NM		1		
chloroform	U	NM		1		
chloromethane	U	NM		1		
cis-1,2-dichloroethene	NM	NM				
cis-1,3-dichloropropene	U	NM				
dibromochloromethane	NM	NM		T.		
ethylbenzene	U	NM				
methyl ethyl ketone (mek)	U	NM		1		
methylene chloride	U	NM				
mtbe	U	NM				
styrene	NM	NM				
tetrachloroethene	1.42	NM				
toluene	U	NM		I.		
trans-1,2-dichloroethene	U	NM				
trans-1,3-dichloropropene	U	NM				
trichloroethene	U	NM				
trichlorofluoromethane	U	NM				
vinyl chloride	U	NM				
xylene, m+p	U	NM				
xylene, o	U	NM				


U: Compound analyzed for but not detected
B: Concentration is between instrument detection limit and contract required detection limit

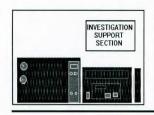
J: Estimated

A: Concentration exceeds calibration limit

NA: Not Available NM: Not Monitored ug/l = Microgram per liter

edec

Case Narrative


Site Name: Franklin Cleaners

Date received: 06/30/05

For sample delivery group(s): 181-01

All QA/QC associated with this sample delivery group were within acceptable method criteria.

Carbon dioxide was reported as a TIC in all of the samples. This is a known lab contaminant and should be disregarded. It is reported because the method requires it and would be qualified with a 'B' if it were a target analyte.

NYS DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATON LABORATORY ANALYTICAL REPORT

ELAP LABORATORY ID NUMBER: 11625 EPA LABORATORY ID NUMBER: NY01358

VOLATILE ORGANICS ANALYSIS DATA SHEET

FIELD SAMPLE ID:

CONCENTRATION UNITS:

Site Name: Franklin Cleaners
Site Code: 130050 Date Collected: 5/16/05 SDG No.: 181-01 Trip Blank

 Matrix: (soil/water)
 WATER
 Date Received:
 06/30/05
 Lab Sample ID:
 105-181-001

 Sample wt/vol:
 5.0
 (g/ml)
 ML
 Lab File ID:
 05C0577A.D

 GC Column:
 rtx-624
 ID:
 0.25 (mm)
 Date Analyzed:
 07/01/05

 % Moisture:
 decanted:(Y/N)
 N
 Dilution Factor:
 1.0

CAS NO.	COMPOUND (ug/L or ug/	Kg) UG/L	Q	CAS NO.	COMPOUND (ug/L or ug	g/Kg) UG/L	Q
5-71-8	Dichlorodifluoromethane	10	U	106-46-7	1,4-Dichlorobenzene	10	U
4-87-3	Chloromethane	10	U	95-50-1	1,2-Dichlorobenzene	10	U
5-01-4	Vinyl Chloride	10	U	120-82-1	1,2,4-Trichlorobenzene	10	U
4-83-9	Bromomethane	10	U	87-61-6	1,2,3-Trichlorobenzene	10	U
5-00-3	Chloroethane	10	U				
5-69-4	Trichlorofluoromethane	10	U				

% Moistu	ıre: d	lecanted:(Y/N))
	CONCENTR	RATION UNITS	3:
CAS NO.	COMPOUND (ug/L or ug	/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	10	U
74-87-3	Chloromethane	10	U
75-01-4	Vinyl Chloride	10	U
74-83-9	Bromomethane	10	U
75-00-3	Chloroethane	10	U
75-69-4	Trichlorofluoromethane	10	U
75-35-4	1,1-Dichloroethene	10	U
75-15-0	Carbon Disulfide	10	U
67-64-1	Acetone	10	U
75-09-2	Methylene Chloride	10	U
1634-04-4	methyl-tert butyl ether	10	U
540-59-0	trans 1,2-Dichloroethene	10	U
75-34-4	1,1-Dichloroethane	10	U
108-05-4	Vinyl acetate	10	U
540-59-0	cis 1,2-Dichloroethene	10	U
78-93-3	2-Butanone	10	U
67-66-3	Chloroform	10	U
71-55-6	1,1,1-Trichloroethane	10	U
56-23-5	Carbon tetrachloride	10	U
71-43-2	Benzene	10	U
107-06-2	1,2-Dichloroethane	10	U
79-01-6	Trichloroethene	10	U
78-87-5	1,2-Dichloropropane	10	U
75-27-4	Bromodichloromethane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	U
108-10-1	4-Methyl-2-pentanone	10	U
108-88-3	Toluene	10	U
10061-02-6	trans-1,3-Dichloropropen	10	U
79-00-5	1,1,2-Trichloroethane	10	U
127-18-4	Tetrachloroethene	10	U
591-78-6	2-Hexanone	10	U
124-48-1	Dibromochloromethane	10	U
108-90-7	Chlorobenzene	10	U
100-41-4	Ethylbenzene	10	U
1330-20-7	m,p-Xylenes	10	U
1330-20-7	o-Xylene	10	U
100-42-5	Styrene	10	U
75-25-2	Bromoform	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	U
95-49-8	2-Chlorotoluene	10	U
106-43-4	4-Chlorotoluene	10	U
541-73-1	1,3-Dichlorobenzene	10	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

FIELD SAMPLE ID:

20

JN

		TENTAT	IVELY IDEN	TIFIED COMP	OUNDS			
Site Name:	Franklin	Cleaners					Trip Blank	
Site Code:	130050					SD	G No.: 181-0	01
Matrix: (soil/v	water)	WATER			Lab Sample	ID:	105-181-001	
Sample wt/vo	ol:	5.0	(g/ml) ML		Lab File ID:		05C0577A.D	
Level: (low/m	ned)	LOW			Date Receive	ed:	06/30/05	
% Moisture:	not dec.				Date Analyz	ed:	07/01/05	
GC Column:	rtx-624	ID: <u>0.2</u>	25 (mm)		Dilution Fact	tor:	1.0	
Soil Extract \	Volume:		_ (uL)		Soil Aliquot	Volun	ne:	(uL)
				CONCENTR	ATION UNIT	S:		
Number TICs	found:	1	_	(ug/L or ug/k	(g) <u>UG</u> /	/L	_	
CAS NO.		COMPOU	ND NAME		RT	EST	r. conc.	Q

6.02

1. 000124-38-9

Carbon dioxide

NYS DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATON LABORATORY ANALYTICAL REPORT

ELAP LABORATORY ID NUMBER: 11625 EPA LABORATORY ID NUMBER: NY01358

VOLATILE ORGANICS ANALYSIS DATA SHEET

FIELD SAMPLE ID:

Site Name:	Franklin Cleane	ers			
Site Code:	130050	Date Collected: 6/2	28/05	SDG No.: 181-01	ASM-2
Matrix: (soil/v	water) WATER	Date Received:	06/30/05	Lab Sample ID:	105-181-002
Sample wt/vo	ol: <u>5.0</u>	_(g/ml) <u>ML</u>		Lab File ID:	05C0575A.D
GC Column:	rtx-624	ID: <u>0.25</u> (mm)		Date Analyzed:	07/01/05
% Moisture:		decanted:(Y/N)	N	Dilution Factor:	1.0
	CONC	ENTRATION UNITS:			CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/	Kg) UG/L	Q	CAS NO.	COMPOUND (ug/L or ug	g/Kg) UG/L	Q	
5-71-8	Dichlorodifluoromethane	10	U	106-46-7	1,4-Dichlorobenzene	10	U	•
4-87-3	Chloromethane	10	U	95-50-1	1,2-Dichlorobenzene	10	U	
5-01-4	Vinyl Chloride	10	U	120-82-1	1,2,4-Trichlorobenzene	10	U	•
4-83-9	Bromomethane	10	U	87-61-6	1,2,3-Trichlorobenzene	10	U	•
5-00-3	Chloroethane	10	U	· · · · · · · · · · · · · · · · · · ·				,
5-69-4	Trichlorofluoromethane	10	U					
5-35-4	1 1-Dichloroethene	10	11					

% Moistu	ure: d	ecanted:(Y/N)
	CONCENTR	RATION UNITS	S:
CAS NO.	COMPOUND (ug/L or ug/	/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	10	U
74-87-3	Chloromethane	10	U
75-01-4	Vinyl Chloride	10	U
74-83-9	Bromomethane	10	U
75-00-3	Chloroethane	10	U
75-69-4	Trichlorofluoromethane	10	U
75-35-4	1,1-Dichloroethene	10	U
75-15-0	Carbon Disulfide	10	U
67-64-1	Acetone	10	U
75-09-2	Methylene Chloride	10	U
1634-04-4	methyl-tert butyl ether	10	U
540-59-0	trans 1,2-Dichloroethene	10	U
75-34-4	1,1-Dichloroethane	10	U
108-05-4	Vinyl acetate	10	U
540-59-0	cis 1,2-Dichloroethene	10	U
78-93-3	2-Butanone	10	U
67-66-3	Chloroform	10	U
71-55-6	1,1,1-Trichloroethane	10	U
56-23-5	Carbon tetrachloride	10	U
71-43-2	Benzene	10	U
107-06-2	1,2-Dichloroethane	10	U
79-01-6	Trichloroethene	10	U
78-87-5	1,2-Dichloropropane	10	U
75-27-4	Bromodichloromethane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	U
108-10-1	4-Methyl-2-pentanone	10	U
108-88-3	Toluene	10	U
10061-02-6	trans-1,3-Dichloropropen	10	U
79-00-5	1,1,2-Trichloroethane	10	U
127-18-4	Tetrachloroethene	10	U
591-78-6	2-Hexanone	10	U
124-48-1	Dibromochloromethane	10	U
108-90-7	Chlorobenzene	10	U
100-41-4	Ethylbenzene	10	U
1330-20-7	m,p-Xylenes	10	U
1330-20-7	o-Xylene	10	U
100-42-5	Styrene	10	U
75-25-2	Bromoform	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	U
95-49-8	2-Chlorotoluene	10	U
106-43-4	4-Chlorotoluene	10	U
541-73-1	1,3-Dichlorobenzene	10	U

FIELD SAMPLE ID: **VOLATILE ORGANICS ANALYSIS DATA SHEET** TENTATIVELY IDENTIFIED COMPOUNDS ASM-2 Site Name: Franklin Cleaners Site Code: 130050 SDG No.: 181-01 Matrix: (soil/water) WATER Lab Sample ID: 105-181-002 Sample wt/vol: 5.0 (g/ml) ML Lab File ID: 05C0575A.D Level: (low/med) LOW Date Received: 06/30/05 % Moisture: not dec. Date Analyzed: 07/01/05 GC Column: rtx-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found:

RT

6.02

EST. CONC.

5

Q

JN

COMPOUND NAME

Carbon dioxide

CAS NO.

000124-38-9

NYS DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATON LABORATORY ANALYTICAL REPORT

ELAP LABORATORY ID NUMBER: 11625 EPA LABORATORY ID NUMBER: NY01358

VOLATILE ORGANICS ANALYSIS DATA SHEET

FIELD SAMPLE ID:

Site Name:	Franklin Cl	eaners			
Site Code:	130050	Date Collected:	6/28/05	SDG No : 181-01	ASM-1

Matrix: (soil/water) WATER Date Received: 06/30/05 Lab Sample ID: 105-181-003

 Sample wt/vol:
 5.0
 (g/ml)
 ML
 Lab File ID:
 05C0576A.D

 GC Column:
 rtx-624
 ID:
 0.25 (mm)
 Date Analyzed:
 07/01/05

% Moisture: decanted:(Y/N) N Dilution Factor: 1.0

CONCENTRATION UNITS:

	CONCENTE	RATION UNI	ΓS:
CAS NO.	COMPOUND (ug/L or ug	/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	10	U
74-87-3	Chloromethane	10	U
75-01-4	Vinyl Chloride	10	U
74-83-9	Bromomethane	10	U
75-00-3	Chloroethane	10	U
75-69-4	Trichlorofluoromethane	10	U
75-35-4	1,1-Dichloroethene	10	U
75-15-0	Carbon Disulfide	10	U
67-64-1	Acetone	10	U
75-09-2	Methylene Chloride	10	U
1634-04-4	methyl-tert butyl ether	10	U
540-59-0	trans 1,2-Dichloroethene	10	U
75-34-4	1,1-Dichloroethane	10	U
108-05-4	Vinyl acetate	10	U
540-59-0	cis 1,2-Dichloroethene	10	U
78-93-3	2-Butanone	10	U
67-66-3	Chloroform	10	U
71-55-6	1,1,1-Trichloroethane	10	U
56-23-5	Carbon tetrachloride	10	U
71-43-2	Benzene	10	U
107-06-2	1,2-Dichloroethane	10	U
79-01-6	Trichloroethene	10	U
78-87-5	1,2-Dichloropropane	10	U
75-27-4	Bromodichloromethane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	U
108-10-1	4-Methyl-2-pentanone	10	U
108-88-3	Toluene	10	U
10061-02-6	trans-1,3-Dichloropropen	10	U
79-00-5	1,1,2-Trichloroethane	10	U
127-18-4	Tetrachloroethene	10	U
591-78-6	2-Hexanone	10	U
124-48-1	Dibromochloromethane	10	U
108-90-7	Chlorobenzene	10	U
100-41-4	Ethylbenzene	10	U
1330-20-7	m,p-Xylenes	10	U
1330-20-7	o-Xylene	10	U
100-42-5	Styrene	10	U
75 05 0		1000	

		CONCENT	RATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or u	g/Kg) UG/L	Q	
106-46-7	1,4-Dichlorobe	1,4-Dichlorobenzene		U	
95-50-1	1,2-Dichlorobe	1,2-Dichlorobenzene			
120-82-1	1,2,4-Trichlorol	1,2,4-Trichlorobenzene		U	
87-61-6	1,2,3-Trichlorol	1,2,3-Trichlorobenzene 10			

Bromoform

2-Chlorotoluene

4-Chlorotoluene

1,3-Dichlorobenzene

1,1,2,2-Tetrachloroethane

75-25-2

79-34-5

95-49-8

106-43-4

541-73-1

10

10

10

10

10

U

U

U

U

U

VOLATILE ORGANICS ANALYSIS DATA SHEET FIELD SAMPLE ID:

	TENTATIVELY IDEN	TIFIED COMPOUNDS		
Site Name: Frankl	in Cleaners		ASM-1	
Site Code: 13005	0		SDG No.: 18	1-01
Matrix: (soil/water)	WATER	Lab Sam	ple ID: 105-181-003	3
Sample wt/vol:	5.0 (g/ml) ML	Lab File	ID: 05C0576A.E)
Level: (low/med)	LOW	Date Rec	ceived: 06/30/05	
% Moisture: not dec	•	Date Ana	alyzed: <u>07/01/05</u>	
GC Column: rtx-6	24 ID: <u>0.25</u> (mm)	Dilution F	actor: 1.0	
Soil Extract Volume:	(uL)	Soil Aliqu	uot Volume:	(uL)
Number TICs found:	1	CONCENTRATION U (ug/L or ug/Kg)	NITS: UG/L	
CAS NO.	COMPOUND NAME	RT	EST. CONC.	Q
1. 000124-38-9	Carbon dioxide	6.0	2 6	JN

NYS DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATON LABORATORY ANALYTICAL REPORT

ELAP LABORATORY ID NUMBER: 11625 EPA LABORATORY ID NUMBER: NY01358

Dilution Factor: 1.0

VOLATILE ORGANICS ANALYSIS DATA SHEET

FIELD SAMPLE ID:

Site Name:	Franklin Clear	ners				
Site Code:	130050	Date Collected:	6/29/05	SDG No.: 181-01	FC-2	
Matrix: (soil/v	water) WATER	Date Receive	ed: 06/30/05	Lab Sample ID:	105-181-004	
Sample wt/vo	ol: <u>5.0</u>	(g/ml) <u>ML</u>	_	Lab File ID:	05C0578A.D	
GC Column:	rtx-624	_ID: <u>0.25</u> (mm)		Date Analyzed:	07/01/05	

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg) UG/L			CAS NO.	COMPOUND (ug/L or u	g/Kg) UG/L	Q
5-71-8	Dichlorodifluoromethane	10	U	106-46-7	1,4-Dichlorobenzene	10	U
4-87-3	Chloromethane	10	U	95-50-1	1,2-Dichlorobenzene	10	U
5-01-4	Vinyl Chloride	10	U	120-82-1	1,2,4-Trichlorobenzene	10	U
4-83-9	Bromomethane	10	U	87-61-6	1,2,3-Trichlorobenzene	10	U
5-00-3	Chloroethane	10	U	•			

GC Colur			
% Moistu		decanted:(Y/N	
21233		RATION UNIT	S:
CAS NO.	COMPOUND (ug/L or ug		Q
75-71-8	Dichlorodifluoromethane	10	U
74-87-3	Chloromethane	10	U
75-01-4	Vinyl Chloride	10	U
74-83-9	Bromomethane	10	U
75-00-3	Chloroethane	10	U
75-69-4	Trichlorofluoromethane	10	U
75-35-4	1,1-Dichloroethene	10	U
75-15-0	Carbon Disulfide	10	U
67-64-1	Acetone	10	U
75-09-2	Methylene Chloride	10	U
1634-04-4	methyl-tert butyl ether	10	U
540-59-0	trans 1,2-Dichloroethene	10	U
75-34-4	1,1-Dichloroethane	10	U
108-05-4	Vinyl acetate	10	U
540-59-0	cis 1,2-Dichloroethene	10	U
78-93-3	2-Butanone	10	U
67-66-3	Chloroform	10	U
71-55-6	1,1,1-Trichloroethane	10	U
56-23-5	Carbon tetrachloride		U
71-43-2	Benzene 1,2-Dichloroethane	10	U
107-06-2 79-01-6		10	U
	Trichloroethene	10	U
78-87-5 75-27-4	1,2-Dichloropropane Bromodichloromethane	10	U
10061-01-5		10	U
108-10-1	cis-1,3-Dichloropropene	10	U
108-88-3	4-Methyl-2-pentanone Toluene	10	U
10061-02-6		10	
79-00-5	trans-1,3-Dichloropropen 1,1,2-Trichloroethane	10	U
127-18-4	Tetrachloroethene	2	J
591-78-6	2-Hexanone	10	U
124-48-1	Dibromochloromethane	10	U
108-90-7	Chlorobenzene	10	U
100-30-7	Ethylbenzene	10	U
1330-20-7	m,p-Xylenes	10	U
1330-20-7	o-Xylene	10	U
100-42-5	Styrene	10	U
75-25-2	Bromoform	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	U
95-49-8	2-Chlorotoluene	10	U
106-43-4	4-Chlorotoluene	10	U
541-73-1	1,3-Dichlorobenzene	10	U

	,	VOLATILE (ORGANICS	ANALYSIS DAT	A SHEET		FIELD SAME	PLE ID:
Site Name:	Franklin	TENTAT Cleaners	IVELY IDEN	ITIFIED COMPO	OUNDS		FC-2	
Site Code:	130050					SE	OG No.: 181-0	1
Matrix: (soil/w	ater)	WATER	_	L	ab Sample	ID:	105-181-004	
Sample wt/vo	l:	5.0	(g/ml) ML	L	ab File ID:		05C0578A.D	
Level: (low/m	ed)	LOW	_		ate Receiv	ed:	06/30/05	_
% Moisture: r	not dec.				ate Analyz	ed:	07/01/05	
GC Column:	rtx-624	ID: <u>0.2</u>	25 (mm)		ilution Fac	tor:	1.0	
Soil Extract V	olume: _		_ (uL)	S	Soil Aliquot	Volun	ne:	_ (uL)
				CONCENTRA	TION UNIT	rs:		
Number TICs	found:	1	-	(ug/L or ug/Kg	g) <u>UG</u>	/L		
CAS NO.		COMPOU	ND NAME		RT	ES	T. CONC.	Q

6.02

8

JN

1. 000124-38-9 Carbon dioxide

67-64-1

75-09-2

1634-04-4

540-59-0

75-34-4

108-05-4

540-59-0

78-93-3

67-66-3

71-55-6

56-23-5

71-43-2

107-06-2

79-01-6

78-87-5

75-27-4

108-10-1

108-88-3

79-00-5

127-18-4

591-78-6

124-48-1

108-90-7

100-41-4

1330-20-7

1330-20-7

100-42-5

75-25-2

79-34-5

95-49-8

106-43-4

541-73-1

10061-01-5

10061-02-6

Acetone

Methylene Chloride

1,1-Dichloroethane

cis 1,2-Dichloroethene

1,1,1-Trichloroethane

Carbon tetrachloride

1,2-Dichloroethane

1,2-Dichloropropane

Bromodichloromethane

cis-1,3-Dichloropropene

trans-1,3-Dichloropropen

Dibromochloromethane

1,1,2,2-Tetrachloroethane

4-Methyl-2-pentanone

1,1,2-Trichloroethane

Tetrachloroethene

2-Hexanone

Chlorobenzene

Ethylbenzene

m,p-Xylenes

Bromoform

2-Chlorotoluene

4-Chlorotoluene

1,3-Dichlorobenzene

o-Xylene

Styrene

Trichloroethene

Vinyl acetate

2-Butanone

Chloroform

Benzene

Toluene

methyl-tert butyl ether

trans 1,2-Dichloroethene

NYS DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATON LABORATORY ANALYTICAL REPORT

ELAP LABORATORY ID NUMBER: 11625 EPA LABORATORY ID NUMBER: NY01358

Dilution Factor: 1.0

VOLATILE ORGANICS ANALYSIS DATA SHEET

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

FIELD SAMPLE ID:

Site Name:	Franklin Clea	ners			F0.4	
Site Code:	130050	Date Collected:	6/29/05	SDG No.: 181-01	FC-1	
Matrix: (soil/	water) WATE	R Date Receive	ed: 06/30/05	Lab Sample ID:	105-181-005	
Sample wt/vo	ol: <u>5.0</u>	(g/ml) ML	_	Lab File ID:	05C0579A.D	
GC Column:	rtx-624	ID: <u>0.25</u> (mm)		Date Analyzed:	07/01/05	

% Moisture: decanted:(Y/N)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg) UG/L			CAS NO.	COMPOUND (ug/L or u	g/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	10	U	106-46-7	1,4-Dichlorobenzene	10	U
74-87-3	Chloromethane	10	U	95-50-1	1,2-Dichlorobenzene	10	U
75-01-4	Vinyl Chloride	10	U	120-82-1	1,2,4-Trichlorobenzene	10	U
74-83-9	Bromomethane	10	U	87-61-6	1,2,3-Trichlorobenzene	10	U
75-00-3	Chloroethane	10	U				

N

	CONCENTR	CONCENTRATION UNITS:						
CAS NO.	CAS NO. COMPOUND (ug/L or ug/Kg) UG/L							
75-71-8	Dichlorodifluoromethane	10	U					
74-87-3	Chloromethane	10	U					
75-01-4	Vinyl Chloride	10	U					
74-83-9	Bromomethane	10	U					
75-00-3	Chloroethane	10	U					
75-69-4	Trichlorofluoromethane	10	U					
75-35-4	1,1-Dichloroethene	10	U					
75-15-0	Carbon Disulfide	10	U					

FIELD SAMPLE ID: **VOLATILE ORGANICS ANALYSIS DATA SHEET** TENTATIVELY IDENTIFIED COMPOUNDS FC-1 Site Name: Franklin Cleaners Site Code: 130050 SDG No.: 181-01 Matrix: (soil/water) WATER Lab Sample ID: 105-181-005 Sample wt/vol: 5.0 (g/ml) ML Lab File ID: 05C0579A.D Level: (low/med) LOW Date Received: 06/30/05 % Moisture: not dec. Date Analyzed: 07/01/05 GC Column: rtx-624 ID: 0.25 Dilution Factor: 1.0 (mm) Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found:

RT

6.02

EST. CONC.

5

Q

JN

COMPOUND NAME

Carbon dioxide

CAS NO.

1. 000124-38-9

Previous

CHEMIECH

Next

			S	See Chronicle				See Results	
Order ID:	T3456			Order Date:		6/30/2005 1	0:47:42 AM	Project Mgr:	kurt
Client:	Environmental	Products	& Services, Inc.	Project:		Franklin Cle	aners	Report:	NYS ASP B
Contact:	Dale Braue			Last Sample R	eceive Date:	6/30/2005 1	0:15:00 AM	EDD:	NONE
ClientID:	ENVI22			SignOff Date:		6/30/2005 1	1:35:02 AM	Location	B56
Lab ID	Client ID	Matrix		Test	Test Group	Method	Priority	FAX	НСору
T3456-01	SB-01(3-4)	Solid	6/28/2005 10:18:00 AM						
				Percent Solids		Chemtech -SOP	1 Bus. Day	7/1/05 10:15:00 AM	7/14/05 10:15:00 AM
				VOC-TCLVOA-10		OLM04.2	1 Bus. Day	7/1/05 10:15:00 AM	7/14/05 10:15:00 AM
T3456-02	SB-01(10-12)	Solid	6/28/2005 3:20:00 PM						
				Percent Solids		Chemtech -SOP	1 Bus. Day	7/1/05 10:15:00 AM	7/14/05 10:15:00 AM
				VOC-TCL/VOA-10		OLM04.2	1 Bus. Day	7/1/05 10:15:00 AM	7/14/05 10:15:00 AM
T3456-03	SB-01(20-22)	Solid	6/29/2005 8:25:00 AM						
				Percent Solids		Chemtech -SOP	1 Bus. Day	7/1/05 10:15:00 AM	7/14/05 10:15:00 AM
				VOC-TCLVOA-10		OLM04.2	1 Bus. Day	7/1/05 10:15:00 AM	7/14/05 10:15:00 AM
T3456-04 S	SB-02(2.5-4.5)	Solid	6/29/2005 9:10:00 AM						
				Percent Solids		Chemtech -SOP	1 Bus. Day	7/1/05 10:15:00 AM	7/14/05 10:15:00 AM
				VOC-TCLVOA-10		OLM04.2	1 Bus. Day	7/1/05 10:15:00 AM	7/14/05 10:15:00 AM
T3456-05 S	SB-02(6.5-8.5)	Solid	6/29/2005 10:20:00 AM						
				Percent Solids		Chemtech -SOP	1 Bus. Day	7/1/05 10:15:00 AM	7/14/05 10:15:00 AM
				VOC-TCLVOA-10		OLM04.2	1 Bus. Day	7/1/05 10:15:00 AM	7/14/05 10:15:00 AM
T3456-06	TRIPBLANK	Water	6/29/2005						
				VOC-TCLVOA-10		OLM04.3	1 Bus. Day	7/1/05 10:15:00 AM	7/14/05 10:15:00 AM

CHEMTECH
284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922
Report of Analysis

Client:	Environmental Products & Ser	rvices, Inc.			Date Collect		06/2	28/05
Project ID:	Franklin Cleaners				Date R	eceived: (06/3	30/05
Customer Sample No.	SB-01(3-4)				Lab Sa ID:	mple 1	345	56-01
Test:	VOC-TCLVOA-10				SDG ID): Т	345	56
Analytical Method:	EPA OLM04.2 - VOA				% Mois	sture: 1	0.0	0
Result Type	e:				Datafil	e: \	/107	0119
CAS Numbe	rParameter	Results Q	ualifi	erUnits	DL	Retention Time		DF DIL/RE
75-71-8	Dichlorodifluoromethane	ND	U	ug/Kg	0.94		11	1
74-87-3	Chloromethane	ND	U	ug/Kg	1.9		11	1
75-01-4	Vinyl Chloride	ND	U	ug/Kg	1.1		11	1
74-83-9	Bromomethane	ND	U	ug/Kg	1.1		11	1
75-00-3	Chloroethane	ND	U	ug/Kg	1.4		11	1
75-69-4	Trichlorofluoromethane	ND	U	ug/Kg	1.4		11	1
76-13-1	1,1,2- Trichlorotrifluoroethane	ND	U	ug/Kg	1.3		L1	1
75-35-4	1,1-Dichloroethene	ND	U	ug/Kg	1.2		11	1
67-64-1	Acetone	ND	U	ug/Kg	3.9		55	1
75-15-0	Carbon Disulfide	ND	U	ug/Kg	1.4		11	1
1634-04- 4	Methyl tert-butyl Ether	ND	U	ug/Kg	1.0		L1	1
79-20-9	Methyl Acetate	ND	U	ug/Kg	1.2		11	1
75-09-2	Methylene Chloride	ND	U	ug/Kg	1.4		11	1
156-60-5	trans-1,2-Dichloroethene	ND	U	ug/Kg	1.2		11	1
75-34-3	1,1-Dichloroethane	ND	U	ug/Kg	1.1		11	1
110-82-7	Cyclohexane	ND	U	ug/Kg	1.5		11	1
78-93-3	2-Butanone	ND	U	ug/Kg	6.0		55	1
56-23-5	Carbon Tetrachloride	ND	U	ug/Kg	2.3		11	1
156-59-2	cis-1,2-Dichloroethene	ND	U	ug/Kg	0.98		11	1
67-66-3	Chloroform	ND	U	ug/Kg	1.1		11	1
71-55-6	1,1,1-Trichloroethane	ND	U	ug/Kg	1.1		11	1
108-87-2	Methylcyclohexane	ND	U	ug/Kg	1.1		11	1
71-43-2	Benzene	ND	U	ug/Kg	1.1		11	1
107-06-2	1,2-Dichloroethane	ND	U	ug/Kg	1.2		11	1
79-01-6	Trichloroethene	ND	U	ug/Kg	1.1		11	1
78-87-5	1,2-Dichloropropane	ND	U	ug/Kg	0.86		11	1
75-27-4	Bromodichloromethane	ND	U	ug/Kg	0.90		11	1
108-10-1	4-Methyl-2-Pentanone	ND	U	ug/Kg	4.4		55	1

CHEMITECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922 Report of Analysis

Client:	Environmental Products & Servi	ces, Inc.			Date Collecte	ed:	06/	28/05
Project ID:	Franklin Cleaners				Date Re	ceived:	06/3	30/05
Customer Sample No.:	SB-01(3-4)				Lab San ID:	nple	T34	56-01
Test:	VOC-TCLVOA-10				SDG ID		T34	56
Analytical Method:	EPA OLM04.2 - VOA				% Mois	ture:	10.0	0
Result Type:					DataFile	e:	VIO	70119
CAS Number	Parameter	ResultsQ	ualifi	erUnits	DL	Retentio		DF DIL/RE
108-88-3	Toluene	ND	U	ug/Kg	1.2		11	1
10061-02- 6	t-1,3-Dichloropropene	ND	U	ug/Kg	1.1		11	1
10061-01- 5	cis-1,3-Dichloropropene	ND	U	ug/Kg	0.98		11	1
79-00-5	1,1,2-Trichloroethane	ND	U	ug/Kg	1.3		11	1
591-78-6	2-Hexanone	ND	U	ug/Kg	6.6		55	1
124-48-1	Dibromochloromethane	ND	U	ug/Kg	0.95		11	1
106-93-4	1,2-Dibromoethane	ND	U	ug/Kg	1.1		11	1
127-18-4	Tetrachloroethene	0.95	J	ug/Kg	1.3	ALC: UNITED TO	11	1
108-90-7	Chlorobenzene	ND	U	ug/Kg	1.2		11	1
100-41-4	Ethyl Benzene	ND	U	ug/Kg	1.2		11	1
126777- 61-2	m/p-Xylenes	ND	U	ug/Kg	3.1		11	1
95-47-6	o-Xylene	ND	U	ug/Kg	1.2		11	1
100-42-5	Styrene	ND	U	ug/Kg	1.6		11	1
75-25-2	Bromoform	ND	U	ug/Kg	1.2		11	1
98-82-8	Isopropylbenzene	ND	U	ug/Kg	1.2		11	1
79-34-5	1,1,2,2-Tetrachloroethane	ND	U	ug/Kg	1.1		11	1
541-73-1	1,3-Dichlorobenzene	ND	U	ug/Kg	1.2		11	1
106-46-7	1,4-Dichlorobenzene	ND	U	ug/Kg	0.93		11	1
95-50-1	1,2-Dichlorobenzene	ND	U	ug/Kg	0.99		11	1
96-12-8	1,2-Dibromo-3- Chloropropane	ND	U	ug/Kg	1.1		11	1
120-82-1	1,2,4-Trichlorobenzene	ND	U	ug/Kg	1.6		11	1
1330-20-7		ND	U	ug/Kg	4.2		11	1

GENTECH284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client:	Environmental Products & Ser	rvices, Inc.			Date Collect	ted:	06/	28/05
Project ID:	Franklin Cleaners				Date R	eceived:	06/	30/05
Customer Sample No.	SB-01(10-12)				Lab Sa ID:	mple	T34	56-02
Test:	VOC-TCLVOA-10				SDG II):	T34	56
Analytical Method:	EPA OLM04.2 - VOA				% Moi	sture:	5.00)
Result Type	e:				Datafil	e:	VIO	70121
CAS Numbe	r Parameter	ResultsQ	ualifi	erUnits	DL	Retentio	on	DF DIL/RE
75-71-8	Dichlorodifluoromethane	ND	U	ug/Kg	0.89		10	1
74-87-3	Chloromethane	ND	U	ug/Kg	1.8		10	1
75-01-4	Vinyl Chloride	ND	U	ug/Kg	1.0		10	1
74-83-9	Bromomethane	ND	U	ug/Kg	1.1		10	1
75-00-3	Chloroethane	ND	U	ug/Kg	1.3		10	1
75-69-4	Trichlorofluoromethane	ND	U	ug/Kg	1.3		10	1
76-13-1	1,1,2- Trichlorotrifluoroethane	ND	U	ug/Kg	1.2		10	1
75-35-4	1,1-Dichloroethene	ND	U	ug/Kg	1.2		10	1
67-64-1	Acetone	14	J	ug/Kg	3.7		52	1
75-15-0	Carbon Disulfide	ND	U	ug/Kg	1.3		10	1
1634-04-		ND	U		0.96		10	1
4		ND	U	ug/Kg	0.90		10	-
79-20-9	Methyl Acetate	ND	U	ug/Kg	1.1		10	1
75-09-2	Methylene Chloride	ND	U	ug/Kg	1.3		10	1
	trans-1,2-Dichloroethene	ND	U	ug/Kg	1.1		10	1
75-34-3	1,1-Dichloroethane	ND	U	ug/Kg	1.0		10	1
	Cyclohexane	ND	U	ug/Kg	1.4		10	1
78-93-3	2-Butanone	ND	U	ug/Kg	5.6		52	1
56-23-5	Carbon Tetrachloride	ND	U	ug/Kg	2.2		10	1
156-59-2	cis-1,2-Dichloroethene	ND	U	ug/Kg	0.92		10	1
67-66-3	Chloroform	ND	U	ug/Kg	1.0		10	1
71-55-6	1,1,1-Trichloroethane	ND	U	ug/Kg	1.1		10	1
108-87-2	Methylcyclohexane	ND	U	ug/Kg	1.0		10	1
71-43-2	Benzene	ND	U	ug/Kg	1.1		10	1
107-06-2	1,2-Dichloroethane	ND	U	ug/Kg	1.2		10	1
79-01-6	Trichloroethene	ND	U	ug/Kg	1.0		10	1
78-87-5	1,2-Dichloropropane	ND	U	ug/Kg	0.82		10	1
75-27-4	Bromodichloromethane	ND	U	ug/Kg	0.85		10	1
108-10-1	4-Methyl-2-Pentanone	ND	U	ug/Kg	4.2		52	1

Report of Analysis

Project ID: Franklin Cleaners Date Received: 06/30/05
Sample No.: Test: VOC-TCLVOA-10 SDG ID: T3456
Analytical Method: Result Type: CAS Number Parameter Results Qualifier Units DL Retention Time DF DIL/RE 108-88-3 Toluene ND U ug/Kg 1.2 10 1 10061-02-
Method: Result Type: DataFile: VIO70121 CAS Number Parameter Results Qualifier Units DL Retention Time DF DIL/RE 108-88-3 Toluene ND U ug/Kg 1.2 10 1 10061-02-6 t-1,3-Dichloropropene ND U ug/Kg 1.1 10 1 10061-01-5 cis-1,3-Dichloropropene ND U ug/Kg 0.92 10 1 79-00-5 1,1,2-Trichloroethane ND U ug/Kg 1.2 10 1 591-78-6 2-Hexanone ND U ug/Kg 6.3 52 1 124-48-1 Dibromochloromethane ND U ug/Kg 0.90 10 1 106-93-4 1,2-Dibromoethane ND U ug/Kg 1.1 10 1 108-90-7 Chlorobenzene ND U ug/Kg 1.1 10 </td
CAS Number Parameter Results Qualifier Units DL Retention Time DF DIL/RE 108-88-3 Toluene ND U ug/Kg 1.2 10 1 10061-02-6 t-1,3-Dichloropropene ND U ug/Kg 1.1 10 1 10061-01-5 cis-1,3-Dichloropropene ND U ug/Kg 0.92 10 1 79-00-5 1,1,2-Trichloroethane ND U ug/Kg 1.2 10 1 591-78-6 2-Hexanone ND U ug/Kg 6.3 52 1 124-48-1 Dibromochloromethane ND U ug/Kg 0.90 10 1 106-93-4 1,2-Dibromoethane ND U ug/Kg 1.1 10 1 108-90-7 Chlorobenzene ND U ug/Kg 1.1 10 1 100-41-4 Ethyl Benzene ND U ug/Kg 1.1 10 1
108-88-3 Toluene ND U ug/Kg 1.2 10 1 10061-02-6 t-1,3-Dichloropropene ND U ug/Kg 1.1 10 1 10061-01-5 cis-1,3-Dichloropropene ND U ug/Kg 0.92 10 1 79-00-5 1,1,2-Trichloroethane ND U ug/Kg 1.2 10 1 591-78-6 2-Hexanone ND U ug/Kg 6.3 52 1 124-48-1 Dibromochloromethane ND U ug/Kg 0.90 10 1 106-93-4 1,2-Dibromoethane ND U ug/Kg 1.1 10 1 127-18-4 Tetrachloroethene ND U ug/Kg 1.2 10 1 108-90-7 Chlorobenzene ND U ug/Kg 1.1 10 1 100-41-4 Ethyl Benzene ND U ug/Kg 1.1 10 1
108-88-3 Toluene ND U ug/Kg 1.2 10 1 10061-02-6 t-1,3-Dichloropropene ND U ug/Kg 1.1 10 1 10061-01-5 cis-1,3-Dichloropropene ND U ug/Kg 0.92 10 1 79-00-5 1,1,2-Trichloroethane ND U ug/Kg 1.2 10 1 591-78-6 2-Hexanone ND U ug/Kg 6.3 52 1 124-48-1 Dibromochloromethane ND U ug/Kg 0.90 10 1 106-93-4 1,2-Dibromoethane ND U ug/Kg 1.1 10 1 108-90-7 Chlorobenzene ND U ug/Kg 1.1 10 1 100-41-4 Ethyl Benzene ND U ug/Kg 1.1 10 1 126777-
6 t-1,3-Dichloropropene ND U ug/kg 1.1 10 1 10061-01-5 cis-1,3-Dichloropropene ND U ug/kg 0.92 10 1 79-00-5 1,1,2-Trichloroethane ND U ug/kg 1.2 10 1 591-78-6 2-Hexanone ND U ug/kg 6.3 52 1 124-48-1 Dibromochloromethane ND U ug/kg 0.90 10 1 106-93-4 1,2-Dibromoethane ND U ug/kg 1.1 10 1 127-18-4 Tetrachloroethene ND U ug/kg 1.2 10 1 108-90-7 Chlorobenzene ND U ug/kg 1.1 10 1 100-41-4 Ethyl Benzene ND U ug/kg 1.1 10 1 126777-
5 CIS-1,3-Dichloropropene ND U ug/Kg 0.92 10 1 79-00-5 1,1,2-Trichloroethane ND U ug/Kg 1.2 10 1 591-78-6 2-Hexanone ND U ug/Kg 6.3 52 1 124-48-1 Dibromochloromethane ND U ug/Kg 0.90 10 1 106-93-4 1,2-Dibromoethane ND U ug/Kg 1.1 10 1 127-18-4 Tetrachloroethene ND U ug/Kg 1.2 10 1 108-90-7 Chlorobenzene ND U ug/Kg 1.1 10 1 100-41-4 Ethyl Benzene ND U ug/Kg 1.1 10 1 126777- 10 1 1 1 1 1 1 1 1
591-78-6 2-Hexanone ND U ug/Kg 6.3 52 1 124-48-1 Dibromochloromethane ND U ug/Kg 0.90 10 1 106-93-4 1,2-Dibromoethane ND U ug/Kg 1.1 10 1 127-18-4 Tetrachloroethene ND U ug/Kg 1.2 10 1 108-90-7 Chlorobenzene ND U ug/Kg 1.1 10 1 100-41-4 Ethyl Benzene ND U ug/Kg 1.1 10 1 126777- 10 1 1 1 1 1 1 1
124-48-1 Dibromochloromethane ND U ug/Kg 0.90 10 1 106-93-4 1,2-Dibromoethane ND U ug/Kg 1.1 10 1 127-18-4 Tetrachloroethene ND U ug/Kg 1.2 10 1 108-90-7 Chlorobenzene ND U ug/Kg 1.1 10 1 100-41-4 Ethyl Benzene ND U ug/Kg 1.1 10 1 126777-<
106-93-4 1,2-Dibromoethane ND U ug/Kg 1.1 10 1 127-18-4 Tetrachloroethene ND U ug/Kg 1.2 10 1 108-90-7 Chlorobenzene ND U ug/Kg 1.1 10 1 100-41-4 Ethyl Benzene ND U ug/Kg 1.1 10 1 126777-
127-18-4 Tetrachloroethene ND U ug/Kg 1.2 10 1 108-90-7 Chlorobenzene ND U ug/Kg 1.1 10 1 100-41-4 Ethyl Benzene ND U ug/Kg 1.1 10 1 126777-
127-18-4 Tetrachloroethene ND U ug/Kg 1.2 10 1 108-90-7 Chlorobenzene ND U ug/Kg 1.1 10 1 100-41-4 Ethyl Benzene ND U ug/Kg 1.1 10 1 126777-
108-90-7 Chlorobenzene ND U ug/Kg 1.1 10 1 100-41-4 Ethyl Benzene ND U ug/Kg 1.1 10 1 126777-
100-41-4 Ethyl Benzene ND U ug/Kg 1.1 10 1
126777-
61-2 m/p-Xylenes ND U ug/Kg 2.9 10 1
95-47-6 o-Xylene ND U ug/Kg 1.1 10 1
100-42-5 Styrene ND U ug/Kg 1.5 10 1
75-25-2 Bromoform ND U ug/Kg 1.1 10 1
98-82-8 Isopropylbenzene ND U ug/Kg 1.2 10 1
79-34-5 1,1,2,2-Tetrachloroethane ND U ug/Kg 1.1 10 1
541-73-1 1,3-Dichlorobenzene ND U ug/Kg 1.1 10 1
106-46-7 1,4-Dichlorobenzene ND U ug/Kg 0.88 10 1
95-50-1 1,2-Dichlorobenzene ND U ug/Kg 0.93 10 1
96-12-8 1,2-Dibromo-3- Chloropropane ND U ug/Kg 1.0 10 1
120-82-1 1,2,4-Trichlorobenzene ND U ug/Kg 1.5 10 1
1330-20-7 Total Xylenes ND U ug/Kg 4.0 10 1

GENTECH284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client:	Environmental Products & Ser	rvices, Inc.			Date Collect	ted:	06/	29/05
Project ID:	Franklin Cleaners				Date R	eceived:	06/	30/05
Customer Sample No.	SB-01(20-22)				Lab Sa ID:	mple	T34	56-03
Test:	VOC-TCLVOA-10				SDG II) :	T34	56
Analytical Method:	EPA OLM04.2 - VOA				% Moi	sture:	4.00)
Result Type	e:				Datafi	e:	VIO	63034
CAS Numbe	r Parameter	ResultsQ	ualifi	erUnits	DL	Retentio Time	n	DF DIL/RE
75-71-8	Dichlorodifluoromethane	ND	U	ug/Kg	0.88		10	1
74-87-3	Chloromethane	ND	U	ug/Kg	1.8		10	1
75-01-4	Vinyl Chloride	ND	U	ug/Kg	1.0		10	1
74-83-9	Bromomethane	ND	U	ug/Kg	1.1		10	1
75-00-3	Chloroethane	ND	U	ug/Kg	1.3		10	1
75-69-4	Trichlorofluoromethane	ND	U	ug/Kg	1.3		10	1
76-13-1	1,1,2- Trichlorotrifluoroethane	ND	U	ug/Kg	1.2		10	1
75-35-4	1,1-Dichloroethene	ND	U	ug/Kg	1.2		10	1
67-64-1	Acetone	ND	U	ug/Kg	3.7		52	1
75-15-0	Carbon Disulfide	ND	U	ug/Kg	1.3		10	1
1634-04- 4	Methyl tert-butyl Ether	ND	U	ug/Kg	0.96		10	1
79-20-9	Methyl Acetate	ND	U	ug/Kg	1.1		10	1
75-09-2	Methylene Chloride	ND	U	ug/Kg	1.3		10	1
156-60-5	trans-1,2-Dichloroethene	ND	U	ug/Kg	1.1		10	1
75-34-3	1,1-Dichloroethane	ND	U	ug/Kg	0.99		10	1
110-82-7	Cyclohexane	ND	U	ug/Kg	1.4		10	1
78-93-3	2-Butanone	ND	U	ug/Kg	5.6		52	1
56-23-5	Carbon Tetrachloride	ND	U	ug/Kg	2.1		10	1
156-59-2	cis-1,2-Dichloroethene	ND	U	ug/Kg	0.91		10	1
67-66-3	Chloroform	ND	U	ug/Kg	0.99		10	1
71-55-6	1,1,1-Trichloroethane	ND	U	ug/Kg	1.1		10	1
108-87-2	Methylcyclohexane	ND	U	ug/Kg	1.0		10	1
71-43-2	Benzene	ND	U	ug/Kg	1.1		10	1
107-06-2	1,2-Dichloroethane	ND	U	ug/Kg	1.2		10	1
79-01-6	Trichloroethene	ND	U	ug/Kg	1.0		10	1
78-87-5	1,2-Dichloropropane	ND	U	ug/Kg	0.81		10	1
75-27-4	Bromodichloromethane	ND	U	ug/Kg	0.84		10	1
108-10-1	4-Methyl-2-Pentanone	ND	U	ug/Kg	4.2		52	1

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922 Report of Analysis

Client:	Environmental Products & Servi	ces, Inc.			Date Collecte	ed:	06/	29/05
Project ID:	Franklin Cleaners				Date Re	eceived:	06/	30/05
Customer Sample No.:	SB-01(20-22)				Lab Sar ID:	nple	T34	56-03
Test:	VOC-TCLVOA-10				SDG ID	:	T34	56
Analytical Method:	EPA OLM04.2 - VOA				% Mois	ture:	4.00	
Result Type:					DataFile	e:	VIO	53034
CAS Number	Parameter	ResultsQ	ualifi	erUnits	DL	Retentio	on	DF DIL/RE
108-88-3	Toluene	ND	U	ug/Kg	1.2		10	1
10061-02- 6	t-1,3-Dichloropropene	ND	U	ug/Kg	1.1		10	1
10061-01- 5	cis-1,3-Dichloropropene	ND	U	ug/Kg	0.91		10	1
79-00-5	1,1,2-Trichloroethane	ND	U	ug/Kg	1.2		10	1
591-78-6	2-Hexanone	ND	U	ug/Kg	6.2		52	1
124-48-1	Dibromochloromethane	ND	U	ug/Kg	0.89		10	1
106-93-4	1,2-Dibromoethane	ND	U	ug/Kg	1.0		10	1
127-18-4	Tetrachloroethene	ND	U	ug/Kg	1.2		10	1
108-90-7	Chlorobenzene	ND	U	ug/Kg	1.1		10	1
100-41-4	Ethyl Benzene	ND	U	ug/Kg	1.1		10	1
126777- 61-2	m/p-Xylenes	ND	U	ug/Kg	2.9		10	1
95-47-6	o-Xylene	ND	U	ug/Kg	1.1		10	1
100-42-5	Styrene	ND	U	ug/Kg	1.5		10	1
75-25-2	Bromoform	ND	U	ug/Kg	1.1		10	1
98-82-8	Isopropylbenzene	ND	U	ug/Kg	1.2		10	1
79-34-5	1,1,2,2-Tetrachloroethane	ND	U	ug/Kg	1.0		10	1
541-73-1	1,3-Dichlorobenzene	ND	U	ug/Kg	1.1		10	1
106-46-7	1,4-Dichlorobenzene	ND	U	ug/Kg	0.87		10	1
95-50-1	1,2-Dichlorobenzene	ND	U	ug/Kg	0.93		10	1
96-12-8	1,2-Dibromo-3- Chloropropane	ND	U	ug/Kg	1.0		10	1
120-82-1	1,2,4-Trichlorobenzene	ND	U	ug/Kg	1.5		10	1
1330-20-7	Total Xylenes	ND	U	ug/Kg	4.0		10	1

CHEMITECH
284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922
Report of Analysis

Client:	Environmental Products & Ser	vices, Inc.			Date Collect		06/	29/05
Project ID:	Franklin Cleaners				Date R	eceived: (06/	30/05
Customer Sample No.:	SB-02(2.5-4.5)				Lab Sa ID:	mple 1	34	56-04
Test:	VOC-TCLVOA-10				SDG II	D: 1	34	56
Analytical Method:	EPA OLM04.2 - VOA				% Moi	sture: 1	.00	
Result Type	ı				Datafil	le: \	/107	70110
CAS Number	Parameter	ResultsQ	ualifi	erUnits	DL	Retention Time		DF DIL/RE
75-71-8	Dichlorodifluoromethane	ND	U	ug/Kg	0.86		10	1
74-87-3	Chloromethane	ND	U	ug/Kg	1.8		10	1
75-01-4	Vinyl Chloride	ND	U	ug/Kg	0.97		10	1
74-83-9	Bromomethane	ND	U	ug/Kg	1.0		10	1
75-00-3	Chloroethane	ND	U	ug/Kg	1.3		10	1
75-69-4	Trichlorofluoromethane	ND	U	ug/Kg	1.3		10	1
	1,1,2- Trichlorotrifluoroethane	ND	U	ug/Kg	1.2		10	1
75-35-4	1,1-Dichloroethene	ND	U	ug/Kg	1.1		10	1
	Acetone	ND	U	ug/Kg	3.6		51	1
75-15-0	Carbon Disulfide	ND	U	ug/Kg	1.3		10	1
1634-04- 4	Methyl tert-butyl Ether	ND	U	ug/Kg	0.93		10	1
79-20-9	Methyl Acetate	ND	U	ug/Kg	1.1		10	1
	Methylene Chloride	ND	U	ug/Kg	1.3		10	1
156-60-5	trans-1,2-Dichloroethene	ND	U	ug/Kg	1.1		10	1
75-34-3	1,1-Dichloroethane	ND	U	ug/Kg	0.96		10	1
110-82-7	Cyclohexane	ND	U	ug/Kg	1.4		10	1
78-93-3	2-Butanone	ND	U	ug/Kg	5.4		51	1
56-23-5	Carbon Tetrachloride	ND	U	ug/Kg	2.1		10	1
156-59-2	cis-1,2-Dichloroethene	ND	U	ug/Kg	0.89		10	1
	Chloroform	ND	U	ug/Kg	0.96		10	1
71-55-6	1,1,1-Trichloroethane	ND	U	ug/Kg	1.0		10	1
108-87-2	Methylcyclohexane	ND	U	ug/Kg	0.97		10	1
	Benzene	ND	U	ug/Kg	1.0		10	1
107-06-2	1,2-Dichloroethane	ND	U	ug/Kg	1.1		10	1
	Trichloroethene	ND	U	ug/Kg	1.0		10	1
	1,2-Dichloropropane	ND	U	ug/Kg	0.79		10	1
	Bromodichloromethane	ND	U	ug/Kg	0.82		10	1
	4-Methyl-2-Pentanone	ND	U	ug/Kg	4.1		51	1

CHEMITECH
284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922
Report of Analysis

Client:	Environmental Products & Servi	ces, Inc.			Date Collecte	ed:	06/	29/05
Project ID:	Franklin Cleaners				Date Re	ceived:	06/	30/05
Customer Sample No.:	SB-02(2.5-4.5)				Lab San ID:	nple	T34	56-04
Test:	VOC-TCLVOA-10				SDG ID	:	T34	56
Analytical Method:	EPA OLM04.2 - VOA				% Mois	ture:	1.00	
Result Type:					DataFile	e:	VIO	70110
CAS Number	Parameter	ResultsQ	ualifi	erUnits	DL	Retentio	on	DF DIL/RE
108-88-3	Toluene	ND	U	ug/Kg	1.1		10	1
10061-02- 6	t-1,3-Dichloropropene	ND	U	ug/Kg	1.0		10	1
10061-01- 5	cis-1,3-Dichloropropene	ND	U	ug/Kg	0.89		10	1
79-00-5	1,1,2-Trichloroethane	ND	U	ug/Kg	1.2		10	1
591-78-6	2-Hexanone	ND	U	ug/Kg	6.0		51	1
124-48-1	Dibromochloromethane	ND	U	ug/Kg	0.87		10	1
106-93-4	1,2-Dibromoethane	ND	U	ug/Kg	1.0		10	1
127-18-4	Tetrachloroethene	ND	U	ug/Kg	1.2		10	1
108-90-7	Chlorobenzene	ND	U	ug/Kg	1.1		10	1
100-41-4	Ethyl Benzene	ND	U	ug/Kg	1.1		10	1
126777- 61-2	m/p-Xylenes	ND	U	ug/Kg	2.8		10	1
95-47-6	o-Xylene	ND	U	ug/Kg	1.1		10	1
100-42-5	Styrene	ND	U	ug/Kg	1.4		10	1
75-25-2	Bromoform	ND	U	ug/Kg	1.1		10	1
98-82-8	Isopropylbenzene	ND	U	ug/Kg	1.1		10	1
79-34-5	1,1,2,2-Tetrachloroethane	ND	U	ug/Kg	1.0		10	1
541-73-1	1,3-Dichlorobenzene	ND	U	ug/Kg	1.1		10	1
106-46-7	1,4-Dichlorobenzene	ND	U	ug/Kg	0.85		10	1
95-50-1	1,2-Dichlorobenzene	ND	U	ug/Kg	0.90		10	1
96-12-8	1,2-Dibromo-3- Chloropropane	ND	U	ug/Kg	1.0		10	1
120-82-1	1,2,4-Trichlorobenzene	ND	U	ug/Kg	1.5		10	1
1330-20-7	Total Xylenes	ND	U	ug/Kg	3.9		10	1

108-10-1 4-Methyl-2-Pentanone

GENTECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client:	Environmental Products & Ser	vices, Inc.			Date Collecte	ed:	06/2	29/05
Project ID:	Franklin Cleaners				Date Re	ceived:	06/3	30/05
Customer Sample No.	SB-02(6.5-8.5)				Lab San ID:	nple	T345	56-05
Test:	VOC-TCLVOA-10				SDG ID:		T345	56
Analytical Method:	EPA OLM04.2 - VOA				% Mois	ture:	4.00	
Result Type	e:				Datafile	:	VIO	3036
CAS Number	r Parameter	ResultsQ	ualifi	erUnits	DL	Retention Time	on	DF DIL/RE
75-71-8	Dichlorodifluoromethane	ND	U	ug/Kg	0.88		10	1
74-87-3	Chloromethane	ND	U	ug/Kg	1.8		10	1
75-01-4	Vinyl Chloride	ND	U	ug/Kg	0.99		10	1
74-83-9	Bromomethane	ND	U	ug/Kg	1.1		10	1
75-00-3	Chloroethane	ND	U	ug/Kg	1.3		10	1
75-69-4	Trichlorofluoromethane	ND	U	ug/Kg	1.3		10	1
76-13-1	1,1,2- Trichlorotrifluoroethane	ND	U	ug/Kg	1.2		10	1
75-35-4	1,1-Dichloroethene	ND	U	ug/Kg	1.2		10	1
67-64-1	Acetone	ND	U	ug/Kg	3.7		52	1
75-15-0	Carbon Disulfide	ND	U	ug/Kg	1.3		10	1
1634-04- 4	Methyl tert-butyl Ether	ND	U	ug/Kg	0.95		10	1
79-20-9	Methyl Acetate	ND	U	ug/Kg	1.1		10	1
75-09-2	Methylene Chloride	ND	U	ug/Kg	1.3		10	1
156-60-5	trans-1,2-Dichloroethene	ND	U	ug/Kg	1.1		10	1
75-34-3	1,1-Dichloroethane	ND	U	ug/Kg	0.98		10	1
110-82-7	Cyclohexane	ND	U	ug/Kg	1.4		10	1
78-93-3	2-Butanone	ND	U	ug/Kg	5.6		52	1
56-23-5	Carbon Tetrachloride	ND	U	ug/Kg	2.1		10	1
156-59-2	cis-1,2-Dichloroethene	ND	U	ug/Kg	0.91		10	1
67-66-3	Chloroform	ND	U	ug/Kg	0.98		10	1
71-55-6	1,1,1-Trichloroethane	ND	U	ug/Kg	1.1		10	1
108-87-2	Methylcyclohexane	ND	U	ug/Kg	0.99		10	1
71-43-2	Benzene	ND	U	ug/Kg	1.1		10	1
107-06-2	1,2-Dichloroethane	ND	U	ug/Kg	1.1		10	1
79-01-6	Trichloroethene	ND	U	ug/Kg	1.0		10	1
78-87-5	1,2-Dichloropropane	ND	U	ug/Kg	0.81		10	1
75-27-4	Bromodichloromethane	ND	U	ug/Kg	0.84		10	1

52 1

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922 Report of Analysis

Client:	Environmental Products & Servi	ces, Inc.			Date Collecte	ed:	06/2	29/05
Project ID:	Franklin Cleaners				Date Re	eceived:	06/3	30/05
Customer Sample No.:	SB-02(6.5-8.5)				Lab Sar ID:	mple	T345	56-05
Test:	VOC-TCLVOA-10				SDG ID	:	T345	56
Analytical Method:	EPA OLM04.2 - VOA				% Mois	ture:	4.00	
Result Type:					DataFil	e:	VIO	53036
CAS Number	Parameter	ResultsQ	ualifi	erUnits	DL	Retenti		DF DIL/RE
108-88-3	Toluene	ND	U	ug/Kg	1.1		10	1
10061-02- 6	t-1,3-Dichloropropene	ND	U	ug/Kg	1.1		10	1
10061-01- 5	cis-1,3-Dichloropropene	ND	U	ug/Kg	0.91		10	1
79-00-5	1,1,2-Trichloroethane	ND	U	ug/Kg	1.2		10	1
591-78-6	2-Hexanone	ND	U	ug/Kg	6.2		52	1
124-48-1	Dibromochloromethane	ND	U	ug/Kg	0.89		10	1
106-93-4	1,2-Dibromoethane	ND	U	ug/Kg	1.0		10	1
127-18-4	Tetrachloroethene	ND	U	ug/Kg	1.2		10	1
108-90-7	Chlorobenzene	ND	U	ug/Kg	1.1		10	1
100-41-4	Ethyl Benzene	ND	U	ug/Kg	1.1		10	1
126777- 61-2	m/p-Xylenes	ND	U	ug/Kg	2.9		10	1
95-47-6	o-Xylene	ND	U	ug/Kg	1.1		10	1
100-42-5	Styrene	ND	U	ug/Kg	1.5		10	1
75-25-2	Bromoform	ND	U	ug/Kg	1.1		10	1
98-82-8	Isopropylbenzene	ND	U	ug/Kg	1.2		10	1
79-34-5	1,1,2,2-Tetrachloroethane	ND	U	ug/Kg	1.0		10	1
541-73-1	1,3-Dichlorobenzene	ND	U	ug/Kg	1.1		10	1
106-46-7	1,4-Dichlorobenzene	ND	U	ug/Kg	0.87		10	1
95-50-1	1,2-Dichlorobenzene	ND	U	ug/Kg	0.92		10	1
96-12-8	1,2-Dibromo-3- Chloropropane	ND	U	ug/Kg	1.0		10	1
120-82-1	1,2,4-Trichlorobenzene	ND	U	ug/Kg	1.5		10	1
1330-20-7	Total Xylenes	ND	U	ug/Kg	4.0		10	1

CHEMITECH284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client:	Environmental Products & Serv	rices, Inc.			Date Collec	ted:	06/	29/05
Project ID:	Franklin Cleaners				Date I	Received:	06/	30/05
Customer Sample No.	TRIPBLANK :				Lab Sa ID:	ample	T34	56-06
Test:	VOC-TCLVOA-10				SDG I	D:	T34	56
Analytical Method:	EPA OLM04.2 - VOA				% Mo	isture:	100	.00
Result Type	:				Datafi	le:	VHC	63062
CAS Number	Parameter	ResultsQ	ualifi	erUnits	DL	Retention Time	on	DF DIL/RE
75-71-8	Dichlorodifluoromethane	ND	U	ug/L	0.50		10	1
74-87-3	Chloromethane	ND	U	ug/L	0.50		10	1
75-01-4	Vinyl Chloride	ND	U	ug/L	0.50		10	1
74-83-9	Bromomethane	ND	U	ug/L	0.50		10	1
75-00-3	Chloroethane	ND	U	ug/L	0.50		10	1
75-69-4	Trichlorofluoromethane	ND	U	ug/L	0.50		10	1
76-13-1	1,1,2-	ND		-				
/0-13-1	Trichlorotrifluoroethane	ND	U	ug/L	0.50		10	1
75-35-4	1,1-Dichloroethene	ND	U	ug/L	0.50		10	1
67-64-1	Acetone	ND	U	ug/L	0.50		50	1
75-15-0	Carbon Disulfide	ND	U	ug/L	0.50		10	1
1634-04- 4	Methyl tert-butyl Ether	ND	U	ug/L	0.50		10	1
79-20-9	Methyl Acetate	ND	U	ug/L	0.50		10	1
75-09-2	Methylene Chloride	ND	U	ug/L	0.50		10	1
156-60-5	trans-1,2-Dichloroethene	ND	U	ug/L	0.50		10	1
75-34-3	1,1-Dichloroethane	ND	U	ug/L	0.50		10	1
110-82-7	Cyclohexane	ND	U	ug/L	0.50		10	1
78-93-3	2-Butanone	ND	U	ug/L	0.50		50	1
56-23-5	Carbon Tetrachloride	ND	U	ug/L	0.50		10	1
156-59-2	cis-1,2-Dichloroethene	ND	U	ug/L	0.50		10	1
67-66-3	Chloroform	ND	U	ug/L	0.50		10	1
71-55-6	1,1,1-Trichloroethane	ND	U	ug/L	0.50		10	1
108-87-2	Methylcyclohexane	ND	U	ug/L	0.50		10	1
71-43-2	Benzene	ND	U	ug/L	0.50		10	1
107-06-2	1,2-Dichloroethane	ND	U	ug/L	0.50		10	1
79-01-6	Trichloroethene	ND	U	ug/L	0.50		10	1
78-87-5	1,2-Dichloropropane	ND	U	ug/L	0.50		10	1
75-27-4	Bromodichloromethane	ND	U	ug/L	0.50		10	1
108-10-1		ND	U	ug/L	0.50		50	1
					1000			

Report of Analysis

Client:	Environmental Products & Servic	es, Inc.			Date Collect	ed:	06/	29/05
Project ID:	Franklin Cleaners				Date R	eceived:	06/	30/05
Customer Sample No.:	TRIPBLANK				Lab Sa ID:	mple	T34	56-06
Test:	VOC-TCLVOA-10				SDG ID):	T34	56
Analytical Method:	EPA OLM04.2 - VOA				% Mois	sture:	100	.00
Result Type:					DataFil	e:	VHO	63062
CAS Number	Parameter	ResultsQ	ualifi	erUnits	DL	Retentio	on	DF DIL/RE
108-88-3	Toluene	ND	U	ug/L	0.50		10	1
	t-1,3-Dichloropropene	ND	U	ug/L	0.50		10	1
10061-01-5	cis-1,3-Dichloropropene	ND	U	ug/L	0.50		10	1
79-00-5	1,1,2-Trichloroethane	ND	U	ug/L	0.50		10	1
591-78-6	2-Hexanone	ND	U	ug/L	0.50		50	1
124-48-1	Dibromochloromethane	ND	U	ug/L	0.50		10	1
106-93-4	1,2-Dibromoethane	ND	U	ug/L	0.50		10	1
127-18-4	Tetrachloroethene	ND	U	ug/L	0.50		10	1
108-90-7	Chlorobenzene	ND	U	ug/L	0.50		10	1
100-41-4	Ethyl Benzene	ND	U	ug/L	0.50		10	1
126777-61- 2	m/p-Xylenes	ND	U	ug/L	0.50		10	1
95-47-6	o-Xylene	ND	U	ug/L	0.50		10	1
100-42-5	Styrene	ND	U	ug/L	0.50		10	1
75-25-2	Bromoform	ND	U	ug/L	0.50		10	1
98-82-8	Isopropylbenzene	ND	U	ug/L	0.50		10	1
79-34-5	1,1,2,2-Tetrachloroethane	ND	U	ug/L	0.50		10	1
541-73-1	1,3-Dichlorobenzene	ND	U	ug/L	0.50		10	1
106-46-7	1,4-Dichlorobenzene	ND	U	ug/L	0.50		10	1
95-50-1	1,2-Dichlorobenzene	ND	U	ug/L	0.50		10	1
96-12-8	1,2-Dibromo-3- Chloropropane	ND	U	ug/L	0.50		10	1
120-82-1	1,2,4-Trichlorobenzene	ND	U	ug/L	0.50		10	1
1330-20-7	Total Xylenes	ND	U	ug/L	0.50		10	1

U = Not DetectedRL = Reporting LimitMDL = Method Detection LimitE = Value Exceeds Calibration Range

J = Estimated Value
B = Analyte Found In Associated Method Blank
N = Presumptive Evidence of a Compound

Project #: T3456 7/5/2005 1:02:48 PM End of Report

EPS Confirmatory Samples edoc

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB-02 (10.5-12.5)

Contract: ENVI22 Lab Name: Chemtech SAS No.: T3454 SDG No.: T3454 Lab Code: CTECH Case No.: T3454 Lab Sample ID: Matrix (soil/water): T3454-01 Lab File ID: VI063021.D Sample wt/vol: 5.0 (g/mL)g Level (low/med): Date Received: 6/30/05 LOW 6/30/05 Date Analyzed: % Moisture: not dec. ID: Dilution Factor: 1.0 GC Column: RTXVMS 0.18 (mm) (uL) (uL) Soil Aliquot Volume: Soil Extract Volume:

CAS No.	Compound (ug/L or ug/Kg)	ug/Kg	Q
75-71-8	Dichlorodifluoromethane	5.1	U
74-87-3	Chloromethane	5.1	Ū
75-01-4	Vinyl chloride	5.1	U
74-83-9	Bromomethane	5.1	U
75-00-3	Chloroethane	5.1	U
75-69-4	Trichlorofluoromethane	5.1	U
76-13-1	1,1,2-Trichlorotrifluoroethan	5.1	U
75-35-4	1,1-Dichloroethene	5.1	U
67-64-1	Acetone	25	Ū
75-15-0	Carbon disulfide	5.1	Ū
1634-04-4	Methyl tert-butyl Ether	5.1	ט
79-20-9	Methyl Acetate	5.1	Ū
75-09-2	Methylene Chloride	2.1	JB
156-60-5	trans-1,2-Dichloroethene	5.1	Ū
75-34-3	1,1-Dichloroethane	5.1	Ū
110-82-7	Cyclohexane	5.1	U
78-93-3	2-Butanone	25	U
56-23-5	Carbon Tetrachloride	5.1	U
156-59-2	cis-1,2-Dichloroethene	5.1	Ū
67-66-3	Chloroform	5.1	U
71-55-6	1,1,1-Trichloroethane	5.1	U
108-87-2	Methylcyclohexane	5.1	U
71-43-2	Benzene	5.1	Ū
107-06-2	1,2-Dichloroethane	5.1	U
79-01-6	Trichloroethene	5.1	U
78-87-5	1,2-Dichloropropane	5.1	U
75-27-4	Bromodichloromethane	5.1	U
108-10-1	4-Methyl-2-Pentanone	25	U
108-88-3	Toluene	5.1	U
10061-02-6	t-1,3-Dichloropropene	5.1	U
10061-01-5	cis-1,3-Dichloropropene	5.1	U
79-00-5	1,1,2-Trichloroethane	5.1	Ū
591-78-6	2-Hexanone	25	U
124-48-1	Dibromochloromethane	5.1	U

EPA SAMPLE NO.

SB-02 (10.5-12.5)

Lab Name:	Chemtech				Contract:	ENVI22		***************************************
Lab Code:	CTECH	Case No	.:	T3454	SAS No.:	T3454	SDG No.:	T3454
Matrix (soil	/water):	S	OIL		Lab Sample ID:	T3454-01		_
Sample wt/vo	1: 5.0	(g/mL)	g	_	Lab File ID:	VI063021	D	
Level (low/m	ed):	LOW			Date Received:	6/30/05		
% Moisture:	not dec.	2			Date Analyzed:	6/30/05	_	
GC Column:	RTXVMS	ID:	0.18	(mm)	Dilution Factor	: 1	. 0	
Soil Extract	Volume:		(1	uL)	Soil Aliquot Vo.	lume:		(uL)

	CONCENTIBILITY OFF		
CAS No.	Compound (ug/L or ug/Kg	ug/Kg	Q
106-93-4	1,2-Dibromoethane	5.1	U
127-18-4	Tetrachloroethene	1.6	J
108-90-7	Chlorobenzene	5.1	U
100-41-4	Ethyl Benzene	5.1	U
126777-61-2	m/p-Xylenes	5.1	U
95-47-6	o-Xylene	5.1	U
100-42-5	Styrene	5.1	U
75-25-2	Bromoform	5.1	σ
98-82-8	Isopropylbenzene	5.1	U
79-34-5	1,1,2,2-Tetrachloroethane	5.1	U
541-73-1	1,3-Dichlorobenzene	5.1	U
106-46-7	1,4-Dichlorobenzene	5.1	U 2
95-50-1	1,2-Dichlorobenzene	5.1	U
96-12-8	1,2-Dibromo-3-Chloropropane	5.1	U
120-82-1	1,2,4-Trichlorobenzene	5.1	U

SOIL VOLATILE ANALYSIS TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SB-02 (10.5-12.5)

AS No.: T3454 SDG No.: T3454 Lab Sample ID: T3454-01 Lab File ID: VI063021.D Date Received: 6/30/2005 Date Analyzed: 6/30/2005
Lab File ID: VI063021.D Date Received: 6/30/2005
Date Received: 6/30/2005
Date Analyzed: 6/30/2005
Dilution Factor: 1.0
Soil Aliquot Volume:
CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg
RT EST. CONC. Q

Comments:

EPA	SAMPLE	NO.	
 mestern (assi			
	DITO		

Lab Name:	Chemtech			and the same of th	Contract:	ENVI	22	
Lab Code:	CTECH	Case No	·.:	T3454	SAS No.:	T3454	SDG No.:	T3454
Matrix (soil/	water):	S	OIL		Lab Sample ID:	<u>T3454-</u>	02	_
Sample wt/vol	L: 5.0	(g/mL)	g	_	Lab File ID:	VI0630	022.D	
Level (low/me	ed):	LOW			Date Received:	6/30/0	5	
% Moisture: n	not dec.	2			Date Analyzed:	6/30/0	5	
GC Column:	RTXVMS	ID:	0.18	(mm)	Dilution Factor		1.0	
Soil Extract	Volume:		(1	uL)	Soil Aliquot Vol	lume:		(uL)

CAS No.	Compound (ug/L or ug/Kg)	ug/Kg	Q
75-71-8	Dichlorodifluoromethane	5.1	U
74-87-3	Chloromethane	5.1	U
75-01-4	Vinyl chloride	5.1	U
74-83-9	Bromomethane	5.1	U
75-00-3	Chloroethane	5.1	U
75-69-4	Trichlorofluoromethane	5.1	U
76-13-1	1,1,2-Trichlorotrifluoroethan	5.1	U
75-35-4	1,1-Dichloroethene	5.1	U
67-64-1	Acetone	25	U
75-15-0	Carbon disulfide	5.1	U
1634-04-4	Methyl tert-butyl Ether	5.1	U
79-20-9	Methyl Acetate	5.1	U
75-09-2	Methylene Chloride	5.1	U
156-60-5	trans-1,2-Dichloroethene	5.1	U
75-34-3	1,1-Dichloroethane	5.1	U
110-82-7	Cyclohexane	5.1	U
78-93-3	2-Butanone	25	U
56-23-5	Carbon Tetrachloride	5.1	U
156-59-2	cis-1,2-Dichloroethene	5.1	U
67-66-3	Chloroform	5.1	U
71-55-6	1,1,1-Trichloroethane	5.1	U
108-87-2	Methylcyclohexane	5.1	U
71-43-2	Benzene	5.1	U
107-06-2	1,2-Dichloroethane	5.1	U
79-01-6	Trichloroethene	5.1	U
78-87-5	1,2-Dichloropropane	5.1	U
75-27-4	Bromodichloromethane	5.1	U
108-10-1	4-Methyl-2-Pentanone	25	U
108-88-3	Toluene	5.1	U
10061-02-6	t-1,3-Dichloropropene	5.1	U
10061-01-5	cis-1,3-Dichloropropene	5.1	U
79-00-5	1,1,2-Trichloroethane	5.1	U
591-78-6	2-Hexanone	25	U
124-48-1	Dibromochloromethane	5.1	U

EPA	SAMPLE	NO.	
	DUP		

Lab Name:	Chemtech		uncon .		Co	ntract:		ENVI22		
Lab Code:	CTECH	Case No	.:	T3454		SAS No.:	<u> </u>	3454	SDG No.:	T3454
Matrix (soil/	water):	S	OIL		La	b Sample II	D:	T3454-02		_
Sample wt/vol	: 5.0	(g/mL)	g		La	b File ID:		VI063022	2.D	
Level (low/me	d):	TOM			Da	te Receive	d:	6/30/05	_	
% Moisture: n	ot dec.	2			Da	te Analyze	d: -	6/30/05	_	
GC Column:	RTXVMS	ID:	0.18	(mm)	D:	lution Fac	tor:	1	.0	
Soil Extract	Volume:		(1	nT)	Sc	oil Aliquot	Volu	ıme:		(uL)

CAS No.	Compound (ug/L or	ug/Kg) ug/Kg	Q
106-93-4	1,2-Dibromoethane	5.1	Ū
127-18-4	Tetrachloroethene	5.1	U
108-90-7	Chlorobenzene	5.1	U
100-41-4	Ethyl Benzene	5.1	U
126777-61-2	m/p-Xylenes	5.1	U
95-47-6	o-Xylene	5.1	U
100-42-5	Styrene	5.1	U
75-25-2	Bromoform	5.1	U
98-82-8	Isopropylbenzene	5.1	U
79-34-5	1,1,2,2-Tetrachloroethane	e 5.1	U
541-73-1	1,3-Dichlorobenzene	5.1	U
106-46-7	1,4-Dichlorobenzene	5.1	ט
95-50-1	1,2-Dichlorobenzene	5.1	U
96-12-8	1,2-Dibromo-3-Chloropropa	ane 5.1	U
120-82-1	1,2,4-Trichlorobenzene	5.1	U

SOIL VOLATILE ANALYSIS TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

DUP

ab Name: Chemtech		Contract: ENV	122
ab Code: CTECH	Case No.: <u>T3454</u>	SAS No.: <u>T3454</u>	SDG No.: <u>T3454</u>
Matrix (soil/water):	SOIL	Lab Sample ID:	T3454-02
Sample wt/vol: 5.0	(g/mL) g	Lab File ID:	VI063022.D
evel (low/med): LOW		Date Received:	6/30/2005
Moisture: not dec.	2	Date Analyzed:	6/30/2005
C Column: RTXVMS	ID: 0.18	Dilution Factor:	1.0
oil Extract Volume:		Soil Aliquot Volu	
Number TICS found:	0	CONCENTRATION UNI	
CAS NO.	COMPOUND	RT	EST. CONC. Q

Comments:

EPA SAMPLE NO.

SB-03 (2.5-4.5)

Contract: ENVI22 Chemtech Lab Name: CTECH Case No.: T3454 SAS No.: T3454 SDG No.: T3454 Lab Code: Matrix (soil/water): SOIL Lab Sample ID: T3454-03 Lab File ID: VI063023.D 5.0 (g/mL)Sample wt/vol: g Date Received: 6/30/05 Level (low/med): LOW 6/30/05 Date Analyzed: % Moisture: not dec. Dilution Factor: 1.0 ID: 0.18 GC Column: RTXVMS (mm) (uL) Soil Extract Volume: (uL) Soil Aliquot Volume:

CAS No.	Compound (ug/L or ug/Kg)	ug/Kg	Q
75-71-8	Dichlorodifluoromethane	5.3	U
74-87-3	Chloromethane	5.3	U
75-01-4	Vinyl chloride	5.3	U
74-83-9	Bromomethane	5.3	U
75-00-3	Chloroethane	5.3	U
75-69-4	Trichlorofluoromethane	5.3	U
76-13-1	1,1,2-Trichlorotrifluoroethan	5.3	U
75-35-4	1,1-Dichloroethene	5.3	U
67-64-1	Acetone	27	U
75-15-0	Carbon disulfide	5.3	U
1634-04-4	Methyl tert-butyl Ether	5.3	U
79-20-9	Methyl Acetate	5.3	U
75-09-2	Methylene Chloride	5.3	U
156-60-5	trans-1,2-Dichloroethene	5.3	U
75-34-3	1,1-Dichloroethane	5.3	U
110-82-7	Cyclohexane	5.3	U
78-93-3	2-Butanone	27	ט
56-23-5	Carbon Tetrachloride	5.3	U
156-59-2	cis-1,2-Dichloroethene	5.3	U
67-66-3	Chloroform	5.3	U
71-55-6	1,1,1-Trichloroethane	5.3	U
108-87-2	Methylcyclohexane	5.3	U
71-43-2	Benzene	5.3	U
107-06-2	1,2-Dichloroethane	5.3	U
79-01-6	Trichloroethene	5.3	U
78-87-5	1,2-Dichloropropane	5.3	U
75-27-4	Bromodichloromethane	5.3	U
108-10-1	4-Methyl-2-Pentanone	27	U
108-88-3	Toluene	5.3	U
10061-02-6	t-1,3-Dichloropropene	5.3	U
10061-01-5	cis-1,3-Dichloropropene	5.3	U
79-00-5	1,1,2-Trichloroethane	5.3	U
591-78-6	2-Hexanone	27	U
124-48-1	Dibromochloromethane	5.3	U

EPA SAMPLE NO.

SB-03 (2.5-4.5)

Contract: ENVI22 Chemtech Lab Name: T3454 SAS No.: T3454 SDG No.: Lab Code: CTECH Case No.: T3454 Lab Sample ID: T3454-03 Matrix (soil/water): SOIL VI063023.D Lab File ID: Sample wt/vol: 5.0 (g/mL)g Date Received: 6/30/05 Level (low/med): LOW Date Analyzed: 6/30/05 % Moisture: not dec. Dilution Factor: 1.0 RTXVMS ID: 0.18 (mm) GC Column: (uL) Soil Aliquot Volume: Soil Extract Volume: (uL)

CAS No.	Compound (ug/L or ug/Kg)	ug/Kg	Q
106-93-4	1,2-Dibromoethane	5.3	U
127-18-4	Tetrachloroethene	5.3	U
108-90-7	Chlorobenzene	5.3	U
100-41-4	Ethyl Benzene	5.3	U
126777-61-2	m/p-Xylenes	5.3	ט
95-47-6	o-Xylene	5.3	U
100-42-5	Styrene	5.3	ע
75-25-2	Bromoform	5.3	U
98-82-8	Isopropylbenzene	5.3	U
79-34-5	1,1,2,2-Tetrachloroethane	5.3	U
541-73-1	1,3-Dichlorobenzene	5.3	U
106-46-7	1,4-Dichlorobenzene	5.3	U
95-50-1	1,2-Dichlorobenzene	5.3	U
96-12-8	1,2-Dibromo-3-Chloropropane	5.3	U
120-82-1	1,2,4-Trichlorobenzene	5.3	U

SOIL VOLATILE ANALYSIS TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SB-03 (2.5-4.5)

Lab Name: Chemtech		Contract: ENV	122	
Lab Code: CTECH	Case No.: <u>T3454</u>	SAS No.: <u>T3454</u>	SDG No.:	T3454
Matrix (soil/water):	SOIL	Lab Sample ID:	T3454-03	
Sample wt/vol: 5.0	(g/mL) g	Lab File ID:	VI063023.D	
Level (low/med): LOW		Date Received:	6/30/2005	
Moisture: not dec.	7	Date Analyzed:	6/30/2005	_
GC Column: RTXVMS	ID: 0.18	Dilution Factor:	1.0	
oil Extract Volume:		Soil Aliquot Volu	ime:	
Number TICS found:	0	CONCENTRATION UN		
CAS NO.	COMPOUND	RT	EST. CONC.	Q

Comments:

EPA SAMPLE NO.

SB-03 (6.5-8.5)

Contract: ENVI22 Chemtech Lab Name: SAS No.: T3454 SDG No.: T3454 Lab Code: CTECH Case No.: T3454 Lab Sample ID: T3454-04 Matrix (soil/water): SOIL VI063024.D 5.0 (g/mL)Lab File ID: Sample wt/vol: g Date Received: 6/30/05 Level (low/med): LOW 6/30/05 2 Date Analyzed: % Moisture: not dec. Dilution Factor: ID: 1.0 0.18 (mm) RTXVMS GC Column: (uL) Soil Aliquot Volume: Soil Extract Volume: (uL)

CAS No.	Compound (ug/L or ug/Kg)	ug/Kg	Q
75-71-8	Dichlorodifluoromethane	5.1	U
74-87-3	Chloromethane	5.1	U
75-01-4	Vinyl chloride	5.1	U
74-83-9	Bromomethane	5.1	U
75-00-3	Chloroethane	5.1	U
75-69-4	Trichlorofluoromethane	5.1	U
76-13-1	1,1,2-Trichlorotrifluoroethan	5.1	U
75-35-4	1,1-Dichloroethene	5.1	U
67-64-1	Acetone	25	U
75-15-0	Carbon disulfide	5.1	U
1634-04-4	Methyl tert-butyl Ether	5.1	U
79-20-9	Methyl Acetate	5.1	U
75-09-2	Methylene Chloride	5.1	U
156-60-5	trans-1,2-Dichloroethene	5.1	U
75-34-3	1,1-Dichloroethane	5.1	U
110-82-7	Cyclohexane	5.1	U
78-93-3	2-Butanone	25	U
56-23-5	Carbon Tetrachloride	5.1	U
156-59-2	cis-1,2-Dichloroethene	5.1	U
67-66-3	Chloroform	5.1	U
71-55-6	1,1,1-Trichloroethane	5.1	U
108-87-2	Methylcyclohexane	5.1	U
71-43-2	Benzene	5.1	U
107-06-2	1,2-Dichloroethane	5.1	U
79-01-6	Trichloroethene	5.1	U
78-87-5	1,2-Dichloropropane	5.1	U
75-27-4	Bromodichloromethane	5.1	U
108-10-1	4-Methyl-2-Pentanone	25	U
108-88-3	Toluene	5.1	U
10061-02-6	t-1,3-Dichloropropene	5.1	Ū
10061-01-5	cis-1,3-Dichloropropene	5.1	U
79-00-5	1,1,2-Trichloroethane	5.1	U
591-78-6	2-Hexanone	25	U
124-48-1	Dibromochloromethane	5.1	U

EPA SAMPLE NO.

SB-03(6.5-8.5)

Lab Name:	Chemtech	on the contract of the contrac			Contract:	ENVIZ	22	
Lab Code:	CTECH	_ Case No	o.:	T3454	SAS No.:	T3454	SDG No.:	T3454
Matrix (soil/	water):	S	SOIL		Lab Sample ID:	<u>T3454-0</u>)4	
Sample wt/vol	.: 5.0	(g/mL)	g	_	Lab File ID:	VI0630	24.D	
Level (low/me	ed):	LOW			Date Received:	6/30/05		
% Moisture: n	ot dec.	2			Date Analyzed:	6/30/05		
GC Column:	RTXVMS	ID:	0.18	(mm)	Dilution Factor	:	1.0	
Soil Extract	Volume:	_	(u	- 1L)	Soil Aliquot Vo	lume:		(uL)

CAS No.	Compound (ug/L or ug/K	g) ug/Kg	Q
106-93-4	1,2-Dibromoethane	5.1	ט
127-18-4	Tetrachloroethene	5.1	U
108-90-7	Chlorobenzene	5.1	U
100-41-4	Ethyl Benzene	5.1	ע
126777-61-2	m/p-Xylenes	5.1	U
95-47-6	o-Xylene	5.1	ט
100-42-5	Styrene	5.1	U
75-25-2	Bromoform	5.1	U
98-82-8	Isopropylbenzene	5.1	U
79-34-5	1,1,2,2-Tetrachloroethane	5.1	U
541-73-1	1,3-Dichlorobenzene	5.1	U
106-46-7	1,4-Dichlorobenzene	5.1	U
95-50-1	1,2-Dichlorobenzene	5.1	U
96-12-8	1,2-Dibromo-3-Chloropropane	5.1	U
120-82-1	1,2,4-Trichlorobenzene	5.1	U

SOIL VOLATILE ANALYSIS TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SB-03 (6.5-8.5)

Lab Name: Chemtech		Contract: ENV	122	and the state of the
Lab Code: CTECH	Case No.: <u>T3454</u>	SAS No.: <u>T3454</u>	SDG No.:	T3454
Matrix (soil/water):	SOIL	Lab Sample ID:	T3454-04	
Sample wt/vol: 5.0	(g/mL) g	Lab File ID:	VI063024.D	
Level (low/med): LOW		Date Received:	6/30/2005	
Moisture: not dec.	2	Date Analyzed:	6/30/2005	
GC Column: RTXVMS	ID: 0.18	Dilution Factor:	1.0	
oil Extract Volume:		Soil Aliquot Vol	ime:	
Number TICS found:	0	CONCENTRATION UN		
CAS NO.	COMPOUND	RT	EST. CONC.	Q

Comments:

EPA SAMPLE NO.

SB-03 (10-12)

(uL)

Lab Name: Chemtech Contract: ENVI22 T3454 SDG No.: T3454 Lab Code: CTECH Case No.: T3454 SAS No.: Matrix (soil/water): Lab Sample ID: T3454-05 (g/mL) Sample wt/vol: 5.0 Lab File ID: VI063025.D g Level (low/med): LOW Date Received: 6/30/05 6/30/05 % Moisture: not dec. Date Analyzed: ID: Dilution Factor: 1.0 0.18 GC Column: RTXVMS (mm)

(uL)

Soil Extract Volume:

CONCENTRATION UNITS:

Soil Aliquot Volume:

CAS No.	Compound (ug/L or ug/Kg)	ug/Kg	Q
75-71-8	Dichlorodifluoromethane	5.1	U
74-87-3	Chloromethane	5.1	U
75-01-4	Vinyl chloride	5.1	U
74-83-9	Bromomethane	5.1	U
75-00-3	Chloroethane	5.1	U
75-69-4	Trichlorofluoromethane	5.1	U
76-13-1	1,1,2-Trichlorotrifluoroethan	5.1	U
75-35-4	1,1-Dichloroethene	5.1	ט
67-64-1	Acetone	26	U
75-15-0	Carbon disulfide	5.1	U
1634-04-4	Methyl tert-butyl Ether	5.1	ט
79-20-9	Methyl Acetate	5.1	U
75-09-2	Methylene Chloride	5.1	U
156-60-5	trans-1,2-Dichloroethene	5.1	U
75-34-3	1,1-Dichloroethane	5.1	U
110-82-7	Cyclohexane	5.1	U
78-93-3	2-Butanone	26	U
56-23-5	Carbon Tetrachloride	5.1	U
156-59-2	cis-1,2-Dichloroethene	5.1	U
67-66-3	Chloroform	5.1	U
71-55-6	1,1,1-Trichloroethane	5.1	U
108-87-2	Methylcyclohexane	5.1	U
71-43-2	Benzene	5.1	U
107-06-2	1,2-Dichloroethane	5.1	U
79-01-6	Trichloroethene	5.1	U
78-87-5	1,2-Dichloropropane	5.1	U
75-27-4	Bromodichloromethane	5.1	U
108-10-1	4-Methyl-2-Pentanone	26	U
108-88-3	Toluene	5.1	U
10061-02-6	t-1,3-Dichloropropene	5.1	U
10061-01-5	cis-1,3-Dichloropropene	5.1	U
79-00-5	1,1,2-Trichloroethane	5.1	U
591-78-6	2-Hexanone	26	U
124-48-1	Dibromochloromethane	5.1	U

EPA SAMPLE NO.

SB-03 (10-12)

Lab Name:	Chemtech				Contract:	ENVI22		
Lab Code:	CTECH	Case No	·.:	T3454	SAS No.:	T3454	SDG No.:	T3454
Matrix (soil/	water):	S	OIL		Lab Sample ID:	T3454-05		
Sample wt/vol	.: 5.0	(g/mL)	g	_	Lab File ID:	VI063025	.D	
Level (low/me	ed):	LOW			Date Received:	6/30/05		
% Moisture: n	ot dec.	3			Date Analyzed:	6/30/05	_	
GC Column:	RTXVMS	ID:	0.18	(mm)	Dilution Factor	:1.	0	
Soil Extract	Volume:		(1	ıL)	Soil Aliquot Vo	lume:		(uL)

CAS No.	Compound (ug/L o	r ug/Kg) ug/Kg	Q
106-93-4	1,2-Dibromoethane	5.1	U
127-18-4	Tetrachloroethene	5.1	U
108-90-7	Chlorobenzene	5.1	U
100-41-4	Ethyl Benzene	5.1	U
126777-61-2	m/p-Xylenes	5.1	U
95-47-6	o-Xylene	5.1	U
100-42-5	Styrene	5.1	Ū
75-25-2	Bromoform	5.1	U
98-82-8	Isopropylbenzene	5.1	U
79-34-5	1,1,2,2-Tetrachloroethan	ne 5.1	U
541-73-1	1,3-Dichlorobenzene	5.1	Ū
106-46-7	1,4-Dichlorobenzene	5.1	U
95-50-1	1,2-Dichlorobenzene	5.1	U
96-12-8	1,2-Dibromo-3-Chloroprop	pane 5.1	U
120-82-1	1,2,4-Trichlorobenzene	5.1	U

SOIL VOLATILE ANALYSIS TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SB-03 (10-12)

Name: Chemtech		Contract: EN	VI22	
b Code: CTECH	Case No.: <u>T3454</u>	SAS No.: <u>T3454</u>	SDG No.:	T3454
atrix (soil/water):	SOIL	Lab Sample ID:	T3454-05	
ample wt/vol: 5.0	(g/mL) g	Lab File ID:	VI063025.D	
evel (low/med): Lo	OW	Date Received:	6/30/2005	
Moisture: not dec.	3	Date Analyzed:	6/30/2005	
Column: RTXVMS	ID: 0.18	Dilution Factor	: 1.0	
oil Extract Volume:		Soil Aliquot Vo	lume:	
umber TICS found:		CONCENTRATION U		
CAS NO.	COMPOUND	RT	EST. CONC.	Q
CAS NO.	COMPOUND Dodecane, 2,7,10-trin		EST. CONC.	Q J
		methyl- 12.02		
1. 074645-98-0	Dodecane, 2,7,10-trin	methyl- 12.02 1- 12.13	8.8	J
1. 074645-98-0 2. 013287-23-5	Dodecane, 2,7,10-trin	methyl- 12.02 1- 12.13 methyl- 12.60	8.8	J
1. 074645-98-0 2. 013287-23-5 3. 003891-98-3	Dodecane, 2,7,10-trin Heptadecane, 8-methy	methyl- 12.02 1- 12.13 methyl- 12.60 hyl- 12.83	8.8 13 11	J J J
1. 074645-98-0 2. 013287-23-5 3. 003891-98-3 4. 062016-37-9	Dodecane, 2,7,10-trim Heptadecane, 8-methyl Dodecane, 2,6,10-trim Octane, 2,4,6-trimethyl	methyl- 12.02 1- 12.13 methyl- 12.60 hyl- 12.83 - 13.08	8.8 13 11 9.4	J J J

Comments:	

EPA	SAMPLE	NO.	
TI	RIPBLAN	ıĸ	

Lab Name:	Chemtech		·····		Contract:	ENVI2	2	
Lab Code:	CTECH	Case No	o.:	T3454	SAS No.:	T3454	SDG No.:	T3454
Matrix (soil	/water):	W	ATER		Lab Sample ID:	T3454-0	6	
Sample wt/vo	1: 5.0	(g/mL)	ml	_	Lab File ID:	VH06305	9.D	
Level (low/m	ed):				Date Received:	6/30/05		
% Moisture:	not dec.	100			Date Analyzed:	7/1/05		
GC Column:	RTX624	ID:	0.53	(mm)	Dilution Factor	1	L.O	
Soil Extract	Volume:		(1	ūΓ)	Soil Aliquot Vo	lume:		(uL)

CAS No.	Compound (ug/L or ug/Kg)	ug/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
76-13-1	1,1,2-Trichlorotrifluoroethan	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	25	U
75-15-0	Carbon disulfide	5.0	U
1634-04-4	Methyl tert-butyl Ether	5.0	U
79-20-9	Methyl Acetate	5.0	U
75-09-2	Methylene Chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
110-82-7	Cyclohexane	5.0	U
78-93-3	2-Butanone	25	U
56-23-5	Carbon Tetrachloride	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
108-87-2	Methylcyclohexane	5.0	ט
71-43-2	Benzene	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
108-10-1	4-Methyl-2-Pentanone	25	ט
108-88-3	Toluene	5.0	U
10061-02-6	t-1,3-Dichloropropene	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
591-78-6	2-Hexanone	25	U
124-48-1	Dibromochloromethane	5.0	U

EPA SAMPLE NO.
TRIPBLANK

Lab Name: Chemt	ech		Contract:	ENVI22		
Lab Code: CTECH	Case No.:	T3454	SAS No.:	T3454	SDG No.:	T3454
Matrix (soil/water)	: WATER		Lab Sample ID:	T3454-06	5	_
Sample wt/vol:	5.0 (g/mL) ml		Lab File ID:	VH063059	9.D	
Level (low/med):			Date Received:	6/30/05		
% Moisture: not dec	100		Date Analyzed:	7/1/05	<u></u>	
GC Column: RTX	624 ID: 0.53	(mm)	Dilution Factor	: 1	.0	
Soil Extract Volume	a:(uL)	Soil Aliquot Vo	lume:		(uL)

CAS No.	Compound (ug/L or ug/Kg)	ug/L	Q
106-93-4	1,2-Dibromoethane	5.0	Ū
127-18-4	Tetrachloroethene	5.0	U
108-90-7	Chlorobenzene	5.0	U
100-41-4	Ethyl Benzene	5.0	U
126777-61-2	m/p-Xylenes	5.0	U
95-47-6	o-Xylene	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	Ū
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

TRI	PBLANK	
	TRI	TRIPBLANK

ATER	SAS No.: <u>T3454</u>	SDG No.:	T3454
ATER			
	Lab Sample ID:	T3454-06	
(g/mL) mL	Lab File ID:	VH063059.D	
	Date Received:	6/30/2005	
100	Date Analyzed:	7/1/2005	
D: 0.53	Dilution Factor:	1.0	
	Soil Aliquot Volu	me:	
DMPOUND	RT	EST. CONC.	Q
	0.53 0: 0.53	Date Received: Date Analyzed: Dilution Factor: Soil Aliquot Volu CONCENTRATION UNI (ug/L or ug/Kg	Date Received: 6/30/2005 Date Analyzed: 7/1/2005 Dilution Factor: 1.0 Soil Aliquot Volume: CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Comments: