

330 Crossways Park Drive, Woodbury, New York 11797-2015 516-364-9890 • 718-460-3634 • Fax: 516-364-9045 e-mail: findingsolutions@db-eng.com

July 31, 2007

Nicholas J. Bartilucci, P.E. President

Principals

Henry J. Chlupsa, P.E. Executive Vice President

Steven A. Fangmann, P.E. Senior Vice President

Richard M. Walka Senior Vice President

John A. Mirando, P.E. Vice President

Garrett M. Byrnes, P.E. Vice President

Anthony O. Conetta, P.E. Vice President

Dennis F. Koehler, P.E. Vice President

Joseph H. Marturano Vice President

Kenneth J. Pritchard, P.E. Vice President

Theodore S. Pytlar, Jr. Vice President

Brian M. Veith, P.E. Vice President

Senior Assoclates

Thomas P. Fox, P.G. Robert L. Haynie, P.E. William D. Merklin, P.E. Michael Neuberger, P.E.

Kenneth P. Wenz, Jr., C.P.G.

Associates

Joseph F. Baader Steven M. Cabrera Rudolph F. Cannavale Christopher M. Clement Ellen R. DeOrsay Stefanos J. Eapen, R.A. Joseph A. Fioraliso, P.E. Christopher W. Francis Michael R. Hofgren Sean Pepling, P.G. Edward J. Reilly Daniel Shabat, P.E. Charles J. Wachsmuth, P.E Mr. Payson Long Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway, 12th Floor Albany, NY 12233-7013

Re: Franklin Cleaners Site (Site No. 1-30-050) D&B Work Assignment No. D004446-01 Quarterly Report No. 11 (March 1, 2007 through May 31, 2007) D&B No. 2531-03

Dear Mr. Long:

The purpose of this letter is to summarize the performance monitoring of the groundwater extraction and treatment system, located approximately 1 mile south/downgradient of the Franklin Cleaners Site (see Attachment A, Figure 1). This performance monitoring report covers the period from March 1, 2007 through May 31, 2007. Presented below is a summary of system operations during the quarter, as well as the results of analytical testing completed, in accordance with the work plan for the referenced work assignment.

Groundwater Extraction and Treatment System Operations

During this period, extraction well EW-1 operated at an average pump rate of 40.3 gallons per minute. Extraction well EW-2 was not in operation for the duration of the quarter, due to an overload failure of variable frequency drive (VFD) No. 2, as a result of a short circuit to the ground in the down-well/pump power cable assembly, as diagnosed by Systematic Technologies on December 6, 2006. A change order to complete the work was submitted to the New York State Department of Environmental conservation (NYSDEC) for review and approval.

Approximately 4,969,200 gallons of treated groundwater, based on measurements recorded at the treatment system discharge flow meter, were discharged to the Nassau County Department of Public Works (NCDPW) storm sewer system. It is noted that this volume is inconsistent with the influent flow meter which recorded approximately 4,568,100 gallons of groundwater entering the treatment system.

Mr. Payson Long Division of Environmental Remediation New York State Department of Environmental Conservation July 31, 2007

During this period, the groundwater extraction and treatment system was inoperative for a total of approximately 270 hours due to system alarm conditions and routine system maintenance. The "down time" was not consecutive and occurred over the course of the reporting period involving six alarm episodes and one maintenance event. A summary of system downtime is presented in Attachment B. Copies of routine system maintenance reports, as prepared by Systematic Technologies, are presented in Attachment C.

Groundwater Extraction and Treatment System Sampling

Samples were collected from the EW-1 well influent line sample tap, as well as from the air stripper (liquid) discharge sample tap, at a frequency of twice per month during the months of this period. No samples were collected from extraction well EW-2 during the period as the extraction well was inoperable. Each sample was analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method OLMO4.2. The samples collected from the air stripper discharge sample tap were also analyzed for iron and manganese by USEPA Method 200.7 and for pH by USEPA Method 150.1.

Sample results are presented in Attachment D. The analytical results of samples collected from the system influent are compared to the NYSDEC Class GA Groundwater Standards and Guidance Values, and the analytical results of samples collected from the air stripper discharge are compared to the effluent limitations. As can be seen from the analytical results in Attachment D, extraction well EW-1 continues to extract tetrachloroethene (PCE) at concentrations ranging from a low of 9 micrograms per liter (ug/l) on March 5, 2007, to a high of 20 ug/l on April 3, 2006, which are both above the PCE Class GA groundwater standard of 5 ug/l. The discharge sample results for the period were all below the VOC effluent limitations and were also in compliance with the iron, manganese and pH effluent limitations, with the exception of 1,220 ug/l, which is above the NYSDEC effluent limitation of 1,000 ug/l. Iron effluent samples collected on May 2, 2007 and May 29, 2007 were both below the NYSDEC effluent limitation of 1,000 ug/l; thus, the exceedance was temporary and possibly attributed to iron adsorbed on sediment in the sample vial.

Approximately 0.65 pounds of PCE were removed from the extracted groundwater by the low profile air stripper during the reporting period. The average PCE removal efficiency for this quarter was greater than 96 percent. Refer to Attachment E for a summary of the extraction and treatment system performance results since the system was placed in operation.

Mr. Payson Long Division of Environmental Remediation New York State Department of Environmental Conservation July 31, 2007

Vapor phase samples were collected from the two carbon adsorption unit influent and effluent sample taps at a frequency of once per week. Each sample was collected by filling a Tedlar bag directly from the sample taps and the samples were screened using a calibrated, handheld photoionization detector (PID). During the period, all PID readings collected at the carbon vessel outlets were 0.0 parts per million (ppm). Refer to Attachment D for results of vapor phase samples collected during the period.

Groundwater Quality Data

The network of downgradient groundwater monitoring wells was sampled to evaluate the effectiveness of the groundwater extraction and treatment system. Samples were collected from ASMW-1, ASMW-2, ASMW-3, ASMW-4, ASMW-5, ASMW-6 and ASMW-7 on May 17, 2007. Samples were analyzed for VOCs by USEPA Method OLMO4.2. The locations of the monitoring wells are shown in Figure 2 in Attachment A.

The results of the analyses of the samples collected from the monitoring wells are presented in Attachment D and summarized on Figure 2 in Attachment A. The results are compared to the NYSDEC Class GA Groundwater Standards and Guidance Values. The concentration of PCE detected in the sample from monitoring well ASMW-1 decreased from 3 ug/l (February 7, 2007) to non-detect (May 17, 2007). The concentration of PCE detected in the sample from monitoring well ASMW-2 increased from 23 ug/l (February 2, 2007) to 44 ug/l (May 17, 2007) but continues to maintain a historical decreasing trend. The detected concentration of PCE in the sample from monitoring well ASMW-3 continues to be below the standard. VOCs were not detected at concentrations above the standards or guidance values in the samples collected from groundwater monitoring wells ASMW-1, ASMW-3, ASMW-4, ASMW-5, ASMW-6 and ASMW-7 during this period. Please refer to the trend line graphs provided in Attachment E, which summarize PCE concentrations detected in samples collected from ASMW-1, ASMW-2 and ASMW-3 since June 2003.

Data Validation

The biweekly system samples and groundwater samples have been analyzed for VOCs by Mitkem Corporation (Mitkem). The effluent sample (AS-1) was also analyzed for iron, manganese and pH. Mitkem is a New York State Department of Health Environmental Laboratory Approval Program-certified laboratory. The data packages submitted by Mitkem have been reviewed for completeness and compliance with the NYSDEC Analytical Services Protocol (ASP) Quality Assurance/Quality Control (QA/QC) requirements. All sample results have been deemed valid and usable for environmental assessment purposes as qualified below:

•.

Mr. Payson Long Division of Environmental Remediation New York State Department of Environmental Conservation July 31, 2007

• All samples were analyzed within the method specified holding times and all QA/QC requirements (surrogate recoveries, calibrations, blanks, etc.) were met. No problems were noted with sample results and qualification of the data was not required.

Conclusions

Based on the results of performance monitoring performed during the period, we offer the following conclusions:

- The analytical results of the system influent samples show that the extraction well EW-1 continues to capture VOC-contaminated groundwater.
- The analytical results of the groundwater discharge samples show that the air stripper is effectively removing the captured VOCs and reducing concentrations to below the discharge criteria.
- The analytical results for the groundwater discharge sample collected on May 14, 2007 exceeded the iron NYSDEC effluent limit of 1,000 ug/l; however, the groundwater discharge samples collected on May 2, 2007 and May 29, 2007 were both below the iron NYSDEC effluent limit, indicating that the exceedance was temporary.
- The nondetection of PCE in groundwater monitoring well ASMW-1 continues to be below the standard (5 ug/l) and indicates that the extraction system is continuing to reduce the horizontal extent of the PCE plume.
- Concentrations of PCE detected in groundwater monitoring well ASMW-2 increased from 23 ug/l (February 2, 2007) to 44 ug/l (May 17, 2007) but continue to constitute a decreasing trend from a high of 69 ug/l (November 11, 2005).

Recommendations

Based on the results of performance monitoring conducted during the period, we offer the following recommendations:

• Continue operation of the groundwater extraction and treatment system to minimize downgradient migration of PCE, currently being captured by the system.

Page 4

Mr. Payson Long Division of Environmental Remediation New York State Department of Environmental Conservation July 31, 2007

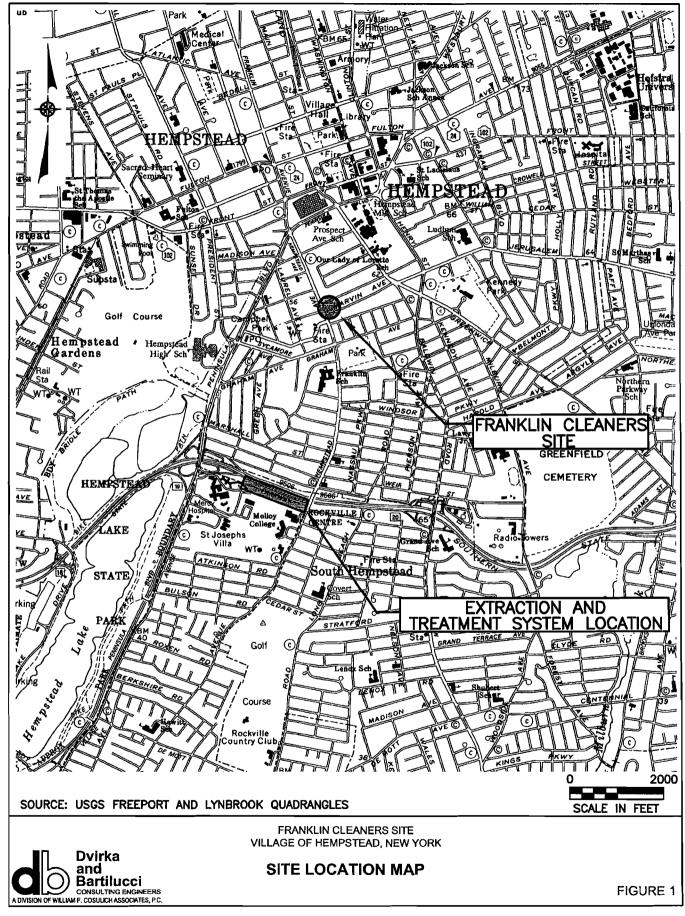
- Continue groundwater monitoring through the existing monitoring well network to determine contaminant concentration trends over time and to evaluate the continued effectiveness of the remediation system.
- Pull and replace extraction well EW-2 well pump. A change order to perform the work was submitted to the NYSDEC for review on June 18, 2007.

Please do not hesitate to contact me at (516) 364-9890 if you have any questions.

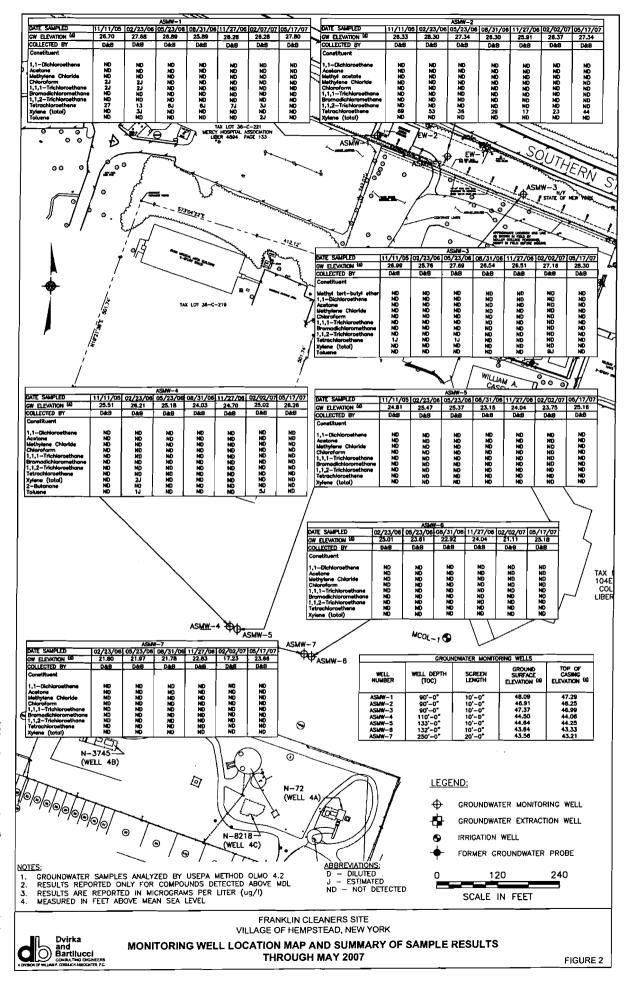
Very truly yours,

+ June

Albert/H. Jaroszewski Project Manager


AHJ/CM/jmy Attachments cc: J. Trad (NYSDEC) J. Neri (H2M) R. Walka (D&B) P. Martorano (D&B) • 2531\AHJ06197 PL-LTR.doc(R05)

ATTACHMENT A


FIGURES

+2531\AHJ06197 PL-LTR.DOC

1

F:2531/DWG\Quarterly Reports\Quarter 11\FIGURE 1.dwg, Layout1, 06/18/07 02:04:26 PM, PMartorano

11\FIGURE 2.dwg, FIG 2, 06/19/07 10:13:41 AM, PMartorano

:\2531\DWG\Qu

ATTACHMENT B

•

-

DESCRIPTION OF SYSTEM ALARM CONDITIONS

♦2531\AHJ06197 PL-LTR.DOC

٠.

:

FRANKLIN CLEANERS SITE NYSDEC CONTRACT No. D004446 / SITE No. 1-30-050 SUMMARY OF SYSTEM DOWNTIME

RESTART DATE/TIME	CAUSE FOR SHUTDOWN
3/27/07 3:20 PM	Alarm condition No. 3 - High high wet well. Turn wet well breaker off then on. Purge wet well. Restarted system.
4/3/07 3:30 PM	Alarm condition No. 3 - High high wet well. Turn wet well breaker off then on. Purge wet well. Restarted system.
4/16/07 3:40 PM	Alarm condition No. 3 - High high wet well. Tum wet well breaker off then on. Purge wet well. Restarted system.
4/19/07 3:30 PM	Alarm condition No. 3, 4 and 5 - EW-1 alarm. Reset EW-1 VFD and reset main control panel. Restarted system.
4/25/07 9:20 AM	⁽¹⁾ Blower Maintenance - Performed routine blower maintenance and restarted system once maintenance was completed.
5/2/07 9:00 AM	Alarm condition No. 3 - High high wet well. Turn wet well breaker off then on. Purge wet well. Restarted system.
5/29/07 4:45 PM	Alarm condition No. 3 - High high wet well. Turn wet well breaker off then on. Purge wet well. Restarted system.
	3/27/07 3:20 PM 4/3/07 3:30 PM 4/16/07 3:40 PM 4/19/07 3:30 PM 4/25/07 9:20 AM 5/2/07 9:00 AM

NOTES:

1. Blower maintenance event performed by Systematic Technologies, Inc.

ATTACHMENT C

SYSTEM MAINTENANCE REPORTS

+2531\AHJ06197 PL-LTR.DOC

MAINTENANCE AND INSPECTION REPORT

٠.

.1

FRANKLIN CLEANERS SITE, ROCKVILLE CENTRE, NY

Date: 4/25/07		<u> </u>		
Name of Personnel Onsite	Title	Time Arrived	Time Depart	ted Total Hours
L. Sorensen	Technician	0830	0930	1
	<u></u>			
			·	
Check off Items that were co	ompleted:			
 ☐ Item 1: Snow Remo ☑ Item 2A: Pressure I □ Item 2B: Pressure B □ Item 3: Air Stripper □ Item 4: Granular Ac □ Item 5: Submersible □ Item 6: Non-routine 	Blower Maintenan lower Fan Wheel Maintenance ctivated Carbon R e Wet Well Pump	Replacement emoval and Rep		
Description of Work: Item 2A: Pressure Blower checked belt tension – okay				ased bearings;
Name of Part / Supply / Mat	erial Manufact	urer N	lodel Number	Quantity Used
Bearing Grease	Mobil		lobilith SHC-100	Not measurable
Description of Waste Gener	ated Volume o		isposal Facility Name & Address)	Waste Transporter (Name & Address)
In signing this report I hereb inspection activities perform between STI and Dvirka and	ed during this eve	ent conform to the		

ATTACHMENT D

ANALYTICAL RESULTS

♦2531\AHJ06197 PL-LTR.DOC

SAMPLE ID	ASMW-1	ASMW-2	ASMW-3	ASMW-4	ASMW-5	ASMW-6	ASMW-7	NYSDEC CLASS GA
SAMPLE TYPE	WATER	WATER	WATER	WATER	WATER	WATER	WATER	
DATE OF COLLECTION	5/17/07	5/17/07	5/17/07	5/17/07	5/17/07	5/17/07	5/17/07	STANDARDS AND GUIDANC
COLLECTED BY	D&B	D&B	D&B	D&B	D&B	D&B	,D&B	- VALUES
UNITS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Dichlorodifluoromethane	U	U	U	U	U	υ	U U	5 ST
Chloromethane	U	U.	U	U	U	U U	U U	-
Vinyl chloride	U	U	U	U	U	U U	U U	2 ST
Bromomethane	U	U	U	U	U	U U	U U	5 ST
Chloroethane	U	U	U	U	U	U U	U U	5 ST -
Trichlorofluoromethane	U	U	U	U	U	U U	U	5 ST
1,1-Dichloroethene	U	U	U	U	U	U U	U	5 ST
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	U	U U	U U	5 ST
Acetone	U	U	U	U	U	U U	U U	50 GV
Carbon disulfide	U	U	U	U	U	U U	U	60 GV
Methyl acetate	U	U	U	U U	U	U U	U U	-
Methylene chloride	U	U	U	U U	U	U U	U U	5 ST
trans 1,2-Dichloroethene	U	U	U	U	U	U	U	5 ST
Methyl-tert butyl ether	U	U	U	U	U	U	U	10 GV
1,1-Dichloroethane	U	U	U	U U	U U	U U	U	5 ST
cis-1,2-Dichloroethene	U	U	U	U U	U	U	U	5 ST
2-Butanone	U	U	U	U U	U	U	υ	50 GV
Chloroform	U	U	U	υ υ	U	U	υ	7 ST
1,1,1-Trichloroethane	U	U	U	U	U	U U	υ	5 ST
Cyclohexane	U	U	U	U U	U U	U U	υ	-
Carbon tetrachloride	U	U	U	υ	U U	υ υ	υ	5 ST
Benzene	U	U	U	υ υ	U	U U	Ű	1 ST
1,2-Dichloroethane	U	U	U	υ υ	U	υ	υ	0.6 ST
Trichloroethene	U	U U	U	Ι υ	U	l Ű	Ū	5 ST
Methylcyclohexane	Ū	Ū Ū	Ū	l ū	Ū	Ū	Ũ	
1,2-Dichloropropane	l ū	Ū	Ū	l ū	Ū	Ū	Ũ	1 ST
Bromodichloromethane	l ū	Ū	Ū	l ū	Ū	Ū	Ū	50 GV
cis-1,3-Dichloropropene	Ū	Ū Ū	Ū	ĪŪ	Ū	Ŭ	Ů	0.4 ST
4-Methyl-2-pentanone	l ũ	Ū I	Ŭ	ĺŪ	Ū	ĪŪ	Ū	-
Toluene	Ū	Ŭ	Ū	Ŭ	Ŭ	Ū	Ũ	5 ST
trans-1,3-Dichloropropene	l ů	Ŭ I	Ū	Ŭ	Ŭ	Ŭ	Ŭ	0.4 ST
1,1,2-Trichloroethane	Ŭ	Ŭ	ŭ	Ū	Ū	Ŭ	Ū	1 ST
Tetrachloroethene	Ū	44	Ŭ	Ŭ	υ υ	U U	U	5 ST
2-Hexanone	Ū	U U	Ŭ	Ŭ	U U	i ū	U	50 GV
Dibromochloromethane	l ŭ	Ū	ŭ	Ū	Ŭ	Ū	Ū	50 GV
1,2-Dibromoethane	Ŭ Ŭ	l ŭ l	Ū	ŭ	Ŭ	Ŭ	ū	5 ST
Chlorobenzene	Ŭ	Ŭ	ŭ	ŭ	Ŭ	Ŭ	Ŭ	5 ST
Ethylbenzene	Ŭ	Ŭ I	Ū	Ŭ	Ŭ Ŭ	ĪŪ	Ŭ	5 ST
Xylene (total)	l ŭ	U U I	ŭ	Ŭ	Ŭ	Ū	Ū	5 ST
	ŭ	Ŭ U	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	5 ST
Styrene Bromoform		U U U	Ŭ	U U	Ŭ	l ŭ	Ŭ	50 GV
	u u	U U U	Ŭ	U U	Ŭ	Ŭ	Ŭ	5 ST
Isopropylbenzene			Ŭ	U U	U U	U U	Ŭ	5 ST
1,1,2,2-Tetrachloroethane			Ŭ	U U	Ŭ	U U	Ŭ	3 ST
1,3-Dichlorobenzene	•	U U	U		U U		U U	3 ST
1,4-Dichlorobenzene	U	_	U U		U U		U U	3 ST
1,2-Dichlorobenzene	•	U U	-				U U	0.04 ST
1,2-Dibromo-3-chloropropane	U U	U U	U U	ບ ບ		ບ		5 ST
1,2,4-Trichlorobenzene	U		U	U		<u> </u>	U	
NOTES:		ABBREVIATIONS:			QUALIFIERS:			
Concentration exceeds NYS		ug/L = Micrograms per l	iter ST: Stand		U: Compound analyz			

GV: Guidance Value

Concentration exceeds NYSDEC Class GA Groundwater Standards or Guidance Values

ug/L = Micrograms per liter -: Not established

J: Compound found at a concentration below CRDL, value estimated

...

FRANKLIN CLEANERS SITE NYSDEC CONTRACT No. D004446 / SITE No. 1-30-050 RESULTS OF ANALYSIS OF EW-1 INFLUENT

	SYSTEM INFLUENT							
SAMPLE ID	(EW-1)	NYSDEC CLASS GA						
SAMPLE TYPE	WATER	GROUNDWATER						
DATE OF COLLECTION	3/5/2007	3/23/2007	4/3/2007	4/16/2007	5/2/2007	5/16/2007	5/29/2007	STANDARDS AND
COLLECTED BY	D&B	GUIDANCE VALUES						
UNITS	(ug/L)	(ug/L)						
VOCs								
Dichlorodifluoromethane	U	U	U	U	U	U	U	5 ST
Chloromethane	U	U U	U	U	U	U	U	-
Vinyl chloride	U	U	U	U	U U	U	U U	2 ST
Bromomethane	U	U	U	U	U	U	U	5 ST
Chioroethane	U	U	U	U	U	U	U U	5 ST
Trichlorofluoromethane	U	U	U	U	U	U	U	5 ST
1,1-Dichloroethene	U U	U	U	U	U	U	U	5 ST
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	U	U	U	5 ST
Acetone	U	U	U	U	U	U	U	50 GV
Carbon disulfide	U	U	U	U	U	U	U	60 GV
Methyl acetate	U	U	U	U	U	U	U	-
Methylene chloride	U U	U	U	U	U	U	U	5 ST
trans 1,2-Dichloroethene	U U	U	U	U	U U	U	U	5 ST
Methyl-tert butyl ether	U	U	U	U	U	U	U	10 GV
1,1-Dichloroethane	U	U	U	U	U	U	U	5 ST
cis-1,2-Dichloroethene	U U	U	U	U	U	U	U U	5 ST
2-Butanone	U U	U U	U	U	U U	U	U	50 GV
Chloroform	U U	U	U	U	-	U	U	7 ST
1,1,1-Trichloroethane	U U	U	U	U		U	U	5 ST
Cyclohexane	U U	U	U.	UU		U	U U	
Carbon tetrachloride	U U	U U	U U	•		U	, v 1	5 ST
Benzene	U	U	U U	U		U U	U U	1 ST
1,2-Dichloroethane	U	U	U	U	-	-		0.6 ST
Trichloroethene	U,	U	U	U		U	U.	5 ST
Methylcyclohexane	U U	U U	U	U		U	U U	
1,2-Dichloropropane	U U	U"	U U	U		บ บ	U U	1 ST 50 GV
Bromodichloromethane			U U	U U		U U	U U	0.4 ST
cis-1,3-Dichloropropene			U U	U		U U	U U	0.4 51
4-Methyl-2-pentanone			U U	Ŭ	U U	Ŭ	Ŭ	5 ST
Toluene			U U	U	U U	U U	u u	0.4 ST
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	l ŭ	Ŭ	U U	Ŭ	Ιŭ	Ŭ	Ŭ	1 ST
Tetrachloroethene	91	19	20	17	16	16	15	5 ST
2-Hexanone	<u>_</u>	<u></u> U	U	<u>_</u>			<u>- 10</u> U	50 GV
Dibromochloromethane	U U	Ŭ	ŭ	Ŭ	U U	Ŭ	Ŭ	50 GV
1.2-Dibromoethane	υ	U U	Ŭ	Ŭ	l ŭ	Ŭ	ΙŬΪ	5 ST
Chlorobenzene	υ	U U	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ Ŭ	5 ST
Ethylbenzene	l ŭ	Ŭ	Ŭ	ŭ	l ŭ	Ŭ	Ŭ I	5 ST
Xylene (total)	Ιŭ	Ŭ	Ŭ	Ŭ	Ŭ Ŭ	Ŭ	Ū	5 ST
Styrene	Ŭ	Ŭ	Ŭ	Ŭ	Ū	Ŭ	Ū	5 ST
Bromoform	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ū	50 GV
Isopropylbenzene	Ŭ	Ŭ	ŭ	Ŭ	Ŭ	Ū	Ŭ	5 ST
1,1,2,2-Tetrachloroethane	Ŭ	Ŭ	Ŭ	ŭ	Ŭ	Ů	Ŭ	5 ST
1.3-Dichlorobenzene	Ŭ	l ŭ	Ŭ	ŭ	Ŭ	Ū	Ŭ	3 ST
1,3-Dichlorobenzene	U U	U U	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	3 ST
1,2-Dichlorobenzene	U	U U	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	3 ST
1,2-Dibromo-3-chloropropane	Ŭ	U U	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	0.04 ST
1,2,4-Trichlorobenzene	Ŭ	Ŭ	ŭ	Ŭ	Ū	Ū	Ŭ	5 ST
NOTES:		ABBREVIATIONS:			QUALIFIERS:			

ST: Standard Value

GV: Guidance Value

U: Compound analyzed for but not detected

J: Compound found at a concentration below CRDL, value estimated

B: Compound detected in method blank as well as sample, value estimated.

Concentration exceeds NYSDEC Class GA Groundwater Standards or Guidance Values

 EW-1 turned off on 11/15/05 due to a high load on the pump. Pump scheduled to be pulled and cleaned at a future date.

Engwork: HazWaste/2531 (NYSDEC - Franklin Cleaners Site)/Quarterly Reports/Quarter 9 (Sep 06 - Nov 06)/Quarter 11 Sampling Results.xls

--: Not established

ug/L = Micrograms per liter

WATER WATER <th< th=""><th>SAMPLE TYPE</th><th></th><th></th><th></th><th></th><th>EFFLUENT (AS-1)</th><th>EFFLUENT (AS-1)</th><th></th><th></th><th></th></th<>	SAMPLE TYPE					EFFLUENT (AS-1)	EFFLUENT (AS-1)			
4 36000 (mit) 40000 (mit) 40000 (mit) 40000 (mit) 40000 (mit) 40000 (mit) 40000 (mit) 40000 (mit) 400000 (mit) 400000 (mit) 400000 (mit) 400000 (mit) 400000 (mit) 4000000 (mit) 4000000 4000000 4000000 4000000 4000000 4000000 40000000 40000000 40000000 4000000000000000000000000000000000000		WATER	WATER	WATER		WATER	WATER	-		GROUNDWATER
Observe Observe <t< td=""><td>DATE OF COLLECTION</td><td>3/5/2007</td><td>3/23/2007</td><td>4/3/2007</td><td></td><td>5/2/2007</td><td>5/16/2007</td><td>5/29/2007</td><td></td><td>STANDARDS AND</td></t<>	DATE OF COLLECTION	3/5/2007	3/23/2007	4/3/2007		5/2/2007	5/16/2007	5/29/2007		STANDARDS AND
Contribution Contribution<	COLLECTED BY	D&B	D&B	D&B	D&B	D&B	D&B	D&B	•	GUIDANCE VALUES
0000000000 0	UNITS	(1/6n)	(n0/L)	(ng/L)	(1/6n)	(ng/L)	(ng/L)	(na/L)	(na/L)	(na/r)
Contribute Contrib	Dichlorodifluoromethane)	5	5	5		5		1	5.51
Concentione	Chloromethane	n		D	0			. =	I	
Concentione Concentione <thconcentione< th=""> <thconcentione< th=""></thconcentione<></thconcentione<>	Vinyl chłonide	n		=	• =	=		. =	1	2 CT
Control Control <t< td=""><td>Zomomethane</td><td>. =</td><td>) =</td><td>) =</td><td>> =</td><td>) =</td><td>) =</td><td>> =</td><td></td><td></td></t<>	Zomomethane	. =) =) =	> =) =) =	> =		
Control Control <t< td=""><td></td><td>) =</td><td>> =</td><td>> =</td><td>> :</td><td>5 =</td><td>- -</td><td></td><td>•</td><td>100</td></t<>) =	> =	> =	> :	5 =	- -		•	100
Control Control <t< td=""><td></td><td>5 :</td><td>5 :</td><td>- :</td><td>> :</td><td>> =</td><td>- - :</td><td>-</td><td>1</td><td>100</td></t<>		5 :	5 :	- :	> :	> =	- - :	-	1	100
Concentione 0 <th< td=""><td>I richioroniuoromethane</td><td>5</td><td></td><td>5</td><td>5</td><td>5</td><td>Þ</td><td>•</td><td>:</td><td>5 ST</td></th<>	I richioroniuoromethane	5		5	5	5	Þ	•	:	5 ST
Othereties U <thu< td=""><td>1,1-Dichloroethene</td><td>></td><td>D</td><td>∍</td><td>></td><td>></td><td>></td><td>5</td><td>1</td><td>5 ST</td></thu<>	1,1-Dichloroethene	>	D	∍	>	>	>	5	1	5 ST
Image: Second Site	1,1,2-Trichloro-1,2,2-trifluoroethane	9	5)	>	5))	1	5 ST
Note Note <th< td=""><td>Scattone</td><td>. =</td><td>. =</td><td>• =</td><td>) =</td><td>) =</td><td>) =</td><td>) =</td><td></td><td></td></th<>	Scattone	. =	. =	• =) =) =) =) =		
Image: Second Control of Control			5 :) :	5:	2	5 :	5	I	2000
me 1	Carbon disulfide		-	5	5	-	•	D	1	60 GV
match 0 <td>Methyl acetate</td> <td>5</td> <td></td> <td>0</td> <td><u> </u></td> <td>⊃</td> <td>5</td> <td>0</td> <td>1</td> <td>:</td>	Methyl acetate	5		0	<u> </u>	⊃	5	0	1	:
a A	Mathulana chinida	=	- =	=			=	- =		E CT
• •			5:)			D :)	ł	100
Image: Second Control in the second control	trans 1,2-Dichloroethene	5		0	-	5	>	0	1	5 ST
Image: Second condition of the	Methyl-tert butyl ether	7	=					-	ł	10 GV
Image: Second Condition Image: Second	1. Diobloroothooo	. =) =	• =) =		• =) =	ţ	101
Image: Section Control in the sectincontecont in the section Control in the section Contro		5	5	S		5	5	5	2	100
Image: Second condition of the	cis-1,2-Dichloroethene		-	D	5	>	>	>	10	5 ST
Image: second control in the second control	2-Butanone	D			D	0			1	50 GV
a Control Cont		. =		• =	• =	• =	• =) =		LOF
Test Control C		5	5	5	5	2	5	5	ł	101
Image: Second control in the second control	1,1,1-Trichloroethane	5	>	>	ے 	D	>	ے 	6	5 ST
a a	Cuciohexane	=	=	=	=			=	ł	1
Tele Component Component out of detected Component out out of detected Component out out of detected Component out out out out out out out out out ou) =) =) =) =) =) =) =		10 1
Table Compone	Carbon tetrachionde	5	5	5	5	5	5	5	1	100
Image: Second Carbon	Jenzene	Ð	5	>	>	5	5	D	1	1 ST
Image: Second control of the second control	2. Dicklossethane		=	=	-	-	-	=	1	DEST
Image: Second Calification of the second calificatio		5	2	5)) :		0.00
a b c c c c c c c c c c c c c	Trichloroethene	5	>	D	>	D	>	>	5	5 ST
Tech Tech <th< td=""><td>Mathylcyclohexane</td><td>=</td><td>D</td><td></td><td>></td><td></td><td>D</td><td>0</td><td>1</td><td>1</td></th<>	Mathylcyclohexane	=	D		>		D	0	1	1
Image: Second Carlow of the) :		• =	• =		• =	• =		HC 7
a a	1,2-Licriioroproparte	5	5	2	5	5	.	.	1	10
a 1	Bromodichloromethane	0	-	•	>	>	5	•	1	50 GV
Instruction	cis-1.3-Dichloropropene	0	5	>	>	5	5	2	ı	0.4 ST
ene 0	L-MathvL2-nentanone	=	2		=	=		=	1	I
Option 0 <td></td> <td>. =</td> <td>. =</td> <td>-</td> <td>• =</td> <td>. =</td> <td>- =</td> <td>• =</td> <td>1</td> <td>E CT</td>		. =	. =	-	• =	. =	- =	• =	1	E CT
Option Composition Composition <t< td=""><td></td><td></td><td></td><td>:</td><td>.</td><td>.</td><td></td><td>o :</td><td>ł</td><td></td></t<>				:	.	.		o :	ł	
Image: Second Contraction State	rans-1,3-Dichloropropene	0	-	5	>	>	Þ	þ	;	0.4 ST
a a b c	1.1.2-Trichloroethane	0	5	5	0	2	5	5	1	1 ST
Image: constraine in the set of th	Tatrachiornathene	-	=	=	=	=	=	5	ĸ	5 ST
Image: constraine interment interm) :) =) =	• =	• =) =) = 	>	
Image: State Stat	2-mexanone	5		5	5	: כ	.	.	I	2000
Image Image <th< td=""><td>Dibromochloromethane</td><td>5</td><td>-</td><td>-</td><td>></td><td>5</td><td>5</td><td>-</td><td>1</td><td>20 60</td></th<>	Dibromochloromethane	5	-	-	>	5	5	-	1	20 60
Image: state stat	1.2-Dibromoethane				<u> </u>	5	5	⊃	1	5 ST
Image: Second Star Specific Effluent Image: Second Star Specific Effluent <td></td> <td></td> <td>- =</td> <td>-</td> <td>- =</td> <td>=</td> <td>=</td> <td></td> <td></td> <td>5 ST</td>			- =	-	- =	=	=			5 ST
Image: Second Contraction exceeds Site Specific Effluent ug/L = Micrograms per lifer 0) =		> =) =) =) <u>-</u>		
Image Image <td< td=""><td>curyidenzene</td><td>5</td><td></td><td>5</td><td>5</td><td>5:</td><td>.</td><td>.</td><td>I</td><td></td></td<>	curyidenzene	5		5	5	5:	.	.	I	
Mane U	Xylene (total)	>	D	5	>	>)	>	1	120
hane 0	Styrene	>	>	>	>	-	D	-	1	1 5ST
Aane 0	Janmofram	=	п	n	D	<u> </u>)	<u> </u>	1	50 GV
hane 0		. =	. =		• =	=	=	=	1	5 ST
Tane 0	auszuantalis	5:) : -		> =) <u>-</u>	> =		10 1
Image: New York Image: New	1,1,2,2-Tetrachloroethane	0	5	D	5	5	5	5	1	100
U U	1,3-Dichlorobenzene	5	>	>	5	>	>	D	I	3ST
propane U </td <td>1 4-Dichlorohenzene</td> <td>5</td> <td>5</td> <td></td> <td>></td> <td>5</td> <td>></td> <td>5</td> <td>1</td> <td>3 ST</td>	1 4-Dichlorohenzene	5	5		>	5	>	5	1	3 ST
0 0 <td></td> <td></td> <td>=</td> <td>-</td> <td>=</td> <td>=</td> <td>-</td> <td>=</td> <td>ı</td> <td>3 ST</td>			=	-	=	=	-	=	ı	3 ST
n exceeds Site Specific Effluent wg/L = Micrograms per liter ST: Standard Value U: Compound analyzed for but not detected -: Not established GV: Guidance Value U: Compound found at a concentration below CRDL, value estimated		5:):):) =	• =	• =		TO NO O
ABBREVIATIONS U U U U U ABBREVIATIONS QUALIFIERS: Attation exceeds Site Specific Effluent ug/L = Micrograms per liter S1: Standard Value U: Compound analyzed for but not detected on : Not established GV: Guidance Value U: Compound found at a concentration below CRDL, value estimated	1,2-Dibromo-3-chloropropane	5	5	-	-	5 3	> :	-	1	
ABBREVIATIONS ABBREVIATIONS Q ntration exceeds Site Specific Effluent ug/L = Micrograms per liter ST: Standard Value U: on : Not established GV: Guidance Value J:	1,2,4-Trichlorobenzene	n	D	D	∍		5	5	1	551
Concentration exceeds Site Specific Effluent ug/L = Micrograms per liter ST: Standard Value U: Limitation: Not established GV: Guidance Value J:	UNTES.		ABBREVIATIONS			QUALIFIERS:				
ug/L = Micrograms per liter ST: Slandard Value U: : Not established GV: Guidance Value J:										
: Not established GV: Guidance Value J:	Concentration exceeds Site St	pecific Effluent	ug/L = Micrograms p	Ē	dard Value	U: Compound analy.	zed for but not detec	ted		
	1 imitation		Not established	GV: Guid	ance Value	J: Compound found a	at a concentration bei	low CRDL, value estin	nated	
						114. Doents Auglified a	to non-detect due to v	validation criteria		

•

FRANKLIN CLEANERS SITE NYSDEC CONTRACT No. D004446 / SITE No. 1-30-050 RESULTS OF ANALYSIS OF AIR STRIPPER EFFLUENT IRON, MANGANESE AND pH

NOTES:	·		ABBREVIATIONS:		QUALIFIERS:			
				1				
pH (S.U.)	7.4	7.4	7.4	7.4	7.3	7.5	7.3	6.5 to 8.5
Manganese	40.4 <u>B</u>	39.4 B	35.5 B	36.7 B	51.6 B	36.3 B	34.9 B	1000
ron	55.0 B	33.4 B	81.6 B	63.7 B	320	1,220	U	1000
METALS			(09/12/	(ug/L)				(ug/L)
UNITS	<u>D&B</u> (ug/L)	D&B (ug/L)		D&B (ug/L)		D&B (ug/L)	D&B (ug/L)	(10/1)
DATE OF COLLECTED BY	3/5/2007	3/23/2007	4/3/2007	4/16/2007	5/2/2007	5/16/2007	5/29/2007	
SAMPLE TYPE	WATER	WATER	WATER	WATER	WATER	WATER	WATER	EFFLUENT LIMITATIONS
SAMPLE ID	EFFLUENT (AS-1)	EFFLUENT (AS-1)	EFFLUENT (AS-1)	EFFLUENT (AS-1)	EFFLUENT (AS-1)	EFFLUENT (AS-1)	EFFLUENT (AS-1)	
- · · · · · · · · · · · · · · ·	SYSTEM	SYSTEM	SYSTEM	SYSTEM	SYSTEM	SYSTEM	SYSTEM	

Concentration exceeds Site Specific Effluent

ug/L: Micrograms per liter

B: Concentration is greater than the instrument detection limit (IDL) but less than the Contract Required Detection Limit (CRDL) *: Result qualified as suspect based on validation criteria. . •

FRANKLIN CLEANERS SITE NYSDEC CONTRACT No. D004446 / SITE No. 1-30-050 VAPOR PHASE SAMPLE RESULTS

	CARBON VESSEL NO. 1	CARBON VESSEL NO. 1	CARBON VESSEL NO. 2	CARBON VESSEL NO. 2
SAMPLE ID SAMPLE TYPE		EFFLUENT		EFFLUENT
COLLECTED BY	AIR D&B	AIR D&B	AIR	AIR D&B
UNITS	(ppm)	(ppm)	(ppm)	(ppm)
		(ppii)	(ppn)	
DATE OF COLLECTION	PID Reading	PID Reading	PID Reading	PID Reading
March 5, 2007	0.0	0.0	0.0	0.0
March 12, 2007	0.0	0.0	0.0	0.0
Aarch 23, 2007	0.0	0.0	0.0	0.0
/larch 27, 2007	0.0	0.0	0.0	0.0
April 3, 2007	0.0	0.0	0.0	0.0
pril 13, 2007	0.0	0.0	0.0	0.0
April 16, 2007	0.0	0.0	0.0	0.0
April 25, 2007	0.0	0.0	0.0	0.0
May 2, 2007	0.0	0.0	0.0	0.0
May 11, 2007	0.0	0.0	0.0	0.0
May 16, 2007	0.0	0.0	0.0	0.0
May 23, 2007	0.0	0.0	0.0	0.0
May 29, 2007	0.0	0.0	0.0	0.0
	[
	1			
		[
			1	
				1
			1	
	ľ			
	1	1		

NOTES:

Samples were collected by filling a Tedlar bag at each of the sampling locations. Samples were tested using a handheld photoionization detector (PID). * Sample not taken due to sporadic and inconsistent readings from PID, possibly due to very cold weather and possible condensation on the bulb. ATTACHMENT E

PERFORMANCE SUMMARY

+2531\AHJ06197 PL-LTR.DOC

•

2

FRANKLIN CLEANERS SITE NYSDEC CONTRACT No. D004446 / SITE No. 1-30-050 EXTRACTION AND TREATMENT SYSTEM PERFORMANCE RESULTS

	SYSTEM INFLUENT (EW-1) AVERAGE	SYSTEM INFLUENT (EW-1) PCE	SYSTEM INFLUENT (EW-2) AVERAGE	SYSTEM INFLUENT (EW-2) PCE	SYSTEM EFFLUENT (AS-1) PCE	PCE REMOVAL	ESTIMATED AVERAGE PCE	ESTIMATED SYSTEM	ESTIMATED CUMULATIVE PCE
DATE OF SAMPLE	EXTRACTION RATE	CONCENTRATION	EXTRACTION RATE	CONCENTRATION	CONCENTRATION	EFFICIENCY	REMOVAL RATE	RUNTIME	REMOVAL ⁽²⁾
COLLECTION (1)	(gpm)	(ug/l)	(gpm)	(ug/l)	(ug/l)	(%)	(lb/hr)	(hr)	(lbs)
6/6/2005	34.7	27	2.8	190	< 0.5	98.72	7.36E-04	74	24.15
6/20/2005	36.9	32	2.6	150 D	< 0.5	98.74	7.87E-04	279	24.37
7/5/2005	35.7	26	2.5	220 E	1 J	97.42	7.17E-04	358	24.63
7/25/2005	36.2	26	2.2	180 D	< 0.5	98.56	6.70E-04	392	24.89
8/8/2005	36.2	21 B	2.7	120 B	< 0.5	98.21	5.43E-04	239	25.02
8/31/2005	35.3	24	2.5	180	< 0,5	98.54	6.50E-04	525	25.36 (4)
9/12/2005	38.0	21	2.4	170	< 0.5	98.33	6.04E-04	192	25.48
9/26/2005	37.0	26	2.0	160 D	< 0,5	98.48	6.42E-04	310	25.68
10/10/2005	36.5	19	2.0	160	<u><</u> 0.5	98.10	5.08E-04	313	25.84
10/24/2005	37.4	24	2.4	150	< 0.5	98.42	6.30E-04	300	26.03
11/8/2005	37.8	26	2.6	190 D	< 0.5	98.63	7.40E-04	306	26.25
11/21/05 ⁽⁵⁾	37.8	26	2.0	200	< 0.5	98.56	4.92E-04 2.00E-04	136 507	26.42 (+)
12/5/2005	0.0	NS	1.6	170	< 0,5	99.71	1.36E-04	106	26.43
12/21/2005	0.0	NS	3.0	140	< 0.5	99.64	2.10E-04	241	26.49
1/4/2006	0.0	NS	2.8	180	< 0.5	99.72	2.52E-04	340	26.57
1/24/2006	0.0	NS	2.8	160	< 0.5	99.69	2.24E-04	462	26.67
2/6/2006	0.0	NS	2.4	160	< 0.5	99.69	1.92E-04	311	26.73
2/21/2006	0.0	NS	3.1	180	<u>< 0.5</u>	99.72	2.79E-04	425	26.73 (4)
3/7/2006	0.0	NS	2.9	140	< 0.5	99.64	2.03E-04	154	26.77
3/22/2006	0.0	ŅŚ	3.0	160	< 0.5	99.69	2.40E-04	361	26.85
4/3/2006	0.0	NŞ	2.8	82	< 0.5	99.39	1.15E-04	287	26.89
4/18/2006	0.0	NS .	2.9	120	< 0.5	99.58	1.74E-04	<u>3</u> 63	26.95
5/9/2006	0.0	NS	3,1	100	< <u>0.5</u>	99.50	1.55E-04	481	27.02
5/22/2006	0.0	NS	3.0	130	< 0.5	99.62	1.95E-04	312	27.08 (4)
6/5/2006	0.0	NS	2.6	120	< 0.5	99.58	1.56E-04	337	27,14
6/19/2006	0.0	NS	2.7	120	< 0.5	99.58	1.62E-04	327	27.19
7/6/2006	0.0	NS	3.1	110	< 0.5	99.55	1.71E-04	301	27.24
7/17/2006	0.0	NŞ	3.0	130	< 0.5	99.62	1.95E-04	354	27.31 (4)
9/12/2006	38.9	23	0.0	NS	< 0.5	97.83	<u>4.48E-04</u>	122	27.37
9/25/2006	38.6	23	0.0	NS	< 0.5	97,83	4.45E-04	311	27.50
10/2/2006	40.2	22	0.0	NS	< 0.5	97.73	4.43E-04	169	27,58
10/16/2006	39.8	22	0.0	NS	< 0.5	97.73	4.38E-04	335	27.73
10/30/2006	39.2	24	0.0	<u>NS</u>	< 0.5	97.92	4.71E-04	280	27.86
11/13/2006	37.8	18 B	0.0	NS	< 0.5	97.22	3.41E-04	335	27.97
11/28/2006	41.1	17	0.0	NS	< 0.5	97.06	3.50E-04	418	28,12 (4)
12/15/2006	39.3	<u>19</u> 20	0.0	NS NS	< 0.5	97.37	3.74E-04	261	28.21
12/28/2006	41.2	17		NS	< 0.5	97.50	4.13E-04	309	28.34
1/7/2007	<u>38.3</u> 38.9		0.0	NS NS	< 0.5	97.06	3.26E-04	311	28.44
1/22/2007		18			< 0.5	97.22	3.51E-04	289	28.55
2/7/2007	37.9	19	0.0	NS NS	< 0,5	97.37	3.61E-04	383	28.68
2/23/2007		13	0.0		< 0.5	96.15	2.40E-04	489	28.80 (4)
Rick 3/5/2007							Activity of E-04 constant		26.52
	41-1						3.91E-041		
4/3/2007(tweet	39.2				2055 ····	97,501 21		Star has a second second second second second	29.06
4/16/2007	40.5			NS				286 m ki mina	<u>i: 29.16</u>
5/2/2007	39.2 Hillin		0.0****	NS to a	a¥K<(0.5	96.88 2 ** 27			29:25····
5/16/2007	39.5		**** 0.0 -****	NS STATES	² < 0.5 - ³ + ³ → 1	96.88		336,,	29:36.15.
···· 5/29/2007	41.4	15 minutes and	0.0	NS AND IN	· · · · · · · · · · · · · · · · · · ·	Depart 96.67: Value	1000-00-00-00-00-00-00-00-00-00-00-00-00	12 10 1301 1al 13	29.45世纪为

NOTES:

- 1. Data from 9/23/03 through 8/25/04 reported by URS Corporation.
- 2. PCE removal calculations as of September 9, 2003 system start-up date.
- 3. Performance results for the reporting period are shaded.
- 4. Estimated through the end of the reporting period.

5. Results show removal efficiency and runtimes for both EW-1 and EW-2

gpm: gallons per minute ug/L: micrograms per liter lb/hr: pounds per hour

ABBREVIATIONS:

QUALIFIERS;

D: Result taken from reanalysis at a secondary dilution

NS: Not sampled

B: Compound detected in method blank as well as the sample, value estimated

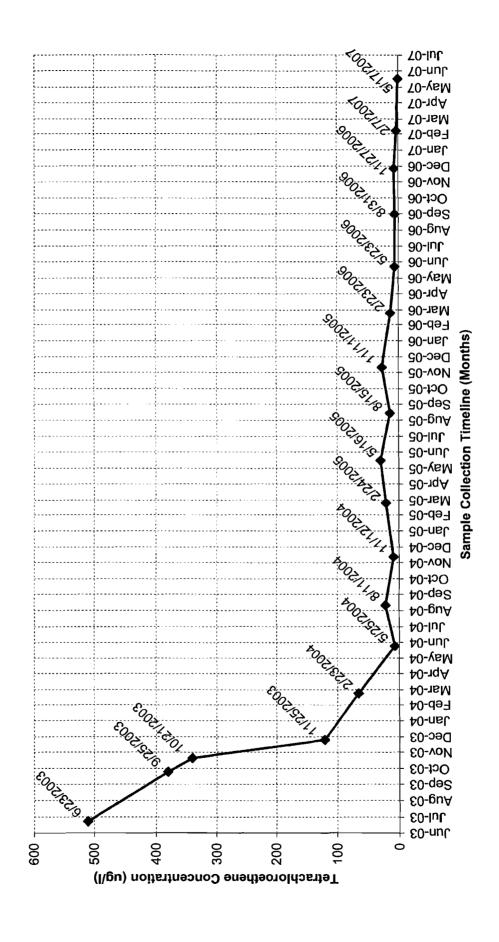
J: Compound found at a concentration below CRDL, value estimated

E: Compound concentration exceeds instrument calibration range, value estimated

ATTACHMENT F

MONITORING WELL TREND LINE GRAPHS

+2531\AHJ06197 PL-LTR.DOC

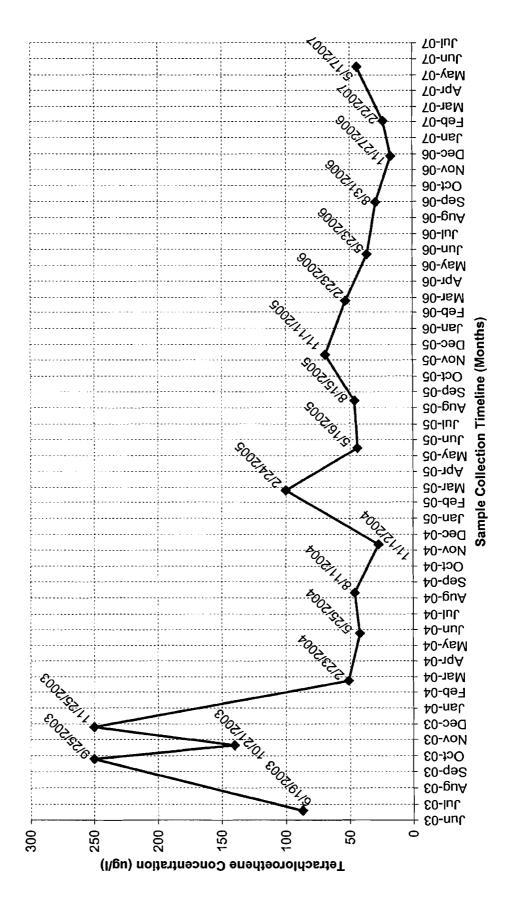

۰.

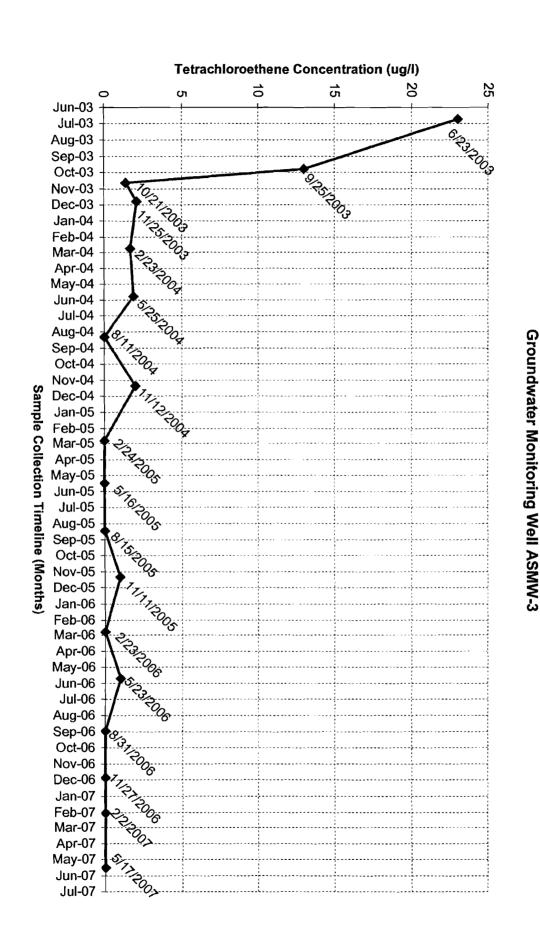
2

GRAPH 1

۰.

Franklin Cleaners Site NYSDEC Contract No. D004446 / Site No. 1-30-050 Groundwater Monitoring Well ASMW-1




6/19/2007 10:05 AM

Engwork: _ HazWaste\2531 (NYSDEC - Franklin Cleaners Site)\Quarterly Reports\Quarter 9 (Sep 06 - Nov 06)\Quarter 11 Sampling Results.xls

GRAPH 2

Franklin Cleaners Site NYSDEC Contract No. D004446 / Site No. 1-30-050 Groundwater Monitoring Well ASMW-2

NYSDEC Contract No. D004446 / Site No. 1-30-050

Franklin Cleaners Site