

330 Crossways Park Drive, Woodbury, New York 11797-2015 516-364-9890 • 718-460-3634 • Fax: 516-364-9045 e-mail: findingsolutions@db-eng.com

August 7, 2007

Principals

Nicholas J. Bartilucci, P.E. President

Henry J. Chlupsa, P.E. Executive Vice President

Steven A. Fangmann, P.E. Senior Vice President

Richard M. Walka Senior Vice President

John A. Mirando, P.E. Vice President

Garrett M. Byrnes, P.E. Vice President

Anthony O. Conetta, P.E. Vice President

Dennis F. Koehler, P.E. Vice President

Joseph H. Marturano Vice President

Kenneth J. Pritchard, P.E. Vice President

Theodore S. Pytlar, Jr. Vice President

Brian M. Veith, P.E. Vice President

Senior Associates

Thomas P. Fox, P.G.

Robert L. Haynie, P.E.

William D. Merklin, P.E.

Michael Neuberger, P.E.

Kenneth P. Wenz, Jr., C.P.G.

Associates

Joseph F. Baader

Steven M. Cabrera

Rudolph F. Cannavale

Christopher M. Clement

Ellen R. DeOrsay

Stefanos J. Eapen, R.A.

Joseph A. Fioraliso, P.E.

Christopher W. Francis

Michael R. Hofgren Sean Pepling, P.G.

Edward J. Reilly

Daniel Shabat, P.E.

Charles J. Wachsmuth, P.E.

Mr. Payson Long

Division of Environmental Remediation
New York State Department of Environmental Conservation

625 Broadway, 12th Floor Albany, NY 12233-7013

Re:

Franklin Cleaners Site (Site No. 1-30-050) D&B Work Assignment No. D004446-01

Quarterly Report No. 9 (September 1, 2006 through November 30, 2006)

D&B No. 2531-03

Dear Mr. Long:

The purpose of this letter is to summarize the performance monitoring of the groundwater extraction and treatment system, located approximately 1 mile south/ downgradient of the Franklin Cleaners Site (see Attachment A, Figure 1). This performance monitoring report covers the period from September 1, 2006 through November 30, 2006. Presented below is a summary of system operations during the quarter, as well as the results of analytical testing completed, in accordance with the work plan for the referenced work assignment.

Groundwater Extraction and Treatment System Operations

During this period, extraction well EW-1 operated at an average pump rate of 39.0 gallons per minute. Extraction well EW-2 was not in operation for the duration of the quarter, due to an overload failure of variable frequency drive (VFD) No. 2. Under the new subcontract for maintenance services executed on November 12, 2006, Systematic Technologies diagnosed the problem with EW-2 on December 6, 2006 as a short circuit to the ground in the down-well/pump power cable assembly. A Scope of Work to pull the extraction well pump and replace it is currently being prepared to submit to the New York State Department of Environmental Conservation (NYSDEC) for review.

Approximately 5,019,700 gallons of treated groundwater, based on measurements recorded at the treatment system discharge flow meter, were discharged to the Nassau County Department of Public Works (NCDPW) storm sewer system. It should be noted that this volume is in consistent with the influent flow meter which recorded approximate 4,600,700 gallons of groundwater entering the treatment system.

Dvirka and Bartilucci

CONSULTING ENGINEERS

Mr. Payson Long Division of Environmental Remediation New York State Department of Environmental Conservation August 7, 2007 Page 2

During this period, the groundwater extraction and treatment system was inoperative for a total of approximately 216 hours due to system alarm conditions and routine system maintenance. The "down time" was not consecutive and occurred over the course of the reporting period involving two alarm episodes and one maintenance event. A summary of system downtime is presented in Attachment B. Copies of routine system maintenance reports, as prepared by EnviroTrac, are presented in Attachment C.

Groundwater Extraction and Treatment System Sampling

Samples were collected from the EW-1 well influent line sample tap, as well as from the air stripper (liquid) discharge sample tap, at a frequency of twice per month during the months of this period. No samples were collected from extraction well EW-2 during the period as the extraction well was inoperable. Each sample was analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method OLMO4.2. The samples collected from the air stripper discharge sample tap were also analyzed for iron and manganese by USEPA Method 200.7 and for pH by USEPA Method 150.1.

Sample results are presented in Attachment D. The analytical results of samples collected from the system influent are compared to the NYSDEC Class GA groundwater standards and guidance values, and the analytical results of samples collected from the air stripper discharge are compared to the effluent limitations. As can be seen from the analytical results in Attachment D, extraction well EW-1 continues to extract tetrachloroethene (PCE) at concentrations ranging from a low of 17 micrograms per liter (ug/l) on November 28, 2006, to a high of 24 ug/l on October 30, 2006, which are both above the PCE Class GA groundwater standard of 5 ug/l. The discharge sample results for the period were all below the VOC effluent limitations and were also in compliance with the iron, manganese and pH effluent limitations.

Approximately 0.81 pounds of PCE were removed from the extracted groundwater by the low profile air stripper during the reporting period. The average PCE removal efficiency for this quarter was greater than 97 percent. Refer to Attachment E for a summary of the extraction and treatment system performance results since the system was placed in operation.

Vapor phase samples were collected from the two carbon adsorption unit influent and effluent sample taps at a frequency of once per week. Each sample was collected by filling a Tedlar bag directly from the sample taps and the samples were screened using a calibrated, handheld photoionization detector (PID). During the period, all PID readings collected at the carbon vessel outlets were 0.0 parts per million (ppm). Refer to Attachment D for results of vapor phase samples collected during the period.

Groundwater Quality Data

The network of downgradient groundwater monitoring wells were sampled to evaluate the effectiveness of the groundwater extraction and treatment system. Samples were collected from ASMW-1, ASMW-2, ASMW-3, ASMW-4, ASMW-5, ASMW-6 and ASMW-7 on November 27, 2006, and analyzed for VOCs by USEPA Method OLMO4.2. The locations of the monitoring wells are shown in Figure 2 in Attachment A.

Dvirka and Bartilucci

CONSULTING ENGINEERS

Mr. Payson Long Division of Environmental Remediation New York State Department of Environmental Conservation August 7, 2007 Page 3

The results of the analyses of the samples collected from the monitoring wells are presented in Attachment D and summarized on Figure 2 in Attachment A. The results are compared to the NYSDEC Class GA Groundwater Standards and Guidance Values. The samples collected from wells ASMW-1 and ASMW-2 contained concentrations of PCE above the standard of 5 ug/l. Concentrations of PCE detected in monitoring well ASMW-1 increased from 6 ug/l (August 31, 2006) to 7 ug/l (November 27, 2006). Concentrations of PCE detected in monitoring well ASMW-2 decreased from 29 ug/l (August 31, 2006) to 17 ug/l (November 27, 2006). VOCs were not detected at concentrations above standards or guidance values in the samples collected from groundwater monitoring wells ASMW-3, ASMW-4, ASMW-5, ASMW-6 and ASMW-7 during this period. Please refer to the trend line graphs provided in Attachment E, which summarize PCE concentrations detected in samples collected from ASMW-1, ASMW-2 and ASMW-3 since June 2003.

Data Validation

The biweekly system samples and groundwater samples have been analyzed for VOCs by Mitkem Corporation (Mitkem). The effluent sample (AS-1) was also analyzed for iron, manganese and pH. Mitkem is a New York State Department of Health Environmental Laboratory Approval Program-certified laboratory. The data packages submitted by Mitkem have been reviewed for completeness and compliance with the NYSDEC Analytical Services Protocol (ASP) Quality Assurance/Quality Control (QA/QC) requirements. All sample results have been deemed valid and usable for environmental assessment purposes as qualified below:

All samples were analyzed within the method specified holding times and all QA/QC requirements (surrogate recoveries, calibrations, blanks, etc.) were met. No problems were noted with sample results and qualification of the data was not required.

Conclusions

Based on the results of performance monitoring performed during the period, we offer the following conclusions:

- The analytical results of the system influent samples show that the extraction well EW-1 continues to capture VOC-contaminated groundwater.
- The analytical results of the liquid discharge samples show that the air stripper is effectively removing the captured VOCs and reducing concentrations to below the discharge criteria.
- Concentrations of PCE detected in groundwater monitoring well ASMW-1 continue to remain at historically low levels, while concentrations of PCE detected in groundwater monitoring well ASMW-2 continue to decrease from a high of 69 ug/l (November 11, 2005) to a low of 17 ug/l (November 27, 2006).

Dvirka and Bartilucci

CONSULTING ENGINEERS

Mr. Payson Long Division of Environmental Remediation New York State Department of Environmental Conservation August 7, 2007 Page 4

Recommendations

Based on the results of performance monitoring conducted during the period, we offer the following recommendations:

- Continue operation of the groundwater extraction and treatment system to minimize downgradient migration of PCE, currently being captured by the system.
- Continue groundwater monitoring through the existing monitoring well network to determine
 contaminant concentration trends over time and to evaluate the continued effectiveness of the
 remediation system.
- Continue evaluating the accuracy of the influent and effluent flow meters due to inconsistencies detected between influent and effluent calculated total flows.
- Pull and replace extraction well EW-2 well pump. A scope of work to perform the work is currently being prepared to submit to the NYSDEC for review.

Please do not hesitate to contact me at (516) 364-9890 if you have any questions.

Very truly yours,

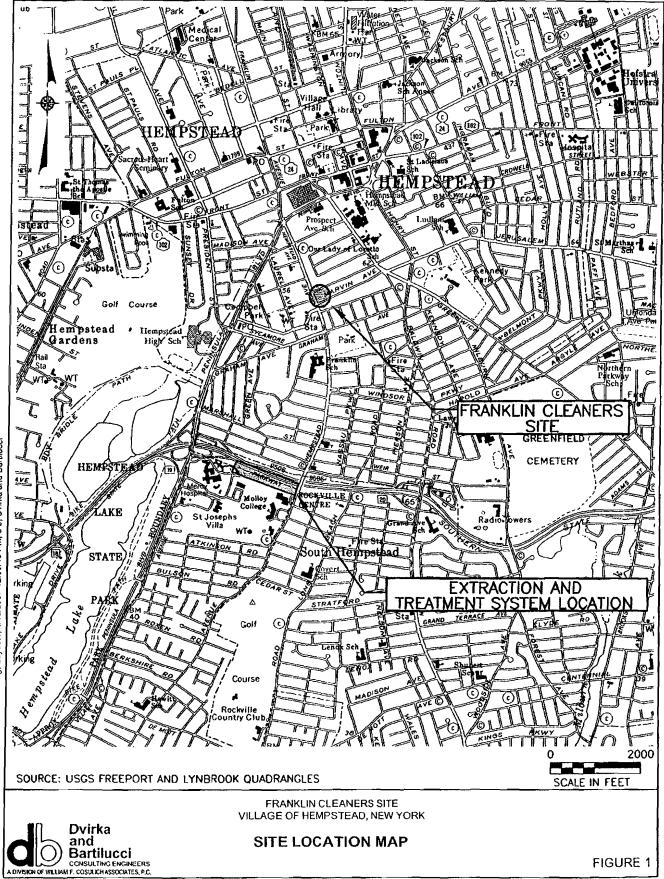
Albert H. Jafoszeski Project Manager

AHJ/FD/PSM/all

Attachments

J. Trad (NYSDEC)

J. Neri (H2M)


R. Walka (D&B)

P. Martorano (D&B)

◆2531\FD01027PL(R06)

ATTACHMENT A

FIGURES

F/2531/DWG\Quarterly Reports\Quarter 9\FIGURE 1.dwg, Layout1, 1/12/2007 12:06:49 PM, d b, Dvirka and Bartilucci

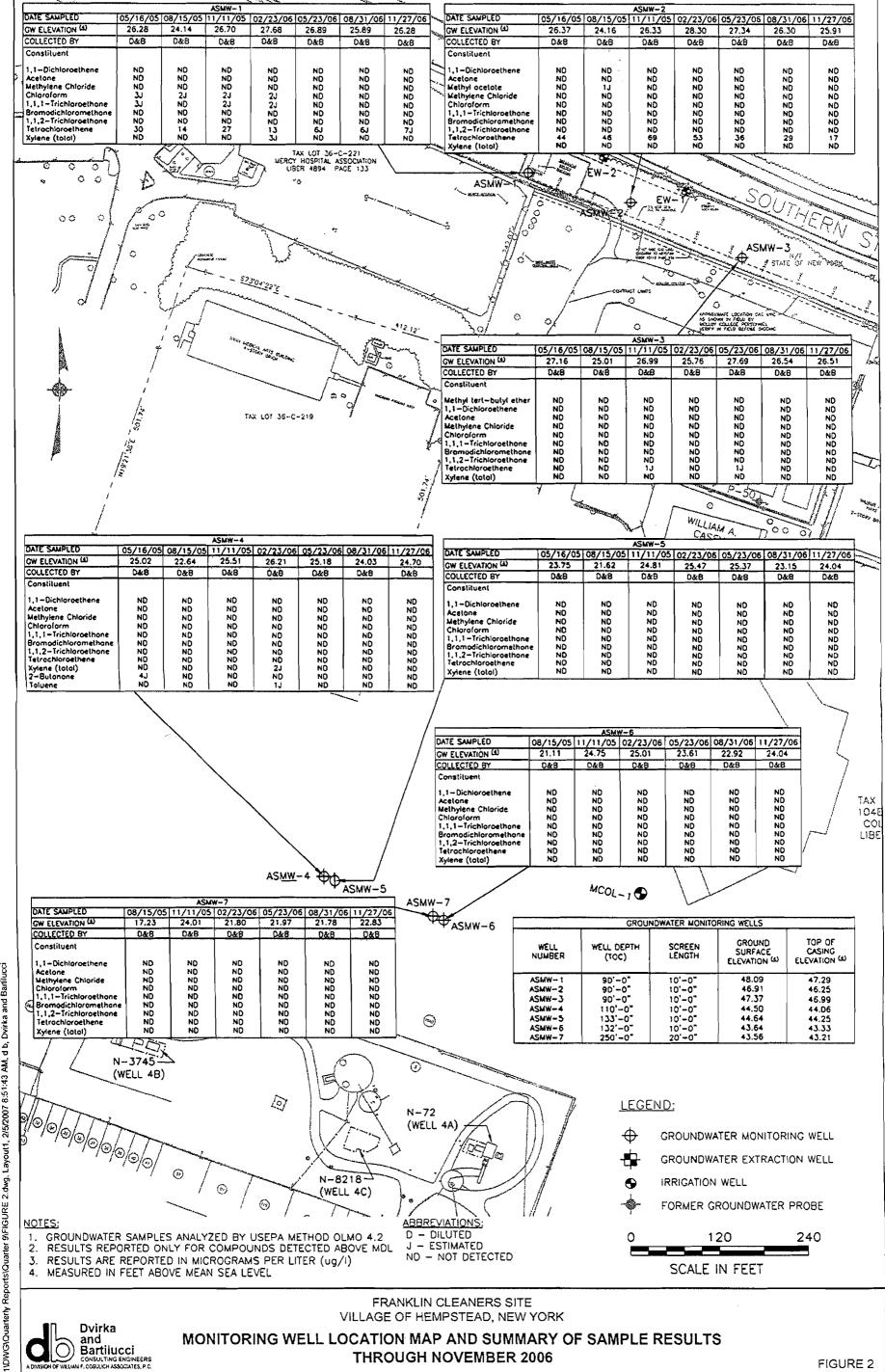


FIGURE 2

F125311DWG\Quarterly Reports\Quarter 9\FIGURE 2.dwg, Layout1, 2/5/2007 8:51:43 AM,

ATTACHMENT B

DESCRIPTION OF SYSTEM ALARM CONDITIONS

FRANKLIN CLEANERS SITE NYSDEC CONTRACT No. D004446 / SITE No. 1-30-050 SUMMARY OF SYSTEM DOWNTIME

SHUT-OFF DATE/TIME	RESTART DATE/TIME	CAUSE FOR SHUTDOWN
9/1/2006 12:00:00 AM ⁽²⁾	9/7/06 2:00 PM	System shutdown on 7/25/06 due Alarm Conditions No. 3 & 5 - EW-2 failure. Extraction well EW-2 VFD continued to go into alarm due to an overload condition. Notified NYSDEC and system shut down pending repair of extraction well EW-2. (8/30/06) Extraction well pump EW-2 pulled and extraction well redeveloped. EW-2 could not be restarted at completion. (9/7/06) Extraction well pump EW-1 pulled and extraction well redeveloped. Restarted extraction well pump EW-1 only.
9/19/06 9:25 AM	9/19/06 10:50 AM	(1)Blower Maintenance - Performed routine blower maintenance and restarted extraction well pump EW-1 once maintenance was completed.
10/28/06 6:20 AM	10/30/06 3:05 PM	Alarm Condition No. 3 - High water level in wet well caused the system to go into alarm. MiniCas #1 and #2 reset, wet well submersible pump No. 2 turned on. Drained we well and restarted extraction well pump EW-1.
	·	
-		

NOTES:

- Blower maintenance event performed by EnviroTrac Ltd.
 Time reflects the start of the quarter and not the actual shut-off date/time.

ATTACHMENT C

SYSTEM MAINTENANCE REPORTS

MAINTENANCE AND INSPECTION REPORT FRANKLIN CLEANERS SITE, ROCKVILLE CENTRE, NY										
	FRAN	KLIN CLEANE	RS SITE, ROCKV	ILLE CENTRE,	NY					
Date: September 7, 20	006									
Name of Personnel Or	nsite	Title	Time Arrived	Time Departed	Total Hours					
James Van Horn		Field Eng.	7:30	11:30	6					
Steve Sussman		Sr. Technician	7:30	11:30	6					
Delta Well and Pump		Driller	8:00	4:00	8 + travel to and	d from				
Check off Items that w Item 1: Snow Item 2: Press Item 2A: Press Description of Work: EnviroTrac subcontrac pump and motor with items	Removal ure Blower Mainter ure Blower Fan W	heel Replacement	X	Item 3: Air Strippe Item 4: Carbon Re Item 5: Non-routin	emoval and Repla ne Maintenance					
Name of Part / Supply / Material Manufacturer Model Number Quantity Used										
EW-1 submersible pur		Grundfos	· · · · · · · · · · · · · · · · · · ·	25E3	<u> </u>	11				
EW-1 submersible motor Franklin 2 hp 200 volt 3 phase 1										
Description of Waste No Waste	Description of Waste Volume of Waste Disposal Facility Name & Address Transporter Name & Address Method of Disp. No Waste									
In signing this I hereb conform to the require	ements specified u	nder contract betw	edge the maintenance yeen EnviroTrac Ltd., re / Print / Date An	and Dvirka and Bar	tilucci.	during this event				

	M	IAINTENANC	CE AND INSP	PECTIO	N REPORT		
	FRANK	LIN CLEAN	ERS SITE, RO	OCKVII	LLE CENTRE,	NY	
Date: September 19,	2006						····
Name of Personnel Or	nsite T	itle	Time Arrived	Т	Time Departed	Total Hours	
Steve Sussman	S	r. Technician	9:00	1	11:00	2 onsite / 1.5ho	ur prep /travel
	Removal ure Blower Maintena			□ Ite		er Maintenance temoval and Replance	acement
☐ Item ZA; Press	sure Blower Fan Whe	ei Replacemer	11	ш ш	em 5: Non-routi	ne Maintenance	
Description of Work:	***********	-040-4-1					and the state of t
Checked "V" belts on Greased fittings for be flange at blower inlet,	elt to blower shaft. Gr inspected fan wheel	eased fitting or	n Baldor motor. S d cleanliness. Cl	Secured	bolts at the belt	guard. Removed boolts. Restarted blo	outterfly valve and ower.
Name of Part / Supply	/ / Material		rer			<u>. </u>	Quantity Used
Grease		Mobil			Mobilith AW2	. Make to	Approx. 0.12oz
 							
The state of 100 and 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Discoult	114 - N O	Λ -l -l	T	0 A dala	Mathadas
Description of Waste	Volume of Waste	Disposal F	acility Name &	Address	i ransporter iv	ame & Address	Method of Disp.
No Waste				,			
						· · · · · · · · · · · · · · · · · · ·	
In cianina thia I harah	v cortification to the b	est of my knowl	lodge the maint	ononoo	and increation as	tivities performed	during this event
In signing this I hereb conform to the require	ements specified und	er contract bet		c Ltd., a			during triis everit

ATTACHMENT D

ANALYTICAL RESULTS

FRANKLIN CLEANERS SITE NYSDEC CONTRACT No. D004446 / SITE No. 1-30-050 RESULTS OF GROUNDWATER SAMPLING

CAMPIEIR	40101/4	404440	4.01.0147.0	1011111	4011145	1011110	1011117	NYSDEC CLASS GA
SAMPLE ID	ASMW-1	ASMW-2	ASMW-3	ASMW-4	ASMW-5	ASMW-6	ASMW-7	GROUNDWATER
SAMPLE TYPE	WATER	STANDARDS AND GUIDANCE						
DATE OF COLLECTION COLLECTED BY	11/27/2006 D&B	VALUES						
UNITS	(ug/L)	(ug/L)						(()
Dichlorodifluoromethane	U (ug/L)	(dg/L)	(ug/L) U	(ug/L) U	(ug/L)	(ug/L)	(ug/L) U	(ug/L)
Chloromethane	l ü	Ü	Ü	Ü	Ü	Ü	Ü	5 ST
Vinyl chloride	١ ٥	Ü	Ü	Ü	Ü	Ü	Ü	2 ST
Bromomethane	ا ن	Ü	Ü	Ü	Ü	Ü	Ü	2 5 1 5 ST
Chloroethane	l ü	U	Ü	l ü	l ü	l ü	Ü	5 ST
Trichlorofluoromethane	1	l ŭ l	Ü	l ü	υ	Ü	υ	5 ST
1.1-Dichloroethene	l ŭ	Ü	Ü	l ü	l ŭ	Ü	Ŭ	5 ST
1,1,2-Trichloro-1,2,2-trifluoroethane	1 1	Ü	Ü	l ŭ	l ü	Ü	Ü	5 ST
Acetone	l ŭ	Ü	Ü	l ii	l ü	Ü	l ü	50 GV
Carbon disulfide	l ŭ	Ü	Ü	l ü	l ü	Ü	Ü	60 GV
Methyl acetate		l ŭ '	Ü	l ŭ	l ü	Ŭ	l ü	
Methylene chloride		l ŭ l	Ŭ	Ŭ	l ŭ	l ŭ	Ü	5 ST
trans 1,2-Dichloroethene	1	l ü	Ü	l ii	l ü	Ü	Ü	5 ST
Methyl-tert butyl ether	l ii	Ü	Ü	l ü	l ŭ	ľ	ŭ	10 GV
1,1-Dichloroethane	١	Ü	ı Ü	l ü	1 0	Ü	l ü	5 ST
cis-1,2-Dichloroethene		l ü	Ü	l ü	l ü	l ü	l ŭ	5 ST
2-Butanone	l ŭ	l ŭ	Ü	l ü	l ü	ĺ	l ü	50 GV
Chloroform	l ŭ	Ĭ	Ü	l ŭ	l ü	l ŭ	ا	7 ST
1.1.1-Trichloroethane	l ü	l ŭ	Ŭ	l ü	l ŭ	l ü	l ü	5 ST
Cyclohexane	Ĭ	l ŭ	Ŭ	ľ	l ü	l ŭ	l ü	
Carbon tetrachloride	l ŭ	l ü	Ü	l ŭ	Ŭ	l ŭ	l ü	5 ST
Benzene	l ü	ľů	Ü	l ŭ	Ü	l ŭ	l ü	1 ST
1,2-Dichloroethane	1 0	l ŭ	Ŭ	Ιŭ	l ü	l ŭ	l ŭ	0.6 ST
Trichloroethene) ŭ	Ĭ	Ŭ	l ŭ	l ŭ	Ì	l ü	5 ST
Methylcyclohexane	l ŭ	l ŭ	ľ	l ŭ	l ü	l ŭ	l ŭ	
1,2-Dichloropropane	l ŭ	l ŭ	l υ	lŭ	l ŭ	ا ن	l ü	1 ST
Bromodichloromethane	l ŭ	l ŭ	l ŭ	l ŭ	l ŭ	l ŭ	l ŭ	50 GV
cis-1,3-Dichloropropene	l ŭ	l ŭ	Ιŭ	l ŭ	l ŭ	l ŭ	l ŭ	0.4 ST
4-Methyl-2-pentanone	l ŭ	l ŭ	ĺ	l ŭ	l ŭ	l ŭ	ľ	
Toluene	l ŭ	ĺ ŭ	Ŭ	l ŭ	l ŭ	ĺű	l ŭ	5 ST
trans-1,3-Dichloropropene	l ŭ	l ŭ	Ü	l ŭ	l ŭ	l ŭ	l ŭ	0.4 ST
1.1.2-Trichloroethane	ł ŭ	l ŭ	l ŭ	l ŭ	l ŭ	l ŭ	l ŭ	1 ST
Tetrachloroethene	7 J	17	Ù	Ū	l ū	ľ	Ū	5 ST
2-Hexanone	U	U	υ	lυ	lυ	lυ	U	50 GV
Dibromochloromethane	Ū	Ū	ľ	l ū	l ŭ	l ŭ	Ū	50 GV
1.2-Dibromoethane	Ū	Ū	Ū	l ū	l ū	l ū	l ŭ	5 ST
Chlorobenzene	l ŭ	Ŭ	Ū	Ιΰ	l ŭ	l ŭ	lů	5 ST
Ethylbenzene	l ū	Ŭ	Ŭ	l ŭ	l ŭ	l ŭ	l ŭ	5 ST
Xylene (total)	U	Ū	Ū	Ū	Ū	Ū	ľ	5 ST
Styrene	U	U	U	U	U	l u	l u	5 ST
Bromoform	υ	υ	υ) U	U	Ú	Ú	50 GV
Isopropyibenzene	U	U	υ	ľ	Ü	U	Ü	5 ST
1,1,2,2-Tetrachloroethane	Ú	Ü	Ū	Ū	Ü	ĺŮ	Ū.	5 ST
1,3-Dichlorobenzene	Ų	Ü	Ū	Ü	Ü	Ü	Ü	3 ST
1,4-Dichlorobenzene	Ū	Ū	Ü	Ū	Ū	l ŭ	Ū	3 ST
1,2-Dichlorobenzene	U	l u	U	U	U	l u	Ü	3 ST
1,2-Dibromo-3-chloropropane	U	U	U	U	U	U	U	0.04 ST
1,2,4-Trichlorobenzene	U	U	U	U	U	U	U	5 ST
	•		•	·		-		<u> </u>

NOTES:

Concentration exceeds NYSDEC Class GA Groundwater Standards or Guidance Values

ABBREVIATIONS:

ug/L = Micrograms per liter
--: Not established

ST: Standard Value

GV: Guidance Value

QUALIFIERS:

U: Compound analyzed for but not detected

J: Compound found at a concentration below CRDL, value estimated

NYSDEC CONTRACT No. D004446 / SITE No. 1-30-050 **RESULTS OF ANALYSIS OF EW-1 INFLUENT**

	SVSTEM INICI HENT	SVSTEM INCLUENT	SYSTEM INFLUENT	CVCTEM INICI LICHT	EVETEM INELLIENT	CVCTEM INCLUENT	CVCTEM INCLUENT	 -
SAMPLE ID	(EW-1)	(EW-1)	(EW-1)	(EW-1)	(EW-1)	(EW-1)	(EW-1)	NYSDEC CLASS GA
SAMPLE TYPE	WATER	WATER	WATER	WATER	WATER	WATER	WATER	GROUNDWATER
DATE OF COLLECTION	9/12/2006	9/25/2006	10/2/2006	10/16/2006	10/30/2006	11/13/2006	11/28/2006	STANDARDS AND
COLLECTED BY	D&B	D&B	D&B	D&B	D&B	D&B	D&B	GUIDANCE VALUES
UNITS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOCs	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(09/1)	(ug/c)	(ug/L)
Dichlorodifluoromethane	υ		U		Ū	U	U	5 ST
Chloromethane	Ü	Ŭ	l ü l	Ü	l ü	l ü	Ü	35
Vinyl chloride	Ŭ	Ŭ	l ŭ l	Ü	l ŭ	l ü	l ŭ	2 ST
Bromomethane	Ü	Ü	Ü	Ü	l ü	l ü	l ü	5 ST
Chloroethane	Ü	Ü	Ü	Ü	l ŭ	l ü	l ü	5 ST
Trichlorofluoromethane	Ü	Ü	Ŭ	ŭ	l ü	l ŭ	l ü	5 ST
1,1-Dichloroethene	ů	Ŭ	lŏ	Ü	l ü	l ΰ	l ü	5 ST
1,1,2-Trichloro-1,2,2-trifluoroethane	Ü	Ü	ľ	Ü	l ü	ľ	l ü	5 ST
Acetone	U	l Ü	l ü	Ü	"	l ü	l ü	50 GV
	U	Ü	l ü	-		ļ. <u>U</u>	•	
Carbon disulfide	_	_		U	_		U.	60 GV
Methyl acetate	U	U	υ u	U	U	U	U	 CT
Methylene chloride	U	U	U U	U	_	U	_	5 ST
trans 1,2-Dichloroethene	U	U U) U	U U	U	_	U	5 ST
Methyl-tert butyl ether	•	1		•	U	U		10 GV
1,1-Dichloroethane	U	Ú	U	U	U	U	U	5 ST
cis-1,2-Dichloroethene	U	U	U	U	U	U	U	5 ST
2-Butanone	U	U	U	U	U	U	U	50 GV
Chloroform	U	U	U	U	U	U	U	7 ST
1,1,1-Trichloroethane	U	U	U	U	U	U	U	5 ST
Cyclohexane	U	U	U	U	U	U	U	<u></u>
Carbon tetrachloride	U	U	U	U	U	U	U	5 ST
Benzene	U	U	U	U	U	U	U	1 ST
1,2-Dichloroethane	U	U	U	U	U	U	U	0.6 ST
Trichloroethene	U	U	U	U	υ	U	U	5 ST
Methylcyclohexane	U	U	U	U	U	U	U	
1,2-Dichloropropane	บ	υ	U	U	U	Ù	U	1 ST
Bromodichloromethane	U	U	U	U	U	U	U	50 GV
cis-1,3-Dichloropropene	U	U	U	U	U	U	J	0.4 ST
4-Methyl-2-pentanone	U	U	U	U	U	U	U	
Toluene	U	U	U	U	U	U	U	5 S T
trans-1,3-Dichloropropene	U	υ	U	U	U	U	U	0.4 ST
1,1,2-Trichloroethane	U	U	U	U	U	\ U	U	1 ST
Tetrachloroethene	23	23	22	22	24	18 B	17	5 ST
2-Hexanone	U	U	U	U		U	U	50 GV
Dibromochloromethane	Ú	lυ	l u	U	l ú	U	U	50 GV
1.2-Dibromoethane	Ú	lυ	l u	U	l u	l u	U	5 ST
Chlorobenzene	U	lυ	l u	lυ	l u	l u	l U	5 ST
Ethylbenzene	Ú	l ù	l u	l ü	l ü	Ü	Ü	5 ST
Xylene (total)	l ŭ	ĺ	ŭ	l ŭ	l ŭ	l ŭ	ľ	5 ST
Styrene	l ü	l ŭ	ľ	l ŭ	l ŭ	Ĭ	l ŭ	5 ST
Bromoform	l ŭ	l ŭ	l ŭ	ĺ	l ŭ	Ĭ	l ŭ	50 GV
Isopropylbenzene	l ŭ	l ŭ	Ŭ	l ŭ	l ŭ	ľ	· ŭ	5 ST
1,1,2,2-Tetrachioroethane	l ü	l ü	l ü	l ü	ľ	l ü	l ü	5 ST
		l ü	U		Ü	l ü	ľ	1
1,3-Dichlorobenzene	l	l U	Ü	l U	Ü	l ü	U	3 ST
1,4-Dichlorobenzene	_	_	Ü		l ü	_	_	3 ST
1,2-Dichlorobenzene	l u	U	U	U	1	U	U	3 ST
1,2-Dibromo-3-chloropropane		U	_	Ü	U	U	U	0.04 ST
1,2,4-Trichlorobenzene	U	U	U	. U .	<u> </u>	U	<u> </u>	5 ST

NOTES:

Concentration exceeds NYSDEC Class GA Groundwater Standards or Guidance Values

ABBREVIATIONS:

ug/L = Micrograms per liter --: Not established

ST: Standard Value GV: Guidance Value

QUALIFIERS:

- U: Compound analyzed for but not detected
- J: Compound found at a concentration below CRDL, value estimated
- B: Compound detected in method blank as well as sample, value estimated.

^{1.} EW-1 turned off on 11/15/05 due to a high load on the pump. Pump scheduled to be pulled and cleaned at a future date.

FRANDLIN CLEANERS SITE	NYSDEC CONTRACT No. D004446 / SITE No. 1-30-050	RESULTS OF ANALYSIS OF AIR STRIPPER EFFLUENT FOR VOCS
------------------------	---	---

	SYSTEM	SYSTEM	SVSTEM	CVCTEM	CVCTEM	CVCTEM	MULIONO		
SAMPLEID	EFFLUENT (AS-1)	EFFL	EFFLUI	EFFL	_	EFF	EFFLUENT (AS-1)	i i	NYSDEC CLASS GA
SAMPLE TYPE	WATER	WATER	WATER	WATER	WATER	┼	WATER	LIMITATIONS	GROUNDWATER
DATE OF COLLECTION	9/12/2006	9/25/2006	10/2/2006	10/16/2006	10/30/2006	1	11/28/2006	LIMITATIONS	OLIANDARDS AND
COLLECTED BY	D&B	D&B	D&B	D&B	D&B	D&B	D&B		GOLDANCE VALUES
SINO	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ug/L)
Dichlorodifluoromethane	> :)	- :	> :	>	→	>	;	5 ST
Chloromethane	> :))	⊃ 	⊃	⊃	⊃	:	·
Vinyl chloride	> :)	> :	>	>	>	>	1	2 ST
Bromomethane	> =	> :	> :	> :	ɔ :	ɔ :	ɔ :	;	5 ST
Trichlorofluoromethane	> =	> =	> =	> =	> :	> :	> :	i	5.ST
	> =	o =	> =	-	> :	> :) :	ı	5.ST
	> :	> :	> :	-	> :	> :	>	;	5.87
1,1,2-1 richioro-1,2,2-trifiuoroetnane	o :	> :	> :	> :	>	>		1	5 ST
Acetone	> :	> :	> :	→	>	>	>	;	50 GV
Carbon disuitide	> :	> :	> :	-)	>	>	;	90 GV
Methyl acetate	- :	- :	> :	⊃	>	⊃	>	:	ı
Methylene chloride	>	>	>	>	>	⊃	>	;	5 ST
trans 1,2-Dichloroethene	>	>	⊃	→	>	כ	>	ŀ	5.ST
Methyl-tert butyl ether	>	¬	⊃	_	>	_	>	į	10 GV
1,1-Dichloroethane	>	<u> </u>	>	>	_	¬	⊃	10	5 ST
cis-1,2-Dichloroethene	>	-	>	_	_	ם		10	5.ST
2-Butanone	<u> </u>	<u> </u>	<u></u>	>	>	· >	• ⊃	· ·	50.6V
Chloroform	<u> </u>	_	_	_	0		- =	'	TS 2
1.1.1-Trichloroethane	7	=	- =	· =	- =	:=) =	ç	
Cyclohexane	=) =) =) =	> =	> =	> =	2	<u></u>
Carbon tetrachloride	> =	> =	> =	> =	> =	> =	> =	:	; C
Donate) <u>-</u>	> =	> =	-	o :	o :	ɔ :	•	180
1 2-Dickloroethane	> =	> =	> =	> =	> =	> :	> :	;	1.8T
T.:	> :	o :	> :	o :	> :)	> :	;	1890
I richioroethene	> :	> :	>	-	>	>	→	9	5 ST
Methylcyclohexane	>	>	>	>	>	>	⊃	;	-
1,2-Dichloropropane	>	<u> </u>	>	<u></u>	>	>	>	;	1 ST
Bromodichloromethane	⊃	>	>	>	>	>		;	50 60
cis-1,3-Dichloropropene	>	>	⊃	>	>	>	>	,	0.4 ST
4-Methyl-2-pentanone	>	→	<u></u>	→	>	>	>	;	1
Toluene	>	¬	⊃	>	>	>	_	ı	5 ST
trans-1,3-Dichloropropene	>	>	⊃	>	>	>	>	ŀ	0.4 ST
1,1,2-Trichloroethane	>	>	_	>	>	>	0	;	1 ST
Tetrachloroethene	>	>	>	>	>	¬	· >	52	- S S
2-Hexanone	>	>	>	>	_	>	>		50 GV
Dibromochloromethane	>	<u></u>	_	_		n	- =	1	50 GV
1,2-Dibromoethane	>	_	_		=	=	• =	-	
Chlorobenzene	-	• =	· =) =) =	> =	> =	1	- F
Ethylbenzene	· >	· ¬) =	· =) =	> =	> =	1 :	- F
Xylene (total)	· >	· >	· ⊃) <u> </u>) <u> </u>	> =	> =	: :	TS S
Styrene	>	¬	¬	· ⊃	· >) >	· ɔ	;	- K
Bromoform	>	>	>	¬	_	· >	. >	1	50.67
Isopropyibenzene	2	¬	<u></u>	¬	_	· ¬	· =	,	5.ST
1,1,2,2-Tetrachloroethane	>	¬	¬	<u></u>	>	·		;	
1,3-Dichlorobenzene	· >	0)	· >	· >) ⊃	,	3.ST
1,4-Dichlorobenzene	э	5	o)	¬	⊃	>	;	3 ST
1,2-Dichlorobenzene	>	⊃	⊃	>	>	¬	⊃	1	3 ST
1,2-Dibromo-3-chloropropane	>	⊃	⊃	<u> </u>	>	>	⊃	;	0.04 ST
1,2,4-Trichlorobenzene	ם	ח	D	D	n ·	n	Ω	1	5 ST
NOTES:		ABBREVIATIONS			QUALIFIERS:				
Concentration exceeds NYSDEC Class GA	DEC Class GA	ug/L = Micrograms per liter		ST: Standard Value	U. Compound analy	U. Compound applied for but not detected	Ţ		
Groundwater Standards or Guidance Values	uidance Values	: Not established		GV: Guidance Value	.l. Compound found	Compound found at a concentration below CRDL yellue estimated	W.CRDI value estima	ptod	
					11* Besult oublified	the Postult cupilified as non detect due to velidation extension	Midation pritoria		
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**	מווסמוכון כוונטוים,		

Engwork: HazWaste\2531 (NYSDEC - Franklin Cleaners Site)\Quartery Reports\Quarter 9 (Sep 06 - Nov 06)\Quarter 9 Sampling Results

B: Concentration is greater than the instrument detection limit (IDL) but less than the Contract Required Detection Limit (CRDL)

*: Result qualified as suspect based on validation criteria.

ug/L: Micrograms per liter

NYSDEC CONTRACT No. D004446 / SITE No. 1-30-050	RESULTS OF ANALYSIS OF AIR STRIPPER EFFLUENT IRON, MANGANESE AND pH
---	---

	ĺ							
SAMPLEID	SYSTEM EFFLUENT (AS-1)	SYSTEM EFFLUENT (AS-1)	SYSTEM FFFLUENT (AS-1)	SYSTEM FFFI (JENT (AS-1)	SYSTEM FFFI (JENT (AS-1)	SYSTEM FFFI LIENT (AS-1)	SYSTEM FEEL LENT (AS-1)	
SAMPLE TYPE	WATER	WATER	WATER	WATER	WATER	WATER	WATER	EFFLUENT LIMITATIONS
DATE OF COLLECTION	9/12/2006	9/25/2006	10/2/2006	10/16/2006	10/30/2006	11/13/2006	11/28/2006	
COLLECTED BY	D&B	ł	D&B		D&B	D&B	D&B	
UNITS	(ng/L)	١	(ug/L)	(ng/L)	(ng/L)	(ug/L)	(ng/L)	(ng/L)
METALS								
iron Mangapese	31.2 B	7.6 B	23.0 B 32.6 B	51.9 B	68.3 B	19.2 B	25.5 B 37 F B	1000
pH (S.U.)	7.5	7.3	7.3	7.4	7.5	7.3	7.5	000
					2	2	2:	200
<u>ABBREVIATIONS:</u>	<u>QUALIFIERS:</u>							

FRANKLIN CLEANERS SITE NYSDEC CONTRACT No. D004446 / SITE No. 1-30-050 VAPOR PHASE SAMPLE RESULTS

SAMPLE ID	CARBON VESSEL NO. 1 INFLUENT	CARBON VESSEL NO. 1 EFFLUENT	CARBON VESSEL NO. 2 INFLUENT	CARBON VESSEL NO. 2 EFFLUENT
SAMPLE TYPE	AIR	AIR	AIR	AIR
COLLECTED BY	D&B	D&B	D&B	D&B
JNITS	(ppm)	(ppm)	(ppm)	(ppm)
DATE OF COLLECTION	PID Reading	PID Reading	PID Reading	PID Reading
September 12, 2006	0.0	0.0	0.0	0.0
September 19, 2006	0.0	0.0	0.0	0.0
September 25, 2006	0.0	0.0	0.0	0.0
October 2, 2006	0.0	0.0	0.0	0.0
October 12, 2006				
	0.0	0.0	0.0	0.0
October 16, 2006	0.0	0.0	0.0	0.0
October 23, 2006	0.0	0.0	0.0	0.0
October 30, 2006	0.0	0.0	0.0	0.0
November 6, 2006	0.0	0.0	0.0	0.0
November 13, 2006	0.0	0.0	0.0	
				0.0
November 20, 2006	0.0	0.0	0.0	0.0
lovember 28, 2006	0.0	0.0	0.0	0.0
		Ì		
		J		
	J			
		1		
	1			
	J			
	1			
	1			
	· l			
			ľ	
			1	
	1		1	
			1	
			1	
			1	
	į l		I	
	I			
		ſ		
			1	
			1	
	- t			
			1	
			I	
	.]			
	1			
	1			

NOTES:

Samples were collected by filling a Tedlar bag at each of the sampling locations. Samples were tested using a handheld photoionization detector (PID).

ATTACHMENT E

PERFORMANCE SUMMARY

FRANKLIN CLEANERS SITE NYSDEC CONTRACT No. D004446 / SITE No. 1-30-050 EXTRACTION AND TREATMENT SYSTEM PERFORMANCE RESULTS

	SYSTEM INFLUENT	SYSTEM INFLUENT	SYSTEM INFLUENT	SYSTEM INFLUENT	SYSTEM EFFLUENT		ESTIMATED	ESTIMATED	ESTIMATED CUMULATIVE PCE
DATE OF SAMPLE	(EW-1) AVERAGE EXTRACTION RATE	(EW-1) PCE CONCENTRATION	(EW-2) AVERAGE	(EW-2) PCE	(AS-1) PCE	PCE REMOVAL	AVERAGE PCE	SYSTEM	
COLLECTION (1)	_ · · · · · · · · · · · · · · · · · · ·		EXTRACTION RATE	CONCENTRATION	CONCENTRATION	EFFICIENCY	REMOVAL RATE	RUNTIME	REMOVAL (2)
12/13/2004	(gpm) 36.3	(ug/l) 36	(gpm)	(ug/l) 68	(ug/l)		(lb/hr)	(hr)	(lbs)
12/27/2004	36.0	36	3.1 2.7	260 D	< 0.5 < 0.5	98.70 99.03	7.60E-04 1.00E-03	502 343	20.34 20.68
1/10/2005	35.8	42	3.3	370 D	< 0.5	99.28	1.36E-03	328	21.13
1/25/2005	36.4	38	3.1	280 D	1 J	98.25	1.11E-03	307	21.47
2/8/2005	36.5	32	3.0	240	< 0.5	98.95	9.45E-04	331	21.78
2/23/2005	36.2	44	2.8	220 D	< 0.5	99.12	1.11E-03	328	22.30 (2)
3/7/2005	35.8	41	2.8	290 D	< 0.5	99.15	1.11E-03	154	22.48
3/21/2005	36.6	34	3.0	190 D	< 0.5	98.91	9.09E-04	227	22.68
4/5/2005	35.8	29	3.2	190	< 0.5	98.82	8.24E-04	282	22.91
4/19/2005	35.6	33	2.7	210 D	< 0.5	98.90	8.72E-04	337	23.21
5/2/2005	36.2	31	2.6	230 D	< 0.5	98.87	8.61E-04	310	23.48
5/16/2005	37.0	33	2.4	220	< 0.5	98.87	8.76E-04	710	24.10 (4)
6/6/2005	34.7	27	2.8	190	< 0.5	98.72	7.36E-04	74	24.15
6/20/2005	36.9	32	2.6	150 D	< 0.5	98.74	7.87E-04	279	24.37
7/5/2005	35.7	26	2.5	220 E	1 J	97.42	7.20E-04	358	24.63
7/25/2005	36.2	26	2.2	180 D	< 0.5	98.56	6.70E-04	392	24.89
8/8/2005	36.2	21 B	2.7	120 B	< 0.5	98.21	5.43E-04	239	25,02
8/31/2005	35.3	24	2.5	180	< 0.5	98.54	6.50E-04	525	25.36 (2)
9/12/2005	38.0	21	2.4	170	< 0.5	98.33	6.04E-04	192	25.48
9/26/2005	37.0	26	2,0	160 D	< 0.5	98.48	6.42E-04	310	25.68
10/10/2005	36.5	19	2.0	160	< 0.5	98.10	5.08E-04	313	25.84
10/24/2005	37.4	24	2.4	150	< 0.5	98.42	6.30E-04	300	26.03
11/8/2005	37.8	26	2.6	190 D	< 0.5	98.63	7.40E-04	306	26.25
11/21/05 ⁽³⁾	37.8	26	2.0	200	< 0.5	98.56	4.92E-04 2.00E-04	136 507	26.42 (2)
12/5/2005	0.0	NS	1.6	170	< 0.5	99.71	1.36E-04	106	26.44
12/21/2005	0.0	NS	3.0	140	< 0.5	99.64	2.10E-04	241	26.49
1/4/2006	0.0	NS	2.8	180	< 0.5	99.72	2.52E-04	340	26.57
1/24/2006	0.0	NS	2.8	160	< 0.5	99.69	2.24E-04	462	26.68
2/6/2006	0.0	NS	2,4	160	< 0.5	99.69	1.92E-04	311	26.74
2/21/2006	0.0	NS_	3.1	180	< 0.5	99.72	2.79E-04	425	26.74 (2)
3/7/2006	0.0	NS	2.9	140	< 0.5	99.64	2.03E-04	154	26.77
3/22/2006	0.0	NS	3.0	160	< 0.5	99.69	2.40E-04	361	26.85
4/3/2006	0.0	NS	2.8	82	< 0.5	99.39	1.15E-04	287	26.89
4/18/2006	0.0	NS	2.9	120	< 0.5	99.58	1.74E-04	363	26.95
5/9/2006	0.0	NS	3.1	100	< 0.5	99.50	1.55E-04	481	27.02
5/22/2006	0.0	NS NS	3.0	130	< 0.5	99.62	1.95E-04	312	27.09 (2)
6/5/2006	0.0	NS NS	2.6	120	< 0.5	99.58	1.56E-04	337	27.14
6/19/2006	0.0	NŞ NŞ	2.7	120	< 0.5	99.58	1.62E-04	327	27.19
7/6/2006	0.0	NS NS	3.1	110	< 0.5	99.55	1.71E-04	301	27.24
7/17/2006	0.0	NS	3.0	130	< 0.5	99.62	1.95 E- 04	354	27.31 (2)
La company of the contract of	38.9	23	0.0	NS.	< 0.5	97,83	4.48E-04	122	27.37
9/25/2006	38:6	23	0.0	NS S	< 0.5	97.83	4.45E-04	311	27.50
10/2/2006	40.2	22. 7	******0.0		< 0.5	97.73	4.43E-04	169	27.58
10/16/2006	39.8		0.0	NS NS	< 0.5	97.73	4.38E-04	335	27,73
10/30/2006	39.2	24	0.0	NS NS	¥ 0.5	97.92	4.71E-04	280 -	27.86
11/13/2006	37.8	18 B	0.0	NS	₹ 0.5	97.22	3.41E-04	335	27.97
11/28/2006	41.1	17 - 40 (6-44)]-+ 0,0	NS NS	< 0.5	97.06	3.50E-04	418	28.12 (2)

NOTES:

1. Performance results for the reporting period are shaded.

2. Estimated through the end of the reporting period.

3. Results show removal efficiency and runtimes for both EW-1 and EW-2

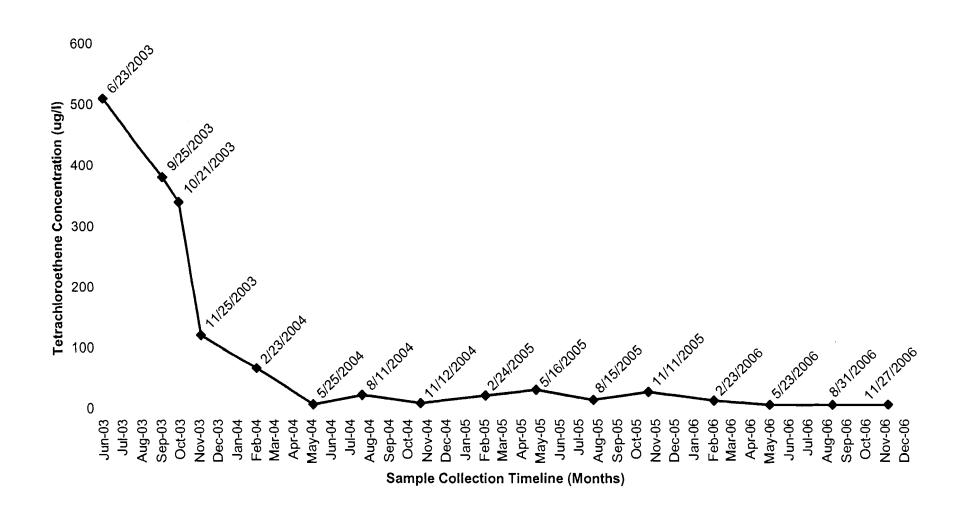
ABBREVIATIONS:

gpm: gallons per minute ug/L: micrograms per liter lb/hr: pounds per hour NS: Not sampled

QUALIFIERS:

D: Result taken from reanalysis at a secondary dilution

J: Compound found at a concentration below CRDL, value estimated


B: Compound detected in method blank as well as the sample, value estimated

E: Compound concentration exceeds instrument calibration range, value estimated

ATTACHMENT F

MONITORING WELL TREND LINE GRAPHS

Franklin Cleaners Site
NYSDEC Contract No. D004446 / Site No. 1-30-050
Groundwater Monitoring Well ASMW-1

Sample Collection Timeline (Months)

Nov-05 Dec-05 Jan-06 Feb-06 Mar-06 Apr-06 May-06 Jun-06 Jul-06 Aug-06

Sep-06 Oct-06 Nov-06 Dec-06

NYSDEC Contract No. D004446 / Site No. 1-30-050 **Groundwater Monitoring Well ASMW-2** Franklin Cleaners Site

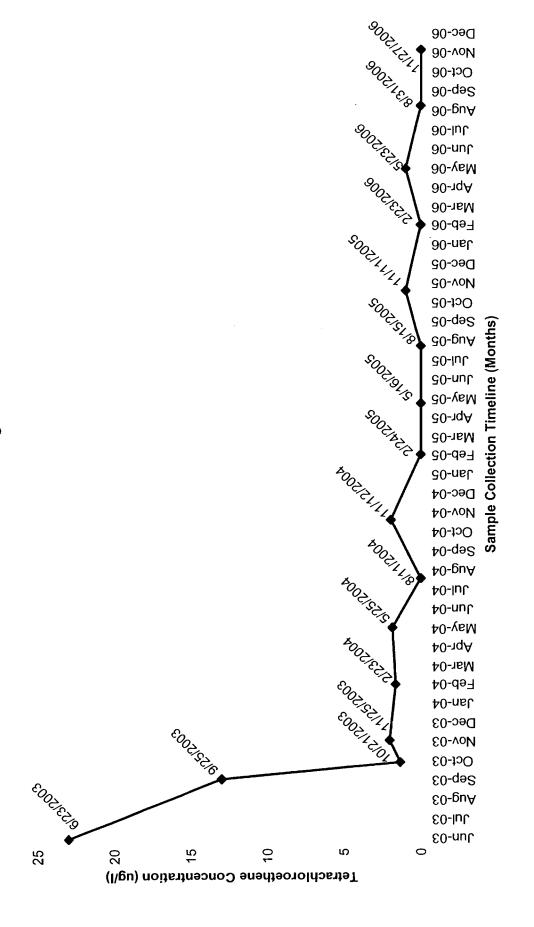
o rokoos Jun-03 Jul-03 Aug-03 Sep-03 Oct-03 Nov-03 Dec-03 Jan-04 Feb-04 Mar-04 Apr-04 May-04 Jun-04 Jul-04 Aug-04 Sep-04 71/22009 Oct-04 Nov-04 Dec-04 Jan-05 Feb-05 Mar-05 Apr-05 \$ 16/2005 May-05 Jun-05 Jul-05 Aug-05 Sep-05 Oct-05

Tetrachloroethene Concentration (ug/l)

150

100

50


200

250

300

GRAPH 2

Franklin Cleaners Site NYSDEC Contract No. D004446 / Site No. 1-30-050 Groundwater Monitoring Well ASMW-3

Engwork:_HazWaste\2531 (NYSDEC - Franklin Cleaners Site)\Quarterly Reports\Quarter 9 (Sep 06 - Nov 06)\Quarter 9 Sampling Results