
# FINAL REMEDIATION REPORT ON-SITE SOIL VAPOR EXTRACTION AND AIR SPARGING TREATMENT SYSTEM



### FRANKLIN CLEANERS SITE

Village of Hempstead Nassau County, New York (Site Registry No. 1-30-050)

WORK ASSIGNMENT NO. D004184

**Prepared For** 

## New York State Department of Environmental Conservation

JUNE 2009 (Revised April 2012)



## FINAL REMEDIATION REPORT ON-SITE SOIL VAPOR EXTRACTION AND AIR SPARGING TREATMENT SYSTEM FRANKLIN CLEANERS SITE SITE NO. 1-30-050

VILLAGE OF HEMPSTEAD

NASSAU COUNTY, NEW YORK

WORK ASSIGNMENT NO. D004446-10

Prepared for:

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Prepared by:

## DVIRKA AND BARTILUCCI CONSULTING ENGINEERS WOODBURY, NEW YORK

JUNE 2009 (REVISED APRIL 2012)

## FINAL REMEDIATION REPORT ON-SITE SOIL VAPOR EXTRACTION AND AIR SPARGING TREATMENT SYSTEM FRANKLIN CLEANERS SITE VILLAGE OF HEMPSTEAD NASSAU COUNTY, NEW YORK

#### TABLE OF CONTENTS

| Section |              | <u>Title</u>                                     | Page |  |  |  |  |  |
|---------|--------------|--------------------------------------------------|------|--|--|--|--|--|
| 1.0     | INTRODUCTION |                                                  |      |  |  |  |  |  |
|         | 1.1          | Project Overview                                 | 1-1  |  |  |  |  |  |
|         | 1.2          | Site Description and History                     |      |  |  |  |  |  |
|         | 1.3          | Project Objectives                               |      |  |  |  |  |  |
| , .     | 1.4          | Report Purpose and Organization                  |      |  |  |  |  |  |
| 2.0     | CON          | STRUCTION ACTIVITIES                             | 2-1  |  |  |  |  |  |
|         | 2.1          | Contractor Submittals                            | 2-1  |  |  |  |  |  |
|         | 2.2          | Site Preparation                                 | 2-2  |  |  |  |  |  |
|         |              | 2.2.1 Clearing and Grubbing                      |      |  |  |  |  |  |
|         |              | 2.2.2 Removal of Waste and Debris                |      |  |  |  |  |  |
|         |              | 2.2.3 Installation of New Fence                  | 2-3  |  |  |  |  |  |
|         |              | 2.2.4 Temporary Facilities                       |      |  |  |  |  |  |
|         | 2.3          | Dry Well Sealing and Restoration                 |      |  |  |  |  |  |
|         | 2.4          | Awning Installation                              |      |  |  |  |  |  |
|         | 2.5          | Treatment System Construction                    | 2-5  |  |  |  |  |  |
|         |              | 2.5.1. Treatment System Enclosure                |      |  |  |  |  |  |
|         |              | 2.5.2 Installation of Primary Electrical Service |      |  |  |  |  |  |
| • .     |              | 2.5.3 Installation of Primary Telephone Service  |      |  |  |  |  |  |
|         |              | 2.5.4 Buried Piping Installations                |      |  |  |  |  |  |
|         |              | 2.5.4.1 - Soil Vapor Extraction System Piping    |      |  |  |  |  |  |
|         |              | 2.5.4.2 - Air Sparging System Piping             |      |  |  |  |  |  |
|         |              | 2.5.5 Soil Vapor Extraction System               |      |  |  |  |  |  |
|         |              | 2.5.5.1 - Soil Vapor Extraction Blower           |      |  |  |  |  |  |
|         |              | 2.5.5.2 - Moisture Separator                     |      |  |  |  |  |  |
|         |              | 2.5.5.3 - Vapor-Phase Carbon Vessels             |      |  |  |  |  |  |
|         |              | 2.5.5.4 - Instrumentation                        | 2-8  |  |  |  |  |  |

#### TABLE OF CONTENTS (continued)

| Section |      |                  | <u>Title</u>                          | Page |
|---------|------|------------------|---------------------------------------|------|
|         |      | 2.5.6 Air Spar   | rge System                            | 2-9  |
|         |      | 2.5.6.1 -        | - Air Sparge Compressor               | 2-9  |
|         |      | 2.5.6.2 -        | - Instrumentation                     | 2-9  |
| ٠       |      | 2.5.7 Control    | Systems                               | 2-10 |
| •       |      | 2.5.8 Miscella   | aneous Equipment                      | 2-10 |
|         | *    | 2.5.8.1 -        | - Meteorological Monitoring Station   | 2-10 |
|         |      | 2.5.9 Well and   | d Probe Installation                  | 2-10 |
|         |      | 2.5.9.1 -        | - Groundwater Monitoring Wells        | 2-12 |
|         |      | 2.5.9.2 -        | - Air Sparge Wells                    | 2-17 |
|         |      | 2.5.9.3 -        | - Soil Vapor Extraction Wells         | 2-17 |
|         |      | 2.5.9.4 -        | - Soil Vapor Monitoring Probes        | 2-17 |
|         | 2.6  | Basement Floor   | r Repair                              | 2-18 |
|         | 2.7  | Paving           |                                       | 2-18 |
|         | 2.8  | Site Restoration | 1                                     | 2-19 |
| 3.0     | SYS' | EM PERFORM       | IANCE TESTING                         | 3-1  |
|         | 3.1  | Soil Vapor Extr  | raction System                        | 3-1  |
|         | 3.2  | Air Sparge Syst  | tem                                   | 3-2  |
| 4.0     |      |                  | ION OPERATION, MAINTENANCE            | 4-1  |
| 5.0     | POS  | -REMEDIATIO      | ON SHUTDOWN                           | 5-1  |
|         |      |                  | · · · · · · · · · · · · · · · · · · · |      |
|         | 5.1  | Groundwater Sa   | ampling                               | 5-1  |
|         | 5.2  |                  | pling                                 |      |
| •       | 5.3  | -                | Sampling                              |      |
|         | 5.4  |                  | pling                                 |      |
|         | 5.5  |                  | ssioning Services                     |      |
|         |      |                  | b Depressurization System             |      |
|         |      |                  | S System Decommission                 |      |
| 6.0     | СНА  | NGE ORDERS       |                                       | 6-1  |
| 7.0     | CER  | TIFICATIONS      |                                       | 7-1  |

#### TABLE OF CONTENTS (continued)

| List of Appendices | L | ist | of | A | pp | en | di | ces |
|--------------------|---|-----|----|---|----|----|----|-----|
|--------------------|---|-----|----|---|----|----|----|-----|

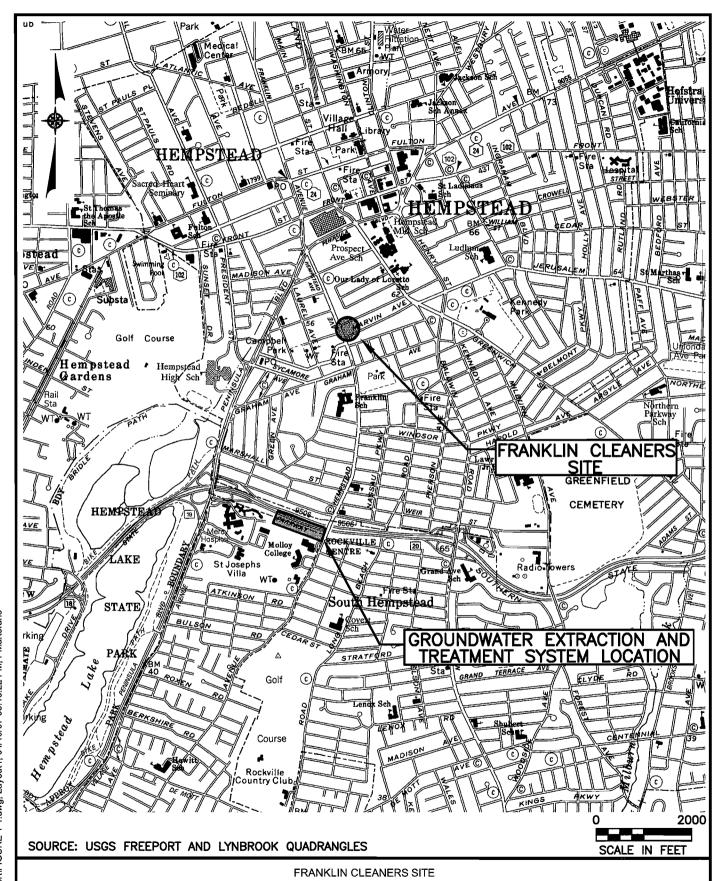
|            | Const      | ruction Inspection ReportsA                                                   |
|------------|------------|-------------------------------------------------------------------------------|
|            | Const      | ruction PhotographsB                                                          |
|            | Dispo      | sal ManifestsC                                                                |
|            | Consti     | ruction DrawingsD                                                             |
|            | Boring     | g/Well Construction LogsE                                                     |
|            | SVE/A      | AS Performance Test Reports and ResultsF                                      |
|            |            | SVE Performance Test Report AS Performance Test Report Split Sampling Results |
|            | Opera      | tion, Maintenance and Monitoring ReportsG                                     |
|            | Sub-S      | lab Depressurization System Construction Inspection ReportH                   |
| List of Fi | gures      |                                                                               |
|            | 1-1        | Site Location Map1-2                                                          |
| •          | 1-2        | Site Plan1-4                                                                  |
|            | 2-1        | Monitoring Well and Probe Location Map2-11                                    |
|            | 5-1<br>5-2 | Subsurface Soil Boring Sample Location Map                                    |
| List of Ta | ables      |                                                                               |
|            | 2-1<br>2-2 | Well and Probe Construction Details                                           |
|            | 5-1        | Post-Remediation Groundwater Sampling Results5-2                              |
|            | 5-2        | Post-Remediation Soil Vapor Sampling Results5-3                               |
|            | 5-3        | Post-Remediation Subsurface Soil Sampling Results5-6                          |
|            | 5-4        | Post-Remediation Ambient Air Sampling Results5-10                             |
|            | 5-5        | Post-Remediation Sub-Slab Soil Vapor Sampling Results5-12                     |

#### 1.0 INTRODUCTION

#### 1.1 Project Overview

As part of New York State's program to investigate and remediate hazardous waste sites, the New York State Department of Environmental Conservation (NYSDEC) issued a work assignment to Dvirka and Bartilucci Consulting Engineers (D&B) of Woodbury, New York, under its Superfund Standby Contract with the NYSDEC. The scope of the work for the work assignment included providing construction inspection services for the remedial measures to address subsurface soil and shallow groundwater contamination at the Franklin Cleaners Site located in the Incorporated Village of Hempstead, Nassau County, New York (see Figure 1-1). The facility is a Class 2 New York State Superfund site (Registry No. 1-30-050).

The remedial measures selected by the NYSDEC for this site, as presented in the March 1998 Record of Decision (ROD), include on-site soil vapor extraction (SVE) to address subsurface soil contamination, and air sparging (AS) combined with SVE to address on-site shallow groundwater contamination. The selected remedy also includes off-site groundwater extraction and treatment to address downgradient groundwater contamination. This report documents the construction and implementation of the on-site SVE/AS system as part of the selected remedy.


The remedial time frame for the General Construction Contract consisted of a Notice to Proceed issued to the Contractor on June 11, 2002 and a certified substantial completion date of November 12, 2003. The major elements completed as part of the on-site remedy, as presented in the March 1998 ROD and as modified during construction, are as follows:

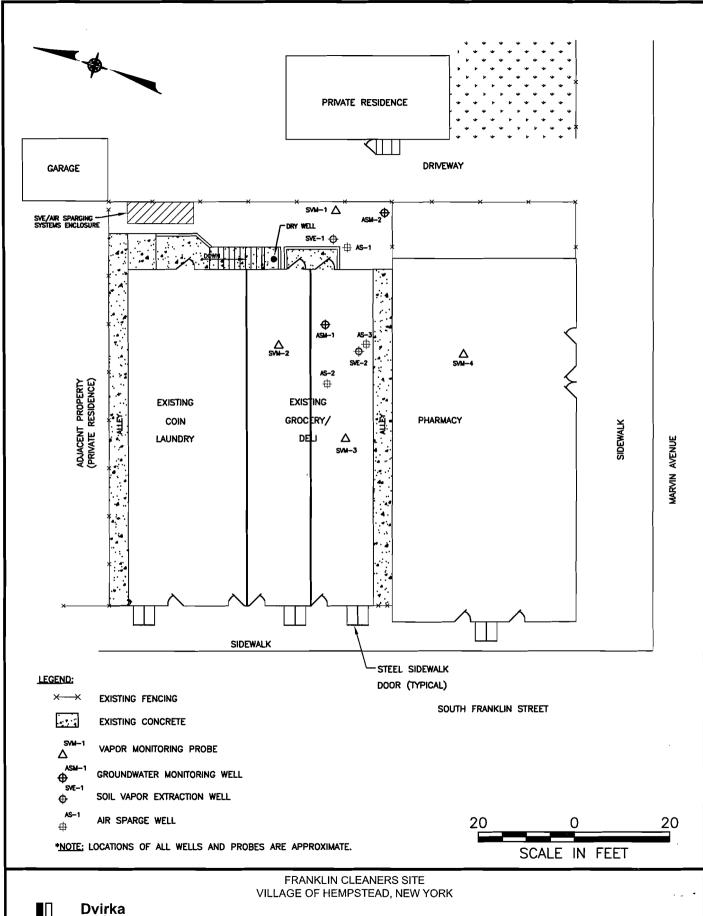
- Preparation and obtaining approval of shop drawing submittals in accordance with the requirements of the Contract Documents;
- Furnishing and installation of temporary facilities;
- Clearing and grubbing of the treatment system enclosure area;

Dvirka

and Bartilucci

CONSULTING ENGINEERS A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.








- Removal and disposal of yard waste and other material;
- Construction of new fencing and gates;
- Restoration and sealing of rear stairwell dry well;
- Repair of basement floor;
- Installation of rear stairwell awning;
- Grading and paving of area in rear of building;
- Construction of soil SVE wells, AS wells, groundwater monitoring wells and soil vapor monitoring probes;
- Installation of SVE/AS system, including SVE pressure blower, AS blower, carbon vessels, vapor/liquid separator, meteorological monitoring station, and instrumentation and controls;
- Start-up and performance testing of the SVE/AS system;
- Removal of temporary utilities and facilities; and
- Operation, monitoring and maintenance of the SVE/AS system.

#### 1.2 Site Description and History

The Franklin Cleaners Site is a former dry cleaning facility located at 206-208B South Franklin Avenue in the Incorporated Village of Hempstead, Nassau County, New York. The site is approximately ½ acre in size and includes a two-story building with residential apartments on the second floor, and a coin laundromat and delicatessen occupying the first floor. Portions of the first floor and basement were utilized by the former dry cleaning facility. The site is bordered by Marvin Avenue to the south, private residences to the north and east, and commercial buildings and South Franklin Street to the west (see Figure 1-2). The Franklin Cleaners Site was listed on the New York State Registry of Inactive Hazardous Waste Disposal Sites on June 17, 1993. In response to a determination that the presence of hazardous waste at the site presents a significant threat to human health and the environment, the NYSDEC issued a work assignment for D&B to conduct a Remedial Investigation/Feasibility Study (RI/FS). The purpose of the RI/FS was to



DVIFKA and Bartilucci CONSULTING ENGINEERS A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.

SITE PLAN

FIGURE 1-2

determine the nature and the extent of contamination resulting from previous activities at the site.

D&B performed the RI/FS on behalf of the NYSDEC between December 1996 and November 1998. The RI/FS showed that elevated levels of tetrachloroethene (PCE) were present in surface and subsurface soil due to the disposal of waste dry cleaning fluids in the back alleyway of the site, as well as spills or disposal that occurred in the basement of the building in the vicinity of the former dry cleaning equipment. Elevated levels of PCE in groundwater were also detected in the shallow Upper Glacial aquifer in the immediate vicinity of the site. The shallow groundwater plume was traced to the northern boundaries of the Molloy College and Mercy Hospital properties, both located just south of the Southern State Parkway, nearly one mile south (downgradient) of the site.

As discussed previously, a ROD was prepared by NYSDEC in March 1998. The ROD selected installation of an SVE/AS system to address on-site soil and groundwater contamination. The SVE/AS system was installed in 2003 and is located approximately 10 feet behind (east) the Franklin Cleaners Site. Construction and operation activities of the SVE/AS system were implemented to limit impacts to site occupants and surrounding communities.

#### 1.3 Project Objectives

Goals for the remedial program have been established through the remedy selection process stated in 6 NYCRR Part 375-1.10, and are documented in the ROD. The overall remedial goals are to be protective of human health and the environment and to meet all standards, criteria and guidelines (SCGs). Implementation of the on-site SVE/AS remedy is specifically focused on the following goals:

- Reduce, control or eliminate contaminated media to the extent practicable;
- Eliminate the threat of contaminant migration to groundwater and indoor air by eliminating on-site soil contamination;
- Eliminate the potential for exposure to contaminated groundwater; and

• Provide for attainment of SCGs for groundwater, soil and indoor air to the limits of the affected area, to the extent practicable.

#### 1.4 Report Purpose and Organization

The primary purpose of this Final Remediation Report is to describe all variations from the Contract Documents and present the results of the confirmatory soil sampling, groundwater sampling and indoor air sampling.

The report has been organized as follows:

- Section 1.0 Introduction: This section presents a brief description of the project background and defines specific project objectives.
- Section 2.0 Construction Activities: This section presents a description of all construction activities performed at the site, as well as all variations from the Contract Documents, during the implementation of the remedial measure.
- Section 3.0 System Performance Testing: This section presents the results of the preliminary field tests and the performance tests conducted prior to full implementation of the SVE/AS system.
- Section 4.0 Post-Construction, Operation, Maintenance and Monitoring: This section presents a description of the work completed during the post-construction operation, maintenance and monitoring period.
- Section 5.0 Post-Remediation Shutdown: This section presents the results of the confirmatory soil vapor, subsurface soil, groundwater and indoor air samples collected at the site and the installation of the sub-slab depressurization system.
- Section 6.0 Change Order: This section presents a description of the change orders for the project.

#### 2.0 CONSTRUCTION ACTIVITIES

Construction of the SVE/AS system was conducted from March through September 2003. D&B was responsible for all construction inspection and oversight for the duration of the work. Copies of D&B's Daily Construction Inspection Reports and construction photographs are included in Appendices A and B, respectively. The following provides a detailed summary of all work conducted during the construction of the SVE/AS system.

#### 2.1 Contractor Submittals

The General Construction Contractor (GC) selected for the construction of the remediation system, based on competitive bids, was Environmental Products & Services, Inc. (EP&S) of Syracuse, New York. As required by the Contract Documents, contractor submittals included the following site-specific documents:

- Health and Safety Plan (HASP);
- Sampling and Analysis Plan;
- Contingency Plan;
- Work and Waste Handling Plan;
- Storm Water Management Plan;
- Process and Engineering Description; and
- Well Installation Plan.

In addition, shop drawings were required to be submitted for the following:

- SVE wells;
- AS wells;
- vapor monitoring probes;
- groundwater monitoring wells;

- vapor/liquid separator;
- carbon adsorption units;
- SVE blower;
- Control panels;
- AS blower;
- decontamination pad;
- system enclosure;
- fencing and gates;
- paving;
- awning;
- dry well cover;
- piping layout;
- meteorological monitoring station; and
- electrical equipment.

The Contractor's submittals were reviewed by D&B for conformance with the requirements of the Contract Documents and were revised as necessary by the Contractor in accordance with D&B's comments.

#### 2.2 Site Preparation

The GC mobilized to the site on February 27, 2003, to initiate site preparation activities and to install the necessary temporary facilities. Site preparation activities undertaken by the GC included:

 Mobilization to a field office located on the second floor of 208 South Franklin Avenue;

- Clearing and grubbing within the Contract Limits, as necessary to perform the work;
- Installation of a project sign at the site entrance; and
- Removal of yard waste and debris resulting from all clearing and grubbing activities, and additional materials within the Contract Limits.

The activities performed as part of site preparation are described in detail in the following sections. All work performed as part of site preparation was performed in accordance with the Contract Documents except as noted below.

#### 2.2.1 Clearing and Grubbing

The GC cleared approximately 1,400 square feet within the Contract Limits as defined by the Contract Documents. Clearing and grubbing consisted of removal and off-site disposal of all trees, vegetation and miscellaneous items within the area selected for the installation of the buried system piping and enclosure for the SVE/AS system. This task also included the removal of the existing dilapidated fence behind the building. Waste generated during clearing and grubbing was disposed off-site at Waste Management of Long Island, located in New Hyde Park, New York, in accordance with the GC's approved Work and Waste Handling Plan.

#### 2.2.2 Removal of Waste and Debris

The GC removed approximately 10 cubic yards of miscellaneous yard waste and debris from the rear area of the building and the basement of the delicatessen. All miscellaneous yard waste and debris was disposed off-site at Waste Management of Long Island located in New Hyde Park, New York in accordance with the GC's approved Work and Waste Handling Plan.

#### 2.2.3 Installation of New Fence

Upon completion of the clearing and grubbing activities, 85 feet of new galvanized, 6-foot high chain-link fence and gates with privacy-slats were installed surrounding the

perimeter of the rear portion of the site. The fence was installed by Miles Fence Company, a subcontractor to the GC.

#### 2.2.4 <u>Temporary Facilities</u>

As approved by the NYSDEC, a field office was established in vacant office space on the second floor of the building located at 208 South Franklin Street, instead of a trailer. Temporary electric and phone services were set up through the Long Island Power Authority (LIPA) and Verizon Communications, respectively. All temporary facilities and services were removed upon completion of the construction activities.

#### 2.3 Dry Well Sealing and Restoration

Prior to construction of the SVE/AS system, the dry well located in the rear stairwell was retrofitted to provide an airtight seal at the surface to prevent short-circuiting of the system. The surface of the dry well area was first cleared of all debris and other material. The existing manhole rim and cover were then removed. A vacuum truck was used to remove all liquid and sludge from the inside of the dry well to the bottom of the structure. All material was removed from the dry well and disposed off-site at Waste Management of Long Island, New Hyde Park, New York in accordance with the GC's approved Work and Waste Handling Plan. The dry well was backfilled with approximately 0.3 cubic yards of approved general fill from 110 Sand Company, West Babylon, New York. Upon completion of all construction activities, a new dry well frame and airtight cover were installed to complete the restoration. A new dry well grate was also provided by the GC to replace the airtight cover upon completion of remedial activities.

#### 2.4 Awning Installation

Prior to construction of the SVE/AS system, the awning above the stairwell in the rear of the building was removed and replaced with a new awning to prevent precipitation from accumulating in the bottom of the stairwell. The awning was installed by Action Awnings and Canopies, Inc., a subcontractor to the GC. Drawings showing the location of the installed awning are included in Appendix D.

The awning installation work was performed in accordance with approved plans with the exception of the following deviation:

• As approved by the NYSDEC, the awning length was extended from 15 feet to 32 feet in order to cover the entire length of the stairwell.

#### 2.5 Treatment System Construction

#### 2.5..1 - Treatment System Enclosure

A SVE/AS system enclosure was installed by the GC in the rear area of the building to house the treatment system equipment. The enclosure and all equipment were supplied by National Environmental Systems, a subcontractor to the GC. The installed dimensions of the system enclosure were 4.5 feet wide, 14 feet long and 9.5 feet high. The enclosure was constructed of plywood with an asphalt shingle roof, T-111 plywood siding and a steel I-beam skid. The enclosure was installed on the new asphalt paving and included a ventilation system and sound-proofing material within the walls. Drawings of the system enclosure are included in Appendix D.

The system enclosure installation work was performed in accordance with approved plans with the exception of the following deviation:

• As approved by the NYSDEC, the system enclosure was installed directly on top of the asphalt paving instead of on a concrete pad, as originally specified.

#### 2.5.2 - Installation of Primary Electrical Service

The primary electric service was installed by Allways Electric Corp., a subcontractor to the GC. The primary electrical service for the SVE/AS system was established from a utility pole

located on the east side of Hempstead Avenue. Drawings illustrating the primary electric service distribution to the system are included in Appendix D.

#### 2.5.3 - Installation of Primary Telephone Service

The primary telephone service to the system enclosure was installed by Allways Electric Corp., a subcontractor to the GC. The primary telephone service for the SVE/AS system was established from the utility pole located on the east side of Hempstead Avenue.

#### 2.5.4 - Buried Piping Installations

#### 2.5.4.1 - Soil Vapor Extraction System Piping

The SVE system piping was installed by the GC to convey soil vapor from the SVE wells (SVE-1 and SVE-2) to the process equipment. The SVE system piping was constructed using 2-inch diameter, Schedule 40 PVC pipe. The SVE system piping was installed at a depth of 1.5 feet below grade. Upon installation of the SVE piping, the trenches were backfilled with native soil generated during trenching activities, which was then compacted with a vibratory plate compactor. Drawings illustrating the location of buried SVE system piping are included in Appendix D.

#### 2.5.4.2 - Air Sparging System Piping

The AS system piping was installed by the GC to convey ambient air from the AS compressor to the AS wells (AS-1, AS-2 and AS-3). The AS system piping was constructed using 1-inch diameter galvanized steel pipe. The AS system piping was installed at a depth of 1.5 feet below grade. Upon installation of the AS piping, the trenches were backfilled with native soil generated during trenching activities, which was then compacted with a vibratory plate compactor. Drawings illustrating the location of buried AS system piping are included in Appendix D.

#### 2.5.5 - Soil Vapor Extraction System

#### 2.5.5.1 - Soil Vapor Extraction Blower

The blower associated with the SVE system was installed by the GC to extract soil vapor from the SVE wells. The GC provided an Ametek Rotron Industrial Products Model EN6FL72L blower to meet the performance requirements specified in the Contract Documents. The blower was furnished with a variable frequency drive (VFD), a variable speed explosion-proof motor, inline filter/silencers and vacuum relief/dilution valves. Drawings providing details specific to the construction and layout of the SVE system and associated equipment are included in Appendix D.

#### 2.5.5.2 - Moisture Separator

The moisture separator associated with the SVE system was installed by the GC to remove moisture potentially collected in the soil vapor extracted from the SVE wells. The GC provided a National Environmental Systems (NES) Model MS Tank 110 separator to meet the performance requirements specified in the Contract Documents. The moisture separator was furnished with a sight-tube, emergency high alarm level and a drain valve. Drawings providing details specific to the construction and layout of the SVE system and associated equipment are included in Appendix D.

#### 2.5.5.3 - Vapor-Phase Carbon Vessels

Two (2) vapor-phase carbon vessels were installed as an integral part of the SVE system by the GC to remove contaminants from the extracted soil vapor. The GC provided Chem-Trade International, Inc. Model DVP400 vapor-phase carbon vessels to meet the performance requirements specified in the Contract Documents. The vapor-phase carbon vessels were set up and operated in series and each was equipped with 195 pounds of granular activated carbon. Drawings providing details specific to the construction and layout of the SVE system and associated equipment are included in Appendix D.

#### 2.5.5.4 - Instrumentation

Flow control valves were installed at each SVE well head at the inlet and outlet of the moisture separator, and at the inlet and outlet of each vapor-phase carbon vessel. The GC provided NES Standard Model VBU1T flow control valves to meet the performance requirements specified in the Contract Documents.

Flow-measuring instrumentation was installed to determine the soil vapor flow rate at each SVE well head, at the inlet and outlet to the moisture separator, and at the inlet and outlet of each vapor-phase carbon vessel. The GC provided Dwyer Instruments, Inc. Model DS-300 pitot tube gauges and Dwyer Instruments, Inc. Model 2000 magnehelic gauges to meet the performance requirements specified in the Contract Documents.

Pressure-measuring instrumentation was installed to measure the pressures at each SVE well head, at each vapor probe, at the inlet and outlet of the blower, at the inlet and outlet to the moisture separator, and at the inlet and outlet of each vapor-phase carbon vessel. The GC provided Winters Thermogauges Ltd. Model P304-V pressure gauges to meet the performance requirements specified in the Contract Documents.

Temperature-measuring instrumentation was installed to measure the air temperature at each SVE well head, at the inlet and outlet to the vapor/liquid separator, and at the inlet and outlet of each carbon adsorption vessel. The GC provided Winters Thermogauges Ltd. Model 20025-B8 temperature gauges to meet the performance requirements specified in the Contract Documents.

#### 2.5.6 - Air Sparge System

#### 2.5.6.1 - Air Sparge Compressor

The compressor associated with the AS system was installed by the GC to convey ambient air to the AS wells. The GC provided a Becker Pumps Corp. Model KTD-3.60 compressor to meet the performance requirements specified in the Contract Documents. The compressor was furnished with a VFD, a variable speed explosion-proof motor, inline filters/silencers and a vacuum relief valve. Drawings providing details specific to the construction and layout of the AS system and associated equipment are included in Appendix D.

#### 2.5.6.2 - Instrumentation

Flow control valves were installed at each air sparge well. The GC provided NES Standard Model VBU1T flow control valves to meet the performance requirements specified in the Contract Documents.

Flow-measuring instrumentation was installed to determine the air injection flow rate at each wellhead. The GC provided Dwyer Instruments, Inc. Model VFC-122 flow meters to meet the performance requirements specified in the Contract Documents.

Pressure-measuring instrumentation was installed to measure the pressure at each AS well head, as well as at the outlet of the AS compressor. The GC provided Winters Model P802 pressure gauges to meet the performance requirements specified in the Contract Documents.

Temperature-measuring instrumentation was installed to measure the air temperature at each AS well head. The GC provided Winters Model 20025-B11 temperature gauges to meet the performance requirements specified in the Contract Documents.

#### 2.5.7 - Control Systems

Control systems associated with the treatment were installed by the GC to control the operation of the treatment system equipment. All electrical wiring from the control panels to the power distribution board and equipment was installed by the GC. Shop drawings were submitted by the GC prior to installation and field tests for the control logic and system alarms were performed prior to final acceptance of the equipment. As-built drawings of the control system are included in Appendix D.

#### 2.5.8 - Miscellaneous Equipment

#### 2.5.8.1 - Meteorological Monitoring Station

A meteorological monitoring station was installed by the GC as an integral part of the SVE/AS system to record local weather data. The meteorological monitoring station was installed above the system enclosure to measure and record wind speed, wind direction, ambient air temperature, atmospheric pressure, atmospheric humidity, incoming radiation and precipitation at 1-hour intervals. A readout device was installed within the system enclosure to download actual site conditions. The data was printed on a dedicated printer located within the system enclosure.

#### 2.5.9 - Well and Probe Installation

The well and probe installation were performed by Lyon Drilling Company, a subcontractor to the GC. The locations of all monitoring wells and vapor probes are shown on Figure 2-1. All soil boring and well construction logs for the wells/probes discussed below are provided in Appendix E.

The following sections are intended to provide a brief description of the activities performed as part of each well and probe installation.

F:\2603\dwg\Figure 2-1.dwg, 6/15/2009 10:09:21 AM, PMartorano

CONSULTING ENGINEERS
A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.

#### 2.5.9.1 - Groundwater Monitoring Wells

Two groundwater monitoring wells (designated ASM-1 and ASM-2) were constructed within the limits of the Franklin Cleaners Site to monitor the effectiveness of the AS system. Each well was drilled using 4 1/4-inch inner diameter (ID) hollow stem augers and split-spoon soil sampling was completed continuously in each well, screened with a PID and logged for geologic characteristics.

Upon completion of drilling at each borehole, a 2-inch diameter PVC monitoring well was installed and developed in accordance with the approved Well Installation Plan. All wastes generated during well construction activities were characterized, transported and disposed offsite at Chemical Waste Disposal Corporation, located in Astoria, New York. Copies of the waste manifests are provided in Appendix C. Groundwater monitoring well construction details are provided in Table 2-1.

Prior to startup of the SVE/AS treatment system, each of the installed monitoring wells were sampled for VOCs by NYSDEC ASP Method OLM04.2, iron and manganese, to establish baseline conditions in accordance with the GC's Work and Waste Handling Plan. Existing off-site monitoring wells FC-1 and FC-2 were also sampled for VOC, iron and manganese to establish baseline conditions. Split samples were collected from each well and analyzed by D&B. A summary of the baseline VOC results is provided in Table 2-2.

As shown in Table 2-2, baseline samples collected from ASM-1, ASM-2 and FC-2 all exhibited levels of PCE above the NYSDEC Class GA groundwater standard of 5 ug/l. Concentrations of PCE in the wells ranged from less than 10 ug/l to greater than 50 ug/l. Monitoring well FC-1 did not exhibit levels of PCE above the NYSDEC Class GA Groundwater Standard of 5 ug/l.

Table 2-1
WELL AND PROBE CONSTRUCTION DETAILS
FRANKLIN CLEANERS SITE (ON-SITE)

| Well ID                      | Construction<br>Date | Screen<br>Zone<br>(feet bgs) | Sand<br>Pack<br>(feet bgs) | Bentonite<br>Seal<br>(feet bgs) |  |  |  |  |  |  |
|------------------------------|----------------------|------------------------------|----------------------------|---------------------------------|--|--|--|--|--|--|
| Groundwater Monitoring Wells |                      |                              |                            |                                 |  |  |  |  |  |  |
| ASM-1                        | 3/14/03              | 5-20                         | 4-20                       | 0-4                             |  |  |  |  |  |  |
| ASM-2                        | 3/20/03              | 14.9-29.9                    | 13-30                      | 11-13                           |  |  |  |  |  |  |
| Air Sparge                   | Air Sparge Wells     |                              |                            |                                 |  |  |  |  |  |  |
| AS-1                         | 3/18/03              | 25-27                        | 23-27                      | 21-23                           |  |  |  |  |  |  |
| AS-2                         | 3/13/03              | 15-17                        | 13-20                      | 11-13                           |  |  |  |  |  |  |
| AS-3                         | 3/12/03              | 15.2-17.2                    | 12.8-19.2                  | 11.1-12.8                       |  |  |  |  |  |  |
| Soil Vapor                   | Extraction Well      | s                            |                            |                                 |  |  |  |  |  |  |
| SVE-1                        | 3/18/03              | 11.5-16.5                    | 8-16.5                     | 6-8                             |  |  |  |  |  |  |
| SVE-2                        | 3/13/03              | 3.5-8.5 2.5-8.5              |                            | 0-2.5                           |  |  |  |  |  |  |
| Soil Vapor Monitoring Probe  |                      |                              |                            |                                 |  |  |  |  |  |  |
| SVM-1                        | 3/20/03              | 11.5-16.5                    | 10-16.5                    | 8-10                            |  |  |  |  |  |  |
| SVM-2                        | 3/17/03              | 3.5-8.5                      | 2-8.5                      | 0-2                             |  |  |  |  |  |  |
| SVM-3                        | 3/11/03              | 3.5-8.5                      | 2-8.5                      | 0-2                             |  |  |  |  |  |  |
| SVM-4                        | 3/21/03              | 3.5-8.5                      | 2-8.5                      | 0-2                             |  |  |  |  |  |  |

Abbreviations bgs - below ground surface

### TABLE 2-2 GROUNDWATER MONITORING WELL BASELINE SAMPLING RESULTS FRANKLIN CLEANERS SITE (ON-SITE)

| SAMPLE ID                                          | ASN       | <b>1</b> -1 | ASI       | M-2            | FC        | -1                                      | NYSDEC          |
|----------------------------------------------------|-----------|-------------|-----------|----------------|-----------|-----------------------------------------|-----------------|
| SAMPLE TYPE                                        | WATER     | WATER       | WATER     | WATER          | WATER     | WATER                                   | Class GA        |
| DATE OF COLLECTION                                 | 8/20/2003 | 8/20/2003   | 8/20/2003 | 8/20/2003      | 8/18/2003 | 8/18/2003                               | Groundwater     |
| COLLECTED BY                                       | EP&S      | D&B         | EP&S      | D&B            | EP&S      | D&B                                     | Standard and    |
| UNITS                                              | (ug/L)    | (ug/L)      | (ug/L)    | (ug/L)         | (ug/L)    | (ug/L)                                  | Guidance Values |
| VOCs                                               | (-3 /     | (*3 /       | (-5 /     | ( · <b>J</b> / | (*3 /     | \-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                 |
| Dichlorodifluormethane                             | NM        | U           | NM        | U              | U         | U                                       | 5 GV            |
| Chloromethane                                      | U         | Ü           | U         | Ü              | Ü         | Ü                                       | 5               |
| Vinyl chloride                                     | Ü         | Ü           | Ü         | Ü              | Ü         | Ü                                       | 2               |
| Bromomethane                                       | Ü         | Ü           | Ü         | Ü              | Ü         | Ü                                       | 5               |
| Chloroethane                                       | Ü         | Ŭ           | Ü         | Ü              | Ü         | Ü                                       | 5               |
| Trichlorofluoromethane                             | NM        | Ŭ           | NM        | Ü              | Ü         | Ü                                       | 5               |
| 1,1-Dichloroethene                                 | U         | Ü           | U         | Ü              | Ü         | Ü                                       | 5               |
| 1,1,2-Trichloro-1,2,2-trifluoroethane              | NM        | Ŭ           | NM        | Ü              | Ü         | Ü                                       | 5               |
| Acetone                                            | 15        | Ü           | 17        | Ü              | Ü         | Ü                                       | 50              |
| Carbon disulfide                                   | U         | Ü           | ·' U      | Ü              | Ü         | 3 J                                     | 60 GV           |
| Methyl acetate                                     | NM        | U           | NM        | U              | U         | J J                                     |                 |
| Methylene chloride                                 | U         | U           | U         | Ü              | Ü         | U                                       | 5               |
| trans 1,2-Dichloroethene                           | Ü         | Ü           | Ü         | Ü              | Ü         | Ü                                       | 5               |
| Methyl-tert butyl ether                            | NM        | U           | NM        | Ü              | Ü         | U                                       | 10 GV           |
| 1,1-Dichloroethane                                 | U         | Ü           | U         | Ü              | Ü         | Ü                                       | 5               |
| cis-1,2-Dichloroethene                             | Ü         | Ü           | Ü         | Ü              | Ü         | Ü                                       | 5               |
| 2-Butanone                                         | Ü         | U           | U         | Ü              | U         | U                                       | 50 GV           |
| Chloroform                                         | 3.1       | 3 J         | U         | U              | U         | U                                       | 7               |
| 1,1,1-Trichlorethane                               | J.1 U     | J J         | U         | Ü              | U         | U                                       | 5               |
| * *                                                | NM        | U           | NM        | U              | U         | U                                       | 5               |
| Cyclohexane                                        |           | U           |           | U              | U         | U                                       | 5               |
| Carbon tetrachloride<br>Benzene                    | U         | U           | U<br>U    | U              | U         | U                                       | 5<br>1          |
|                                                    | U         | U           | U         | U              | U         | U                                       |                 |
| 1,2-Dichloroethane                                 | U         | U           | U         | U              | U         | U                                       | 0.6             |
| Trichloroethene                                    | _         | U           |           | U              | U         | U                                       | 5<br>           |
| Methylcyclohexane                                  | NM<br>U   | U           | NM<br>U   | U              | U         | U                                       | <br>1           |
| 1,2-Dichloropropane                                | U         | U           | U         | U              | U         | U                                       | 50              |
| Bromodichloromethane                               | U         | U           | U         | U              | U         | U                                       |                 |
| cis-1,3-Dichloropropene                            | U         | U           | U         | U              | U         | U                                       | 0.4             |
| 4-Methyl-2-pentanone                               | U         | U           | U         | U              | U         | U                                       | <br>5           |
| Toluene                                            | U         | U           | U         | U              | U         | U                                       | 0.4             |
| trans-1,3-Dichloropropene<br>1,1,2-Trichloroethane | U         | U           | U         | U              | U         | U                                       | 1               |
| Tetrachloroethene                                  | 58        | 46          | 68        | 54             | U         | U                                       | ,<br>5          |
|                                                    |           |             |           |                |           | _                                       |                 |
| 2-Hexanone                                         | U         | : ⊂         | C C       | U              | U         | U                                       | 50 GV           |
| Dibromochloromethane                               | U         | U           |           | U              | U         | U                                       | 50              |
| 1,2-Dibromoethane                                  | NM<br>U   | U<br>U      | NM        | U<br>U         | U<br>U    | U<br>U                                  | 5               |
| Chlorobenzene                                      | _         | _           | U         | -              | -         | _                                       | 5               |
| Ethylbenzene                                       | U         | U           | U         | U              | U         | U                                       | 5               |
| Xylene (total)                                     | U         | U           | U         | U              | U         | U                                       | 5               |
| Styrene                                            | U         | U           | U         | U              | U         | U                                       | 5               |
| Bromoform                                          | U         | U           | U         | U              | U         | U                                       | 50 GV           |
| Isopropylbenzene                                   | NM        | U           | NM        | U              | U         | U                                       | 5               |
| 1,1,2,2-Tetrachloroethane                          | U         | U           | U         | U              | U         | U                                       | 5               |
| 1,3-Dichlorobenzene                                | NM        | U           | NM        | U              | U         | U                                       | 3               |
| 1,4-Dichlorobenzene                                | NM        | U           | NM        | U              | U         | U                                       | 3               |
| 1,2-Dichlorobenzene                                | NM        | U           | NM        | U              | U         | U                                       | 3               |
| 1,2-Dibromo-3-chloropropane                        | NM        | U           | NM        | U              | U         | U                                       | 0.04            |
| 1,2,4-Trichlorobenzene                             | NM        | U           | NM        | U              | U         | U                                       | 5               |

#### NOTES:

J: Compound found at a concentration below CRDL, value estimated

NM: Not Monitored --: Not established

ug/L = Microgram per liter GV: Guidance Value Concentration exceeds Groundwater Standard or Guidance Value

U: Compound analyzed for but not detected

## TABLE 2-2 (Continued) GROUNDWATER MONITORING WELL BASELINE SAMPLING RESULTS FRANKLIN CLEANERS SITE (ON-SITE)

| SAMPLE ID                             | FC                                      | -2        |  | NYSDEC          |
|---------------------------------------|-----------------------------------------|-----------|--|-----------------|
| SAMPLE TYPE                           | WATER                                   | WATER     |  | Class GA        |
| DATE OF COLLECTION                    | 8/18/2003                               | 8/18/2003 |  | Groundwater     |
| COLLECTED BY                          | EP&S                                    | D&B       |  | Standards and   |
| UNITS                                 | (ug/L)                                  | (ug/L)    |  | Guidance Values |
| VOCs                                  | (************************************** | \-\ \ /   |  |                 |
| Dichlorodifluormethane                | U                                       | U         |  | 5 GV            |
| Chloromethane                         | U                                       | U         |  | 5               |
| Vinyl chloride                        | Ů                                       | Ü         |  | 2               |
| Bromomethane                          | Ü                                       | Ü         |  | 5               |
| Chloroethane                          | Ü                                       | Ü         |  | 5               |
| Frichlorofluoromethane                | Ü                                       | Ü         |  | 5               |
| ,1-Dichloroethene                     | Ü                                       | Ü         |  | 5               |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | Ü                                       | Ü         |  | 5               |
| Acetone                               | Ü                                       | Ü         |  | 50              |
| Carbon disulfide                      | Ŭ                                       | Ü         |  | 60 GV           |
| Methyl acetate                        | ŭ                                       | Ü         |  |                 |
| Methylene chloride                    | Ŭ                                       | U         |  | 5               |
| rans 1,2-Dichloroethene               | Ü                                       | Ü         |  | 5               |
| Methyl-tert butyl ether               | 1.4 J                                   | 1 J       |  | 10 GV           |
| 1,1-Dichloroethane                    | 1.4 J                                   | ı J<br>U  |  | 5               |
| eis-1,2-Dichloroethene                | U                                       | U         |  | 5               |
| 2-Butanone                            | U                                       | U         |  | 50 GV           |
| Chloroform                            | Ü                                       | Ü         |  | 7               |
| ,1,1-Trichlorethane                   | Ü                                       | U         |  | 5               |
| Cyclohexane                           | U                                       | U         |  | 3               |
| -                                     | U                                       | U         |  | 5               |
| Carbon tetrachloride<br>Benzene       | U                                       | U         |  | 1               |
| 2-Dichloroethane                      | U                                       | U         |  | 0.6             |
| <i>*</i>                              | U                                       | U         |  |                 |
| Trichloroethene                       | U                                       | U         |  | 5               |
| Methylcyclohexane                     | _                                       | U         |  |                 |
| ,2-Dichloropropane                    | U                                       | U         |  | 1               |
| Bromodichloromethane                  | U                                       | U         |  | 50              |
| eis-1,3-Dichloropropene               | _                                       |           |  | 0.4             |
| -Methyl-2-pentanone                   | U                                       | U         |  |                 |
| Foluene                               | U                                       | U         |  | 5               |
| rans-1,3-Dichloropropene              | U                                       | U<br>U    |  | 0.4             |
| 1,1,2-Trichloroethane                 | U                                       |           |  | 1               |
| Tetrachloroethene                     | 6.2 J                                   | 8 J       |  | 5               |
| -Hexanone                             | U                                       | U         |  | 50 GV           |
| Dibromochloromethane                  | U                                       | U         |  | 50              |
| ,2-Dibromoethane                      | U                                       | U         |  | 5               |
| Chlorobenzene                         | U                                       | U         |  | 5               |
| Ethylbenzene                          | U                                       | U         |  | 5               |
| Kylene (total)                        | U                                       | U         |  | 5               |
| tyrene                                | U                                       | U         |  | 5               |
| romoform                              | U                                       | U         |  | 50 GV           |
| sopropylbenzene                       | U                                       | U         |  | 5               |
| ,1,2,2-Tetrachloroethane              | U                                       | U         |  | 5               |
| ,3-Dichlorobenzene                    | U                                       | U         |  | 3               |
| ,4-Dichlorobenzene                    | U                                       | U         |  | 3               |
| ,2-Dichlorobenzene                    | U                                       | U         |  | 3               |
| ,2-Dibromo-3-chloropropane            | U                                       | U         |  | 0.04            |
| ,2,4-Trichlorobenzene                 | U                                       | U         |  | 5               |

#### NOTES:

J: Compound found at a concentration below CRDL, value estimated

NM: Not Monitored --: Not established

ug/L = Microgram per liter GV: Guidance Value Concentration exceeds Groundwater Standard or Guidance Value

U: Compound analyzed for but not detected

## TABLE 2-2 (Continued) GROUNDWATER MONITORING WELL BASELINE SAMPLING RESULTS FRANKLIN CLEANERS SITE (ON-SITE)

| SAMPLE ID          | AS        | M-1       | AS        | M-2       | FC        | NYSDEC    |                 |
|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------------|
| SAMPLE TYPE        | WATER     | WATER     | WATER     | WATER     | WATER     | WATER     | Class GA        |
| DATE OF COLLECTION | 8/20/2003 | 8/20/2003 | 8/20/2003 | 8/20/2003 | 8/18/2003 | 8/18/2003 | Groundwater     |
| COLLECTED BY       | EP&S      | D&B       | EP&S      | D&B       | EP&S      | D&B       | Standard and    |
| UNITS              | (ug/L)    | (ug/L)    | (ug/L)    | (ug/L)    | (ug/L)    | (ug/L)    | Guidance Values |
|                    |           |           |           |           |           |           |                 |
| Iron               | 91        | NM        | 91        | NM        | 617       | NM        | 300             |
| Manganese          | 18        | NM        | 18        | NM        | 11.7      | NM        | 300             |
|                    |           |           |           |           |           |           |                 |

| SAMPLE ID          | F(        | FC-2      |  |  | NYSDEC          |
|--------------------|-----------|-----------|--|--|-----------------|
| SAMPLE TYPE        | WATER     | WATER     |  |  | Class GA        |
| DATE OF COLLECTION | 8/18/2003 | 8/18/2003 |  |  | Groundwater     |
| COLLECTED BY       | EP&S      | D&B       |  |  | Standard and    |
| UNITS              | (ug/L)    | (ug/L)    |  |  | Guidance Values |
|                    |           |           |  |  |                 |
| Iron               | 154       | NM        |  |  | 300             |
| Manganese          | 4.5       | NM        |  |  | 300             |
|                    |           |           |  |  |                 |

#### NOTES:

U: Compound analyzed for but not detected
J: Compound found at a concentration below CRDL, value estimated

NM: Not Monitored ug/L = Microgram per liter
--: Not established GV: Guidance Value

Concentration exceeds Groundwater Standard or Guidance Value

#### 2.5.9.2 - Air Sparge Wells

Three AS wells (designated as AS-1, AS-2 and AS-3) were constructed within the limits of the Franklin Cleaners Site. Each well was drilled using 4 1/4-inch ID hollow stem augers with continuous split spoon sampling.

Upon completion of drilling at each borehole, a 2-inch diameter PVC AS well was installed in accordance with the approved Well Installation Plan. Waste generated during well construction activities were characterized, transported and disposed off-site by Chemical Waste Disposal Corporation located in Astoria, New York. Copies of the waste manifests are provided in Appendix C. AS well construction details are provided in Table 2-1.

#### 2.5.9.3 - Soil Vapor Extraction Wells

Two (2) SVE wells (designated SVE-1 and SVE-2) were constructed within the limits of the Franklin Cleaners Site. Each well was drilled using 4 1/4-inch ID hollow stem augers and all drill cuttings were monitored for the presence of VOCs using a PID and contained in new, NYSDOT approved 55-gallon drums.

Upon completion of drilling at each borehole, a 2-inch diameter PVC SVE well was installed in accordance with the approved Well Installation Plan. Waste generated during well construction activities were characterized, transported and disposed off-site at Chemical Waste Disposal Corporation located in Astoria, New York. Copies of the waste manifests are provided in Appendix C. SVE well construction details are provided in Table 2-1.

#### 2.5.9.4 - Soil Vapor Monitoring Probes

Four (4) soil vapor monitoring probes (designated SVM-1 through SVM-4) were constructed within the limits of the Franklin Cleaners Site. Soil vapor monitoring probes SVM-1 and SVM-3 were drilled using 4 1/4-inch ID hollow stem augers. Soil vapor monitoring probes SVM-2 and SVM-4 were installed using 4-inch ID hand augers.

Upon completion of drilling at each borehole, a 3/4-inch diameter PVC probe was installed in accordance with the approved Well Installation Plan. Waste generated during probe construction activities were disposed off-site at Chemical Waste Disposal Corporation located in Astoria, New York. Copies of waste manifests are provided in Appendix C. Soil vapor monitoring probe construction details are provided in Table 2-1.

The GC installed two additional soil vapor monitoring points (SVM-5 and SVM-6) within the limits of the Franklin Cleaners site during routine operation of the SVE/AS system, as requested by the NYSDEC, to determine if adequate vacuum was being applied directly beneath the basement floor slab. The probes were installed using 4-inch I.D. hand augers. A 3/4-inch diameter PVC probe was installed and finished above the building floor slab as a stick-up.

#### 2.6 Basement Floor Repair

Prior to startup of the SVE/AS system, the basement floor located within the anticipated radius of influence of the remediation system was repaired in an attempt to minimize short circuiting of the SVE/AS system. The GC repaired approximately 220 square feet of the basement floor slab in accordance with the requirements of the Contract Documents. The basement floor repair was completed by City and County Paving Corp., a subcontractor to the GC.

Areas of the basement floor slab requiring repair were sawcut to a maximum of 6 inches beyond each side of the fracture. All holes were filled with Portland cement in accordance with the GC's approved Work and Waste Handling Plan.

#### 2.7 Paving

Prior to installation of the SVE/AS system enclosure, and after all buried system piping was installed, asphalt paving was completed in the rear of the building by City and County Paving Corp. under subcontract to the GC. Approximately 550 square feet within the Contract

Limits as defined by the Contract Documents was paved. Drawings illustrating the limits of the installed pavement are included in Appendix D in Figure 6.

A 4-inch base of recycled concrete aggregate (RCA) was first installed to fill depressions and provide a level surface to support the asphalt. The RCA was placed by means of mechanical equipment. Upon placement of the RCA base course, a 1.5-inch binder course was placed, followed by 1.5 inches of an asphalt top course. The binder and top course were both placed by means of mechanical equipment. Materials provided for the binder course and top course were in accordance with the New York State Department of Transportation (NYSDOT) specifications.

The paving work was performed in accordance with approved plans with the exception of the following deviation:

• As approved by the NYSDEC, additional general fill was used to adjust the pre-construction grade in the rear of the building to prevent flooding in the rear of the building and the building basement.

#### 2.8 Site Restoration

Site restoration activities were carried out by the GC upon construction completion. Work completed as part of three activities included:

- Removal and proper off-site disposal of all waste such as excess construction material, wood, concrete, debris and any other foreign material;
- Disconnection and removal of all temporary utility services not required for operation of the SVE/AS system or the meteorological monitoring station;
- Removal of all office equipment from the temporary office space; and
- Restoration of the access route from Marvin Avenue.

Final site restoration activities were also performed following satisfactory completion of remediation activities. Details regarding the final site restoration are included in Section 5.5 of this report.

#### 3.0 SYSTEM PERFORMANCE TESTING

#### 3.1 Soil Vapor Extraction System

The GC initiated performance testing activities for the installed SVE system on August 24, 2003. The purpose of the performance test was to demonstrate that the SVE system met the minimum performance requirements specified in the Contract Documents at the design flow rates.

A continuous SVE performance test was conducted over a 14-day period. System monitoring was completed twice per day, at 12-hour intervals, during the performance test period and included:

- Measurement of temperature, vacuum and flow rate at the vacuum blower inlet;
- Measurement of temperature, vacuum, flow rate and concentration of VOCs at each soil vapor extraction well head;
- Measurement of temperature, vacuum, flow rate and concentration of VOCs at the inlet of each primary vapor-phase carbon vessel and the outlet of each primary and secondary vapor-phase carbon vessel;
- Measurement of vacuum and concentration of VOCs at each soil vapor monitoring probe;
- Verification of compliance with the specified noise control requirement through the use of a sound level meter in the presence of the Engineer; and
- Demonstration that all instrumentation, controls and alarm functions were operating properly.
- Collection of vapor-phase samples for laboratory analysis of VOCs from each soil vapor extraction well head, each carbon adsorption vessel inlet and outlet and each soil vapor monitoring probe.

The GC submitted field reports to D&B at the end of each day during the SVE system testing. These reports documented the results of all pressure, temperature and flow rate measurements for that day. A final report summarizing all activities completed during the

performance test was submitted by the GC within 1 week after the completion of the SVE system performance test and is included in Appendix F.

#### 3.2 Air Sparge System

The GC initiated performance testing activities for the installed AS system on September 2, 2003. The AS Performance Test was conducted over a 7-day period in conjunction with SVE performance testing activities. The purpose of the performance test was to demonstrate that the AS system met the minimum performance requirements specified in the Contract Documents. System monitoring was completed twice per day, at 12-hour intervals, during the performance test period and included:

- Measurement and recording temperature, pressure and flow rate at each air sparging well head;
- Measurement and recording pressure and concentration of VOCs at each vapor monitoring probe;
- Verification of compliance with the specified noise control requirements through the use of a sound level meter in the presence of the Engineer; and
- Demonstration that all instrumentation controls and alarm functions were operating properly.

The GC submitted field reports to D&B at the end of each day during the AS system testing. These reports documented the results of all pressure, temperature and flow rate measurements for that day. A final report summarizing all activities completed during the performance test was submitted within 1 week after the completion of the AS system performance test, in accordance with the Contract Documents and is included in Appendix F.

#### 4.0 POST-CONSTRUCTION OPERATION, MAINTENANCE AND MONITORING

In accordance with the Contract Documents, the GC was responsible for all operation, maintenance and monitoring of the SVE/AS treatment system for a period of 3 years following satisfactory completion of all SVE/AS performance testing and acceptance by the NYSDEC.

The GC completed initial weekly monitoring of the SVE/AS system during the first 6 weeks of the operating period. The responsibilities of the GC during this initial operation period included the following:

- Weekly progress monitoring of the SVE/AS system, with monitoring conducted as during the performance tests (described in Sections 3.1.1 and 3.2.1);
- Collection and analysis of groundwater samples from monitoring wells ASM-1 and ASM-2, once every 2 weeks following a 24-hour shutdown of the AS system; and
- Submission of a progress report summarizing the results of the monitoring program, at a frequency of once every 2 weeks.

Upon completion of the initial weekly monitoring period for the SVE/AS system, the GC initiated the routine operational monitoring for the remaining duration of the 3-year monitoring period. Responsibilities of the GC during the routine operating period included the following:

- Progress monitoring of the SVE/AS system, with monitoring conducted as during the performance tests, at a frequency of twice per month;
- Monthly collection and analysis of groundwater samples from monitoring wells ASM-1 and ASM-2;
- Collection and analysis of groundwater samples from monitoring wells FC-1 and FC-2, once during the routine monitoring period, as directed by the NYSDEC;
- Maintenance of all SVE/AS system equipment in accordance with manufacturers' recommendations to achieve the remediation requirements specified in the Contract Documents;
- Procurement of all materials associated with operation, maintenance and monitoring of the SVE/AS system;

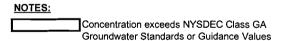
- Response to system alarm conditions from the autodialer system and restart of the system within 24 hours;
- Proper characterization and off-site disposal of all waste generated; and
- Submission of a monthly progress report summarizing the results from the above listed events.

All weekly and monthly post-construction progress monitoring reports prepared by the GC and submitted to D&B are included in Appendix G.

#### 5.0 POST-REMEDIATION SHUTDOWN

In accordance with the requirements of the Contract Documents, a post-remediation shutdown sampling program was conducted to document groundwater, soil vapor, subsurface soil and indoor air conditions, and confirm that the specified remedial objectives were achieved. The following provides a summary of each phase of the post-remediation shutdown sampling program, as well as a summary of the final decommissioning services performed at the site.

#### 5.1 Groundwater Sampling


Groundwater samples were collected by the GC on April 20, 2005 from the two on-site monitoring wells (ASM-1 and ASM-2) to determine if specified groundwater remediation objectives were achieved (concentration of tetrachloroethene measured in on-site groundwater monitoring wells not to exceed 5 ug/l). Groundwater samples were also collected from the two off-site monitoring wells (FC-1 and FC-2), to determine water quality upgradient and downgradient of the site. Groundwater samples were collected approximately 2 weeks after temporary shutdown of the SVE/AS system. The groundwater samples were collected in accordance with the requirements of the Contract Documents. All purge water generated during the sampling was containerized in 55-gallon drums and was disposed off-site in accordance with the GC's approved Work and Waste Handling Plan. Samples were submitted to a laboratory for analysis of Target Compound List (TCL) VOCs via NYSDEC ASP Method OLMO4.2, iron and manganese. Split samples were also collected by D&B. A summary of the VOC results is provided in Table 5-1.

#### 5.2 Soil Vapor Sampling

Soil vapor samples were collected by the GC on May 4, 2005 from each of the SVE wells (SVE-1 and SVE-2) to document soil vapor contaminant levels present in on-site soil. The samples were collected by restarting the SVE system for a short period of time and sampling both SVE wells immediately upon start-up. The SVE system was shutdown after collecting the samples. Samples were submitted to a laboratory for analysis of VOCs via Method TO-17. Split samples were also collected by D&B. A summary of the VOC results is provided in Table 5-2.

## TABLE 5-1 POST-REMEDIATION GROUNDWATER SAMPLING RESULTS FRANKLIN CLEANERS SITE (ON-SITE)

| SAMPLE ID                             | ASM-1     | ASM-1     | ASM-2     | ASM-2     | FC-1      | FC-1      | FC-2      | FC-2      | NYSDEC CLASS GA                        |
|---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------------------------------------|
| SAMPLE TYPE                           | WATER     | GROUNDWATER                            |
| DATE OF COLLECTION                    | 4/20/2005 | 4/20/2005 | 4/20/2005 | 4/20/2005 | 4/20/2005 | 4/20/2005 | 4/20/2005 | 4/20/2005 | STANDARDS AND                          |
| COLLECTED BY                          | EP&S      | D&B       | EP&S      | D&B       | EP&S      | D&B       | EP&S      | EP&S      | GUIDANCE VALUES                        |
| UNITS                                 | (ug/L)                                 |
| VOCs                                  |           |           | /         |           | <u></u>   | ( ' 5 ' / |           | (g/       | \-\\\-\\\-\\\\-\\\\\\\\\\\\\\\\\\\\\\\ |
| Dichlorodifluoromethane               | U         | U         | U         | U         | U         | U         | U         | U         | 5 ST                                   |
| Chloromethane                         | U         | U         | υ         | U         | U         | Ū         | Ū         | Ū         |                                        |
| Vinyl chloride                        | υ         | Ú         | U         | Ū         | Ū         | Ū         | Ū         | Ū         | 2 ST                                   |
| Bromomethane                          | υ         | U         | U         | U         | U         | บ้        | Ū         | Ū         | 5 ST                                   |
| Chloroethane                          | Ū         | Ü         | Ũ         | Ū         | Ū         | Ū         | ŭ         | Ū         | 5 ST                                   |
| Trichlorofluoromethane                | U         | Ü         | U         | Ū         | Ū         | Ū         | Ü         | Ū         | 5 ST                                   |
| 1.1-Dichloroethene                    | lυ        | υ         | U         | υ         | Ū         | Ū         | Ŭ         | Ū         | 5 ST                                   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ĺυ        | U         | υ         | U         | Ū         | Ü         | Ū         | Ū         | 5 ST                                   |
| Acetone                               | Ú         | Ü         | Ū         | Ū         | Ū         | Ū         | Ũ         | Ū         | 50 GV                                  |
| Carbon disulfide                      | Ū         | Ū         | Ū         | l ū       | Ü         | 2 J       | Ŭ         | Ŭ         | 60 GV                                  |
| Methyl acetate                        | Ū         | Ü         | Ū         | Ū         | Ũ         | Ū         | Ŭ         | Ü         |                                        |
| Methylene chloride                    | Ū         | Ú         | Ũ         | Ū         | Ū         | Ū         | Ü         | Ü         | 5 ST                                   |
| trans 1,2-Dichloroethene              | Ū         | ŭ         | ŭ         | ŭ         | ŭ         | Ū         | Ü         | Ŭ         | 5 ST                                   |
| Methyl-tert butyl ether               | Ū         | Ü         | ŭ         | Ŭ         | Ŭ         | ŭ         | Ŭ         | Ŭ         | 10 GV                                  |
| 1.1-Dichloroethane                    | Ū         | Ū         | ŭ         | Ŭ         | ŭ         | ŭ         | Ŭ         | Ü         | 5 ST                                   |
| cis-1,2-Dichloroethene                | Ιΰ        | Ū         | Ū         | Ŭ         | ŭ         | Ŭ         | Ŭ         | Ŭ         | 5 ST                                   |
| 2-Butanone                            | Ιΰ        | ŭ         | ŭ         | lϋ        | ŭ         | ŭ         | ŭ         | Ŭ         | 50 GV                                  |
| Chloroform                            | Ιΰ        | Ŭ         | ŭ         | Ŭ         | Ŭ         | Ŭ         | Ŭ         | ŭ         | 7 ST                                   |
| 1,1,1-Trichloroethane                 | Ιŭ        | ŭ         | ŭ         | Ŭ         | Ŭ         | ΰ         | υ         | ŭ         | 5 ST                                   |
| Cyclohexane                           | ľů        | ŭ         | ŭ         | Ü         | ŭ         | Ŭ         | ŭ         | Ŭ         |                                        |
| Carbon tetrachloride                  | lϋ        | ŭ         | ŭ         | Ŭ         | ŭ         | ŭ         | Ŭ         | Ŭ         | 5 <b>S</b> T                           |
| Benzene                               | Ιŭ        | ŭ         | ŭ         | lŭ        | ŭ         | Ŭ         | Ü         | Ŭ         | 1 ST                                   |
| 1,2-Dichloroethane                    | Ιŭ        | ŭ         | Ŭ         | ľ         | Ŭ         | Ŭ         | ŭ         | ŭ         | 0.6 ST                                 |
| Trichloroethene                       | l ŭ       | Ŭ         | ŭ         | Ŭ         | ŭ         | Ŭ         | Ŭ         | Ŭ         | 5 ST                                   |
| Methylcyclohexane                     | Ŭ         | Ŭ         | Ŭ         | υ         | ŭ         | Ŭ         | ŭ         | Ü         |                                        |
| 1,2-Dichloropropane                   | Ŭ         | ŭ         | Ŭ         | Ŭ         | Ŭ         | Ŭ         | ŭ         | Ŭ         | 1 ST                                   |
| Bromodichloromethane                  | ľ         | Ŭ         | Ŭ         | Ŭ         | Ü         | ŭ         | ŭ         | Ŭ         | 50 GV                                  |
| cis-1,3-Dichloropropene               | Ιŭ        | υ         | Ŭ         | ŭ         | ŭ         | Ŭ         | ŭ         | Ŭ         | 0.4 ST                                 |
| 4-Methyl-2-pentanone                  | Ĭ         | ϋ         | Ŭ         | Ŭ         | Ű         | Ŭ         | ŭ         | Ü         | 0. <del>4</del> 01                     |
| Toluene                               | ľű        | Ŭ         | ŭ         | Ŭ         | Ŭ         | Ŭ         | Ü         | Ŭ         | 5 ST                                   |
| trans-1,3-Dichloropropene             | lϋ        | ŭ         | l ŭ       | Ŭ         | ŭ         | Ŭ         | ŭ         | Ŭ         | 0.4 ST                                 |
| 1,1,2-Trichloroethane                 | Ιŭ        | ŭ         | l ŭ       | Ŭ         | ŭ         | ŭ         | Ŭ         | ŭ         | 1 ST                                   |
| Tetrachloroethene                     | l ŭ       | Ŭ         | 3.2 J     | Ŭ         | Ŭ         | ŭ         | Ŭ         | Ü         | 5 ST                                   |
| 2-Hexanone                            | Ŭ         | Ŭ         | 0.2 0     | Ü         | Ŭ         | Ü         | Ü         | Ü         | 50 GV                                  |
| Dibromochloromethane                  | บั        | Ü         | Ŭ         | Ŭ         | Ü         | Ŭ         | Ü         | Ü         | 50 GV                                  |
| 1,2-Dibromoethane                     | Ü         | Ŭ         | Ŭ         | Ü         | Ü         | Ü         | Ü         | Ü         | 5 ST                                   |
| Chlorobenzene                         | Ü         | Ü         | ü         | l ü       | Ü         | บ         | Ü         | Ü         | 5 ST                                   |
| Ethylbenzene                          | Ιΰ        | ű         | ŭ         | ľű        | Ŭ         | ŭ         | Ü         | Ü         | 5 ST                                   |
| Xylene (total)                        | Ιΰ        | Ŭ         | Ü         | Ü         | Ü         | Ŭ         | Ü         | Ü         | 5 ST                                   |
| Styrene                               | Ü         | บั        | u u       | Ŭ         | Ü         | Ü         | Ü         | Ü         | 5 ST                                   |
| Bromoform                             | Ü         | l ü       | l ü       | Ü         | U         | Ü         | U U       | Ü         | 50 GV                                  |
| Isopropylbenzene                      | Ιŭ        | Ü         | 11        | Ü         | Ü         | Ü         | υ         | Ü         | 50 GV<br>5 ST                          |
| 1,1,2,2-Tetrachloroethane             | Ĭ         | Ü         | 11        | Ü         | U         | Ü         | Ü         | Ü         | 5 ST                                   |
| 1,1,2,2-Tetrachioroethane             | l ü       | Ü         | Ü         | l บ       | U         | Ü         | Ü         | Ü         | 3 ST                                   |
| 1,4-Dichlorobenzene                   | l ü       | Ü         | Ü         | บ         | Ü         | Ü         | U         | Ü         | 3 ST                                   |
| 1,2-Dichlorobenzene                   | l ü       | Ü         | Ü         | Ü         | U         | Ü         | Ü         | Ü         | 3 ST                                   |
| 1,2-Dibromo-3-chloropropane           | Ü         | Ü         | Ü         | l Ü       | U         | U         | υ         | U         |                                        |
| 1 .                                   | U         | U         | U         | Ü         | U         | U         | U         | U         | 0.04 ST                                |
| 1,2,4-Trichlorobenzene                | U         | <u> </u>  |           | <u> </u>  | U         | U         | U         |           | 5 ST                                   |



#### **ABBREVIATIONS:**

ug/L = Micrograms per liter ST: Stand

--: Not established

QUALIFIERS:

ST: Standard Value GV: Guidance Value

U: Compound analyzed for but not detected

J: Compound found at a concentration below CRDL, value estimated

# TABLE 5-2 POST-REMEDIATION SOIL VAPOR SAMPLING RESULTS FRANKLIN CLEANERS SITE (ON-SITE)

| SAMPLE ID                             | SVE-1            | SVE-1            | SVE-2            | SVE-2    |
|---------------------------------------|------------------|------------------|------------------|----------|
| SAMPLE TYPE                           | AIR              | AIR              | AIR              | AIR      |
| DATE OF COLLECTION                    | 5/3/2005         | 5/3/2005         | 5/3/2005         | 5/3/2005 |
| COLLECTED BY                          | EP&S             | D&B              | EP&S             | D&B      |
| UNITS                                 | ppb <sub>v</sub> | ppb <sub>v</sub> | ppb <sub>v</sub> | ppb₀     |
| VOCs                                  |                  |                  |                  |          |
| Dichlorodifluoromethane               | U                | U                | U                | U        |
| Chloromethane                         | Ū                | Ü                | Ū                | U        |
| Vinyl chloride                        | l υ              | ľ                | U                | Ū        |
| Bromomethane                          | U                | 2.75 B           | ľ                | 8.77 AB  |
| Chloroethane                          | l ū              | U                | ľ                | U        |
| Trichlorofluoromethane                | Ū                | Ü                | U                | Ū        |
| 1,1-Dichloroethene                    | U                | U                | U                | υ        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | Ū                | Ū                | l ū              | Ū        |
| Acetone                               | 0.54             | 0.29 J           | 0.71             | 0.61     |
| Carbon disulfide                      | Ι υ              | U                | U                | U        |
| Methyl acetate                        | l ū              | Ū                | ľ                | Ū        |
| Methylene chloride                    | ) Ü              | 1.03             | ľ                | 1.32     |
| trans 1,2-Dichloroethene              | l ŭ              | U                | ľ                | U        |
| Methyl-tert butyl ether               | Ū                | l ŭ              | ľ                | Ū        |
| 1,1-Dichloroethane                    | l ū              | Ū                | ľ                | Ü        |
| cis-1,2-Dichloroethene                | l ū              | 0.10 J           | l ŭ              | Ü        |
| 2-Butanone                            | l ū              | U                | l ŭ              | Ü        |
| Chloroform                            | Ü                | 0.04 J           | ĺ                | 0.12 J   |
| 1,1,1-Trichloroethane                 | Ü                | 0.32             | lυ               | U        |
| Cyclohexane                           | Ų                | U                | ľ                | Ü        |
| Carbon tetrachloride                  | l ū              | Ü                | Ü                | Ü        |
| Benzene                               | ľ                | 0.09 JB          | Ü                | 0.09 JB  |
| 1,2-Dichloroethane                    | ľ                | U                | l ŭ              | U        |
| Trichloroethene                       | ľ                | 0.05 J           | 0.93             | 0.45     |
| Methylcyclohexane                     | ľ                | U                | U                | U        |
| 1,2-Dichloropropane                   | Ū                | Ū                | Ū                | Ū        |
| Bromodichloromethane                  | ľ                | Ī                | Ū                | Ū        |
| cis-1,3-Dichloropropene               | Ü                | U                | lυ               | Ū        |
| 4-Methyl-2-pentanone                  | U                | Ū                | Ū                | Ū        |
| Toluene                               | U                | 0.15 J           | ľ                | 0.18 J   |
| trans-1,3-Dichloropropene             | l ŭ              | U                | l ü              | U        |
| 1,1,2-Trichloroethane                 | ł ú              | Ü                | Ų                | U        |
| Tetrachloroethene                     | 2.3              | 7.00 A           | 12.83 E          | 41.57 A  |
| 2-Hexanone                            | U                | U                | U                | U        |
| Dibromochloromethane                  | Ū                | U                | U                | U        |
| 1,2-Dibromoethane                     | Ū                | Ū                | Ū                | l u      |
| Chlorobenzene                         | Ū                | Ū                | Ū                | Ū        |
| Ethylbenzene                          | Ů                | Ū                | Ū                | Ū        |
| Xylene (total)                        | ľ                | 0.07 J           | l ū              | 0.13 J   |
| Styrene                               | Ū                | U                | ľ                | U        |
| Bromoform                             | บ                | Ū                | Ů                | Ü        |
| Isopropylbenzene                      | Ü                | Ü                | ) ŭ              | Ü        |
| 1,1,2,2-Tetrachloroethane             | l ŭ              | ľ                | l ŭ              | Ü        |
| 1,3-Dichlorobenzene                   | Ü                | Ü                | l ŭ              | Ü        |
| 1,4-Dichlorobenzene                   | Ŭ                | l ü              | Ü                | Ü        |
| 1,2-Dichlorobenzene                   | Ŭ                | ľ                | Ü                | Ü        |
| 1,2-Dibromo-3-chloropropane           | Ü                | ľ                | ľ                | Ü        |
| 1,2,4-Trichlorobenzene                | Ü                | Ü                | Ü                | Ü        |

#### **ABBREVIATIONS:**

ppb<sub>v</sub> = part per billion by volume

#### **QUALIFIERS:**

- U: Compound analyzed for but not detected
- J: Compound found at a concentration below CRDL, value estimated
- B: Compound detected in method blank
- A: Concentration exceeds the instrument calibration range or below the reporting limit.
- E: Result exceeds the calibration range, secondary dilution required.

#### 5.3 Subsurface Soil Sampling

Subsurface soil samples were collected by the GC from June 28 through 29, 2005 from three locations (SB-01 through SB-03) located within the radius of influence of the SVE/AS system. The approximate location of each subsurface soil boring is shown on Figure 5-1. All soil borings were performed by the GC.

The soil borings were drilled using 2 1/4-inch macro-cores and split-spoon soil sampling was completed continuously in each location. Copies of the soil boring logs are included in Appendix E. Samples were monitoring for the presence of VOCs using a PID. A soil sample at several of the sampling intervals was submitted to a laboratory for analysis of VOCs by NYSDEC ASP Method OLMO4.2. Split samples were also collected by D&B. A summary of the VOC results is provided in Table 5-3.

#### 5.4 Indoor Air Sampling

An indoor air sampling program was conducted by D&B in accordance with the work assignment issued to D&B for construction inspection services. The program was conducted in order to determine concentrations of PCE in indoor air within the building at the Franklin Cleaners site. The program consisted of an initial baseline sampling event conducted in July 2001, prior to the construction of the SVE/AS system, a second sampling event conducted after the initial shutdown of the SVE/AS system in August 2005 to determine whether operation of the system had affected air quality in the on-site building and nearby structures, and a third sampling event conducted after the installation of an on-site sub-slab depressurization system and final shutdown of the SVE/AS system in February through March 2007.

During the initial and second sampling events, 17 indoor air sampling badges were placed by D&B within the laundromat, delicatessen and second floor apartments located at 206/208 South Franklin Street, the pharmacy, Chinese takeout restaurant, hair salon and second floor office space located at 210 South Franklin Street, and the private residence located at 13 Marvin



VILLAGE OF HEMPSTEAD, NEW YORK

SUBSURFACE SOIL BORING SAMPLE LOCATION MAP

# TABLE 5-3 POST-REMEDIATION SUBSURFACE SOIL SAMPLING RESULTS FRANKLIN CLEANERS SITE (ON-SITE)

| SAMPLE ID                             | SB-01 (3-4) | SB-01 (10-12) | SB-01 (20-22) | SB-01 (20-22)                                 | SB-02 (2.5-4.5) | SB-02 (6.5-8.5) |
|---------------------------------------|-------------|---------------|---------------|-----------------------------------------------|-----------------|-----------------|
| SAMPLE TYPE                           | SOIL        | SOIL          | SOIL          | SOIL                                          | SOIL            | SOIL            |
| DATE OF COLLECTION                    | 6/28/2005   | 6/28/2005     | 6/29/2005     | 6/29/2005                                     | 6/29/2005       | 6/29/2005       |
| COLLECTED BY                          | EP&S        | EP&S          | EP&S          | D&B                                           | EP&S            | EP&S            |
| UNITS                                 | (ug/kg)     | (ug/kg)       | (ug/kg)       | (ug/kg)                                       | (ug/kg)         | (ug/kg)         |
| VOCs                                  |             | \. 0 0/_      |               | , <u>, , , , , , , , , , , , , , , , , , </u> | <u> </u>        | (-33)           |
| Dichlorodifluoromethane               | U           | U             |               | U                                             | U               | U               |
| Chloromethane                         | υ           | υ             | U             | Ü                                             | Ū               | Ū               |
| Vinyl chloride                        | U           | υ             | ΰ             | Ū                                             | Ū               | Ü               |
| Bromomethane                          | υ           | U             | U             | Ü                                             | Ū               | Ū               |
| Chloroethane                          | U           | Ü             | U             | Ū                                             | Ū               | Ü               |
| Trichlorofluoromethane                | U           | U             | U             | Ū                                             | Ü               | Ü               |
| 1.1-Dichloroethene                    | Ū           | Ū             | Ü             | Ü                                             | Ü               | Ŭ               |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | Ū           | Ū             | บั            | Ŭ                                             | Ü               | Ü               |
| Acetone                               | Ū           | 14 J          | Ŭ             | ľ                                             | Ü               | ŭ               |
| Carbon disulfide                      | Ü           | U             | Ü             | ĺ                                             | Ü               | Ü               |
| Methyl acetate                        | Ū           | Ŭ             | Ü             | Ū                                             | Ū               | Ŭ               |
| Methylene chloride                    | Ū           | Ŭ             | Ŭ             | 2 J                                           | Ŭ               | Ü               |
| trans 1,2-Dichloroethene              | ŭ           | ŭ             | ŭ             | ĺŪ                                            | ľů              | Ŭ               |
| Methyl-tert butyl ether               | Ŭ           | Ŭ             | ŭ             | ľ                                             | Ü               | ŭ               |
| 1,1-Dichloroethane                    | ŭ           | Ü             | Ü             | Ŭ                                             | Ŭ               | Ü               |
| cis-1,2-Dichloroethene                | ŭ           | Ü             | ű             | Ιŭ                                            | ŭ               | Ü               |
| 2-Butanone                            | Ŭ           | Ŭ             | Ü             | l ŭ                                           | ŭ               | Ü               |
| Chloroform                            | Ŭ           | ŭ             | ŭ             | Ŭ                                             | ŭ               | Ü               |
| 1,1,1-Trichloroethane                 | ŭ           | Ü             | Ü             | lŭ                                            | ŭ               | Ü               |
| Cyclohexane                           | Ŭ           | ŭ             | Ŭ             | ľ                                             | ŭ               | Ü               |
| Carbon tetrachloride                  | Ŭ           | Ü             | Ü             | ŭ                                             | ŭ               | Ü               |
| Benzene                               | ŭ           | ΰ             | Ŭ             | υ                                             | ŭ               | Ü               |
| 1.2-Dichloroethane                    | ŭ           | Ŭ             | ŭ             | ľ                                             | l ŭ             | Ü               |
| Trichloroethene                       | Ü           | Ŭ             | Ü             | lŭ                                            | ŭ               | Ü               |
| Methylcyclohexane                     | ŭ           | Ŭ             | ŭ             | Ŭ                                             | l ŭ '           | Ü               |
| 1,2-Dichloropropane                   | Ŭ           | Ŭ             | ŭ             | l ŭ                                           | Ŭ               | Ü               |
| Bromodichloromethane                  | ŭ           | Ŭ             | ŭ             | Ŭ                                             | Ŭ               | ŭ               |
| cis-1,3-Dichloropropene               | lŭ          | ŭ             | Ü             | Ŭ                                             | ŭ               | Ü               |
| 4-Methyl-2-pentanone                  | ľ           | υ             | ΰ             | Ĭ                                             | Ŭ               | Ŭ               |
| Toluene                               | Ü           | ŭ             | Ü             | ľ                                             | ŭ               | Ü               |
| trans-1,3-Dichloropropene             | Ŭ           | Ŭ             | Ŭ             | Ŭ                                             | ŭ               | Ü               |
| 1.1.2-Trichloroethane                 | Ŭ           | Ŭ             | ŭ             | ľ ŭ                                           | ا ن             | Ŭ               |
| Tetrachloroethene                     | 0.95 J      | Ü             | Ŭ             | 4 J                                           | Ü               | Ü               |
| 2-Hexanone                            | U U         | Ŭ             | υ             | ľ                                             | ŭ               | Ü               |
| Dibromochloromethane                  | ϋ           | ϋ             | ŭ             | Ŭ                                             | ľů              | Ŭ               |
| 1.2-Dibromoethane                     | ŭ           | Ŭ             | Ü             | Ŭ                                             | ŭ               | Ü               |
| Chlorobenzene                         | Ü           | υ             | Ü             | Ŭ                                             | Ü               | Ü               |
| Ethylbenzene                          | ľ           | ŭ             | ΰ             | l ŭ                                           | υ               | Ü               |
| Xylene (total)                        | Ŭ           | Ū             | Ŭ             | l ŭ                                           | ŭ               | ŭ               |
| Styrene                               | Ŭ           | ŭ             | ΰ             | Ü                                             | Ü               | Ü               |
| Bromoform                             | Ŭ           | Ü             | Ü             | i ŭ                                           | ŭ               | IJ              |
| Isopropylbenzene                      | Ŭ           | Ü             | Ŭ             | Ŭ                                             | l ü             | Ü               |
| 1,1,2,2-Tetrachloroethane             | Ü           | Ü             | U             | Ü                                             | Ü               | Ü               |
| 1,3-Dichlorobenzene                   | υ           | Ü             | i Ü           | Ü                                             | ŭ               | Ü               |
| 1,4-Dichlorobenzene                   | Ü           | Ŭ             | Ü             | Ü                                             | Ü               | Ü               |
| 1,2-Dichlorobenzene                   | Ü           | Ü             | Ü             | Ü                                             | Ü               | U               |
| 1,2-Dibromo-3-chloropropane           | Ü           | U U           | Ü             | Ü                                             | U               | Ü               |
| 1,2,4-Trichlorobenzene                | Ü           | Ü             | Ü             | Ŭ                                             | U Ü             | u<br>u          |
| 1)=) 1 CHOINGIODONEONO                |             |               |               | <u> </u>                                      | <u> </u>        |                 |

#### **ABBREVIATIONS:**

#### **QUALIFIERS:**

ug/kg = Micrograms per kilogram

- U: Compound analyzed for but not detected
- J: Compound found at a concentration below CRDL, value estimated

# TABLE 5-3 (CONTINUED) POST-REMEDIATION SUBSURFACE SOIL SAMPLING RESULTS FRANKLIN CLEANERS SITE (ON-SITE)

| SAMPLE ID                             | SB-02 (10.5-12.5) | SB-02 (10.5-12.5)                       | SB-03 (2.5-4.5) | SB-03 (6.5-8.5) | SB-03 (10-12)                           | SB-03 (10-12) |
|---------------------------------------|-------------------|-----------------------------------------|-----------------|-----------------|-----------------------------------------|---------------|
| SAMPLE TYPE                           | SOIL              | SOIL                                    | SOIL            | SOIL            | SOIL                                    | SOIL          |
| DATE OF COLLECTION                    | 6/30/2005         | 6/30/2005                               | 6/30/2005       | 6/30/2005       | 6/30/2005                               | 6/30/2005     |
| COLLECTED BY                          | EP&S              | D&B                                     | EP&S            | EP&S            | EP&S                                    | D&B           |
| UNITS                                 | (ug/kg)           | (ug/kg)                                 | (ug/kg)         | (ug/kg)         | (ug/kg)                                 | (ug/kg)       |
| VOCs                                  |                   | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                 |                 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |               |
| Dichlorodifluoromethane               | U                 | U                                       | ט               | U               | C                                       | _             |
| Chloromethane                         | U                 | U                                       | U               | U               | υ                                       | U             |
| Vinyl chloride                        | U                 | U                                       | U               | U               | U                                       | U             |
| Bromomethane                          | U                 | υ                                       | U               | U               | U                                       | U             |
| Chloroethane                          | U                 | U                                       | U               | l u             | υ                                       | U             |
| Trichlorofluoromethane                | U                 | U                                       | U               | l u             | U                                       | U             |
| 1,1-Dichloroethene                    | U                 | U U                                     | U               | l υ             | U                                       | U             |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | U                 | U                                       | U               | υ               | U                                       | U             |
| Acetone                               | U                 | 5 J                                     | U               | U               | U                                       | 5 J           |
| Carbon disulfide                      | U                 | U                                       | U               | U               | U                                       | U             |
| Methyl acetate                        | U                 | U                                       | U               | U               | U                                       | U             |
| Methylene chloride                    | 2.1 JB            | 2 J                                     | U               | υ               | U                                       | 2 J           |
| trans 1,2-Dichloroethene              | U                 | U                                       | U               | U               | U                                       | U             |
| Methyl-tert butyl ether               | U                 | ប                                       | U               | Ų υ             | U                                       | U             |
| 1,1-Dichloroethane                    | U                 | U                                       | U               | l u             | υ                                       | U             |
| cis-1,2-Dichloroethene                | U                 | U                                       | U               | į u             | U                                       | U             |
| 2-Butanone                            | U                 | U                                       | υ               | U               | U                                       | U             |
| Chloroform                            | U                 | U                                       | U               | υ               | U '                                     | U             |
| 1,1,1-Trichloroethane                 | U                 | U                                       | U               | U               | U                                       | U             |
| Cyclohexane                           | U                 | U                                       | U               | U               | U                                       | U             |
| Carbon tetrachloride                  | U                 | U                                       | U               | U               | U                                       | U             |
| Benzene                               | U                 | U                                       | U               | U               | U                                       | U             |
| 1,2-Dichloroethane                    | U                 | U                                       | U               | U               | U                                       | U             |
| Trichloroethene                       | U                 | U                                       | U               | U               | U                                       | U             |
| Methylcyclohexane                     | U                 | υ                                       | U               | U               | U                                       | U             |
| 1,2-Dichloropropane                   | U                 | U                                       | U               | U U             | U                                       | U             |
| Bromodichloromethane                  | U                 | U                                       | U               | U               | U                                       | U             |
| cis-1,3-Dichloropropene               | U                 | U U                                     | U               | υ               | U                                       | U             |
| 4-Methyl-2-pentanone                  | U                 | U                                       | U               | υ               | U                                       | U             |
| Toluene                               | U                 | U                                       | U               | υ               | U                                       | U             |
| trans-1,3-Dichloropropene             | U                 | U                                       | U               | U               | l U                                     | U             |
| 1,1,2-Trichloroethane                 | U                 | U                                       | U               | U               | U                                       | U             |
| Tetrachloroethene                     | 1.6 J             | 1.6 J                                   | U               | U               | υ                                       | 3 J           |
| 2-Hexanone                            | U                 | บ                                       | U               | U               | U                                       | U             |
| Dibromochloromethane                  | U                 | U                                       | U               | U               | U                                       | υ             |
| 1,2-Dibromoethane                     | U                 | U                                       | U               | U               | U                                       | U             |
| Chlorobenzene                         | U                 | U                                       | U               | U               | υ                                       | U             |
| Ethylbenzene                          | U                 | U                                       | U               | υ               | U                                       | U             |
| Xylene (total)                        | U                 | U                                       | U               | U               | U                                       | U             |
| Styrene                               | U                 | U                                       | U               | U               | U                                       | U             |
| Bromoform                             | U                 | U                                       | U               | U               | Ŭ                                       | U             |
| Isopropylbenzene                      | U                 | U                                       | U               | U               | U                                       | υ             |
| 1,1,2,2-Tetrachloroethane             | U                 | U                                       | U               | U               | U                                       | U             |
| 1,3-Dichlorobenzene                   | U                 | U                                       | U               | l υ             | U                                       | U             |
| 1,4-Dichlorobenzene                   | U                 | U                                       | U               | U               | U                                       | U             |
| 1,2-Dichlorobenzene                   | U                 | υ                                       | U               | U               | U                                       | U             |
| 1,2-Dibromo-3-chloropropane           | U                 | U                                       | U               | υ               | U                                       | U             |
| 1,2,4-Trichlorobenzene                | U                 | U                                       | U               | υ               | U                                       | U             |

#### **ABBREVIATIONS:**

#### QUALIFIERS:

ug/kg = Micrograms per kilogram

U: Compound analyzed for but not detected

J: Compound found at a concentration below CRDL, value estimated

Avenue. During the third sampling event, only 8 indoor air sampling badges were placed by D&B within the laundromat, delicatessen and second floor apartments located at 206/208 South Franklin Street. Air sample locations are shown on Figure 5-2. The air samples were collected using Passive Sampling Devices (Model 3500) manufactured by 3M Corporation. After approximately 24 hours of exposure, the samples were submitted to Galson Laboratories for laboratory analysis of PCE by New York State Department of Health (NYSDOH) Method 311-9. The analytical results from each indoor air sampling event are summarized in Table 5-4.

To evaluate whether significant concentrations of VOCs were present in soil vapor beneath the on-site building, a sub-slab vapor sampling program was implemented in conjunction with the August 2005 indoor air sampling event. Sub-slab vapor sample locations are shown on Figure 5-2. The sub-slab samples were collected from temporary soil vapor points using 24-hour regulated Summa canisters. The probes were constructed of laboratory-grade polyethylene tubing and were sealed to the building foundation with beeswax. The samples were submitted for laboratory analysis of VOCs by United States Environmental Protection Agency (USEPA) Method TO-15. The analytical results for the sub-slab soil vapor samples are summarized in Table 5-5.

#### 5.5 Final Decommissioning Services

#### 5.5.1 Sub-Slab Depressurization System

After completion of the second sampling event, the SVE system was restarted by the GC due to high PCE concentrations within indoor air and sub-slab soil vapor. As a result, the NYSDEC issued a separate work assignment to D&B for design and construction inspection services for installation of a sub-slab depressurization system within the basement of the laundromat and delicatessen, located at 206/208 South Franklin Street, to mitigate the high PCE concentrations within the sub-slab soil vapor. The sub-slab depressurization system was installed by EnviroTrac, Ltd., a subcontractor to D&B. The system was installed and put into operation in February 2007. A copy of the sub-slab depressurization system construction inspection report can be found in Appendix F.

#### TABLE 5-4 POST-REMEDIATION AMBIENT AIR SAMPLING RESULTS FRANKLIN CLEANERS SITE (ON-SITE)

| Sample Location                                             | Sample Designation | GPS Coordinates of Sampling Location | Sample Dates and PCE Results * | Sample Dates and PCE Results * | Sample Dates and PCE Results * |
|-------------------------------------------------------------|--------------------|--------------------------------------|--------------------------------|--------------------------------|--------------------------------|
| 206 S. Franklin Street -                                    | <u> </u>           | 40°44 040 N (1 m)                    | 7/9/01 - 7/11/01 (Baseline)    | 8/10/05 - 8/11/05              | 2/28/07 - 3/1/07               |
| Laundromat (Basement),                                      | PSD-1              | 40°41.940 N (Lat.)                   | 729                            | 38                             | 12                             |
| Near Work Bench                                             |                    | 073°37.378 W (Long.)                 |                                |                                |                                |
| 206 S. Franklin Street -                                    | PSD-2              | 40°41.940 N (Lat.)                   | 334                            |                                |                                |
| Laundromat (1st Floor), Door to Basement                    | PSD-2              | 073°37.378 W (Long.)                 | 334                            | 17                             | 10                             |
| 206-208 S. Franklin Street -                                |                    | 40°41.940 N (Lat.)                   |                                |                                |                                |
| Apartment # 2 (2nd Floor),<br>Living Room                   | PSD-3              | 073°37.378 W (Long.)                 | 9.5 / 10 <sup>1</sup>          | 1.4 / 1.4 1                    | 26 <sup>3</sup>                |
| 206-208 S. Franklin Street -                                | _                  | 40°41.940 N (Lat.)                   | <del>-</del>                   |                                |                                |
| Apartment # 4 (2nd Floor),                                  | PSD-4              | , ,                                  | 4.5                            | 3.1                            | 10                             |
| Living Room                                                 |                    | 073°37.378 W (Long.)                 |                                | ·                              |                                |
| 208 S. Franklin Street -                                    |                    | 40°41.940 N (Lat.)                   |                                |                                | •                              |
| Franklin Deli (North Basement),<br>Near Grease Trap         | PSD-5              | 073°37.378 W (Long.)                 | 933                            | 75                             | 14 / 13 1                      |
| 208 S. Franklin Street -<br>Franklin Deli (South Basement), | PSD-6              | 40°41.940 N (Lat.)                   | 774                            | 128                            | 14                             |
| Near Lighting Fixture                                       | F3D-0              | 073°37.378 W (Long.)                 | 114                            | 120                            | 14                             |
| 208 S. Franklin Street -<br>Franklin Deli (1st Floor),      | PSD-7              | 40°41.940 N (Lat.)                   |                                | 70/0/1                         | 07                             |
| Deli Kitchen                                                | PSD-7              | 073°37.378 W (Long.)                 | 31 / 34 1                      | 7.6 / 8.1 1                    | 87                             |
| 208 S. Franklin Street -<br>Franklin Deli (Rear Yard),      | PSD-8              | 40°41.952 N (Lat.)                   |                                | 2.4                            | < 1.4                          |
| Mid                                                         | P3D-8              | 073°37.357 W (Long.)                 | 12                             | 2.4                            | < 1.4                          |
| 210 S. Franklin Street -                                    | PSD-9              | 40°41.934 N (Lat.)                   | 566                            | 04                             | NO                             |
| Shipman's Pharmacy (Basement),<br>Foot of Basement Stairs   | L9D-A              | 073°37.3363 W (Long.)                |                                | 21                             | NS                             |
| 210 S. Franklin Street -<br>Shipman's Pharmacy (Basement),  | PSD-10             | 40°41.934 N (Lat.)                   | 831                            | 28                             | NS                             |
| Furnace Room                                                | F3D-10             | 073°37.3363 W (Long.)                | 031                            | 20                             |                                |

#### QUALIFIERS/ABBREVIATIONS:

- \* All results reported in ug/m3.
- <sup>1</sup> Sample collected in duplicate (Sample A/Sample B).

NA - Not Applicable.

NS - Not sampled

#### NOTES:

- NYSDOH Residential Guidance Value for PCE in indoor air is 100 ug/m3.

#### SEQUENCE OF SITE EVENTS:

- Soil Vapor Extraction (SVE)/Air Sparge (AS) System initially started up September 02, 2003.
- AS System shutdown on August 30, 2004.
- SVE System shutdown on April 20, 2005.
- SVE System restarted on August 31; 2005 due to elevated PCE concentrations detected in indoor air and sub-slab soil vapors, as detected during the indoor air sampling event conducted on August 10 through 11, 2005.
- Sub-slab depressurization (SSD) system initiated on January 17, 2007 at the site to address elevated PCE concentrations detected in indoor air and sub-slab vapors. Existing SVE System shutdown upon start-up of SSD system.
- All samples were analyzed in accordance with New York State Department of Health (NYSDOH) Method 311-9 SVE System shutdown and SVE/AS System decommissioned on January 17, 2007 after installation of sub-slab depressurization system.

<sup>&</sup>lt;sup>2</sup> Field blank concentration recorded in micrograms.

<sup>&</sup>lt;sup>3</sup> Sample taken from Apartment #1 (located on South side of building) due to access constraints.

#### **TABLE 5-4 (CONTINUED)** POST-REMEDIATION AMBIENT AIR SAMPLING RESULTS FRANKLIN CLEANERS SITE (ON-SITE)

| Sample Location                                             | Sample Designation | GPS Coordinates of Sampling Location  | Sample Dates and PCE Results * | Sample Dates and PCE Results * | Sample Dates and PCE Results * |
|-------------------------------------------------------------|--------------------|---------------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Campie Education                                            |                    | Cr C Coordinates of Campling Escation | 7/9/01 - 7/11/01 (Baseline)    | 8/10/05 - 8/11/05              | 2/28/07 - 3/1/07               |
| 210 S. Franklin Street -<br>Shipman's Pharmacy (1st Floor), |                    |                                       | 27                             | 1.1                            | NS                             |
| Backroom Shelves                                            |                    | 073°37.3363 W (Long.)                 |                                | 1.1                            |                                |
| 212 S. Franklin Street -<br>Chinese Restaurant (1st Floor), | PSD-12             | 40°41.930 N (Lat.)                    | 34 / 35 <sup>1</sup>           | 1.6                            | NS                             |
| Kitchen Rear Door                                           | F3D-12             | 073°37.358 W (Long.)                  | 34 / 35                        | 1.0                            | NS                             |
| 7 Marvin Avenue -<br>Former Guiding Light Tabernacle        | PSD-13             | 40°41.935N (Lat.)                     | 7.5                            | 1.6                            | NS                             |
| (2nd Floor), Hallway                                        | F30-13             | 073°37.345 W (Long.)                  | . 7.5                          | 1.0                            | NS                             |
| 9 Marvin Avenue -<br>Nate's Hair Salon (1st Floor),         | PSD-14             | 40°41.935N (Lat.)                     | 17                             | 1.7                            | NS                             |
| Backroom                                                    | F3D-14             | 073°37.345 W (Long.)                  |                                | 1.7                            | NS                             |
| 13 Marvin Avenue -<br>Private Residence (Basement),         | PSD-15             | 40°41.942 N (Lat.)                    |                                | 1.7 / 1.7                      | NS                             |
| Mid                                                         | P3D-13             | 073°37.357 W (Long.)                  | 14 / 10                        | 1,771,7                        | N5                             |
| 13 Marvin Avenue -<br>Private Residence (1st Floor),        | PSD-16             | 40°41.942 N (Lat.)                    | 4.3                            | 1.4                            | NS                             |
| Living Room                                                 | F3D-10             | 073°37.357 W (Long.)                  | 4.3                            | 1.4                            | , NS                           |
| 13 Marvin Avenue -                                          | PSD-17             | 40°41.942 N (Lat.)                    | 17                             | 44                             | Ne                             |
| Private Residence (Front Yard), Above Front Door Stoop      | P3U-1/             | 073°37.357 W (Long.)                  | 1.7                            | 1.1                            | NS                             |
| Field Blank                                                 | Field Blank        | NA                                    | < 0.03 <sup>2</sup>            | < 0.03 <sup>2</sup>            | < 0.03 <sup>2</sup>            |

#### QUALIFIERS/ABBREVIATIONS:

#### NOTES:

#### SEQUENCE OF SITE EVENTS:

- Soil Vapor Extraction (SVE)/Air Sparge (AS) System initially started up September 02, 2003.
- AS System shutdown on August 30, 2004.
- SVE System shutdown on April 20, 2005.
- SVE System restarted on August 31, 2005 due to elevated PCE concentrations detected in indoor air and sub-slab soil vapors, as detected during the indoor air sampling event conducted on August 10 through 11, 2005.
- Sub-slab depressurization (SSD) system initiated on January 17, 2007 at the site to address elevated PCE concentrations detected in indoor air and sub-slab vapors. Existing SVE System shutdown upon start-up of SSD system.
- All samples were analyzed in accordance with New York State Department of Health (NYSDOH) Method 311-9 SVE System shutdown and SVE/AS System decommissioned on January 17, 2007 after installation of sub-slab depressurization system. NYSDOH Residential Guidance Value for PCE in indoor air is 100 ug/m³.

<sup>\* -</sup> All results reported in ug/m3.

<sup>&</sup>lt;sup>1</sup> Sample collected in duplicate (Sample A/Sample B).

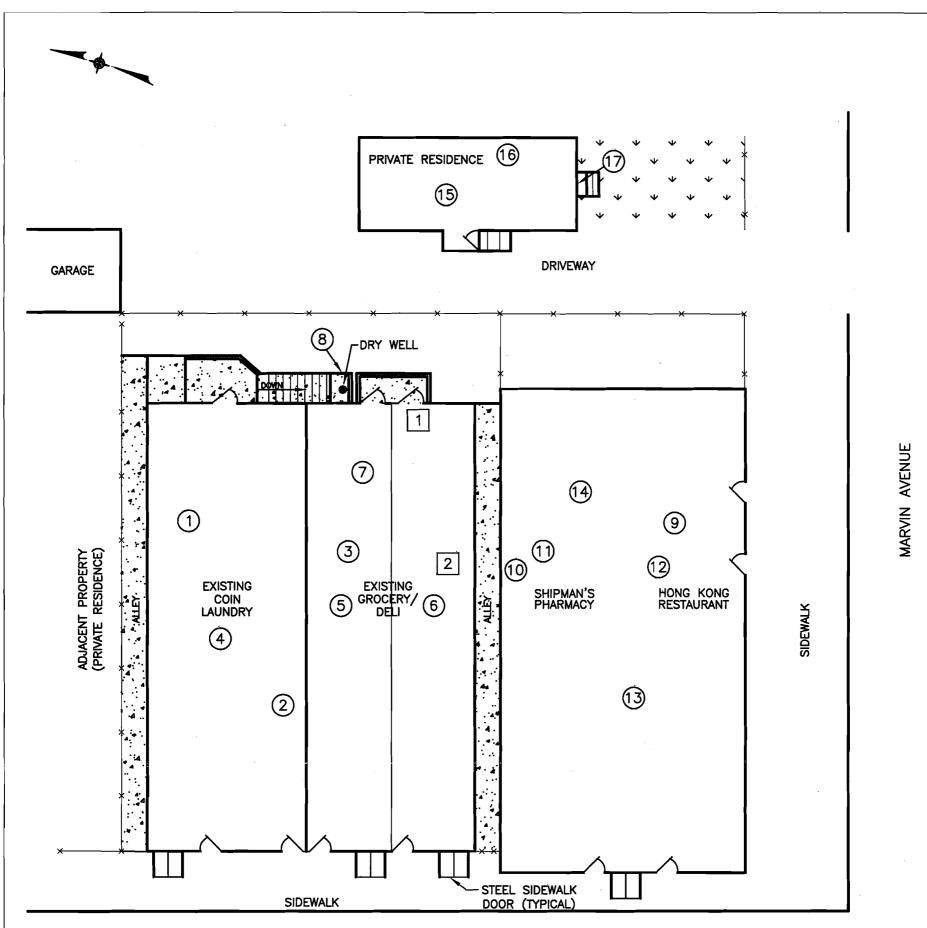
<sup>&</sup>lt;sup>2</sup> Field blank concentration recorded in micrograms.

<sup>&</sup>lt;sup>3</sup> Sample taken from Apartment #1 (located on South side of building) due to access constraints.

NA - Not Applicable.

NS - Not sampled

# TABLE 5-5 POST-REMEDIATION SUB-SLAB SOIL VAPOR SAMPLING RESULTS FRANKLIN CLEANERS SITE (ON-SITE)


| CAMPLEID                                         | 8878.04                               | 66/6 03     |
|--------------------------------------------------|---------------------------------------|-------------|
| SAMPLE TYPE                                      | SSVS-01<br>AIR                        | SSVS-02<br> |
| DATE OF COLLECTION                               | 8/11/2005                             | 8/11/2005   |
| COLLECTED BY                                     | D&B                                   | D&B         |
| DILUTION FACTOR                                  | 4                                     | 4           |
| UNITS                                            | (ug/m³)                               | (ug/m³)     |
| VOCs                                             | , , , , , , , , , , , , , , , , , , , | (3)         |
| Dichlorodifluoromethane                          | U                                     | υ           |
| Chloromethane                                    | υ                                     | U           |
| Vinyl Chloride                                   | U                                     | U           |
| Bromomethane                                     | U                                     | υ           |
| Chloroethane                                     | U                                     | υ           |
| Trichlorofluoromethane                           | U                                     | U           |
| Isopropyl Alcohol                                | 5.4                                   | 7.4         |
| Dichlorotetrafluoroethane                        | U U                                   | U           |
| 1,1,2-Trichlorotrifluoroethane                   | U<br>U                                | U<br>U      |
| Propene<br>Heptane                               | 8.6                                   | 9.0         |
| 1,1-Dichloroethene                               | U U                                   | 9.0<br>U    |
| Ethyl Acetate                                    | l ü                                   | Ü           |
| Acetone                                          | 26.2                                  | 50.0        |
| Carbon disulfide                                 | υ                                     | U           |
| Methyl tert-butyl Ether                          | Ŭ                                     | Ū           |
| Methylene Chloride                               | U                                     | υ           |
| trans-1,2-Dichloroethene                         | υ                                     | υ           |
| Vinyl Acetate                                    | υ                                     | U           |
| 1,1-Dichloroethane                               | U                                     | U           |
| Cyclohexane                                      | U                                     | U           |
| 2-Butanone                                       | 6.8                                   | 14.5        |
| Carbon Tetrachloride                             | U                                     | Ü           |
| cis-1,2-Dichloroethene<br>Chloroform             | U<br>7.8 J                            | U<br>14.7   |
| 1,4-Dioxane                                      | 7.0 J<br>I                            | U 14.7      |
| 1,1,1-Trichloroethane                            | l ŭ                                   | 4.4 J       |
| Tetrahydrofuran                                  | 2.4 J                                 | ı J. T. Ü   |
| 2,2,4-Trimethylpentane                           | J U                                   | ľ           |
| Benzene                                          | Ū                                     | 3.2 J       |
| 1,2-Dichloroethane                               | U ΄                                   | U           |
| Trichloroethene                                  | 9.7 J                                 | 35.0        |
| 1,2-Dichloropropane                              | U                                     | U           |
| Bromodichloromethane                             | U                                     | U           |
| 4-Methyl-2-Pentanone                             | U                                     | U           |
| Toluene                                          | 10.2                                  | 9.4         |
| trans-1,3-Dichloropropene                        | U                                     | U           |
| cis-1,3-Dichloropropene<br>1,1,2-Trichloroethane | U<br>U                                | U<br>U      |
| 2-Hexanone                                       | U U                                   | Ü           |
| Dibromochloromethane                             | l ŭ                                   | , <u>j</u>  |
| 1,2-Dibromoethane                                | Ú                                     | Ŭ           |
| Tetrachloroethene                                | 2,446.2 D                             | 3,533.4 D   |
| Chlorobenzene                                    | υ                                     | U           |
| Ethyl Benzene                                    | υ                                     | υ           |
| m/p-Xylene                                       | U                                     | 4.8 J       |
| o-Xylene                                         | U                                     | U           |
| Styrene                                          | U                                     | U           |
| Bromoform                                        | U                                     | U           |
| 1,1,2,2-Tetrachloroethane                        | U                                     | U<br>U      |
| 1,3,5-Trimethylbenzene<br>1,2,4-Trimethylbenzene | U<br>U                                | 4.4 J       |
| 4-Ethyltoluene                                   | U                                     | 4.4 J<br>U  |
| 1,3-Dichlorobenzene                              | U                                     | l U         |
| 1,4-Dichlorobenzene                              | U                                     | Ü           |
| 1,2-Dichlorobenzene                              | Ü                                     | Ü           |
| 1,2,4-Trichlorobenzene                           | υ<br>U                                | Ü           |
| Hexachloro-1,3-butadiene                         | Ü                                     | บ           |
| 1,3-Butadiene                                    | Ü                                     | Ü           |
| Hexane                                           | 14.5                                  | 6.0 J       |
| Benzyl Chloride                                  | . U                                   | υ           |
| Total VOCs                                       | 2,537.8                               | 3,696.2     |

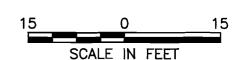
#### **ABBREVIATIONS:**

ug/m³ - Micrograms per cubic meter

#### **QUALIFIERS:**

- U: Compound analyzed for but not detected.
- D: Result taken from reanalysis at a secondary dilution
- J: Compound found at a concentration below CRDL, value estimated




SOUTH FRANKLIN STREET

## SAMPLE LOCATION DESCRIPTIONS

- (1) 206 S. Franklin Street Laundromat (Basement), Near Workbench
- 2 206 S. Franklin Street Laundromat (1st Floor), Door to Basement
- 206-208 S. Franklin Street Apartment # 2 (2nd Floor), Living Room
- 4 206–208 S. Franklin Street Apartment # 4 (2nd Floor), Living Room
- (5) 208 S. Franklin Street Franklin Deli (North Basement), Near Grease Trap
- (6) 208 S. Franklin Street Franklin Deli (South Basement), Near Lighting Fixture
- (7) 208 S. Franklin Street Franklin Deli (1st Floor), Deli Kitchen
- 9 210 S. Franklin Street Shipman's Pharmacy (Basement), Foot of Basement Stairs
- (10) 210 S. Franklin Street Shipman's Pharmacy (Basement), Furnace Room
- (11) 210 S. Franklin Street Shipman's Pharmacy (1st Floor), Backroom Shelves
- (12) 212 S. Franklin Street Chinese Restaurant (1st Floor), Kitchen Rear Door
- (13) 7 Marvin Avenue Former Guiding Light Tabernacle (2nd Floor), Hallway
- (14) 9 Marvin Avenue Nate's Hair Salon (1st Floor), Backroom
- 15 13 Marvin Avenue Private Residence (Basement), Mid
- (16) 13 Marvin Avenue Private Residence (1st Floor), Living Room
- 13 Marvin Avenue Private Residence (Front Yard), Above Front Door Stoop
- 1 208 S. Franklin Street Franklin Deli (South Basement)
- 2 208 S. Franklin Street Franklin Deli (South Basement)

### **LEGEND**

- (1) Passive Air Sampling Device Location
- 1 Sub-Slab Soil Vapor Sampling Location





#### 5.5.2 SVE/AS System Decommission

The SVE/AS system was shutdown and decommissioned in March 2007 after the sub-slab depressurization system was put into operation. Decommission of the SVE/AS system included the following:

- Cutting, capping, removal and off-site disposal of all aboveground piping located in the basement of the delicatessen and in the rear of the building.
- Disconnection of electric and telephone services from the SVE/AS system enclosure.
- Removal of the SVE/AS system enclosure and all associated equipment.
- Cutting and capping all SVE well heads, AS well heads and SVM probes.
- Removal and off-site disposal of NYSDEC sign.
- Removal and off-site disposal of drums of used PPE.

#### 6.0 CHANGE ORDERS

Nine Change Orders were issued to the GC by the NYSDEC for additional work completed in support of the SVE/AS system construction. The change orders issued are summarized below:

- Change Order No. 1: A change order was issued to remove and grind a stump located in the rear of the building, and clean up all resulting debris. The cost of this change order was an additional \$367.50 lump sum increase based on the additional labor, equipment and material costs.
- Change Order No. 2: A change order was issued to address an increase in the height of the rear stem wall due to an increase in the rear property grade. The cost of this change order was an additional \$1,680.00 lump sum increase based on the additional labor, equipment and material costs.
- Change Order No. 3: A change order was issued to address the regrading of the northeast portion of the site to prevent flooding in the area of the former drywell. The cost of this change order was an additional \$997.50 lump sum increase based on the additional labor, equipment and material costs.
- Change Order No. 4: A change order was issued to address the patching of two holes identified in the basement floor outside the area designated to be repaired in the Contract Specifications. The cost of this change order was an additional \$735.00 lump sum increase based on the additional labor, equipment and material costs.
- Change Order No. 5: A change order was issued to investigate a potential spill situation discovered in the rear of the site during the SVE/AS construction. As a result of the investigation, a can of lacquer and associated contaminated soil were containerized and transported off-site for disposal. The cost of this change order was an additional \$1,237.75 lump sum increase based on the additional labor, equipment, disposal and material costs.
- Change Order No. 6: A change order was issued to remove the system enclosure concrete pad from the Contract Specifications. The system enclosure was placed directly on the restored asphalt. The cost of this change order was a lump sum decrease of \$2,100.00.
- Change Order No. 7: A change order was issued to extend the awning an additional 17 feet to cover the entire length of the rear stairwell. The cost of this change order was an additional \$2,887.50 lump sum increase based on the additional labor, equipment and material costs.

- Change Order No. 8: A change order was issued to install two temporary stick-up shallow vapor monitoring probes to measure the vacuum influence directly beneath the basement floor slab. The cost of this change order was an additional \$1,293.60 lump sum increase based on the additional labor, equipment and material costs.
- Change Order No. 9: A change order was issued to install two additional light fixtures and an associated light switch. The cost of this change order was an additional \$504.00 lump sum increase based on the additional labor, equipment and material costs.

The overall net increase of the original contract price due to all Change Orders was \$7,602.85.

#### 7.0 CERTIFICATIONS

Construction was completed at the Franklin Cleaners Site in accordance with the Contract Documents entitled: Franklin Cleaners Site, Site Number 1-30-050, Incorporated Village of Hempstead, Nassau County, New York, dated June 2000, as well as all approved changes as noted in this report.



Dvirka and Bartilucci Consulting Engineers 330 Crossways Park Drive Woodbury, New York 11797

P.E. Seal

Signed:

Dated: 4/5/2012

### APPENDIX A

### CONSTRUCTION INSPECTION REPORTS



| CONSULTING ENGINEERS                         | D        | ATE      | 1    | 2/27   | 63   |           |               |      |     |
|----------------------------------------------|----------|----------|------|--------|------|-----------|---------------|------|-----|
|                                              |          |          | S    | M      | T    | W         | TH            | F    | S   |
|                                              | D        | AY       |      |        |      |           |               |      |     |
| PROJECT Franklin Cleaners Site (on-site)     |          |          |      |        |      |           |               |      |     |
| NYSDEC SITE NO. 1-30-050                     | WEATHER  | Br<br>Su | ite  | Clear  | Ove  | rcast     | Rain          | Snow |     |
| NYSDEC CONTRACT NO. D004184                  | TEMP.    |          | 32   | 32-50  | 50-7 | 0         | 70-85         | 85+u | , — |
| CONTRACTOR EP&S                              | WIND     | Sti      |      | Moder. | High | 1         | Report<br>No. | ,    |     |
| PROJECT MANAGER Frank DeVita                 | HUMIDITY | Dr       | у 🦯  | Moder. | Hum  | nid       | "             |      |     |
|                                              |          | Ļ        |      |        |      |           |               |      |     |
| AVERAGE FIELD FORCE                          |          |          |      |        | _    |           |               |      |     |
| Name of Contractor Function                  |          |          |      |        | Rer  | narks     |               |      |     |
| 1.1 R (450)                                  |          |          |      |        |      |           |               |      |     |
| Jala Branne EDS (450) John Pecari EDS (5:tem | )        |          |      |        |      |           |               |      |     |
| John Priceri                                 |          |          |      |        |      |           |               |      |     |
|                                              |          |          |      |        |      |           |               |      |     |
|                                              |          |          |      |        |      |           |               |      |     |
|                                              |          |          |      |        |      |           |               |      |     |
|                                              |          |          |      |        |      |           |               |      |     |
|                                              |          |          |      |        |      |           |               |      |     |
| VISITORS                                     | ·        |          |      |        |      |           |               |      |     |
| Time Name Representir                        | ng       |          |      |        | Ren  | narks     |               |      |     |
| 1500 - STanss D+15 1500 F. Deditai           |          |          |      |        |      |           |               |      |     |
| 1300 F. Dely.                                |          |          |      |        |      |           |               |      |     |
| 1530 Senitai                                 |          |          |      |        |      |           |               |      | }   |
|                                              |          |          |      |        |      |           |               |      |     |
|                                              |          |          |      |        |      |           |               |      |     |
|                                              |          |          |      |        |      |           |               |      |     |
|                                              |          |          |      |        |      |           |               |      |     |
|                                              |          |          |      |        |      |           |               |      |     |
| <u> </u>                                     |          |          |      |        |      |           |               |      |     |
| EQUIPMENT AT THE SITE:                       |          |          |      |        |      | _         |               |      |     |
| EPS VAN                                      |          |          |      |        |      |           |               |      |     |
|                                              |          |          |      |        |      |           |               |      |     |
|                                              |          |          |      |        |      |           |               |      |     |
|                                              |          |          |      |        |      |           |               |      |     |
| MATERIALS:                                   |          |          |      |        |      |           |               |      |     |
|                                              |          |          |      |        |      |           |               |      |     |
|                                              |          |          | _    |        |      |           |               |      |     |
| · · · · · · · · · · · · · · · · · · ·        |          |          |      |        |      |           |               |      |     |
|                                              |          |          |      |        |      |           |               |      |     |
| DISTRIBUTION 1 Proj. Mgr.                    |          |          | PAG  | E 1 OF | ,    | <u></u> Δ | GES           |      |     |
| 2 Field Office                               |          |          | 1 73 |        |      |           |               |      |     |
| 3 File                                       | s        |          |      | TITL   | F S  | Enso      | chor          |      |     |



| PROJECT Franklin Cleaners Site (off-site)                   | REPORT NO            |
|-------------------------------------------------------------|----------------------|
| NYSDEC # <u>1-30-050</u>                                    | DATE _2/2 1/2 3      |
| CONSTRUCTION ACTIVITIES:                                    |                      |
| Ment at EPS. Tour sta, Dreise site at at                    | 225                  |
| Byin installation of Temp Fail tits                         |                      |
| Review project signs                                        |                      |
| Must get is Ec shore # co. Hick sign                        |                      |
| yest put 1986 an Parient sign Not 1966"                     | <del></del>          |
| Tour sign of look at proposal well lections                 |                      |
| Disus grating techniques in clar                            | 1. 4 f - 11:         |
| Sole Proposes to disnorth outer sign store it a soph        | ale it at supplifuen |
| Frank proposes to change look by day well on hownent do     | or 10/14/100086      |
| Temp in flux way he arissue (ucin edd) spec                 | says in Austria      |
| 7000                                                        |                      |
| pit #1 pronsed location of voner war soul in their hasement | ,                    |
| FIZ track and of deli                                       |                      |
| F13 holes in will hasement floor                            |                      |
| #4 proposed A. Swell location agration dilibrogenest        | Carpes trachles      |
| AS cote face to be supposed                                 |                      |
| #6 office sign (no DEC phone #)                             |                      |
| 17 back of buildings                                        |                      |
| <u> </u>                                                    |                      |
|                                                             |                      |
|                                                             |                      |
| <u> </u>                                                    |                      |
|                                                             | -                    |
|                                                             |                      |
|                                                             |                      |
|                                                             |                      |
|                                                             |                      |
|                                                             |                      |
|                                                             |                      |
|                                                             |                      |
|                                                             |                      |
|                                                             |                      |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office                    | PAGE 2 OF 2 PAGES    |
| 3 File BY Sauss                                             | TITLE Frightor       |
| BY / / WSS                                                  | TITLE +nsptor        |



|                                     |                                                |          |              | 1 1    |          |        |       |   |  |  |
|-------------------------------------|------------------------------------------------|----------|--------------|--------|----------|--------|-------|---|--|--|
| PROJECT Franklin Cleaners Site (on- | -site)                                         |          |              |        |          |        |       |   |  |  |
| NYSDEC SITE NO. 1-30-050            |                                                | WEATHER  | Brite<br>Sun | Clear  | Overcast | Rain   | Snow  |   |  |  |
| NYSDEC CONTRACT NO. D004184         |                                                | TEMP.    | To 32        | 32-50  | 50-70    | 70-85  | 85+up | • |  |  |
| CONTRACTOR EP&S                     | <del></del>                                    | WIND     | Still        | Moder. | High     | Report |       |   |  |  |
| PROJECT MANAGER Frank DeVita        | <u> </u>                                       | HUMIDITY | Dry          | Moder. | Humid    | No.    | 2     |   |  |  |
| THOUSEN WANTED                      | <u> </u>                                       |          |              | _      |          |        |       |   |  |  |
| NA                                  |                                                |          |              |        | _        |        |       |   |  |  |
| AVERAGE FIELD FORCE                 |                                                |          |              |        |          |        |       |   |  |  |
| Name of Contractor                  | Function                                       |          | Remarks      |        |          |        |       |   |  |  |
| Dale Brane                          | E AS (450)                                     |          |              |        |          |        |       |   |  |  |
| John Pecor;                         | 4 (5 it Man.)                                  |          |              |        |          |        |       |   |  |  |
| Ned Myer<br>Juan Tolido             | EAS (HSO)<br>+ (Six Man.)<br>Hordor Free Sorve |          |              |        |          |        |       |   |  |  |
| 7 7.1.1.                            | 170:1101 4:00 3:101                            | , -C     |              |        |          |        |       |   |  |  |
| Juan Tolido                         |                                                |          |              |        |          |        |       |   |  |  |
| Joseph Clark                        |                                                |          |              |        |          |        |       |   |  |  |
|                                     |                                                |          |              |        |          |        |       |   |  |  |
|                                     |                                                |          |              |        |          |        |       |   |  |  |
| VISITORS                            | -                                              |          |              |        |          |        |       |   |  |  |
| Time Name                           | Representing                                   |          |              |        | Remarks  |        |       |   |  |  |
| 0700- S. Tanss                      | 13                                             |          |              |        |          |        |       |   |  |  |
|                                     |                                                |          |              |        |          |        |       |   |  |  |
|                                     |                                                |          |              |        |          |        |       |   |  |  |
|                                     |                                                |          |              |        |          |        |       |   |  |  |
|                                     |                                                |          |              |        |          |        |       |   |  |  |
|                                     |                                                |          |              |        |          |        |       |   |  |  |
|                                     |                                                | ;        |              |        |          |        |       |   |  |  |
|                                     |                                                |          |              |        |          |        |       |   |  |  |
|                                     |                                                | .        |              |        |          |        |       |   |  |  |
|                                     |                                                |          |              |        | _        |        |       |   |  |  |
| EQUIPMENT AT THE SITE:              |                                                |          |              |        |          |        |       |   |  |  |
|                                     |                                                |          |              |        |          | _      |       |   |  |  |
| Burket truck grinder + 1 ton p      | Tele up, Chipper,                              | EPS Van  |              |        |          |        |       |   |  |  |
| ·                                   |                                                |          |              |        |          |        |       |   |  |  |
|                                     |                                                |          |              |        |          |        |       |   |  |  |
| MATERIALS:                          |                                                |          |              |        |          |        |       |   |  |  |
|                                     |                                                | :        |              |        |          |        |       |   |  |  |
| _                                   |                                                |          |              |        |          |        |       |   |  |  |
|                                     |                                                |          |              |        |          |        |       |   |  |  |
|                                     |                                                |          |              |        |          |        |       |   |  |  |
|                                     |                                                |          |              |        |          |        |       |   |  |  |
| DISTRIBUTION 1 Proj. Mgr.           |                                                | _        | · PAG        | F 1 OF | PA       | GES    |       |   |  |  |
| 2 Field Office                      |                                                |          | FAG          | _ 10   |          | .020   |       |   |  |  |
| 3 File                              | BY S. Taus                                     |          |              | TITLE  | The      | , Line |       |   |  |  |
|                                     | OI OIMAN                                       |          |              | 1111   | · Photo. | 1000   |       |   |  |  |



| PROJECT Franklin Cleaners Site (off-site)                                   | EPORT NO.                  |
|-----------------------------------------------------------------------------|----------------------------|
| NYSDEC # 1-30-050                                                           | DATE2/18/63                |
| CONSTRUCTION ACTIVITIES:                                                    |                            |
| Set up office some                                                          |                            |
| Set up office space Avotity Nat (@ Salon) that we will remove a replace got | c, he agrees.              |
|                                                                             |                            |
| Dispanthe fence, Store knew on site                                         |                            |
| Menting Hardor & take true down in rear of porildings.                      |                            |
| Tartag Franco V take the about In that of buildings.                        |                            |
| Install project sign.                                                       |                            |
|                                                                             |                            |
| · · · · · · · · · · · · · · · · · · ·                                       |                            |
|                                                                             |                            |
|                                                                             | •                          |
|                                                                             |                            |
|                                                                             |                            |
|                                                                             |                            |
|                                                                             |                            |
| pic #89 completion of tree removal                                          |                            |
| pic #10 Installed projet sign.                                              |                            |
| projet sight.                                                               |                            |
|                                                                             |                            |
|                                                                             |                            |
| <u> </u>                                                                    |                            |
|                                                                             |                            |
| <del></del>                                                                 |                            |
|                                                                             |                            |
|                                                                             |                            |
|                                                                             |                            |
|                                                                             |                            |
|                                                                             |                            |
|                                                                             |                            |
| 2 Field Office<br>3 File                                                    | 2 OF 2 PAGES  TLE Tuysefor |



| CONSULTING ENGINEE                          | DATE 3/3/03                                 |                  |     |       |        |      |       |               |      |          |
|---------------------------------------------|---------------------------------------------|------------------|-----|-------|--------|------|-------|---------------|------|----------|
|                                             |                                             |                  | AY  | S     | M      | T    | W     | TH            | F    | _<br>  S |
|                                             |                                             |                  |     |       |        |      |       |               |      |          |
| PROJECT Franklin Cleaners Site (on          | -site)                                      | \A/C A T L I C D | Bri | to    | Clear  | Ove  | reast | Rain          | Snow | ,        |
| NYSDEC SITE NO. <u>1-30-050</u>             |                                             | WEATHER          | Su  | n     | 32-50  | 50-7 |       | 70-85         | 85+u |          |
| NYSDEC CONTRACT NO. D004184                 | <u>.</u>                                    | TEMP.            |     | 32    |        |      |       |               | 05+0 | ,<br>    |
| CONTRACTOR EP&S                             | <u>.</u>                                    | WIND             | Sti |       | Moder  | High |       | Report<br>No. | 3    |          |
| PROJECT MANAGER Frank DeVita                | •                                           | HUMIDITY         | Dry | y<br> | Moder. | Hum  | id    |               |      |          |
|                                             |                                             |                  |     |       |        |      |       |               |      |          |
| AVERAGE FIELD FORCE                         |                                             |                  |     |       |        |      |       |               |      |          |
| Name of Contractor                          | Function                                    |                  |     |       |        | Ren  | narks |               |      |          |
| Dale Brane EPS                              | 450                                         |                  |     |       |        |      |       |               |      |          |
| John Provi                                  | Site Man.                                   |                  |     |       |        |      |       |               |      |          |
| John Provides STB                           | Site Man. Ingribor  Blog Gunes owner/labour |                  |     |       |        |      |       |               |      |          |
| Steve Gragos #;                             | Bld annec                                   |                  |     |       |        |      |       |               |      |          |
| Stan Miles Miles Fonce Co.                  | - cllaburg                                  |                  |     |       |        |      |       |               |      |          |
| 3744 1-11 183 191 113 1-101 Co.             | OSNET / TAPOCO                              |                  |     |       |        |      |       |               |      |          |
|                                             |                                             |                  |     |       |        |      |       |               |      |          |
|                                             |                                             |                  | `   |       |        |      |       |               |      |          |
| VISITORS                                    |                                             |                  |     |       |        |      |       |               |      |          |
| Time Name                                   | Representing                                |                  |     |       |        | Ren  | narks |               |      |          |
| 0900 Steve Gregoritti                       | Bldg Owner                                  |                  |     |       |        |      |       |               |      |          |
| 0930                                        | د.                                          |                  |     |       |        |      |       |               |      |          |
|                                             |                                             |                  |     |       |        |      |       |               |      |          |
|                                             |                                             |                  |     |       |        |      |       |               |      |          |
|                                             |                                             |                  |     |       |        |      |       |               |      |          |
|                                             |                                             |                  |     |       |        |      |       |               |      |          |
|                                             |                                             |                  |     |       |        |      |       |               |      |          |
|                                             |                                             |                  |     |       |        |      |       |               |      |          |
|                                             |                                             |                  |     |       |        |      |       |               |      |          |
|                                             |                                             |                  |     |       |        |      | _     |               |      |          |
| EQUIPMENT AT THE SITE:                      |                                             |                  |     |       |        |      |       |               |      |          |
| Food Van RPS.                               | -                                           |                  |     |       |        |      |       |               |      |          |
| Pickup truck Miles Fonce Co                 |                                             |                  |     |       |        |      |       |               |      |          |
| impact himner                               |                                             |                  |     |       |        |      |       |               |      |          |
|                                             |                                             |                  |     | _     |        |      |       |               |      |          |
| MATERIALS:                                  |                                             |                  |     |       |        |      |       |               |      |          |
|                                             |                                             |                  |     |       |        |      |       |               |      |          |
|                                             |                                             |                  |     |       |        |      |       |               |      |          |
|                                             |                                             |                  |     |       |        |      |       |               |      |          |
|                                             |                                             |                  |     |       |        |      |       |               |      |          |
| DISTRIBUTION 4 Dec. Marie                   |                                             |                  |     | DAC   | E 1 OF | 2    | D ^   | GES           |      |          |
| DISTRIBUTION 1 Proj. Mgr.<br>2 Field Office |                                             |                  |     | PAG   |        |      |       |               |      |          |
| 3 File                                      |                                             |                  |     |       |        |      |       | mita          |      |          |
|                                             | BY S. Tanss                                 |                  |     |       | HTL    | = _  | Ins,  | 2010          | _    |          |



| PROJECT Franklin Cleaners Site (off-site)                 | REPORT NO>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NYSDEC # <u>1-30-050</u>                                  | DATE 3/3/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CONSTRUCTION ACTIVITIES:                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Coordinate up wash Management + Verizon le                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Miles Fency Co. (Stan Miles) on sik 0900.                 | Notifies us the fence is on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Residential property. to Coll Jell Tradit                 | or he tells us to proceed as planned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| regardless of property line.                              | and the second of the second o |
| Owner Steel Gagacetti onsite 0900 give a                  | he set id and a nodlock he would now ide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Miles Force Co Demoters alisting for approx               | 60'-58'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Spector Since was changely N. side no lo                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| will be extended about 31/2 prso to the                   | adjacent grage + a gate will be placed on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| the N side of the laundry Must to the adjac               | ent garage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           | IH says to notify thouse + leave it alone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Miles says construction of Fence will                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1200 wash Managenert (Lenny) shows up w/ a 10             | all off which is his big to the in the alley -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a permit is not an option (Los placing the coll-          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Must wait ustill worning for a smaller roll of            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1400 Runua debis from dry well + find it is a             | is 30 = Aponing not a 10"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| .430 Nuriky Till about Dry well                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office 3 File BY States | PAGE 2 OF 2 PAGES  TITLE Faspetor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



| CONSULTING ENGINEE                                                                             | ERS                                                                        | DATE 3/4/03 |   |       |        |      |       |               |       | _ |  |  |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------|---|-------|--------|------|-------|---------------|-------|---|--|--|
|                                                                                                |                                                                            | DAY S M T W |   |       |        | TH   | F     | S             |       |   |  |  |
| PROJECT_Franklin Cleaners Site (on-                                                            | -sito)                                                                     |             |   |       |        |      |       |               |       |   |  |  |
| NYSDEC SITE NO. 1-30-050                                                                       | -Site)                                                                     | WEATHER     |   | Brite | Clear  | Over | cast  | Rain          | Snow  |   |  |  |
| NYSDEC CONTRACT NO. D004184                                                                    |                                                                            | TEMP.       | S | o 32  | 32-50  | 50-7 | 0     | 70-85         | 85+up |   |  |  |
| CONTRACTOR EP&S                                                                                |                                                                            | WIND        | s | Still | Moder. | High |       | Report<br>No. |       |   |  |  |
| PROJECT MANAGER Frank DeVita                                                                   | <u>.</u> .                                                                 | HUMIDITY    |   | Ory   | Moder. | Hum  | id    | 140.          | 4     | 7 |  |  |
|                                                                                                |                                                                            |             |   |       |        |      |       |               |       |   |  |  |
| AVERAGE FIELD FORCE                                                                            |                                                                            |             |   |       |        |      |       |               |       | _ |  |  |
| Lenny washemanagement                                                                          | Function  HS 0  Sik Man.  10 box:  10 box:  Count /labox:  Tagache  labor: |             |   |       |        | Ren  | narks |               |       |   |  |  |
| VISITORS                                                                                       |                                                                            |             |   |       |        |      |       |               |       |   |  |  |
| Time Name 0745 Frank Is Vila 0315                                                              | Representing                                                               |             |   |       |        |      | narks |               |       |   |  |  |
| EQUIPMENT AT THE SITE:                                                                         |                                                                            | _           |   |       |        |      |       |               |       |   |  |  |
| Cps Fool Var + F350 Baxtonk<br>Miles Food Co. Flat April track + Dick up 1<br>10 your Roll off |                                                                            |             | - |       | _      | _    |       |               |       |   |  |  |
| MATERIALS:                                                                                     |                                                                            |             |   |       |        |      |       |               |       |   |  |  |
| Pips corecit + Ancing materals                                                                 | elective inpact Hammer                                                     |             |   |       |        |      |       | -             |       |   |  |  |
| DISTRIBUTION 1 Proj. Mgr.<br>2 Field Office<br>3 File                                          | BY S. Taus S                                                               |             |   |       | E 1 OF |      |       |               |       |   |  |  |



| PROJECT F        | anklin Cleaners S              | Site (off-site)        |                                                   | REPORT NO. 4                                   |
|------------------|--------------------------------|------------------------|---------------------------------------------------|------------------------------------------------|
| NYSDEC# 1        | 30-050                         |                        |                                                   | DATE                                           |
| CONSTRUCTION     | ON ACTIVITIES:                 | -                      |                                                   |                                                |
| 0730 A           | Just Manya Mant                | on site (Ston Mit      | chive rell-cit in ale<br>s) to dig post bold      | s or set                                       |
| 6745 D           | gla + Frank 180                | ithe agent to use "    | an , winged privacy chat                          | ່າ                                             |
|                  | -                              |                        |                                                   |                                                |
| - 5800 10        | more others for                | as well o wasund       | goening - 24" (66                                 | nol .                                          |
|                  | eno Davi Now                   | ak (CPS) Show up       | thely of Remort of de                             | pas & closes reapping.                         |
| 0570 1           | Con M HADIO CO                 | movel                  |                                                   |                                                |
| wek              | for comente l                  | Topa rue used 5)       | the W 30 hops counter,<br>1k water for office: De | oli says this                                  |
|                  |                                |                        | ke the elatricity                                 |                                                |
| Α.               | 11 00 1 0                      |                        |                                                   |                                                |
| - wabe           | her concate so                 | denentions 44x         | k. Dole stabilit was Okan                         | ved of bornes (includin reat)                  |
| - Take           | irtures of eris                | ting damage to acithi  | hors thousa damage to di                          | was mirror borke Conclus                       |
| A                | gracheporels +                 | parager kilight of     | urs hed light or hood or                          | both pumpus.                                   |
| 1420 rank        | sulbol stated Je               | H Trudd said ituas     | drayed to leaved post hole                        | crultings at sight as long                     |
| - Y. o. L. i. o. | 200 Cubas Cill                 | e graded or pared over | Masphalt                                          |                                                |
|                  |                                | and working in be      |                                                   | Spor was approved to use                       |
|                  |                                |                        | ment requires that will be                        |                                                |
| Frank            | Suggests we                    | get a mixing truck in  | sted of using Brikette 14                         | cuill notify us of any                         |
| Fu: H            | ar change of des               | icions.                |                                                   |                                                |
| 1600 IX          | tia a lain c                   | rack in the Place      | innedially inside the bas                         | ement duoi to the outside<br>2, SVE-1, + SVE-2 |
| bac              | eyord. This is                 | immediately in The     | rue of inthunce for AS                            | - SVE-1 + JVE-2                                |
|                  |                                |                        | <u> </u>                                          |                                                |
|                  |                                |                        |                                                   |                                                |
|                  |                                |                        |                                                   |                                                |
|                  |                                |                        |                                                   | -                                              |
|                  |                                |                        | <u>_</u>                                          |                                                |
|                  |                                |                        |                                                   |                                                |
|                  |                                |                        |                                                   |                                                |
| DISTRIBUTION     | 1 Proj. Mgr.<br>2 Field Office | e                      | PA                                                | AGE 2 OF 2 PAGES                               |
|                  | 3 File                         | BY C.Z.                |                                                   | TITLE F                                        |



| CONSULTING ENGINE                                                                                                                     | ERS                                                             | DATE 2/5/03 |       |                      |        |      |           |        |      |   |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------|-------|----------------------|--------|------|-----------|--------|------|---|
|                                                                                                                                       |                                                                 |             | DAY S |                      | M      | Т    | W         | TH     | F    | S |
| PROJECT_Franklin Cleaners Site (on                                                                                                    | sito)                                                           |             |       |                      |        |      |           |        |      |   |
| NYSDEC SITE NO. 1-30-050                                                                                                              | -site)                                                          | WEATHE      | R E   | Brite                | Clear  | Ove  | rcast     | Raig   | Snow |   |
| NYSDEC CONTRACT NO. D004184                                                                                                           |                                                                 | TEMP.       |       | Sun<br>To 32         | 32-50  | 50-7 | 0         | 70-85  | 85+u | , |
| CONTRACTOR EP&S                                                                                                                       | •                                                               | WIND        | -     | Still                | Moder. | High | · · · · · | Report |      |   |
| PROJECT MANAGER Frank DeVita                                                                                                          | <del>.</del>                                                    | HUMIDITY    |       | Dry Moder. Humid No. |        |      |           | 8      |      |   |
| PROJECT MANAGER FIGHT DEVILE                                                                                                          | - <del>-</del> ·                                                | TIOMIDITI   |       |                      |        |      |           |        |      |   |
| AVERAGE FIELD FORCE                                                                                                                   | <del></del>                                                     |             |       |                      |        |      |           |        |      |   |
| Name of Contractor Dale Brand ESD  John Pecori II Show Tanzs DHB  Angelo Locker Cityo County Pains John H. Giction durings + Canopies | Function  1480  516 Man.  Insperd  Man. Lobora  Owner   laboras |             | -     |                      |        | Ren  | narks     |        |      |   |
| VISITORS                                                                                                                              |                                                                 |             |       |                      |        |      |           |        |      |   |
| Time Name  1040; Chis Contew  1045                                                                                                    | Representing Stan Gyoretti                                      |             |       |                      |        | Ren  | narks     |        |      |   |
| EQUIPMENT AT THE SITE:                                                                                                                | -                                                               |             |       |                      |        |      |           |        |      |   |
| :PS Ford van                                                                                                                          |                                                                 |             |       |                      |        |      |           |        |      |   |
| Pick up Truck (action auxigs + Com                                                                                                    | p, r.s.)                                                        |             |       |                      |        |      |           |        |      |   |
|                                                                                                                                       |                                                                 |             |       |                      |        |      |           |        |      |   |
| MATERIALS:                                                                                                                            | <del></del>                                                     |             |       |                      | _      |      |           |        |      |   |
| awaine                                                                                                                                |                                                                 |             |       |                      |        |      |           |        |      |   |
|                                                                                                                                       |                                                                 |             |       |                      |        |      |           |        |      |   |
|                                                                                                                                       |                                                                 |             |       |                      |        |      |           |        |      |   |
|                                                                                                                                       |                                                                 |             |       |                      |        |      |           |        |      |   |
| DISTRIBUTION 1 Proj. Mgr.<br>2 Field Office<br>3 File                                                                                 | BY C Taux c                                                     |             |       | PAG                  | E 1 OF |      |           | GES    | _    |   |



| PROJECT Franklin Cleaners Site (off-site)                                                                   | REPORT NO                          |
|-------------------------------------------------------------------------------------------------------------|------------------------------------|
| NYSDEC # <u>1-30-050</u>                                                                                    | DATE 3/5/03                        |
| CONSTRUCTION ACTIVITIES:                                                                                    |                                    |
| 0745 Dale worried downt flooding in rear of laundy mat.                                                     | + Suggets awning extend            |
| to cover toppall areas of concach contributing to 1411-                                                     | off at dry well.                   |
| 10 cour thall areas of concrete contributing to 141-                                                        | four site + show him               |
| now to be parened in page mont.                                                                             |                                    |
| 0830 Notice significent fleeding in 45 SE corner of                                                         | bose ment + at bose nont           |
| dever in fort of dry will lowtron. I rock to be                                                             | Ik of problem to broken            |
| gutter - hole in SE corner of basement.                                                                     | FFRE Temp. Fix problem             |
| by clogging hole of great stuff, and prop up + un                                                           |                                    |
| of aval. west unof water into S. alby.                                                                      | in Calley or six this acres        |
| 0830 Sale notifies Store Gragionetti chout ashistos pipe<br>fixing. 16 said he would have the perters fixed | next do                            |
| Continue school of debris in basement.                                                                      | - ray                              |
| Notify Earle that hole directly inside basement de                                                          | por is in influence of             |
| 3 wells. (verbally)                                                                                         | 7                                  |
| Frank explis Quitrete is approved for use in allaces                                                        | outside basement Please sepais.    |
| 1040 Chr. 3 (pritour (works for Sten Gagoretti) says he is a                                                | orceired that the Fince is too     |
| close to the reighbors shoul. STON Collis + say                                                             |                                    |
| 1046 action awnings or conapres on site John H, Milo                                                        | E. B.M.                            |
| jastell awing to spec.                                                                                      |                                    |
| 1330 Start Boscount fless Repair.                                                                           |                                    |
| angelo states thre back yord will have to be raised                                                         | to stop flooding problem.          |
| Bab proposes to extend schaining well + 7 yards of                                                          | fill will be needed to raise yord. |
| BY POPE FLOW PARENS,                                                                                        |                                    |
| 1850 anglo tokes survey of woll ray aid. 1630 Conference all between Dole, Soft Trad - Fronts.              |                                    |
| 1630 Conference all between Dale, Soft Trad - Fronts                                                        |                                    |
| Jell approved fixing the hole impulsify inside baser                                                        |                                    |
| Jett approved fixing the hole impulially inside baser                                                       | nt dear drong order                |
|                                                                                                             | approve for a ching out            |
| ecgarding the downage / gooding issue.                                                                      |                                    |
| 18 30 wap up of leau site.                                                                                  |                                    |
| <del></del>                                                                                                 |                                    |
|                                                                                                             |                                    |
| <del></del>                                                                                                 |                                    |
| DISTRIBUTION 1 Proj Mar                                                                                     | PAGE 2 OF 2 PAGES                  |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office                                                                    |                                    |
| 3 File BY Sauge                                                                                             | TITLE Inspector                    |
| BI                                                                                                          | IIILE ~ yacro~                     |



|                                                                                              |                 | DA                                      | 4Y   0       | 101     | '   "      | '''    | '    |        |
|----------------------------------------------------------------------------------------------|-----------------|-----------------------------------------|--------------|---------|------------|--------|------|--------|
| PROJECT Franklin Cleaners Site (on                                                           | -site)          |                                         |              |         |            |        |      |        |
| NYSDEC SITE NO. 1-30-050                                                                     | <u>Sito</u>     | WEATHER                                 | Brite        | Clear   | Overcast   | Rain   | Snow | lanar. |
| NYSDEC CONTRACT NO. D004184                                                                  |                 | TEMP.                                   | Sun<br>To 32 | 32-50   | 50-70      | 70-85  | 85+u | p      |
| CONTRACTOR EP&S                                                                              | *               | WIND                                    | Still        | Moder.  | High       | Report |      |        |
| PROJECT MANAGER Frank DeVita                                                                 | <del>.</del>    | HUMIDITY                                | Dry          | Moder.  | Humid      | No.    | 6    |        |
| THOUSE IN THE TOTAL BEATTA                                                                   | <del></del> :   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              |         |            |        |      |        |
|                                                                                              |                 |                                         |              |         |            |        |      |        |
| AVERAGE FIELD FORCE                                                                          |                 |                                         |              |         |            |        |      |        |
| Name of Contractor                                                                           | Function        |                                         |              |         | Remark     | S      |      |        |
| Date 13 rave 7/3                                                                             | 1430            |                                         |              |         |            |        |      |        |
| John Acoci V                                                                                 | Site non.       |                                         |              |         |            |        |      |        |
| Date Brave EPS  John Acori  Angelo Couber City-County poving Con  Nate Brisber Allstole Pour | Bune Habores    |                                         |              |         |            |        |      |        |
| lete Booker piving long                                                                      |                 |                                         |              |         |            |        |      |        |
| WATE 1311 SOLE Alls take four                                                                |                 |                                         |              |         |            |        |      |        |
| vac.                                                                                         |                 |                                         |              |         |            |        |      |        |
|                                                                                              |                 |                                         |              |         |            |        |      |        |
| VISITORS                                                                                     |                 |                                         |              | _       |            |        |      |        |
| Time Name                                                                                    | Representing    |                                         | £            |         | Remarks    |        |      |        |
|                                                                                              | AMMILE FOR4 Co. | y                                       | was the      | p. nibi | Remarks    | k (Sno | اً ب |        |
| 5730- Stan Milis<br>15-15-F. Duith                                                           |                 | i i                                     |              |         |            | •      | )    |        |
| 15-15-F. Duite                                                                               |                 |                                         |              |         |            |        |      |        |
| 1900                                                                                         |                 |                                         |              |         |            |        |      |        |
|                                                                                              |                 |                                         |              |         |            |        |      |        |
|                                                                                              |                 |                                         |              |         |            |        |      |        |
|                                                                                              |                 |                                         |              |         |            |        |      |        |
|                                                                                              |                 |                                         |              |         |            |        |      |        |
|                                                                                              |                 |                                         |              |         |            |        |      |        |
|                                                                                              |                 |                                         |              |         |            |        |      |        |
| EQUIPMENT AT THE SITE:                                                                       |                 |                                         |              |         |            |        |      |        |
| Power was truck Mark 328                                                                     |                 |                                         |              |         |            |        |      |        |
| pewer 34w                                                                                    |                 |                                         |              |         |            |        |      |        |
| 7                                                                                            |                 |                                         |              |         |            |        |      |        |
|                                                                                              |                 |                                         |              |         |            |        |      |        |
| MATERIALS:                                                                                   |                 |                                         |              |         |            |        |      |        |
| Siky Rep 111 1 Vic truck                                                                     | Mack 328        |                                         |              |         |            |        |      |        |
|                                                                                              |                 |                                         |              |         |            |        |      |        |
|                                                                                              |                 |                                         |              |         |            |        |      |        |
|                                                                                              |                 |                                         |              |         |            |        |      |        |
|                                                                                              |                 |                                         |              |         |            |        |      |        |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office                                                     |                 |                                         | PAG          | 3E 1 OF | <u>2</u> F | AGES   |      |        |
| 3 File                                                                                       | 0 10            | _                                       |              |         | T          | . /    |      |        |



| PROJECT Franklin Cleaners Site (off-site)                                                                                                                           | _ REPORT NO                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| NYSDEC # <u>1-30-050</u>                                                                                                                                            | DATE3/1/03                   |
| CONSTRUCTION ACTIVITIES:                                                                                                                                            | -                            |
| - 0730 Miles Free Co on site - Said weather probibite work.                                                                                                         | -                            |
| 0800 Allstoke Power VAR on site Nate Bristier                                                                                                                       |                              |
| Shows up of 30' of hose - we ordered 100', must a                                                                                                                   | git he estra hose deliver    |
| 1010 City + Genty Paving on site 3 man com                                                                                                                          |                              |
| Continue sourting holes + Start filling w/ siketten 111.                                                                                                            |                              |
| 1150 UPS Delivy of well streets - way screens.                                                                                                                      |                              |
| 1150 UPS Delivy of well strices - was, screens.  1218 Extra hos he was truck or Ste w/ I additional laborer.  Start A to Vac. art dry well - Realize truck is not a |                              |
| Start A to Vac. art dy well - Realize truck is not a                                                                                                                | Turbe" we as ordered         |
| + Gan not predou everyh vaccusm for walk most postpar                                                                                                               | re witill 3/7/63.            |
| 1235 angilo concerned about finding acceptable fill be great                                                                                                        | ding in rear                 |
| 1235 angle concerned about finding acceptable fill be greet and in borg Films.                                                                                      | <u> </u>                     |
| 1345 Fank alls & will come to site to look at diginage                                                                                                              | nablas in flet.              |
| 1400 Delet I Pini that hole in besement floor is                                                                                                                    | only imparting SUE -2        |
| 1400 Pale + I Pini that hole in besement floor is - appearimetly 25 holes found so for 1415 Allstate of                                                             | ligita.                      |
| 1510 Engelo is concerned that ankeck will not hold the                                                                                                              |                              |
| to be built in coon, fronk okays a partland noter.                                                                                                                  | •                            |
| 1875 Flank on site ingresa to extent the well from the                                                                                                              | to 1 in 201 ways             |
| instal of from the angled edge of the pation Steen Gregories                                                                                                        | 41 approved                  |
| 1545 (not Hoursens lights to expel in will if beserven                                                                                                              | Taf Deli                     |
| Thinar (flymables) pressumably, hand in Busement of Adi                                                                                                             |                              |
| 1510 Conferme all me TH Truit F. Duitte, Joh, Note: I                                                                                                               | It appoints noll constaction |
| + work in besome their providing we get the prosidering little                                                                                                      | , John appieus ausing        |
| installation over the Deliant lovely mut seer paties, & says                                                                                                        | sesta might abilla pive      |
| for the till to be used in puding.                                                                                                                                  |                              |
|                                                                                                                                                                     |                              |
|                                                                                                                                                                     |                              |
|                                                                                                                                                                     |                              |
| <u> </u>                                                                                                                                                            |                              |
|                                                                                                                                                                     |                              |
|                                                                                                                                                                     |                              |
|                                                                                                                                                                     |                              |
|                                                                                                                                                                     |                              |
|                                                                                                                                                                     |                              |
| DISTRIBUTION 1 Proj. Mgr. PA                                                                                                                                        | AGE 2 OF 2 PAGES             |
| 2 Field Office<br>3 File                                                                                                                                            | TITLE Insactor               |
| BY 3. Tang                                                                                                                                                          | TITLE Insulve                |



DATE 3/7/63

|                                                                                                          |                   | D        | AY S         | М      | TW       | TH     | F/    | S |
|----------------------------------------------------------------------------------------------------------|-------------------|----------|--------------|--------|----------|--------|-------|---|
| PROJECT_ Franklin Cleaners Site (on                                                                      | -cita)            |          |              |        |          |        |       |   |
| NYSDEC SITE NO. 1-30-050                                                                                 | -31.6/            | WEATHER  | Brite        | Clear  | Overcast | Rain   | Snow  |   |
| NYSDEC CONTRACT NO. D004184                                                                              |                   | ТЕМР.    | Sun<br>To 32 | 32-50  | - 50-70  | 70-85  | 85+up |   |
| CONTRACTOR EP&S                                                                                          | <del>.</del>      | WIND     | Still        | Moder. | High     | Report |       |   |
| PROJECT MANAGER Frank DeVita                                                                             | <del>.</del>      | HUMIDITY | Dry          | Moder. | Humid    | No     | 7     |   |
|                                                                                                          | <del>.</del>      |          |              |        |          |        |       |   |
| AVERAGE FIELD FORCE                                                                                      |                   |          |              |        |          |        |       |   |
| Name of Contractor                                                                                       | Function HSO      |          |              |        | Remarks  |        |       |   |
| Sohn Raci L                                                                                              | 51 te Mari.       |          |              | ē      |          |        |       |   |
| Sohn Acer: In<br>SiTaus S Dris<br>Englo Cocker Crky viewsky Pains by<br>Wate Brisbee Allstote Power Was. | Ingrator          |          |              |        |          |        |       |   |
| Englo Cocker Cityo icenty Pains by                                                                       | Owner/Laborer     |          |              |        |          |        |       |   |
| Wate Briber Allstote Power Vac.                                                                          | Liberet           |          |              |        |          |        |       |   |
|                                                                                                          | **                |          |              |        |          |        |       |   |
|                                                                                                          |                   |          |              |        |          |        |       |   |
|                                                                                                          |                   |          |              |        |          |        |       |   |
| VISITORS                                                                                                 |                   |          |              |        |          |        |       |   |
| Time Name                                                                                                | Representing      |          |              |        | Remarks  |        |       |   |
|                                                                                                          |                   |          |              |        |          |        |       |   |
|                                                                                                          |                   |          |              |        |          |        |       |   |
|                                                                                                          |                   |          |              |        |          |        |       |   |
|                                                                                                          |                   |          |              |        |          |        |       |   |
|                                                                                                          |                   |          |              |        |          |        |       |   |
|                                                                                                          | ·                 |          |              |        |          |        |       |   |
|                                                                                                          |                   |          |              |        |          |        |       |   |
|                                                                                                          |                   |          |              |        |          |        |       |   |
|                                                                                                          |                   |          |              |        |          |        |       |   |
| EQUIPMENT AT THE SITE:                                                                                   |                   |          |              |        |          |        |       |   |
|                                                                                                          | <u> </u>          |          |              | _      |          |        |       |   |
| <del></del>                                                                                              |                   |          |              |        |          |        |       |   |
|                                                                                                          |                   |          |              |        |          |        |       |   |
|                                                                                                          |                   |          |              |        |          |        |       |   |
| MATERIALS:                                                                                               |                   |          |              |        |          |        |       |   |
| Forcing wir Sike Pop 111                                                                                 | Turbo Vac Truck 1 | byard 1  | VYNJr J      | 4391   |          |        |       |   |
| power Sur                                                                                                |                   |          |              |        |          |        |       |   |
| <u> </u>                                                                                                 |                   |          |              |        |          |        |       |   |
| <del></del>                                                                                              |                   |          |              |        |          |        |       |   |
| DISTRIBUTION 1 Proj. Mgr.<br>2 Field Office                                                              |                   |          | PAG          | E 1 OF | 之 PA     | GES    |       |   |
| 2 Field Office<br>3 File                                                                                 | <i>n</i> –        |          |              |        | 5        |        |       |   |
|                                                                                                          | BY S. Tals        | •        |              | TITLE  | Insp     | retter |       | _ |



| PROJECT Franklin Cleaners Site (off-site)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | REPORT NO                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| NYSDEC # <u>1-30-050</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DATE_3/7/63                   |
| CONSTRUCTION ACTIVITIES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| 0845 All state Power Vac on site (Nate Brisbee)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | proper hose + truck           |
| City o Centy Paring on site 3 man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |
| All state begin prop to Vaccum out day well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Vaccam well                 |
| City o Centy Paring on site 3 man All state begin prop to Vaccum out day well Uty + Country Complete Saucuts + contine fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | holis                         |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |
| - Dali suggets to lay poly or nictary Cocotox. F<br>UCLS + prossuce all the good will act as<br>OGNO Milistery on sile 2 men to can wise for four                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a less and be assessed        |
| 0622 Mily Fore on Sile 2 men to con wise for for a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T port to t Set post for Gile |
| 30 5. a/6 v.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The part of the same          |
| - Collaction Auring roads auring - 2 mets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | los construction.             |
| - Mils Force still must run the Force of install                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | both gales muchy dome posts.  |
| -Coll action Auring roads auring - 2 medes -Mils force still mut run the Tener or install 1050 Complete day well to last sing - it consists rotted a susted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of a 55 Gullen down.          |
| rotted & rustell.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>/</u>                      |
| - Dale suggests we live it w/ PUC or covera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Le lines.                     |
| -Co tion All days Round - yet must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1. cdl-off here Lill Text     |
| manin he all debis through a leaving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | + grubbing - This may contlat |
| recoing he all debis Revert or clearing.  where the dilivery of the grant her gradi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ne.                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 1300 Fix place pumbers on Parce sign.  Talk up lingulo - Man Stort grading in S  Inside basement dear. I Possibly stort  he set appoint.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| Talk uf angelo - Mon Stort grading in S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sid of back + till hole       |
| inside basement dear. I Porsibly stort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | well constaction them; Hing   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 1500 extect 1st Ambient dir sigel our hole insid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | he prement deer               |
| The state of the s |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| DISTRIBUTION 1 Proj. Mgr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PAGE 2 OF 2 PAGES             |
| 2 Field Office<br>3 File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PAGE 2 OF 2 PAGES             |



| CONSULTING ENGINEE                                                                                 | ERS             | DATE 3/10/03  |     |              |        |        |       |               |          |   |
|----------------------------------------------------------------------------------------------------|-----------------|---------------|-----|--------------|--------|--------|-------|---------------|----------|---|
|                                                                                                    |                 | S M T W TH    |     |              |        |        |       | F             | _<br>  S |   |
|                                                                                                    |                 | 1             | DAY |              |        |        |       |               |          |   |
| PROJECT_Franklin Cleaners Site (on-                                                                | -site)          |               |     |              |        |        |       |               |          |   |
| NYSDEC SITE NO. 1-30-050                                                                           |                 | WEATHER       |     | Brite<br>Sun | Clear  | Over   | cast  | Rain          | Snow     |   |
| NYSDEC CONTRACT NO. D004184                                                                        |                 | TEMP.         |     | 0 32         | 32-50  | 50-7   | 0     | 70-85         | 85+up    | ) |
| CONTRACTOR EP&S                                                                                    | <u>.</u>        | WIND          | s   | Still        | Moder. | High   |       | Report<br>No. | ~        |   |
| PROJECT MANAGER Frank DeVita                                                                       | <u> </u>        | HUMIDITY      | / 🗖 | Dry          | Moder. | Hum    | id    | ,,,,,         | 8        |   |
|                                                                                                    |                 |               |     |              |        |        |       |               |          |   |
| AVERAGE FIELD FORCE                                                                                |                 |               |     |              |        |        |       |               |          |   |
| Name of Contractor                                                                                 | Function        | <del></del> - |     |              |        | Ren    | narks |               |          |   |
| Dolz Brane EPS                                                                                     | けい              |               |     |              |        |        |       |               |          |   |
| John Pieuri + S. Tauss Aris Here Lyon Lyon Nelling Co Jil Lyon & angilo Calm City + landy Pariator | Sit Mun.        |               |     |              |        |        |       |               |          |   |
| S. Tauss ArB                                                                                       | ingritor        |               |     |              |        |        |       |               |          |   |
| Hard Lyon Lyon Nelling Co                                                                          | come / babons   |               |     |              |        |        |       |               |          |   |
| I/L Lyon 4                                                                                         | Loborce         |               |     |              |        |        |       |               |          |   |
| angilo Cala City + landy Pariglos                                                                  | uno Mapore      |               |     |              |        |        |       |               |          |   |
|                                                                                                    |                 |               |     |              |        |        |       |               |          |   |
| VISITORS                                                                                           |                 |               |     |              |        |        |       |               |          |   |
| Time Name                                                                                          | Representing    |               |     |              |        | Ren    | narks |               |          |   |
| 0845- F. Duita                                                                                     | Representing    |               |     |              |        | 1 (0.1 | iaino |               |          |   |
| 0915                                                                                               |                 |               |     |              |        |        |       |               |          |   |
|                                                                                                    |                 |               |     |              |        |        |       |               |          |   |
|                                                                                                    |                 |               |     |              |        |        |       |               |          |   |
|                                                                                                    |                 |               |     |              |        |        |       |               |          |   |
|                                                                                                    |                 |               |     |              |        |        |       |               |          |   |
|                                                                                                    |                 |               |     |              |        |        |       |               |          |   |
|                                                                                                    |                 |               |     |              |        |        |       |               |          |   |
|                                                                                                    |                 |               |     |              |        |        |       |               |          |   |
|                                                                                                    |                 |               |     |              |        |        |       |               |          |   |
| EQUIPMENT AT THE SITE:                                                                             |                 |               |     |              |        |        |       |               |          |   |
| LM-1 sml di.11 1.3 / CME                                                                           | -45 rig / Range | ēυ            |     |              |        |        |       |               |          |   |
| Chev, 1500 pick-up.                                                                                |                 |               |     |              |        |        |       |               |          |   |
|                                                                                                    |                 |               |     |              |        |        |       |               |          |   |
| MATERIALS:                                                                                         |                 |               |     | _            | _      |        |       |               |          |   |
| Sika No ,11                                                                                        |                 |               |     |              |        |        |       |               |          |   |
| >/Fil 10-1 1/1                                                                                     |                 |               |     |              |        |        |       |               |          |   |
| •                                                                                                  | <u> </u>        |               |     |              |        |        |       |               |          |   |
|                                                                                                    |                 |               |     |              |        |        |       |               |          |   |
|                                                                                                    |                 |               |     |              |        |        |       |               |          |   |
| DISTRIBUTION 1 Proj. Mgr.                                                                          |                 |               |     | PAG          | E 1 OF | _2     | PA    | GES           |          |   |
| 2 Field Office<br>3 File                                                                           |                 |               |     |              |        |        | _     |               |          |   |
|                                                                                                    | BY S. Taus      | ·<br>-        |     |              | TITLE  |        | In    | pet           | 0-       | _ |



| PROJECT Franklin Cleaners Site (off-site) RE                                                                         | PORT NO.              |
|----------------------------------------------------------------------------------------------------------------------|-----------------------|
| NYSDEC # 1-30-050                                                                                                    | DATE <u>3/10/63</u>   |
| CONSTRUCTION ACTIVITIES:                                                                                             |                       |
| Oxio Lyon Dilling Co. D. s; to Horry + IH Lyon                                                                       |                       |
| unlocal emissionT                                                                                                    |                       |
| break olewa LM-1 for bosevant dilling                                                                                |                       |
| A: Ibis concerned that gives clearante will be a poblem                                                              |                       |
|                                                                                                                      |                       |
| - John says possible publin w/ ail non dita logger ( might                                                           | not be logging)       |
| - Dala paposes to torp 4/ landravet pates so it want be to                                                           | is cold to construct  |
| the retaining will which is proposed.                                                                                |                       |
| for Frank Druka on site. Say & It Trad Opproved the new or the repair of the bole inside the preservent dear, or the | unlage +              |
| the repair of the bole inside the bosement dear, or t                                                                | he epta               |
| Fill to be used in the change orders.                                                                                |                       |
| - pebris removed in s. ally, dry well pad + piping + wing                                                            | and the on tonce      |
| Still pending                                                                                                        |                       |
| 1045 City + County Pain, Corp. on site 4 Moncrew                                                                     |                       |
| hall can not be constructed today due to cold wather.                                                                | . Later               |
| Clear + grub in now of buildings, fix bole inside base                                                               | is, all               |
| They'n to grade rear of buildings.                                                                                   |                       |
| - debis Revol + Clearing Herabling must be completed today                                                           | because 10/1-04       |
| 13 6 be remark townson morning.                                                                                      | THE COST TO THE COST  |
| ., , , , , , , , , , , , , , , , , , ,                                                                               |                       |
| 1345 unearth a 55 cd. dryn I'd + what appear to be a drum of.                                                        | sona kind.            |
| there is a silvery fulite substance or apossible word unde                                                           | 19/00ml               |
| RID reads 31 ppm. Dale smells what he thinks it pas                                                                  | at                    |
| 1630 Note + SH place conv. Do not touch susperful point dam                                                          | we hand . Low as 1.11 |
| trainflow will semonit on 3/11/03, lellit "paint so                                                                  | pakel dibris'         |
| Dobas in ally will remain                                                                                            |                       |
| 1645 Lyona                                                                                                           |                       |
| 1715 Ciky & Gualy Uff-5; le                                                                                          |                       |
| 1745 unload soul & Guipment                                                                                          |                       |
| 1800 Lyons + Eps + ST off sh                                                                                         |                       |
|                                                                                                                      |                       |
|                                                                                                                      |                       |
| DIOTRIPLITION A D. I.M.                                                                                              | 2 05 2 51055          |
| DISTRIBUTION 1 Proj. Mgr. PAGE _ 2 Field Office                                                                      | 2 OF 2 PAGES          |
| 3 File                                                                                                               |                       |



| CONSULTING                                               | G ENGINEER   | RS                       |                  | DA         | TE           |     | 3/11/0 | 3     |       |        |      |   |
|----------------------------------------------------------|--------------|--------------------------|------------------|------------|--------------|-----|--------|-------|-------|--------|------|---|
|                                                          |              |                          |                  | S M T W TH |              |     |        |       | F     | S      |      |   |
|                                                          |              |                          |                  | DA         | Y            |     | -      |       |       |        |      |   |
| PROJECT Franklin Cleaner                                 | s Site (on-s | site)                    |                  |            | L            |     |        |       |       |        |      |   |
| NYSDEC SITE NO. 1-30-05                                  |              |                          | w                | EATHER     | Brite<br>Sun |     | Clear  | Over  | cast  | Rain   | Snow |   |
| NYSDEC CONTRACT NO                                       | D004184      |                          |                  | MP.        | To 3         |     | 32-50  | 50-70 | 0     | 70-85  | 85+u | ) |
| CONTRACTOR EP&S                                          |              |                          | <u>.</u> w       | IND        | Still        |     | Moder. | High  | -     | Report |      |   |
| PROJECT MANAGER Fran                                     | k DeVita     |                          | _<br><u>.</u> ні | JMIDITY    | Dry          |     | Moder. | Humi  | id    | No.    | 9    |   |
|                                                          |              |                          | _                |            |              |     |        |       |       |        | _    |   |
| AVERAGE FIELD FORCE                                      |              |                          |                  |            |              |     |        |       |       |        |      | _ |
| Name of Contractor                                       |              | Functi                   | ion              |            |              |     |        | Rem   | narks |        | _    |   |
| Arla Brane Eps                                           |              | HSO                      |                  |            |              |     |        | •     |       |        |      |   |
| The Stane                                                | },           | Site Man.                |                  |            |              |     |        |       |       |        |      |   |
| John Peler; 4 Structures Aris Harry Lyon Lyon Ar 34 Lyon | }            | Insular                  |                  |            |              |     |        |       |       |        |      |   |
| type A                                                   | II.M         | and laborer              |                  |            |              |     |        |       |       |        |      |   |
| J# Lung                                                  |              | Inspector and of laborer |                  |            |              |     |        |       |       |        |      |   |
| Mike smith Miles F                                       | ince do      | luboar                   |                  | }          |              |     |        |       |       |        |      |   |
| Ryan aps l                                               | •            | lubour                   |                  |            |              |     |        |       |       |        |      |   |
| Fyan                                                     |              | laborer                  |                  |            |              |     |        |       |       |        |      | 1 |
| VISITORS                                                 |              | , , ,                    |                  |            |              |     |        |       |       |        |      |   |
| Time Name                                                |              | Represe                  | nting            |            |              |     |        | Rem   | arks  | -      |      |   |
| 1000 Al Static                                           |              | CPS                      |                  |            |              |     |        |       |       |        |      |   |
| l l l l l l l l l l l l l l l l l l l                    |              |                          |                  |            |              |     |        |       |       |        |      |   |
| 1000 Larry Velder                                        |              |                          |                  |            |              |     |        |       |       |        |      |   |
| 1005                                                     |              |                          |                  | 1          |              |     |        |       |       |        |      |   |
|                                                          |              |                          |                  | 1          |              |     |        |       |       |        |      |   |
|                                                          | 1            |                          |                  | 1          |              |     |        |       |       |        |      |   |
| }                                                        | 1            |                          |                  | 1          |              |     |        |       |       |        |      |   |
| }                                                        |              |                          |                  | 1          |              |     |        |       |       |        |      |   |
|                                                          |              |                          |                  |            |              |     |        |       |       |        |      |   |
| EQUIPMENT AT THE SITE:                                   |              |                          |                  |            |              |     |        |       |       |        |      |   |
| LM-1, CME-45                                             | Com          | 3500                     |                  |            |              |     |        |       |       |        |      |   |
|                                                          |              |                          |                  |            |              |     |        |       |       |        |      |   |
|                                                          |              |                          |                  |            |              |     |        |       |       |        |      |   |
|                                                          |              |                          |                  |            |              |     |        |       |       |        |      |   |
| MATERIALS:                                               |              |                          |                  |            |              |     |        |       |       |        |      |   |
| 3/4" PUC siles of                                        | Streen !     | benbaile chips #         | Sand             | /          |              |     |        |       |       |        |      |   |
|                                                          |              | - <del></del>            |                  |            |              |     |        |       |       |        |      |   |
|                                                          |              |                          |                  |            |              |     |        |       |       |        |      |   |
|                                                          |              |                          |                  |            |              |     |        |       |       |        |      |   |
| DISTRIBUTION 1 Proj. Mg                                  |              |                          |                  |            |              |     | 1 OF   | ,     | DA    | GES    |      |   |
| 2 Field Of<br>3 File                                     |              |                          |                  | /          | _            | AGE | . 1 01 |       |       | ULU    |      |   |

BY Inspite Shiple Tous TITLE Fright



| PROJECT Franklin Cleaners Site (off-site)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _ REPORT NO        | 9             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| NYSDEC # _1-30-050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DATE               | 3/11/03       |
| CONSTRUCTION ACTIVITIES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |               |
| D715 - Dala talked to me, dall sig will not fit in phasmacy to he hand due, predict an okay from Jet.  The well spice says 18" well vailts when the it should say the start of sign of site base the 12" that they brought they are disting on site there they brought of the state on sike (course EPS)  0845 Al State on sike (course EPS)  0900 - Miles Form Co. aside amon crow gakes one not scooly - being tax from Frank b. States work must contain a Postbook wort. It is agreed upon Quekate bords sike after as be what course is agreed upon Quekate bords sike after a both the six form.  - Giby - County Pains on sike 4 mansace | to socker 2 well   | ich shels     |
| - Decementing: gerbage showing up on site in back every moini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The sale           | Goint         |
| point and as old arcsol consumil a 55 Col drain lid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.7 Was 6 m.y      | - pi-11 9     |
| 0940 Long Videor onsite be well through . I will likely be som                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aling during Rest. | OP. PHOL.     |
| - les our well locations of list. Find out wall is 1/2-2  null will need to be sound s. 1/2-2: Peter  1230 Get outhorisation to Sign Bout General Monitest. from  angle has touble obtaining virgin part to new spec. Fink  a Blend (fines & gapl.)                                                                                                                                                                                                                                                                                                                                                                                             | Frank, sign of     | Lys DEC Agant |
| 1500 Grand trade on site apparently from 110 soul but true Start dilling actually. SVM-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | h says Island      | Rip Seil.     |
| 1740 Notify John Salloy fine will not lock du to the him                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ys impacting the   | mil. Aid      |
| 1810 F. 1.7h tensporting Fill + in; til grading. 1815 SVM-1 installed of exception of great & pool, was I to tag. 1840 Pauloud cont air mon. dota.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |               |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office 3 File BY 8. Taus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AGE 2 OF           | 2 PAGES       |



| CONSULTING ENGINEERS                                                                                                              |              | DATE     |       |                          |       |       |         |               |                                       |   |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-------|--------------------------|-------|-------|---------|---------------|---------------------------------------|---|
|                                                                                                                                   |              |          | DAY   | S                        | M     | Т     | W       | TH            | F                                     | S |
|                                                                                                                                   |              |          |       |                          |       |       |         |               |                                       |   |
| PROJECT Franklin Cleaners Site (on                                                                                                | -site)       |          | - F   | ita.                     | Clear |       |         | Bain          | Snov                                  |   |
| NYSDEC SITE NO. 1-30-050                                                                                                          |              | WEATHER  | Su    | ın                       | Clear |       | ercast- | Rain<br>70-85 |                                       |   |
| NYSDEC CONTRACT NO. D004184                                                                                                       |              | TEMP.    | To 32 |                          | 32-50 | 50-70 |         |               | · · · · · · · · · · · · · · · · · · · |   |
| CONTRACTOR EP&S                                                                                                                   |              | WIND     |       | Still Moder. High Report |       |       |         |               |                                       |   |
| PROJECT MANAGER Frank DeVita                                                                                                      |              | HUMIDITY | Dr    | Dry Moder. Humid / Ò     |       |       |         |               |                                       |   |
|                                                                                                                                   |              |          |       |                          |       |       |         |               |                                       |   |
| AVERAGE FIELD FORCE                                                                                                               |              |          |       |                          |       |       |         |               |                                       |   |
| Name of Contractor Signe 4.P.S                                                                                                    | Function     |          |       |                          | ,     | Re    | marks   |               |                                       |   |
| The Duri                                                                                                                          | HSO          |          |       |                          |       |       |         |               |                                       |   |
| Dale Brane GPS  John Pecor:  Steve Taus S D+13  Harry Lyon Lyon's D://ig Go  Jeff Lyon  Tran (the Her Guy) the lift any  oncloser | >1/2 PIET    |          |       |                          |       |       |         |               |                                       |   |
| they have home hilliage                                                                                                           | Quared Labor |          |       |                          |       |       |         |               |                                       |   |
| If wor                                                                                                                            | laborer      |          |       |                          |       |       |         |               |                                       |   |
| Ivan (The Cotter Cours) the letter any                                                                                            | Idoporer     |          |       |                          |       |       |         |               |                                       |   |
| ohelper 4                                                                                                                         | labour       |          |       |                          |       |       |         |               |                                       |   |
|                                                                                                                                   |              |          |       |                          |       |       |         |               |                                       |   |
| VISITORS                                                                                                                          |              |          |       |                          |       |       |         |               |                                       |   |
| Time Name                                                                                                                         | Representing |          |       |                          |       | Re    | marks   |               |                                       |   |
| 0930 - Frank Luite Dr. B<br>0945 Robert Hillory                                                                                   |              | J        |       |                          |       |       |         |               |                                       |   |
| 0945 Robot Mins                                                                                                                   |              |          |       |                          |       |       |         |               |                                       |   |
| <b>≱</b>                                                                                                                          | }            |          |       |                          |       |       |         |               |                                       |   |
|                                                                                                                                   |              |          |       |                          |       |       |         |               |                                       |   |
|                                                                                                                                   |              |          |       |                          |       |       |         |               |                                       |   |
|                                                                                                                                   |              |          |       |                          |       |       |         |               |                                       |   |
|                                                                                                                                   |              |          |       |                          |       |       |         |               |                                       |   |
|                                                                                                                                   |              |          |       |                          |       |       |         |               |                                       |   |
|                                                                                                                                   |              |          |       |                          |       |       |         |               |                                       |   |
| EQUIPMENT AT THE SITE:                                                                                                            |              |          |       |                          |       |       |         |               |                                       |   |
| Ln-1 CME-45 Ram 3500                                                                                                              |              |          |       |                          |       |       |         |               |                                       |   |
| LH-1, CITC-13 VARI                                                                                                                | 5 300        |          |       |                          |       |       |         |               |                                       |   |
|                                                                                                                                   |              |          |       |                          |       |       |         |               |                                       |   |
|                                                                                                                                   |              |          |       |                          |       |       |         |               |                                       |   |
| MATERIALS:                                                                                                                        |              |          |       | .*                       |       |       |         |               |                                       |   |
| 2" PIL riser + screen                                                                                                             |              |          |       |                          |       |       |         |               |                                       |   |
|                                                                                                                                   |              |          |       |                          |       |       |         |               |                                       |   |
|                                                                                                                                   |              |          |       |                          |       |       |         |               |                                       |   |
|                                                                                                                                   |              |          |       |                          |       |       |         |               |                                       |   |
| DISTRIBUTION 1 Proj. Mgr. PAGE 1 OF 2 PAGES                                                                                       |              |          |       |                          |       |       |         |               |                                       |   |
| 2 Field Office                                                                                                                    |              |          |       | 1 740                    | _ 101 |       |         | .0_0          |                                       |   |
| 3 File                                                                                                                            | BY S. Tausc  |          |       |                          | TITL  | F     | Ins     | n i hi        | _                                     |   |
|                                                                                                                                   |              |          |       |                          |       |       |         |               |                                       |   |



| PROJECT Franklin Cleaners Site (off-site)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | REPORT NO. / 0                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| NYSDEC # 1-30-050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DATE 3/12/03                                                              |
| CONSTRUCTION ACTIVITIES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| 0730 Mark out AS3, bocation on Map places it was mount to the North about #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Page 1'                                                                   |
| Specify a siza so they ar using 12" will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | voults as long as the spec does not                                       |
| 0845 Review AS-3 location of Dale + Horry . AS-3  pipes of proposal location from proposal locations layout + go our systematical layout + go our systematic | will need to be nevel N. 15" due to                                       |
| - LM-1 is second to the ground of it lag bolts, 0900 F. De Vite on story Relat 161.2. confirm 1230 metil 1020 We are howing CO problems a Dala proposes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | these bobs will real to be filling.                                       |
| Son upor conoil be bother sontilotion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·                                                                         |
| 115 The butter bruy on site 2 mon crew (Ivan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | as are Shu brequetti, fix gothers                                         |
| diet the webs into the day ways.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I nothy Ivan he might went to                                             |
| 1130 but appoint from Frank to an existing blacer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |
| 1230 Constation mutig : S. Tauss Dale Brance John 1430 Degindiging trench for air piping. 1800 complete AS-3 up to well great.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TOP was down o reds report  Prosi, Font De Vila, J. F. Talo Do Avendaight |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office 3 File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAGE 2 OF 2 PAGES  TITLE Inspute                                          |
| BY S. Tause                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TITLE Insputer                                                            |



DATE 3/13/03

|                                                                                                                                                                                |                 | DAY  | S            | M       | T    | W     | TH            | F          | S |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|--------------|---------|------|-------|---------------|------------|---|--|--|--|--|
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
| PROJECT Franklin Cleaners Site (on-site)                                                                                                                                       |                 | C    | Brite        | Clear   | Over | ract  | Rain          | Snow       |   |  |  |  |  |
| NYSDEC SITE NO. 1-30-050                                                                                                                                                       | WEATH           | L    | Sun<br>To 32 | 32-50   | 50-7 |       | 70-85         | 85+up      |   |  |  |  |  |
| NYSDEC CONTRACT NO. D004184                                                                                                                                                    | TEMP.           | L    |              |         |      |       |               | 05+up      | , |  |  |  |  |
| CONTRACTOR EP&S                                                                                                                                                                | WIND            | L    | Still        | Moder   | High |       | Report<br>No. | 1 1        |   |  |  |  |  |
| PROJECT MANAGER Frank DeVita                                                                                                                                                   | <u>.</u> HUMIDI | IY [ | Dry          | Moder.  | Hum  | ıa    |               | <i>i</i> ' | 1 |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
| AVERAGE FIELD FORCE                                                                                                                                                            |                 |      |              |         |      |       |               |            |   |  |  |  |  |
| Name of Contractor Fund                                                                                                                                                        | tion            |      |              |         | Ren  | narks |               |            | _ |  |  |  |  |
| Name of Contractor  Vale Brane & PS  Tohn Prece;  Slew Tanss  Herry Lyon  Tilt Lyon  Tilt Lyon  Name of Contractor  Func  Sik Mon.  Tuspector  Owner/Loboror  Loboror  Loboror |                 |      |              |         |      |       |               |            |   |  |  |  |  |
| John Proof St. Mon.                                                                                                                                                            |                 |      |              |         |      |       |               |            |   |  |  |  |  |
| Steer auss                                                                                                                                                                     |                 |      |              |         |      |       |               |            |   |  |  |  |  |
| Harry Lyon                                                                                                                                                                     |                 |      |              |         |      |       |               |            |   |  |  |  |  |
| J. H Lyon Coson                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
| VISITORS                                                                                                                                                                       |                 |      |              |         |      |       |               |            |   |  |  |  |  |
| Time Name Repres                                                                                                                                                               | enting          |      |              |         | Ren  | narks |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
| EQUIPMENT AT THE SITE:                                                                                                                                                         |                 |      |              |         |      |       |               |            |   |  |  |  |  |
| LM-1, CME-45 Ron 3500                                                                                                                                                          |                 |      |              |         |      |       |               |            |   |  |  |  |  |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                          |                 |      |              |         |      |       |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      | _     |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
| MATERIALS:                                                                                                                                                                     |                 |      |              |         |      |       |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
|                                                                                                                                                                                |                 |      |              |         |      |       |               |            |   |  |  |  |  |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office                                                                                                                                       |                 |      | PAG          | SE 1 OF | _2   | P#    | AGES          |            |   |  |  |  |  |
| 3 File                                                                                                                                                                         |                 |      |              | TITI !  | _    | 1     | n ler         | _          |   |  |  |  |  |
| BY <i>S. Talu</i> ,                                                                                                                                                            | 5               |      |              | TITL    | = _  | In    | W HOV         |            |   |  |  |  |  |

1)



| PROJECT Franklin Cleaners Site (off-site)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | REPORT NO            |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------|
| NYSDEC # _1-30-050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DATE                 | 3/13/03                                          |
| CONSTRUCTION ACTIVITIES: continue digging trans-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                  |
| 0730 pap to dill (VE-2 plot loctor ul Dole locitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n MIST be meal BE    | 2 w 3                                            |
| 0935 Pale alls NES or gets though to Pixie who was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                  |
| conform to Rus, ons to the Macro Lag System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns Enclosure Numb    | w 3.                                             |
| It seems they gire trying to be - enganer the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | system instead of a  | enstat it                                        |
| acus dig to spec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>             |                                                  |
| 1015 Colbet 1 (20d) ambient Air Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                  |
| 12:00 Uncoper an un-backfilled geoprope hole AID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 cads 0.4 Some as   | hactgand)                                        |
| 1240 SUE-2 6" soul all scran ol'12' of barbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | il pells our soul    |                                                  |
| Depthof will procents strict adherence to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | spec · Bale is conti | dot the                                          |
| system will proform as needed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | el se l                                          |
| 1432 Dole Stoph AS-I reals to he would from m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | 10                                               |
| 242 5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | as our Dela as       | lari as                                          |
| the ciche will serves asset the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                    | <del>6                                    </del> |
| 1500 Survey tranch to 12° at Systems on boon to AS-2: problem of pin augus filled of soul rull only so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18" at S. well       |                                                  |
| AS-2: posth of pin augus filled of soil rull only so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +@ 18.8 not 19'      |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                  |
| DISTRIBUTION 1 Droi Mar-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PAGE 2 OF            | 2 04050                                          |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office 3 File BY S. The State of the | PAGE $2$ OF          | PAGES                                            |



|                                                   | CONSULTING ENGINE                                 | ERS                                                       | DATE        |      |      | 103      |      |       |               |      |    |
|---------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|-------------|------|------|----------|------|-------|---------------|------|----|
|                                                   |                                                   |                                                           | DA          | i    | S    | М        | T    | W     | TH            | F    | =  |
|                                                   |                                                   |                                                           | DA          | 1    |      |          |      |       |               | -    |    |
| PROJECT_F                                         | Franklin Cleaners Site (or                        | n-site)                                                   |             | 1    |      |          |      |       |               |      |    |
| NYSDEC SIT                                        | TE NO. <u>1-30-050</u>                            |                                                           | WEATHER     | Brit |      | Clear    | Ove  | rcast | Rain          | Sno  | w  |
| NYSDEC CC                                         | NTRACT NO. <u>D004184</u>                         | ·                                                         | TEMP.       | To   | 32   | 32-50    | 50-7 | O     | 70-85         | 85+1 | up |
| CONTRACT                                          | OR EP&S                                           |                                                           | WIND        | Stil | ı    | Moder.   | High | )     | Report<br>No. |      |    |
| PROJECT M                                         | ANAGER Frank DeVita                               | <u>-</u>                                                  | HUMIDITY    | Dry  |      | Moder.   | Hum  | id    | /             | 2    |    |
|                                                   |                                                   |                                                           |             |      |      |          |      |       |               |      |    |
| AVERAGE FIE                                       | ELD FORCE                                         |                                                           |             |      |      |          |      |       |               |      |    |
| Sale Brands John Hei S. Tanis Hear Lyon Jell Lyon | me of Contractor  A PS  The A PS  Lyan Milling to | Function  1450  972 Mon.  Inspector  Owner (Volunt Labor) |             |      |      |          | Ren  | narks |               |      |    |
| VISITORS                                          |                                                   | <u> </u>                                                  |             |      |      |          |      |       |               |      |    |
| Time                                              | Name                                              | Representing                                              |             |      |      | <u>-</u> | Ren  | narks |               |      |    |
|                                                   |                                                   |                                                           |             |      |      |          |      |       |               |      |    |
| EQUIPMENT A                                       | AT THE SITE:                                      |                                                           |             |      |      |          |      |       |               |      |    |
| LM-1 -                                            | Ron 3500 , (x                                     | 75-45                                                     |             |      |      |          |      |       |               |      |    |
|                                                   |                                                   |                                                           |             |      |      |          |      |       |               |      |    |
| MATERIALS:                                        | 2' AL                                             |                                                           |             |      |      |          |      |       |               |      |    |
|                                                   |                                                   |                                                           |             |      |      |          |      |       |               |      |    |
|                                                   |                                                   |                                                           |             |      |      |          |      |       |               |      |    |
|                                                   |                                                   |                                                           |             |      |      |          |      |       |               |      |    |
|                                                   |                                                   |                                                           | · · · · · · |      |      |          |      |       |               |      |    |
| DISTRIBUTION                                      | I 1 Proj. Mgr.<br>2 Field Office<br>3 File        |                                                           |             |      | PAGE | = 1 OF   |      |       |               |      |    |
|                                                   |                                                   | BY S. Truss                                               |             |      |      | TITLE    |      | MS    | act           | · ·  |    |



| PROJECT Franklin Cleaners Site (off-site)                                              | REPORT NO. / 1  |
|----------------------------------------------------------------------------------------|-----------------|
| NYSDEC # _1-30-050                                                                     | DATE            |
| CONSTRUCTION ACTIVITIES:                                                               | -               |
| 0830 Place location of ASMI of Dale + Harry will located appear 2 NW of map becture    |                 |
| 0445 Begin A. Ilia, well.                                                              | <u> </u>        |
| - School pushed book again 2 dixs. Mon: begin outside delling + head delling, & pipine | ·<br><u>·</u>   |
| -asphalt us tookstuly scholded for wel.                                                | _               |
| - PEN Still pale at be beaut lands.                                                    |                 |
| 1330 Comple ABM-1 up to harborite sel.                                                 |                 |
|                                                                                        |                 |
| Secure CME-45 on sike over weekend                                                     |                 |
|                                                                                        | <u> </u>        |
|                                                                                        |                 |
| ·                                                                                      |                 |
|                                                                                        |                 |
| -                                                                                      |                 |
|                                                                                        | <del></del>     |
|                                                                                        | <del></del>     |
|                                                                                        |                 |
|                                                                                        |                 |
|                                                                                        |                 |
|                                                                                        |                 |
|                                                                                        |                 |
|                                                                                        | ······          |
|                                                                                        |                 |
|                                                                                        |                 |
|                                                                                        | <del></del>     |
|                                                                                        |                 |
|                                                                                        |                 |
| 2 Field Office                                                                         | TITLE Inspector |



3/17/03

DATE \_\_\_\_

|                                               |             | DAY          | M           | W TH       | FS    |
|-----------------------------------------------|-------------|--------------|-------------|------------|-------|
| PROJECT_ Franklin Cleaners Site (on-site)     |             |              |             |            |       |
| NYSDEC SITE NO. 1-30-050                      | <br>WEATH   | ER Brite     | Clear Ove   | rcast Rain | Snow  |
| NYSDEC CONTRACT NO. D004184                   | TEMP.       | Sun<br>To 32 | 32-50 50-7  | 70-85      | 85+up |
| CONTRACTOR EP&S                               | WIND        | Still        | Moder. High | Report     |       |
| PROJECT MANAGER Frank DeVita                  | . HUMIDI    | TY Dry       | Moder. Hum  | nid No.    | 3     |
|                                               | <del></del> |              |             |            |       |
| AVERAGE FIELD FORCE                           |             |              |             |            |       |
| Name of Contractor                            | unction     | <del></del>  | Ren         | narks      |       |
| Dole Regule GD HSO                            |             |              |             |            |       |
| John Pecor: V Sikmon.                         |             |              |             |            |       |
| S. Tauss Stay Council Song                    |             |              |             |            |       |
| S. Tariss AB Ingother Duroch tophoral Labour. |             |              |             |            |       |
| 1 4 typh                                      |             | }            |             |            |       |
|                                               |             |              |             |            |       |
|                                               |             |              |             |            |       |
|                                               |             |              |             |            |       |
| VISITORS Time Name Rep                        | recenting   |              | - Pon       | narks      |       |
| Time Name Rep                                 | presenting  |              | Ken         | liaiks     |       |
|                                               |             |              |             |            |       |
|                                               |             |              |             |            |       |
|                                               |             |              |             |            |       |
|                                               |             |              |             |            |       |
|                                               |             |              |             |            |       |
|                                               |             |              |             |            |       |
|                                               |             |              |             |            |       |
|                                               |             |              |             |            |       |
|                                               |             |              |             |            |       |
| EQUIPMENT AT THE SITE:                        |             |              |             |            |       |
| CME-45 LM-1 Ro                                | 13500 FO    | id van       |             |            |       |
|                                               |             |              |             |            |       |
|                                               |             |              |             |            |       |
| MATERIALS:                                    |             |              |             |            |       |
|                                               |             |              |             |            |       |
|                                               |             |              |             |            |       |
|                                               |             |              |             |            |       |
|                                               |             |              |             |            |       |
|                                               |             |              |             |            |       |
| DISTRIBUTION 1 Proj. Mgr.<br>2 Field Office   |             | PAC          | SE 1 OF2    | PAGES      |       |
| 3 File                                        | Thus        |              | TITLE .     | Tuesch     |       |



| PROJECT Franklin Cleaners Site (off-site)                                                                             | _ REPORT NO    | 13      |
|-----------------------------------------------------------------------------------------------------------------------|----------------|---------|
| NYSDEC # 1-30-050                                                                                                     | DATE           | 3/17/03 |
| CONSTRUCTION ACTIVITIES:  5.7. EAS - Lyon & Illing on site 0718  0730 attempt to notifice CME-45 drill reg to rear of | /              | SUM-1   |
| 1400 Peters to port toning CME-US OUR SUE-1                                                                           | to hard any    | 2177    |
| STEPS Gon offsite 1745                                                                                                | d of building. |         |
| 7 20                                                                                                                  |                |         |
|                                                                                                                       |                |         |
|                                                                                                                       |                |         |
|                                                                                                                       |                |         |
|                                                                                                                       |                | ŧ       |
|                                                                                                                       |                |         |
|                                                                                                                       |                |         |
|                                                                                                                       |                |         |
|                                                                                                                       |                |         |
|                                                                                                                       |                |         |
|                                                                                                                       |                |         |
|                                                                                                                       |                |         |
|                                                                                                                       |                |         |
|                                                                                                                       |                |         |
|                                                                                                                       |                |         |
|                                                                                                                       |                |         |
| DISTRIBUTION 1 Proj. Mgr. PA 2 Field Office 3 File                                                                    | AGE 2 OF       | 2 PAGES |



|                                                                                                | DA           | (Y   )       | '''     |          | '''    | ·     |         |
|------------------------------------------------------------------------------------------------|--------------|--------------|---------|----------|--------|-------|---------|
| PROJECT_Franklin Cleaners Site (on-site)                                                       |              |              |         |          |        |       |         |
| NYSDEC SITE NO. 1-30-050                                                                       | —<br>WEATHER | Brite        | Clear   | Overcast | Rain   | Snow  |         |
| NYSDEC CONTRACT NO. D004184                                                                    | TEMP.        | Sun<br>To 32 | 32-50   | 50-70    | 70-85  | 85+up | <b></b> |
| CONTRACTOR EP&S                                                                                | . WIND       | Still        | Moder.  | High     | Report | i     |         |
| PROJECT MANAGER Frank DeVita                                                                   | . HUMIDITY   | Dry          | Moder.  | Humid    | No     | 4     |         |
|                                                                                                | -            |              |         |          | I      |       |         |
| AVERAGE FIELD FORCE                                                                            |              |              |         |          |        |       |         |
| Name of Contractor Function                                                                    | on           |              |         | Remarks  |        |       |         |
| Sale Brank RPS HSD                                                                             |              |              |         |          |        |       |         |
| John Rewi. Sik Man.                                                                            |              |              |         |          |        |       |         |
| Stor Tames 13+15 Inspector                                                                     |              |              |         |          |        |       |         |
| John Rewrit Sik Man.  Show Tames D+B Inspector  Harry Lyon Lyon Brillin Owner (Laborer  Lohans |              |              |         |          |        |       |         |
| J.K Lyon & Lobert                                                                              |              |              |         |          |        |       |         |
|                                                                                                |              |              |         |          |        |       |         |
|                                                                                                |              |              |         |          |        |       |         |
| VISITORS                                                                                       |              |              |         |          |        |       |         |
| Time Name Represer                                                                             | tina         |              |         | Remarks  | _      |       |         |
| Tane Name Nopieser                                                                             | lang         |              |         | Romano   |        |       |         |
|                                                                                                |              |              |         |          |        |       |         |
|                                                                                                |              |              |         |          |        |       |         |
|                                                                                                |              |              |         |          |        |       |         |
|                                                                                                |              |              |         |          |        |       |         |
|                                                                                                |              |              |         |          |        |       |         |
|                                                                                                |              |              |         |          |        |       |         |
|                                                                                                |              |              |         |          |        |       |         |
|                                                                                                |              |              |         |          |        |       |         |
| EQUIPMENT AT THE SITE:                                                                         |              |              |         |          |        |       |         |
|                                                                                                | 611.4        |              |         |          | _      |       |         |
| LM-1 CME-48 Ron 3500/                                                                          | Ford VON     |              |         |          |        |       |         |
|                                                                                                |              |              |         |          |        |       |         |
|                                                                                                |              |              |         |          |        |       |         |
| MATERIALS:                                                                                     |              |              |         |          |        |       |         |
|                                                                                                |              |              |         |          |        |       |         |
|                                                                                                |              |              |         |          |        |       |         |
|                                                                                                |              |              |         |          |        |       |         |
|                                                                                                |              |              |         |          |        | _     |         |
| DISTRIBUTION 1 Proj. Mgr.<br>2 Field Office                                                    |              | PA           | GE 1 OF | 2 PA     | GES    |       |         |
| 3 File                                                                                         |              |              |         | r        | ,      |       |         |
| BY C. Tars                                                                                     |              |              | _ TITLE | Ins      | acto.  |       | _       |



| PROJECT <u>Franklin Cleaners Site (off-site)</u>      |                                               | REPORT NO       | 14    |
|-------------------------------------------------------|-----------------------------------------------|-----------------|-------|
| NYSDEC # <u>1-30-050</u>                              |                                               | DATE _          |       |
| CONSTRUCTION ACTIVITIES:                              |                                               |                 |       |
| 6800 begin papering to drill                          | Stopped nocking (shutoff)<br>booken +fix part |                 |       |
| 1330 fisher out copy                                  | Stopped morking (shut-off)                    |                 |       |
| 1 M continu killing.                                  | 5 dkm + , x /2017                             |                 |       |
| 1345 continue runing                                  | pipe in seer of building                      |                 |       |
| 1441 Complet. SUE-1<br>Mobilize to AS-1               |                                               |                 |       |
| 1630 bendilm As-1                                     |                                               |                 |       |
| 1800 Goldilling bordey                                |                                               |                 |       |
| 1846 All Aff-site.                                    |                                               |                 |       |
|                                                       |                                               |                 |       |
|                                                       |                                               |                 |       |
|                                                       |                                               |                 |       |
|                                                       |                                               |                 |       |
|                                                       |                                               |                 |       |
|                                                       |                                               |                 |       |
|                                                       |                                               |                 |       |
|                                                       |                                               |                 |       |
|                                                       |                                               |                 |       |
|                                                       |                                               |                 |       |
|                                                       |                                               |                 |       |
|                                                       |                                               |                 |       |
|                                                       |                                               |                 |       |
|                                                       |                                               |                 |       |
|                                                       |                                               |                 |       |
|                                                       |                                               |                 |       |
|                                                       |                                               |                 |       |
|                                                       |                                               |                 |       |
| DISTRIBUTION 1 Proj. Mgr.<br>2 Field Office<br>3 File | PA                                            | AGE <u>2</u> OF | PAGES |



| CONSULTING ENGINEE                                                                             | ERS                                       | П           | ATF  |     | 3/19/  | 103       |        |           |      |   |
|------------------------------------------------------------------------------------------------|-------------------------------------------|-------------|------|-----|--------|-----------|--------|-----------|------|---|
|                                                                                                |                                           |             |      | S   | M      | T         | W      | TH        | F    | S |
|                                                                                                |                                           | D           | AY   |     |        | ·         | 1      |           |      |   |
| PROJECT_Franklin Cleaners Site (on                                                             | -site)                                    |             |      |     |        |           |        |           |      |   |
| NYSDEC SITE NO. 1-30-050                                                                       | Olto                                      | WEATHER     | Brit |     | Clear  | Ove       | rcast  | Rain      | Snov |   |
| NYSDEC CONTRACT NO. D004184                                                                    |                                           | TEMP.       | Sur  |     | 32-50  | 50-7      | 0      | 70-85     | 85+0 | p |
| CONTRACTOR EP&S                                                                                |                                           | WIND        | Stil | 11  | Moder  | High      | 1      | Report    |      |   |
| PROJECT MANAGER Frank DeVita                                                                   |                                           | HUMIDITY    | Dry  | ,   | Moder. | Hum       | nid    | No. 15    | 5    |   |
| PROJECT MANAGER TIATIK DEVILA                                                                  | <del></del>                               | TIOIVIIDITT |      |     |        | <u>L_</u> |        |           |      | _ |
|                                                                                                |                                           |             |      |     |        |           |        |           |      |   |
| AVERAGE FIELD FORCE                                                                            |                                           |             |      |     |        |           |        |           |      |   |
| Name of Contractor                                                                             | Function                                  |             |      |     |        | Rer       | narks  |           |      |   |
| -1 Nave Tr                                                                                     | 7730                                      |             |      |     |        |           |        |           |      |   |
| Son Pier:                                                                                      | SIE MEN                                   |             |      |     |        |           |        |           |      |   |
| Site Touss DAS                                                                                 | Ingalo-                                   |             |      |     |        |           |        |           |      |   |
| Name of Contractor  Dale Bane GPS  Sohn Pier:  Sita Tomis DAB  Hary Lyon Lyon Dillig  Tit Lyon | HSO Sit Mon In ya do- Owned bebone Lobone |             |      |     |        |           |        |           |      |   |
| Tot Lyon                                                                                       | Lobors                                    | }           |      |     |        |           |        |           |      |   |
|                                                                                                |                                           |             |      |     |        |           |        |           |      |   |
|                                                                                                |                                           | }           |      |     |        |           |        |           |      |   |
| VISITORS                                                                                       |                                           |             |      |     | _      |           |        |           |      |   |
| VISITORS Time Name                                                                             | Representing                              |             |      |     |        | Por       | narks  |           |      |   |
|                                                                                                |                                           | 1           |      |     |        | Nei       | liains |           |      |   |
| 1430 J.H. Trudi                                                                                | DE(<br>D+B                                | }           |      |     |        |           |        |           |      |   |
| 1515 F. WV/A                                                                                   | 12+12                                     | 1           |      |     |        |           |        |           |      |   |
|                                                                                                |                                           | {           |      |     |        |           |        |           |      |   |
|                                                                                                |                                           | [           |      |     |        |           |        |           |      |   |
|                                                                                                |                                           |             |      |     |        |           |        |           |      |   |
|                                                                                                |                                           |             |      |     |        |           |        |           |      |   |
|                                                                                                |                                           |             |      |     |        |           |        |           |      |   |
|                                                                                                |                                           | }           |      |     |        |           |        |           |      |   |
|                                                                                                |                                           |             |      |     |        |           |        |           |      |   |
| EQUIPMENT AT THE SITE:                                                                         |                                           | <u> </u>    |      |     |        |           |        |           |      |   |
| CME-45 LM-1 Ru                                                                                 | n 3502 / Ford van                         |             |      |     |        |           |        |           |      |   |
| , , , , , , , , , , , , , , , , , , , ,                                                        | n ssee j voa van                          |             |      |     |        |           |        |           |      |   |
|                                                                                                |                                           |             |      |     |        |           |        |           |      |   |
|                                                                                                |                                           |             |      |     |        |           |        |           |      |   |
| MATERIALS:                                                                                     |                                           |             |      |     |        |           |        |           |      |   |
|                                                                                                |                                           |             |      |     |        |           |        |           |      |   |
|                                                                                                |                                           |             |      |     |        |           |        |           |      |   |
|                                                                                                |                                           |             |      |     |        |           |        |           |      |   |
|                                                                                                |                                           |             |      |     |        |           |        | · · · · · |      |   |
| DISTRIBUTION                                                                                   |                                           |             |      | D^^ | E 1 OF | _         |        |           |      |   |
| DISTRIBUTION 1 Proj. Mgr.<br>2 Field Office                                                    |                                           |             |      | PAG | E 1 OF |           | PA     | GES       |      |   |
| 3 File                                                                                         | 5:                                        |             |      |     |        | . ,       |        | ,         |      |   |
|                                                                                                | BYS.Tus                                   |             |      |     | TITLE  | 1         | ripe   | :12-      |      |   |



| NYSDEC # 1-30-050                                   | DATE                  |
|-----------------------------------------------------|-----------------------|
| CONSTRUCTION ACTIVITIES:                            |                       |
| 0745 Continu dilling AS-1                           |                       |
|                                                     | Hook up long          |
| exhaust pipe of sun air to Morvin oul.              |                       |
| 1200 mesus depth of pipe in trench. 9 at ancles.    | ve leater             |
| + 15' at S. sid fruit - Coppet measur               | unts are              |
| patty had to get considing not being at             | find grade.           |
| 1430 Jett Trall - Front Dille on sik her har of s   |                       |
|                                                     |                       |
| 1515 It o Front \$15, h.                            |                       |
| 1830 hor Drilling complete with a off sole          |                       |
| 1850 ST + EPS 1/51/2.                               |                       |
| / / / / / / / / / / / / / / / / / / /               |                       |
| * Frank grows moving sum-1 on to nock site property |                       |
| · · · · · · · · · · · · · · · · · · ·               |                       |
|                                                     |                       |
|                                                     |                       |
|                                                     |                       |
|                                                     |                       |
|                                                     |                       |
|                                                     |                       |
|                                                     |                       |
|                                                     |                       |
|                                                     |                       |
|                                                     |                       |
|                                                     |                       |
|                                                     |                       |
|                                                     |                       |
|                                                     |                       |
|                                                     |                       |
|                                                     |                       |
|                                                     | 05.3                  |
| DISTRIBUTION 1 Proj. Mgr. PAG 2 Field Office        | SE _ a _ OF Z _ PAGES |
| 3 File                                              | TITLE Augustus        |

PROJECT Franklin Cleaners Site (off-site) REPORT NO. 15



| CONSULTING ENGIN                                                                                        | NEERS                              | DΔ       | TE   | -   | 3/20   | 1.3  |        |        |      |          |
|---------------------------------------------------------------------------------------------------------|------------------------------------|----------|------|-----|--------|------|--------|--------|------|----------|
|                                                                                                         |                                    |          | i    | S   | M      | T    | W.     | TH     | F    | _<br>  S |
|                                                                                                         |                                    | DA       | ١Y   |     |        |      | 1      | 7      | }    |          |
| PROJECT_Franklin Cleaners Site (                                                                        | on-site)                           |          | ١    |     |        |      |        |        |      |          |
| NYSDEC SITE NO. 1-30-050                                                                                |                                    | WEATHER  | Brit |     | Clear  | Ove  | rcast  | Rain   | Snov | v        |
| NYSDEC CONTRACT NO. D00418                                                                              | 34 .                               | TEMP.    | Sur  |     | 32-50  | 50-7 | 70     | 70-85  | 85+1 | ip       |
| CONTRACTOR EP&S                                                                                         |                                    | WIND     | Stil | 1   | Moder. | High | 1      | Report |      |          |
| PROJECT MANAGER Frank DeVi                                                                              |                                    | HUMIDITY | Dry  | ,   | Moder. | Hun  | nid    | No.    | 16   |          |
|                                                                                                         |                                    |          |      |     |        |      |        |        |      |          |
| AVERAGE FIELD FORCE                                                                                     |                                    |          |      |     |        |      |        |        |      |          |
| Name of Contractor                                                                                      | Function                           |          |      |     |        | Rer  | narks  |        |      |          |
| A / A =                                                                                                 | 1                                  |          |      |     |        | 1101 | IIaiks |        |      |          |
| Sal Bram (P)                                                                                            | HSU                                | }        |      |     |        |      |        |        |      |          |
| John Provi                                                                                              | Sit Mar.                           | }        |      |     |        |      |        |        |      |          |
| Stocker Tauss D+B                                                                                       | Inspich                            | 1        |      |     |        |      |        |        |      |          |
| Harris Loop Drilling                                                                                    | Dur Il hour                        | ĺ        |      |     |        |      |        |        |      |          |
| Solu Brane EPS  John Proof, I Skyth Tauss DrB  Kriny Loin Lyon Brilling Jett Lyon  Jett Lyon  Jett Lyon | Sit Mar. Inspectulations   Laborar | 1        |      |     |        |      |        |        |      |          |
| J. # Lyon *                                                                                             | Congai                             | }        |      |     |        |      |        |        |      |          |
|                                                                                                         |                                    |          |      |     |        |      |        |        |      |          |
| VISITORS                                                                                                |                                    |          |      |     |        |      |        |        |      |          |
| Time Name                                                                                               | Representing                       |          |      |     |        | Ren  | narks  |        |      |          |
|                                                                                                         |                                    | }        |      |     |        |      |        |        |      |          |
| 1                                                                                                       |                                    | }        |      |     |        |      |        |        |      |          |
|                                                                                                         |                                    |          |      |     |        |      |        |        |      |          |
|                                                                                                         |                                    |          |      |     |        |      |        |        |      |          |
|                                                                                                         |                                    | ţ        |      |     |        |      |        |        |      |          |
|                                                                                                         |                                    |          |      |     |        |      |        |        |      |          |
|                                                                                                         |                                    | {        |      |     |        |      |        |        |      |          |
|                                                                                                         |                                    |          |      |     |        |      |        |        |      |          |
|                                                                                                         |                                    |          |      |     |        |      |        |        |      |          |
|                                                                                                         |                                    |          |      |     |        |      |        |        |      |          |
| EQUIPMENT AT THE SITE:                                                                                  |                                    |          |      |     |        |      |        |        |      |          |
| LM-1 CME-4                                                                                              | 5 - Pm 3500 /                      | Ford Vor |      |     |        |      |        |        |      |          |
|                                                                                                         |                                    |          |      |     |        |      |        |        |      |          |
|                                                                                                         |                                    |          |      | _   |        |      |        |        |      |          |
| MATERIALS:                                                                                              |                                    |          |      |     |        |      |        |        |      |          |
| THE TEXT LES.                                                                                           |                                    |          | _    |     |        |      |        |        |      |          |
|                                                                                                         |                                    |          |      |     |        |      |        | _      |      | -        |
|                                                                                                         |                                    |          |      |     |        |      |        |        |      |          |
|                                                                                                         |                                    |          |      |     |        |      |        |        |      |          |
|                                                                                                         |                                    |          |      |     |        |      |        |        |      |          |
| DISTRIBUTION 1 Proj. Mgr.                                                                               |                                    |          |      | PAG | E 1 OF | 2    | _ PA   | GES    |      |          |
| 2 Field Office<br>3 File                                                                                |                                    |          |      |     |        |      |        |        |      |          |
| 3 FIIE                                                                                                  | BY S. Tans                         | s        |      |     | TITLE  | ≣ _  | This   | veh-   |      |          |



| PROJECT Franklin Cleaners Site (off-site)                             | REPORT NO                      |
|-----------------------------------------------------------------------|--------------------------------|
| NYSDEC # 1-30-050                                                     | DATE 3/20/03                   |
| CONSTRUCTION ACTIVITIES:                                              |                                |
| 2730 begin Mubiling rig & Sum-1 locar                                 | <i>F</i>                       |
| 0800 Cook in Deli came out and said                                   |                                |
| due to the funes she is haled from our                                | dill Rig onsite. She claimed   |
| that his she went to the declar the mo                                |                                |
| inhalation of hous on 3/18/03. (also                                  | on 3/19/03, apparently before  |
| she went to the doctor, she withtress is                              | emplained about the here's the |
| piped the exhaust to moivin ave.) 5                                   | h also claimed the doctor gave |
| but rudication on 3/19/03.                                            |                                |
|                                                                       | the doors + stay anoy from     |
| the work Dent especially when dilling                                 | ^9 .                           |
| 1230 Complete sum-1  1440 Poke through concate slabs in deli beserver | + who was sail As some         |
| the Concrete under slass scens to ke                                  |                                |
| 1430 hain dilling ASM-2.                                              |                                |
| Complete trench = piping outside.                                     |                                |
| 1830 Complete drilling by def                                         |                                |
| 1900 ST EPS + Drilling off-sike                                       |                                |
|                                                                       |                                |
|                                                                       |                                |
|                                                                       |                                |
|                                                                       |                                |
|                                                                       |                                |
|                                                                       |                                |
|                                                                       |                                |
|                                                                       |                                |
|                                                                       |                                |
|                                                                       |                                |
|                                                                       |                                |
|                                                                       |                                |
|                                                                       |                                |
|                                                                       |                                |
|                                                                       |                                |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office 3 File                       | PAGE 2 OF 2 PAGES              |
| 3 File BYS. Jaus S.                                                   | TITLE mspih-                   |



| CONSULTING ENGINEERS                  | s                          | DA          | ATE .        | 3/24/03        |               |       |   |
|---------------------------------------|----------------------------|-------------|--------------|----------------|---------------|-------|---|
|                                       |                            | DA          | 9            | M T W          | TH            | F     | S |
|                                       |                            |             | ``           |                |               |       |   |
| PROJECT Franklin Cleaners Site (on-si | te)                        |             | F. Delta     | Class          | Della         | T 0   |   |
| NYSDEC SITE NO. 1-30-050              |                            | WEATHER     | Brite<br>Sun | Clear Overcast | Rain          | Snow  |   |
| NYSDEC CONTRACT NO. D004184           | <u> </u>                   | TEMP.       | To 32        | 32-50 50-70    | 70-85         | 85+up |   |
| CONTRACTOR EP&S                       |                            | WIND        | Still        | Moder. High    | Report<br>No. | 7     |   |
| PROJECT MANAGER Frank DeVita          | <del></del>                | HUMIDITY    | Dry          | Moder. Humid   |               |       |   |
| AVERAGE FIELD FORCE                   |                            |             |              |                |               |       |   |
| Name of Contractor                    | Function                   | <del></del> |              | Remarks        |               |       |   |
| John Proor: 4 Shu Tauss DrB           | H\$ 0                      |             |              | Kemano         | _             |       |   |
| TI N                                  | Sik Mar                    |             |              |                |               |       |   |
| John Priori                           | HSO<br>Sik Mar<br>Inspader |             |              |                |               |       |   |
| Shu Taus S                            | yn yn o'i                  | İ           |              |                |               |       |   |
|                                       |                            |             |              |                |               |       |   |
|                                       |                            |             |              |                |               |       |   |
| {                                     |                            |             |              |                |               |       |   |
|                                       |                            |             |              |                |               |       |   |
| VISITORS                              |                            |             |              |                | _             |       |   |
| Time Name                             | Representing               |             |              | Remarks        |               |       |   |
|                                       |                            |             |              |                |               |       |   |
|                                       |                            | {           |              |                |               |       |   |
|                                       |                            | 1           |              |                |               |       |   |
|                                       |                            | {           |              |                |               |       |   |
|                                       |                            | 1           |              |                |               |       |   |
|                                       |                            | 1           |              |                |               |       |   |
|                                       |                            | ļ           |              |                |               |       |   |
| {                                     |                            | 1           |              |                |               |       |   |
|                                       |                            |             |              |                |               |       |   |
|                                       |                            |             |              |                |               |       |   |
| EQUIPMENT AT THE SITE: Fad Vor        | \                          |             |              |                |               |       |   |
|                                       |                            |             |              |                |               |       |   |
|                                       |                            |             |              |                |               |       |   |
|                                       |                            |             |              |                |               |       |   |
|                                       |                            |             |              |                |               |       |   |
| MATERIALS:                            |                            |             |              |                |               |       |   |
|                                       |                            | м           |              |                |               | _     |   |
|                                       |                            |             |              |                |               |       |   |
|                                       |                            |             |              |                |               |       |   |
|                                       |                            |             |              |                |               |       | _ |
|                                       |                            |             |              |                |               |       |   |
| DISTRIBUTION 1 Proj. Mgr.             |                            |             | PAGI         | E 1 OF PA      | CEC           |       |   |
| 2 Field Office                        |                            |             | 170          | -101           | GES           |       |   |

#### Dvirka and Bartilucci

| PROJECT Frankl    | in Cleaners Site (off-site)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | REPORT NO         |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| NYSDEC # _1-30-05 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DATE 3/24/03      |
| CONSTRUCTION A    | CTIVITIES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| 0800 B            | Bein niein in howart work should by your tip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s to Hose Deach   |
| 1430 R            | set post for nuter safe which was to be re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | installat.        |
| 1630 A            | begin piping in basement work slawl by many trip<br>set post for outer gate which was to be re<br>Notiful by known & Belie on sile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3/25/03           |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| * 44.67           | 1 de la companya del companya de la companya del companya de la co |                   |
| E.Ps              | begot a diamond bled some be some pad no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ile 11 byse ma, 1 |
|                   | will be completed 3/25/03 or who syste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | marrius.          |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                 |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| -                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| -                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                   | ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| DISTRIBUTION      | 2 Field Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GE 2 OF 2 PAGES   |
|                   | 3 File BY STAIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TITLE Ingrepo     |



4/1/03

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DA                                     | AY S         | M      | TW              | TH     | F     | S |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------|--------|-----------------|--------|-------|---|
| PROJECT Franklin Cleaners Site (on-site)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | L            |        |                 |        |       |   |
| NYSDEC SITE NO. 1-30-050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WEATHER                                | Brite        | Clear  | Overcast        | Rain   | Snow  | _ |
| NYSDEC CONTRACT NO. D004184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TEMP.                                  | Sun<br>To 32 | 32-50  | 50-70           | 70-85  | 85+up |   |
| CONTRACTOR EP&S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WIND                                   | Still        | Moder. | High            | Report |       | _ |
| PROJECT MANAGER Frank DeVita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HUMIDITY                               | Dry          | Moder. | Humid           | No.    | 18    |   |
| . TOOLOT IM TO TOLIN THAIN DEVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71011112111                            |              |        |                 |        |       |   |
| AVERAGE FIELD FORCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |              |        |                 |        |       | _ |
| Name of Contractor Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |              |        | Remarks         |        |       | _ |
| Tohn Accord  Stepher Tais S DAS  Action Away 3 Man crew  The property of the stepher and the stepher are the stepher and the stepher are the s |                                        |              |        |                 |        |       |   |
| Tohn Decori Stepher Tais S DAS  Trapador                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |              |        |                 |        |       |   |
| Stepher aus S D+1>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |              |        |                 |        |       |   |
| Action Awing 3 Man com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |              |        |                 |        |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |              |        |                 |        |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |              |        |                 |        |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | }                                      |              |        |                 |        |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |              |        |                 | _      |       |   |
| VISITORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |              |        |                 |        |       |   |
| Time Name Representing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |              |        | Remarks         |        |       |   |
| Acti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                      |              |        |                 |        |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                      |              |        |                 |        |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                      |              |        |                 |        |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | }                                      |              |        |                 |        |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | }                                      |              |        |                 |        |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ì                                      |              |        |                 |        |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |              |        |                 |        |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |              |        |                 |        |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |              |        |                 |        |       |   |
| EQUIPMENT AT THE SITE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |              |        |                 |        |       |   |
| EQUIPMENTAT THE SITE: For Van                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ······································ |              |        |                 |        |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |              |        |                 |        |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |              |        |                 |        |       | _ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |              |        |                 |        |       |   |
| MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |              |        |                 |        |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |              |        |                 |        |       | _ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |              |        |                 |        |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |              |        |                 |        |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |              |        |                 |        |       |   |
| DISTRIBUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |              |        | 2 -             |        |       |   |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | PAG          | E 1 OF | PA              | GES    |       |   |
| 2 Eilo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |              |        | $\tilde{\cdot}$ |        | ,     |   |
| BY S. Taucs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                                      |              | TITLE  | - In            | pert   | v     |   |



| PROJECT Franklin Cleaners Site (off-site)                                                   | REPORT NO. 4/1/33                              |
|---------------------------------------------------------------------------------------------|------------------------------------------------|
| NYSDEC # _1-30-050                                                                          | DATE 18                                        |
| CONSTRUCTION ACTIVITIES:                                                                    |                                                |
| ST+6PS 2-1/6 27/5                                                                           |                                                |
| 2730 Bein to DED will lactions he out box                                                   | iarh/l                                         |
| 0755 Oyste Bay soul + Galansita  Gelin - 1 yard sithe pragrad                               |                                                |
| alling 1 yord sithel peageout                                                               |                                                |
| WARRY DELT Begin Dry well install                                                           |                                                |
| 1930 Action away onsite 3 moncour 1                                                         | Byen Anie, install.                            |
| 1430 action of Sit. Awings installed                                                        |                                                |
|                                                                                             |                                                |
| 1500 Dale Steles ronk appeal the use of                                                     | a nopolulix to aprissure guage                 |
| 1500 Dale stell Fork appeal the use of in the SUE wills a scho-code being stell when the en | sales to tested be the original sampling post. |
| These are to be install when you as                                                         | desor is installed.                            |
|                                                                                             |                                                |
| 1715 ST = 803 dl s.f.                                                                       |                                                |
| 1718 ST + Eps off sik.                                                                      |                                                |
|                                                                                             |                                                |
|                                                                                             |                                                |
|                                                                                             |                                                |
|                                                                                             |                                                |
|                                                                                             |                                                |
|                                                                                             |                                                |
|                                                                                             |                                                |
|                                                                                             |                                                |
|                                                                                             |                                                |
|                                                                                             |                                                |
|                                                                                             |                                                |
|                                                                                             |                                                |
|                                                                                             |                                                |
|                                                                                             |                                                |
|                                                                                             |                                                |
|                                                                                             |                                                |
| DIOTRIPITION 4 D 1 M                                                                        | 2                                              |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office                                                    | PAGE 2 OF 2 PAGES                              |
| 3 File                                                                                      | TITLE ( )                                      |
| BY S. Tauss                                                                                 | IIILE LASA CHOT                                |



DATE 4/2/03

|                                                                                                                                                   |                              | DA           | AY S         | М        | TW       | TH     | F     | S            |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------|--------------|----------|----------|--------|-------|--------------|
| PROJECT Franklin Cleaners Site (on                                                                                                                | cito)                        |              |              |          |          |        |       |              |
| NYSDEC SITE NO. 1-30-050                                                                                                                          | -site)                       | WEATHER      | Brite        | Clear    | Overcast | Rain   | Snow  |              |
| NYSDEC CONTRACT NO. D004184                                                                                                                       |                              | TEMP.        | Sun<br>To 32 | 32,50    | 50-70    | 70-85  | 85+up | _            |
| CONTRACTOR EP&S                                                                                                                                   | <u>.</u>                     | WIND         | Still        | Moder    | High     | Report |       | _            |
| PROJECT MANAGER Frank DeVita                                                                                                                      | <del> </del>                 | HUMIDITY '   | Dry          | Moder.   | Humid    | No.    | 7     |              |
| THOSE OF WINITED BY THE THOSE OF THE THOSE OF THE THOSE OF THE THOSE OF THE THE THOSE OF THE THE THOSE OF THE | <del></del>                  | 710111107111 |              |          |          |        |       |              |
| AVERAGE FIELD FORCE                                                                                                                               |                              |              |              |          |          |        |       | No. 4 1 pro- |
| Name of Contractor                                                                                                                                | Function                     |              |              |          | Remarks  |        |       |              |
|                                                                                                                                                   |                              |              |              |          | Remains  |        |       |              |
| John Decori Dris<br>Slyte Tass                                                                                                                    | 7730                         |              |              |          |          |        |       |              |
| John Pecori Dris                                                                                                                                  | Tile Men.                    |              |              |          |          |        |       |              |
| Lydn. Taiss                                                                                                                                       | HSO<br>Sih Men.<br>Inspector |              |              |          |          |        |       |              |
|                                                                                                                                                   |                              |              |              |          |          |        |       |              |
|                                                                                                                                                   |                              |              |              |          |          |        |       |              |
|                                                                                                                                                   |                              | 1            |              |          |          |        |       |              |
|                                                                                                                                                   |                              | 1            |              |          |          |        |       |              |
| VISITORS                                                                                                                                          |                              |              |              |          |          |        |       |              |
| Time Name                                                                                                                                         | Representing                 |              |              |          | Remarks  |        |       |              |
| Time (10/845) F. De Vik 1345- 1430 J. Trodd                                                                                                       | D+B                          | }            |              |          |          |        |       |              |
| 1430 I. Trodd                                                                                                                                     | DEC                          |              |              |          |          |        |       |              |
| 1435                                                                                                                                              |                              |              |              |          |          |        |       |              |
|                                                                                                                                                   |                              |              |              |          |          |        |       |              |
|                                                                                                                                                   |                              | {            |              |          |          |        |       |              |
|                                                                                                                                                   |                              | }            |              |          |          |        |       |              |
|                                                                                                                                                   |                              |              |              |          |          |        |       |              |
| {                                                                                                                                                 |                              |              |              |          |          |        |       |              |
|                                                                                                                                                   |                              |              |              |          |          |        |       |              |
| FOLUDIARY AT THE OWN                                                                                                                              |                              |              |              |          |          |        |       |              |
| EQUIPMENT AT THE SITE: Fred Vor                                                                                                                   | ^                            |              |              |          |          |        |       |              |
|                                                                                                                                                   |                              |              |              |          |          |        |       |              |
|                                                                                                                                                   |                              |              |              |          |          |        |       |              |
|                                                                                                                                                   |                              |              |              |          |          |        |       |              |
| MATERIALS:                                                                                                                                        |                              |              |              | _        |          |        |       |              |
|                                                                                                                                                   |                              |              |              |          |          |        |       |              |
|                                                                                                                                                   |                              |              |              |          |          |        |       |              |
|                                                                                                                                                   |                              |              |              |          |          |        |       |              |
|                                                                                                                                                   |                              |              |              |          |          |        |       |              |
|                                                                                                                                                   |                              |              |              |          |          |        |       |              |
| DISTRIBUTION 1 Proj. Mgr.                                                                                                                         |                              |              | PAGE         | E 1 OF _ |          |        |       |              |
| 2 Field Office<br>3 File                                                                                                                          | _                            |              |              |          |          | outo-  |       |              |
|                                                                                                                                                   | BY S. Tanis                  |              |              | TITLE    | Lass     | sicker |       | -            |

# Dvirka and Bartilucci CONSULTING ENGINEERS

3 File

#### **DAILY CONSTRUCTION REPORT**

| PROJECT Franklin Cleaners Site (off-site)                                                                                                                   | _ REPORT NO       | 19                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|
| NYSDEC # 1-30-050                                                                                                                                           | DATE              | 4/2/03                |
| CONSTRUCTION ACTIVITIES:                                                                                                                                    |                   |                       |
| 1710 STO EPSansife                                                                                                                                          |                   |                       |
| Continu instally well would + to SVE fittings                                                                                                               | :                 |                       |
| 1015 F. With or site, want all els noticels out posens 1040 F. Duite off sila 1130 John samples waste wotor 1345 F. Duite of It Took on site he inspection. | ent netry wy soft | ofak cely offen       |
| Toff would like to Dela to notify M. Shipman  Cap-less UST by hind the hair solon.                                                                          | of the leaking    | y d                   |
| Jeff would like Fork to clong the corbon in the the two basemonts to sun them in the tem is 12 Sto/bd.  1430 Stat to clon motorils out of basement to chan  |                   |                       |
| 1970 SHIT TO CLEAN PROPERTY OF CHEN                                                                                                                         | in up the work    | <i>J</i> / <i>R</i> . |
|                                                                                                                                                             |                   |                       |
|                                                                                                                                                             |                   |                       |
|                                                                                                                                                             |                   |                       |
|                                                                                                                                                             |                   |                       |
|                                                                                                                                                             |                   |                       |
|                                                                                                                                                             |                   |                       |
|                                                                                                                                                             |                   |                       |
|                                                                                                                                                             |                   |                       |
|                                                                                                                                                             |                   |                       |
| DISTRIBUTION 1 Proj. Mgr. P                                                                                                                                 | AGE 2 OF          | 2PAGES                |

BY S. Tanis TITLE Inspection



| CONSULTING ENGINEE                       | CONSULTING ENGINEERS  |           |             | DATE 8/18/03 |        |      |       |               |      |   |
|------------------------------------------|-----------------------|-----------|-------------|--------------|--------|------|-------|---------------|------|---|
|                                          |                       | DA        | ı           | S            | M      | T    | W     | TH            | F    | S |
|                                          |                       | DA        | `           |              |        |      | {     |               |      |   |
| PROJECT Franklin Cleaners Site (on       | -site)                |           |             |              |        |      | •     |               |      |   |
| NYSDEC SITE NO. 1-30-050                 |                       | WEATHER   | Brit<br>Sur |              | Clear  | Ove  | rcast | Rain          | Snow |   |
| NYSDEC CONTRACT NO. D004184              | <u> </u>              | TEMP.     | То          | 32           | 32-50  | 50-7 | 0     | 70-85         | 85+u | p |
| CONTRACTOR EP&S                          | <u>.</u>              | WIND      | Still       |              | Moder. | High |       | Report<br>No. |      |   |
| PROJECT MANAGER Frank DeVita             | <u> </u>              | HUMIDITY  | Dry         |              | Moder. | Hum  | id    |               |      |   |
|                                          |                       |           |             | ,            |        |      |       |               |      |   |
| AVERAGE FIELD FORCE                      |                       |           |             |              |        |      |       |               |      |   |
| Name of Contractor                       | Function              |           | _           |              |        | Ren  | narks |               |      |   |
| Vale Brone EPS                           | HSO                   |           |             |              |        |      |       |               |      |   |
| John Prosi EPS                           | HSO<br>Sila Man.      | {         |             |              |        |      |       |               |      |   |
| TOWN PROFIT CO                           | •                     |           |             |              |        |      |       |               |      |   |
|                                          |                       | {         |             |              |        |      |       |               |      |   |
|                                          |                       |           |             |              |        |      |       |               |      |   |
|                                          |                       |           |             |              |        | ,    |       |               |      |   |
| Frenk. De Vitte DAB                      | Paj: Mon.<br>Paga for |           |             |              |        |      |       |               |      |   |
| Frank. De Vi Ha DAB<br>S. Tauss D+B      | Fugge for             |           |             |              |        |      |       |               |      |   |
| VISITORS                                 |                       |           |             |              |        |      | _     |               |      |   |
| Time Name                                | Representing          |           |             |              |        | Rem  | arks  |               |      |   |
|                                          |                       |           |             |              |        |      |       |               |      |   |
|                                          |                       |           |             |              |        |      |       |               |      |   |
|                                          |                       |           |             |              |        |      |       |               |      |   |
|                                          |                       |           |             |              |        |      |       |               |      |   |
|                                          |                       | 1         |             |              |        |      |       |               |      |   |
|                                          |                       |           |             |              |        |      |       |               |      |   |
|                                          |                       |           |             |              |        |      |       |               |      |   |
|                                          |                       |           |             |              |        |      |       |               |      |   |
|                                          |                       |           |             |              |        |      |       |               |      |   |
| EQUIPMENT AT THE SITE:                   | 1.1                   | 1 , -1    |             | , ,          |        |      |       |               |      |   |
| EQUIPMENT AT THE SITE: Food you          | Chay pick-up 16       | obcet Jel | m           | Der          | 240    |      |       |               |      |   |
|                                          |                       |           |             |              |        |      | _     |               |      |   |
|                                          |                       |           |             |              |        |      |       |               |      |   |
|                                          |                       |           |             |              |        |      |       |               |      |   |
| MATERIALS:                               |                       |           |             |              |        |      |       |               |      |   |
|                                          |                       |           |             |              |        |      |       |               |      |   |
|                                          |                       |           |             | _            |        |      |       |               |      |   |
|                                          |                       |           |             |              |        |      |       |               |      |   |
|                                          |                       |           |             |              |        |      |       |               |      |   |
|                                          |                       |           |             |              |        |      |       |               |      |   |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office |                       |           | f           | PAGE         | 1 OF _ | 2    | _ PAG | GES           |      |   |
| 3 File                                   | c <del>-</del>        |           |             |              |        |      | ~     |               |      |   |
|                                          | BY S. Tauss           |           |             |              | TITLE  | المه | nspa  | he.           |      |   |



| PROJECT Franklin Cleaners Site (off-site)                                    | REPORT NO                               |
|------------------------------------------------------------------------------|-----------------------------------------|
| NYSDEC # 1-30-050                                                            | DATE \$/18/0>                           |
| CONSTRUCTION ACTIVITIES:                                                     |                                         |
| 1115 EPS (John Provis Dub Branc) of                                          | pajet.                                  |
| 1300 Dole notifies Fronk of product siles                                    | u of UST in beck                        |
| Chinse Rest.                                                                 | <del></del>                             |
| Pole concret we the relace or tracking Frank will Cell in to DEL or come in  | it all are the site of the bobist.      |
| trank will cell in to DEI reone in                                           | vestigata.                              |
| 1400 Set up to sample Cow @ FC-2                                             | simpletime 1512 all single vol +te 1/19 |
| Sample FC-2 1630                                                             |                                         |
| John discovers UUL butter on preserve                                        | I w/ 1+c1 + spec colls be uppresent     |
| Tohn discours VOL bythe or presente<br>Tothes. John cell their lob or gets M | he OK pouse the present bolths          |
| 1750 EPS to home Deput to buy equipme                                        | ent. St eff sila                        |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office                                     | PAGE 1 OF 2 PAGES                       |

BY Syphilis



| CONSULTING ENGINE                                           | ERS            | DA          | ATE          | 81      | 19/03       |        |      | _           |
|-------------------------------------------------------------|----------------|-------------|--------------|---------|-------------|--------|------|-------------|
|                                                             |                | DA          | Y S          | М       | TW          | TH     | F    | S           |
| DRO IFOT Franklin Classes Site (or                          | -14-1          |             |              |         |             |        |      |             |
| PROJECT_Franklin Cleaners Site (on NYSDEC SITE NO. 1-30-050 | i-site)        | WEATHER     | Brite        | Clear   | Overcast    | Rain   | Snov | <del></del> |
| NYSDEC CONTRACT NO. D004184                                 |                | TEMP.       | Sun<br>To 32 | 32-50   | 50-70       | 70-85  | 85+u |             |
| CONTRACTOR EP&S                                             | ·              | WIND        | Still        | Moder.  | High        | Report |      |             |
| PROJECT MANAGER Frank DeVita                                |                | HUMIDITY    | Dry          | Moder.  | Humid       | No.    |      |             |
| THOSECT WIANAGEN THAIR DEVICE                               | <del> </del>   | TOMBITT     |              |         |             |        |      |             |
| AVERAGE FIELD FORCE                                         |                |             |              |         |             |        |      |             |
| Name of Contractor  J. Pecori EPS  I) Brace                 | Ste Mer. HSD   |             |              |         | Remarks     |        |      |             |
| S. Taurs DrB<br>VISITORS                                    | Inspuler       |             |              |         |             |        |      |             |
| Time Name                                                   | Representing   | <del></del> |              |         | Remarks     |        |      |             |
|                                                             |                |             |              |         |             |        |      |             |
| EQUIPMENT AT THE SITE: Ford Vo                              | m/ John Da bob | ·-cet       |              |         |             |        |      |             |
|                                                             |                |             |              |         |             |        |      |             |
|                                                             |                |             |              |         |             |        |      |             |
|                                                             |                |             |              |         |             |        |      |             |
| MATERIALS:                                                  |                |             |              |         |             |        |      |             |
|                                                             |                |             |              |         |             |        |      |             |
|                                                             |                |             |              |         |             |        |      |             |
|                                                             |                |             |              |         |             |        |      |             |
|                                                             |                |             |              |         |             |        |      |             |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office 3 File             | c —            |             | PA           | GE 1 OF | <b>1</b> PA | GES    |      |             |



| PROJECT Fran   | Klin Cleaners Site (off-site)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | REPORT NO             |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| NYSDEC # 1-30- | 050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DATE <u>8/19/63</u>   |
| CONSTRUCTION   | ACTIVITIES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
|                | 0600 ST & SPS on site proposample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                | delay is yelondelivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
|                | 5730 System enclosury areas on flat-but Oll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| · ·            | 2750 F. D. V. Ho on sike reported spill of feel or<br>an office will be here to mustigate as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 10 1300             |
| 6              | 2800 F. DeVita says Store Organettic Comple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
|                | @ bosement day well . Install System to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | system lacotion       |
| / !            | 400 Notify Dol + John of 72 intoil between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a stort of part. test |
|                | + inshibtion of the system of that they thus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | + capty all wells     |
|                | 2-000 system finally in a enclosure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |
|                | 2030 ST + EPS off sike.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |
|                | The state of the s |                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| DISTRIBUTION   | 1 Proj. Mgr. 2 Field Office 3 File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PAGE OF PAGES         |



DATE \_ 8/20/03

|                                          |                 | D        | AY S  | M      | T× W      | TH     | FS    |
|------------------------------------------|-----------------|----------|-------|--------|-----------|--------|-------|
| PROJECT Franklin Cleaners Site (on       | -site)          |          | Ĺ     |        |           |        |       |
| NYSDEC SITE NO. 1-30-050                 | J.C.            | WEATHER  | Brite | Clear  | Overcast  | Rain   | Snow  |
| NYSDEC CONTRACT NO. D004184              |                 | TEMP.    | To 32 | 32-50  | 50-70     | 70-85  | 85+up |
| CONTRACTOR EP&S                          |                 | WIND     | Still | Moder. | High      | Report |       |
| PROJECT MANAGER Frank DeVita             |                 | HUMIDITY | Dry   | Moder. | Humid     | No.    |       |
|                                          |                 |          |       |        |           |        |       |
| AVERAGE FIELD FORCE                      |                 |          |       |        |           |        |       |
| Name of Contractor                       | Function        | T        |       |        | Remarks   |        | -     |
| John Peror: CPS<br>Dole Braue 1          | Site Mon.       |          |       |        |           |        |       |
| Dole 1Stau C +                           | 450             |          |       |        |           |        |       |
|                                          |                 |          |       |        |           |        |       |
|                                          |                 |          |       |        |           |        |       |
|                                          |                 | {        |       |        |           |        |       |
| 11                                       | 1.6 (2)         |          |       |        |           |        |       |
| Always Clerkith S-Tauss DAD              | Tuspector       |          |       |        |           |        |       |
| S-Tauss D+13 VISITORS                    | x aspector      |          |       |        |           |        |       |
| Time Name                                | Representing    |          |       |        | Remarks   |        |       |
|                                          |                 |          |       |        |           |        |       |
| }                                        |                 |          |       |        |           |        |       |
|                                          |                 |          |       |        |           |        |       |
|                                          |                 |          |       |        |           |        |       |
|                                          |                 |          |       |        |           |        |       |
|                                          |                 | 1        |       |        |           |        |       |
|                                          |                 | 1        |       |        |           |        |       |
|                                          |                 |          |       |        |           |        |       |
|                                          |                 |          |       |        |           |        |       |
| EQUIPMENT AT THE SITE: Ford Voi          | 1 John Don bobo | f        |       |        |           |        |       |
|                                          | t described     |          |       |        |           |        |       |
|                                          |                 |          |       |        |           |        |       |
|                                          |                 |          |       |        |           |        |       |
| MATERIALS:                               |                 |          |       |        |           |        |       |
|                                          |                 |          |       |        | <u>~_</u> |        |       |
|                                          |                 |          |       |        |           |        |       |
|                                          |                 |          |       |        |           |        |       |
|                                          |                 |          |       |        |           |        |       |
|                                          |                 |          |       |        | -         |        |       |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office |                 |          | PAGE  | 1 OF _ |           | GES    |       |

BY Slepher Touse TITLE Tuggifor



| PROJECT Franklin Cleaners Site (off-site) | REPORT NO                           |
|-------------------------------------------|-------------------------------------|
| NYSDEC # 1-30-050                         | DATE _8/20/03                       |
| CONSTRUCTION ACTIVITIES:                  |                                     |
| 0700 ST & EPSonsite                       |                                     |
| prop to sample senging wells              |                                     |
| 1800 perin construction nichhalotis       | 0^                                  |
| 0800 begin constructing nuclhabletis      |                                     |
| Begin surply on-sik wills                 |                                     |
| 4514-2 @ 1200                             |                                     |
| Asm-1                                     |                                     |
| 0930 Allways Electric onside              |                                     |
| to hook up - cletris to sys               |                                     |
|                                           |                                     |
| Asy-10 1430                               |                                     |
| 1500 F. Drifte & I chekout as             | (1 components of 5 y slas en lesure |
| 411 look Okay excep in                    | iner Litting &                      |
| Not. Ry Bali                              |                                     |
| ST4 EPS. A SIE 1730                       |                                     |
|                                           |                                     |
|                                           |                                     |
|                                           |                                     |
| ^                                         |                                     |
|                                           |                                     |
|                                           |                                     |
|                                           |                                     |
|                                           |                                     |
|                                           |                                     |
|                                           |                                     |
|                                           |                                     |
|                                           |                                     |
|                                           |                                     |
|                                           |                                     |
|                                           |                                     |
|                                           |                                     |
|                                           |                                     |
|                                           |                                     |
| DISTRIBUTION 1 Proj. Mgr.                 | PAGE                                |
| 2 Field Office<br>3 File<br>BY S Taus S   | TITLE Forgador                      |



| CONSULTING ENGINEERS                          | ENGINEERS DATE 8/2/103 |          |       |         |          |                 |              |   |  |
|-----------------------------------------------|------------------------|----------|-------|---------|----------|-----------------|--------------|---|--|
|                                               |                        | DA       | 9     | M       | T W      | TH              | F            | S |  |
|                                               |                        |          | ``    |         |          |                 |              |   |  |
| PROJECT Franklin Cleaners Site (on-site)      |                        |          | Orito | Clear   | Louisses | Rain            | Cana         |   |  |
| NYSDEC SITE NO. 1-30-050                      |                        | WEATHER  | Sun   |         |          |                 | Snov<br>85+u |   |  |
| NYSDEC CONTRACT NO. D004184                   | <u> </u>               | TEMP.    | To 32 |         | 50-70    | 70-85<br>Report | 65+0         |   |  |
| CONTRACTOR EP&S                               | <del></del>            | WIND     | Stiff | Moder.  | High     | No.             |              |   |  |
| PROJECT MANAGER Frank DeVita                  | <del></del>            | HUMIDITY | Dry   | Wioder  | Humid    |                 |              |   |  |
| AVERAGE FIELD FORCE                           |                        |          |       |         |          |                 | _            |   |  |
| AVERAGE FIELD FORCE  Name of Contractor       | Function               |          |       |         | Remark   |                 | _            |   |  |
| John Power EPS SiAM                           | Ao1,                   | Ì        |       |         | Remark   | 5               |              |   |  |
| John Prwri EPS SiGA<br>Dale Brane & HSO       |                        | }        |       |         |          |                 |              |   |  |
| Bali isram V                                  |                        |          |       |         |          |                 |              |   |  |
|                                               |                        |          |       |         |          |                 |              |   |  |
|                                               |                        |          |       |         |          |                 |              |   |  |
|                                               |                        |          |       |         |          |                 |              |   |  |
| Almoys Electriz Labor                         | ris (2)                |          |       |         |          |                 |              |   |  |
| Almoys Electric Labor<br>Style Taux DAB Enspe | Jar                    |          |       |         |          |                 |              |   |  |
| VISITORS                                      |                        |          |       |         |          |                 |              |   |  |
| Time Name                                     | Representing           |          |       |         | Remark   | s               |              |   |  |
|                                               |                        |          |       |         |          |                 |              |   |  |
|                                               |                        |          |       |         |          |                 |              |   |  |
|                                               |                        |          |       |         |          |                 |              |   |  |
|                                               |                        |          |       |         |          |                 |              |   |  |
|                                               |                        |          |       |         |          |                 |              |   |  |
|                                               |                        |          |       |         |          |                 |              |   |  |
|                                               |                        |          |       |         |          |                 |              |   |  |
|                                               |                        |          |       |         |          |                 |              |   |  |
|                                               |                        |          |       |         |          |                 |              |   |  |
| EQUIPMENT AT THE SITE: C/                     | T ( )                  |          |       |         |          |                 |              |   |  |
| EQUIPMENT AT THE SITE: Food Von               | John Dow b             | vb-cat   |       |         |          |                 |              |   |  |
|                                               |                        |          |       |         |          |                 |              |   |  |
|                                               | <del></del> _          |          |       |         |          |                 |              |   |  |
|                                               |                        |          |       |         |          |                 |              |   |  |
| MATERIALS:                                    |                        |          |       |         |          |                 |              |   |  |
|                                               |                        |          |       |         |          |                 |              |   |  |
|                                               |                        |          |       |         |          |                 |              |   |  |
|                                               |                        |          |       |         |          |                 |              |   |  |
|                                               |                        |          |       |         |          | <del></del> -   |              |   |  |
| DICTRIPLITION 4 Deci Mar                      |                        |          | D4.0  |         | 2 7      | MOEC.           |              |   |  |
| DISTRIBUTION 1 Proj. Mgr.<br>2 Field Office   |                        |          | PAG   | E 1 OF. | <u> </u> | AGES            |              |   |  |
| 3 File                                        | 01-15                  | 7.       |       |         | ,        | ,               |              |   |  |
| BY_                                           | Stoph Ta               | us       |       | IIILE   | in       | puty            |              | - |  |



| PROJECT <u>Franklin Cleaners Site (off-</u>     | site) REPORT NO                                                                                                       |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| NYSDEC # <u>1-30-050</u>                        | DATE 8/21/03                                                                                                          |
| CONSTRUCTION ACTIVITIES.                        |                                                                                                                       |
| CONSTRUCTION ACTIVITIES: 6730                   | STOEPS onsi 4                                                                                                         |
|                                                 | continue of weather station or systems hook up to pipes                                                               |
| 0945                                            | Allmys Electric on-site                                                                                               |
|                                                 | Sever yeten (possibly) bould up in Chinese Rust.                                                                      |
|                                                 | Not. L. F. DeVite.                                                                                                    |
|                                                 | Notity F. DeVita.                                                                                                     |
| 1130                                            | Frank notifies Dala +I that afreezer was                                                                              |
|                                                 | apparently unplugged in the del - a the ice cicam                                                                     |
|                                                 | in it was nelted.                                                                                                     |
| 1200                                            |                                                                                                                       |
|                                                 |                                                                                                                       |
| 1400                                            | Electricians need to sun the wire out the N. sich                                                                     |
|                                                 | of the basement because the is a new set                                                                              |
|                                                 | of steps when he had originally spiced out the                                                                        |
|                                                 | wix to run.                                                                                                           |
|                                                 | Gutter will have to be modified. John colls                                                                           |
|                                                 | Star bregiosetti + gets approved for modification.                                                                    |
|                                                 | brother will bend ground now location of wire.                                                                        |
| 1807                                            | Star bregiosetti + gets approved for modifization.  Las Her vill bend ground new location of wire.  57 or Eps of site |
|                                                 |                                                                                                                       |
|                                                 |                                                                                                                       |
|                                                 |                                                                                                                       |
|                                                 |                                                                                                                       |
|                                                 |                                                                                                                       |
|                                                 |                                                                                                                       |
|                                                 |                                                                                                                       |
|                                                 |                                                                                                                       |
|                                                 |                                                                                                                       |
|                                                 |                                                                                                                       |
|                                                 |                                                                                                                       |
|                                                 |                                                                                                                       |
| · · · · · · · · · · · · · · · · · · ·           |                                                                                                                       |
|                                                 |                                                                                                                       |
|                                                 |                                                                                                                       |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office 3 File | PAGE OF 2 PAGES  BY STAMPS TITLE FASON OF                                                                             |
|                                                 | BY STAMPS TITLE ENSOUNT                                                                                               |



DATE 8/22/03

|                                                                               |                                       | D        | AY S         | М      | T     | w     | TH     | F         | S |  |  |  |
|-------------------------------------------------------------------------------|---------------------------------------|----------|--------------|--------|-------|-------|--------|-----------|---|--|--|--|
| DBO IECT Franklin Classes Site (on                                            | cito)                                 |          |              |        |       |       |        |           |   |  |  |  |
| PROJECT <u>Franklin Cleaners Site (on-</u><br>NYSDEC SITE NO. <u>1-30-050</u> | -site)                                | WEATHER  |              |        |       |       |        | Rain Snow |   |  |  |  |
| NYSDEC CONTRACT NO. D004184                                                   |                                       | TEMP.    | Sun<br>To 32 | 32-50  | 50-70 | -     | 70-85  | 85+up     |   |  |  |  |
| CONTRACTOR EP&S                                                               | · · · · · · · · · · · · · · · · · · · | WIND     | Still        | Moder. | High  |       | Report |           |   |  |  |  |
| PROJECT MANAGER Frank DeVita                                                  |                                       | HUMIDITY | Dry          | Moder. | Humid |       | No.    |           |   |  |  |  |
|                                                                               |                                       |          |              |        |       |       |        |           |   |  |  |  |
| AVERAGE FIELD FORCE                                                           |                                       |          |              |        |       |       |        |           |   |  |  |  |
| Name of Contractor                                                            | Function                              |          |              |        | Rema  | arks  |        |           |   |  |  |  |
| Name of Contractor Dala Brane EPS John Pecor:                                 | 1450                                  |          |              |        |       |       |        |           |   |  |  |  |
| John Pecal: *                                                                 | Sile Mon.                             |          |              |        |       |       |        |           |   |  |  |  |
|                                                                               |                                       |          |              |        |       |       |        |           |   |  |  |  |
|                                                                               |                                       | {        |              |        |       |       |        |           |   |  |  |  |
|                                                                               |                                       |          |              |        |       |       |        |           |   |  |  |  |
|                                                                               |                                       |          |              |        |       |       |        |           |   |  |  |  |
|                                                                               | <u> </u>                              |          |              |        |       |       |        |           |   |  |  |  |
| VISITORS DAB                                                                  | Inspector                             |          |              |        |       |       |        |           |   |  |  |  |
| Time Name                                                                     | Representing                          |          |              |        | Rema  | rks   |        |           |   |  |  |  |
|                                                                               |                                       |          |              |        |       |       |        |           |   |  |  |  |
|                                                                               |                                       |          |              |        |       |       |        |           |   |  |  |  |
| [ ]                                                                           |                                       |          |              |        |       |       |        |           |   |  |  |  |
|                                                                               |                                       |          |              |        |       |       |        |           |   |  |  |  |
|                                                                               |                                       |          |              |        |       |       |        |           |   |  |  |  |
|                                                                               |                                       |          |              |        |       |       |        |           |   |  |  |  |
|                                                                               |                                       |          |              |        |       |       |        |           |   |  |  |  |
|                                                                               |                                       |          |              |        |       |       |        |           |   |  |  |  |
|                                                                               |                                       |          |              |        |       | _     |        |           |   |  |  |  |
| EQUIPMENT AT THE SITE: Ford VO                                                | 1 bob-cel                             |          |              |        |       |       |        |           |   |  |  |  |
| Va.                                                                           | 1 bub cet                             |          |              |        |       |       |        |           |   |  |  |  |
|                                                                               |                                       |          |              |        |       |       |        |           |   |  |  |  |
|                                                                               |                                       |          |              |        |       |       |        |           |   |  |  |  |
|                                                                               |                                       |          |              |        |       |       |        |           |   |  |  |  |
| MATERIALS:                                                                    |                                       |          |              |        |       |       |        |           |   |  |  |  |
|                                                                               |                                       |          |              |        |       |       |        |           |   |  |  |  |
|                                                                               |                                       |          |              |        |       |       |        |           |   |  |  |  |
|                                                                               |                                       |          |              |        |       |       |        |           |   |  |  |  |
|                                                                               |                                       |          |              |        |       |       |        |           |   |  |  |  |
| DISTRIBUTION 1 Proj. Mgr.                                                     |                                       |          | PAGE         | 1 OF   | 2     | PAG   | ES     |           |   |  |  |  |
| 2 Field Office<br>3 File                                                      |                                       |          |              |        |       |       |        |           |   |  |  |  |
| 0 1 110                                                                       | BY S Towns                            |          |              | TITLE  | £     | ega i | for    | _         | _ |  |  |  |



| PROJECT <u>Franklin Cleaners Site (off-site)</u>                 | REPORT NO                   |
|------------------------------------------------------------------|-----------------------------|
| NYSDEC # <u>1-30-050</u>                                         | DATE <u>\$/21/03</u>        |
| CONSTRUCTION ACTIVITIES:                                         |                             |
|                                                                  |                             |
| 1400 ST on sile                                                  |                             |
| electrical hooked up to system -                                 | 1 2004                      |
| 1900 Dale notices the is no isside                               | -lue be her trains or       |
| 1910 Dale notites the is no itsich weight stotion. Plug was orde | I but NES still not include |
| it as it is not to cook                                          |                             |
| 1500 Nok Torns pour te system on.                                |                             |
| 1600 Fronk + I tole baseline Mea                                 | suaments Br SVM +2 1-3      |
| (SUMM is not constable to spec                                   | vet)                        |
| 1730 Exhast stack in place.                                      | 7 7                         |
| 1745 ST. FD + EPS off site.                                      |                             |
| , (/                                                             |                             |
|                                                                  |                             |
|                                                                  |                             |
|                                                                  |                             |
|                                                                  |                             |
|                                                                  |                             |
|                                                                  |                             |
|                                                                  |                             |
|                                                                  |                             |
|                                                                  |                             |
|                                                                  |                             |
| ·                                                                |                             |
| ,                                                                |                             |
|                                                                  |                             |
|                                                                  |                             |
|                                                                  |                             |
|                                                                  |                             |
|                                                                  |                             |
|                                                                  |                             |
|                                                                  |                             |
|                                                                  |                             |
|                                                                  |                             |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office 3 File                  | PAGE OF PAGES               |



| CONSULTING ENGINE                                | DATE 8/23/03                 |           |     |      |          |     |       |               |      |               |
|--------------------------------------------------|------------------------------|-----------|-----|------|----------|-----|-------|---------------|------|---------------|
|                                                  |                              |           | ΑY  | s    | M        | T   | W     | TH            | F    | S             |
|                                                  |                              |           |     |      |          |     |       |               |      |               |
| PROJECT Franklin Cleaners Site (c                | on-site)                     | VACEATUED | Bri | ito. | Clear    | 100 | rcast | Rain          | Snov |               |
| NYSDEC SITE NO. 1-30-050                         |                              | WEATHER   | Su  |      | 32-50    | 50- |       | 70-85         | 85+0 |               |
| NYSDEC CONTRACT NO. D004184                      | 4                            | TEMP.     |     |      | <u> </u> |     |       |               | 05+0 | <del></del> - |
| CONTRACTOR EP&S                                  | •                            | WIND      | Sti |      | Moder.   |     |       | Report<br>No. |      |               |
| PROJECT MANAGER Frank DeVita                     | <u> </u>                     | HUMIDITY  | Dr  | у    | Moder.   | Hur | nia   |               |      |               |
|                                                  |                              |           |     |      |          |     |       |               |      |               |
| AVERAGE FIELD FORCE                              |                              |           |     | _    |          |     |       |               |      |               |
| Name of Contractor  Dale Brau L LPS  John Pecor: | Function<br>HSO<br>S;te MeM. |           |     |      |          | Rei | marks |               |      |               |
| Fronk De Vitta DIB                               | Droj. Man.                   |           |     |      |          |     |       |               |      |               |
| S. Tauss D+B                                     | Ang. Man.<br>Turpetar        |           |     |      |          |     |       |               |      |               |
| VISITORS                                         | Varjat V                     |           |     |      |          |     |       |               |      |               |
| Time Name                                        | Representing                 |           |     |      |          | Rer | narks |               |      |               |
|                                                  |                              |           |     |      |          |     |       |               | •    |               |
| EQUIPMENT AT THE SITE: Ford                      | Von / bob-cat                |           |     |      |          |     |       |               |      |               |
| , , , ,                                          | 00000                        |           |     |      |          |     |       |               |      |               |
|                                                  |                              |           |     |      |          |     |       |               |      |               |
|                                                  |                              |           |     |      |          |     |       |               |      | -             |
| MATERIALS:                                       |                              |           |     |      |          |     |       |               |      |               |
| WATERIALS.                                       |                              |           |     |      |          |     | ***   |               |      |               |
|                                                  |                              |           |     |      |          |     |       |               |      |               |
|                                                  |                              |           |     |      |          |     |       | ····          |      |               |
|                                                  |                              |           |     |      |          |     |       |               |      |               |
|                                                  |                              |           |     |      |          |     |       |               |      |               |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office         |                              |           |     | PAGI | E 1 OF   | 2   | PA    | GES           |      |               |
| 3 File                                           | BY S. Taus                   |           |     |      | TITLI    | Ξ _ | Tny   | e iter        |      | _             |

# Dvirka and Bartilucci CONSULTING ENGINEERS

| PROJECT Franklin Cleaners Site (off-site    | e) REPORT NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NYSDEC # 1-30-050                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONSTRUCTION ACTIVITIES:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ST DASIL C                                  | 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ED on sike o                                | 915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ef5025;6                                    | 0800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 563 m A (                                   | of the state of th |
| out with                                    | the exhaust stack is hent + straightes 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F. DeVita Forta                             | hes SUM-4 bostin PED=1520. high reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| influence by                                | PVC glu vopes in well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1/00 Dala "bumps                            | system closes values of runs the compessor + blown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1270 "Bump" test                            | PVC glue ropes in well  " system closes values or runs the compessor oblever  and they are getting power.  all wells make some they mak appropriate presons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1330 ST FD - 8                              | PS off site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DISTRIBUTION 1 Proj. Mgr.<br>2 Field Office | PAGE 2 OF 2 PAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3 File                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| CONSULTING ENGINEERS |                                     |                       |          | DATE        | F    | 124/0  | 73   |        |               |      |     |
|----------------------|-------------------------------------|-----------------------|----------|-------------|------|--------|------|--------|---------------|------|-----|
|                      |                                     |                       |          | DAY         | S    | M      | T    | W      | TH            | F    | S   |
|                      |                                     |                       | L        | <b>7</b> 01 |      |        |      |        |               |      |     |
|                      | ECT Franklin Cleaners Site (o       | n-site)               |          |             |      |        |      |        |               |      |     |
|                      | EC SITE NO. 1-30-050                |                       | WEATHER  | Sur         | 1    | Clear  |      | rcast  | Rain          | Snov |     |
|                      | EC CONTRACT NO. D004184             | <u> </u>              | TEMP.    | То          |      | 32-50  | 50-7 |        | 70-85-        | 85+0 | ——— |
|                      | RACTOR EP&S                         | <del></del>           | WIND     | Still       |      | Moder. | High |        | Report<br>No. |      |     |
| PROJE                | ECT MANAGER Frank DeVita            | <u> </u>              | HUMIDITY | Dry         |      | Moder. | Hum  | ıd     | <u> </u>      |      |     |
|                      |                                     |                       |          |             |      |        |      |        |               |      |     |
| AVERA                | GE FIELD FORCE                      |                       |          |             |      |        |      |        |               |      |     |
| Bale 1<br>Sohn       | Name of Contractor Brane GPS Pecor; | Function HSO SiL Ma1. |          |             |      |        | Ren  | narks  |               |      |     |
|                      |                                     |                       |          |             |      |        |      |        |               |      |     |
| 5.Ta                 | iuss D+B                            | Inspecher             |          |             |      |        |      |        |               |      |     |
| VISITOR              |                                     | 17-000                |          |             |      |        |      |        |               |      |     |
| Time                 | Name                                | Representing          |          |             |      |        | Rem  | arks   |               |      |     |
| 1                    |                                     |                       |          |             |      |        |      |        |               |      |     |
| 1                    |                                     |                       |          |             |      |        |      |        |               |      |     |
| 1                    |                                     |                       |          |             |      |        |      |        |               |      |     |
|                      |                                     |                       |          |             |      |        |      |        |               |      |     |
|                      |                                     |                       |          |             |      |        |      |        |               |      |     |
|                      |                                     |                       |          |             |      |        |      |        |               |      |     |
|                      |                                     |                       |          |             |      |        |      |        |               |      |     |
|                      |                                     |                       |          |             |      |        |      |        |               |      |     |
|                      |                                     |                       |          |             |      |        |      |        |               |      |     |
| EQUIPM               | ENT AT THE SITE: Fool V             | m/ bed-cot            |          |             |      |        |      |        |               |      |     |
|                      |                                     | /                     |          |             |      |        |      |        |               |      |     |
|                      |                                     |                       |          |             |      |        |      |        |               |      |     |
|                      |                                     |                       |          |             |      |        |      |        |               |      |     |
| MATERIA              | ALS:                                |                       |          |             |      |        |      |        |               |      |     |
|                      | ·                                   |                       |          |             |      |        |      |        |               |      |     |
|                      |                                     |                       |          |             |      |        |      |        |               |      |     |
|                      |                                     |                       |          |             |      |        |      |        |               |      |     |
|                      |                                     |                       |          |             |      |        | -    |        |               |      |     |
| DISTRIB              | 2 Field Office                      |                       |          | F           | PAGE | 1 OF _ | 2    | PA(    | GES           |      | _   |
|                      | 3 File                              | BY S. Jans            | S        |             |      | TITLE  |      | Tu spe | uhr           | -    | -   |



| PROJECT Fran          | klin Cleaners Site (off-site)                                                                          | REPORT NO                  |
|-----------------------|--------------------------------------------------------------------------------------------------------|----------------------------|
| NYSDEC # <u>1-30-</u> | 050                                                                                                    | DATE 8/24/03               |
| CONSTRUCTION          | ACTIVITIES:                                                                                            |                            |
|                       | ST + EPS on sik 0500                                                                                   |                            |
|                       | PIN FOR Dellarment tot                                                                                 |                            |
|                       | 0600 performance test  All EPS samples taken in tency ten  all PID reading or sample token up a secing |                            |
|                       | All EPS samples taken in tency to                                                                      | bes @ 5 4/m Framin         |
|                       | all PID reading or scarpl tolor of a scii                                                              | presting value purp set of |
|                       | 10 4/M                                                                                                 |                            |
|                       | Presen reeling toka at well heads + p                                                                  | robes da magnaheliz.       |
|                       | All Decide reading may be influenced by the ept                                                        | aust foms @ laundromet,    |
|                       | TU @ lainsomet and trafic.                                                                             |                            |
|                       |                                                                                                        |                            |
|                       |                                                                                                        |                            |
|                       |                                                                                                        |                            |
|                       |                                                                                                        |                            |
|                       |                                                                                                        |                            |
|                       | ,                                                                                                      |                            |
|                       |                                                                                                        |                            |
|                       |                                                                                                        |                            |
|                       |                                                                                                        |                            |
|                       |                                                                                                        |                            |
|                       |                                                                                                        |                            |
|                       |                                                                                                        |                            |
|                       |                                                                                                        |                            |
|                       | <u> </u>                                                                                               |                            |
|                       |                                                                                                        |                            |
|                       |                                                                                                        |                            |
|                       |                                                                                                        |                            |
|                       |                                                                                                        |                            |
|                       |                                                                                                        |                            |
|                       |                                                                                                        |                            |
|                       |                                                                                                        |                            |
|                       |                                                                                                        |                            |
| DISTRIBUTION          | 2 Field Office                                                                                         | AGEOFL_PAGES               |
|                       | 3 File BY F. Tauce                                                                                     | TITLE <u>Engatur</u>       |



| CONSULTING ENGINEE                       | RS             | DA       | TE           | 8/2    | 5/03     |               |      |   |
|------------------------------------------|----------------|----------|--------------|--------|----------|---------------|------|---|
|                                          |                |          | S            | M      | T W      | TH            | F    | s |
|                                          |                | DA       | \ T          |        |          |               |      |   |
| PROJECT Franklin Cleaners Site (on-      | -site)         |          |              |        |          |               |      | • |
| NYSDEC SITE NO. <u>1-30-050</u>          |                | WEATHER  | Brite<br>Sun | Clear  | Overcast | Rain          | Snow |   |
| NYSDEC CONTRACT NO. <u>D004184</u>       | <u> </u>       | TEMP.    | To 32        | 32-50  | 50-70    | 70-85         | 85+u |   |
| CONTRACTOR EP&S                          | <u> </u>       | WIND     | Still        | Moder. | High     | Report<br>No. |      |   |
| PROJECT MANAGER Frank DeVita             | <u> </u>       | HUMIDITY | Dry          | Moder. | Humid    | 7             |      |   |
|                                          |                |          |              |        |          |               |      |   |
| AVERAGE FIELD FORCE                      |                |          |              |        |          |               |      |   |
| Name of Contractor                       | Function       |          |              |        | Remarks  |               |      |   |
| John Pewri EPS                           | Site Mon.      |          |              |        |          |               |      |   |
| Sohn Pewri EPS<br>Dale Brane             | 1450           |          |              |        |          |               |      |   |
|                                          |                |          |              |        |          |               |      |   |
|                                          |                |          |              |        |          |               |      |   |
|                                          |                |          |              |        |          |               |      |   |
| }                                        |                |          |              |        |          |               |      |   |
|                                          |                |          |              |        |          |               |      |   |
| S. Taux Dris                             | Inspuli        |          |              |        |          |               |      |   |
| VISITORS                                 |                |          |              |        |          |               |      |   |
| Time Name                                | Representing   | }        |              |        | Remarks  |               |      |   |
|                                          |                | 1        |              |        |          |               |      |   |
| }                                        |                |          |              |        |          |               |      |   |
| { }                                      |                |          |              |        |          |               |      |   |
| }                                        |                |          |              |        |          |               |      |   |
|                                          |                | 1        |              |        |          |               |      |   |
|                                          |                |          |              |        |          |               |      |   |
|                                          |                |          |              |        |          |               |      |   |
|                                          |                |          |              |        |          |               |      |   |
|                                          |                |          |              |        |          |               |      |   |
| EQUIPMENT AT THE SITE:                   | Von / 6 ob cot |          |              |        |          |               |      |   |
|                                          |                |          |              |        |          |               |      |   |
|                                          |                |          |              |        |          |               |      |   |
|                                          |                |          |              |        |          |               |      |   |
| MATERIALO                                |                |          |              |        |          |               |      |   |
| MATERIALS:                               |                |          |              |        |          |               |      |   |
|                                          |                |          |              |        |          |               |      |   |
|                                          |                |          |              |        |          |               |      | _ |
|                                          |                |          |              |        |          |               |      | - |
|                                          |                |          |              |        |          |               |      |   |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office |                |          | PAG          | E 1 OF |          | AGES          |      |   |
| 3 File                                   | ~ <u>~</u>     | -        |              |        | -        |               |      |   |



| PROJECT Fran  | nklin Cleaners Site (off-site)                                             | REPORT NO                     |
|---------------|----------------------------------------------------------------------------|-------------------------------|
| NYSDEC # 1-30 | -050                                                                       | DATE                          |
| CONSTRUCTION  | ACTIVITIES:                                                                |                               |
|               | 0515 ST +EPS or site.                                                      |                               |
|               | DSIS ST & E PS on site.  pap ki mon.                                       |                               |
|               | 0600 begin ronitaring procedurs                                            |                               |
|               | ·                                                                          |                               |
|               | 0840 Not. Ry Dala worth station rust reco                                  | id 1hr                        |
|               | intervals he wind speed adirection, ambie atmosphere presum, precipitation | ent air temp.                 |
|               | atmosphere presure, precipitation                                          |                               |
|               | 0900 37 0 EPS of site                                                      |                               |
|               | ,                                                                          | ( ) ( ) ( ) ( ) ( ) ( ) ( )   |
|               | EPS fixes aspholt depassions caused by s<br>Dole raises blown RPM & 1010   | sy stem enclosure in still in |
|               | 1722 SE SIGNET KP19 & 1010                                                 |                               |
|               | 1800 heir monitary overlas                                                 |                               |
|               | 1800 hegin monitaring proglans 2030 St off site.                           |                               |
|               | 70 21.                                                                     |                               |
|               |                                                                            |                               |
|               |                                                                            |                               |
|               |                                                                            |                               |
|               |                                                                            |                               |
|               |                                                                            |                               |
|               |                                                                            |                               |
|               |                                                                            |                               |
|               |                                                                            |                               |
|               |                                                                            |                               |
|               |                                                                            |                               |
|               |                                                                            |                               |
|               |                                                                            |                               |
|               |                                                                            |                               |
|               |                                                                            |                               |
|               |                                                                            |                               |
|               |                                                                            |                               |
|               |                                                                            |                               |
|               |                                                                            | 2 2 2                         |
| DISTRIBUTION  | 1 Proj. Mgr. PAC<br>2 Field Office                                         | GE 2 OF 2 PAGES               |
|               | 3 File                                                                     | TITLE Taspetor                |
|               | BY                                                                         | IIILE                         |



| - II - CONCOLLING ENGINEERS                               | DATE & 126/0 > |                      |              |         |        |        |                 |      |   |
|-----------------------------------------------------------|----------------|----------------------|--------------|---------|--------|--------|-----------------|------|---|
|                                                           | [              | DAY                  | S            | M       | T      | W      | TH              | F    | S |
|                                                           |                |                      |              |         |        |        |                 |      |   |
| PROJECT Franklin Cleaners Site (on-site)                  | \A/E A TI IEE  |                      | rite         | Clear   | Our    | ercast | Rain            | Snow |   |
| NYSDEC SITE NO. 1-30-050                                  | WEATHER        | ` <u></u> <u>S</u> ι |              | 32-50   | 50-7   |        |                 | 85+u |   |
| NYSDEC CONTRACT NO. <u>D004184</u>                        | TEMP.          | St                   |              | Moder.  | High   |        | 70-85<br>Report | 05+0 |   |
| CONTRACTOR EP&S                                           | WIND           |                      |              | Moder.  | Hun    |        | No.             |      |   |
| PROJECT MANAGER Frank DeVita                              | HUMIDITY       |                      | <del>,</del> | Wioder. | , idi. | -      |                 |      |   |
|                                                           |                |                      |              |         |        |        |                 |      |   |
| AVERAGE FIELD FORCE                                       |                |                      |              |         |        |        |                 |      |   |
| Name of Contractor Dale Brane EPS Sohn Pewr; 6 Side Mon.  |                |                      |              |         | Rer    | marks  |                 |      |   |
| 5. Tauss DrB Insperher                                    |                |                      |              |         |        |        |                 |      |   |
| Time Name Representing                                    |                |                      |              |         | Rer    | marks  |                 |      |   |
|                                                           |                |                      |              |         |        |        |                 |      |   |
| EQUIPMENT AT THE SITE: Ford Var/ his cot                  |                |                      |              |         |        |        |                 |      |   |
| <u>'</u>                                                  |                |                      |              |         |        |        |                 | _    |   |
|                                                           |                |                      |              |         |        |        |                 |      |   |
|                                                           |                |                      |              |         |        |        |                 |      |   |
| MATERIALS:                                                |                |                      |              |         |        |        |                 |      |   |
|                                                           |                |                      |              |         |        |        |                 |      |   |
|                                                           |                |                      |              |         |        |        |                 |      |   |
|                                                           |                |                      |              |         |        |        |                 |      |   |
|                                                           |                |                      |              |         |        |        |                 |      |   |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office 3 File BY S. Tau | ÇE             |                      | PAG          | E 1 OF  |        |        | AGES<br>Ochr    |      |   |



| PROJECT Frai  | nklin Cleaners Site (off-site)     | REPORT NO                              |
|---------------|------------------------------------|----------------------------------------|
| NYSDEC # 1-30 | 0-050                              | DATE 8/26/03                           |
| CONSTRUCTION  | ACTIVITIES:                        |                                        |
|               | 57+EPS on 514 0520                 |                                        |
|               | pro he pur                         |                                        |
|               | 0600 system monitains.             |                                        |
|               | 0730 Sale Notres a su              | ebstortist air Icak                    |
|               | pt the top of co                   | ch corbon vessels.                     |
|               | plestic lids were                  | separating from the julet piana out    |
|               | outly pipes.                       | ,, , , , , , , , , , , , , , , , , , , |
|               | Dale will call 11                  | ES + hove then come + repail it.       |
|               | 0830 Robert Heling o               | clives my sompl to be (glass)          |
|               | 1709 1800 Ston sih hi              | non                                    |
|               | 1800 system monitoring             |                                        |
|               | Note notifies me                   | he put electricions putty              |
|               | un Her-proof So                    | colo on the air leak +                 |
|               | skipped the la                     | ak.                                    |
|               | 1945 ST JEPS off sile              |                                        |
|               |                                    |                                        |
|               |                                    |                                        |
|               |                                    |                                        |
|               |                                    |                                        |
|               |                                    |                                        |
|               |                                    |                                        |
|               |                                    |                                        |
|               |                                    |                                        |
|               |                                    |                                        |
|               |                                    |                                        |
|               |                                    |                                        |
|               |                                    |                                        |
|               |                                    |                                        |
|               |                                    |                                        |
|               |                                    |                                        |
|               | ·                                  |                                        |
|               |                                    |                                        |
|               |                                    |                                        |
| DISTRIBUTION  | 1 Proj. Mgr. 2 Field Office 3 File | PAGE Z OF Z PAGES                      |



| PROJECT_Franklin Cleaners Site (on-site)  NYSDEC SITE NO. 1-30-050  NYSDEC CONTRACT NO. D004184  CONTRACTOR EP&S  PROJECT MANAGER Frank DeVita  AVERAGE FIELD FORCE  AVERAGE FIELD FORCE  Name of Contractor  Sigh Project  AVERAGE FIELD FORCE  Name of Contractor  Sigh Project  AVERAGE FIELD FORCE  Name of Contractor  Sigh Project  Tohn Prof. V. Sigh Project  Manager Contractor  Sigh Project  AVERAGE FIELD FORCE  AVERAGE FIELD FORCE  Remarks  Function  Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CONSULTING ENGINEE            | ERS          | DA       | TE _ |     | 8/2    | 7/     | 50        |       | _    | _     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------|----------|------|-----|--------|--------|-----------|-------|------|-------|--|
| PROJECT Franklin Cleaners Site (on-site)  NYSDEC SITE NO. 1-30-050  NYSDEC CONTRACT NO. D004184  CONTRACTOR EP&S  PROJECT MANAGER Frank DeVita   AVERAGE FIELD FORCE  Name of Contractor  Size Man.  Name of Contractor  Size Man.  AVERAGE FIELD FORCE  Name of Contractor  Size Man.  Function  Size Man.  Remarks  Strow  Remarks  MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |              |          | Г    |     |        |        |           | ТН    | F    | S     |  |
| NYSDEC SITE NO. 1-30-050 NYSDEC CONTRACT NO. D004184 CONTRACTOR EP8S PROJECT MANAGER Frank DeVita  AVERAGE FIELD FORCE  Name of Contractor Sick Mean.  Time Name Name Representing  Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |              | 2.,      |      |     |        |        |           |       |      |       |  |
| NYSDEC CONTRACT NO. D004184  CONTRACTOR EP8S PROJECT MANAGER Frank DeVita  AVERAGE FIELD FORCE  Name of Contractor Sigh Men.  AVERAGE FIELD FORCE  Remarks  Function Sigh Men.  AVERAGE FIELD FORCE  Remarks  For Name  Remarks  EQUIPMENT AT THE SITE: For Name  MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | -site)       |          | D.:  |     | -      |        |           | D-1-  |      |       |  |
| CONTRACTOR EP&S  PROJECT MANAGER Frank DeVita  AVERAGE FIELD FORCE  Name of Contractor  Dela Brank LPS  Tohn Prof.   Name  Name  Remarks  Function  Sign Models: High Propert  Remarks  Remarks  Function  Sign Models: High Propert  Remarks  Remarks  Function  Remarks  MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |              |          | Sun  |     |        |        |           |       |      |       |  |
| AVERAGE FIELD FORCE  Name of Contractor  No. Humid Dry Moder Humid No. Humid |                               | <del></del>  |          |      |     |        |        |           |       | 85+u | p<br> |  |
| AVERAGE FIELD FORCE  Name of Contractor  All Brau LPS  John Accor:  S. Taux DrB  VISITORS  Time  Name  Representing  Remarks  Remarks  EQUIPMENT AT THE SITE: Fond Ven  MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | <del></del>  |          |      |     |        |        |           |       |      |       |  |
| Name of Contractor  Remarks  Function  Sight Men.  Function  Sight Men.  Function  Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PROJECT MANAGER Frank DeVita  |              | HUMIDITY | Dry  |     | Moder. | Hum    | id<br>——— |       |      | _     |  |
| Name of Contractor  Mark Brand Contractor  John Paul Mare  Tagachu  VISITORS  Time  Name  Remarks  Remarks  Remarks  Remarks  Remarks  Remarks  Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AVEDACE FIELD FORCE           |              |          |      |     |        |        |           |       |      |       |  |
| Tohn Proof: K Sik Man.  S. Taux DrB Tagactar VISITORS  Time Name Representing Remarks  EQUIPMENT AT THE SITE: Fond Ven  MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |              |          |      |     |        | - Davi |           |       |      |       |  |
| Time Name Representing Remarks  EQUIPMENT AT THE SITE: Fool Ven  MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dale Brau EPS John Accori     | f1 80        |          |      |     |        | Ken    | narks     |       |      |       |  |
| Time Name Representing Remarks  EQUIPMENT AT THE SITE: Food Ven  MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |              |          |      |     |        |        |           |       |      |       |  |
| Time Name Representing Remarks  EQUIPMENT AT THE SITE: Fool Ven  MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |              | }        |      |     |        |        |           |       |      |       |  |
| Time Name Representing Remarks  EQUIPMENT AT THE SITE: Fool Ven  MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |              |          |      |     |        |        |           |       |      |       |  |
| Time Name Representing Remarks  EQUIPMENT AT THE SITE: Fool Ven  MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S. Tanas DER                  | Ta soutor    |          |      |     |        |        |           |       |      |       |  |
| EQUIPMENT AT THE SITE: Fool Von  MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VISITORS                      | 4 7 7 00     |          |      |     |        |        |           |       | _    |       |  |
| MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time Name                     | Representing |          |      |     |        | Ren    | narks     |       |      |       |  |
| MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |              |          |      |     |        |        |           |       |      |       |  |
| MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |              |          |      |     |        |        |           |       |      |       |  |
| MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |              |          |      |     |        |        |           |       |      |       |  |
| MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |              |          |      |     |        |        |           |       |      |       |  |
| MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |              |          |      |     |        |        |           |       |      |       |  |
| MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |              |          |      |     |        |        |           |       |      |       |  |
| MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |              |          |      |     |        |        |           |       |      |       |  |
| MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |              |          |      |     |        |        |           |       |      |       |  |
| MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |              |          |      |     |        |        |           |       |      |       |  |
| MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EQUIPMENT AT THE SITE: Food V | 'w^          |          |      |     |        |        |           |       |      |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |              |          |      |     |        |        |           |       |      |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |              |          |      |     |        |        |           |       |      |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |              |          |      |     |        |        |           |       |      |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MATERIALS:                    |              |          |      |     |        |        |           |       |      |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |              |          |      |     |        |        |           |       |      |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |              |          |      |     |        |        |           |       |      |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |              |          |      |     |        |        |           |       |      |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |              |          |      | _   |        |        |           |       |      |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DISTRIBUTION                  |              |          |      |     |        |        |           |       |      |       |  |
| DISTRIBUTION 1 Proj. Mgr. PAGE 1 OF 2 PAGES 2 Field Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |              |          |      | PAG | = 1 OF |        | PA        | GES   |      |       |  |
| 3 File BY S. Tauss TITLE Inspate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | BY S. Tan    | -55      |      |     | TITLE  | . 1    | Tasp      | a ho- |      |       |  |



| PROJECT Frank  | klin Cleaners Site (off-site)                                  | REPORT NO                               |
|----------------|----------------------------------------------------------------|-----------------------------------------|
| NYSDEC # 1-30- | 050                                                            | DATE 8/27/03                            |
| CONSTRUCTION   |                                                                |                                         |
|                | 0530 ST + EPS onsite                                           |                                         |
|                | 0600 System monitering.                                        |                                         |
|                |                                                                |                                         |
|                | 0615 Dale tells pre new cotton<br>be they her in about 1       | units ac on order                       |
|                | be feet her in about 1                                         | ucek.                                   |
|                | 0830 55 9/ 5ih                                                 |                                         |
|                |                                                                |                                         |
|                | 1645 St on sile<br>1800 System puniturity.<br>2000 ST off site |                                         |
|                | 1800 System provincy                                           |                                         |
|                | 2500 27 eff 51 FC                                              |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                |                                         |
|                |                                                                | , , , , , , , , , , , , , , , , , , , , |
| DISTRIBUTION   | 1 Proj. Mgr.<br>2 Field Office                                 | PAGE 2 OF 2 PAGES                       |
|                | 3 File                                                         | T . A.                                  |



|                                              |                   | DA       | (Y )         | 101    | '   "X   |        | г           | 3 |
|----------------------------------------------|-------------------|----------|--------------|--------|----------|--------|-------------|---|
| PROJECT_Franklin Cleaners Site (on-s         | site)             |          |              | L      |          |        | -           |   |
| NYSDEC SITE NO. 1-30-050                     | Site)             | WEATHER  | Brite        | Clear  | Overcast | Rain   | Snow        |   |
| NYSDEC CONTRACT NO. D004184                  |                   | TEMP.    | Sun<br>To 32 | 32-50  | 50-70    | 70-85  | 85+up       |   |
| CONTRACTOR EP&S                              | <del></del>       | WIND     | Still        | Moder. | High     | Report |             |   |
| PROJECT MANAGER Frank DeVita                 | ·                 | HUMIDITY | Dry          | Moder. | Humid    | No.    |             |   |
| THOSE OF WANAGER TRAINEDEVILA                | <del></del>       | TOMESTI  |              |        |          |        | <del></del> |   |
| AVERAGE FIELD FORCE                          |                   |          |              |        |          |        |             |   |
|                                              |                   |          |              |        | Describe |        |             |   |
| Name of Contractor Dole Brace Eff The Pecer: | Function          | }        |              |        | Remarks  |        |             |   |
| TH 0                                         | HSO<br>Site Muss. |          |              |        |          |        |             |   |
| Dan Pecol.                                   | 1172 11011.       | 1        |              |        |          |        |             |   |
|                                              |                   | }        |              |        |          |        |             |   |
|                                              |                   | }        |              |        |          |        |             |   |
|                                              |                   |          |              |        |          |        |             |   |
|                                              |                   |          |              |        |          |        |             |   |
|                                              | - 1.              | ł        |              |        |          |        |             |   |
| STAWS DHS<br>VISITORS                        | Insputar          |          |              |        |          |        |             |   |
| Time Name                                    | Representing      |          |              |        | Remarks  |        |             |   |
| Time                                         | Representing      |          |              |        | Remains  |        |             |   |
| {                                            |                   |          |              |        |          |        |             |   |
| 1                                            |                   | {        |              |        |          |        |             |   |
|                                              |                   |          |              |        |          |        |             |   |
|                                              |                   |          |              |        |          |        |             |   |
|                                              |                   |          |              |        |          |        |             |   |
|                                              |                   |          |              |        |          |        |             |   |
|                                              |                   |          |              |        |          |        |             |   |
|                                              |                   |          |              |        |          |        |             |   |
|                                              |                   |          |              |        |          |        |             |   |
| EQUIPMENT AT THE SITE: Fold &o.              | ^                 |          |              |        |          |        |             |   |
|                                              |                   |          |              |        |          |        | _           |   |
|                                              |                   |          |              |        |          |        |             |   |
|                                              |                   |          |              | _      |          |        |             |   |
|                                              |                   |          |              |        |          |        |             |   |
| MATERIALS:                                   |                   |          |              |        |          |        |             |   |
|                                              |                   |          |              |        |          |        |             |   |
|                                              |                   |          |              |        |          |        |             |   |
|                                              |                   |          |              |        |          |        |             |   |
|                                              |                   |          |              |        |          |        |             |   |
|                                              |                   |          |              |        | 7        |        |             |   |
| DISTRIBUTION 1 Proj. Mgr.                    |                   |          | PAG          | E1OF   |          | AGES   |             |   |
| 2 Field Office<br>3 File                     |                   |          |              |        |          |        | ,           |   |
|                                              | BY S. Taury       |          |              | TITLE  | In       | gret   | _           | _ |



| PROJECT Franklin Cleaners Site (         | off-site)            | REF                  | PORT NO           |
|------------------------------------------|----------------------|----------------------|-------------------|
| NYSDEC # <u>1-30-050</u>                 |                      |                      | DATE _ 8 /2 8/03  |
| CONSTRUCTION ACTIVITIES:                 |                      |                      |                   |
| ری                                       | 30 ST +9PS ONC       | 1/2                  |                   |
| 660                                      | St of site.          | 7                    |                   |
| 084                                      | 5r df site.          |                      |                   |
| 1715                                     | St bu sila.          |                      |                   |
|                                          |                      |                      |                   |
| phore                                    | convistin between    | Dole Frank + Jeff TI | col.              |
| )1 at                                    | terneun: All voc     | levels vay low       |                   |
| utu                                      | ill bucket test b    | ail laks in bas      | erest.            |
| + Da                                     | hwill back off +     | h flewslightly       |                   |
|                                          | ,                    | , ,                  | 7.                |
| 1905 12                                  | 6 reduces corrent to | blower reducing the  | - SuE well flow   |
|                                          | des from object be   | -65 to about 45      | SLFM              |
|                                          |                      |                      |                   |
|                                          | 1= 3 days of op      | entin, 04 1657       | total PCE removed |
|                                          |                      |                      | •                 |
|                                          |                      |                      |                   |
|                                          |                      |                      |                   |
|                                          |                      |                      |                   |
|                                          |                      |                      |                   |
|                                          |                      |                      |                   |
|                                          |                      |                      |                   |
|                                          |                      |                      |                   |
|                                          |                      |                      |                   |
|                                          |                      |                      |                   |
|                                          |                      |                      |                   |
|                                          |                      |                      |                   |
|                                          |                      |                      |                   |
|                                          |                      |                      |                   |
|                                          |                      |                      |                   |
|                                          |                      |                      |                   |
|                                          |                      |                      |                   |
|                                          |                      |                      |                   |
|                                          |                      |                      |                   |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office |                      | PAGE                 | 2 OF 2 PAGES      |
| 3 File                                   | BY S. Times          | 3                    | - In specker      |



| CONSULTING ENGINE                                                      | ERS                                   | D        | ATE         | 8    | 129    | 103  |          |               |      |   |
|------------------------------------------------------------------------|---------------------------------------|----------|-------------|------|--------|------|----------|---------------|------|---|
|                                                                        |                                       |          | ΑY          | S    | М      | T    | W        | TH            | F/   | S |
|                                                                        |                                       | U.       | Λ1          |      |        |      |          |               | /    |   |
| PROJECT Franklin Cleaners Site (on                                     | -site)                                |          |             |      |        |      |          |               |      |   |
| NYSDEC SITE NO. 1-30-050                                               |                                       | WEATHER  | Brit<br>Sui |      | Clear  | Ove  | rcast    | Rain          | Snow |   |
| NYSDEC CONTRACT NO. <u>D004184</u>                                     | · · · · · · · · · · · · · · · · · · · | TEMP.    | То          | 32   | 32-50  | 50-7 | 'O       | 70-85         | 85+u | Р |
| CONTRACTOR EP&S                                                        | <del></del>                           | WIND     | Stil        | II   | Moder. | High | 1        | Report<br>No. |      |   |
| PROJECT MANAGER Frank DeVita                                           |                                       | HUMIDITY | Dry         | ′    | Moder. | Hum  | iid      |               |      |   |
|                                                                        |                                       |          |             |      |        |      |          |               |      |   |
| AVERAGE FIELD FORCE                                                    |                                       |          |             |      |        |      |          |               |      |   |
| Name of Contractor                                                     | Function                              |          |             |      |        | Ren  | narks    |               |      |   |
| John Recori EPS<br>Dale Brane +                                        | Sik Mon.                              |          |             |      |        |      |          |               |      |   |
| Dale Brane                                                             | HS0                                   |          |             |      |        |      |          |               |      |   |
|                                                                        |                                       | 1        |             |      |        |      |          |               |      |   |
|                                                                        |                                       | 1        |             |      |        |      |          |               |      |   |
|                                                                        |                                       |          |             |      |        |      |          |               |      |   |
|                                                                        |                                       | {        |             |      |        |      |          |               |      |   |
|                                                                        | ,                                     | }        |             |      |        |      |          |               |      |   |
| S. Tauss D+B                                                           | Insputor                              |          |             |      |        |      |          |               |      |   |
| VISITORS                                                               |                                       |          |             |      |        |      |          |               |      |   |
| Time Name                                                              | Representing                          | 1        |             |      |        | Rem  | narks    |               |      |   |
|                                                                        |                                       |          |             |      |        |      |          |               |      |   |
|                                                                        |                                       |          |             |      |        |      |          |               |      |   |
|                                                                        |                                       |          |             |      |        |      |          |               |      |   |
|                                                                        |                                       |          |             |      |        |      |          |               |      |   |
|                                                                        |                                       |          |             |      |        |      |          |               |      |   |
|                                                                        |                                       |          |             |      |        |      |          |               |      |   |
|                                                                        |                                       |          |             |      |        |      |          |               |      |   |
|                                                                        |                                       | }        |             |      |        |      |          |               |      |   |
|                                                                        |                                       |          |             |      |        |      |          |               |      |   |
| EQUIPMENT AT THE SITE: Food van / Mils Face pickup / Almy Electric Wan |                                       |          |             |      |        |      |          |               |      |   |
|                                                                        |                                       | 7        |             |      |        |      |          |               |      |   |
|                                                                        |                                       |          |             |      |        |      |          |               |      |   |
|                                                                        |                                       |          |             |      |        | _    |          |               |      |   |
| MATERIALS:                                                             |                                       |          |             |      |        |      |          |               |      |   |
| WATERVALO.                                                             |                                       |          |             |      |        |      |          |               |      |   |
|                                                                        |                                       |          |             |      |        |      |          |               |      |   |
|                                                                        |                                       |          |             |      |        |      |          |               |      |   |
|                                                                        |                                       |          |             |      |        |      |          |               |      |   |
|                                                                        |                                       |          | _           |      |        |      |          |               |      |   |
| DISTRIBUTION 1 Proj. Mgr.<br>2 Field Office                            |                                       |          | İ           | PAGE | 1 OF   | 2    | PA       | GES           |      | - |
| 3 File                                                                 |                                       |          |             |      |        |      | <u>~</u> | ,             |      |   |



| PROJECT Franklin Cleaners Site (off-site | 3)                                    | REPORT NO      |         |
|------------------------------------------|---------------------------------------|----------------|---------|
| NYSDEC # _1-30-050                       |                                       | DATE           | 8/29/03 |
| CONSTRUCTION ACTIVITIES:                 |                                       |                |         |
| 0530 5+00                                | Ps on sife                            |                |         |
| 0600 hegin                               | Maritaring or sampling proces         | lug:           |         |
| 0815 85 4                                | site                                  |                |         |
|                                          |                                       |                |         |
| - 4/                                     |                                       |                |         |
| a 20 s                                   | Co come in my absory of               | installal forc |         |
| May I'm                                  | or install wing to North &            | Come line      |         |
| - Alunes Elector                         | Come in My shrenge                    | - 1104/10      |         |
| lighting 11                              | the deli beservet, but                | in S. sid only |         |
|                                          |                                       |                |         |
| (800 MOTileing -                         | 450                                   |                |         |
| 1950 ST 25 ps of                         | 1514                                  |                |         |
|                                          |                                       |                |         |
|                                          |                                       |                |         |
|                                          | · · · · · · · · · · · · · · · · · · · |                |         |
|                                          |                                       |                |         |
|                                          |                                       |                |         |
|                                          |                                       |                |         |
|                                          |                                       |                |         |
|                                          |                                       |                |         |
|                                          |                                       |                |         |
|                                          |                                       |                |         |
|                                          |                                       |                |         |
|                                          |                                       |                |         |
|                                          |                                       |                |         |
|                                          |                                       |                |         |
|                                          |                                       |                |         |
|                                          |                                       |                |         |
|                                          |                                       |                |         |
|                                          |                                       |                |         |
| DISTRIBUTION 1 Proj. Mgr.                |                                       | PAGE OF        | 2 PAGES |
| 2 Field Office                           |                                       |                |         |
| 3 File                                   | BYSTANS                               | _ TITLE Ins.   | necles  |
|                                          | BY_STaus                              | TITLE Ing      | secle_  |



| CONSULTING ENGINEE                 | ERS                  | D4       | ATE 8        | 131/0   | 3       |               |      |   |
|------------------------------------|----------------------|----------|--------------|---------|---------|---------------|------|---|
|                                    |                      |          |              |         | F       | S             |      |   |
|                                    |                      | DA       | AY /         |         |         |               |      |   |
| PROJECT Franklin Cleaners Site (on | -site)               |          |              |         |         |               |      |   |
| NYSDEC SITE NO. <u>1-30-050</u>    |                      | WEATHER  | Brite<br>Sun | Clear   | Overcas |               | Snov | v |
| NYSDEC CONTRACT NO. <u>D004184</u> | <u>.</u>             | TEMP.    | To 32        | 32-50   | 50-70   | 70-85         | 85+u | р |
| CONTRACTOR EP&S                    | <u>_</u>             | WIND     | Still        | Møder.  | High    | Report<br>No. |      |   |
| PROJECT MANAGER Frank DeVita       | <del></del>          | HUMIDITY | Dry          | Moder   | Humid   |               |      |   |
|                                    |                      |          |              |         |         |               |      |   |
| AVERAGE FIELD FORCE                |                      |          |              |         |         |               |      |   |
| Name of Contractor                 | Function             |          |              |         | Remar   | ks            |      |   |
| John Pecori CPS<br>Dele Brane +    | Site Mon.            | }        |              |         |         |               |      |   |
| The Island W                       | HSO                  |          |              |         |         |               |      |   |
|                                    |                      |          |              |         |         |               |      |   |
|                                    |                      | 1        |              |         |         |               |      |   |
|                                    |                      |          |              |         |         |               |      |   |
|                                    | _                    |          |              |         |         |               |      |   |
| F. DeVata D+3                      | Proj. Men<br>Injular |          |              |         |         |               |      |   |
| S. Tans DNS                        | Ingular              |          |              |         |         |               |      |   |
| VISITORS Time Name                 | Panrocating          |          |              |         | Remark  |               |      |   |
| nine Name                          | Representing         | 1        |              |         | Reman   | KS            |      |   |
|                                    |                      |          |              |         |         |               |      |   |
|                                    |                      |          |              |         |         |               |      |   |
|                                    |                      |          |              |         |         |               |      |   |
|                                    |                      |          |              |         |         |               |      |   |
|                                    |                      | 1        |              |         |         |               |      |   |
|                                    |                      | 1        |              |         |         |               |      |   |
|                                    |                      | 1        |              |         |         |               |      |   |
|                                    |                      | {        |              |         |         |               |      |   |
|                                    |                      |          |              |         |         |               |      |   |
| EQUIPMENT AT THE SITE: Ford Vo     | ^                    |          |              |         |         |               |      |   |
| I VIX Vo                           |                      |          |              |         |         |               |      |   |
|                                    |                      |          |              |         |         |               |      |   |
|                                    |                      |          |              |         |         |               |      |   |
| MATERIALO                          |                      |          |              |         |         |               |      |   |
| MATERIALS:                         |                      |          |              |         |         |               |      |   |
|                                    |                      |          |              |         |         |               |      |   |
|                                    |                      |          |              |         |         |               |      |   |
|                                    |                      |          |              |         |         |               |      |   |
|                                    |                      |          |              |         |         |               |      |   |
| DISTRIBUTION 1 Proj. Mgr.          |                      |          | PAC          | SE 1 OF | 2       | PAGES         |      |   |
| 2 Field Office                     |                      |          |              | • .     |         |               |      |   |
| 3 File                             | BY S. Taye           |          |              | TITLE   | Ing     | puh-          |      |   |



| PROJECT Frank    | tlin Cleaners Site (off-site)                                                            | REPORT NO                                |
|------------------|------------------------------------------------------------------------------------------|------------------------------------------|
| NYSDEC # _1-30-0 | 950                                                                                      | DATE 8/31/03                             |
| CONSTRUCTION A   | ACTIVITIES: ST TEPS TFD on site 05/0                                                     |                                          |
|                  | plan & prep to start AS system                                                           | T wasite wille march 2                   |
|                  | * SUE system thrittel down anoth                                                         | 1 St 5 to to about 35 mg For A cook will |
|                  | OSCIONAL ASTRACTOR AND AND AND AND AND AND AND AND AND AND                               | (0 3C/7 ) = 40041 33 3C/7 (p cach cook.  |
|                  | Act I Was but A                                                                          | System Steet up.                         |
|                  | 17 System VIII not stort prob                                                            | to we call this sixte                    |
|                  | OS30 guay 18+ 6w wlls blee As<br>As system will not stort prob<br>ten misseye but w/ 166 | our Day wealth we must                   |
|                  | likly want her tom him                                                                   | until / lun. A A) rest                   |
|                  | ill be put off 2 days.                                                                   | Continu uf 20 to Test.                   |
|                  | 0600 begin SUE port for monterio                                                         | ·3                                       |
|                  | 0850 0850 85 0 EPS of 5, he                                                              |                                          |
|                  |                                                                                          |                                          |
|                  | 1715 ST onsile                                                                           |                                          |
|                  | 1800 s, hide more toring                                                                 |                                          |
|                  | 2030 ST TEPS off sila                                                                    |                                          |
|                  | 70                                                                                       |                                          |
|                  |                                                                                          |                                          |
|                  |                                                                                          |                                          |
|                  |                                                                                          |                                          |
|                  |                                                                                          |                                          |
|                  |                                                                                          |                                          |
|                  |                                                                                          |                                          |
|                  |                                                                                          |                                          |
|                  |                                                                                          |                                          |
|                  |                                                                                          |                                          |
|                  |                                                                                          |                                          |
|                  |                                                                                          |                                          |
|                  |                                                                                          |                                          |
|                  |                                                                                          |                                          |
| <del></del>      |                                                                                          |                                          |
|                  |                                                                                          |                                          |
|                  |                                                                                          |                                          |
|                  |                                                                                          |                                          |
|                  |                                                                                          |                                          |
|                  |                                                                                          |                                          |
|                  |                                                                                          |                                          |
|                  |                                                                                          |                                          |
| DISTRIBUTION     | 1 Proj. Mgr.                                                                             | PAGE 2 OF 7 PAGES                        |
|                  | 2 Field Office<br>3 File                                                                 | TITLE Inquier                            |
|                  | BY Stans                                                                                 | TITLE Inspector                          |
|                  | · · · · · · · · · · · · · · · · · · ·                                                    |                                          |



|                |             | ONSULTING ENGINE           | ERS             |              | DA       | ATE  |      | 9/1    | 107  | ?     |               |      |   |
|----------------|-------------|----------------------------|-----------------|--------------|----------|------|------|--------|------|-------|---------------|------|---|
|                |             |                            |                 |              | DA       |      | S    | M      | T    | W     | TH            | F    | S |
|                |             |                            |                 |              | UF       | 11   |      |        |      |       |               |      |   |
| PROJE          | CT_Frankli  | in Cleaners Site (on       | -site)          |              |          |      |      |        |      |       |               |      |   |
| NYSDE          | C SITE NO   | . 1-30-050                 |                 |              | WEATHER  | Brit |      | Clear  | i    | rcast | Rain          | Snow | , |
| NYSDE          | C CONTRA    | ACT NO. <u>D004184</u>     |                 | <u>.</u>     | TEMP.    | То   | 32   | 32-50  | 50-7 | 9     | 70-85         | 85+u | р |
| CONTR          | RACTOR EF   | P&S                        |                 |              | WIND     | Stif | 1    | Moder. | High | 1     | Report<br>No. | -    |   |
| PROJE          | CT MANAG    | ER Frank DeVita            |                 | <u> </u>     | HUMIDITY | Dry  |      | Moder  | Hum  | iid   | 1             |      |   |
|                |             |                            |                 |              |          |      |      |        |      |       |               |      |   |
| AVERAC         | GE FIELD FO | RCE                        |                 |              |          |      |      |        |      |       |               | _    |   |
| Male B<br>John | Name of Co  | Contractor<br>QPS          | HSO<br>SIL Mon. | Function     |          | •    |      |        | Ren  | narks |               |      |   |
|                |             |                            |                 |              |          |      |      |        |      |       |               |      |   |
| C -            | 1           |                            |                 |              | ļ        |      |      |        |      |       |               |      |   |
| VISITOR        | us Dis      |                            | Inspeto/        |              |          |      |      |        |      |       |               |      |   |
| Time           |             | Name                       |                 | Representing |          |      |      |        | Rem  | narks |               |      |   |
|                |             |                            |                 |              |          |      |      |        |      |       |               |      |   |
| FOUIPM         | ENT AT THE  | SITE: C / /                |                 |              |          |      | _    |        |      |       |               |      |   |
|                |             | SITE: Ford / VON           |                 |              |          |      |      |        |      |       |               |      |   |
|                |             |                            |                 |              |          |      |      |        |      |       |               |      |   |
|                |             |                            |                 |              |          |      |      |        |      |       |               |      |   |
|                |             |                            |                 |              |          |      |      |        |      |       |               |      |   |
| MATERIA        | ALS:        |                            |                 |              |          |      |      |        |      |       |               |      |   |
|                |             |                            |                 |              |          |      |      |        | _    |       |               |      |   |
|                |             |                            |                 |              |          |      |      |        |      |       |               |      |   |
|                |             |                            |                 |              |          |      |      |        |      |       |               |      |   |
|                |             |                            |                 |              |          |      |      |        |      |       |               |      |   |
| DISTRIBU       | UTION 1     | Proj. Mgr.<br>Pield Office |                 |              |          | F    | PAGE | 1 OF _ | 2    | _ PAG | GES           |      |   |
|                | 3           |                            | BYS             | Tans         |          |      |      | TITLE  |      | Fago  | who           |      | _ |

#### Dvirka and Bartilucci

# **DAILY CONSTRUCTION REPORT**

TITLE Frispeder

| PROJECT Franklin Cleaners Site (off-site) | REPORT NO       |
|-------------------------------------------|-----------------|
| NYSDEC # <u>1-30-050</u>                  | DATE1/1/03      |
| CONSTRUCTION ACTIVITIES:                  |                 |
| 0530 37 5 CPS on sik                      |                 |
| Macus c. Level mornished                  |                 |
| 6830 ST of 55 /2                          |                 |
|                                           |                 |
| 1740 55 000:/6                            |                 |
| 100 Situal pository                       |                 |
| 1000 11 1 905 0 10                        | 1 2 1 21.12     |
| 1089 16 of PCE Removed from               | 5/2 23 9 411/03 |
| per pode produc                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office  | PAGE OF PAGES   |



DATE \_\_\_9/2/03

| PROJECT Franklin Cleaners Site (on-site)  NYSDEC SITE NO. 1-30-050  NYSDEC CONTRACT NO. D004184  CONTRACTOR EP&S  PROJECT MANAGER Frank DeVita   AVERAGE FIELD FORCE  Name of Contractor  Data Brean \$P\$  Tokan Pecan'  The Name Representing  Remarks  Remarks  Remarks  Remarks  Remarks  Remarks  Remarks  Remarks  Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                         | DA       | AY S  | М        | T W      | TH    | F        | S |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------|----------|-------|----------|----------|-------|----------|---|--|--|
| NYSDEC SITE NO. 1-30-050  NYSDEC CONTRACT NO. D004184  CONTRACTOR EP&S  PROJECT MANAGER Frank DeVita   AVERAGE FIELD FORCE  Name of Contractor Solven Project  Note of Contractor Solven Project  Name of Contractor Solven Project  Note of Contractor Solven Project  Name Representing  Remarks  Rapic Snow  Note of Contractor Solven Project  ote of Contractor Solven Project  Rapic Snow  Note of Contractor Solven Project Note of Contractor Solven Project Note of Contractor Note of Contractor Solven Project Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note of Contractor Note  | PRO IECT Franklin Cleaners Site (on          | -cita)                  |          |       | <u> </u> |          |       |          |   |  |  |
| NYSDEC CONTRACT NO. D004184  TEMP. WIND WIND PROJECT MANAGER Frank DeVita   AVERAGE FIELD FORCE  Name of Contractor Date Brew Eff To 32 32-50 50-70 70-45 85-up  Report No  No  No  No  No  No  No  No  No  No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              | -site)                  | WEATHER  |       | Clear    | Overcast | Raja  | Snow     |   |  |  |
| CONTRACTOR EP&S PROJECT MANAGER Frank DeVita  AVERAGE FIELD FORCE  Name of Contractor Date Breen LPS SikMon  Function SikMon  Remarks  Time Name Representing  Remarks  Remarks  Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | _                       |          |       | 32-50    | 50-70    | 70-85 | 85+up    |   |  |  |
| PROJECT MANAGER Frank DeVita HUMIDITY Dry Moder Humid  AVERAGE FIELD FORCE  Name of Contractor Dale Brew EP Sikmen:  Sikmen:  Sikmen:  Function Sikmen:  Function Sikmen:  Function Remarks  VISITORS  Time Name Representing Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                         | WIND     | Still | Moder.   | High     |       | <u> </u> |   |  |  |
| AVERAGE FIELD FORCE  Name of Contractor Dale Brew EPS  Sikman  Sikman  Sikman  Signature  Sikman  Signature  Sikman  Signature  Sign |                                              | <del></del>             | HUMIDITY | Dry   | Moder.   | Humid    | No    |          |   |  |  |
| Name of Contractor  Path Brew SPS  SikMan  Sikman  S. Taus  VISITORS  Time  Name  Remarks  Function  Remarks  Function  Remarks  Function  Remarks  Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                         |          |       |          |          |       |          |   |  |  |
| Date Brant EPS  SikMen  Sikmen  SikMen  Siteman  | AVERAGE FIELD FORCE                          |                         |          |       |          |          |       |          |   |  |  |
| VISITORS  Time Name Representing Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Name of Contractor Dale Braw EPS John Pecori | HSO Function<br>Si-KMon |          |       |          | Remarks  |       |          | _ |  |  |
| Time Name Representing Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8. Taus DrB                                  | In spector              |          |       |          |          |       |          |   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                         |          |       |          |          |       |          |   |  |  |
| EQUIPMENT AT THE SITE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time Name                                    | Representing            |          |       |          | Remarks  |       |          |   |  |  |
| EQUIPMENT AT THE SITE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                         |          |       |          |          |       |          |   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EQUIPMENT AT THE SITE:                       |                         |          |       |          |          |       |          |   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                         |          |       |          |          |       |          |   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                         |          |       |          |          |       |          |   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                         |          |       |          |          |       |          |   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                         |          |       |          |          |       |          |   |  |  |
| MATERIALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MATERIALS:                                   |                         |          |       |          |          |       |          |   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                         |          |       |          |          |       |          |   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                         |          |       |          |          |       |          |   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                         |          |       |          |          |       |          |   |  |  |
| DISTRIBUTION 1 Proj. Mgr. PAGE 1 OF PAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DISTRIBUTION 4 Deci Man                      |                         |          | DA 05 | 1.05     | 7 00     | CES   |          |   |  |  |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office 3 File BY S. Taus'S TITLE Friguety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 Field Office                               | DV S. Tame              |          | PAGE  |          | _        |       |          |   |  |  |



| PROJECTFrai   | nklin Cleaners Site (off-site)     | REPORT NO                                                                                 |
|---------------|------------------------------------|-------------------------------------------------------------------------------------------|
| NYSDEC # 1-30 | 0-050                              | DATE 9/2/03                                                                               |
| CONSTRUCTION  | N ACTIVITIES:                      |                                                                                           |
|               |                                    |                                                                                           |
|               | 5530 ST OFPS on site               |                                                                                           |
|               | 6600 situid resitains              |                                                                                           |
|               | 6830 ST of eik                     |                                                                                           |
|               | 1100 85 cm sil for As              | s start un                                                                                |
|               | 1118 baseline manifering by        | AS                                                                                        |
|               | iluc AS sycka on 3                 | AS<br>OSCFM total flow @ initial                                                          |
|               | flew noters - all                  | ulls @ 108CFM                                                                             |
|               | 1445 2hr nost start up             | Marity in                                                                                 |
|               | 1800 Stoit SUE + AS                | situal maniformy  itself down awill not start but up  s rebund to pre- As system start up |
|               | 1830 AS syskn shets                | itself down a will not stor but up                                                        |
|               | Vapor probe readings               | s rebound to pre- 48 system stair-up                                                      |
|               | reading.                           |                                                                                           |
|               |                                    |                                                                                           |
|               | * John fells Sole + I              | that lab lost date from days 8-9                                                          |
|               | dola is not seem                   | rable.                                                                                    |
|               | 1915 Frank propers to re           | rise flow to SUE- 1 TO OVERCOME                                                           |
|               | The picson of As - 2.              | rable.  Aire flow to SUE-1 TO Overcome  +3 to about 70sefm                                |
|               |                                    |                                                                                           |
|               |                                    |                                                                                           |
|               |                                    |                                                                                           |
|               |                                    |                                                                                           |
|               |                                    |                                                                                           |
|               |                                    |                                                                                           |
|               |                                    |                                                                                           |
|               |                                    |                                                                                           |
|               |                                    |                                                                                           |
|               |                                    |                                                                                           |
|               |                                    |                                                                                           |
|               |                                    |                                                                                           |
|               |                                    |                                                                                           |
|               |                                    |                                                                                           |
|               |                                    |                                                                                           |
| DISTRIBUTION  | 1 Proj. Mgr. 2 Field Office 3 File | PAGE 2 OF 2 PAGES                                                                         |
|               | DV Car of                          | TITLE TO GO                                                                               |



DATE 9/3/03

|                                                             |                        | D                                       | AY S         | М      | TW       | TH     | F     | S |
|-------------------------------------------------------------|------------------------|-----------------------------------------|--------------|--------|----------|--------|-------|---|
| PPO IECT Franklin Clanners Site (an                         | cita)                  |                                         |              |        |          |        |       | _ |
| PROJECT Franklin Cleaners Site (on NYSDEC SITE NO. 1-30-050 | -site)                 | WEATHER                                 | Brite        | Clear  | Overcast | Rain   | Snow  | _ |
| NYSDEC CONTRACT NO. D004184                                 |                        | TEMP.                                   | Sun<br>To 32 | 32-50  | 50-70    | 70-85  | 85+up | _ |
| CONTRACTOR EP&S                                             | <del>_</del>           | WIND                                    | Still        | Moder. | High     | Report |       | _ |
| PROJECT MANAGER Frank DeVita                                |                        | HUMIDITY                                | Dry          | Moder. | Humid    | No.    |       |   |
| THOUSE IN THE TOTAL SOURCE                                  | <u>·</u>               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              |        |          |        |       |   |
| AVERAGE FIELD FORCE                                         |                        |                                         |              |        |          |        |       |   |
| Name of Contractor                                          | Function               |                                         |              |        | Remarks  |        |       |   |
| Dale Brown EPS                                              | H30                    |                                         |              |        | Remarks  |        |       |   |
| John Pecori L                                               | Sik Mon.               |                                         |              |        |          |        |       |   |
|                                                             |                        |                                         |              |        |          |        |       |   |
|                                                             |                        |                                         |              |        |          |        |       |   |
|                                                             |                        |                                         |              |        |          |        |       |   |
| If Ind DEC                                                  |                        |                                         |              |        |          |        |       |   |
| F. D.V. Ha Drs                                              | Proj. Mei.             |                                         |              |        |          |        |       |   |
| S. Taus D+B                                                 | Proj. Mar.<br>Inspecto |                                         |              |        |          |        |       |   |
| VISITORS                                                    |                        |                                         |              |        |          |        | _     |   |
| Time Name                                                   | Representing           |                                         |              |        | Remarks  |        |       |   |
| }                                                           | •                      |                                         |              |        |          |        |       |   |
|                                                             |                        |                                         |              |        |          |        |       |   |
|                                                             |                        |                                         |              |        |          |        |       |   |
|                                                             |                        |                                         |              |        |          |        |       |   |
|                                                             |                        |                                         |              |        |          |        |       |   |
|                                                             |                        |                                         |              |        |          |        |       |   |
|                                                             |                        | 1                                       |              |        |          |        |       |   |
|                                                             |                        |                                         |              |        |          |        |       |   |
|                                                             |                        |                                         |              |        |          |        |       |   |
| EQUIPMENT AT THE SITE:                                      |                        |                                         |              |        |          |        |       |   |
| rocg                                                        | Van                    |                                         |              |        |          |        |       |   |
|                                                             |                        |                                         |              |        |          |        | _     |   |
|                                                             |                        |                                         |              |        |          |        |       |   |
|                                                             |                        |                                         |              |        |          |        |       |   |
| MATERIALS:                                                  |                        |                                         |              |        |          |        | _     |   |
|                                                             |                        |                                         |              |        |          |        |       |   |
|                                                             |                        |                                         |              |        |          |        |       |   |
|                                                             |                        |                                         |              |        |          |        | _     |   |
|                                                             |                        |                                         |              |        |          |        |       |   |
| DISTRIBUTION 1 Proj. Mgr.                                   |                        |                                         | PAGE         | 1 OF _ | PA       | GES    |       |   |
| 2 Field Office<br>3 File                                    |                        |                                         |              |        |          |        |       |   |
| <del>.</del>                                                | BYS. Ta                | 45                                      |              | TITLE  | _ In     | speto  |       |   |



| PROJECT Franklin Cleaners Site (off-site) | REPORT NO                                                         |
|-------------------------------------------|-------------------------------------------------------------------|
| NYSDEC # 1-30-050                         | DATE 9/3/03                                                       |
| CONSTRUCTION ACTIVITIES:                  |                                                                   |
| ST + EPS on sik uso                       |                                                                   |
| 0600 situal manifering As sys             | sh still of line                                                  |
| SUE system is not on as w                 | come or site                                                      |
| system stopped @ 144.2 hrs.               | roughly 3 his after monitoring                                    |
| anded 019/1/13                            |                                                                   |
| OGIS SVE turned back on T set 6           | NEW VECCUM p: SUE-1 P JOSEFM                                      |
| + SVE-1 @ 70sctm (                        | 100 total per F. De Vitty + Dale Brace                            |
| 0730 Ray from laundromot soi              | d power to entire block went                                      |
|                                           | this is to blam his system shet-off                               |
| not a system malfuction.                  |                                                                   |
| 0/98 Date on phase of NE                  | S to get emergency contact info<br>S wont down. Timer is to blane |
| for AS + contentials                      | S wont down. Times 18 to Blank                                    |
| 0800 AS system back on                    | 40 (E)(an.                                                        |
| 1000 2hr post Start up test               |                                                                   |
| 1315 If Tod on sich he pay                | TC metizes w. D. V. Ha                                            |
| F. D. V. 74 proposed to fix               | dry will Head problem (change order)                              |
|                                           | - deun so check alorras                                           |
| Jof + Dle agen to i                       | astll at least 1 additional upper                                 |
| probe est about 6" bel                    | en original grade (chemy order)                                   |
| Dole asks If if he                        | can only collect saiple for 5 days                                |
| d AS test it ROI                          | is it to all wells                                                |
| It + Fork will chek                       | wording of contract of back to him.                               |
| 1515 F. Durte & SH Tradel off ST          | 6.                                                                |
| 1800 Stard Meritary of ASA                | SVE                                                               |
| 2000 ST of Sili                           |                                                                   |
|                                           |                                                                   |
|                                           |                                                                   |
|                                           |                                                                   |
|                                           |                                                                   |
|                                           |                                                                   |
|                                           |                                                                   |
|                                           |                                                                   |
| DISTRIBUTION 1 Proj. Mgr.                 | PAGE2 OF < PAGES                                                  |
| 2 Field Office                            |                                                                   |
| BY S. Taux                                | TITLE English                                                     |



| CONSULTING ENGINEERS                 |              |                            |                   | DA       | DATE9/4/63  |          |        |      |             |               |         |   |  |  |  |
|--------------------------------------|--------------|----------------------------|-------------------|----------|-------------|----------|--------|------|-------------|---------------|---------|---|--|--|--|
|                                      |              |                            |                   | DA       | Y           | S        | М      | Т    | W           | TH            | F       | S |  |  |  |
|                                      |              |                            |                   |          | ``          |          |        |      |             | 1             |         |   |  |  |  |
|                                      |              | Cleaners Site (on          | -site)            |          |             |          |        | ,    |             |               |         |   |  |  |  |
|                                      | EC SITE NO.  |                            |                   | WEATHER  | Brit<br>Sur | <u> </u> | Clear  |      | rcast       | Rain          | Snov    |   |  |  |  |
| NYSDEC CONTRACT NO. <u>D004184</u> . |              |                            | TEMP.             | То       |             | 32-50    | 50-7   | _'   | 70-85       | 85+u          | P<br>—— |   |  |  |  |
|                                      | RACTOR EP    |                            | <del></del>       | WIND     | Stil        | <u>`</u> | Moder. | High | _           | Report<br>No. |         |   |  |  |  |
| PROJE                                | ECT MANAGE   | R Frank DeVita             | <del></del>       | HUMIDITY | Dry         |          | Moder. | Hum  | nid<br>———— |               |         |   |  |  |  |
|                                      |              |                            |                   |          |             |          |        |      |             |               |         |   |  |  |  |
| AVERA                                | GE FIELD FOR | RCE                        |                   |          |             |          |        |      |             |               |         |   |  |  |  |
| Dole B<br>John A                     |              | ontractor                  | Function Function |          |             |          |        | Ren  | narks       |               |         |   |  |  |  |
|                                      |              |                            |                   |          |             |          |        |      |             |               |         |   |  |  |  |
|                                      |              |                            |                   |          |             |          |        |      |             |               |         |   |  |  |  |
| 5. Fau                               |              |                            | Inspector         |          |             |          |        |      |             |               |         |   |  |  |  |
| VISITOR                              |              |                            |                   |          |             |          |        |      |             |               |         |   |  |  |  |
| Time                                 |              | Name                       | Representing      |          |             |          |        | Rem  | narks       |               |         |   |  |  |  |
|                                      |              |                            |                   |          |             |          |        |      |             |               |         |   |  |  |  |
| EQUIPM                               | ENT AT THE   | SITE: Ford                 | los               |          |             | _        |        |      |             |               |         |   |  |  |  |
|                                      |              | 110-0                      |                   |          |             |          |        |      |             |               |         | - |  |  |  |
|                                      |              |                            |                   |          |             |          |        |      |             |               |         |   |  |  |  |
|                                      | _            |                            |                   |          |             |          |        |      |             |               |         |   |  |  |  |
| MATERIA                              | Δ1 S:        |                            |                   |          |             |          |        |      |             |               |         |   |  |  |  |
| TOTAL COLUMN                         |              |                            |                   |          |             |          |        |      |             |               |         |   |  |  |  |
|                                      |              |                            |                   |          |             |          |        |      |             |               |         |   |  |  |  |
|                                      |              |                            |                   |          | _           |          |        |      |             |               |         |   |  |  |  |
|                                      |              |                            |                   |          |             |          |        |      |             |               |         |   |  |  |  |
|                                      |              |                            |                   |          |             |          |        |      |             |               |         |   |  |  |  |
| DISTRIB                              |              | Proj. Mgr.<br>Field Office |                   |          | ł           | PAGE     | 1 OF   | 2    | _ PAG       | GES           |         |   |  |  |  |
|                                      | 3            | File                       | BY S-Tay          | <u> </u> |             |          | TITLE  | _    | Fisp        | nefor         |         |   |  |  |  |



| PROJECT Franklin Cleaners Site (off-site) REPORT NO.               |             |
|--------------------------------------------------------------------|-------------|
| NYSDEC # 1-30-050 DATE 9/7/03                                      |             |
| CONSTRUCTION ACTIVITIES:                                           |             |
| 0570 ST + Elson site                                               |             |
| 0600 ASO SUE MONITOR OSPIC Suple                                   |             |
| Lob is not open to ask it they will accept samples on Fri wil      | 9           |
| 48h1 TAT, it the are unable to acopt on Fr. r we don't somple      |             |
| now than is no very to so let samples at all.                      |             |
| - buttles orderd by Rbin Petalle per F. Avita for Totas extlish    |             |
| ) A Spect.                                                         |             |
| 0845 puddage samples + 90 to fel & he delivery                     |             |
| 0900 ST 4/ 5:12                                                    |             |
|                                                                    |             |
| 1800 - 55 on si6 for AS+ SV & monitoring.                          |             |
| The Talk to F. D.V. Hm & Fronk days was ussure of which            |             |
| samples will be needed the will cell Tiff Talot                    |             |
| - I eff does not nont the Allvent or the influented the            | _           |
| GA(                                                                |             |
| 1800 lean message & lab telling berry Decker to concell            |             |
| these samples.                                                     | -           |
| 1900 phon cell to f. A. U. Hm : Notify him of EPS proposal schools | le          |
| than in the inlet of the primary GAC.                              | <del></del> |
| than in the inlet of the primary GAC:                              |             |
| 1930 John bumps DETUSVE & Assystems. NE up to 60 htz               |             |
| from 55 htz or ASI to coschin / AS 2 to lose fin                   |             |
| + AS3 to 7 ScAM. SUE-18 35 Stm / SUE-L                             |             |
| Q & S setm.                                                        | _           |
| HOOD ST O EPS off sike                                             |             |
|                                                                    |             |
|                                                                    |             |
|                                                                    |             |
|                                                                    |             |
| ·                                                                  |             |
| ·                                                                  |             |
|                                                                    |             |
|                                                                    |             |
| DISTRIBUTION 1 Proj. Mgr. PAGE 2 OF PAGE                           |             |
| 2 Field Office                                                     | -           |
| 3 File BY S. Tay, TITLE Fagetor                                    |             |



| CONSULTING ENGINE                  | ERS                  | DATE 915/13 |      |      |        |      |       |          | _    |   |
|------------------------------------|----------------------|-------------|------|------|--------|------|-------|----------|------|---|
|                                    |                      |             | ΑY   | S    | М      | Т    | W     | TH       | F    | S |
| PROJECT_Franklin_Cleaners Site (or | n-site)              |             |      |      |        |      |       | <u> </u> |      |   |
| NYSDEC SITE NO. 1-30-050           |                      | WEATHER     | Brit |      | Clear  | Ove  | rcast | Rain     | Snov | , |
| NYSDEC CONTRACT NO. D004184        |                      | TEMP.       | Sur  |      | 32-50  | 50-7 | 0     | 70-85    | 85+0 | p |
| CONTRACTOR EP&S                    |                      | WIND        | Stil | ı    | Moder. | High | ,     | Report   |      |   |
| PROJECT MANAGER Frank DeVita       |                      |             |      |      | Moder. | Hun  | nid   | No.      |      |   |
|                                    | _                    |             |      |      |        |      |       |          |      |   |
| AVERAGE FIELD FORCE                |                      |             |      |      |        |      |       |          |      |   |
| Sohn Pecori EPS                    | Function #5, to Man. |             |      |      |        | Rer  | narks |          |      |   |
| •                                  | 7.,,.                |             |      |      |        |      |       |          |      |   |
| 2 Mon EPS CRW<br>(Steve or Chris)  |                      |             |      |      |        |      |       |          |      |   |
|                                    |                      |             |      |      |        |      |       |          |      |   |
|                                    |                      |             |      |      |        |      |       |          |      |   |
|                                    |                      |             |      |      |        |      |       |          |      |   |
|                                    |                      |             |      |      |        |      |       |          |      |   |
| S. Tauss DrB                       | Insputor             | }           |      |      |        |      |       |          |      |   |
| VISITORS                           | 7-00                 |             |      |      |        |      |       |          |      |   |
| Time Name                          | Representing         |             |      |      |        | Ren  | narks |          |      |   |
|                                    |                      |             |      |      |        |      |       |          |      |   |
|                                    |                      |             |      |      |        |      |       |          |      |   |
|                                    |                      |             |      |      |        |      |       |          |      |   |
| •                                  |                      |             |      |      |        |      |       |          |      |   |
|                                    |                      |             |      |      |        |      |       |          |      |   |
|                                    | 1                    |             |      |      |        |      |       |          |      |   |
|                                    | 1                    |             |      |      |        |      |       |          |      |   |
|                                    |                      |             |      |      |        |      |       |          |      |   |
|                                    |                      |             |      |      |        |      |       |          |      |   |
| EQUIPMENT AT THE SITE: C/1         |                      |             |      |      |        |      |       |          |      |   |
| EQUIPMENT AT THE SITE: Fail V      | <u>a^</u>            |             |      |      |        |      |       |          |      |   |
|                                    |                      |             |      |      |        |      |       |          |      |   |
|                                    |                      |             |      |      |        |      |       |          |      |   |
|                                    |                      |             |      |      |        |      |       |          |      |   |
| MATERIALS:                         |                      |             |      |      |        |      |       |          |      |   |
|                                    |                      |             |      |      | _      |      |       |          |      |   |
|                                    |                      |             |      |      |        |      |       |          |      | _ |
|                                    |                      |             |      | _    |        |      |       |          |      |   |
|                                    |                      |             |      |      |        |      |       |          |      | _ |
| DISTRIBUTION 1 Proj. Mgr.          |                      |             |      | PAGE | = 1 OF | 2    | _ PA  | GES      |      |   |
| 2 Field Office<br>3 File           |                      |             |      |      |        |      | _     | ,        |      |   |
|                                    | BY S. Town           | <u></u>     |      | _    | TITLE  |      | rep   | do       |      | _ |



| PROJECT Franklin Cleaners Site (off-site)                   | REPORT NO                                                            |
|-------------------------------------------------------------|----------------------------------------------------------------------|
| NYSDEC # <u>1-30-050</u>                                    | DATE9/5/03                                                           |
| CONSTRUCTION ACTIVITIES: 0545 ST & EPS on sik               |                                                                      |
| Go Over schedule of John                                    |                                                                      |
| - SUE system storbl on 8/24/03                              | - 14 day test to enfor 9/1/03                                        |
| - As system test started on 9                               | - 14 day fort to andon 9/1/03<br>13/03 - Jeff Delegered to test only |
| S days lest will led on 91                                  | 7/03 o rolibring well alon 9/9/63                                    |
| - Dob will cell fak hodsass                                 |                                                                      |
| 0615-Chrs & Star ((PS)) on 5: h to los                      | in sampling & monitoring procedure                                   |
| - Sitewide ASTSVE Maritary                                  |                                                                      |
| 0800 ST off sike to fine                                    |                                                                      |
| 0800 ST off sike to office<br>0100 tosass school of Fork    |                                                                      |
| SUE test routering - souply to                              | ent on 9/6/03 owning                                                 |
| SUE test routing + southy to  As test to and on 9/6/03 & me | nitering to all an 9/8/03 morning.                                   |
| 1100 St how office                                          | ·                                                                    |
| 242                                                         |                                                                      |
| 1740 % on s.k                                               |                                                                      |
| 1800 STANLAS & SVE MARKORY                                  |                                                                      |
| 1945 ST + EPS off 5:/2                                      |                                                                      |
|                                                             |                                                                      |
|                                                             |                                                                      |
|                                                             |                                                                      |
|                                                             |                                                                      |
|                                                             |                                                                      |
|                                                             |                                                                      |
|                                                             |                                                                      |
|                                                             |                                                                      |
|                                                             |                                                                      |
|                                                             |                                                                      |
|                                                             |                                                                      |
|                                                             |                                                                      |
|                                                             |                                                                      |
|                                                             |                                                                      |
|                                                             |                                                                      |
|                                                             |                                                                      |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office 3 File             | PAGE 2 OF L PAGES                                                    |



| CONSULTING ENGINE                                     | ERS              |             | DATE  | í    | 1/6/0  | 3     |      |               |      |          |  |  |  |
|-------------------------------------------------------|------------------|-------------|-------|------|--------|-------|------|---------------|------|----------|--|--|--|
|                                                       |                  |             | DAY   | S    | M      | T     | W    | TH            | F    | _<br>  S |  |  |  |
|                                                       |                  |             | יאכ   |      |        |       |      |               |      |          |  |  |  |
| PROJECT Franklin Cleaners Site (on                    | -site)           |             |       |      |        |       |      |               |      |          |  |  |  |
| NYSDEC SITE NO. <u>1-30-050</u>                       |                  | WEATHE      | R Bri |      | Clear  | Over  | cast | Rain          | Snov | ,        |  |  |  |
| NYSDEC CONTRACT NO. D004184                           | <u> </u>         | TEMP.       |       | 32   | 32-50  | 50-70 |      | 70-85         | 85+u | р        |  |  |  |
| CONTRACTOR EP&S                                       | <u> </u>         | WIND        | Stil  |      | Moder. | High  |      | Report<br>No. |      |          |  |  |  |
| PROJECT MANAGER Frank DeVita                          |                  | HUMIDIT     | Y Dry | /    | Moder. | Humie | d    |               |      |          |  |  |  |
|                                                       |                  |             |       |      |        |       |      |               |      |          |  |  |  |
| AVERAGE FIELD FORCE                                   |                  |             |       |      |        |       |      |               |      |          |  |  |  |
| Folia Decori Els                                      | STH MON Function | on Remarks  |       |      |        |       |      |               |      |          |  |  |  |
|                                                       |                  |             |       |      |        |       |      |               |      |          |  |  |  |
|                                                       |                  |             |       |      |        |       |      |               |      |          |  |  |  |
|                                                       |                  |             |       |      |        |       |      |               |      |          |  |  |  |
| S. Taus Dris                                          | In spector       |             |       |      |        |       |      |               |      |          |  |  |  |
| VISITORS                                              |                  |             |       |      |        |       | -    |               |      |          |  |  |  |
| Time Name                                             | Representing     |             |       |      |        | Rem   | arks |               |      |          |  |  |  |
|                                                       | ,                | 1           |       |      | -      |       |      |               |      |          |  |  |  |
|                                                       |                  | }           |       |      |        |       |      |               |      |          |  |  |  |
|                                                       |                  |             |       |      |        |       |      |               |      |          |  |  |  |
|                                                       |                  |             |       |      |        |       |      |               |      |          |  |  |  |
|                                                       |                  |             |       |      |        |       |      |               |      |          |  |  |  |
|                                                       |                  |             |       |      |        |       |      |               |      |          |  |  |  |
|                                                       |                  |             |       |      |        |       |      |               |      |          |  |  |  |
| }                                                     |                  | }           |       |      |        |       |      |               |      |          |  |  |  |
|                                                       |                  |             |       |      |        |       |      |               |      |          |  |  |  |
| EQUIPMENT AT THE SITE: 6.1.                           |                  |             |       |      |        |       |      |               |      |          |  |  |  |
| EQUIPMENT AT THE SITE: FOUL V                         | 01               |             |       |      |        |       |      |               |      |          |  |  |  |
|                                                       |                  | <del></del> |       | _    |        |       |      |               |      |          |  |  |  |
|                                                       |                  |             |       |      |        |       |      |               |      |          |  |  |  |
|                                                       |                  |             |       |      | _      |       |      |               |      |          |  |  |  |
| MATERIALS:                                            |                  |             |       |      |        |       |      |               |      |          |  |  |  |
|                                                       |                  |             |       |      |        |       |      |               |      |          |  |  |  |
|                                                       |                  |             |       |      |        |       |      |               |      |          |  |  |  |
|                                                       |                  |             |       |      |        |       |      |               |      |          |  |  |  |
|                                                       |                  |             |       |      |        |       |      |               |      |          |  |  |  |
|                                                       |                  |             |       |      |        |       |      |               |      |          |  |  |  |
| DISTRIBUTION 1 Proj. Mgr.<br>2 Field Office<br>3 File | . —              |             |       | PAGE | 1 OF   | 2     | PAC  | GES           |      |          |  |  |  |

# Dvirka and Bartilucci CONSULTING ENGINEERS

#### **DAILY CONSTRUCTION REPORT**

TITLE Fuspector

| PROJECT Franklin Cleaners Site (off-site)           | REPORT NO   |        |
|-----------------------------------------------------|-------------|--------|
| NYSDEC # 1-30-050                                   | DATE        | 9/6/3  |
| CONSTRUCTION ACTIVITIES:                            |             |        |
| 0600 situal AS & SUE Mointaing.                     |             |        |
| OGOU Situid AS & SUE Mointoing.                     |             |        |
| PStro ST + LPs Ms. 4                                |             |        |
| 0800 5T & CPs off 5; k                              |             |        |
| 1745 85 on sik                                      |             |        |
| 1800 Sihvida AS / SVE Man.                          |             |        |
| 1800 Sihvida ASTSUE MON. 1915 ST of site            |             |        |
|                                                     |             |        |
|                                                     |             |        |
|                                                     |             |        |
|                                                     |             |        |
|                                                     |             |        |
| <del></del>                                         | <del></del> |        |
|                                                     |             |        |
|                                                     |             |        |
|                                                     |             |        |
|                                                     |             |        |
|                                                     |             |        |
|                                                     |             |        |
|                                                     |             |        |
|                                                     |             |        |
| ·                                                   |             |        |
|                                                     |             |        |
|                                                     |             |        |
|                                                     |             | -      |
|                                                     |             |        |
|                                                     |             |        |
|                                                     |             |        |
| DISTRIBUTION 1 Proj. Mgr. PAG                       | GEOF        | 7 0000 |
| DISTRIBUTION 1 Proj. Mgr. PAC 2 Field Office 3 File | JE OF _     | PAGES  |

BY STavy



|                                                      |         | DATE  | _7/  | 110>   |      |       |               |       | _ |
|------------------------------------------------------|---------|-------|------|--------|------|-------|---------------|-------|---|
|                                                      |         | DAY   | S    | М      | T    | W     | TH            | F     | 1 |
| PROJECT_ Franklin Cleaners Site (on-site)            |         |       |      |        |      |       |               |       |   |
| NYSDEC SITE NO. 1-30-050                             | WEATH   | ER Br | ite  | Clear  | Ove  | rcast | Rain          | Snow  |   |
| NYSDEC CONTRACT NO. D004184                          | TEMP.   |       | 32   | 32-50  | 50-7 | 9     | 70-85         | 85+up | , |
| CONTRACTOR EP&S                                      | WIND    | St    | ill  | Moder. | High | 1     | Report<br>No. |       |   |
| PROJECT MANAGER Frank DeVita                         | HUMIDIT | TY Dr | У    | Moder. | Hum  | nid   |               |       |   |
|                                                      |         |       |      |        |      |       |               | _     |   |
| AVERAGE FIELD FORCE                                  |         |       |      |        |      |       |               |       |   |
| Name of Contractor  John Pecori EPS  Sile Men.  Func | tion    |       |      |        | Rer  | narks |               | ,     |   |
| S. Tames Dris Engreter VISITORS                      |         |       |      |        |      |       |               |       | _ |
| Time Name Represe                                    | enting  |       |      |        | Ren  | narks |               |       |   |
|                                                      |         |       |      |        |      |       |               |       |   |
| EQUIPMENT AT THE SITE: Ford Van                      |         |       |      |        |      |       |               |       |   |
|                                                      |         |       |      |        |      |       |               |       |   |
|                                                      |         |       |      |        |      |       |               |       |   |
|                                                      |         |       |      |        |      |       |               |       |   |
| MATERIALS:                                           |         |       |      |        |      |       |               |       |   |
|                                                      |         |       |      |        |      |       |               |       |   |
|                                                      |         |       |      |        |      |       |               |       |   |
|                                                      |         |       |      |        |      |       | _             |       |   |
|                                                      |         | -     |      |        |      |       |               |       |   |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office             |         |       | PAGI | = 1 OF | 2    | PA    | GES           |       |   |

TITLE Fragueter



3 File

| PROJECT Franklin Cleaners Site (off-site)         | REPORT NO         |
|---------------------------------------------------|-------------------|
| NYSDEC # _1-30-050                                | DATE_9(7/03       |
| CONSTRUCTION ACTIVITIES:                          |                   |
| ST + EPS ON 5, 60530                              |                   |
| 0600 Situich ASTSUE Milkey                        |                   |
| OFTS ST off sich                                  |                   |
|                                                   |                   |
| 1740 ST 015/2                                     |                   |
| 1800 Situal AS BUE NON                            |                   |
| 1800 Situal 15 0 SiE Non<br>1905 ST + 815 gf situ |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   | *                 |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office          | PAGE 2 OF 2 PAGES |



|                                    | CONSULTING ENGINEE                    | ERS          | DATE 9/8/03               |            |            |        |        |               |       |      |   |  |  |  |
|------------------------------------|---------------------------------------|--------------|---------------------------|------------|------------|--------|--------|---------------|-------|------|---|--|--|--|
|                                    |                                       |              |                           | DAY        | S          | M      | T W TH |               |       |      | S |  |  |  |
|                                    |                                       |              |                           | DAT        |            |        |        |               |       |      |   |  |  |  |
| PROJE                              | ECT Franklin Cleaners Site (on        | -site)       |                           |            |            |        |        |               |       |      |   |  |  |  |
| NYSDE                              | EC SITE NO. <u>1-30-050</u>           | <del></del>  | WEATHER                   | ` <u>s</u> | rite<br>un | Clear  |        | rcast         | Rain  | Snow |   |  |  |  |
| NYSDEC CONTRACT NO. <u>D004184</u> |                                       |              | TEMP.                     |            | o 32       | 32-50  | 50-7   |               | 70-85 | 85+u | p |  |  |  |
| CONT                               | RACTOR EP&S                           | WIND         |                           | till       | Moder.     | High   |        | Report<br>No. |       |      |   |  |  |  |
| PROJE                              | ECT MANAGER Frank DeVita              | <u> </u>     | HUMIDITY Dry Moder. Humid |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
| AVERA                              | GE FIELD FORCE                        |              |                           |            |            |        |        |               |       |      |   |  |  |  |
| - 1                                | Name of Contractor                    | Function     |                           |            |            |        | Rer    | narks         |       |      |   |  |  |  |
| 30 h                               | n Pecoli EPS                          | Si Le Mon    |                           |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              | j                         |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
| 5-1au                              | ss Drs                                | Inspiter     |                           |            |            |        |        |               |       |      |   |  |  |  |
| VISITO                             |                                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
| Time                               | Name                                  | Representing | 1                         |            |            |        | Rer    | narks         |       |      |   |  |  |  |
|                                    |                                       |              | 1                         |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              | 1                         |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              | ł                         |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
| EQUIPN                             | MENT AT THE SITE: Food J              |              |                           |            |            |        |        |               |       |      |   |  |  |  |
|                                    | 1000 00                               | <u> </u>     |                           |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
| MATER                              | IALS:                                 |              |                           |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
|                                    |                                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
|                                    | <del></del>                           |              |                           |            |            |        |        |               |       |      |   |  |  |  |
| DIOTO                              | OUTION 4 POLITA                       |              |                           |            |            |        |        |               |       |      |   |  |  |  |
| DISTRIE                            | BUTION 1 Proj. Mgr.<br>2 Field Office |              |                           |            | PAG        | E 1 OF |        | _ PA          | IGES  |      |   |  |  |  |

# Dvirka and Bartilucci CONSULTING ENGINEERS

| PROJECT Franklin Cleaners Site (off-site)                                                                                           | REPORT NO         |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| NYSDEC # 1-30-050                                                                                                                   | DATE 9/1/05       |
| CONSTRUCTION ACTIVITIES:                                                                                                            |                   |
| 85 on 51 6 0540                                                                                                                     |                   |
| Obor Siturd ASISVE presitory.  0830 FileVith orsile  0900 Fank + I get & to off-sita  system stort up a weter bulls  1218 Styl site |                   |
| 083 FDeVitarsite                                                                                                                    |                   |
| 0900 Fank + I get & to of site                                                                                                      | &                 |
| system short up s weter iels                                                                                                        |                   |
| 1218 ST ff sik                                                                                                                      |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
|                                                                                                                                     |                   |
| DISTRIBUTION 1 Proj. Mgr.                                                                                                           | PAGE 2 OF 2 PAGES |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office 3 File                                                                                     | PAGE 2 OF PAGES   |



| CONSULTING ENGINE                  | SULTING ENGINEERS  DATE 09/16/03 |          |      |         |        |                |       |        |      |         |  |
|------------------------------------|----------------------------------|----------|------|---------|--------|----------------|-------|--------|------|---------|--|
|                                    |                                  |          | DAY  | S       | M      | T <sub>X</sub> | W     | TH     | F    | S       |  |
| PROJECT_Franklin Cleaners Site (on | -sita)                           |          |      |         |        |                |       |        |      |         |  |
| NYSDEC SITE NO. 1-30-050           | -5(16)                           | WEATHER  | Bri  |         | Clear  | Over           | cast  | Rain   | Snov | <u></u> |  |
| NYSDEC CONTRACT NO. D004184        |                                  | TEMP.    | Su   | n<br>32 | 32-50  | 50-7           | 0     | 70-85  | 85+0 | ip .    |  |
| CONTRACTOR EP&S                    | ·                                | WIND     | Stil | 1       | Moder. | High           |       | Report | ,    |         |  |
| PROJECT MANAGER Frank DeVita       |                                  | HUMIDITY | Dry  |         | Moder. | Hum            | id    | No.    |      |         |  |
| THOSE OF WINNEY OLIVE THANK BOYNE  | <u>_</u>                         |          | (    |         | X      |                |       |        |      |         |  |
| AVERAGE FIELD FORCE                |                                  |          |      |         |        |                |       | _      |      |         |  |
| Name of Contractor                 | Function                         |          |      |         |        | Rem            | narks |        | _    |         |  |
|                                    |                                  |          |      |         |        |                |       |        |      |         |  |
|                                    |                                  |          |      |         |        |                |       |        |      |         |  |
|                                    |                                  |          |      |         |        |                |       |        |      |         |  |
|                                    |                                  | 1        |      |         |        |                |       |        |      |         |  |
|                                    |                                  |          |      |         |        |                |       |        |      |         |  |
|                                    |                                  | j        |      |         |        |                |       |        |      |         |  |
|                                    |                                  |          |      |         |        |                |       |        |      |         |  |
|                                    |                                  | }        |      |         |        |                |       |        |      |         |  |
| VISITORS                           |                                  |          |      |         |        |                |       |        |      |         |  |
| Time Name                          | Representing                     |          |      |         |        | Rem            | arks  |        |      |         |  |
| 730 F. De Vita. 730 R. Heling      | D+B<br>P+B<br>EP+S               |          |      |         |        |                |       |        |      |         |  |
| 130 R Holina                       | Dr B                             |          |      |         |        |                |       |        |      |         |  |
| 215 6. Starti                      | EP+5                             | 1        |      |         |        |                |       |        | •    |         |  |
| 9 - 210.01                         | 2. / / 0                         | }        |      |         |        |                |       |        |      |         |  |
|                                    |                                  | }        |      |         |        |                |       |        |      |         |  |
|                                    |                                  |          |      |         |        |                |       |        |      |         |  |
|                                    |                                  |          |      |         |        |                |       |        |      |         |  |
|                                    |                                  |          |      |         |        |                |       |        |      |         |  |
|                                    |                                  |          |      |         |        |                |       |        |      |         |  |
|                                    |                                  |          |      |         |        |                |       |        |      |         |  |
| EQUIPMENT AT THE SITE:             |                                  | <u> </u> |      |         |        |                |       |        |      |         |  |
|                                    |                                  |          |      |         |        |                |       |        |      |         |  |
|                                    |                                  |          |      |         |        |                |       |        |      |         |  |
|                                    |                                  |          |      |         |        |                |       |        |      |         |  |
|                                    |                                  |          |      |         |        |                |       |        |      |         |  |
| MATERIALS:                         |                                  |          |      |         |        |                |       |        |      | - 1     |  |
|                                    |                                  |          |      |         |        |                |       |        |      |         |  |
|                                    |                                  |          |      |         |        |                |       |        |      |         |  |
|                                    |                                  |          |      |         |        |                |       |        |      |         |  |
|                                    |                                  |          |      |         |        |                |       |        |      |         |  |
|                                    |                                  |          |      |         |        |                |       |        |      |         |  |
| DISTRIBUTION 1 Proj. Mgr.          |                                  |          | F    | PAGE    | 1 OF _ | 2              | - PAC | GES    |      |         |  |
| 2 Field Office<br>3 File           | PIL                              | /.       |      |         |        |                | ′/    | Spe    | ,    |         |  |
| - · · · · ·                        | BY R. Hell                       | nel      |      |         | TITLE  |                | /h    | Size   | e)D  | €.      |  |

# Dvirka and Bartilucci CONSULTING ENGINEERS

| PROJECT Franklin Cleaners Site (off-site)     | REPORT NO |            |
|-----------------------------------------------|-----------|------------|
| NYSDEC # 1-30-050                             | DATE _    | 09/16/03   |
| CONSTRUCTION ACTIVITIES:                      |           |            |
|                                               |           |            |
| 3 SUE and the spanging monitor adjuties were  | eancelle  | id by EPiS |
|                                               |           |            |
|                                               |           |            |
|                                               |           |            |
|                                               |           |            |
|                                               |           |            |
|                                               |           |            |
|                                               |           |            |
|                                               |           |            |
| · · · · · · · · · · · · · · · · · · ·         |           |            |
|                                               |           | 4          |
|                                               |           |            |
|                                               |           |            |
|                                               |           |            |
|                                               |           |            |
|                                               |           |            |
|                                               |           |            |
|                                               |           |            |
|                                               |           |            |
|                                               |           |            |
|                                               |           |            |
|                                               |           |            |
|                                               |           |            |
| DISTRIBUTION 1 Proj. Mgr. PAGE 2 Field Office |           | Z PAGES    |
| 3 File BY R. Helling                          | = 2 OF    | pulor      |



|                   | CONSULTING ENGINEERS  DATE 00/18/03 |               |          |              |      |        |      |       |               |      |             |
|-------------------|-------------------------------------|---------------|----------|--------------|------|--------|------|-------|---------------|------|-------------|
|                   |                                     |               |          | AY           | s    | M      | Т    | W     | TH.           | F    | S           |
|                   |                                     |               | ٥.       | ``           |      |        |      |       |               |      |             |
| PROJECT Franklin  |                                     | <u>-site)</u> |          | 0.0          |      | Olera  | 10   |       | D-i-          | Con  |             |
| NYSDEC SITE NO.   |                                     |               | WEATHER  | Brite<br>Sun |      | Clear  |      | rcast | Rain          | Snov |             |
| NYSDEC CONTRA     |                                     |               | TEMP.    | To 3:        | 2    | 32-50  | 50-7 |       | 70-85         | 85+1 | ip          |
| CONTRACTOR EP     |                                     | <del></del>   | WIND     | Still        | _    | Moder. | High | _^_   | Report<br>No. |      |             |
| PROJECT MANAGE    | ER <u>Frank DeVita</u>              | <del></del>   | HUMIDITY | Dry          |      | Moder. | Hum  | iid . |               |      |             |
| AVERAGE FIELD FOR | RCE                                 |               |          |              |      |        |      |       |               |      |             |
| Name of Co        | ontractor                           | Function      |          |              |      |        | Rer  | narks |               |      |             |
|                   |                                     |               |          |              |      |        |      |       |               |      |             |
|                   |                                     |               |          |              |      |        |      |       |               |      |             |
|                   |                                     |               |          |              |      |        |      |       |               |      |             |
|                   |                                     |               |          |              |      |        |      |       |               |      |             |
|                   |                                     |               | -        |              |      |        |      |       |               |      |             |
|                   |                                     |               |          |              |      |        |      |       |               |      |             |
|                   |                                     | -             |          |              |      |        |      |       |               |      |             |
|                   |                                     |               |          |              |      |        |      |       |               |      |             |
| VISITORS          | News                                | Day and the   |          |              |      |        | Don  |       |               |      |             |
|                   | Name                                | Representing  |          |              |      |        | Ren  | narks |               |      |             |
| 1100 R. Heling    | 3                                   | P+B<br>EP+S   | 1        |              |      |        |      |       |               |      |             |
| 1100 Cistaiti     | •                                   | EP+5          | 1        |              |      |        |      |       |               |      |             |
| }                 |                                     |               | {        |              |      |        |      |       |               |      |             |
| }                 |                                     |               | }        |              |      |        |      |       |               |      |             |
|                   |                                     |               |          |              |      |        |      |       |               |      |             |
|                   |                                     |               |          |              |      |        |      |       |               |      |             |
|                   |                                     |               |          |              |      |        |      |       |               |      |             |
|                   |                                     |               |          |              |      |        |      |       |               |      |             |
|                   | ·                                   |               |          |              |      |        |      |       |               |      |             |
| EQUIPMENT AT THE  | SITE:                               |               |          |              |      |        |      |       |               |      |             |
|                   |                                     |               |          |              |      |        |      |       |               |      |             |
|                   |                                     |               |          |              |      |        |      |       |               |      |             |
|                   |                                     |               |          |              | -    |        |      |       |               |      |             |
| MATERIALS:        |                                     |               |          |              |      |        | _    |       |               |      |             |
|                   |                                     |               |          |              |      |        |      |       |               |      |             |
|                   |                                     |               |          |              | _    |        |      |       |               | _    | <del></del> |
|                   |                                     |               |          |              |      |        |      |       |               |      |             |
|                   |                                     |               |          |              |      |        |      |       |               |      |             |
|                   |                                     |               |          |              |      |        |      |       |               |      |             |
|                   | Proj. Mgr.                          |               |          | P            | PAGE | 1 OF   | 2    | _ PA  | GES           |      |             |
| 2                 | Field Office<br>File                | 1211-1        | 1        |              |      |        |      | /     | 70            | 1.   |             |
| ŭ                 |                                     | BY R. Hell    | rill     |              |      | TITLE  | _    | My    | pecs          | IOR  | _           |
|                   |                                     |               | . / '    |              |      |        |      |       |               |      |             |



| PROJECT Franklin Cleaners Site (off-site)          | REPORT NO                 |
|----------------------------------------------------|---------------------------|
| NYSDEC # 1-30-050                                  | DATE _ <i>9/18/03</i>     |
| CONSTRUCTION ACTIVITIES:                           |                           |
| * Progress monitoring and sample collected system. | tion 5VF and air sparying |
| ground water sampling ASMI and ASM                 | 2 on Friday September 19  |
| * Inlet filler air spange blower cloggs            | ed.                       |
| * For more details see SVE and air spans           | ging preograss monitoring |
|                                                    |                           |
|                                                    |                           |
|                                                    |                           |
|                                                    |                           |
|                                                    |                           |
|                                                    |                           |
|                                                    |                           |
|                                                    |                           |
|                                                    |                           |
|                                                    |                           |
|                                                    |                           |
|                                                    |                           |
|                                                    |                           |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office 3 File    | PAGE Z OF Z PAGES         |



|         | CONSULTING ENGINE                     | ERS                | DATE 9/19/03            |     |              |             |      |                    |               |    |          |  |
|---------|---------------------------------------|--------------------|-------------------------|-----|--------------|-------------|------|--------------------|---------------|----|----------|--|
|         |                                       |                    |                         |     | S            | <del></del> |      | TW                 |               | F/ | _<br>  S |  |
|         |                                       |                    | D/                      | AY  |              |             |      |                    |               | 1  |          |  |
| PROJE   | ECT_Franklin Cleaners Site (or        | n-site)            |                         |     |              |             | _    |                    |               |    |          |  |
| NYSDE   | EC SITE NO. <u>1-30-050</u>           |                    | WEATHER Brite Sun Clear |     |              |             | Ove  | Overcast Rain Snow |               |    |          |  |
| NYSDE   | EC CONTRACT NO. <u>D004184</u>        | <u>.</u>           | TEMP.                   |     | To 32 32-50  |             |      | 50-70 70-85 89     |               |    | )        |  |
| CONT    | RACTOR EP&S                           |                    | WIND                    | Sti | Still Moder. |             | High | 1                  | Report<br>No. |    |          |  |
| PROJE   | ECT MANAGER Frank DeVita              | <u> </u>           | HUMIDITY                | Dry |              | Moder.      | Hum  | nid                | 1             |    |          |  |
|         |                                       |                    |                         |     |              |             |      | _                  |               |    |          |  |
| AVERA   | GE FIELD FORCE                        |                    |                         |     |              |             |      |                    |               |    |          |  |
| Chis    | Name of Contractor                    | Technicky Function |                         |     |              |             | Rer  | narks              |               |    |          |  |
|         |                                       |                    |                         |     |              |             |      |                    |               |    |          |  |
| S. Tau  | 15 D+B                                | Turpular           |                         |     |              |             |      |                    |               |    |          |  |
| VISITO  | RS Name                               | Representing       |                         |     |              |             |      | narks              |               |    |          |  |
|         |                                       |                    |                         |     |              |             |      |                    |               |    |          |  |
| EQUIPM  | MENT AT THE SITE:                     |                    |                         |     |              |             |      |                    |               |    |          |  |
|         | Morriba V                             | -10, DTW mbr       |                         |     |              |             |      |                    |               |    |          |  |
|         |                                       |                    |                         |     |              |             |      |                    |               |    |          |  |
|         |                                       |                    |                         |     |              |             |      |                    |               |    |          |  |
| MATERI  | ΔΙ ς.                                 |                    |                         |     |              |             |      |                    |               |    |          |  |
|         | <u></u>                               |                    |                         |     |              |             |      |                    |               |    | _        |  |
|         |                                       |                    |                         |     |              |             |      |                    |               |    |          |  |
|         |                                       |                    |                         |     |              |             |      |                    |               |    |          |  |
|         |                                       |                    |                         |     |              |             |      |                    |               |    |          |  |
| D10==:  |                                       |                    |                         |     |              |             |      |                    |               |    |          |  |
| DISTRIE | BUTION 1 Proj. Mgr.<br>2 Field Office |                    |                         |     | PAG          | E 1 OF      | _7   | _ PA               | GES           |    |          |  |
|         | 3 File                                | BY S. Taus         |                         |     |              | TITLE       | = _  | Turj               | n for         |    | _        |  |



| PROJECT Franklin Cleaners Site (off-site)                                                                               | REPORT NO                  |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------|
| NYSDEC # 1-30-050                                                                                                       | DATEDATE                   |
| CONSTRUCTION ACTIVITIES: 0730 ST 015:4                                                                                  |                            |
| 0830 Chris (SPS) on sila                                                                                                |                            |
| SUE system was it as we s                                                                                               | at on site                 |
| OFFO Chiir Colls Hol to try                                                                                             | P 621 hrs SUE + 380 brs AS |
| 0850 Chiir colls Dol to try                                                                                             | 16 start up SVE            |
| system of fix Abort code                                                                                                |                            |
| 0900 SVE sysken on                                                                                                      |                            |
| Total Plans: 115 SCFM to                                                                                                | d vac= 33"                 |
| SUE-1 = 45 SCAM                                                                                                         | SUE1 = 4"                  |
| SUE-1 = 45 SCAM<br>SUE-L = 75 SCAM                                                                                      | su=-1= 26"                 |
| * Dry will area fleodel - leaking into basement otill                                                                   |                            |
| 1015 SUM-1 = 175 Chris sample 15M1+2<br>SUM-1: 180                                                                      |                            |
| SVM-2: ,80                                                                                                              |                            |
| Sum-3: .65                                                                                                              |                            |
| SVM-4: ,10                                                                                                              |                            |
| 1145 45 system total back on - About Condition 4                                                                        |                            |
| 1145 AS system total back on - Abort Condition H<br>whis colls Dol o NES to frage out why we<br>all wells Q L 4 section | passur is very very low    |
| all wells @ K4 scfm                                                                                                     | <del></del>                |
| 1210 Cell Frank - notery him of situation - lea                                                                         | ur sik                     |
|                                                                                                                         |                            |
|                                                                                                                         |                            |
|                                                                                                                         |                            |
|                                                                                                                         |                            |
|                                                                                                                         |                            |
|                                                                                                                         |                            |
|                                                                                                                         |                            |
|                                                                                                                         |                            |
|                                                                                                                         |                            |
|                                                                                                                         |                            |
|                                                                                                                         |                            |
|                                                                                                                         |                            |
|                                                                                                                         |                            |
|                                                                                                                         |                            |
|                                                                                                                         |                            |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office 3 File                                                                         | PAGE 2 OF 2 PAGES          |

#### APPENDIX B

#### CONSTRUCTION PHOTOGRAPHS



Photograph No.: 00 | Date Taken: 2/27/63
Inspector: 5 Taurs



Site Name: Franklin Cleaners Site (on-site) Engineer: Dvirka & Bartilucci Consult. Engrs.

Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184 Description of View: Hols in Deli basement

Photograph No.: 202 Date Taken: 2/22/63
Inspector: 5 Taux s



Site Name: Franklin Cleaners Site (on-site)
Engineer: Dvirka & Bartilucci Consult. Engrs.

Contractor: EP&S

Site No.: 1-30-050 — Contract No: D004184

Description of View: Proposed Joseph Jan

AS well + Jacking grate in background.

Photograph No.: 00 } Date Taken: 2/27/03

Inspector: 5 Taus



Site Name: Franklin Cleaners Site (on-site) Engineer: Dvirka & Bartilucci Consult. Engrs.

Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Outer fonce to be

ce-installed

Photograph No.: <u>904</u> Date Taken: <u>2/27/23</u> Inspector: <u>S. Tauss</u>



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Field office sign

Photograph No.: 005 Date Taken: 2/0 1/03
Inspector: 57auss



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Back of buildings

Photograph No.: 006 Date Taken: 2/27/03 Inspector: S. Tauss\_



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Tree behind pharmocy

pre cutting it down

Photograph No.: 00 7 Date Taken: 2/28/03
Inspector: 5. Taux 5



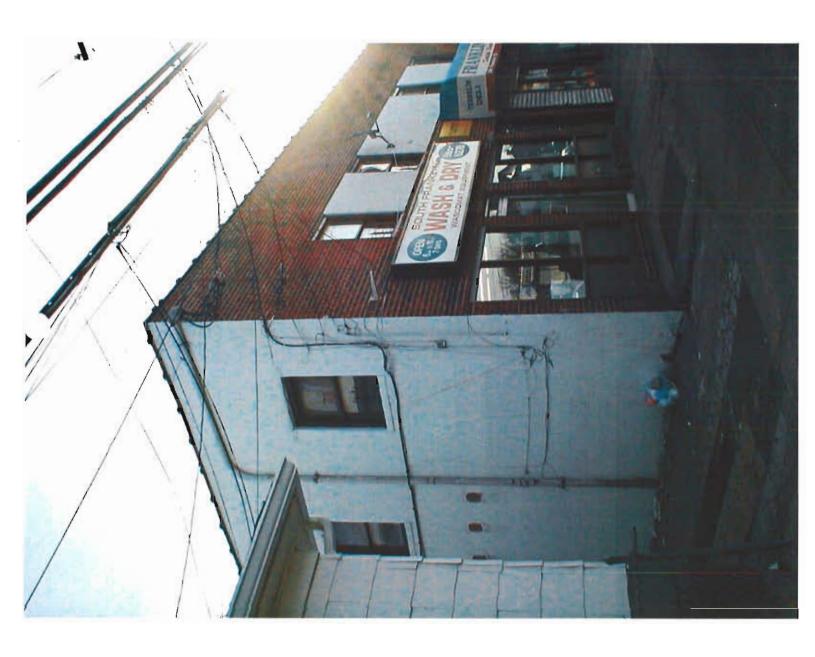
Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Trice behind phormacy

- pes t C4 Hing 1t dawn Photograph No.: 608 Date Taken: 2/28/03

Inspector: S. Taus S




Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184 Description of View: Project Sign

Photograph No.: 609 Date Taken: 3/28/03

Inspector: 8. Tans3



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184 Description of View:

Photograph No.: \_/O \_\_\_ Date Taken: \_\_\_\_\_\_



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View:

Photograph No.: 1 Date Taken: \_\_\_\_\_\_



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View:

Photograph No.: \_\_i2\_\_\_ Date Taken: \_\_\_\_\_\_



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View:\_\_\_\_\_

Photograph No.: 13 Date Taken: \_\_\_\_\_



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Existing Fina Line

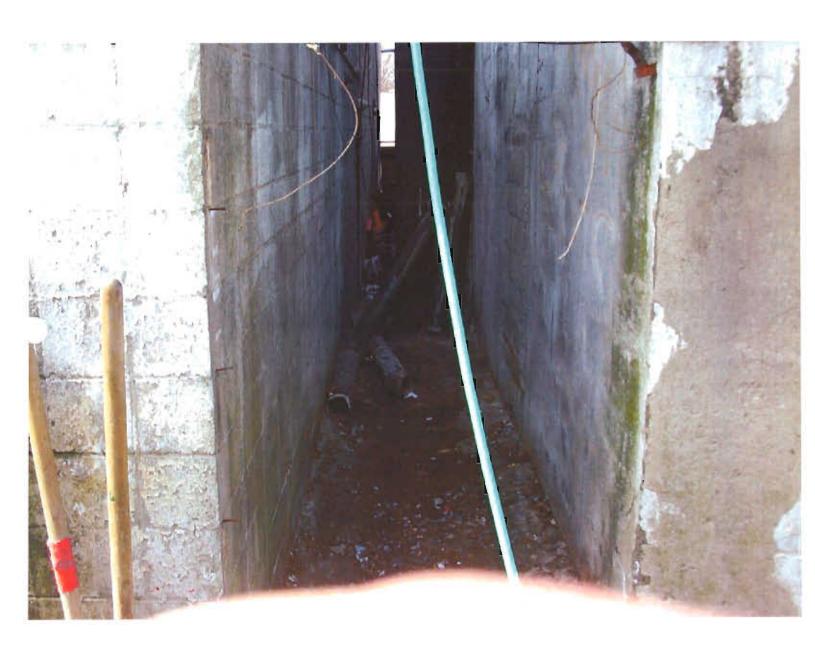
in rung beildings, sharing outph base page by

Photograph No.: \_015 Date Taken: 313/05

Inspector: S. Taus



Contractor: EP&S


Site No.: 1-30-050 --- Contract No: D004184

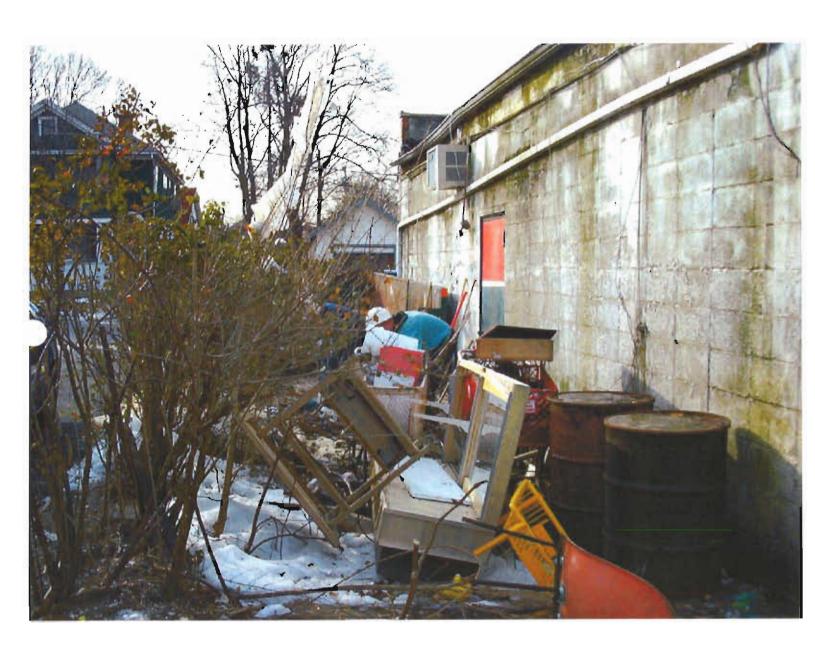
Description of View: Suspected Ashestas pipping

pre remode of debits

Photograph No.: D16 Date Taken: 3/ 1/13

Inspector: S. Tams S




Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: S'-alby after debits

Comed Astronomy Date Taken: 3/4/03

Inspector: S. Taus

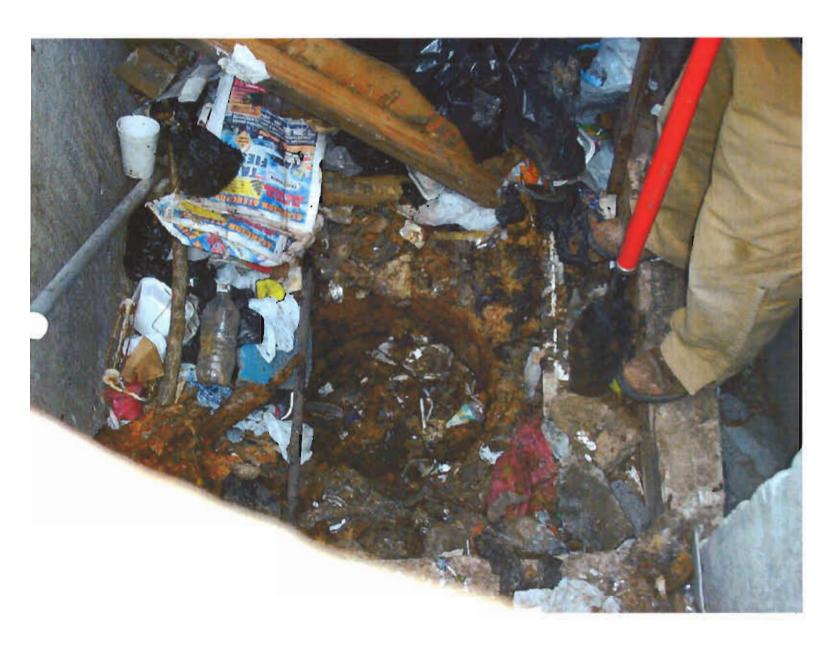


Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184
Description of View: Stort of Achors Revolution

Photograph No.: <u>018</u> Date Taken: <u>3/4/03</u> Inspector: <u>5 Tauss</u>




Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Dry well location pre

cleaning addition remains

Photograph No.: 019 Date Taken: 3/4/03 Inspector: 5. Taus S



Contractor: EP&S

Site No.: 1-30-050 — Contract No: D004184

Description of View: Dry will we cover removed

Showing 24" opening

Photograph No.: \_\_010 Date Taken: \_\_3/4/03
Inspector: \_\_\_\_\_\_ S. Tams



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Deli basement S. before

dibeis compred

Photograph No.: 521 Date Taken: 3/4/03 Inspector: 5: Taus S



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Rear of wigh has Hands

per wristing demand to crac

Photograph No.: \_cit\_\_ Date Taken: \_3/4/c3
Inspector: \_\_\_\_\_ S. Tays S



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Front of North bers (food)

Agman Pick 15ting to Food

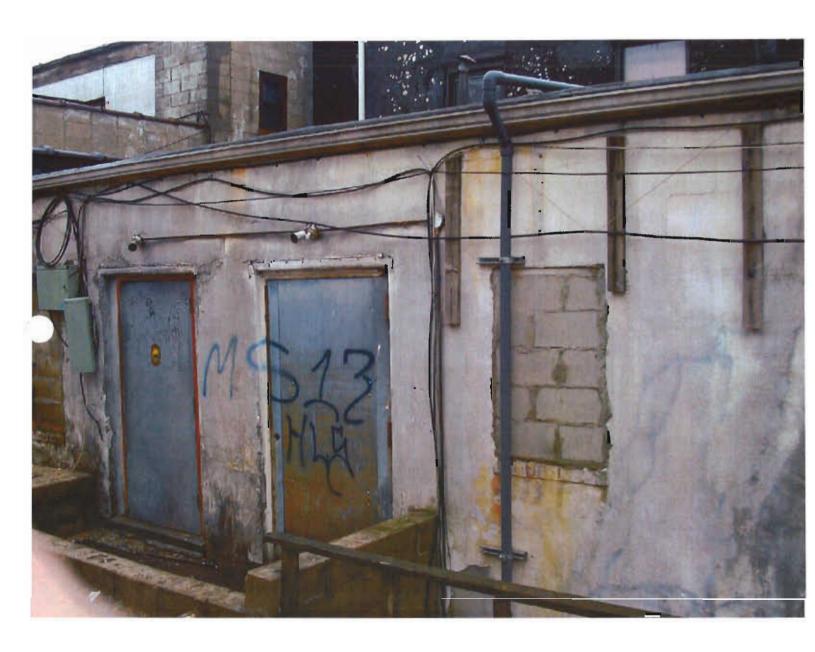
Photograph No.: 023

Date Taken: 3/4/6>

Inspector: S. Taus S

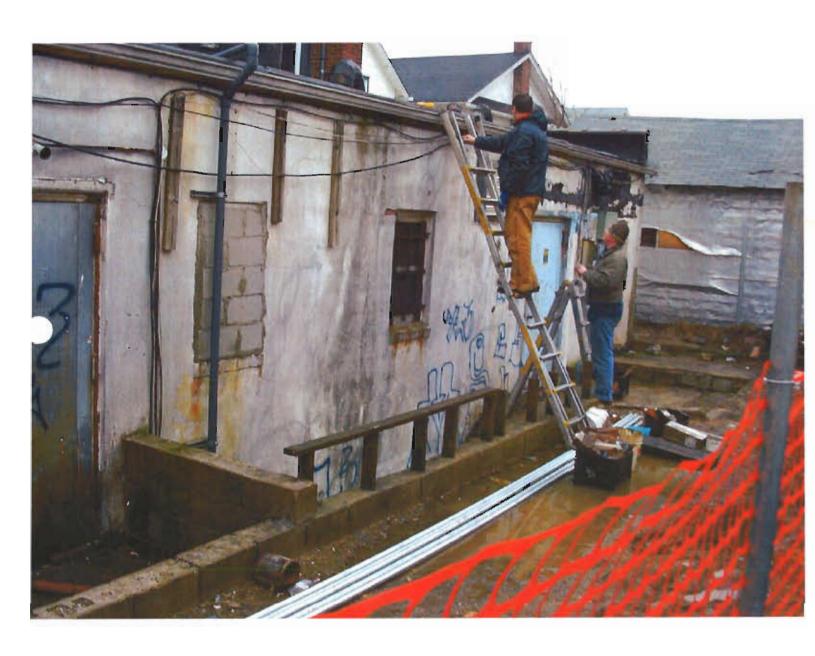


Contractor: EP&S


Site No.: 1-30-050 --- Contract No: D004184

Description of View: Side of Neighbors Honla

Stews processtry darrow to Side of fact


Photograph No.: 034 Date Taken: 3/4/03

Inspector: S. Tauss



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184
Description of View: Landing contributing to Photograph No.: Obs Date Taken: 3/5/63 Inspector: S. Taus



Contractor: EP&S



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Waker & W. L. Longon Fine Contract

College & SE garas Suffer reducing our 1 to 10th maximum t.

Photograph No.: 027 Date Taken: \(\frac{15\lambda}{25\lambda}\)

Inspector: S. Tang S.



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Plain entry point of

Fleating in of 1: basement S. F. carrier

Photograph No.: 638 Date Taken: 3/5/63 Inspector: SiTanss



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Finished Aunity in telleton

and Mr. Lee Coker looking on

Photograph No.: 19 Date Taken: 3/5/03
Inspector: S. Taus



Contractor: EP&S

Site No.: 1-30-050 -- Contract No: D004184

Description of View: Hole in front of base ment

entry may (in influence system) Poss. change order the

Photograph No.: 03c Date Taken: 3/5/63 Inspector:



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Hala in Mid Natio baseous to be for Cipaid

Photograph No.: 031 Date Taken: 3/5/63
Inspector: 9.763



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Shet of basement in Al:

From w well showing some hole locations pre upon

Photograph No.: 032 Date Taken: 3/5/63 Inspector: 5 Taus 5



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: 166 in No. 1. base on the flex

SE Correct proc. (cpa:/

Photograph No.: <u>033</u> Date Taken: <u>3/5/63</u>

Inspector: STays



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: French and below dies

in w sich of Mil: percent pre repair

Photograph No.: 232 Date Taken: 3/5/03

Inspector: 5 Taus 8



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Lies bond patern & min
enturns of blow door (w. sid Beli basement)

Photograph No.: 035 Date Taken: 3/5/03 Inspector: 5. Taurs



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Typical Saucut hole 17

Will hascount

Photograph No.: 036 Date Taken: 3/6/02 Inspector: 5.7 au.s



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Dry well classics

Photograph No.: 037 Date Taken: 3/6/03

Inspector: 5/7auss



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: L. Londing, bibini laudiomet

Showing location of proposal retaining well (rakes)

Photograph No.: 038 Date Taken: 3/6/03

Inspector: 5: Taus S



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Cxcavafel dry well



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Finished Force location

Photograph No.: 340 Date Taken: 3/7/03 Inspector: 5 Takes



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Suspected 55 Gold drain

find busined at rear of deli.

Photograph No.: 641 Date Taken: 3 /10/63 Inspector: 5.7ausS



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Suspected days twent out

6 be aprot of largue point rais 6d days lid

Photograph No.: 642 Date Taken: 3/16/63

Inspector: S. Tays



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Sik top pakeh obstrayed

by LM-1 dail (ig)

Photograph No.: 643 Date Taken: 3/12/03 Inspector: S. Tauss




Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Finished Fonce + trach

Photograph No.: <u>044</u> Date Taken: <u>31:410</u>3 Inspector: <u>5 Tauss</u>



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Tranch + piping location

Photograph No.: \_045 Date Taken: \_3/20/03
Inspector: \_\_\_\_\_\_\_ S. Taus S



Contractor: EP&S

Site No.: 1-30-050 per Contract No: D004184

Description of View: Or 1 P.: 11 cap over Planing behind hair solon.

Photograph No.: 646 Date Taken: 3/21/03
Inspector: S. Taus S



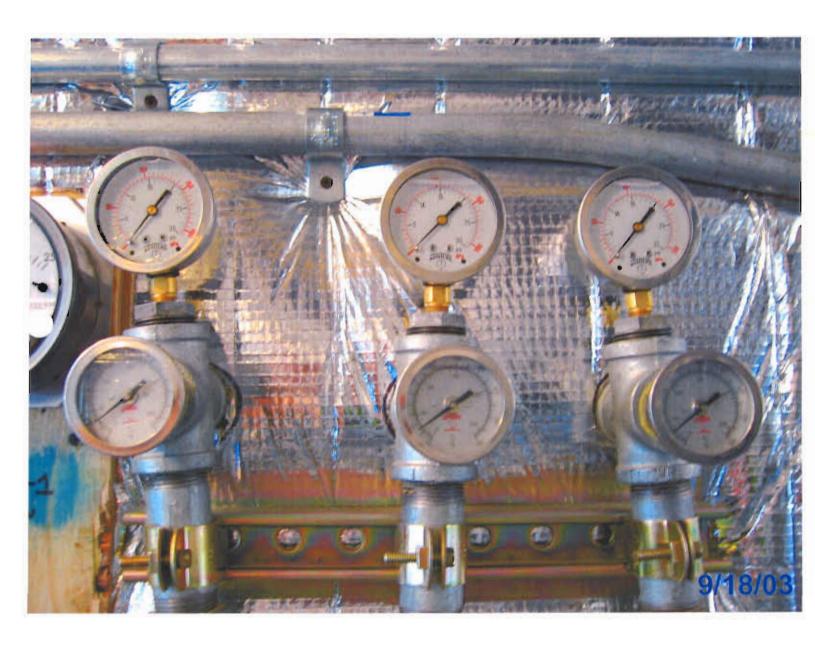
Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Finish locations of calcion wills behind eleli.

Photograph No.: 1947 Date Taken: 3/21/63
Inspector: 5. Tays




Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

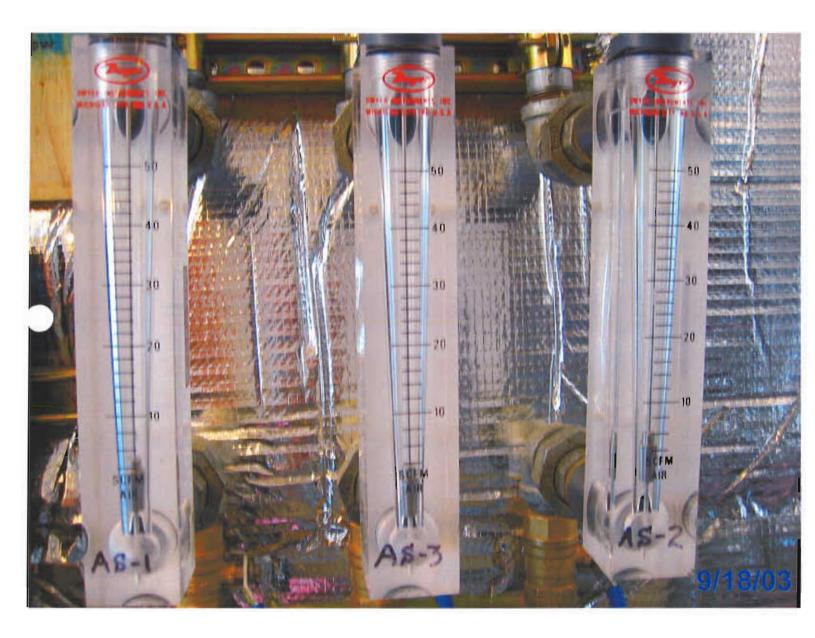
Description of View: SUE Magnahelic

flow guages

Photograph No.: 047 Date Taken: 91/8/03
Inspector: R. Helin,



Contractor: EP&S


Site No.: 1-30-050 --- Contract No: D004184

Description of View: As system temp r

pelsus gugges

Photograph No.: 048 Date Taken: 9/18/63

Inspector: R. Itelia



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: As system flow

Fules

Photograph No.: 049 Date Taken: 9/18/03
Inspector: R. Ikeling



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: SUE System temp

Photograph No.: 050 Date Taken: 9/18/63

Inspector: R. Ikli-



Contractor: EP&S

Site No.: 1-30-050 — Contract No: D004184

Description of View: AS system compressor

Photograph No.: <u>05-1</u> Date Taken: <u>9/16/63</u> Inspector: R. Ikling



Contractor: EP&S


Site No.: 1-30-050 --- Contract No: D004184

Description of View: SUE + As system

gaages + man; folds

Photograph No.: 052 Date Taken: 9/18/03

Inspector: R. Ik ling



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Vapor/Mynich seperator

top + dimistr

Photograph No.: 053 Date Taken: 9/18/03 Inspector: R. Ikling



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184 Description of View: Carbon unit piping

Photograph No.: 054 Date Taken: 9/15/03
Inspector: R. Iklins



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Completel Systems

enclosur

Photograph No.: OSS Date Taken: 9/18/03

Inspector: R. Iteline



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Control park

Photograph No.: 056 Date Taken: 9/15/03
Inspector: R. Ikling



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View:\_\_\_\_\_



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: System Gardison: Lastic Contract No: D004184

Showing fronted from Contract No: D004184

Photograph No.: D5 a Date Taken: \$119113

Inspector: 5 Taus S



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: System's Enclosure Delivery

Photograph No.: 060 Date Taken; 8/19/03
Inspector: C. Taws



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184.

Description of View: Leaking oil downs behind
Chiase Restaugat.

Photograph No.: 061 Date Taken: 9/19/03

Inspector: S.Tanas



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Gbs whent Make out

porsible had oil + veg. oil leak

Photograph No.: 662 Date Taken: 8/19/03

Inspector: S. Taus S



Contractor: EP&S

Photograph No.: <u>663</u> Date Taken: <u>8/19/63</u> Inspector: <u>5.7465</u>



Contractor: EP&S



Contractor: EP&S

Photograph No.: <u>065</u> Date Taken: <u>8/20/65</u> Inspector: <u>5. Taus</u>



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Rout of Encloses showing

Caclous in background Photograph No.: 066 Date Taken: 8/19/03

Inspector: S. Tans



Contractor: EP&S

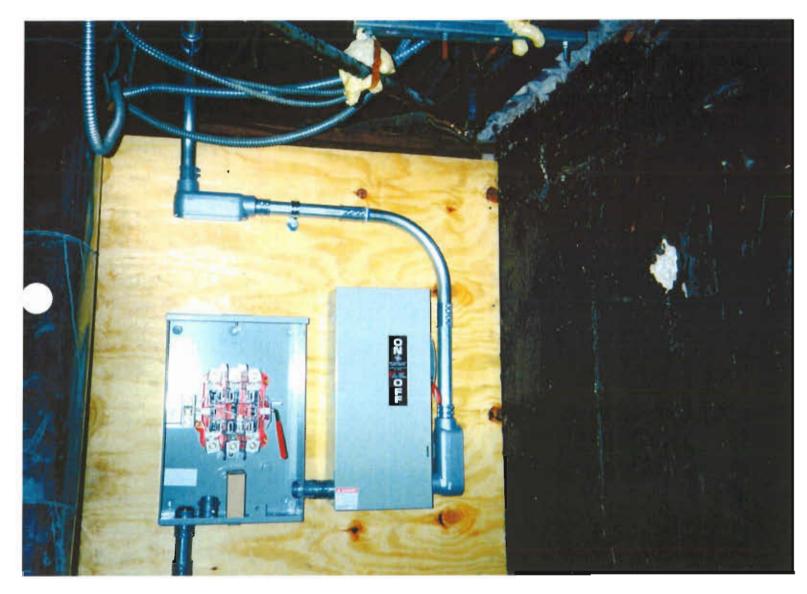
Site No.: 1-30-050 --- Contract No: D004184

Description of View: Post of with for elatrical

piping from (landament basines)

Photograph No.: 067 Date Taken: 8/21/03

Inspector: 5. Tays




Site No.: 1-30-050 --- Contract No: D004184

Description of View: Exhaut di Fuscr -
piping horked up

Photograph No.: 068 Date Taken: 8/21/03

Inspector: 5. Taurs



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Clertor panel installed

Photograph No.: D69 Date Taken: 8/24/03

Inspector: S. Taus



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Gu Her Mud: Fire From

T chitch goodereck

Photograph No.: 670 Date Taken: 8/22/63
Inspector: 5: Taus



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

Description of View: Electric back -up

to system & Grelesure

Photograph No.: <u>o //</u> Date Taken: <u>8/22/63</u> Inspector: <u>S. Taup S</u>



Contractor: EP&S

Description of View: 174 to 2 10 1004184

Photograph No.: Date Taken: 8/29/03 Inspector:\_\_\_\_

Jes. ch dirm



Contractor: EP&S

Site No.: 1-30-050 --- Contract No: D004184

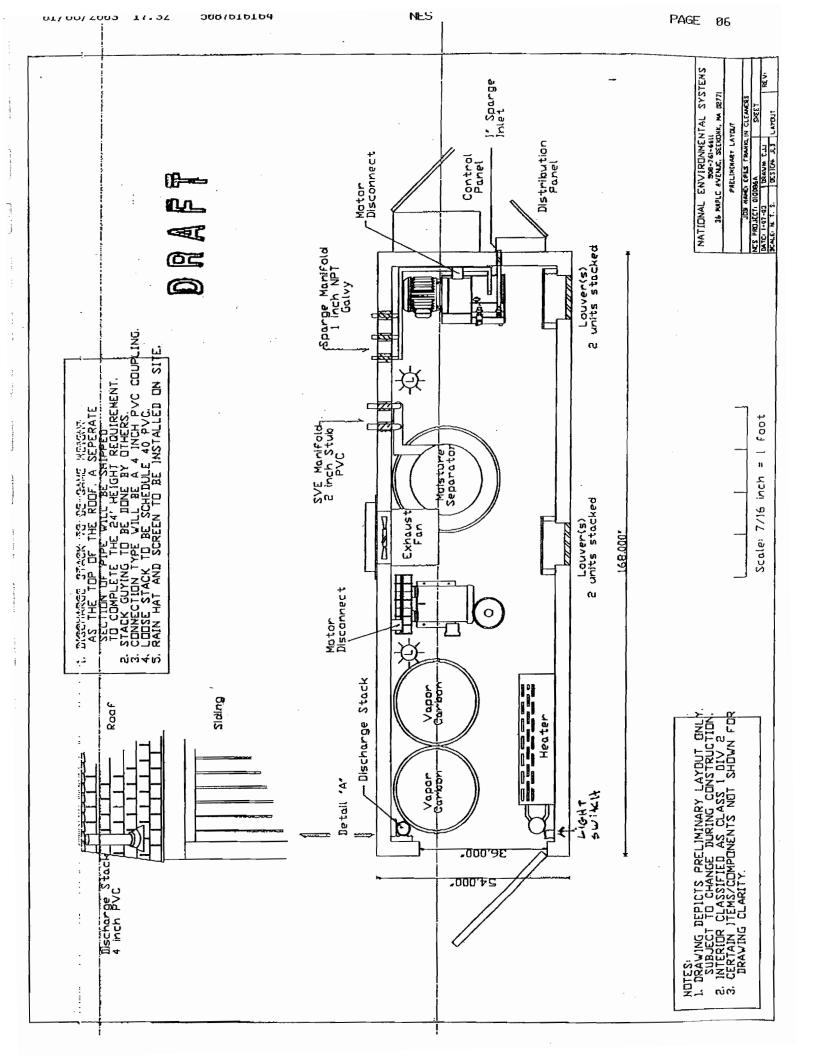
Description of View: Finish Force D

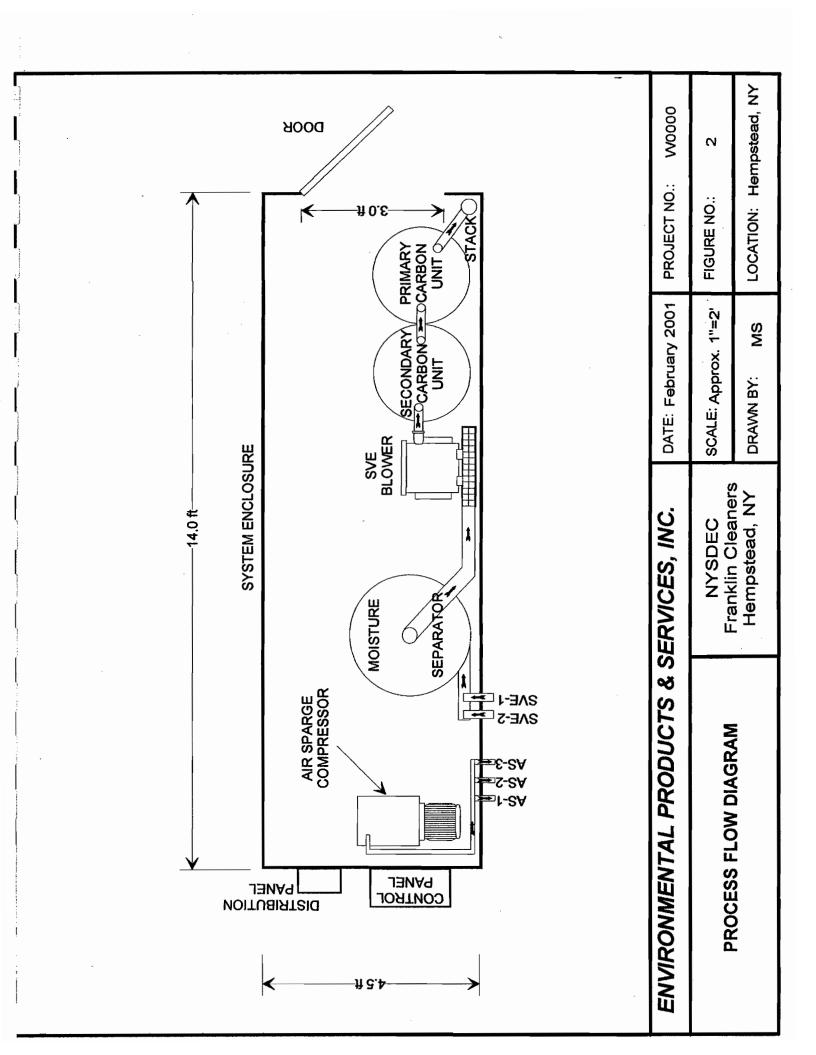
Photograph No.: 073 Date Taken: 8/29/03

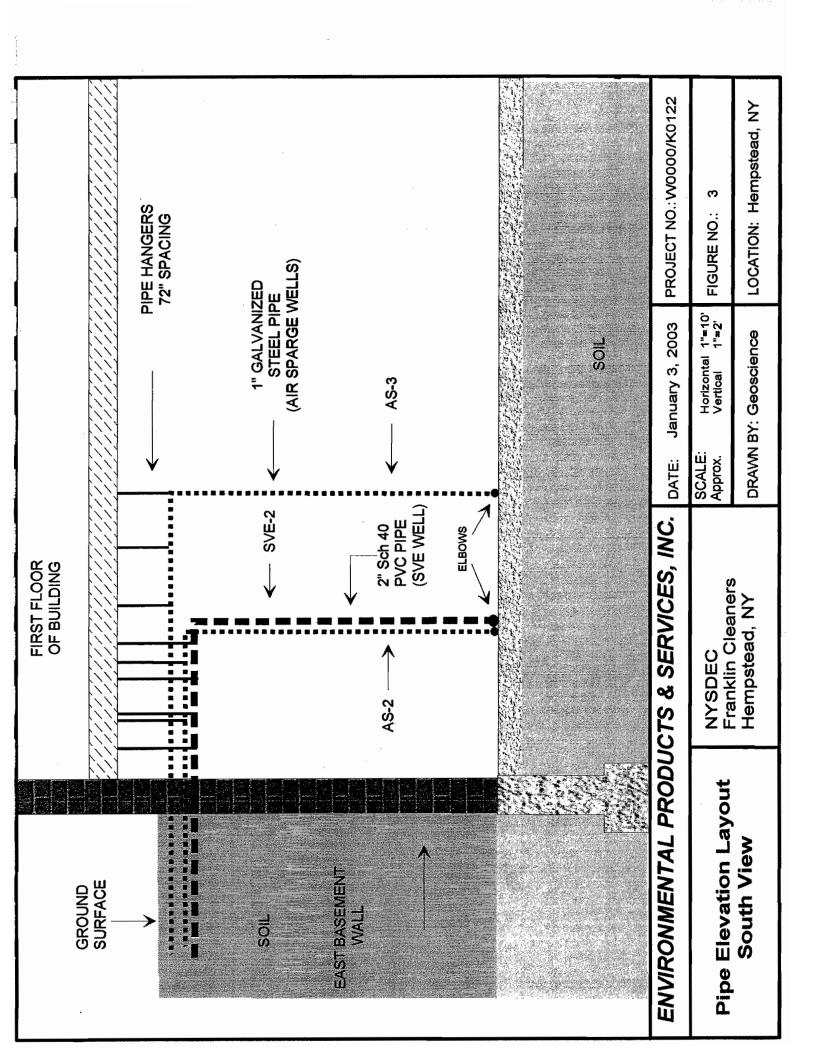
Inspector: 5. Tay's

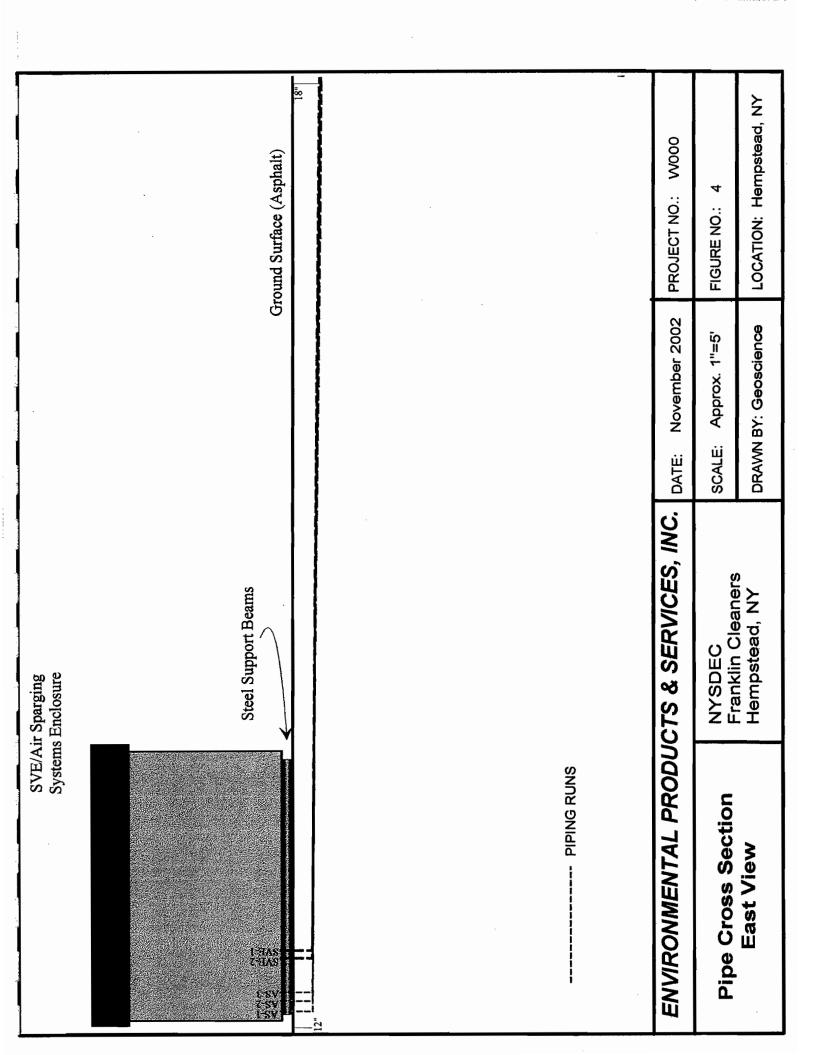
## APPENDIX C

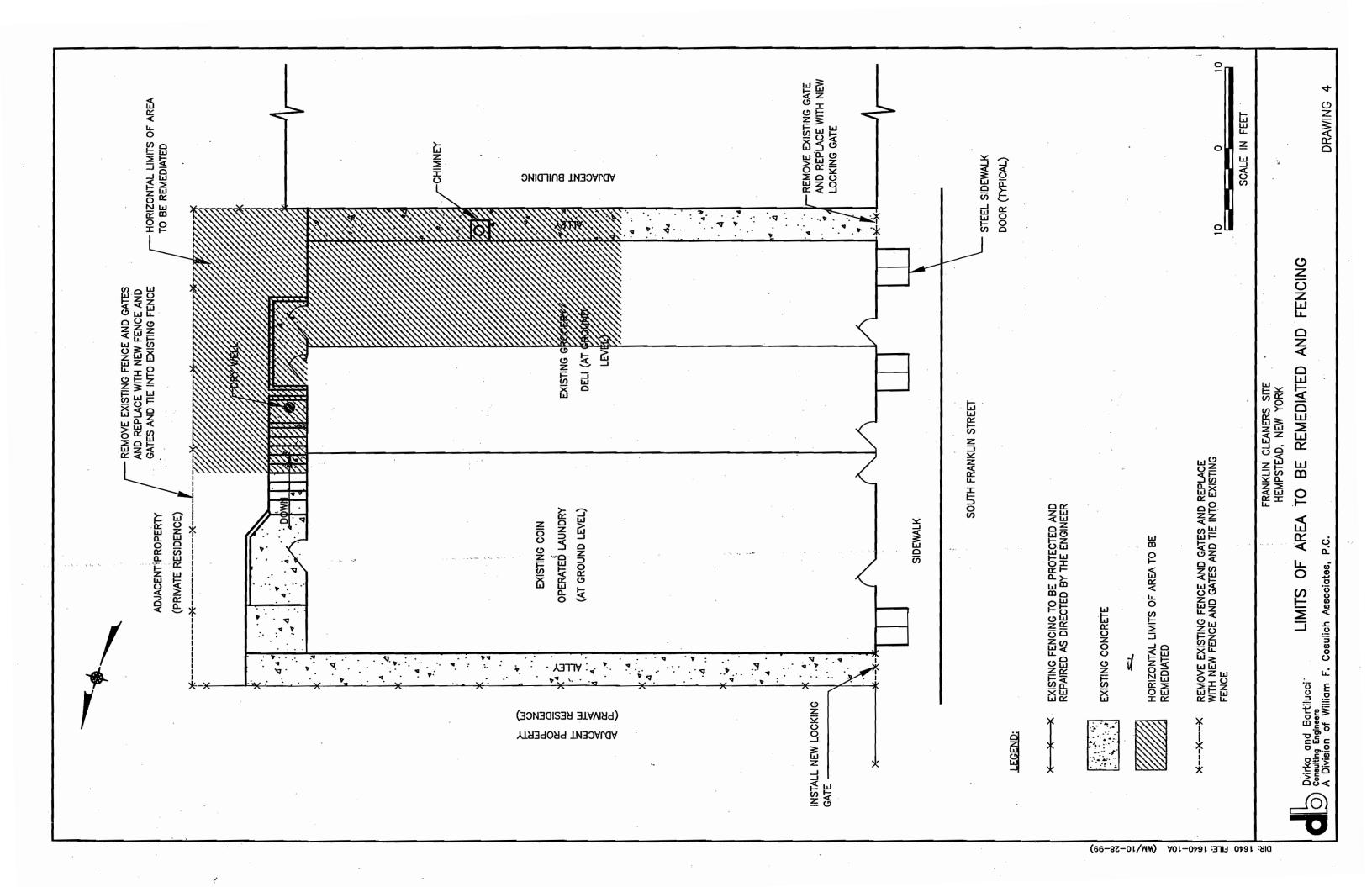
## DISPOSAL MANIFESTS

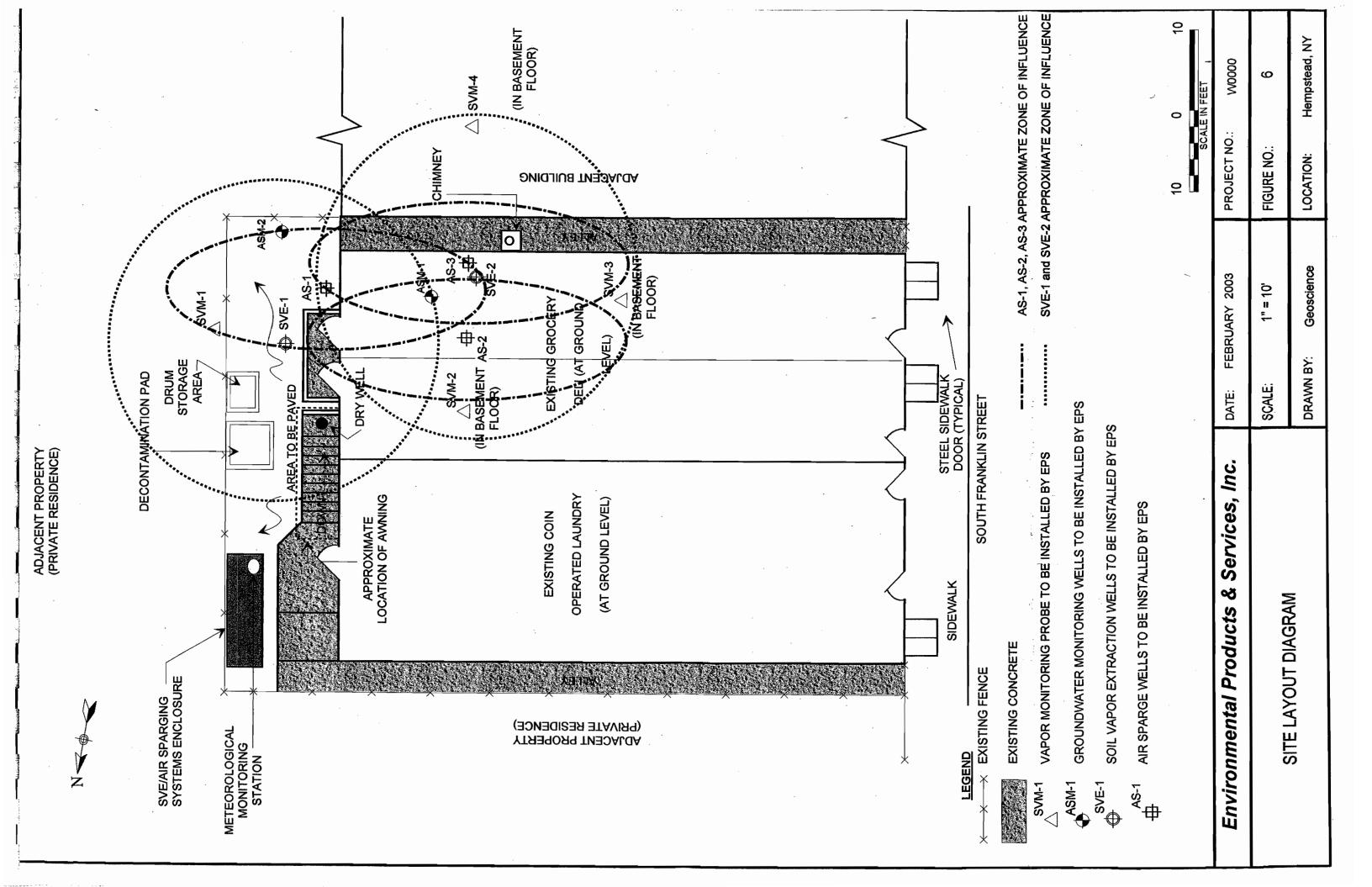


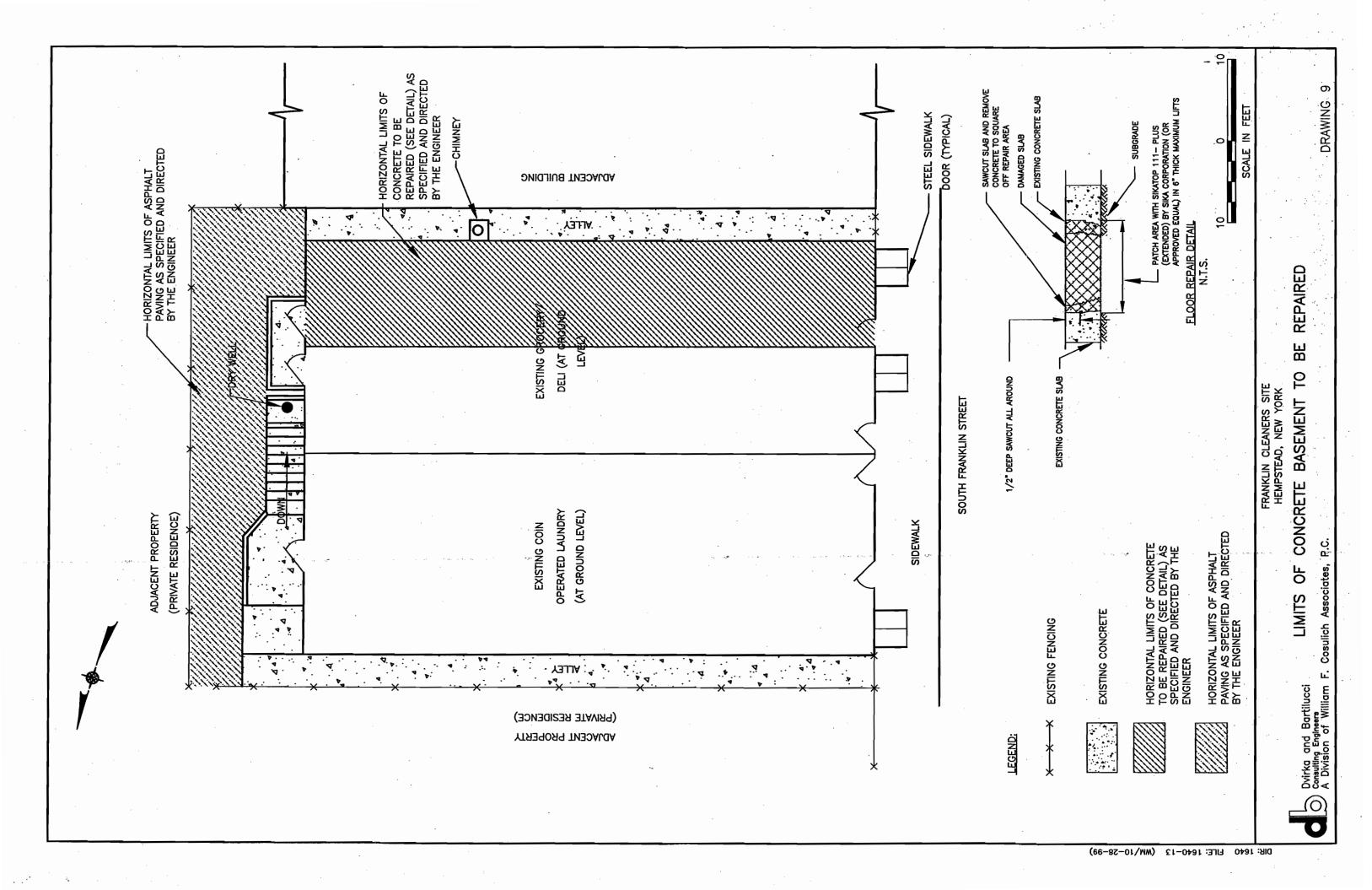


## State of New Jersey Department of Environmental Protection Hazardous Waste Regulation Program Manifest Section

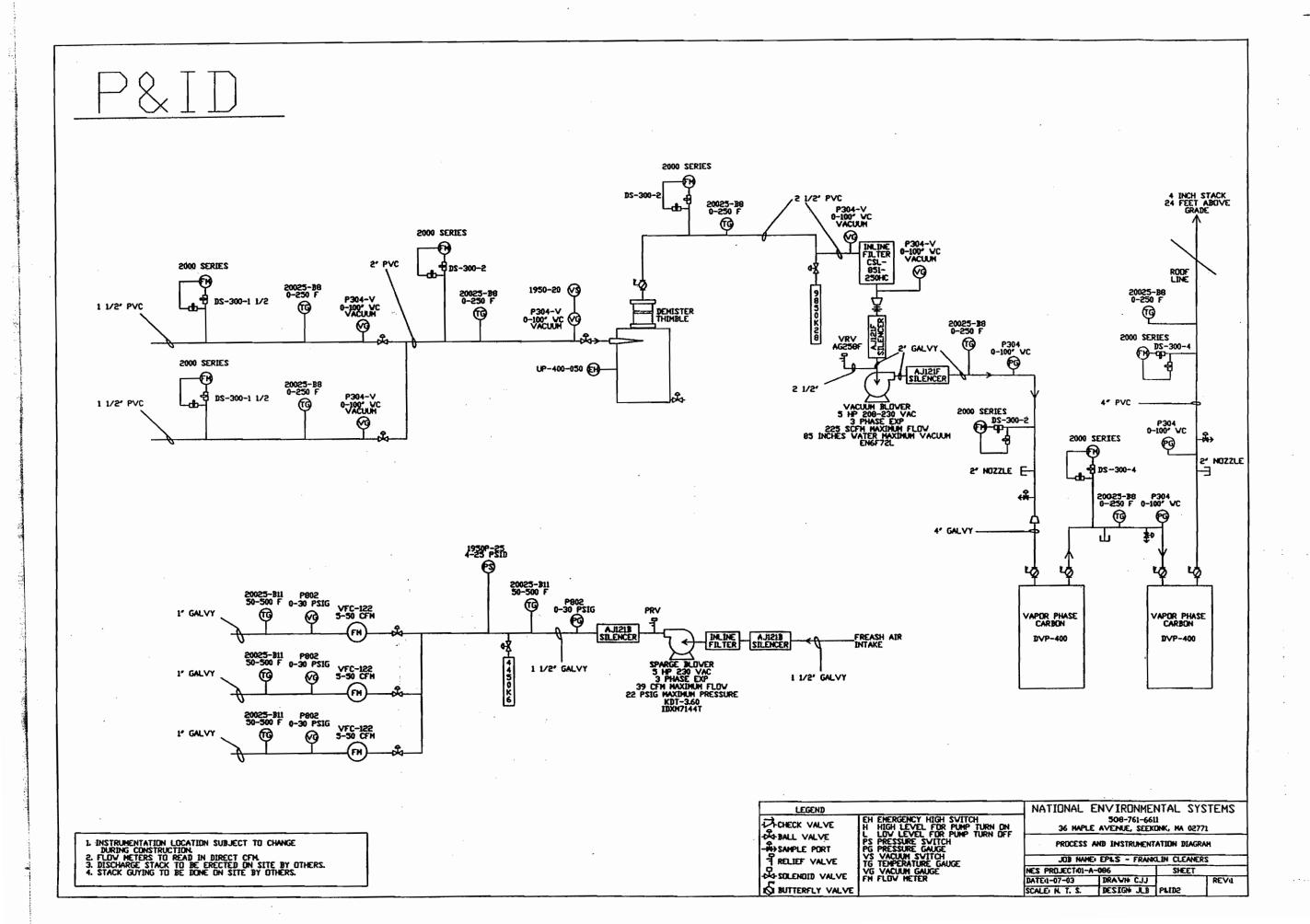

| UNIFORM HAZARDOUS 1 Generators US WASTE MANIFEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12-pitch) typewriter.)<br>SEPA ID No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ormation in the shaded areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. Generator's Name and Mailing Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NYSDEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CAN COLOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | not required by Federal law.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ett Det Landstate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the fire and the street of the development of the fire of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ra et en Nova                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4. Generators Priorie (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Filtrary , MY 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5. Transporter 1 Company Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6. US EPA ID Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | reto Alban Maria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Particular of the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17 7 0 18 0 7 6 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Partransporter 2 Company Name 5 at 1 the street of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of  | 8. US EPA ID Numbei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TO STREET STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9 Designated Facility Name and Site Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10. US EPA ID Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A Company of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the f | oth enactivity vallege, yig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aptrophysic A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ti di alian de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la com |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | villeo y dula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11. US DOT Description (Including Proper Shipping Name, Hazard Cla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1 1 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12. Containers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ID Number and Packing Group)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No. Type - Otal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| " I How I be to A Try on I the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C WILLIAMETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F Less of can part of the first of a calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MANAGE (PRINTER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dela della d | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Di Waling and a salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar sa | and Califor others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Page 10 To the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro | STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE STAMPS OF THE ST | i i perception consus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Application of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of t | Afficiency strategy of the Afficiency of the Aff |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | To Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Con |
| and the second to the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fig. 2. a dispersion of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the co |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MARIA BERT TETT TILL TILL TILL TILL TILL TILL TIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | French 2 and all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i Carl German<br>Carl Gallacasan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Of the state of the form to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the | A Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dv. i.) ravijerom projektijek vista is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Carlot of Alexander of the Editor Colored Control of the Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Color |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pings Confidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | all (Electric)<br>pro-sometic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| There is a result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the result of the resul | en eine er in der eine er eine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | reconstruction of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Annual State of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15. Special Flandling Instructions and Additional Information and Additional Information and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the sec | destribe grid for the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Wales and State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Professional and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | Start 10 to the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa | property of the property of the figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 106 MACON CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF C | tiberer to 1971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Part of the next for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d vilosos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16 GENERATOR'S CERTIFICATION: hereby declare that the contents collars the packed, marked, and labeled, and are in all respects in proceedings as the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents | of this consignment are fully and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | accurately described above by prop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | er shipping name and are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| regulations:  Behavior asset behavior molecular to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st | THE COLOR SECTION TO SECTION TO SECTION TO SECTION TO SECTION TO SECTION TO SECTION TO SECTION TO SECTION TO S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nder Artika (disebilikan di Salah Kalibara) di sebelah di sebelah di sebelah di sebelah di sebelah di sebelah<br>Seberah di sebelah di s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Carrier (1904) San Walang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| man appropriate the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production of the production | INDO OF TREATMENT STORAGE OF ALEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | acal currently available to me which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | And the Carry State of the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the California and the Calif |
| future threat to human health and the environment; OR, it i am a small best waste management method that is available to me and that i can Printed/Tybed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | attordi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a good faith effort to minimize my wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iste generation and select the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TELLOS AUSS Agent HI & VYS BEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Month Day Yea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 17. Transporter Aoknowledgement of Receipt of Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | doom by the A15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 356 0 1 1 1 10 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Printed ped Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Serial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | Month Day Yea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NANNONAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - P31 1 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | org.,uturo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Month Day Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 機能等於 1000 ( season distribution for the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the light of the lig  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| inger van de 2004 in de gedieten met geskeligtet in de gedie anvande verkelt in de gedie in de de gedie.<br>Die gegeneralistische de gegeneralistische de gedie de g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | active :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Special of Specials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 19. Discepancy indication Space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Charles (A. Albertania (A. Albertania)<br>Albertania (A. Albertania)<br>Albertania (A. Albertania)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| inger van de 2004 in de gedieten met geskeligtet in de gedie anvande verkelt in de gedie in de de gedie.<br>Die gegeneralistische de gegeneralistische de gedie de g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | indian and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |


## APPENDIX D


## **CONSTRUCTION DRAWINGS**

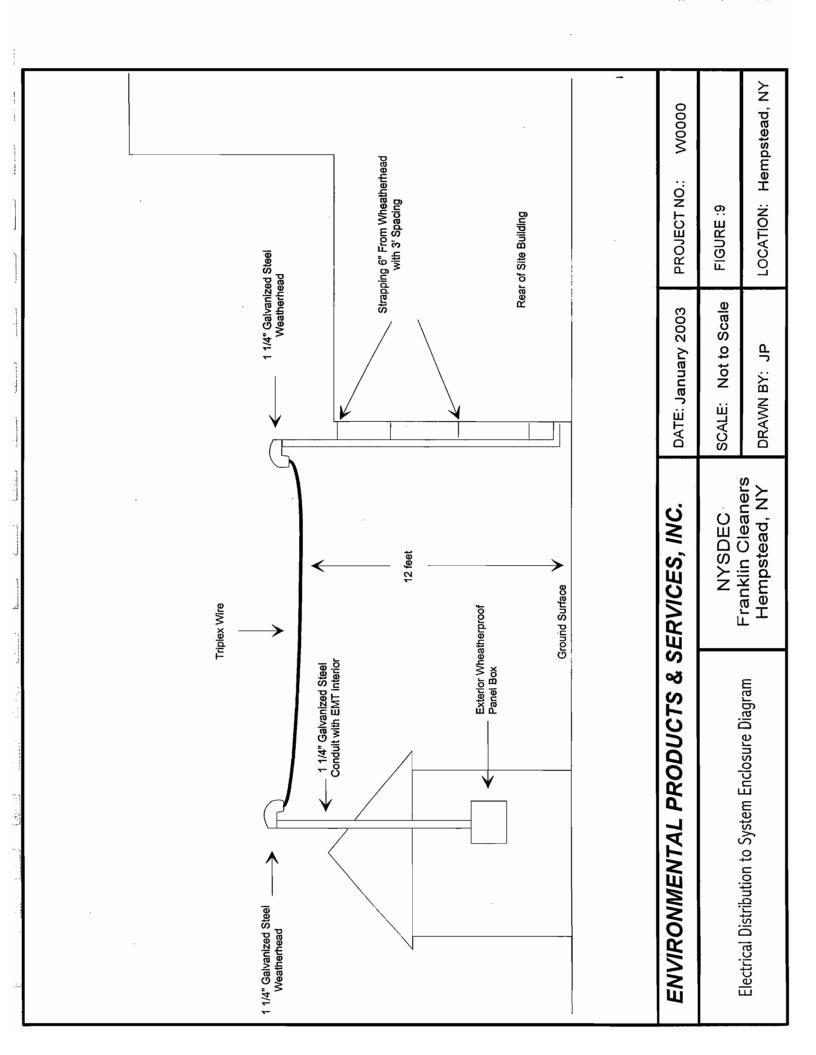


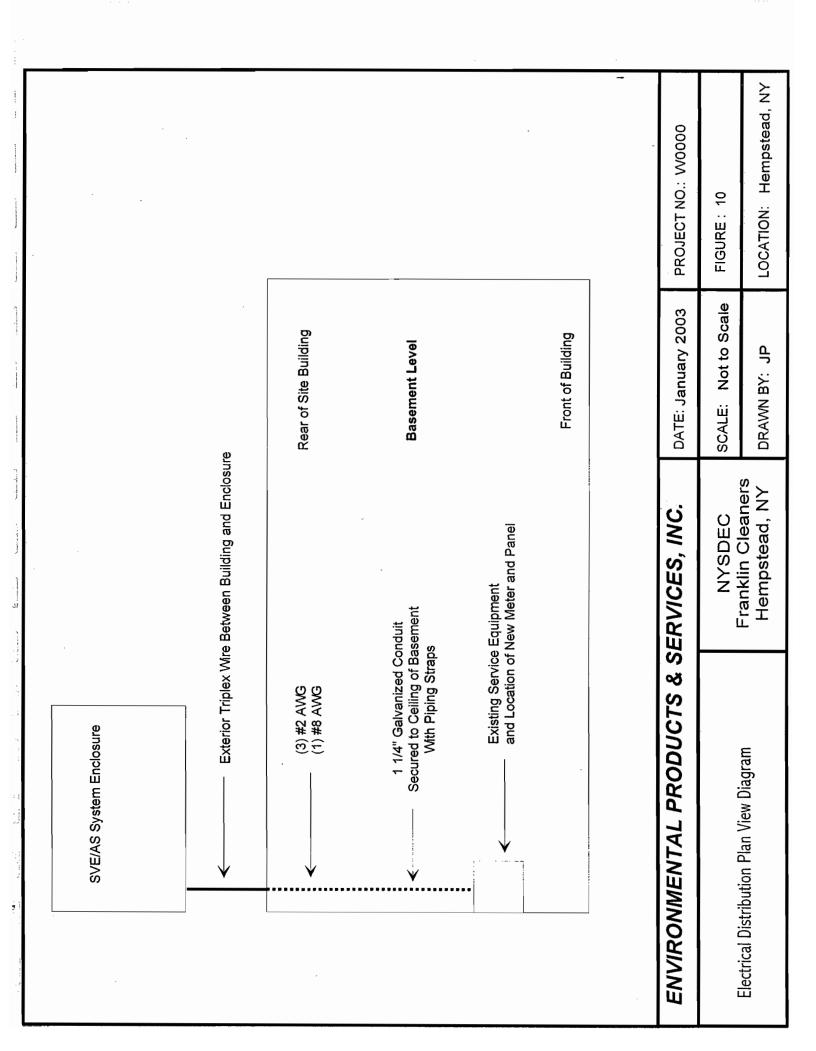



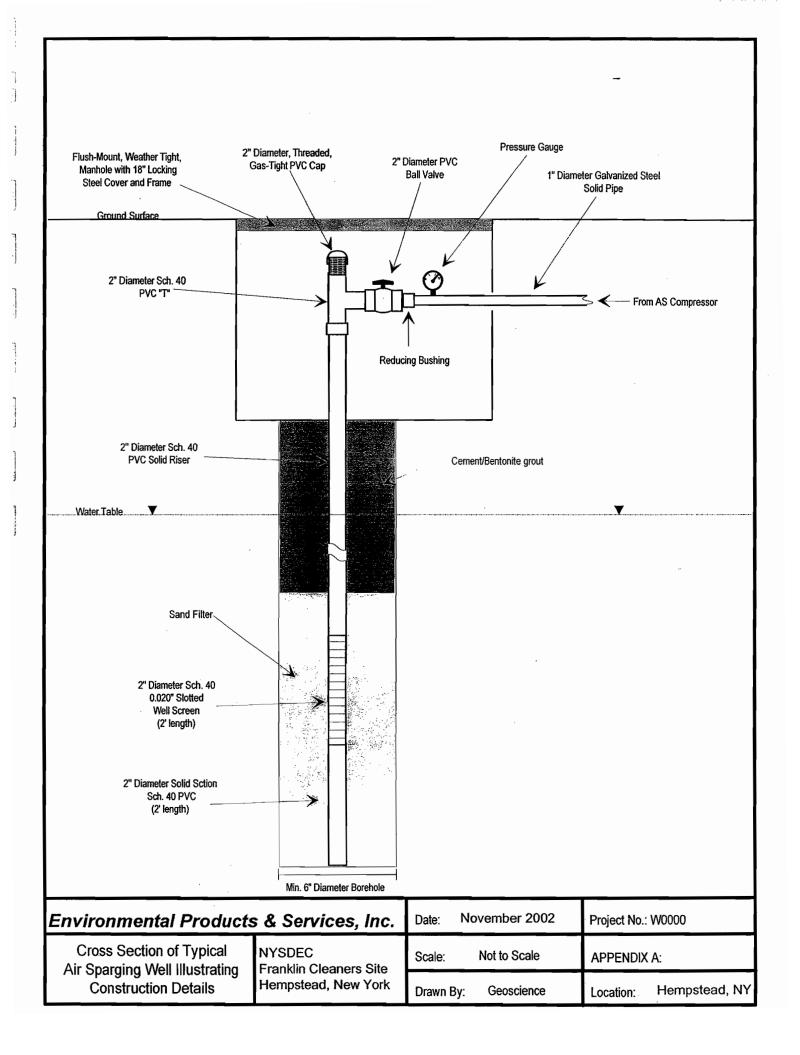



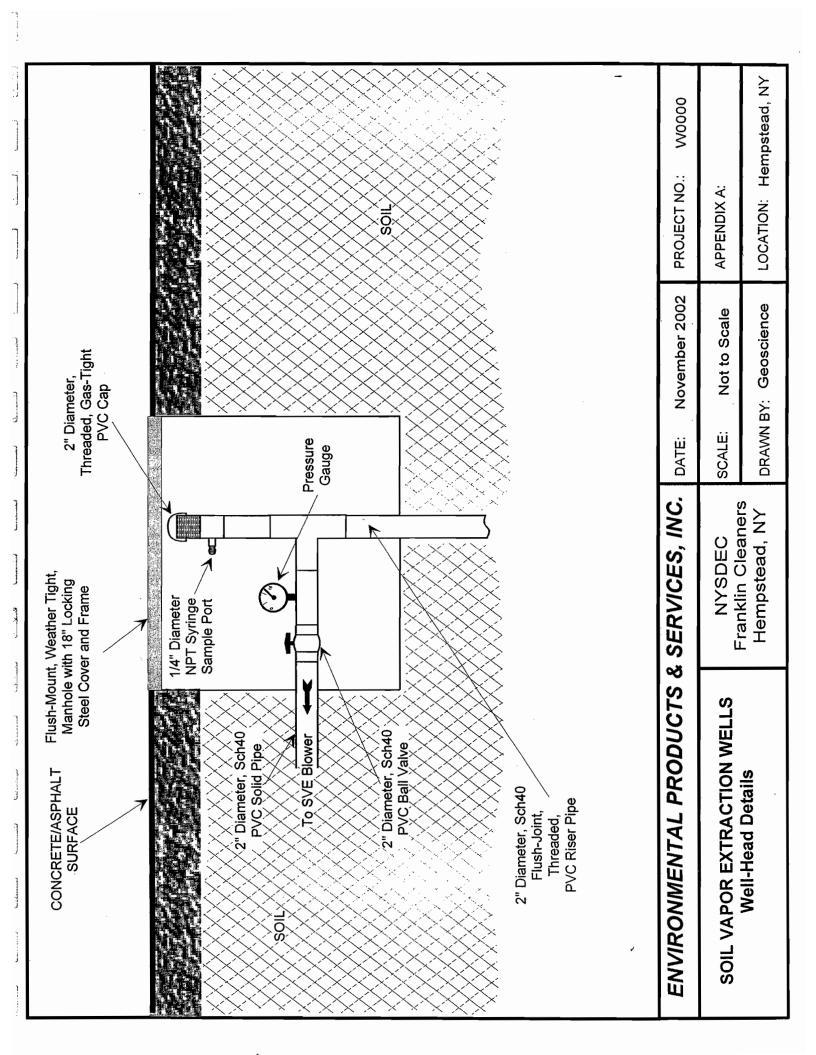


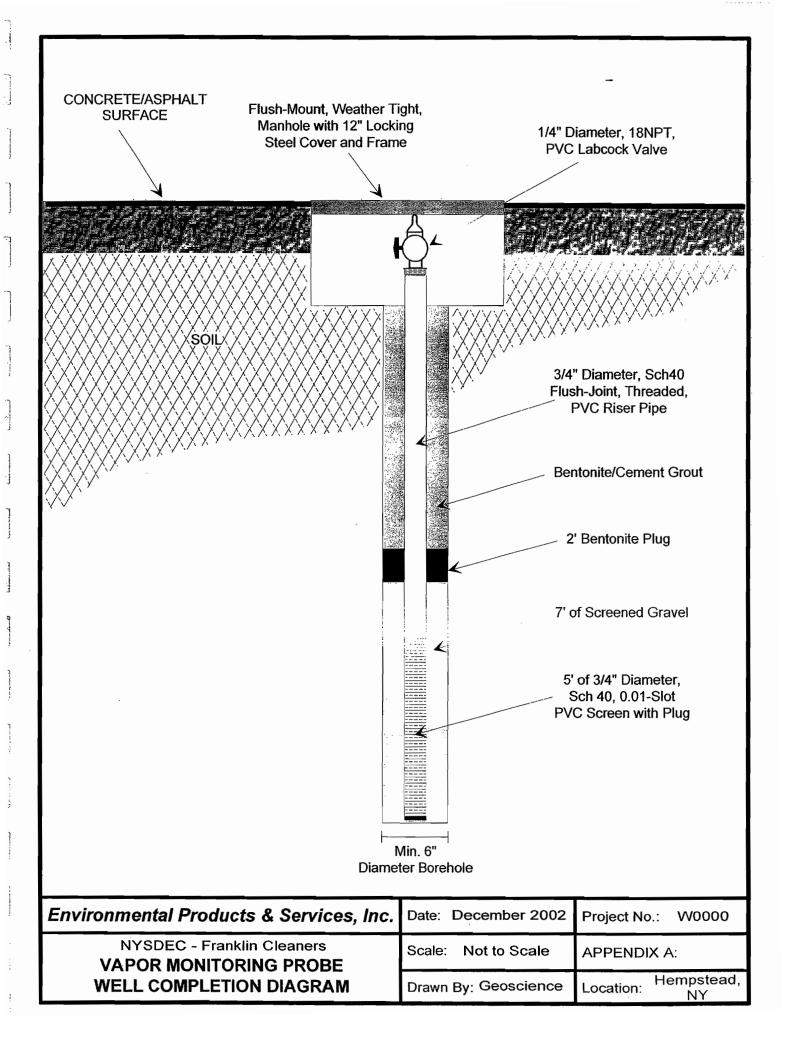


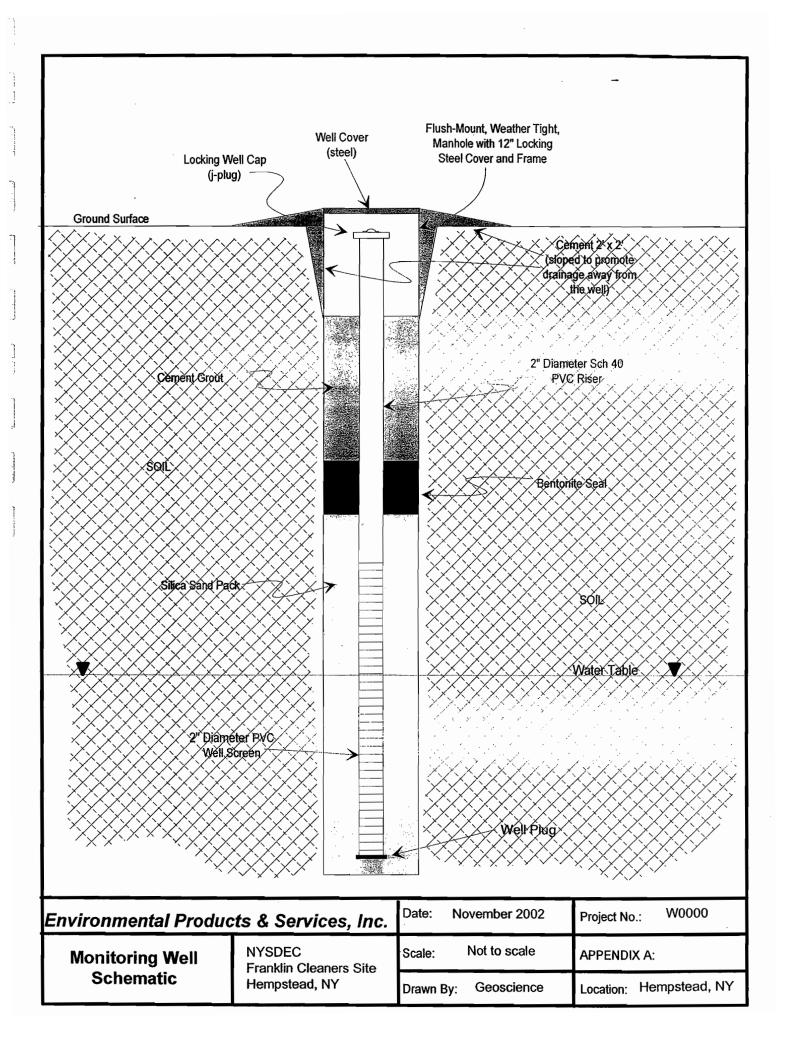


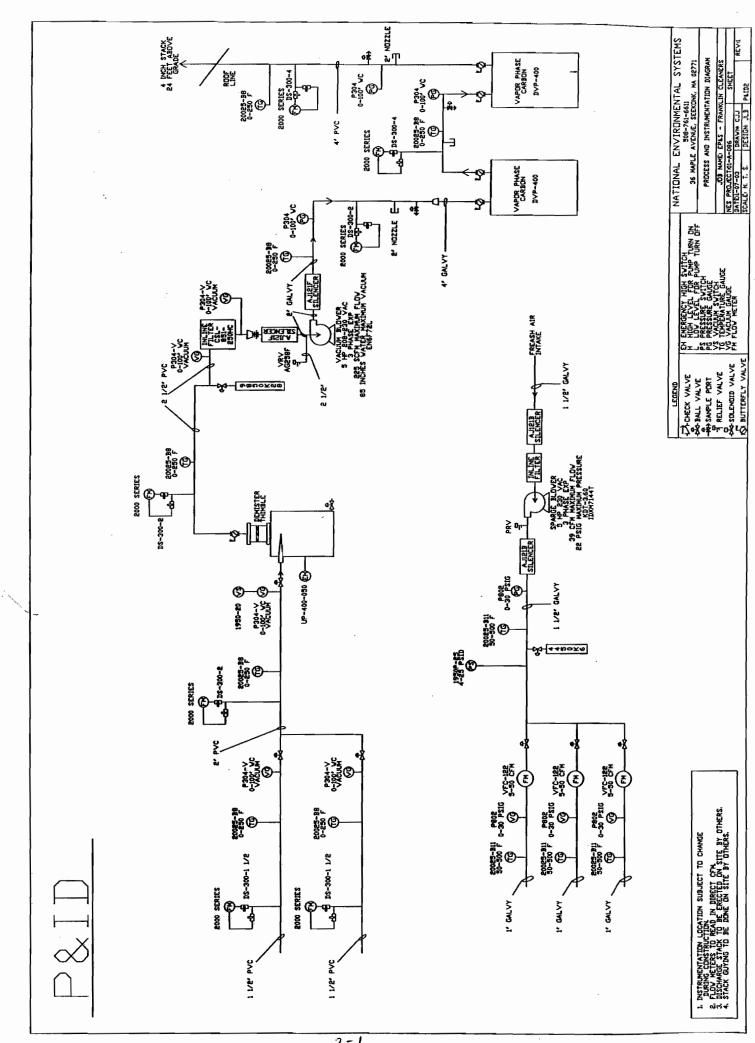



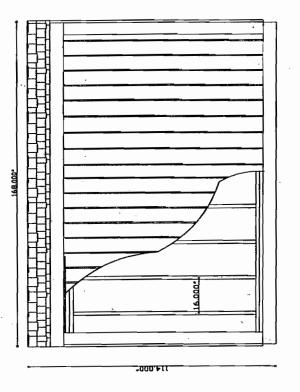












2-1

TYPICAL SHED CONSTRUCTION



GABEL VENT ASPHALT RODF
T-111 SIGING

SIDE VIEW

NOTES

NOTES

FLOOR JOIST

E x 6 FLOOR JOIST

FLOOR DETAIL

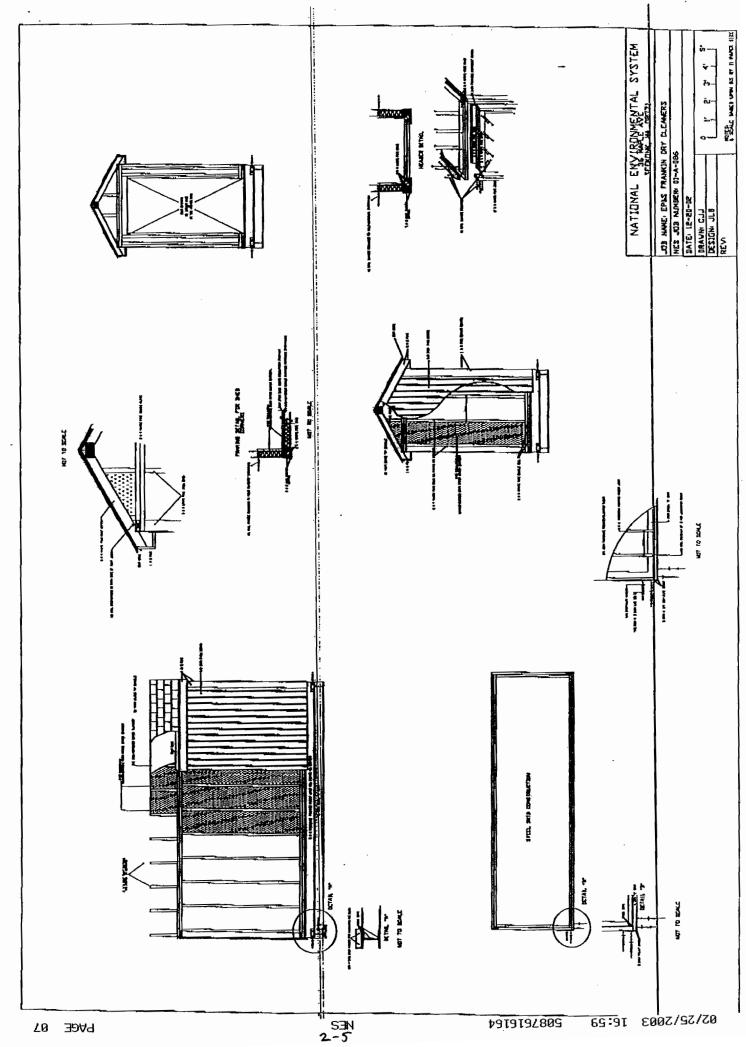
FLOOR JOIST

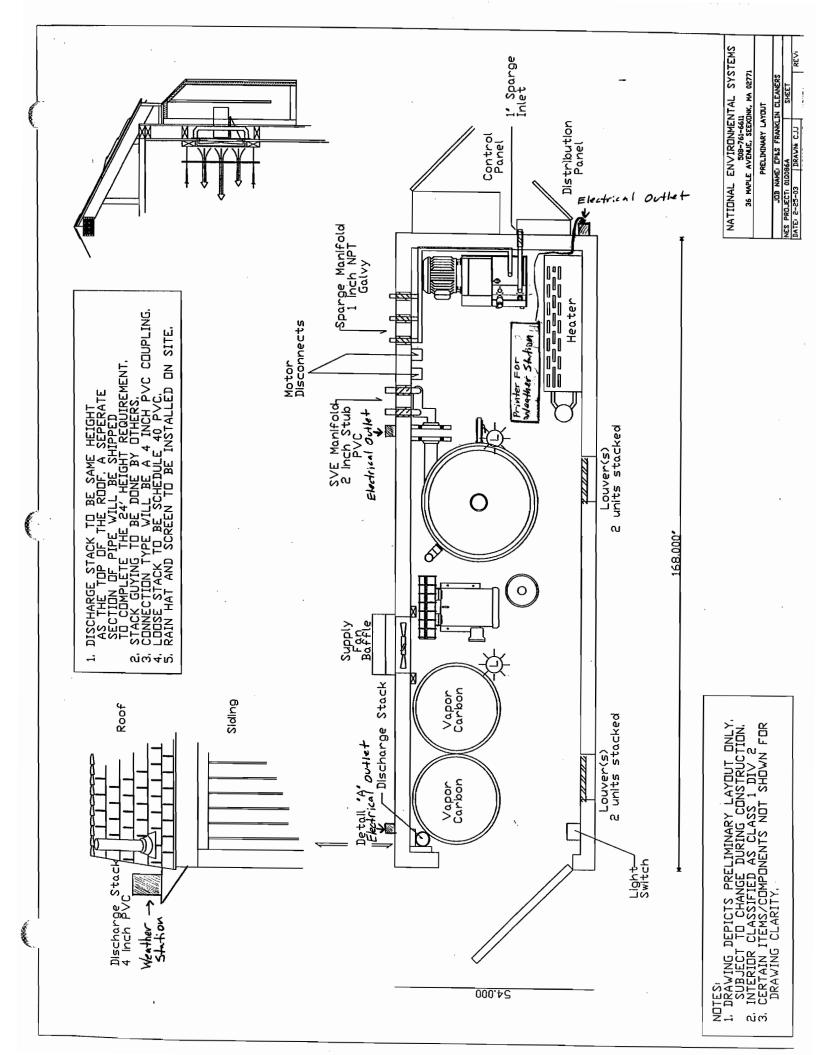
FLOOR JOINT

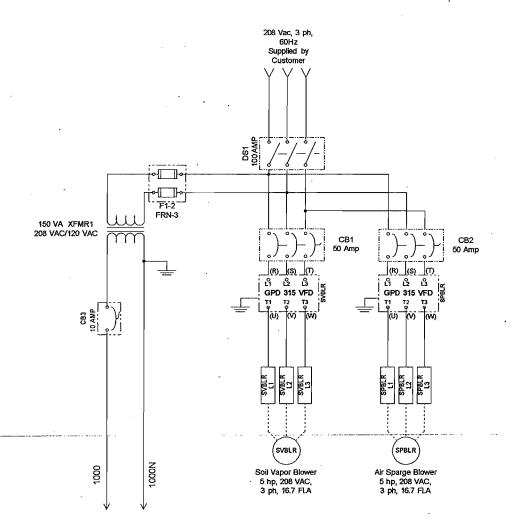
FLOOR JOINT

NOTES

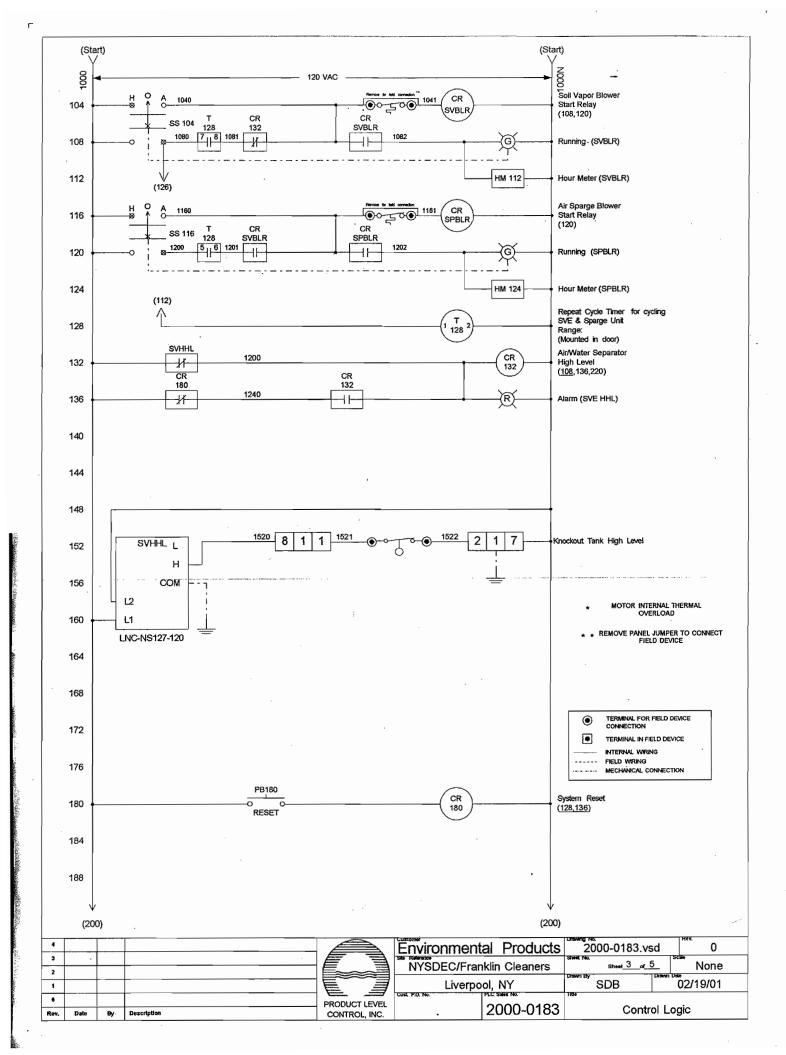
FLOOR JOINT

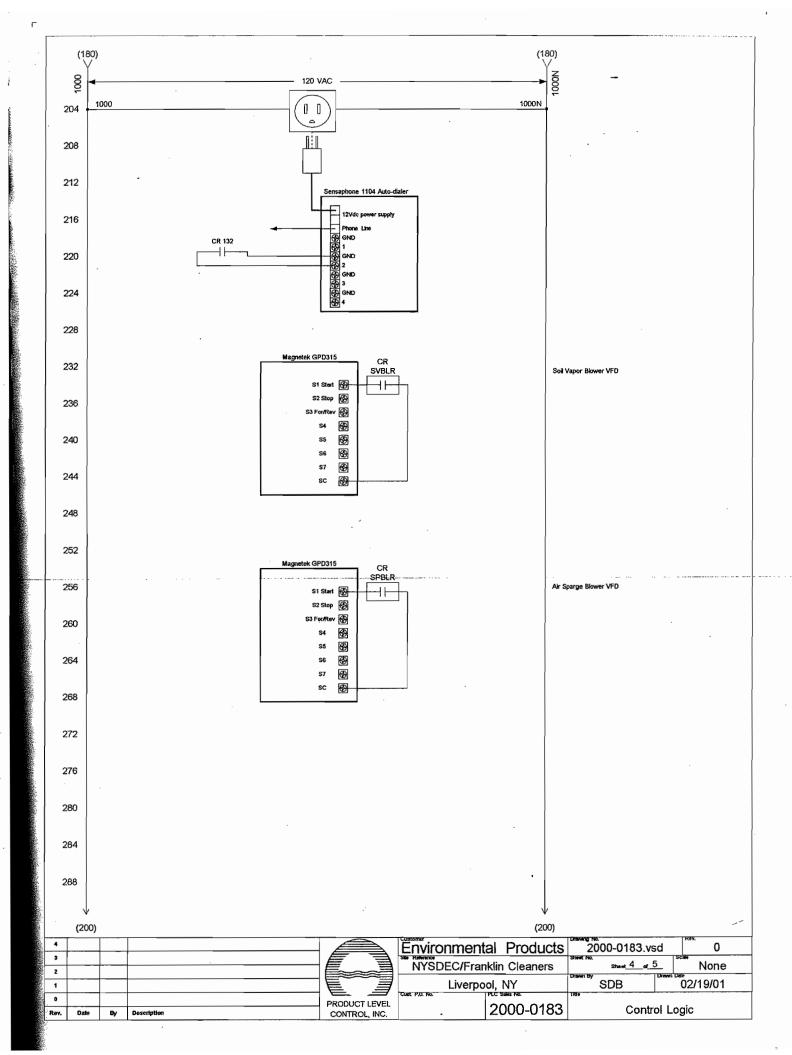

FLO


3/4" PLYVOOD FLOOR


FRONT VIEV E X 6 SILL PLATE 2 X 6 SILL PLATE SIDE VIEW ANGLE PLATE 6 INCH STEEL SKID V DETAIL 'A' 6 INCH -I' BEAM

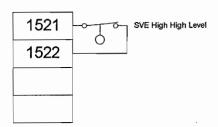
NOTES. 1. SKID ECONSTRUCTION IS & INCH STEEL 1' BEAM. 2. SKED IS LAGGED TO STEEL SKID THROUGH ANGLE IRDN. VELDED TO THE CORNERS.


TYPICAL SKID CONSTRUCTION









| 4    |      |    | _           |               | Environmenta | al Products  |              |                |
|------|------|----|-------------|---------------|--------------|--------------|--------------|----------------|
| 2    |      |    |             |               | NYSDEC/Fran  |              | Sheet 2 of 5 | _ None         |
| 1    |      |    |             |               | Liverpo      |              | GDS          | 02/19/01       |
| •    |      |    |             | PRODUCT LEVEL |              | PUC SIME No. | Title        |                |
| Rev. | Date | Ву | Description | CONTROL, INC. | •            | 2000-0183    | Power Wirir  | g/Distribution |





#### CONNECTION DIAGRAM FOR FIELD DEVICES

#### INTRINSIC INPUTS



#### OTHER INPUTS

| 1040 | Remove for field connection. | SVE BLOWER<br>THERMAL OVERLOAD        |
|------|------------------------------|---------------------------------------|
| 1041 | * ~                          |                                       |
| 1160 | Remove for field connection. | AIR SPARGE BLOWER<br>THERMAL OVERLOAD |
| 1161 | * 7                          |                                       |

| Rev. | Date | Ву | Description |
|------|------|----|-------------|
| 8    |      |    |             |
| 1    |      |    |             |
| 2    |      |    |             |
| 3    |      |    |             |
| 4    |      |    |             |

|     |                           | ⇛         |
|-----|---------------------------|-----------|
| 7   |                           | =         |
|     | =                         | -         |
| ٦   | =                         | =         |
| -   | $\Rightarrow \Rightarrow$ | $\approx$ |
| ┪   |                           | _=        |
| 1   |                           | =         |
| ┪   |                           | _         |
| -1  | PRODUCT                   |           |
| Н   | PRODUCT                   | reve      |
| - 1 | CONTROL                   | INC       |

| Environment   | al Products   |           |       | 0        |  |
|---------------|---------------|-----------|-------|----------|--|
| NYSDEC/Fran   | klin Cleaners | Sheet No. | _a_5_ | None     |  |
| Liverpo       |               | GDS       | Drawn | 02/19/01 |  |
| Cust P.O. No. | 2000-0183     | Field     | Conne | ections  |  |

### APPENDIX E

# BORING/WELL CONSTRUCTION LOGS

|                     | Products & Services, Inc.              |                |                 |          | Subsurface L      |            | Hole No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SVE-1<br>1 of 1                        |      |                    | started:<br>Finished:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3/18/03<br>3/18/03                     |
|---------------------|----------------------------------------|----------------|-----------------|----------|-------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Client:<br>Location | n:                                     | NYSDEC         | Cleaners Site   |          | Method of         | f investi  | igation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hollow-Stem Augers                     |      |                    | sirou.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
| Project             |                                        |                |                 | Drill    |                   |            | rilling Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Driller: H. Lyon<br>D. Helper: J. Lyon |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weather:<br>Clear, Calm                |
| P. Mana             | ager:                                  | Dale Brau      |                 | Geo      | logist:           | Dale Bi    | Dale Braue Drill Rig: CME-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~60                                    |
| Dazzi               |                                        | D- 11 1        | Sample          |          | Posterior         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample                                 | - 1  | ield               | W-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Groundwater                            |
| Depth<br>(ft.)      | No.                                    | Depth<br>(ft.) | Blows<br>per 6" | "N"      | Recovery<br>(ft.) |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample<br>Description                  | - 1  | alytical<br>adings | Well<br>Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and Other<br>Observations              |
| (11.)               | No.                                    | 0.0-2.0        | 1 1 3 5         | 4        | (π.)              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dogoriphon                             | Rea  | -unigs             | Derails                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12"                                    |
|                     |                                        | 0.0-2.0        | 1133            | +        |                   | 0.0-4-0    | No recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |      | 2.0                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | manhole                                |
|                     | 2                                      | 2.0-4.0        | 5321            | 5        | 0                 | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                     | -                                      | 2.0-4.0        | 3021            | <u> </u> | <u> </u>          | 4.0-8.3    | Sand, medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n to fine grained; little course sand  |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.8' of 2"                             |
| 5                   | 3                                      | 4.0-6.0        | 2223            | 4        | 0.7               | trace fine | e gravel; trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e ceramic; trace concrete; tan-        | 0.2  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | diameter<br>Sch 40                     |
| J                   |                                        | 5.0            |                 | 1        |                   | brown, r   | moist (fill?).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | "    | 5.8                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PVC riser                              |
|                     | 4                                      | 6.0-8.0        | 4322            | 5        | 1                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.2  | 2.0                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentonite/                             |
|                     |                                        | 3.5 5.5        |                 |          |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      | 8.8.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cement                                 |
|                     | 5                                      | 8.0-10.0       | 1148            | 13       | 1.2               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | um to coarse grained; little fine      | 0.2  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Grout                                  |
| 10                  |                                        | 23.3           |                 |          |                   |            | number to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control |                                        |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2'                                     |
|                     | 6                                      | 10.0-12.0      | 2588            | 22       | 1.5               | ]          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.2  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentonite                              |
|                     |                                        |                |                 | T-       |                   | 13.5-16    | .0 Sand, med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lium to coarse grained; some fine      |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Seal                                   |
|                     | 7                                      | 12.0-14.0      | 9 12 10 10      | 18       | 2                 |            | trace fine sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.4  | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                     | <u> </u>                               |                |                 | T        |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sand Pack                              |
| 15                  | 8                                      | 14.0-16.0      | 681011          | 11       | 2                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.4  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                     | Ť                                      | 10.0           |                 | 1        |                   | 16.5 En    | d of boring.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                     |                                        |                |                 |          |                   | ]          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      | 16.4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5' of 2" diameter<br>Sch 40, 0.01 slot |
|                     |                                        |                |                 |          |                   | ]          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |      |                    | \\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PVC well screen                        |
|                     |                                        |                |                 |          |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                    | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                      |
| 20                  |                                        | 1              |                 |          |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l .                                    |
|                     |                                        |                |                 | 1        |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \                                      |
|                     |                                        | †              |                 | 1        |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 5/8*                                 |
|                     |                                        |                |                 | 1        |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ` diameter                             |
|                     |                                        |                |                 |          |                   | 7          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | borehole                               |
| 25                  |                                        |                |                 |          |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                     |                                        | 1              |                 |          |                   | 7          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                     |                                        |                |                 | $\top$   |                   | 7          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                     |                                        |                |                 |          |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
|                     |                                        |                |                 |          |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                    | l l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| 30                  |                                        |                |                 |          |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
|                     |                                        |                |                 |          |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                    | l l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
|                     |                                        |                |                 |          |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
|                     |                                        |                |                 | $\prod$  |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
|                     |                                        |                |                 | $\prod$  |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 35                  |                                        |                |                 | T        |                   | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| Sampl               | е Тур                                  | es:            |                 |          |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      | fill Key           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                      |
| S                   | S = Split Spoon: 2" by 2' T= Shelby Tu |                |                 |          |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ceme                                   |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Native Fill                            |
|                     | R = Rock Core:                         |                |                 |          | <u> </u>          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - हारायाम                              | , ed |                    | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th |                                        |
| N = AS              | STM L                                  | D1586          |                 |          |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sar                                    | nd   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentonite                              |

P. Dale Browne

| Environmental Products & Services, Inc. |                |                 |                 |          |                         |                    | Hole No.:<br>Sheet                                       |                                                                                 |                       |       |                  | started:        | 3/13/03<br>3/13/03           |
|-----------------------------------------|----------------|-----------------|-----------------|----------|-------------------------|--------------------|----------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------|-------|------------------|-----------------|------------------------------|
| Client:<br>Location                     | n:             | NYSDEC          | Cleaners Site   |          | Method o                |                    | igation:                                                 | Hollow-Stem Auger                                                               | 'S                    |       | - Jane I         | masneu.         | <u> </u>                     |
| -                                       | No.:           | K0122           |                 |          | •                       | -                  | rilling Co.                                              | Driller: H. Lyon D. Helper: J. Lyon                                             |                       |       |                  |                 | Weather:<br>Overcast         |
| P. Mana                                 | ager:          | Dale Brau       |                 | JGeo     | logist:                 | Date Bi            | ale Braue Drill Rig: LM-1                                |                                                                                 |                       |       | ماط ا            |                 | ~40                          |
| Denth                                   |                | Donth           | Sample          |          | Recover                 | 1                  | Sample                                                   |                                                                                 |                       |       | eld<br>Ivtical   | Well            | Groundwater<br>and Other     |
| Depth<br>(ft.)                          | No.            | Depth<br>(ft.)  | Blows<br>per 6" | "N"      | Recovery<br>(ft.)       |                    | Description                                              |                                                                                 |                       |       | lytical<br>dings | Well<br>Details | and Other<br>Observations    |
| (11.)                                   | 1              | 0-4             | per o           | + '`     | 4                       |                    |                                                          |                                                                                 |                       | - Nea | 1.0              |                 | 12"                          |
|                                         | 1              | U- <del>1</del> |                 |          | T'                      | gravel; top 2' · b | race fine sand;<br>better sorted in                      | to coarse grained; little f; well rounded and poorly n bottom 2' of sample; tar | sorted in n to yellow |       | 2.5              |                 | manhole                      |
| _                                       |                |                 |                 |          |                         | ian with           | tan with iron oxidation at 1.7' to 2.2' interval, moist. |                                                                                 |                       |       |                  |                 | Bentonite<br>Seal            |
| 5                                       | 2              | 4-8             |                 |          | 4.                      | 1                  |                                                          |                                                                                 |                       | 0.2   |                  |                 | 3.5' of 2"                   |
|                                         |                |                 |                 |          |                         |                    | -4 t- · ·                                                |                                                                                 |                       |       |                  |                 | diameter<br>Sch 40           |
|                                         |                |                 |                 | -        |                         | 8.5 End            | of boring.                                               |                                                                                 |                       |       | 8.5              |                 | PVC riser                    |
| 10                                      |                |                 |                 |          |                         | ]                  |                                                          |                                                                                 |                       |       | 2.0.             | /::::/;         | 5' of 2" diameter<br>Sch 40  |
|                                         |                |                 |                 | $\vdash$ |                         | -                  |                                                          |                                                                                 |                       |       |                  |                 | 0.01 slot PVC<br>well screen |
|                                         |                |                 |                 |          |                         | 1                  |                                                          |                                                                                 |                       |       |                  |                 | Sand Pack                    |
| 1.5                                     |                |                 |                 | $\perp$  |                         | -                  |                                                          |                                                                                 |                       |       |                  |                 | Sand Fack                    |
| 15                                      |                |                 |                 | -        |                         | 1                  |                                                          |                                                                                 |                       |       |                  |                 |                              |
|                                         |                |                 |                 |          |                         | 1                  |                                                          |                                                                                 |                       |       |                  |                 | 6 5/8"<br>diameter           |
|                                         |                |                 |                 | -        |                         | -                  |                                                          |                                                                                 |                       |       |                  |                 | borehole                     |
| 20                                      |                |                 |                 |          |                         | 1                  |                                                          |                                                                                 |                       |       |                  |                 |                              |
|                                         |                |                 |                 | <u> </u> |                         | -                  |                                                          |                                                                                 |                       |       |                  |                 |                              |
|                                         |                |                 |                 | <u> </u> |                         | -                  |                                                          |                                                                                 |                       |       |                  |                 |                              |
|                                         |                |                 |                 |          |                         | ]                  |                                                          |                                                                                 |                       |       |                  |                 |                              |
| 25                                      | -              | _               |                 |          |                         | 1                  |                                                          |                                                                                 |                       |       |                  |                 |                              |
|                                         |                |                 |                 |          |                         | 1                  |                                                          |                                                                                 |                       |       |                  |                 |                              |
|                                         |                |                 |                 | +        |                         | -                  |                                                          |                                                                                 |                       |       |                  |                 |                              |
| 30                                      |                | _               |                 | +        |                         | 1                  |                                                          |                                                                                 |                       |       |                  |                 |                              |
|                                         |                |                 |                 |          |                         | ]                  |                                                          |                                                                                 |                       |       |                  |                 |                              |
|                                         |                |                 |                 | +        |                         | -                  |                                                          |                                                                                 |                       |       |                  |                 |                              |
|                                         |                |                 |                 |          |                         | 1                  |                                                          |                                                                                 |                       |       |                  |                 |                              |
| 35                                      | 匚              |                 |                 | $\perp$  |                         |                    |                                                          |                                                                                 |                       |       |                  |                 |                              |
| Sample                                  |                |                 |                 | т        | Challe T                | ıbo:               |                                                          | *****                                                                           |                       |       | ill Key          |                 | Z Notice Fill                |
|                                         |                | olit Spoon:     |                 |          | Shelby Tu<br>= 4' macro |                    |                                                          |                                                                                 | Cement                |       |                  |                 | Native Fill                  |
|                                         | R = Rock Core: |                 |                 |          |                         |                    | _                                                        |                                                                                 | Sand                  | ı     |                  |                 | Rentonite                    |

R. Dale Browne

**Subsurface Log** Hole No.: SVM-1 Date started: 3/30/03 **Environmental** Products & Services, Inc. Sheet 1 of 1 Date Finished: 3/30/03 Method of investigation: Hollow-Stem Augers NYSDEC Client: Franklin Cleaners Site Location: Hempstead, NY Drilling Co.: Lyon Drilling Co. Driller: H. Lyon Weather: Project No.: K0122 D. Helper: J. Lyon Overcast Geologist: Dale Braue Drill Rig: CME-45 ~50 P. Manager: Dale Braue Groundwater Sample Field Sample Depth Blows Recovery Analytical Well and Other Depth Description Observations (ft.) \*N\* (ft.) Readings Details per 6\* No. (ft.) 3 0 1 0.0-2.0 1, 1, 2, 2 12" Manhole 0.0-2.0 No recovery. 1.8'-5 0.5 2.0-4.0 2, 2, 3, 4 2.0-4.0 New gravel fill. 9.7' of 3/4" diameter 5 10 1 3 4.0-6.0 4, 4, 6, 5 4.0-6.0 Sand, medium to fine grained; some coarse Sch 40 0.2 sand; trace fine gravel; trace brick; trace wire; trace **PVC** riser 0 10 4, 3, 7, 7 6.0-8.0 concrete (fill?) brown-tan, moist. 7.1'--Bentonite/ Cement 5 8.0.10.0 5, 2, 2, 3 4 0 Grout 6.0-10.0 No recovery; metal in tip of split spoon. 0.2 10 17 2 9.4'--10.0-12.0 5, 8, 9, 13 2' 10.0-11.6 Sand, medium to coarse grained; little fine Bentonite gravel; trace fine sand; tan, moist. Seal 16 12.0-14.0 7, 7, 9, 10 2 0.2 11.6-14.0 Sand, medium to coarse grained; some fine 5' of 3/4" gravel; trace medium gravel; trace fine sand; tan, moist. 14.0-16.0 2 diameter 15 5, 9, 13, 13 22 0.2 Sch 40 0.01 slot PVC well 14.0-16.0 Sand, medium to coarse grained; little fine 0.2 16.6 screen gravel; trace fine sand; tan, moist. 20 16.5 End of boring. Sand Pack 6 5/8\* diameter borehole 25 30 35 Well Backfill Key Sample Types: Mative Fill S = Split Spoon: T= Shelby Tube: Cement R = Rock Core: 0 = Bentonite Sand N = ASTM D1586

|                    |              | nmen<br>& Services,                              |               | Su           | bsurfac                                          | e Log     | Hole No.:                                             | SVM·2                                                                                                         |          | 1                   | started:  | 3/17/03                     |
|--------------------|--------------|--------------------------------------------------|---------------|--------------|--------------------------------------------------|-----------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------|---------------------|-----------|-----------------------------|
| Client:<br>Locatio | n:           | NYSDEC                                           | Cleaners Site |              | Method o                                         | of invest | Sheet<br>igation:                                     | 1 of 1<br>Hand Auger and Ca                                                                                   | asing    | D <del>a</del> te I | Finished: | 3/17/03                     |
| Project            |              | K0122                                            | Δ, 111        | Drill        | ling Co.:                                        | Lyon D    | n Drilling Co. Driller: H. Lyon<br>D. Helper: J. Lyon |                                                                                                               |          |                     |           | Weather:<br>Clear, Calm     |
| P. Man             | ager:        | Dale Brau                                        |               | Geo          | logist:                                          | Dale B    | ale Braue Drill Rig: Hand Auger and (                 |                                                                                                               | er and C | asing               |           | ~65                         |
|                    | <u> </u>     | <u></u>                                          | Sample        |              |                                                  |           |                                                       |                                                                                                               |          | Field               |           | Groundwater                 |
| Depth              |              | Depth                                            | Blows         |              | Recovery                                         |           |                                                       | Sample                                                                                                        |          | Analytical          | Well      | and Other                   |
| (ft.)              | No.          | (ft.)                                            | per 6"        | "N"          | (ft.)                                            |           |                                                       | Description                                                                                                   |          | Readings            | Details   | Observations                |
|                    |              |                                                  |               |              |                                                  |           | Sand, mediun<br>race sand; ta                         | n to coarse grained; trace<br>n, moist.                                                                       | fine     | 0.3 1.9             |           | 12" Manhole<br>2' Bentonite |
| -                  |              | -                                                |               |              |                                                  | -         |                                                       |                                                                                                               | 0.3      |                     | Seal      |                             |
| 5                  | <del> </del> | $\vdash$                                         |               | +            |                                                  | Q 5 End   | of boring.                                            |                                                                                                               |          | 0.3                 |           | 2.5' of 3/4"                |
|                    |              | <del> </del>                                     |               | +            |                                                  | 6.5 Eliu  | or borning.                                           |                                                                                                               |          | 0.3<br>0.3          |           | diameter                    |
|                    |              | <del>                                     </del> |               | -            |                                                  | 1         |                                                       |                                                                                                               |          | 0.3                 |           | Sch 40<br>PVC riser         |
|                    |              |                                                  |               | +            |                                                  | 1         |                                                       |                                                                                                               |          | 8.6                 |           |                             |
| 10                 |              |                                                  |               | _            |                                                  |           |                                                       |                                                                                                               |          | 0.0                 |           | 5' of 3/4"<br>diameter      |
|                    |              |                                                  |               | $\top$       |                                                  | 1         |                                                       |                                                                                                               |          |                     | \ \       | Sch 40                      |
|                    |              |                                                  |               |              |                                                  | 1         |                                                       |                                                                                                               |          |                     |           | 0.01 slot<br>PVC well       |
|                    |              |                                                  |               |              |                                                  | 1         |                                                       |                                                                                                               |          |                     | \         | / FVC Well                  |
|                    |              |                                                  |               |              |                                                  | 1         |                                                       |                                                                                                               |          |                     |           | Sand Pack                   |
| 15                 |              |                                                  |               |              |                                                  | 1         |                                                       |                                                                                                               |          |                     |           | / 322 : 22                  |
|                    |              |                                                  |               |              |                                                  |           |                                                       |                                                                                                               |          |                     |           | 6 5/8"                      |
|                    |              |                                                  |               |              |                                                  |           |                                                       |                                                                                                               |          |                     |           | diameter                    |
|                    |              |                                                  |               |              |                                                  | 1         |                                                       |                                                                                                               |          |                     |           | borehole                    |
|                    |              |                                                  |               |              |                                                  | 1         |                                                       |                                                                                                               |          |                     |           |                             |
| 20                 | Щ            | <u> </u>                                         |               |              | ļ <u></u>                                        | 1         |                                                       |                                                                                                               |          |                     |           |                             |
|                    |              | <b></b>                                          |               |              |                                                  | 4         |                                                       |                                                                                                               |          |                     |           |                             |
|                    | <u></u>      |                                                  |               | <del> </del> |                                                  | 4         |                                                       |                                                                                                               |          |                     |           |                             |
|                    |              | <u> </u>                                         |               | +            |                                                  | 4         |                                                       |                                                                                                               |          |                     |           |                             |
| 0.5                |              |                                                  |               |              |                                                  | _         |                                                       |                                                                                                               |          |                     |           |                             |
| 25                 | ┼            | <del>                                     </del> |               | -            |                                                  | -         |                                                       |                                                                                                               |          |                     |           |                             |
|                    |              | <del> </del>                                     |               | +            | <del> </del>                                     | -         |                                                       |                                                                                                               |          |                     |           |                             |
|                    |              | <del> </del>                                     |               | +-           | <del>                                     </del> | -         |                                                       |                                                                                                               |          |                     |           |                             |
|                    |              |                                                  |               | +            |                                                  | -         |                                                       |                                                                                                               |          |                     |           |                             |
| 30                 |              | 1                                                | *****         | _            | <u> </u>                                         | 1         |                                                       |                                                                                                               |          |                     |           |                             |
| <u> </u>           | +            | + +                                              | *-            | +            |                                                  | 1         |                                                       |                                                                                                               |          |                     |           |                             |
| l                  |              | +                                                |               | 1            |                                                  | 1         |                                                       |                                                                                                               |          |                     |           |                             |
|                    |              | <del>                                     </del> | <del></del>   | 1            | <u> </u>                                         |           |                                                       |                                                                                                               |          |                     |           |                             |
|                    |              |                                                  |               |              |                                                  |           |                                                       |                                                                                                               |          |                     |           |                             |
| 35                 |              |                                                  |               |              |                                                  | 1         |                                                       |                                                                                                               |          |                     |           |                             |
| Sample Types:      |              |                                                  |               |              |                                                  |           |                                                       | 2004-00 - 2004-00 - 2004-00 - 2004-00 - 2004-00 - 2004-00 - 2004-00 - 2004-00 - 2004-00 - 2004-00 - 2004-00 - |          | Backfill Key        |           | _                           |
|                    |              |                                                  |               |              | Shelby Tu                                        |           |                                                       |                                                                                                               | Cement   |                     |           | Native Fill                 |
| $N = \Delta S$     |              | Rock Core:                                       |               | _o=          | Hand Au                                          | ger and   | Casing                                                |                                                                                                               | Sand     |                     |           | Rontonito                   |

P. Lale Brave

|                                       |          | nmen                |               |          |             |          | Hole No.:      | SVM-3                                                      |         |                   | started:         | 3/11/03                   |  |
|---------------------------------------|----------|---------------------|---------------|----------|-------------|----------|----------------|------------------------------------------------------------|---------|-------------------|------------------|---------------------------|--|
| Pro                                   | ducts    | & Services,         | Inc.          |          |             |          | Sheet          | 1 of 1                                                     |         |                   | inished:         | 3/11/03                   |  |
| Client:<br>Locatio                    |          | Hempstea            | Cleaners Site |          | Method o    |          |                | Hollow-Stem Augers                                         | with 4' | Macrocore         | Sampler          |                           |  |
| Project                               | No.:     | K0122               |               | Drill    | ing Co.:    | Lyon D   | rilling Co.    | Driller: H. Lyon<br>D. Helper: J. Lyon                     |         |                   |                  | Weather:<br>Clear         |  |
| P. Mana                               | ager:    | Dale Brau           |               | Geo      | logist:     | Dale B   |                |                                                            |         | <b>-</b>          |                  | ~35                       |  |
| Donth                                 |          | D-: 11 1            | Sample        | 1        | Description | -        |                | Sample                                                     |         | Field             | M4-11            | Groundwater               |  |
| Depth                                 | NI.      | Depth               | Blows         | *N*      | Recovery    |          |                | Sample<br>Description                                      |         | Analytical        | Well             | and Other<br>Observations |  |
| (ft.)                                 | No.      | (ft.)               | per 6"        | IN       | (ft.)       |          |                | Description                                                |         | Readings          | Details          | Observations              |  |
|                                       | 1        |                     |               |          | 3.5         | 0040     | سنالمما سممالي | . to fine avainad, as                                      |         | 0.8               |                  | 12" Manhole               |  |
|                                       |          |                     |               |          |             |          |                | n to fine grained; some coar<br>rounded, poorly sorted tan |         | 0.4 1.9           |                  |                           |  |
|                                       |          |                     |               |          |             | tan, moi |                | ounded, poorly sorted turn                                 | to your |                   |                  | 1.9'                      |  |
|                                       |          |                     |               | 1        |             | 1        |                |                                                            |         |                   |                  | Bentonite                 |  |
| 5                                     | 2        |                     |               |          | 4           | 1        |                |                                                            |         |                   | :: <b>  </b>  :: |                           |  |
|                                       |          |                     |               |          |             | 4.0-9.0  | Same as abov   | e with 3" lens of fine sand a                              | t 7.6'. | 0.4               |                  | 2.7' of 3/4"<br>diameter  |  |
|                                       |          |                     |               |          |             | 1        | 0.5            |                                                            |         |                   |                  |                           |  |
|                                       |          |                     |               |          |             |          |                |                                                            |         |                   |                  | PVC riser                 |  |
|                                       | 3        |                     |               |          |             |          |                |                                                            |         | 8.6               | l: ₩:            | 5' of 3/4"                |  |
| 10                                    |          |                     |               |          |             | 9.0 End  | of boring.     |                                                            |         | 1                 | :/::/:           | diameter                  |  |
|                                       |          |                     |               |          |             | 1        | _              |                                                            |         |                   |                  | Sch 40                    |  |
|                                       | $\vdash$ |                     |               | +        |             | 1        |                |                                                            |         |                   | \                | 0.01 slot                 |  |
|                                       |          |                     |               | +        |             | 1        |                |                                                            |         |                   | l \              | PVC well                  |  |
|                                       |          |                     |               | +        |             | ┨        |                |                                                            |         | l                 | ·                | \ \                       |  |
|                                       | <u> </u> |                     |               | 4        |             | -        |                |                                                            |         |                   |                  | \ Sand Pack               |  |
| 15                                    |          |                     |               | _        |             | 1        |                |                                                            | •       |                   |                  |                           |  |
|                                       |          |                     |               |          |             | 1        |                |                                                            |         |                   |                  | 6 5/8"                    |  |
|                                       |          |                     |               |          |             |          |                |                                                            |         |                   |                  | diameter                  |  |
|                                       |          |                     |               |          |             |          |                |                                                            |         |                   |                  | borehole                  |  |
|                                       |          |                     |               |          |             | ]        |                |                                                            |         |                   |                  |                           |  |
| 20                                    |          |                     |               |          |             | 1        |                |                                                            |         |                   |                  |                           |  |
|                                       |          |                     |               | -        |             | 1        |                |                                                            |         |                   |                  |                           |  |
|                                       |          |                     | _             |          |             | 1        |                |                                                            |         | ļ                 |                  |                           |  |
|                                       |          |                     |               | -        |             | 1        |                |                                                            |         |                   |                  |                           |  |
| 1                                     |          |                     |               | +        |             | +        |                |                                                            |         |                   |                  |                           |  |
|                                       |          |                     |               |          |             | 4        |                |                                                            |         |                   |                  |                           |  |
| 25                                    | <u> </u> |                     |               |          |             | 4        |                |                                                            |         |                   |                  |                           |  |
|                                       |          |                     |               | 4        |             | 4        |                |                                                            |         |                   |                  |                           |  |
| 1                                     |          | ļ                   |               | <b>_</b> |             | 4        |                |                                                            |         |                   |                  |                           |  |
|                                       |          |                     |               |          |             |          |                |                                                            |         |                   |                  |                           |  |
|                                       |          |                     |               |          |             |          |                |                                                            |         |                   | [                |                           |  |
| 30                                    |          |                     |               |          |             |          |                |                                                            |         |                   |                  |                           |  |
|                                       | 1        |                     |               |          |             |          |                |                                                            |         |                   |                  |                           |  |
|                                       |          |                     |               |          |             |          |                |                                                            |         |                   |                  |                           |  |
|                                       |          |                     |               |          |             | 1        |                |                                                            |         |                   |                  |                           |  |
|                                       |          |                     |               | -        |             | 1        |                |                                                            |         |                   |                  |                           |  |
| 35                                    | <u> </u> | -                   |               | +        |             | 1        |                |                                                            |         |                   |                  |                           |  |
| Sampl                                 | 1 Tu     | Joe.                | l             |          |             |          |                |                                                            | Wall    | l<br>Backfill Key | <u> </u>         |                           |  |
|                                       |          | oes:<br>olit Spoon: |               | т        | Shelby Tu   | ihe.     |                |                                                            | Cement  |                   | ******           | Native Fill               |  |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 5 – c    | Rock Core:          |               |          | : 4' macro  |          |                |                                                            | Cement  |                   |                  | M Mative Fill             |  |
|                                       |          | D1586 _             |               | _ ` -    | T MACIC     | 70010    |                |                                                            | Sand    |                   |                  | Bentonite                 |  |

N = ASTM D1586

Pulled Source

|                            |                | nmer       |                         | Su    | bsurfac   | e Log     | Hole No.:                                          | SVM-4                                      |           |                   | started:   | 3/21/03                  |
|----------------------------|----------------|------------|-------------------------|-------|-----------|-----------|----------------------------------------------------|--------------------------------------------|-----------|-------------------|------------|--------------------------|
|                            |                | & Services | , Inc.                  |       |           |           | Sheet                                              | 1 of 1                                     |           | Date              | Finished:  | 3/21/03                  |
| Client:<br>Locatio         | n:<br>         | Hempste    | Cleaners Site<br>ad, NY |       | Method o  |           |                                                    | Hand Auger and Casir                       | ng<br>    |                   |            |                          |
| Project                    | No.:           | K0122      |                         | Drill | ling Co.: | Lyon D    | rilling                                            | Driller: H. Lyon<br>D. Helper: J. Lyon     |           |                   |            | Weather:                 |
| P. Mana                    | ager:          | Dale Bra   | ue                      | Geo   | logist:   | Dale B    | raue                                               | Drill Rig: Hand Auger                      | and Cas   | ing               |            | Cloudy<br>~50            |
|                            |                |            | Sample                  |       |           |           |                                                    |                                            |           | Field             |            | Groundwater              |
| Depth                      | Na             | Depth      | Blows                   | "N"   | Recovery  |           |                                                    | Sample                                     |           | Analytical        | Well       | and Other                |
| (ft.)                      | No.            | (ft.)      | per 6"                  | IN    | (ft.)     | 0.0-1.0   |                                                    | Description  to coarse grained; trace fine |           | Readings<br>2 0.9 | Details    | Observations             |
|                            |                |            |                         |       |           | trace fin | e sand; trace                                      | metal; trace wood; (fill?) tan-k           | brown, 0. |                   |            |                          |
|                            |                |            |                         |       |           | dry.      |                                                    |                                            | 0.        |                   |            | 12* Manhole              |
|                            |                |            |                         |       |           | 1.0-8.0   | .0-8.0 Sand, medium to coarse grained; little fine |                                            |           |                   |            | 2.9'<br>Bentonite        |
| 5                          |                |            |                         |       |           |           | race fine sand                                     |                                            | o.        |                   |            | 3.5' of 3/4"             |
|                            |                |            |                         |       |           |           |                                                    |                                            | 0.        |                   |            | diameter                 |
|                            |                |            |                         |       |           | 8.5 Fnd   | of boring.                                         |                                            | 0.        |                   |            | `Sch 40<br>PVC riser     |
|                            |                |            |                         |       |           | 0.0 2110  | or wormig.                                         |                                            | 0.        | 2<br>8.5          |            |                          |
| 10                         |                |            |                         |       |           | ]         |                                                    |                                            |           | 0.0               |            | 5.6' of 3/4"<br>diameter |
|                            |                |            |                         |       |           |           |                                                    |                                            |           |                   | \ \        | Sch 40                   |
|                            |                |            |                         |       |           |           |                                                    |                                            |           |                   | \          | 0.01 slot<br>PVC well    |
|                            |                |            |                         |       |           | _         |                                                    |                                            |           |                   | Y          |                          |
| 15                         |                |            |                         |       |           | }         |                                                    |                                            |           |                   |            | \ Sand Pack              |
| 10                         |                |            |                         | -     |           | -         |                                                    |                                            |           |                   |            | \                        |
|                            |                |            |                         |       |           |           |                                                    |                                            |           |                   |            | √ 6 5/8*<br>diameter     |
|                            |                |            |                         |       |           |           | ,                                                  |                                            |           |                   |            | borehole                 |
|                            |                |            |                         |       |           |           |                                                    |                                            |           |                   |            |                          |
| 20                         |                |            |                         |       |           | -         |                                                    | •                                          |           |                   |            |                          |
|                            |                |            |                         | -     |           | -         |                                                    |                                            |           |                   |            |                          |
|                            |                | -          |                         |       |           |           |                                                    |                                            |           |                   |            |                          |
|                            |                |            |                         | +     |           |           |                                                    |                                            |           |                   |            |                          |
| 25                         |                |            |                         |       |           |           |                                                    |                                            |           |                   |            |                          |
|                            |                |            |                         |       |           |           |                                                    |                                            |           |                   |            |                          |
|                            |                |            |                         |       |           |           |                                                    |                                            |           |                   |            |                          |
|                            |                |            |                         | _     |           |           |                                                    |                                            |           |                   |            |                          |
| 30                         |                | -          |                         | +     |           |           |                                                    |                                            |           |                   |            |                          |
| - 50                       |                |            |                         |       |           |           |                                                    |                                            |           |                   |            |                          |
|                            |                |            |                         |       |           |           |                                                    |                                            |           |                   |            |                          |
|                            |                |            |                         |       |           |           |                                                    |                                            |           |                   |            |                          |
| 25                         |                |            |                         | +     |           | -         |                                                    |                                            |           |                   |            |                          |
| 35<br>Sample               | Tvn            | les.       |                         |       |           |           |                                                    | T                                          | Well Rac  | kfill Key         |            |                          |
|                            |                | lit Spoon: |                         | T==   | Shelby Tu | ıbe:      |                                                    |                                            | ement     | ZAIIII NEY        |            | Native Fill              |
| R = Rock Core: O = Hand Au |                |            |                         |       |           | Casing    | The board way arrange wind a sufficient of         |                                            |           |                   | 221<br>888 |                          |
| N = AS                     | N = ASTM D1586 |            |                         |       |           |           |                                                    |                                            | Sand      |                   |            | Bentonite                |
|                            |                | K          | - Lac                   | e-    | 3         | wi        | re                                                 |                                            |           |                   |            |                          |

Subsurface Log Hole No.: AS-1 Environmental Date started: 3/18/03 Products & Services, Inc. Sheet Date Finished: 3/19/03 NYSDEC Method of investigation: Client: Hollow-Stem Auger Franklin Cleaners Site Location: Hempstead, NY K0122 Drilling Co.: Lyon Drilling Co. Driller: H. Lyon Project No.: Weather: D. Helper: J. Lyon Sunny, Clear P. Manager: D. Braue Geologist: D. Braue Drill Rig: CME-45 Skid Mount 60 Sample Field Groundwater Depth Depth Blows Recovery Sample Analytical and Other Well per 6" "N" (ft.) No. (ft.) (ft.) Description Readings Details Observations 6 0.2 New gravel fill. 1 0.2 2,3,3,6 1 0.2 12" Manhole 2.4-2.4 No Recovery. 9 0 2 2-4 5,6,3,3, 25' of 2" 5 2 3 4.6 1,1,1,2 0 diameter 4-6 No Recovery. Sch 40 **PVC** riser 4 6-8 2,1,2,2, 3 0 6-8 No Recovery. 8-10 SAND, medium to fine grained; little fine gravel; 5 8-10 2,1,1,3 2 0.2 0.2 Bentonite/ trace fine sand; tan, moist (auger plugged). 10 Cement 10-13.2 Same as above with oxidized iron staining. 13 Grout 6 10-12 1.5 3,6,7,7 0.2 7 23 2.0 13.2-19.8 SAND, medium to coarse grained; some fine 12-14 6,9,14,12 0.2 gravel; trace medium gravel; trace fine sand; tan with 25' of 2" oxidized iron bands, moist 15 17 8 14-16 6,8,9,9 2.0 0.2 diameter Sch 40 **PVC** riser 21 9 16.18 9,9,12,12 2.0 0.2 19.8-21.6 SAND, medium to fine grained; trace fine 10 18-20 6,9,13,11 22 2.0 0.2 gravel; tan, moist. 20 2' Bentonite 19 11 2.0 20-22 5,7,12,12 21.6-22 SAND, medium to fine grained; little fine 20.7-Seal gravel; trace coarse sand; tan, damp. 22.4 22-28 SAND, medium to fine grained; trace fine gravel; 12 22-24 14,11,12,15 23 2 0.4 22.9.. trace coarse sand; tan-buff, wet at 22.4. 25 13 24-26 19 2.0 2' of 2" 5,7,12,12 0.0 diameter Sch 40 14 26-28 6,14,12,12 26 2.0 0.0 0.01 slot PVC well 28-30 SAND, medium to fine grained; trace fine gravel; screen 28-30 13,11,13,14 24 2.0 15 0.0 trace medium gravel; trace coarse sand; tan-buff, wet. 30 29.1-Sand Pack 30 End of boring. 6 5/8 diameter borehole 35 Sample Types: Well Backfill Key S = Split Spoon: T= Shelby Tube: Cement Native Fill R = Rock Core: N = ASTM D1586Sand **Bentonite** 

R. Lale Brave

|                     | Environmental Products & Services, Inc.                   |          |                         | Su  | bsurface | e Log     | Hole No.:                                                                                                                                                                          | AS-2                                                 |                                              | Date                      | started:                 | 3/13/03                                                                                                        |
|---------------------|-----------------------------------------------------------|----------|-------------------------|-----|----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|---------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------|
|                     |                                                           |          | , Inc.                  |     |          |           | Sheet                                                                                                                                                                              | 1 of 1                                               |                                              | Date                      | Finished:                | 3/13/03                                                                                                        |
| Client:<br>Location | n:                                                        | Hempste  | Cleaners Site<br>ad, NY |     | Method o |           |                                                                                                                                                                                    | Hollow-Stem Augers                                   |                                              |                           |                          |                                                                                                                |
| Project             |                                                           |          |                         |     | ing Co.: |           | rilling Co.                                                                                                                                                                        | Driller: H. Lyon<br>D. Helper: J. Lyon               |                                              |                           |                          | Weather:<br>Light Rain                                                                                         |
| P. Mana             | ager:                                                     | Dale Bra |                         | Geo | logist:  | Dale Br   | le Braue Drill Rig: LM-1                                                                                                                                                           |                                                      |                                              |                           | ~40                      |                                                                                                                |
| Depth               |                                                           | Depth    | Sample<br>Blows         |     | Recovery | Sample    |                                                                                                                                                                                    |                                                      |                                              | Field<br>Analytical       | Groundwater<br>and Other |                                                                                                                |
| (ft.)               | No.                                                       | (ft.)    | per 6"                  | "N" | (ft.)    |           |                                                                                                                                                                                    | Description                                          |                                              | Readings                  | Well<br>Details          | Observations                                                                                                   |
| 5                   | 2                                                         | 0.4      |                         |     | 4        | gravel; t | 0-12.1 Sand, medium to coarse grained; little fine gravel; trace fine sand; well rounded and poorly sorted; tan to yellow-tan with very few iron oxidation stains, moist.  0.5 1.9 |                                                      |                                              |                           |                          |                                                                                                                |
|                     | 3                                                         | 8-11     |                         |     | 3        | <br>      |                                                                                                                                                                                    |                                                      | diameter Sch 40 PVC riser  Bentonite/ Cement |                           |                          |                                                                                                                |
| 10                  | 4                                                         | 11-14    |                         |     | 3        | sand; br  | rown iron oxid                                                                                                                                                                     | um to fine grained; trace co<br>ation stains; moist. |                                              | 0.5 10.9<br>▼<br>0.5 12.9 |                          | Grout  2' Bentonite                                                                                            |
|                     |                                                           |          |                         |     |          |           | .0 Sand mediu                                                                                                                                                                      |                                                      | Bentonite                                    |                           |                          |                                                                                                                |
| 15                  | 5                                                         | 14-17    |                         |     | 3        |           | an; wet at 12.9                                                                                                                                                                    | ; well sorted and rounded; t<br>).                   | 0.5                                          |                           | Sand Pack                |                                                                                                                |
| 20<br>25<br>30      | 6                                                         | 17-19    |                         |     | 2        | 19 End    | of boring.                                                                                                                                                                         |                                                      |                                              | 0.5 18.8                  |                          | 2' of 2" diameter Sch 40 0.01 slot PVC well screen 2' of 2" diameter Sch 40 PVC riser 6 5/8" diameter borehole |
|                     | 35 Sample Types:                                          |          |                         |     |          |           |                                                                                                                                                                                    |                                                      | We                                           | I<br>ell Backfill         | Key                      |                                                                                                                |
| S                   | S = Split Spoon: T= Shelby Tu R = Rock Core: O = 4' Macro |          |                         |     |          |           |                                                                                                                                                                                    | 31. Sec. 2007.01. 2. 7. 76 - 30 , 30 CV              | Cement                                       |                           |                          | 88                                                                                                             |
| N = ASTM D1586      |                                                           |          |                         |     |          |           |                                                                                                                                                                                    | Sand                                                 |                                              |                           | Bentonite                |                                                                                                                |
|                     | R. Dalit Sauce                                            |          |                         |     |          |           |                                                                                                                                                                                    |                                                      |                                              |                           |                          |                                                                                                                |

|                    |       | nmei                |                      | Su    | bsurface  | e Log     | Hole No.:     | AS-3                                                                    |                  |                           | started:        | 3/12/03                                        |
|--------------------|-------|---------------------|----------------------|-------|-----------|-----------|---------------|-------------------------------------------------------------------------|------------------|---------------------------|-----------------|------------------------------------------------|
|                    | lucts | & Services          | , Inc.<br>           |       |           |           | Sheet         | 1 of 1                                                                  |                  | Date I                    | Finished:       | 3/12/03                                        |
| Client:<br>Locatio |       | Hempste             | Cleaners Site ad, NY |       | Method o  |           |               | Hollow-Stem Auger                                                       |                  |                           |                 |                                                |
| Project            | No.:  | K0122               |                      | Drill | ling Co.: | Lyon D    | rilling Co.   | Driller: H. Lyon<br>D. Helper: J. Lyon                                  |                  |                           | _               | Weather:<br>Overcast                           |
| P. Mana            | ager: | Dale Brai           |                      | Geo   | logist:   | Dale B    | rau <u>e</u>  | Drill Rig: LM-1                                                         |                  |                           |                 | ~ 30                                           |
| Depth              |       | Donth               | Sample               | T     | Recovery  | -         |               | Sample                                                                  |                  | Field                     |                 | Groundwater                                    |
| (ft.)              | No.   | Depth<br>(ft.)      | Blows<br>per 6"      | *N*   | (ft.)     |           |               | Description                                                             |                  | Analytical<br>Readings    | Well<br>Details | and Other<br>Observations                      |
|                    | 1     | 0-4                 |                      |       | 4         | gravel; t | 3 Sand, Mediu | m to coarse grained; little i                                           | fine             | 0.6                       |                 | 12" manhole                                    |
| 5                  | 2     | 4-8                 | _                    |       | 4         | 11 0 12   | Sand goarse   | and fine grouply some model                                             |                  | 0.6                       |                 | 12.9' of 2"<br>diameter<br>Sch 40<br>PVC riser |
| 10                 | 3     | 8-11                |                      |       | 3         | sand; tr  |               | and fine gravel; some med<br>well rounded and sorted; or<br>ron, moist. | dark             | 2.1                       |                 | Bentonite/<br>Cement<br>Grout                  |
|                    | 4     | 11-14               |                      |       | 3         |           |               |                                                                         |                  | 11.1<br>1.6 <u>—</u> 12.5 |                 | 1.7'<br>Bentonite<br>Seal                      |
| 15                 | 5     | 14-17               |                      |       | 3         |           |               | grained; some fine sand; tr<br>t to 12.5 wet at 12.5 and b              |                  | 12.8                      |                 | Sand<br>Pack                                   |
|                    | 6     | 17-19               |                      |       | 2         | 19 End    | of boring.    |                                                                         |                  |                           |                 | 2' of 2" diameter Sch 40 0.01 slot PVC well    |
| 20                 |       |                     |                      |       |           |           |               |                                                                         |                  | 19.2                      |                 | screen 2' of 2" diameter Sch 40 PVC riser      |
| 25                 |       |                     |                      |       |           |           |               |                                                                         |                  |                           |                 | 6 5/8"<br>diameter<br>borehole                 |
| 30                 |       |                     |                      |       |           | -         |               |                                                                         |                  |                           |                 |                                                |
|                    |       |                     |                      |       |           | -         |               |                                                                         |                  |                           |                 |                                                |
| 35                 |       |                     |                      |       |           |           |               |                                                                         |                  |                           |                 |                                                |
|                    | = Sp  | lit Spoon:          |                      |       | Shelby Tu |           |               |                                                                         | Well E<br>Cement | ackfill Key               |                 | Native Fill                                    |
| N = AS             |       | Rock Core:<br>01586 |                      | _ =   | 4' Macro  | core      |               |                                                                         | Sand             |                           |                 | Bentonite                                      |
|                    |       | K                   | 2. La                | li    | -/3       | na        | ul_           |                                                                         |                  |                           |                 |                                                |

|                    |              | nmer<br>& Services, |               | Su           | bsurfac                                          | e Log     | Hole No.:                       | ASM-1<br>1 of 1                                               |       |                | started:<br>Finished: | 3/14/03<br>3/14/03          |
|--------------------|--------------|---------------------|---------------|--------------|--------------------------------------------------|-----------|---------------------------------|---------------------------------------------------------------|-------|----------------|-----------------------|-----------------------------|
| Client:<br>Locatio |              | NYSDEC              | Cleaners Site |              | Method o                                         | f invest  |                                 | Hollow-Stem Augers                                            |       | Date           | rillished.            | 3/14/03                     |
| Project            | No.:         | K0122               |               | Dril         | ling Co.:                                        | Lyon D    | rilling Co.                     | Driller: H. Lyon<br>D. Helper: J. Lyon                        |       |                |                       | Weather:<br>Partly Cloudy   |
| P. Mana            | ager:        | Dale Brau           |               | Geo          | logist:                                          | Dale B    | raue                            | Drill Rig: LM-1                                               |       |                |                       | ~20                         |
| D 41-              |              |                     | Sample        | _            |                                                  |           |                                 | Camarla                                                       |       | eld            |                       | Groundwater                 |
| Depth              | Nia          | Depth               | Blows         | ***          | Recovery                                         |           |                                 | Sample                                                        | 1     | lytical        | Well                  | and Other                   |
| (ft.)              | No.          | (ft.)               | per 6"        | "N"          | (ft.)                                            |           |                                 | Description                                                   | Rea   | dings          | Details               | Observations                |
|                    | 1            | 0.4                 |               | +            | 4                                                | 0.0.1.5   | Sand mediur                     | n to fine grained; some coarse                                |       | 1.0            |                       | 10114 and bad a             |
|                    |              |                     |               | -            |                                                  | sand; lit |                                 | ; trace plactic; trace wood; trace                            | 0.2   | 1.8            |                       | 12" Manhole  Bentonite Seal |
| 5                  | 2            | 4-6.5               |               |              | 2.5                                              | gravel;   | trace fine san                  | to coarse grained; little fine d; well rounded and poorly     | 0.1   | 3.1··<br>4.5·· |                       | Fine Sand (No. 00 Morie     |
|                    | 3            | 6.5-10.5            |               | <del> </del> | 4                                                | sorted;   | tan, moist.                     |                                                               |       | 4.0            |                       | Grade or                    |
|                    | Ť            | 0.0 20.0            | -             |              |                                                  | 4.12.1    | Sand, mediun                    | n to coarse grained; little fine                              |       |                |                       | Approved                    |
|                    | _            |                     |               |              |                                                  | gravel; t | trace medium                    | gravel; trace fine sand; tan to                               | 0.1   |                |                       | Equal)                      |
| 10                 |              |                     |               |              |                                                  | yellow t  | an, moist.                      |                                                               | 0.1   |                |                       | 3.2' of 2"                  |
| - 10               | 4            | 10.5-14             |               | +            | 3                                                | 1         |                                 |                                                               |       |                |                       | diameter                    |
|                    | <del>-</del> | 10.5-14             |               | +            | <del>                                     </del> |           |                                 | e grained; some medium to coarse                              | 0.1   |                |                       | Sch 40                      |
|                    |              |                     |               | +-           |                                                  | 1 '       |                                 | ; dark brown to black; moist to                               |       | V121           |                       | PVC riser                   |
|                    |              |                     |               | +            |                                                  | 13', wat  | ter table at 13                 | 3.1.                                                          | 0.2   | <u>1</u> 3.1   |                       | 15' of 2"                   |
| 15                 | 5            | 1410                |               | +            | 4                                                | 1         |                                 |                                                               |       |                | l: 🗐 🗆                | diameter                    |
|                    | -            | 14-18               |               | +            | 4                                                | 12514     | No composo o                    | verse to a bish                                               | 0.2   |                |                       | Sch 40                      |
| 1                  | <del></del>  | -                   |               | +-           |                                                  | 13.5.14   | No sample-a                     | ugers too high.                                               |       |                |                       | 0.01 slot<br>PVC well       |
|                    | ⊢            | -                   |               | +-           | <u> </u>                                         | 1,,,,,    | = 2 Cand mag                    | diverse assess are inside little fine                         |       |                |                       | screen                      |
|                    | <u> </u>     | 1000                |               | +            |                                                  |           |                                 | dium to coarse grained; little fine el; tan to dark tan, wet. |       |                |                       |                             |
|                    | 6            | 18-20               | <u> </u>      | +-           | 2                                                | -         | <b>6</b>                        | .,                                                            |       |                |                       | Silica Sand                 |
| _20                | ļ            |                     |               | +            |                                                  | -         |                                 |                                                               |       |                |                       | Pack                        |
|                    |              |                     |               |              |                                                  | ┨         |                                 |                                                               |       | 20.1           |                       | (No. 1 Morie                |
|                    |              |                     |               |              |                                                  | _         | ) Sand, mediu<br>ace fine grave | m to coarse grained; little fine,                             |       |                | \                     | Grade or<br>Approved        |
|                    |              |                     |               | <b>_</b>     |                                                  | Sanu, ti  | ace iiile grave                 | si, taii, wet.                                                |       |                | \                     | Equal)                      |
|                    |              |                     |               | _            | _                                                | _         |                                 |                                                               |       |                |                       | <b>\</b>                    |
| 25                 |              |                     |               |              |                                                  | ┨         |                                 |                                                               |       |                |                       |                             |
|                    | <u> </u>     |                     |               |              |                                                  | 20 End    | of boring.                      |                                                               |       |                |                       | ∖ 6 5/8"<br>diameter        |
|                    | L            |                     |               | _            |                                                  | _         |                                 |                                                               |       |                |                       | borehole                    |
|                    |              |                     |               |              |                                                  | _         |                                 |                                                               |       |                |                       |                             |
|                    |              |                     |               |              |                                                  |           |                                 |                                                               |       |                |                       |                             |
| 30                 | <u> </u>     |                     |               |              |                                                  |           |                                 |                                                               |       |                |                       |                             |
|                    |              |                     |               |              |                                                  | _         |                                 |                                                               |       |                |                       |                             |
|                    |              |                     |               |              |                                                  |           |                                 |                                                               |       |                |                       |                             |
|                    |              |                     |               |              |                                                  |           |                                 |                                                               |       |                |                       |                             |
|                    |              |                     |               |              |                                                  |           |                                 |                                                               |       |                |                       |                             |
| 35                 |              |                     |               |              |                                                  |           |                                 |                                                               |       |                |                       |                             |
| Sampl              |              |                     |               |              | ,                                                |           |                                 |                                                               | Backt | ill Key        |                       |                             |
|                    |              | olit Spoon:         |               |              | Shelby Tu                                        |           |                                 | Ceme                                                          | nt    |                |                       | Native Fill                 |
| N = AS             |              | Rock Core:          |               | <b>-</b> °⁼  | 4' Macro                                         | core      |                                 |                                                               | , al  |                |                       | Rentonite                   |
| 1111 = 4           | NIVI         | LIDAD               |               | 1            |                                                  |           |                                 | i i i i i i i i i i i i i i i i i i i                         | 17.3  |                | RRRRRRR               | DOM HANTANITA               |

R. Dale Brave

Subsurface Log Hole No.: **Environmental** ASM-2 Date started: 3/20/03 Products & Services, Inc. Sheet 1 of 1 Date Finished: 3/20/03 NYSDEC Client: Method of investigation: Hollow-Stem Augers Franklin Cleaners Site Location: Hempstead, NY Project No.: K0122 Drilling Co.: Lyon Drilling Co. Driller: H. Lyon Weather: D. Helper: J. Lyon Light Rain Drill Rig: CME-45 P. Manager: Dale Braue Geologist: Dale Braue ~40 Sample Field Groundwater Depth Blows Sample Depth Recovery Analytical Well and Other (ft.) "N" Description per 6" No. (ft.) (ft.) Readings Details Observations 1 0.0-2.0 2, 1, 2, 3 3 0 12" Manhole 0.0-4.0 No recovery. 2.1--2 5 2.0.4.0 5, 3, 2, 1 0 4.0-5.2 New Fill. 5 4.0-6.0 6 4, 3, 3, 4 2 Bentonite/ 5.2-5.8 Clay; some medium sand; trace fine gravel; light 0.2 Cement gray; moist (fill?). 25 4 6.0-8.0 2 7, 16, 19, 26 Grout 5.8-8.1 Sand, medium to fine grained; some coarse sand; trace fine gravel; brown, moist; (fill?). 5 8.0-10.0 5, 9, 10, 14 19 2 0.2 12.8' of 2" 8.1-12.0 Sand, medium to fine grained; some fine sand; diameter 10 Sch 40 little fine gravel; well rounded; tan with iron oxidation 12 1.5 6 10.0-12.0 3, 6, 6, 8 0.2 10.7 PVC riser banding; moist. 2' 12.0-14.0 22 2 8, 10, 12, 12 12.8-Bentonite 12.0-18.0 Sand, medium to coarse grained; little fine 0.2 Seal gravel; trace fine sand; tan, moist. 15 8 14.0-16.0 18 2 3, 8, 10, 9 0.1 14.9-0.1 Fine Sand 16 18.0-20.0 Sand, medium to coarse grained; little fine 9 16.0-18.0 9, 9, 7, 10 2 (No. 00 Morie 0.2 gravel; trace fine sand, tan with iron oxidation streaks. Grade or moist. Approved 18.0-20.0 14 2 10 4, 5, 9, 5 0.2 Equal) 20 20.0-22.0 Sand, medium to fine grained; trace coarse sand; trace fine gravel, tan, moist. 15' of 2" 11 20.0-22.0 2, 4, 8, 11 12 2 0.2 diameter Sch 40 22.0-24.0 26 2 12 10, 12, 14, 20 0.01 slot PVC well screen 22.0-30.0 Sand, medium to coarse grained; little fine gravel; trace fine sand; trace medium gravel; tan, wet at 25 13 24.0-26.0 7, 12, 12, 9 24 2 0.2 22.6. Silica Sand Pack 14 26.0.28.0 11, 9, 9, 10 18 2 0.2 (No. 1 Morie Grade or 30 End of boring. Approved 28.0-30.0 25 2 14, 9, 16, 14 0.2 Equal) 30 29.9 6 5/8" diameter borehole 35 Sample Types: Well Backfill Key S = Split Spoon: T= Shelby Tube: Cement Native Fill R = Rock Core: 0 = N = ASTM D1586 Sand Bentonite

P. Dali Brave

| Depth   Products   Reverees   Recovery   Method   Final   Products   Produc   | En                | vir    | onm       | ental           | S        | ubsurf    | ace      | Hole No.:      | SB-01                              |             | Date    | started:  | 6/28/05       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|-----------|-----------------|----------|-----------|----------|----------------|------------------------------------|-------------|---------|-----------|---------------|
| Location: Franklin Cleaners Site   Wildlings of Hempstead   Warder-Core Sampler with Piston assembly   Depth to Screen:   N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pro               | duct   |           |                 |          | Log       |          | Sheet          | 1 of 1                             |             | 'Date F | inished:  | 6/29/05       |
| Weather:   No.   Default   Defaulting Co.:   SDS   Defaulting Co   | Client:           |        | NYSDEC    | :               |          | Method o  | of inves | tigation:      |                                    | Well        | Depth:  |           | N/A           |
| NYSDEC Contract No.: D004184   Politing Co.: SDS   Driller: J. Grant   D. Helper: A, Russo   D. Helper: A, R   | Locatio           | n:     | Franklin  | Cleaners Site   |          | Macro-Co  | ore San  | npler with F   | Piston assembly                    | Depth to S  | creen:  |           | N/A           |
| EPS Project Mgr.:   Dale Braue   Geologist:   D. Braue   Drill Rig: MC-5 & 70-lb Electric Hammer   T/5 deg. F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |        |           |                 |          |           |          |                |                                    |             |         |           |               |
| Depth   Depth   Blows   Recovery   Sample   Description   Readings   Sample   Description   Description   Readings   Sample   Description   Description   Readings   Sample   Description   Description   Readings   Sample   Description   Readings   Sample   Description   Descript   |                   |        |           |                 | Dril     | ling Co.: | SDS      |                |                                    |             |         |           | Weather:      |
| Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   S   |                   | -      |           |                 |          |           |          |                |                                    |             |         |           |               |
| Depth   Depth   Depth   Depth   Blows   Recovery   Sample   Analytical   depth   Well   and Other   Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EPS Pr            | oject  | : Mgr.:   |                 | Geo      | ologist:  | D. Bra   | ue             | Drill Rig: MC-5 & 70-lb B          | lectric Ham | mer     |           | 75 deg. F     |
| (ft.) No. (ft.) per 6" "N" (ft.) Description Readings by Debatis Observations    1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |        |           | Sample          |          |           |          |                |                                    | Field       |         |           | Groundwater   |
| 1   0-1.3   0.8   0.0-02* Asphalt.   0.4°-3.8°: SAND, medium to coarse grained; some fine gravel; ittle fine sand; trace medium gravel; brown, moist.   3.8°-3.8°: SAND, medium to coarse grained; little fine fine gravel; trace fine sand; well rounded, tan with minor iron oxidation, moist.   0.0 ppm   0.0   |                   |        |           | Blows           |          | 1         |          |                | -                                  | Analytical  | depth   | Well      | and Other     |
| 0.4°-3.8°: SAND, medium to coarse grained; some fine gravel; ittle fine sand; trace medium gravel; brown, most.   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ft.)             | No.    | (ft.)     | per 6"          | "N"      | (ft.)     |          |                | Description                        | Readings    | bgs     | Details   | Observations  |
| 1.3-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 1      | 0-1.3     |                 |          | 0.8       | 0-0.4':  | Asphalt.       |                                    |             |         |           |               |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l                 |        |           |                 |          |           |          |                |                                    | 0.0 ppm     |         |           |               |
| 3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   5.7   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8    | l                 | 2      | 1.3-4     |                 |          | 1.3       |          |                | sand; trace medium gravel;         |             |         |           |               |
| Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types:   Sample Types   |                   |        |           |                 |          |           |          |                | lium to coarse grained: little fin |             |         |           |               |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                 | 3      | 4-8       |                 |          | 3.8       |          |                |                                    |             |         |           |               |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |        |           |                 |          |           | iron oxi | dation, moist. |                                    | ''          |         |           |               |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |        |           |                 | T        |           | 5.3'-5.8 | : CLAY; little | fine to medium sand; trace fin     | 0.0 ppm     |         |           |               |
| 4   8-10   2   fine gravel; trace fine sand; trace medium gravel; well rounded, tan with minor iron oxidation, moist.   5   10-12   1.4   7.8-21.8': SAND, medium grained; some fine sand; trace coarse sand; trace coarse sand; trace fine gravel; tan/buff with iron oxidation, well.   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |        |           |                 | $\vdash$ |           |          |                |                                    | 0.0 pp      |         |           |               |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | 4      | Q-10      |                 |          | 2         |          |                |                                    | 0.0.000     |         |           |               |
| S   10-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                | 7      | 0-10      |                 |          |           |          |                |                                    | 0.0 ppiii   |         |           |               |
| 12-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                | -      | 10.12     |                 | -        | 4.4       |          | •              | ·                                  | 0.0         |         |           |               |
| Sight oddized iron staining, moist.   21.8*2.5*: SAND, medium to coarse grained; trace fine sand; trace fi   |                   |        |           |                 | -        |           |          |                |                                    | 1           |         |           |               |
| 21.8°-22.5°: SAND, medium to coarse grained; trace fine gravel; tan/buff with iron oxidation, wet.  20 8 18.5-22.5 (Piston removed 4.0 early to clean out boring)  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  22.5°: End of Boring.  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  22.5°: End of Boring.  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  22.5°: End of Boring.  23.8° 22.5°: End of Boring.  24.8° 22.5°: End of Boring.  25.8° 21.8° 22.5°: End of Boring.  26.9° 21.8° 22.5°: End of Boring.  27.8° 21.8° 22.5°: End of Boring.  28.8° 22.5°: End of Boring.  29.8° 21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  22.8° 22.5°: End of Boring.  23.8° 22.5°: End of Boring.  24.8° 22.5°: End of Boring.  24.8° 22.5°: End of Boring.  25.8° 22.5°: End of Boring.  26.9° 22.5°: End of Boring.  27.8° 22.5°: End of Boring.  28.8° 22.5°: End of Boring.  29.8° 22.5°: End of Boring.  20.9° 22.5°: End of Boring.  20.9° 22.5°: End of Boring.  20.9° 22.5°: End of Boring.  21.8° 22.5°: End of Boring.  22.8° 22.5°: End of Boring.  23.8° 22.5°: End of Boring.  24.8° 22.5°: End of Boring.  25.8° 22.5°: End of Boring.  26.8° 22.5°: End of Boring.  27.8° 22.5°: End of Boring.  28.8° 22.5°: End of Boring.  29.8° 22.5°: End of Boring.  20.9° 22.5°: End of B |                   | 6      | 12-16     |                 |          | 3.1       |          |                |                                    | 1           |         |           | l             |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |        |           |                 | _        |           |          |                |                                    |             |         |           | 1             |
| 7   16-20   (sample over   3.9   3.9   22.5': End of Boring.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |        |           |                 | ļ        |           |          |                | gravel; tan/buff with iron         | 0.0 ppm     |         |           |               |
| 20 8 18.5-22.5 (Piston removed 4.0 early to clean out boring)  25 21.8  25 21.8  26 21/4" Diameter borehole  Sample Types: S = Split Spoon: R = Rock Core: O 4" x 2" Macro-Core  Well Backfill Key Cement Native Fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                |        |           |                 | _        |           |          |                |                                    |             |         |           |               |
| 20 8 18.5-22.5 (Piston removed 4.0 early to clean out boring)  25 21.8  26 2 1.4° Diameter borehole  Sample Types:  S = Split Spoon:  R = Rock Core:  O 4' x 2" Macro-Core  Well Backfill Key Cement  Native Fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 7      | 16-20     | (sample over    | _        | 3.9       | 22.5':   | End of Boring. | •                                  |             |         |           |               |
| Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carr   |                   |        |           | driven)         |          |           |          |                |                                    |             |         |           |               |
| Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carr   | i .               |        |           |                 |          |           |          |                |                                    |             |         |           |               |
| Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carry to clean   Carr   |                   |        |           |                 |          |           |          |                |                                    |             |         |           |               |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                | 8      | 18.5-22.5 | (Piston removed |          | 4.0       |          |                |                                    |             |         |           |               |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |        |           | early to clean  |          |           |          |                |                                    |             |         |           |               |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |        |           | out boring)     |          | ,         |          |                |                                    |             |         |           | ▼             |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |        |           |                 |          |           |          |                |                                    |             |         |           | =             |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l                 |        | _         |                 |          |           |          |                |                                    |             |         |           | 21.8          |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25                |        |           | _               |          |           | 1        |                |                                    |             |         |           | 1             |
| 2 1/4" Diameter borehole  Sample Types: S = Split Spoon: R = Rock Core: O 4' x 2" Macro-Core  Vell Backfill Key Cement Native Fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |        |           |                 |          |           | 1        |                |                                    | 1           | Ì       |           |               |
| 2 1/4" Diameter borehole  Sample Types: S = Split Spoon: R = Rock Core: O 4' x 2" Macro-Core  Vell Backfill Key Cement Native Fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l                 |        |           |                 | _        | _         | 1        |                |                                    |             |         |           |               |
| 2 1/4" Diameter borehole  Sample Types: S = Split Spoon: R = Rock Core: O 4' x 2" Macro-Core  Vell Backfill Key Cement Native Fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l                 |        |           |                 | $\vdash$ |           | 1        |                |                                    |             |         | 1         | 1 1           |
| 2 1/4" Diameter borehole  Sample Types: S = Split Spoon: R = Rock Core: O 4' x 2" Macro-Core  Vell Backfill Key Cement Native Fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |        |           |                 | -        | _         | 1        |                |                                    |             |         |           | l 1           |
| 2 1/4" Diameter borehole  Sample Types: S = Split Spoon: R = Rock Core: O 4' x 2" Macro-Core  Vell Backfill Key Cement Native Fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                |        |           |                 | -        |           |          |                |                                    |             |         |           |               |
| Sample Types:  S = Split Spoon:  R = Rock Core:  O 4' x 2" Macro-Core  Dorehole  Well Backfill Key Cement  Native Fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del>- 30</del> - |        |           | _               | -        |           | 1        |                |                                    |             |         |           |               |
| Sample Types:  S = Split Spoon:  R = Rock Core:  O 4' x 2" Macro-Core  Dorehole  Well Backfill Key Cement  Native Fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l                 |        |           |                 | -        |           | 1        |                |                                    |             |         |           |               |
| Sample Types:  S = Split Spoon:  R = Rock Core:  O 4' x 2" Macro-Core  Dorehole  Well Backfill Key Cement  Native Fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |        |           |                 | -        |           | -        |                |                                    |             |         |           |               |
| Sample Types:  S = Split Spoon:  R = Rock Core:  O 4' x 2" Macro-Core  Well Backfill Key Cement Native Fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |        |           |                 | -        |           | ļ        |                |                                    |             |         | 1         |               |
| Sample Types:  S = Split Spoon:  R = Rock Core:  O 4' x 2" Macro-Core  Well Backfill Key Cement Native Fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |        |           |                 |          |           | (        | Ans 1          | 3-248                              |             |         |           | borehole      |
| S = Split Spoon: T= Shelby Tube: Cement Native Fill  R = Rock Core: O 4' x 2" Macro-Core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | _      |           |                 |          |           | <u> </u> | John J.        | <del></del>                        |             |         |           |               |
| R = Rock Core: O 4' x 2" Macro-Core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                 |        |           |                 | _        | Challe =  |          |                | SANCTON THE SAME ON A STATE        | •           | ′       | ,,,,,,,,, | <b></b>       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |        |           |                 |          |           |          |                | Cen                                | nent        |         |           | Native Fill   |
| N - ASTRI DISCO BERRESSE Bentonite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |        |           |                 | _U       | 4 X 2" N  | iacro-C  | ore            |                                    | , d         |         |           | Dontes:"      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IN - AS           | 7   1* | -         |                 |          |           |          |                | Sal                                | iu          |         | 1000000   | BBB Denionite |

| En            | vir   | onm                   | ental                       | s        | ubsurf                                           | ace        | Hole No.:      | SB-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | Date   | started: | 6/29/05         |
|---------------|-------|-----------------------|-----------------------------|----------|--------------------------------------------------|------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|----------|-----------------|
|               |       | s & Servi             |                             |          | Log                                              |            | Sheet          | 1 of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -            | Date F | inished: | 6/29/05         |
| Client:       |       | NYSDEC                |                             | _        | Method o                                         |            | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Depth: |          | N/A             |
| Locatio       |       |                       | Cleaners Site               |          | Macro-Co                                         | ore San    | npler with F   | Piston assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth to S   | creen: |          | N/A             |
| NVCDE         |       |                       | of Hempstead<br>o.: D004184 | Dril     | ling Co.:                                        | CDC        |                | Driller: J. Grant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |        |          | Weather:        |
| EPS Pr        |       |                       | K0122                       | וווטן    | ing co                                           | 303        |                | D. Helper: A. Russo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |        |          | Overcast        |
| EPS Pr        | -     |                       | Dale Braue                  | Geo      | logist:                                          | D. Bra     | ue             | Drill Rig: MC-5 & 70-lb El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ectric Hamı  | ner    |          | 80 deg. F       |
| <u> 5 111</u> | ojece | rigini                | Sample                      | 1000     | nogioti.                                         | <u> </u>   |                | Diminig. The extense.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Field        |        |          | Groundwater     |
| Depth         |       | Depth                 | Blows                       |          | Recovery                                         | 1          |                | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analytical   | depth  | Well     | and Other       |
| (ft.)         | No.   | (ft.)                 | per 6"                      | "N"      | (ft.)                                            |            |                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Readings     | bgs    | Details  | Observations    |
|               |       | 0-0.5                 |                             |          |                                                  | 0-0.5':    | Concrete.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          |                 |
|               | 1     | 0.5-4.5               |                             |          | 3.6                                              | 0.5'-3.8   | ': SAND, med   | dium grained; some fine sand;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0 ppm      |        | l i      |                 |
|               |       |                       |                             |          |                                                  | little coa | arse sand; tra | ce fine gravel; tan/buff, dry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0 ppm      |        |          |                 |
|               |       |                       |                             |          |                                                  | 3 8'-6 5   | · SAND med     | dium to coarse grained; little fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |        |          | ŀ               |
| 5             | 2     | 4.5-8.5               |                             |          | 3.8                                              |            |                | el; tan/buff, moist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0 ppm      |        |          |                 |
|               |       |                       |                             |          |                                                  | 1          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0 ppm      |        |          |                 |
|               |       |                       |                             |          |                                                  |            |                | edium to coarse grained; little sand; tan with iron oxidation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0 ppm      |        |          |                 |
|               |       |                       |                             |          |                                                  | moist.     | ver, a dec mie | sand, an mar non oxidation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |        |          |                 |
|               | 3     | 8.5-12.5              |                             |          | 4                                                | 10.5'-12   | 2.5': SAND, m  | nedium to fine grained; little fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0 ppm      |        |          |                 |
| 10            |       | 0.0 11.0              |                             |          |                                                  |            |                | sand; tan/buff, wet at 11.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0 ppm      |        |          | ,               |
|               |       |                       |                             |          |                                                  | 1          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***          |        |          | _               |
|               |       |                       |                             |          |                                                  | 12.5':     | End of Boring  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |        |          | <u> </u>        |
|               |       |                       |                             |          |                                                  | 1          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |        |          | 11.2            |
|               |       |                       |                             | Н        |                                                  | 1          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          | 14.12           |
| 15            |       |                       |                             | <u> </u> |                                                  | 1          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          |                 |
| 15            |       |                       |                             | ┰        | <del>                                     </del> | 1          | *              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        | l        |                 |
|               |       |                       |                             | ┼─       |                                                  | 1          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          | 1               |
|               |       |                       |                             | ╁        |                                                  | 1          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          |                 |
|               |       | _                     |                             | ╁╌       | <del></del>                                      | 1          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          |                 |
| 20            |       |                       |                             | ┼        |                                                  |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i            |        |          |                 |
| 20            |       |                       |                             | ┝        |                                                  | -          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          | l               |
|               |       |                       |                             | $\vdash$ |                                                  | 1          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          |                 |
|               |       |                       |                             | -        | <del> </del>                                     | -          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          | l I             |
|               |       |                       |                             | ┼        |                                                  | +          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          | 1 1             |
| 25            |       |                       |                             | ├        | <del> </del>                                     | 1          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          | 1 1             |
| 25            |       |                       |                             | -        |                                                  | -          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        | 1        |                 |
|               |       |                       |                             |          |                                                  | 4          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        | 1        |                 |
|               |       |                       |                             | ₩        |                                                  | -          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          |                 |
|               |       |                       |                             | ╀        |                                                  | 4          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          |                 |
|               |       |                       |                             | ₩        |                                                  | 4          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | -      |          |                 |
| 30            |       |                       |                             | -        |                                                  | 4          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          |                 |
|               |       |                       |                             | ╀        |                                                  | -          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        | 1        |                 |
|               |       |                       |                             | -        |                                                  | -          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          |                 |
|               |       |                       |                             | -        |                                                  | -          | •              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          | 2 1/4" Diameter |
|               |       |                       |                             | +        |                                                  | 12         | Dale           | Brawe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |        |          | borehole        |
| 35            |       |                       |                             |          |                                                  | /<         | 1000-          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Do al CIL II |        |          |                 |
| Sample        |       |                       |                             | т        | Chalby                                           | ubor       |                | NAMES OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY | Backfill Key | /      | 77777    | Mativa Eill     |
|               |       | t Spoon:<br>ock Core: |                             |          | Shelby 7 4' x 2" N                               |            | `ore           | _ Cem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ent          |        |          | Native Fill     |
| N = A         |       |                       |                             | -        | 7 7 4 1                                          | iacro-C    | .016           | San                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d            |        |          | Bentonite       |
|               |       |                       |                             |          |                                                  |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          |                 |

| En                 | vir      | onn       | nental        | S    | ubsurf                                           | ace       | Hole No.:       | SB-03                                                                |                      | Date   | started: | 6/29/05         |
|--------------------|----------|-----------|---------------|------|--------------------------------------------------|-----------|-----------------|----------------------------------------------------------------------|----------------------|--------|----------|-----------------|
|                    |          | s & Servi | ices, Inc.    |      | Log                                              |           | Sheet           | 1 of 1                                                               | _                    | Date F | inished: | 6/29/05         |
| Client:<br>Locatio |          | NYSDEC    | Cleaners Site |      | Method o                                         |           | -               | Piston assembly                                                      | Well I<br>Depth to S | Depth: |          | N/A<br>N/A      |
| Locatio            | ж.       |           | of Hempstead  |      | 1444                                             | JIE Sali  | ibiei wiai i    | ristori assembly                                                     | Depui to 3           | cieen. |          | IV/A            |
| NYSDE              | C Co     |           | o.: D004184   | Dril | ling Co.:                                        | SDS       |                 | Driller: J. Grant                                                    |                      |        |          | Weather:        |
| EPS Pr             |          |           | K0122         |      |                                                  |           |                 | D. Helper: A. Russo                                                  |                      |        |          | Overcast        |
| EPS Pr             | _        |           | Dale Braue    | Geo  | ologist:                                         | D. Bra    | ue              | Drill Rig: MC-5 & 70-lb Ele                                          | ectric Hamı          | mer    |          | 80 deg. F       |
|                    |          |           | Sample        |      |                                                  |           |                 |                                                                      | Field                |        |          | Groundwater     |
| Depth              |          | Depth     | Blows         |      | Recovery                                         | Ì         |                 | Sample                                                               | Analytical           | depth  | Well     | and Other       |
| (ft.)              | No.      | (ft.)     | per 6"        | "N"  | (ft.)                                            |           |                 | Description                                                          | Readings             | bgs    | Details  | Observations    |
|                    |          | 0-0.5     |               |      |                                                  | 0-0.5':   | Concrete.       |                                                                      |                      |        |          |                 |
| i .                | 1        | 0.5-4.5   |               |      | 3.6                                              | 0.5'-2.0  | ': SAND, me     | dium to coarse grained; little fine                                  | 0.0 ppm              |        | 1        |                 |
|                    |          |           |               |      |                                                  |           |                 | el; tan/buff, damp.                                                  |                      |        |          |                 |
| ł                  |          |           |               |      |                                                  |           |                 | dium to coarse grained; little fine<br>nd; tan/buff with slight iron | 0.0 ppm              |        | ŀ        |                 |
| 5                  | 2        | 4.5-8.5   |               |      | 3.8                                              |           | n, moist.       | ia, carybari with siight from                                        | 0.0 ppm              |        | 1        |                 |
|                    |          |           |               |      |                                                  | Ī         |                 |                                                                      | ''                   |        |          |                 |
|                    |          |           |               |      |                                                  |           |                 | dium to fine grained; little<br>ne gravel; tan/buff, moist.          | 0.0 ppm              |        |          |                 |
|                    |          |           |               |      |                                                  |           | •               | - , , , ,                                                            | 0.0 ppm              |        |          |                 |
|                    | 3        | 8.5-12.5  |               |      | 4                                                |           |                 | edium to fine grained; little<br>ne gravel; tan/buff, moist.         | 0.0 ppm              |        |          |                 |
| 10                 | ا ا      | 0.5 12.5  |               |      | <del></del>                                      | 4         |                 | nedium to fine grained; little                                       | 0.0 ppm              |        |          |                 |
| <del></del>        |          |           |               | ┼─   |                                                  |           |                 | ne gravel; brown with heavy                                          | 0.0 ppin             |        |          |                 |
|                    |          |           |               | ╁╾   |                                                  | mangar    | nese oxidation  | n, moist.                                                            |                      |        |          | ▼               |
| l                  |          |           |               | _    |                                                  | 11.4'-12  | 2.0': SAND, n   | nedium to fine grained; little                                       | 0.0.000              |        |          | =<br>11.4       |
|                    |          |           |               | +-   | -                                                | coarse    | sand; trace fir | ne gravel; tan/buff, wet at 11.4.                                    | 0.0 ppm              |        |          | 11.4            |
| 1                  |          |           |               | ╁    |                                                  | ·         |                 |                                                                      |                      |        |          |                 |
| 15                 | _        |           |               | ┿    |                                                  | 12.5':    | End of Boring   | •                                                                    |                      |        |          |                 |
| l                  |          |           |               | ┼─   | <del>                                     </del> | 1         |                 |                                                                      |                      | ł      |          |                 |
|                    |          |           |               | -    |                                                  | 1         |                 |                                                                      |                      |        |          | l l             |
|                    |          |           |               | ┼    |                                                  | 1         |                 |                                                                      |                      |        | 1        |                 |
|                    | <u> </u> |           |               | ┿-   |                                                  | ł         |                 |                                                                      | Ì                    | ĺ      |          |                 |
| 20                 |          |           |               | +    |                                                  | -         |                 |                                                                      |                      |        | i .      |                 |
| 1                  |          |           |               | ╄    |                                                  | [         |                 |                                                                      |                      | ł      |          |                 |
|                    |          |           |               | _    |                                                  | _         |                 |                                                                      | [                    |        |          | l               |
| ŀ                  |          |           |               | -    |                                                  | _         |                 |                                                                      |                      |        |          |                 |
|                    |          |           |               | _    |                                                  | -         |                 |                                                                      |                      |        |          | ]               |
| 25                 |          |           |               | _    |                                                  | _         |                 |                                                                      |                      |        |          |                 |
|                    |          |           |               |      |                                                  | _         |                 |                                                                      |                      |        | ]        |                 |
|                    |          |           |               |      |                                                  |           |                 |                                                                      |                      |        |          |                 |
|                    |          |           |               |      |                                                  |           |                 |                                                                      |                      |        |          |                 |
|                    |          |           |               |      |                                                  |           |                 |                                                                      |                      |        |          |                 |
| 30                 |          |           |               |      |                                                  |           |                 |                                                                      |                      |        |          |                 |
|                    |          |           |               |      |                                                  | ]         |                 |                                                                      |                      |        | l        |                 |
| ŀ                  |          |           |               |      |                                                  |           |                 |                                                                      |                      |        | ı        |                 |
| ı                  |          |           |               |      |                                                  | ]         | $\wedge$        |                                                                      |                      |        |          | 2 1/4" Diameter |
| l                  |          |           |               |      |                                                  | $1 \odot$ | 1/21            | Brave                                                                |                      |        |          | borehole        |
| 35                 |          |           |               |      |                                                  |           | Nac             | 4 name                                                               |                      |        | 1        |                 |
| Sampl              | e Tyr    | oes:      | ·             |      |                                                  |           |                 | Well                                                                 | Backfill Key         | /      |          |                 |
|                    |          | t Spoon:  |               | _T=  | Shelby T                                         | ube:      |                 | Ceme                                                                 |                      |        |          | Native Fill     |
|                    |          | ck Core:  |               |      | 4' x 2" N                                        |           | ore             |                                                                      |                      |        | 800000   | 522<br>588      |
| N = A              | STM      | D1586     |               |      |                                                  |           |                 | Sand                                                                 | d                    |        |          | Bentonite       |
|                    |          |           |               |      |                                                  |           |                 |                                                                      |                      |        |          |                 |

#### APPENDIX F

SVE/AS PERFORMANCE TEST REPORTS AND RESULTS

#### SVE PERFORMANCE TEST REPORT



Geoscience Services Division
7280 Caswell Street, N. Syracuse, NY 13212 • Phone (315) 476-4410 • Fax (315) 458-0526

September 22, 2003

Mr. Frank DeVita **Dvirka and Bartilucci**330 Crossways Park Dr.

Woodbury, NY 11797-2015

| SUBMITTED                                                                                                                                                                                                                                                                  |                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| APPROVED                                                                                                                                                                                                                                                                   |                               |
| APPROVED AS NOTED                                                                                                                                                                                                                                                          |                               |
| REVISED AND RESUBMITTED                                                                                                                                                                                                                                                    |                               |
| DISAPPROVED                                                                                                                                                                                                                                                                |                               |
| THIS MATERIAL HAS BEEN CHECKED GENERAL ARRANGEMENT AND COMPLIA WITH SPECIFICATION AND CONTR DRAWINGS. APPROVAL OF THIS MATERISHALL NOT RELIEVE THE CONTACTOR THE RESPONSBILITY FOR DIMENSIONAL OTHER ERRORS AND OMMISSIONS. OR GUARANTIES REQUIRED BY THE CONTR DOCUMENTS. | ACT<br>RIAL<br>OF<br>OR<br>OF |
| ENVIRONMENTAL PRODUCTS & SERVICES, INC.                                                                                                                                                                                                                                    |                               |
| BY P D Brace DATE 11-26 C                                                                                                                                                                                                                                                  | 3                             |

Project Name:

NYSDEC - Franklin Cleaners Site

Contract Number:

D004184

Contractor's Name:

Environmental Products & Services, Inc.

Report Number:

One (of one)

Reporting Period Dates:

August 24 to September 9, 2003

Date of Report:

September 22, 2003

Name of Report:

SOIL VAPOR EXTRACTION

PERFORMANCE TEST REPORT - REVISED

Dear Mr. DeVita:

Environmental Products and Services, Inc. (EPS) is pleased to provide the following Soil Vapor Extraction Performance Test Report. This report is being submitted to document progress during the Soil Vapor Extraction Performance Test.

- SVE Performance Test Start Date: August 24, 2003
- SVE Performance Test End Date: September 8, 2003 (reflects 16-day run time)

In accordance with Section 00007(4.2)(H) of the Contract Documents, the following information is provided.

- 1. Field reports are provided as recorded on the SVE System Program Monitoring Form, copies attached. These include data reflecting:
  - Prior to Start-Up (date): August 24, 2003 @ 0510 hrs (background data).
  - Field reports for August 24 through September 8, 2003.
- 2. Water was not collected in the vapor/liquid separator during the SVE Performance Test.
- 3. Total Run time (hours) for the SVE vacuum blower for each 24-hour period and cumulative run time:

| Day | Date              | Daily     | Cumulative  |
|-----|-------------------|-----------|-------------|
| Day | Date              | Run Hours | Run Hours   |
|     | Mfg. Test Time    | 14.1      | 14.1        |
| 1   | 8/24/03 (6:00 20) | 18        | 32.1        |
| 2   | 8/25/03           | 24        | 56.1        |
| 3   | 8/26/03           | 24        | 80.1        |
| 4   | 8/27/03           | 24        | 104.1       |
| 5   | 8/28/03           | 24        | 128.1       |
| 6   | 8/29/03           | 24        | 152.1       |
| 7   | 8/30/03           | 24        | 176.1       |
| 8   | 8/31/03           | 24.       | 200.1       |
| 9   | 9/01/03           | 24        | 224.1       |
| 10  | 9/02/03           | 21.5      | 245.6       |
| 11  | 9/03/03           | 17.5      | 263.1       |
| 12  | 9/04/03           | 24        | 287.1       |
| 13  | 9/05/03           | 24        | 311.1       |
| 14  | 9/06/03           | 24        | 335.1       |
| 15  | 9/07/03           | 24        | 359.1       |
| 16  | 9/08/03 (6 so am) | 246       | 383.1 365 / |

| Total down-time, if any, for the SVE System during the SVE Performance Test period: |
|-------------------------------------------------------------------------------------|
| None                                                                                |
| X 9 hours (September 2-3, 2003). See attached SVE System Down-Time Form.            |

5. Concentrations of each volatile organic compound detected in the vapor phase samples collected from August 24 through September 8, 2003 are provided in Table 1, attached.

6. The hourly average, daily and total cumulative flow in standard cubic feet extracted from each SVE well (SVE-1 and SVE-2) and discharged to each carbon adsorption vessel (CV-1 Inlet and CV-1 Outlet) are as follows:

| Day | Date           | SVE-1<br>(SCFM) | Cumu-<br>lative (cf) | SVE-2<br>(SCFM) | Cumu-<br>lative (cf) | CV-1<br>Inlet<br>(SCFM) | Cumu-<br>lative (cf) | CV-1<br>Outlet<br>(SCFM) | Cumu-<br>lative (cf) |
|-----|----------------|-----------------|----------------------|-----------------|----------------------|-------------------------|----------------------|--------------------------|----------------------|
| 1   | 8/24/03        | 50              | 54,000               | 50              | 54,000               | 80                      | 86,400               | 75                       | 81,000               |
| 2   | 8/25/03        | 50              | 126,000              | 50              | 126,000              | 110                     | 158,400              | 97                       | 139,680              |
| 3   | 8/26/03        | 60              | 212,400              | 60              | 212,400              | 100                     | 302,400              | 110                      | 298,080              |
| 4   | 8/27/03        | 60              | 298,800              | 60              | 298,800              | 100                     | 446,400              | 115                      | 463,680              |
| 5   | 8/28/03        | 60              | 385,200              | 60              | 385,200              | 100                     | 590,400              | 115                      | 629,280              |
| 6   | 8/29/03        | 50              | 457,200              | 50              | 457,200              | 80                      | 705,600              | 90                       | 758,880              |
| 7   | 8/30/03        | 50              | 529,200              | 50              | 529,200              | 80                      | 820,800              | 90                       | 888,480              |
| 8   | 8/31/03        | 45              | 594,000              | 45              | 594,000              | 75                      | 928,800              | 85                       | 1,010,880            |
| 9   | 9/01/03        | 45              | 658,800              | 45              | 658,800              | 75                      | 1,036,800            | 85                       | 1,133,280            |
| 10  | 9/02/03        | 45              | 716,850              | 45              | 716,850              | 75                      | 1,133,550            | 90                       | 1,249,380            |
| 11  | 9/03/03        | 45              | 764,100              | 75              | 795,600              | 100                     | 1,238,550            | 100                      | 1,354,380            |
| 12  | 9/04/03        | 35              | 814,500              | 70              | 896,400              | 85                      | 1,360,950            | 95                       | 1,491,180            |
| 13  | 9/05/03        | 35              | 864,900              | 80              | 1,011,600            | 90                      | 1,490,550            | 103                      | 1,639,500            |
| 14  | 9/06/03        | 35              | 915,300              | 85              | 1,134,000            | . 85                    | 1,612,950            | 90                       | 1,769,100            |
| 15  | 9/07/03        | 30              | 958,500              | 80              | 1,249,200            | 90                      | 1,742,550            | 100                      | 1,913,100            |
| 16  | 9/08/03        | 30              | 1,001,700            | 85              | 1,371,600            | 90                      | 1,872,150            | 100                      | 2,057,100            |
|     | Hourly Average |                 | 2,614.7<br>SCFH      | ,               | 3,850.3<br>SCFH      |                         | 4,886.8<br>SCFH      |                          | 5,369.6 -<br>SCFH    |

\*hourly average = cumulative volume last date divided by total run time in hours from start-up (August 24, 2003)

- 7. Estimated daily and total cumulative pounds of each individual VOC and total VOCs extracted from each well (SVE-1 and SVE-2) and discharged to each carbon adsorption vessel (CV-1 Inlet and CV-1 Outlet) are indicated in the following tables.
  - Tetrachloroethene was detected in the vapor samples collected from soil vapor extraction wells SVE-1 and SVE-2 and carbon vessels CV-1 Inlet and CV-1 Outlet.
  - Trichloroethene was detected in vapor sample collected from soil vapor extraction well SVE-2 and in the vapor sample collected from carbon vessel CV-1 Inlet during the SVE Performance Test.
  - Bromomethane was detected in the vapor sample collected from soil vapor extraction well SVE-2.
  - Methyl Ethyl Ketone (MEK) was detected in the vapor samples collected from carbon vessel CV-1 Inlet and CV-1 Outlet.

Because vapor samples were collected twice per day during the SVE Performance Test period, the calculations were derived using a daily average of the VOC concentrations detected.

0004

**T**5

16

9/07/03

9/08/03

0.00320

0.00398

0.01433

0.01460

0:18987

0.20447

The estimated daily and total cumulative pounds of **Tetrachloroethene** extracted from the soil vapor extraction wells and discharged to each carbon vessel during the SVE Performance I see table value PCE does not match Test are as follows:

Cabreport 1100 711 CV-1 Cumu-CV-1 Cumu-Cumu-Cumu-SVE-1 Day Date SVE-2 lative lative Inlet lative Outlet lative (lbs of VOC) (lbs of VOC) (lbs of VOC) (bs of VOC) (lbs of VOC) (lbs of VOC) (lbs of VOC) (lbs of VOC) 0.11917X 0.00741 0.00914 0.00893 0.00893 Ţ 8/24/03 0.00761 0.00761 0.00741 0.01156 8/25/03 0.00523 🗸 0.02070 0.00965 0.01859 0.01284 0.00580 x 0.01321 o 3,625 0.01<del>001</del> x 3 0.02194 0.02859 8/26/03 0.00607 🏑 0.01891 0.00873 0.01285 0.03355 0,01204 4 8/27/03 0.00691 0.02582 0.00717 / 0.02912 0.01258 0.04614 0.04063 0.05701 8/28/03 0.00699 🗸 0.03280 0.00760 🗸 0.03672 0.01559 0.06172 0.01638 🗸 000554 0.07144 6 8/29/03 0.03853 0.00591 **V** 0.04263 0.01645 0.07817 0.01443 0.00573 0.00616 x 8/30/03 0.04469 0.00690 0.04953 0.01207 🗸 0:09024 0.01262 🗸 0:08406 8/31/03 0.00248 🗶 0.04717 0.00641 🗸 0.05594 0.01048 0.10072 0.01180 0:09586 0.00689 × 0.06283 0.00824 🗸 0.10896 0.00876 0:10461 9/01/03 0.00492 🗸 0.05209 0.00782 10 <del>9/02/03</del>  $0.00631 \, \chi$ 0.05840 0.07065 0.01102 0.71998 0.01403 0.118640.01266 x 0.01505 00063 0.13264 0.13369 9/03/03 0.00447 x 0.06287 0.03077 V 0.10142 1,203u8 9/04/03 0.10991 0.01258 0.01493 x 0.14862 12 0.00397 x 0.06684 0.00850 V 0.14522 0.01577 x 0.01113 x 13 0.00397 0.07080 0.00874 🗸 0.11866 0.01112 0:15634 0:16440 9/05/03 0.01234 🗴 14 0:17554 9/06/03 0.00393 🗸 0.07474 0.00982 🗸 0.12848 0:16868

> The estimated daily and total cumulative pounds of Trichloroethene extracted from soil vapor extraction well SVE-2 and discharged to carbon vessel CV-1 Inlet during the SVE Performance Test are as follows:

0.13778

0.15065

0.01286

0.012<del>09 x</del>

1298

0.18154

0.19363

0.00930 ✓

0.01287 V

| Day | Date    | SVE-2        | Cumu-<br>lative | CV-1<br>Inlet | Cumu-<br>lative |
|-----|---------|--------------|-----------------|---------------|-----------------|
|     |         | (lbs of VOC) | (lbs of VOC)    | (lbs of VOC)  | (lbs of VOC)    |
| - 1 | 8/24/03 | 0.00461      | 0.00461         | 0.00470       | 0.00470         |

0.07793

0.08191

The estimated daily and total cumulative pounds of Bromomethane extracted from soil vapor extraction well SVE-2 during the SVE Performance Test is as follows:

| Day | Date    | SVE-2        | Cumu-<br>lative |
|-----|---------|--------------|-----------------|
|     |         | (lbs of VOC) | (lbs of VOC)    |
| 1   | 8/24/03 | 0.00283      | 0.00283         |

and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o

The estimated daily and total cumulative pounds of Methyl Ethyl Ketone (MEK) discharged to carbon vessel CV-1 Inlet and CV-1 Outlet during the SVE Performance Test are as follows:

|   | Day | Date    | CV-1<br>Inlet | Cumu-<br>lative | CV-1<br>Outlet          | Cumu-<br>lative |
|---|-----|---------|---------------|-----------------|-------------------------|-----------------|
|   |     |         | (lbs of VOC)  | (lbs of VOC)    | (lbs of VOC)            | (lbs of VOC)    |
| Ì | 1   | 8/24/03 | 0.00367       | 0.00367         | 7 <del>0.002</del> 33 x | 0.00233         |

0.00311

The estimated daily and total cumulative pounds of total VOCs extracted from the soil vapor extraction wells and discharged to each carbon vessel during the SVE Performance Test are as follows:

| Day | Date    | SVE-1                | Cumu-<br>lative | SVE-2        | Cumu-<br>lative | CV-1<br>Inlet | Cumu-<br>lative       | CV-1<br>Outlet | Cumu-<br>lative |
|-----|---------|----------------------|-----------------|--------------|-----------------|---------------|-----------------------|----------------|-----------------|
|     |         | (lbs of VOC)         | (lbs of VOC)    | (lbs of VOC) | (lbs of VOC)    | (lbs of VOC)  | (lbs of VOC)          | (lbs of VOC)   | (lbs of VOC)    |
| 1   | 8/24/03 | 0.00761              | 0.00761         | 0.01485 ?    | 0.01485         | 0.01751       | 0: <del>0175</del> 1  | 0:01126        | 0.01126.        |
| 2   | 8/25/03 | 0.00523 y            | 0.01284         | 0.00580      | 0.02065         | 0.01156       | 0.02907               | 0.00965        | 0.02091         |
| 3   | 8/26/03 | 0.00607              | 0.01891         | 0.00873      | 0.02938         | 0.01285       | 0:04192               | 0.01001        | 0:03092         |
| 4   | 8/27/03 | 0.00691 <b>v</b>     | 0.02582         | 0.00717?     | 0.03655         | 0.01258       | 0 <del>.0545</del> 0. | 0.01204        | 0.04296         |
| 5   | 8/28/03 | 0.00699              | 0.03281         | 0.00760      | 0.04415         | 0.01559       | 0.07009               | 0.01638        | 0.05934         |
| 6   | 8/29/03 | 0 <del>.005</del> 73 | 0.03854         | 0.00591      | 0.05006         | 0.01645       | 0.08654               | 0.01443        | 0:07377         |
| 7   | 8/30/03 | 0.00616              | 0:04470         | 0.00690      | 0.05696         | 0.01207       | 0:09861               | 0.01262        | 0.08639         |
| 8   | 8/31/03 | 0.00248              | 0.04718         | 0.00641      | 0.06337         | 0.01048       | 0:10909               | 0.01180        | 0.09819         |
| 9   | 9/01/03 | 0.00492              | 0.05210         | 0.00689      | 0.07026         | 0.00824       | 0.11733               | 0.00876        | 0.10695         |
| 10  | 9/02/03 | 0.00631              | 0.05841         | 0.00782      | 0.07808         | 0.01102       | 0.12 <del>835</del>   | 0.01403        | 0.12098         |
| 11  | 9/03/03 | 0.00447              | 0.06288         | 0.03077      | 0.10885         | 0:01266       | 0:14101               | 0.01505        | 0:13603         |
| 12  | 9/04/03 | 0.00397              | 0:06685         | 0.00850      | 0.11735         | 0:01258       | 0.15359               | 0.01493        | 0.15096         |
| 13  | 9/05/03 | 0.00397              | 0.07082         | 0.00874      | 0.12609         | 0.01112       | 0:1 <del>647</del> 1  | 0.01577        | 0.16673         |
| 14  | 9/06/03 | 0.00393 <b>J</b>     | 0.07475         | 0.00982      | 0.13591         | 0:01234       | 0:17705               | 0.01115        | 0.17788         |
| 15  | 9/07/03 | 0.00320              | 0.07795         | 0.00930      | 0.14521         | 0.01286       | 0.18991               | 0.01433        | 0:19221         |
| 16  | 9/08/03 | 0.00398              | 0.08193         | 0.01287      | 0.15808         | 0.01209       | 0:20200               | 0.01460        | 0.20681         |

# 8. Number of hours each well was used during each 24-hour period and cumulative number of hours each well has been used:

| Day | Date           | SVE-1   | Cumulative | SVE-2   | Cumulative |
|-----|----------------|---------|------------|---------|------------|
|     |                | (hours) | (hours)    | (hours) | (hours)    |
|     | Mfg. Test Time | 14.1    | 14.1       | 14.1    | 14.1       |
| 1   | 8/24/03        | 18      | 32.1       | 18      | 32.1       |
| 2   | 8/25/03        | 24      | 56.1       | 24      | 56.1       |
| 3   | 8/26/03        | 24      | 80.1       | 24      | 80.1       |
| 4   | 8/27/03        | 24      | 104.1      | 24      | 104.1      |
| 5   | 8/28/03        | 24      | 128.1      | 24      | 128.1      |
| 6   | 8/29/03        | 24      | 152.1      | 24      | 152.1      |
| 7   | 8/30/03        | 24      | 176.1      | 24      | 176.1      |
| 8   | 8/31/03        | 24      | 200.1      | 24      | 200.1      |
| 9   | 9/01/03        | 24      | 224.1      | 24      | 224.1      |
| 10  | 9/02/03        | 21.5    | 245.6      | 21.5    | 245.6      |
| 11  | 9/03/03        | 17.5    | 263.1      | 17.5    | 263.1      |
| 12  | 9/04/03        | 24      | 287.1      | 24      | 287.1      |
| 13  | 9/05/03        | 24      | 311.1      | 24      | 311.1      |
| 14  | 9/06/03        | 24      | 335.1      | 24      | 335.1      |
| 15  | 9/07/03        | 24      | 359.1      | . 24    | 359.1      |
| 16  | 9/08/03        | 24      | 383.1      | 24      | 383.1      |

X SVE wells were on-line during the SVE Performance Test.

| The date and time that any SVE well was taken off-line or put back on-line are indicated |
|------------------------------------------------------------------------------------------|
| on the SVE Well Down Time Form, copy(ies) attached. (The adjusted flow rates, when       |
| necessary, for well(s) on-line are reported on the SVE Progress Monitoring Form          |
| copy(ies) attached).                                                                     |

- 9. X Waste was <u>not</u> generated during the SVE Performance Test.
  - Waste <u>was</u> generated during the SVE Performance Test. Quantities of all wastes generated during the period, storage and disposal locations are reported on the Straight bill of Lading/Non-Hazardous Waste Manifest, copy(ies) attached.
- 10. Analytical results of vapor samples collected two times per day during the SVE Performance Test (August 24 through August 30, 2003) are summarized in Table 1 (Summary of Vapor Analytical Results). Samples were collected from the following locations:
  - Soil vapor extraction wells (SVE-1, and SVE-2);
  - Soil vapor monitoring points (SVM-1, SVM-2, SVM-3, and SVM-4); and,
  - Carbon vessels (CV-1 Inlet, CV-1 Outlet, CV-2 Outlet)

If you have questions regarding this report, please do not hesitate to call our office at (315) 476-4410 or (800) 262-1012.

Very truly yours,

ENVIRONMENTAL PRODUCTS & SERVICES, INC.

R. Dale Braue, CEM, RHSP (Ext. 150)

Director of Geoscience Services

RDB/ms. 3120.K0122

Attachments: SVE Progress Monitoring Forms (August 24 through September 8, 2003)

Table 1 – Summary of Vapor Sample Analytical Results

Laboratory Analytical Reports (ELS; August 24 through September 8, 2003)



Geoscience Services Division
7280 Caswell Street, N. Syracuse, NY 13212 • Phone (315) 476-4410 • Fax (315) 458-0526

November 26, 2003

Mr. Frank DeVita **Dvirka and Bartilucci** 330 Crossways Park Dr. Woodbury, NY 11797-2015

| SUBMITTED                                                                                                                                                                                                                                                                 |                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| APPROVED                                                                                                                                                                                                                                                                  |                                |
| APPROVED AS NOTED                                                                                                                                                                                                                                                         |                                |
| REVISED AND RESUBMITTED                                                                                                                                                                                                                                                   |                                |
| DISAPPROVED                                                                                                                                                                                                                                                               |                                |
| THIS MATERIAL HAS BEEN CHECKED GENERAL ARRANGEMENT AND COMPLIA WITH SPECIFICATION AND CONTR DRAWINGS. APPROVAL OF THIS MATE SHALL NOT RELIEVE THE CONTACTOR THE RESPONSBILITY FOR DIMENSIONAL OTHER ERRORS AND OMMISSIONS, OF GUARANTIES REQUIRED BY THE CONTR DOCUMENTS. | NCE<br>ACT<br>RIAL<br>OF<br>OR |
| ENVIRONMENTAL PRODUCTS & SERVICES, INC.                                                                                                                                                                                                                                   |                                |
| BY PDBrane DATE 11-26 0                                                                                                                                                                                                                                                   | 3                              |

Project Name:

NYSDEC - Franklin Cleaners Site

Contract Number:

D004184

Subject:

**SVE Performance Test Report** 

Dear Mr. DeVita:

Environmental Products and Services, Inc. (EPS) is pleased to provide the following response to your comments regarding our submittal of the SVE Performance Test Report (Report) dated September 15, 2003. The item descriptions below correspond to the items presented to EPS in your letter.

#### **General Comments Section**

EPS acknowledges that the NYSDEC is currently examining the requirement for further testing as the air sparging system performance criterion specified was not satisfied concurrently with the SVE system performance criterion. EPS awaits further comments.

#### **Item 1: Field Reports**

4. The required scfm to acfm conversions have been recorded on the SVE monitoring forms and are included in the revised Report.

5. Section 00008 (4.2)(F) of the Standard Specifications refers to the AS system requirements (page X-113). This section indicates monitoring, that is conducted during field events, will include measuring and recording of specified parameters, including VOC concentrations (Paragraph 2) at each vapor monitoring probe. VOC concentrations during field monitoring events are obtained from PID readings that are recorded on the SVE monitoring form. Laboratory analytical results are available after vapor samples are subsequently collected and analyzed by the laboratory. Those results are summarized on Table 1 and the laboratory analytical results are included in the Report.

Section 00007(4.2)(D)(4) of the Standard Specifications refers to the SVE system requirements. This paragraph (page X-88), as above, refers to monitoring (field) events that include VOC concentrations collected at each vapor monitoring probe that are collected with a PID.

6. Section 00008(4.2)(F) refers to the AS Performance Test. Section 00007(4.2)(H)(6) refers to the reporting of the (VOC) flow in standard cubic feet (volume each day). The calculations of the (VOC) flow rate (parameter 4, lbs/hour) are derived from PID field readings and are to be calculated for each SVE Progress Monitoring Event. Those values have been calculated (based on 12-hour monitoring events during the SVE Performance Test) and have been added to the SVE Progress Monitoring Forms. The (VOC) flow rate values will be calculated for subsequent monitoring events and included on the monitoring forms.

#### Item 3: Total Run Time for SVE Blower

The hour meter reading of 364.3 hours does not reflect cumulative hours through the entire day of September 8, 2003 (the last day of the SVE Performance Test). Cumulative run time hours have been calculated based on whole days (to midnight of each day) and based on precise downtime data, when applicable. SVE system down-time was encountered on September 2-3, 2003, and the down-time form was corrected to 9 hours. Based on this down-time correction and manufacturer's system test time of 14.1 hours (meter reading at start-up at 06:00 hrs on August 24, 2003), the SVE blower run time has been adjusted to 383.1 hours through midnight of September 8, 2003.

In addition, the monitoring form has been updated to include the exact time the blower hour meter reading is collected to provide data to support/coincide with our calculations. The tables within the revised Report have been updated to reflect the corrected run time hours identified above.

#### Item 4: SVE System Down Time

The SVE system down time has been corrected to reflect 9 hours (September 2-3, 2003) based on recorded down time (form enclosed). Your response indicates an additional .8 hours (approximately 48 minutes) of down time that appears to be attributed to the time prior to the official startup of the SVE system. The system ran for approximately 2 minutes when background data was collected at 05:10 hours on August 24, 2003. The system was officially started at 06:00 hours on August 24, 2003, and run time has been calculated from that start time.

#### Item 4: Hourly, Daily and Cumulative Flow Discharged to each Carbon Vessel

3. Item 3 of the report (corresponding to Section 00007(4.2)(H)(3) of the Contract Documents) refers to the SVE blower run times. Item 3 of the revised Report has been corrected to include the manufacturer's test time.

Your comments refer to flow totals for each SVE well, which is actually item 6 of the revised Report (and corresponding Contract Document Section 00007(4.2)(H)(6). See item 6 (below) for this item.

- 4. Item 4 of the Report (and corresponding Contract Document section) actually refers to total down time of the system. Your comments refer to daily and cumulative flows, Section 00007(4.2)(H)(6), which is item 6 of the Report. See item 6 (below) for our response to this item.
- 6. The daily and cumulative flows for each SVE well have been corrected in the table of the Report to reflect the adjusted (actual) run times referenced above (383.1 hours). Furthermore, as requested, the daily and cumulative airflow discharged to each carbon adsorption vessel (CV-1 Inlet and CV-1 Outlet) has been added to the table in the revised Report.

# Item 5: Estimated Daily and Total Cumulative Pounds of each Individual VOC and Total VOC Extracted from each SVE Well

The estimated daily and total cumulative pounds of VOCs extracted from each SVE well indicated above is referred to in Section 00007(4.2)(H)(7) of the Contract Documents and item 7 of the Report. The table included in item 7 of the revised Report has been adjusted to reflect the daily average of VOCs detected during the SVE Performance Test.

The SVE Performance Test Report is hereby revised and resubmitted. If you have questions, please do not hesitate to call our office at (315) 476-4410 or (800) 262-1012.

Very truly yours,

ENVIRONMENTAL PRODUCTS & SERVICES, INC.

R. Dale Braue CEM, RHSP (Ext. 150)

Director of Geoscience Services.

RDB/ms

Buckground

# NYSDEC - Franklin Cleaners Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: 8/24/03                                        |                     | Ambient Temperature: 60.0°F |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                            |                                   |  |  |
|------------------------------------------------------|---------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------|-----------------------------------|--|--|
| Time: <u>05/0</u>                                    |                     | Barometric Pressure: 29.98  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                            |                                   |  |  |
| Technician: <u>John</u>                              |                     | (1) Performan               | Operating Period (circle one): ice Test (2) Initial  f each parameter!)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | (3) Routine                |                                   |  |  |
|                                                      |                     | Pressure/                   | Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rate           | Total VOC                  | Estimated                         |  |  |
| Monitoring/<br>Sampling Point                        | Temperature<br>(°F) | Vacuum<br>(in W.C.)         | (ACFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (SCFM)         | Concentration (ppm at STP) | Total VOC<br>Flow Rate<br>(lb/hr) |  |  |
| Vapor Extraction:Wells                               | 4                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                            |                                   |  |  |
| No. 1 (SVE-1)                                        |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                            |                                   |  |  |
| No. 2 (SVE-2)                                        |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                            |                                   |  |  |
| Vapor Monitoring Probess.                            |                     |                             | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                |                            |                                   |  |  |
| No. 1 (SVM-1)                                        | n/a                 |                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a            |                            | n/a                               |  |  |
| No. 2 (SVM-2)                                        | n/a                 |                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a            |                            | n/a                               |  |  |
| No. 3 (SVM-3)                                        | n/a                 |                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a            |                            | n/a                               |  |  |
| No. 4 (SVM-4)                                        | n/a                 |                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a            |                            | n/a                               |  |  |
| Primary@arbon Adsorption                             | ivessels.           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1152 B - 124               |                                   |  |  |
| Vessel No. 1 Inlet                                   |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                            |                                   |  |  |
| Vessel No. 1 Outlet                                  |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                            |                                   |  |  |
| Vessel No. 2 Outlet                                  |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                            |                                   |  |  |
| Vacuum Blower Suction                                |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | n/a                        | n/a                               |  |  |
| SVE Blower Run Time (he                              |                     | Current Reading             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | our Period                 |                                   |  |  |
| Back ground/<br>Sound Decibel Readings               | . 40                | 3                           | 43.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41,8           | 48.1                       |                                   |  |  |
| (four locations, as posted)                          |                     | 1                           | 2<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3              | 4                          |                                   |  |  |
| *Was a carbon adsorption vessel replace              |                     |                             | Ø)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E<br>Data:     | W                          |                                   |  |  |
|                                                      |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date:<br>Time: |                            |                                   |  |  |
| Note: A running total of mis taken off line. Use the |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                            |                                   |  |  |

Completed form to be included in each SVE System Progress Monitoring Report.

carbon adsorption vessel is replaced.

# Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date:     | 8/24/03                                | Dayl                | Ambient T                        | emperature             | e: <u>6</u> 0  | 1,8°F                                |                                   |
|-----------|----------------------------------------|---------------------|----------------------------------|------------------------|----------------|--------------------------------------|-----------------------------------|
| Time:     | 0600                                   |                     | Barometric                       | Pressure:              | 30             | 02                                   |                                   |
|           |                                        |                     |                                  | System Phase           | Operating Po   | eriod (circle one):                  |                                   |
| Technic   | cian: John                             | Perox: / Dale 8     | reve                             | 1) Performa            | nce Test       | (2) Initial                          | (3) Routine                       |
|           |                                        | (See instruction    | sheet for dat                    | a frequency o          | of each para   | meter!)                              |                                   |
|           |                                        | 1                   |                                  | Flow                   | Rate           |                                      | Estimated                         |
|           | onitoring/<br>pling Point              | Temperature<br>(°F) | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)                 | (SCFM)         | Total VOC Concentration (ppm at STP) | Total VOC<br>Flow Rate<br>(lb/hr) |
| Vapor Ex  | traction Wells                         |                     |                                  |                        |                |                                      |                                   |
| No.       | 1 (SVE-1)                              | 80°F                | 6.0                              | 36.87                  | 50             | 146                                  | 0.05449                           |
| No.       | 2 (SVE-2)                              | 82 °F               | 4,4                              | 40.11                  | 50             | 557                                  | 0,207.88                          |
| VaporiMo  | mildring Probest                       |                     |                                  |                        |                |                                      |                                   |
| No.       | 1 (SVM-1)                              | n/a                 | 1.25                             | n/a                    | n/a            | 12.2                                 | n/ai                              |
| No.       | 2 (SVM-2)                              | n/a                 | 0.57                             | n/a-                   | n/a            | 16.3                                 | n/a                               |
| No.       | 3 (SVM-3)                              | n/a                 | 15                               | n/a                    | n/a            | 492                                  | n/a                               |
| No.       | 4 (SVM-4)                              | n/a                 | •25                              | n/a                    | n/a            | 478                                  | n/a                               |
| Primary C | arben Adsorptio                        | nVesselst           |                                  |                        |                |                                      |                                   |
| Vess      | el No. 1 Inlet                         | 910F                | <del>91°4</del> 8                | 54.89                  | 80             | 336                                  | 0.20064                           |
| Vesse     | l No. 1 Outlet                         | 84 °F               | 84ª Z                            | 69.06                  | 80             | 0.0                                  | 0                                 |
| Vesse     | No. 2 Outlet                           | 82 °F               | 82°F 0                           | 78.17                  | 75             | 0.0                                  | 0                                 |
| Vacuum E  | Blower Suction                         | 81°F                | 15                               |                        | 95             | n/a                                  | n/a                               |
| SVE Blov  | wer Run Time (h                        |                     | 14.1<br>Current Readin           | g (Cumulative)         | 48,4           | nour Period 42.                      | 4                                 |
|           | ecibel Readings<br>eations, as posted) | s: <u>-70-</u>      | <del>7</del> -                   | <del>77. 2.</del><br>5 | 81.2<br>E      | 87-1<br>4<br>W                       | <u> </u>                          |
| *Was a c  | arbon adsorptio                        | on vessel replaced  | d?:                              | NO                     |                |                                      |                                   |
| refla     | ests mag                               | ir. System          |                                  | YES:                   | Date:<br>Time: |                                      |                                   |
| 4         | and the same                           | 2                   |                                  |                        |                |                                      |                                   |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

## Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: <u>8/24/03</u>                                                             | Day 1               | Ambient To                       | emperature           | : <u>78</u> .   | o °F                                       |                                                |  |  |  |
|----------------------------------------------------------------------------------|---------------------|----------------------------------|----------------------|-----------------|--------------------------------------------|------------------------------------------------|--|--|--|
| Time: <u>1800</u>                                                                |                     | Barometric                       | : Pressure:          | 29.             | 95                                         |                                                |  |  |  |
| Technician: John                                                                 |                     | Frave                            | (1) Performar        | nce Test        | riod (circle one):<br>(2) Initial          | (3) Routine                                    |  |  |  |
| (See instruction sheet for data frequency of each parameter!)  Flow Rate         |                     |                                  |                      |                 |                                            |                                                |  |  |  |
| Monitoring/<br>Sampling Point                                                    | Temperature<br>(°F) | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)               | (SCFM)          | Total VOC<br>Concentration<br>(ppm at STP) | Estimated<br>Total VOC<br>Flow Rate<br>(lb/hr) |  |  |  |
| Vapor Extraction Wells                                                           |                     |                                  |                      |                 |                                            |                                                |  |  |  |
| No. 1 (SVE-1)                                                                    | 80°F                | 5.7                              | 31.42                | 50              | 58.1                                       | 0.02168                                        |  |  |  |
| No. 2 (SVE-2)                                                                    | 82°F                | 4.3                              | 40.32                | 50              | 409                                        | 0.15264                                        |  |  |  |
| VapordMonitoring/Probes                                                          |                     |                                  |                      |                 |                                            |                                                |  |  |  |
| No. 1 (SVM-1)                                                                    | n/a                 | 1,3                              | n/a                  | n/a             | 6.4                                        | n/a                                            |  |  |  |
| No. 2 (SVM-2)                                                                    | n/a                 | .55                              | n/a                  | n/a             | 0.0                                        | n/a                                            |  |  |  |
| No. 3 (SVM-3)                                                                    | n/a                 | 20,45                            | n/a                  | n/a             | 61.1                                       | n/a                                            |  |  |  |
| No. 4 (SVM-4)                                                                    | n/a                 | .125                             | n/a                  | n/a             | 182                                        | n/a                                            |  |  |  |
| Primary Carbon Adsorptio                                                         | iNessels#17         |                                  |                      |                 |                                            |                                                |  |  |  |
| Vessel No. 1 Inlet                                                               | 86 °F               | 7.0                              | 5690                 | 80              | 3 <i>8</i> 3                               | 0.22870                                        |  |  |  |
| Vessel No. 1 Outlet                                                              | 85 °F               | 2.0                              | 19.19                | 75              | 0.0                                        | 0                                              |  |  |  |
| Vessel No. 2 Outlet                                                              | 830F                | 0.0                              | 78.32                | 75              | 0.0                                        | 0                                              |  |  |  |
| Vacuum Blower Suction                                                            | 82°F                | 15                               |                      | 95              | n/a                                        | n/a                                            |  |  |  |
| SVE Blower Run Time (hours):  26.1  Current Reading (Cumulative)  24-hour Period |                     |                                  |                      |                 |                                            |                                                |  |  |  |
| Sound Decibel Readings (four locations, as posted) *Was a carbon adsorption      |                     | 1<br>/                           | 96.1<br>2<br>5<br>NO | 8/.1<br>3<br>E* | 78.9<br>4<br>w                             |                                                |  |  |  |
|                                                                                  |                     |                                  |                      | Date:<br>Time:  |                                            |                                                |  |  |  |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

# Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: <u>8/25/03</u>                                          | Dayz                  | Ambient T              | emperatur      | e: <u>6</u>   | 7.2                        |                                   |  |  |  |
|---------------------------------------------------------------|-----------------------|------------------------|----------------|---------------|----------------------------|-----------------------------------|--|--|--|
| Time: <u>0530</u>                                             | ··                    | Barometric             | c Pressure     | : 29          | 3,97                       |                                   |  |  |  |
|                                                               |                       |                        | a , n,         | 10 " 5        | eriod (circle one):        |                                   |  |  |  |
| Technician: <u>Joh</u>                                        | n Kecor, / Wil        | e stave                | (1) Performa   | nce Test      | (2) Initial                | (3) Routine                       |  |  |  |
| (See instruction sheet for data frequency of each parameter!) |                       |                        |                |               |                            |                                   |  |  |  |
|                                                               |                       | Pressure/              | Flow           | Rate          | Total VOC                  | Estimated                         |  |  |  |
| Monitoring/<br>Sampling Point                                 | Temperature<br>(°F)   | Vacuum<br>(in W.C.)    | (ACFM)         | (SCFM)        | Concentration (ppm at STP) | Total VOC<br>Flow Rate<br>(lb/hr) |  |  |  |
| Vapor Extraction Wells :                                      |                       |                        |                |               |                            |                                   |  |  |  |
| No. 1 (SVE-1)                                                 | 78°F                  | 5.65                   | 37.37          | 59            | 17.7                       | 0.00727                           |  |  |  |
| No. 2 (SVE-2)                                                 | 80°F                  | 4.4                    | 39.96          | 50            | 376                        | 0.14033                           |  |  |  |
| Vapor Monitoring Probes                                       |                       |                        |                |               | 14068                      |                                   |  |  |  |
| No. 1 (SVM-1)                                                 | n/a                   | 1.05                   | n/a            | n/a           | 0.0                        | n/à                               |  |  |  |
| No. 2 (SVM-2)                                                 | n/a                   | -A-05.62               | n/æ            | n/a           | 0.0                        | n/a                               |  |  |  |
| No. 3 (SVM-3)                                                 | n/a                   | • 285                  | n/a            | n/a           | 2/6                        | n/a                               |  |  |  |
| No. 4 (SVM-4)                                                 | n/a                   | .13                    | n/a            | n/a           | 209                        | n/a                               |  |  |  |
| Primary Garben Adsorptic                                      | in Vessels <b>i</b> k |                        |                |               | t de la lac                |                                   |  |  |  |
| Vessel No. 1 Inlet                                            | 85 oF                 | 7                      | 53,25          | 75            | 340                        | 0.19034                           |  |  |  |
| Vessel No. 1 Outlet                                           | 83 °F                 | 2                      | 68.94          | 75            | 0.0                        | 0                                 |  |  |  |
| Vessel No. 2 Outlet                                           | 80 OF                 | 0                      | 77.88          | 75            | 0.0                        | 0                                 |  |  |  |
| Vacuum Blower Suction                                         | 80°F                  | 15                     |                | 90            | n/a                        | n/a                               |  |  |  |
| SVE Blower Run Time (I                                        | nours):               | 3 8<br>Current Reading | g (Cumulative) | 11. 9<br>24-h | our Period                 |                                   |  |  |  |
| Sound Decibel Reading                                         |                       | <u> </u>               | 72.1           | 79.8<br>E     | 79.                        | 4                                 |  |  |  |
| (four locations, as posted)                                   | ^                     | )                      | 2<br>5         | $\vec{E}^3$   | 4                          |                                   |  |  |  |
| Was a carbon adsorption                                       | on vessel replaced    | <b>!</b> ?:            | NO             |               | W                          |                                   |  |  |  |
| ·                                                             | -                     |                        | YES:           | Date:         |                            |                                   |  |  |  |
|                                                               |                       |                        |                | Time:         |                            |                                   |  |  |  |
|                                                               |                       |                        |                |               |                            |                                   |  |  |  |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

# Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: 8/25/03                                                                                                        | Day 2                                                         | Ambient T           | emperature                 | e:             | 2.7°F                                  | <u> </u>                          |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------|----------------------------|----------------|----------------------------------------|-----------------------------------|--|--|--|--|
| Time:                                                                                                                |                                                               | Barometric          | : Pressure:                | z              | 9,84                                   |                                   |  |  |  |  |
| Technician: <u>John</u>                                                                                              | n Pecori/Del                                                  | e Brave             | System Phase (1) Performan | Operating Pe   | eriod (circle one): (2) Initial        | (3) Routine                       |  |  |  |  |
|                                                                                                                      | (See instruction sheet for data frequency of each parameter!) |                     |                            |                |                                        |                                   |  |  |  |  |
|                                                                                                                      |                                                               | Pressure/           | Flow                       | Rate           | Total VOC                              | Estimated                         |  |  |  |  |
| Monitoring/<br>Sampling Point                                                                                        | Temperature<br>(°F)                                           | Vacuum<br>(in W.C.) | (ACFM)                     | (SCFM)         | Total VOC Concentration (ppm at STP)   | Total VOC<br>Flow Rate<br>(lb/hr) |  |  |  |  |
| Vapor Extraction Wells                                                                                               |                                                               |                     |                            |                |                                        |                                   |  |  |  |  |
| No. 1 (SVE-1)                                                                                                        | 80°F                                                          | 7.7                 | 40.89                      | 60             | 64.6                                   | 0.02893                           |  |  |  |  |
| No. 2 (SVE-2)                                                                                                        | 84°F                                                          | 6.0                 | 44.58                      | 60             | 418                                    | 0.18720                           |  |  |  |  |
| Vapor Monitoring Probes                                                                                              | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -                       |                     |                            |                | 10.57                                  | **                                |  |  |  |  |
| No. 1 (SVM-1)                                                                                                        | n/a                                                           | 1.49                | n/a                        | n/a            | 0.0                                    | n/a                               |  |  |  |  |
| No. 2 (SVM-2)                                                                                                        | n/a                                                           | •8                  | n/a-                       | n/a            | 0.0                                    | n/a                               |  |  |  |  |
| No. 3 (SVM-3)                                                                                                        | n/a                                                           | .5.                 | n/a                        | n/a            | 82.4                                   | n/a                               |  |  |  |  |
| No. 4 (SVM-4)                                                                                                        | n/a                                                           | 022                 | n/a                        | n/a            | 8.6                                    | n/a                               |  |  |  |  |
| Primary Garboo Adsomble                                                                                              | iftVessels#                                                   |                     |                            |                |                                        |                                   |  |  |  |  |
| Vessel No. 1 Inlet                                                                                                   | 98°F                                                          | 10                  | 70.25                      | 110            | 476                                    | 0.39082                           |  |  |  |  |
| Vessel No. 1 Outlet                                                                                                  | 94                                                            | 4                   | 81.24                      | 97             | 116                                    | 0.08399                           |  |  |  |  |
| Vessel No. 2 Outlet                                                                                                  | 92                                                            | 0                   | 102.97                     | 90             | 32.3                                   | 0.02170                           |  |  |  |  |
| Vacuum Blower Suction                                                                                                | 82 °F                                                         | 24                  |                            | 120            | n/a                                    | n/a                               |  |  |  |  |
| SVE Blower Run Time (h<br>LPM feelend af /<br>Lacresed af /<br>Sound Decibel Readings<br>(four locations, as posted) | 10/0<br>s: <u>52.</u><br>A                                    | ]                   | -                          | 49,6<br>3<br>E | . 9<br>our Period<br>67. 3<br>4<br>Va/ | ·                                 |  |  |  |  |
| *Was a carbon adsorptio                                                                                              | ni vessei iepiacei                                            | .41.                |                            | Date:          |                                        |                                   |  |  |  |  |
|                                                                                                                      |                                                               |                     |                            | Time:          |                                        |                                   |  |  |  |  |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

#### Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: 8 /26/0                                                            | 3 Day 3             | Ambient T                                 | emperature                   | e: <u>68.</u>  | 1 °F                                       |                                                |
|--------------------------------------------------------------------------|---------------------|-------------------------------------------|------------------------------|----------------|--------------------------------------------|------------------------------------------------|
| Time: <u>0600</u>                                                        |                     | Barometri                                 | : Pressure:                  | 29.            | 30                                         |                                                |
| Technician: <u>John</u>                                                  | Recovi / Dal        | e Brave                                   | System Phase                 | Operating Pe   | eriod (circle one): (2) Initial            | (3) Routine                                    |
|                                                                          | (See instruction    | sheet for dat                             |                              |                | meter!)                                    |                                                |
| Monitoring/<br>Sampling Point                                            | Temperature<br>(°F) | Pressure/<br>Vacuum<br>(in W.C.)          | (ACFM)                       | Rate<br>(SCFM) | Total VOC<br>Concentration<br>(ppm at STP) | Estimated<br>Total VOC<br>Flow Rate<br>(lb/hr) |
| VaponExtraction Wells                                                    | 10.4                | in the second second second               |                              |                |                                            |                                                |
| No. 1 (SVE-1)                                                            | 78                  | 8.2                                       | 39.85                        | 60             | 253                                        | 0,11331                                        |
| No. 2 (SVE-2)                                                            | 80                  | 6.0                                       | 40.56                        | 55             | 353                                        | 0.14492                                        |
| Vapor Monitoring Probes                                                  |                     |                                           |                              |                |                                            |                                                |
| No. 1 (SVM-1)                                                            | n/a                 | 1.25                                      | n/a                          | n/a            | 0-0                                        | n/a_                                           |
| No. 2 (SVM-2)                                                            | n/a                 | ,77                                       | n/a_                         | n/a            | 00                                         | n/a                                            |
| No. 3 (SVM-3)                                                            | n/a                 | •7                                        | n/a                          | n/a            | 0-0                                        | n/a                                            |
| No. 4 (SVM-4)                                                            | n/a                 | •19                                       | n/a                          | n/a            | 0.0                                        | n/a                                            |
| Primary Garbon Adsorptio                                                 | mWesselsh .         |                                           |                              |                |                                            | en e                                           |
| Vessel No. 1 Inlet                                                       | 88                  | 11                                        | 63.29                        | 105            | +05 195                                    | 0.15283                                        |
| Vessel No. 1 Outlet                                                      | 85                  | 4                                         | 78.27                        | 95             | 0.0                                        | 0                                              |
| Vessel No. 2 Outlet                                                      | 8/                  | 0                                         | 93.63                        | 90             | 40 00                                      | 0                                              |
| Vacuum Blower Suction                                                    | # 179               | 24                                        | _                            | 125            | n/a                                        | n/a                                            |
| SVE Blower Run Time (                                                    | hours):             | 6/-5<br>Current Readin                    | g (Cumulative)               | 11. (<br>24-h  | our Period                                 |                                                |
| Sound Decibel Reading (four locations, as posted) *Was a carbon adsorpti | *                   | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 90.1<br>2<br>5<br>NO<br>YES: |                | 4                                          |                                                |
|                                                                          |                     |                                           |                              | Time:          |                                            |                                                |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

#### Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: 8/26/03                                      | Day 3               | Ambient T                        | emperature                 | e: <u>77</u>   | 9 °F                                       |                                                |
|----------------------------------------------------|---------------------|----------------------------------|----------------------------|----------------|--------------------------------------------|------------------------------------------------|
| Time:                                              |                     | Barometric                       |                            |                | 9.78                                       |                                                |
| Technician: John                                   | Pecori /Dale        | Brave                            | System Phase (1) Performan |                | eriod (circle one):<br>(2) Initial         | (3) Routine                                    |
|                                                    | (See instruction    | sheet for dat                    | a frequency o              | of each para   | meter!)                                    |                                                |
| Monitoring/<br>Sampling Point                      | Temperature<br>(°F) | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)                     | Rate<br>(SCFM) | Total VOC<br>Concentration<br>(ppm at STP) | Estimated<br>Total VOC<br>Flow Rate<br>(lb/hr) |
| Vaper Extraction Wells :                           |                     |                                  |                            | 1              |                                            | Appendix a                                     |
| No. 1 (SVE-1)                                      | 81                  | 8.2                              | 40.07                      | 8260           | 22.1                                       | 0.00990                                        |
| No. 2 (SVE-2)                                      | 82                  | 5.7                              | 45.06                      | 60             | 502                                        | 0-13525                                        |
| Vapor Monitoring Probes                            | At State            |                                  | Mark Commission            |                |                                            |                                                |
| No. 1 (SVM-1)                                      | n/a                 | 1.55                             | n/a                        | n/a            | 0.7                                        | n/a                                            |
| No. 2 (SVM-2)                                      | n/a                 | <b>080</b>                       | n/a.                       | n/a            | . 9                                        | n/a                                            |
| No. 3 (SVM-3)                                      | n/a                 | .47                              | n/a                        | n/a            | 13.8                                       | n/a                                            |
| No. 4 (SVM-4)                                      | n/a                 | 120                              | n/a                        | n/a            | 5.5                                        | n/a                                            |
| Primary Carbon Adsorption                          | Westeld             |                                  |                            |                |                                            |                                                |
| Vessel No. 1 Inlet                                 | 94                  | 14                               | 54.57                      | 100            | 107                                        | 0.07987                                        |
| Vessel No. 1 Outlet                                | 90                  | 6                                | 82.62                      | 1/0            | 0,0                                        | 0                                              |
| Vessel No. 2 Outlet                                | 89                  | 0                                | 116.13                     | 115            | 0.0                                        | 0                                              |
| Vacuum Blower Suction                              | 84                  | 31                               |                            | 120            | n/a                                        | n/a                                            |
| SVE Blower Run Time (h                             | ours):              | 73. 3<br>Current Readin          | g (Cumulative)             | 11. <b>B</b>   | our Period                                 |                                                |
| Sound Docibal Boodings                             | . 76.               | 9 .                              | 101                        | 81.8           | 83.6                                       |                                                |
| Sound Decibel Readings (four locations, as posted) |                     | 1                                | 2 5                        |                | 4                                          | *****                                          |
|                                                    | N                   |                                  | _                          | 3<br>E         | W                                          |                                                |
| *Was a carbon adso <mark>rptio</mark>              | n vessel replaced   | i?:                              | MO)                        |                |                                            |                                                |
|                                                    |                     |                                  |                            | Date:          |                                            |                                                |
|                                                    |                     |                                  |                            | ime.           |                                            |                                                |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

#### Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: 8/27/03                 | Day 4               | Ambient T                        | emperature     | e: <u>73</u> . | 2                                    |                                       |
|-------------------------------|---------------------|----------------------------------|----------------|----------------|--------------------------------------|---------------------------------------|
| Time: 0600                    |                     | Barometric                       | : Pressure:    | 29.            | 78                                   |                                       |
|                               |                     |                                  | System Phase   | Operating Pe   | eriod (circle one):                  |                                       |
| Technician: John              | Pecari/ Dula S      | Yave(                            | (1) Performar  | nce Test       | (2) Initial                          | (3) Routine                           |
|                               | (See instruction    | sheet for dat                    | a frequency o  | of each para   | meterl)                              |                                       |
|                               | (000 11150 001011   |                                  | Flow           |                |                                      | Estimated                             |
| Monitoring/<br>Sampling Point | Temperature<br>(°F) | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)         | (SCFM)         | Total VOC Concentration (ppm at STP) | Total VOC<br>Flow Rate<br>(lb/hr)     |
| Vapora Extraction Wells or    |                     |                                  |                |                |                                      |                                       |
| No. 1 (SVE-1)                 | 76°                 | 8.2                              | 46.32          | 70             | 18.2                                 | 0.00951                               |
| No. 2 (SVE-2)                 | 80°                 | 5,7                              | 52.38          | 55             | 2-7/                                 | 0.11125                               |
| VapordMonitoring/Probes.      |                     |                                  |                |                |                                      | • • • • • • • • • • • • • • • • • • • |
| No. 1 (SVM-1)                 | n/a                 | 1.3                              | n/a            | n/a            | •8                                   | n/a                                   |
| No. 2 (SVM-2)                 | n/a                 | 08                               | n/a            | n/a            | •9                                   | n/a                                   |
| No. 3 (SVM-3)                 | n/a                 | .50                              | n/a            | n/a            | 11.0                                 | n/a                                   |
| No. 4 (SVM-4)                 | n/a                 | .25                              | n/a            | n/a            | 6.5                                  | n/a                                   |
| Primary Cardon Assorptio      | (Wessells4 )        |                                  |                |                | (作) 有数:                              |                                       |
| Vessel No. 1 Inlet            | 900                 | 140                              | 54.17          | 100            | 180                                  | 0.13436                               |
| Vessel No. 1 Outlet           | 85 0                | Ь                                | 82.62          | ///            | 0.0                                  | 0                                     |
| Vessel No. 2 Outlet           | 82°                 | 0                                | 119.87         | 115            | 0.0                                  | 0                                     |
| Vacuum Blower Suction         | 800                 | 23                               |                | 120            | n/a                                  | n/a                                   |
| SVE Blower Run Time (h        | ours):              | B5.5                             | g (Cumulative) | 12.2           | our Period                           |                                       |
| Sound Decibel Readings        | : 5/                |                                  | 62.8           | 45.7           |                                      | <i>i</i>                              |
| (four locations, as posted)   |                     | 1                                | <b>2</b><br>5  | 3              | 4                                    |                                       |
| *Was a carbon adsorption      | ·                   | <b>√</b><br>d?:                  | NO             | _              | 14                                   |                                       |
|                               |                     |                                  |                |                |                                      |                                       |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

#### Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: 8/27/03               | Day 4                   | Ambient T           | emperatur    | e: <u>84</u> , | 84.5                       |                                   |  |  |
|-----------------------------|-------------------------|---------------------|--------------|----------------|----------------------------|-----------------------------------|--|--|
| Time:                       | <u></u>                 | Barometric          | e Pressure   | : <u>Z9</u>    | .79                        |                                   |  |  |
| ≺.                          | ,                       |                     | System Phase | / Operating Pe | eriod (circle one):        |                                   |  |  |
| Technician: <u>John</u>     | Recogn                  | _                   | (1) Performa | nce Test       | (2) Initial                | (3) Routine                       |  |  |
|                             |                         |                     |              |                |                            |                                   |  |  |
|                             | (See instruction        | sheet for data      |              | of each para   | meter!)                    | <del></del>                       |  |  |
| Monitoring/                 | Temperature             | Pressure/           | 1104         | Kate           | Total VOC                  | Estimated                         |  |  |
| Sampling Point              | (°F)                    | Vacuum<br>(in W.C.) | (ACFM)       | (SCFM)         | Concentration (ppm at STP) | Total VOC<br>Flow Rate<br>(lb/hr) |  |  |
| Vapor Extraction Wells of   | (50 m)                  |                     |              |                |                            | 78. W                             |  |  |
| No. 1 (SVE-1)               | 840                     | 7.7                 | 41.19        | 60             | 16.1                       | 0.00721                           |  |  |
| No. 2 (SVE-2)               | 860                     | 519                 | 44.96        | 60             | 263                        | 0.11778                           |  |  |
| Vapor Monitoring Probes     | A. M.                   |                     |              |                |                            |                                   |  |  |
| No. 1 (SVM-1)               | n/a                     | 1,3                 | n/a          | n/a            | 3.1                        | n/a                               |  |  |
| No. 2 (SVM-2)               | n/a                     | 081                 | n/a          | n/a            | 0.0                        | n/a                               |  |  |
| No. 3 (SVM-3)               | n/a                     | .53                 | n/a          | n/a            | 7.5                        | n/a                               |  |  |
| No. 4 (SVM-4)               | n/a                     | 012                 | n/a          | n/a            | 5.9                        | n/a                               |  |  |
| Paggati Cambon Adsomilia    | nWessels#44.514         |                     |              |                |                            |                                   |  |  |
| Vessel No. 1 Inlet          | 100                     | 11                  | 61.60        | 100            | 243                        | 0118138                           |  |  |
| Vessel No. 1 Outlet         | 96°                     | þ                   | 87.32        | 115            | 15.2                       | 0.01305                           |  |  |
| Vessel No. 2 Outlet         | 95                      | 0                   | 122.74       | 115            | 0.0                        |                                   |  |  |
| Vacuum Blower Suction       | 86°                     | 25                  |              | 120            | n/a                        | n/a                               |  |  |
| SVE Blower Run Time (h      | 97. O<br>Current Readin | g (Cumulative)      | 24-1         | nour Period    |                            |                                   |  |  |
| Sound Decibel Readings      | 53.2                    | 2                   | 57.4         | 44.9           | 53.8                       | ,                                 |  |  |
| (four locations, as posted) |                         | <del></del>         | 2 5          | 3<br>E         | 4                          |                                   |  |  |
| *\\/aa a carban adaa4ia     | /\<br>alman laggay m    | /<br>42.            |              | E.             | W                          |                                   |  |  |
| *Was a carbon adsorption    | n vesserrepiace         | uf:                 | NO<br>YES:   | Date:          |                            |                                   |  |  |
|                             |                         |                     | 169:         | Time:          |                            |                                   |  |  |
|                             |                         |                     |              |                |                            |                                   |  |  |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

#### Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: <u>8/28/03</u>                                                                                                                                                                                                                   | Day 5                                                                                                         | Ambient T                        | emperature    | e:68.            | 9                                       |                                   |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------|---------------|------------------|-----------------------------------------|-----------------------------------|--|--|
| Time: 0600                                                                                                                                                                                                                             |                                                                                                               | Barometrio                       | : Pressure:   | 29.              | 97                                      |                                   |  |  |
| <b>T</b> 1                                                                                                                                                                                                                             | System Phase / Operating Period (circle one):                                                                 |                                  |               |                  |                                         |                                   |  |  |
| Technician: John                                                                                                                                                                                                                       | Kecori                                                                                                        | <                                | (1) Performar | nce Test         | (2) Initial                             | (3) Routine                       |  |  |
|                                                                                                                                                                                                                                        | (See instruction                                                                                              | sheet for data                   | a frequency o | of each para     | meter!)                                 |                                   |  |  |
|                                                                                                                                                                                                                                        |                                                                                                               |                                  | Flow Rate     |                  |                                         | Estimated                         |  |  |
| Monitoring/<br>Sampling Point                                                                                                                                                                                                          | Temperature<br>(°F)                                                                                           | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)        | (SCFM)           | Total VOC Concentration (ppm at STP)    | Total VOC<br>Flow Rate<br>(lb/hr) |  |  |
| Vapor Extraction Wells or                                                                                                                                                                                                              |                                                                                                               |                                  |               |                  |                                         |                                   |  |  |
| No. 1 (SVE-1)                                                                                                                                                                                                                          | 76                                                                                                            | 8.0                              | 40.05         | 60               |                                         | סררס ס.ס                          |  |  |
| No. 2 (SVE-2)                                                                                                                                                                                                                          | 80                                                                                                            | 6.0                              | 44,25         | 60               | 292                                     | 0.13077                           |  |  |
| Vapor Monitoring Probes-                                                                                                                                                                                                               | i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de |                                  |               |                  | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                   |  |  |
| No. 1 (SVM-1)                                                                                                                                                                                                                          | n/a                                                                                                           | 8.49                             | n/a           | n/a              | 0.0                                     | n/a                               |  |  |
| No. 2 (SVM-2)                                                                                                                                                                                                                          | n/a                                                                                                           | 074                              | n/a           | n/a              | .DQ                                     | n/a                               |  |  |
| No. 3 (SVM-3)                                                                                                                                                                                                                          | n/a                                                                                                           | •74<br>•50                       | n/a           | n/a              | 6.5                                     | n/a                               |  |  |
| No. 4 (SVM-4)                                                                                                                                                                                                                          | n/a                                                                                                           | 014                              | n/a           | n/a              | 3.4                                     | n/a                               |  |  |
| Primary Garbon Adsorptio                                                                                                                                                                                                               | itVessels#                                                                                                    |                                  |               |                  |                                         |                                   |  |  |
| Vessel No. 1 Inlet                                                                                                                                                                                                                     | 85                                                                                                            | 13                               | 55.62         | 100              | 255                                     | 0.19034                           |  |  |
| Vessel No. 1 Outlet                                                                                                                                                                                                                    | 83                                                                                                            | 6                                | 85.28         | 115              | 39.2                                    | 0,03365                           |  |  |
| Vessel No. 2 Outlet                                                                                                                                                                                                                    | Bo                                                                                                            | O                                | 119.42        | 115              | 0.0                                     | 0                                 |  |  |
| Vacuum Blower Suction                                                                                                                                                                                                                  | 79                                                                                                            | 24                               |               | 120              | n/a                                     | n/a                               |  |  |
| SVE Blower Run Time (hours):    108.8                                                                                                                                                                                                  |                                                                                                               |                                  |               |                  |                                         |                                   |  |  |
| Sound Decibel Readings (four locations, as posted)                                                                                                                                                                                     | : 50                                                                                                          | 0.6<br>1)                        | 54.8<br>3     | <u> 46.</u><br>3 | 58.<br>4<br>W                           | 6                                 |  |  |
| *Was a carbon adsorption vessel replaced?:                                                                                                                                                                                             |                                                                                                               |                                  |               |                  |                                         |                                   |  |  |
| Trub u burbon uuborpud                                                                                                                                                                                                                 | , vocos ropius                                                                                                |                                  | YES:          | Date:<br>Time:   |                                         |                                   |  |  |
| Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a |                                                                                                               |                                  |               |                  |                                         |                                   |  |  |

Completed form to be included in each SVE System Progress Monitoring Report.

carbon adsorption vessel is replaced.

# Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: <u>8/28/03</u>                                | Day 5               | Ambient T                        | emperature               | e: <u>79</u> .  | 3                                    |                                   |
|-----------------------------------------------------|---------------------|----------------------------------|--------------------------|-----------------|--------------------------------------|-----------------------------------|
| Time: <b>1800</b>                                   | <u>~_</u>           | Barometric                       | : Pressure:              | 30.             | . 03                                 |                                   |
| ~1                                                  | ~ ·                 |                                  | System Phase             | / Operating Pe  | eriod (circle one):                  | •                                 |
| Technician: 560                                     | n fecon             | (                                | (1) Performa             | nce Test        | (2) Initial                          | (3) Routine                       |
|                                                     | (See instruction    | sheet for dat                    | a frequency o            | of each para    | meter!)                              |                                   |
|                                                     |                     | Brookirol                        | Flow                     | Rate            | Total VOC                            | Estimated                         |
| Monitoring/<br>Sampling Point                       | Temperature<br>(°F) | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)                   | (SCFM)          | Total VOC Concentration (ppm at STP) | Total VOC<br>Flow Rate<br>(lb/hr) |
| Vapor Extraction Wells in                           |                     |                                  |                          |                 | 150000                               |                                   |
| No. 1 (SVE-1)                                       | 82                  | 7.9                              | 40.68                    | 60              | 16.7                                 | 0.00748                           |
| No. 2 (SVE-2)                                       | 85                  | 5.8                              | 45.09                    | 60              | 210                                  | 1.09405                           |
| Vapor Monitoring Probes                             |                     |                                  |                          |                 |                                      |                                   |
| No. 1 (SVM-1)                                       | n/a                 | 1.49                             | n/a                      | n/a             | 5.2                                  | n/a                               |
| No. 2 (SVM-2)                                       | n/a                 | . 95                             | n/a                      | n/a             | 0,0                                  | n/a                               |
| No. 3 (SVM-3)                                       | n/a                 | 052                              | n/a                      | n/a             | 2.8                                  | n/a                               |
| No. 4 (SVM-4)                                       | n/a                 | •20                              | n/a                      | n/a             | 0.0                                  | n/a                               |
| Pamary Carbon Adsorptio                             | pivesseis# := "     |                                  |                          |                 |                                      |                                   |
| Vessel No. 1 Inlet                                  | 95                  | 13                               | 56.64                    | 100             | 233                                  | 0.17392                           |
| Vessel No. 1 Outlet                                 | 93                  | b                                | 86.85                    | 15              | 57.2                                 | 0.04295                           |
| Vessel No. 2 Outlet                                 | St                  | 0                                | 121.63                   | 115             | 0.0                                  | 0                                 |
| Vacuum Blower Suction                               | 82                  | 24                               |                          | 120             | n/a                                  | n/a                               |
| SVE Blower Run Time (h                              | ours):              | Current Readin                   | -/21,1<br>g (Cumulative) |                 | our Period                           |                                   |
| Sound Decibel Readings                              |                     | .7                               | 57.4                     | 58-8            | <u> </u>                             | 9                                 |
| (four locations, as posted)                         |                     | ľ                                | 5                        | 3               | 4<br>\n/                             |                                   |
| *Was a carbon adsorption                            | n vessel replace    | d?:                              | NO                       | _               |                                      |                                   |
|                                                     |                     |                                  | YES:                     | Date:           |                                      |                                   |
| Note: A running total of r                          | to blower 5         | VE-1 50 S                        | cfun su                  | Time:<br>ビーフ 4Ś | scfm a                               | + 1905                            |
| •                                                   |                     |                                  |                          |                 |                                      |                                   |
| is taken off line. Use the carbon adsorption vessel | •                   | n vessel Data I                  | rorm. A new              | running total   | snan de started ea                   | on ume a                          |

#### Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: 8/29/03                                      | Day 6               | Ambient T               | emperature     | e:66           | 7.7                                  |                                   |
|----------------------------------------------------|---------------------|-------------------------|----------------|----------------|--------------------------------------|-----------------------------------|
| Time:0600                                          |                     | Barometric              | : Pressure:    | 30.            | 09                                   |                                   |
|                                                    | <u> </u>            |                         | System Phase   | Operating Pe   | eriod (circle one):                  |                                   |
| Technician: John                                   | Peron Pake          | Brave                   | (1) Performar  | nce Test       | (2) Initial                          | (3) Routine                       |
|                                                    | (See instruction    | sheet for dat           | a frequency o  | of each parai  | meter!)                              |                                   |
|                                                    |                     | Draggural               | Flow           | Rate           | Total VOC                            | Estimated                         |
| Monitoring/<br>Sampling Point                      | Temperature<br>(°F) | Vacuum<br>(in W.C.)     | (ACFM)         | (SCFM)         | Total VOC Concentration (ppm at STP) | Total VOC<br>Flow Rate<br>(lb/hr) |
| Vapor#Extraction Wellst /                          |                     |                         |                |                |                                      |                                   |
| No. 1 (SVE-1)                                      | 748                 | 5.9                     | 36.64          | 50             | 20.2                                 | 0,09442                           |
| No. 2 (SVE-2)                                      | 77                  | 4.6                     | 39.33          | 50             | 253                                  | 0.09442                           |
| Vapor Monitoring Probes,                           |                     |                         |                |                |                                      |                                   |
| No. 1 (SVM-1)                                      | n/a                 | 1.0                     | n/a            | n/a            | 2.3                                  | n/a                               |
| No. 2 (SVM-2)                                      | n/a                 | 059                     | n/a            | n/a            | 2.0                                  | n/a                               |
| No. 3 (SVM-3)                                      | n/a                 | .40                     | n/a            | n/a            | 13.1                                 | n/a                               |
| No. 4 (SVM-4)                                      | n/a                 | 005                     | n/a            | n/a            | 2,2                                  | n/a                               |
| Primary Carbon Adsorption                          | iNessels#           |                         |                |                | <b>4.6</b> 7                         |                                   |
| Vessel No. 1 Inlet                                 | 80°                 | 9                       | 57-53          | BD             | 238                                  | 0.14212                           |
| Vessel No. 1 Outlet                                | 76                  | Z                       | 81.66          | 90             | 27                                   | 0.01814                           |
| Vessel No. 2 Outlet                                | 75                  | b                       | 92.60          | 90             | 0.0                                  | 0                                 |
| Vacuum Blower Suction                              | 76                  | 16                      |                | 95             | n/a                                  | n/a                               |
| SVE Blower Run Time (h                             | ours):              | /38./<br>Current Readin | g (Cumulative) |                | 7.0<br>our Period                    |                                   |
| Sound Decibel Readings (four locations, as posted) | ~                   | 1                       | 61.7<br>2<br>5 | 47.9<br>E      | 60-10<br>4<br>W                      | <u>′</u>                          |
| *Was a carbon adsorp <b>tio</b>                    | ii vessei repiacet  | ur:                     |                | Date:<br>Time: |                                      |                                   |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

## Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date:                                      | 8/29/03                               | Day 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ambient T                        | emperature     | e:                    | 6.1                                        |                                                |
|--------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------|-----------------------|--------------------------------------------|------------------------------------------------|
| Time:                                      | 1800                                  | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Barometric                       | c Pressure:    | :                     | 96                                         |                                                |
|                                            |                                       | 70 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | System Phase   | /Operating Pe         | eriod (circle one):                        |                                                |
| Technic                                    | cian: John                            | Kecon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  | (1) Performa   | nce Test              | (2) Initial                                | (3) Routine                                    |
|                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                |                       |                                            |                                                |
|                                            |                                       | (See instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sheet for dat                    |                | of each parai<br>Rate | neter!)                                    |                                                |
|                                            | onitoring/<br>pling Point             | Temperature<br>(°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)         | (SCFM)                | Total VOC<br>Concentration<br>(ppm at STP) | Estimated<br>Total VOC<br>Flow Rate<br>(lb/hr) |
| VaporaEx                                   | Laction Wells                         | Agent to the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the cou | Marie Santa                      |                |                       |                                            |                                                |
| No.                                        | 1 (SVE-1)                             | 780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.9                              | 36.91          | 50%                   | 2.54 15.4                                  | 0.00575                                        |
| No.                                        | 2 (SVE-2)                             | 820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.4                              | 40.11          | 50                    | 254                                        | 0.09479                                        |
| Vapor <b>iy</b> o                          | nitoring Probes                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                |                       |                                            |                                                |
| No.                                        | 1 (SVM-1)                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.3                              | n/a            | n/a                   | <b>3</b> .3                                | n/ā                                            |
| No.                                        | 2 (SVM-2)                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .60                              | n/a            | n/a                   | HAR2.4                                     | n/a                                            |
| No.                                        | 3 (SVM-3)                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .38                              | n/a            | n/a                   | 0.9                                        | n/a                                            |
| No.                                        | 4 (SVM-4)                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 009                              | n/a            | n/a                   | 0                                          | n/a                                            |
| Primary 0                                  | arbon Adsorpub                        | ntvessels# -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                |                       |                                            |                                                |
| Vesse                                      | el No. 1 Inlet                        | 88 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В                                | 54,60          | 80                    | 1.0                                        | 0.0060                                         |
| Vesse                                      | No. 1 Outlet                          | 850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                | 83.03          | 90                    | 18.2                                       | 0.01223                                        |
| Vesse                                      | No. 2 Outlet                          | 840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                | 94.15          | 90                    | 208                                        | 0.13913                                        |
| Vacuum E                                   | Blower Suction                        | 813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                               |                | 95                    | n/a                                        | n/a                                            |
| SVE Blov                                   | ver Run Time (h                       | ours):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 145.7<br>Current Readin          | g (Cumulative) |                       | our Period                                 |                                                |
|                                            | ecibel Readings<br>ations, as posted) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>3</del>                     | 66.8<br>2<br>5 | 62.9<br>E             | 50.8<br>W                                  |                                                |
| *Was a carbon adsorption vessel replaced?: |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                |                       |                                            |                                                |
|                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | YES:           | Date:<br>Time:        |                                            |                                                |
|                                            |                                       | nass of VOCs and<br>Carbon Adsorption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                |                       | n carbon adsorptionshall be started ea     |                                                |

Completed form to be included in each SVE System Progress Monitoring Report.

carbon adsorption vessel is replaced.

#### Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: 8/30/03                    | Day 7                                     | Ambient T                                                                     | emperature     | e: <u>7</u>       | 1.1                                  |                                   |
|----------------------------------|-------------------------------------------|-------------------------------------------------------------------------------|----------------|-------------------|--------------------------------------|-----------------------------------|
| Time: <u>0600</u>                | ··                                        | Barometric                                                                    | Pressure:      | 29                | .95                                  |                                   |
| Technician: <u>John</u>          | n Pecor:                                  | System Phase / Operating Period (circle one (1) Performance Test) (2) Initial |                |                   | ,                                    | (3) Routine                       |
|                                  | (See instruction                          | sheet for dat                                                                 | a frequency o  | of each para      | meter!)                              |                                   |
|                                  |                                           | Pressure/                                                                     | Flow           | Rate              | Total VOC                            | Estimated                         |
| Monitoring/<br>Sampling Point    | Temperature<br>(°F)                       | Vacuum<br>(in W.C.)                                                           | (ACFM)         | (SCFM)            | Total VOC Concentration (ppm at STP) | Total VOC<br>Flow Rate<br>(lb/hr) |
| yapog <b>a x</b> irandion Wellst |                                           |                                                                               |                |                   |                                      | Ť                                 |
| No. 1 (SVE-1)                    | 79°                                       | 6.1                                                                           | 36.63          | 50                | 15.7                                 | 0.00586                           |
| No. 2 (SVE-2)                    | 81 °                                      | 4.2                                                                           | 40.46          | 50                | 188                                  | 0.07016                           |
| VapordMonitoring Protess         |                                           |                                                                               |                |                   |                                      |                                   |
| No. 1 (SVM-1)                    | n/a                                       | 1.1                                                                           | n/a            | n/a               | 4.8                                  | n/ā                               |
| No. 2 (SVM-2)                    | n/a                                       | ,60                                                                           | n/a            | n/a               | 0.0                                  | n/á                               |
| No. 3 (SVM-3)                    | n/a                                       | •34                                                                           | n/a            | n/a               | 1.7                                  | n/a                               |
| No. 4 (SVM-4)                    | n/a                                       | •09                                                                           | n/a            | n/a               | 0,0                                  | n/a                               |
| Primary Caroon Ausorptic         | jivestelsa:                               | 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                       |                | 42.7              |                                      |                                   |
| Vessel No. 1 Inlet               | 88                                        | 80                                                                            | 54,60          | 80                | 185                                  | D.11047                           |
| Vessel No. 1 Outlet              | 84                                        | 4                                                                             | 74.01          | 90                |                                      | 0.00658                           |
| Vessel No. 2 Outlet              | 85                                        | 0                                                                             | 94.33          | 90                | 0.0                                  | 0                                 |
| Vacuum Blower Suction            | Bou                                       | 16                                                                            |                | 95                | n/a                                  | n/a                               |
| SVE Blower Run Time (h           | ours):                                    | 158.2<br>Current Readin                                                       | g (Cumulative) | <u>72</u><br>24-h | our Period                           |                                   |
| Sound Decibel Readings           | . 51.                                     | В                                                                             | 53.9           | 45.5              | 54.7                                 | 7                                 |
| (four locations, as posted)      |                                           | 1                                                                             | 2 5            | 3                 | 4                                    |                                   |
|                                  | Was a carbon adsorption vessel replaced?: |                                                                               |                |                   |                                      |                                   |
|                                  |                                           |                                                                               | YES:           | Date:             |                                      |                                   |
|                                  |                                           |                                                                               |                |                   |                                      |                                   |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

#### Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: 8/30/03                                                                                                                                              | Dy 7                                                          | Ambient T                        | emperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e: <u>70</u> .      | 3                                    |                                   |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------|-----------------------------------|--|--|--|
| Time: <u>1800</u>                                                                                                                                          |                                                               | Barometric                       | : Pressure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30.0                | 23                                   |                                   |  |  |  |
| _                                                                                                                                                          |                                                               |                                  | System Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Operating Pe        | eriod (circle one):                  |                                   |  |  |  |
| Technician: Ծև                                                                                                                                             | n Pecani                                                      |                                  | (1) Performar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nce Test            | (2) Initial                          | (3) Routine                       |  |  |  |
|                                                                                                                                                            | (See instruction sheet for data frequency of each parameter!) |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                      |                                   |  |  |  |
|                                                                                                                                                            |                                                               | Dunganural                       | Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rate                | T-4-11/00                            | Estimated                         |  |  |  |
| Monitoring/<br>Sampling Point                                                                                                                              | Temperature<br>(°F)                                           | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (SCFM)              | Total VOC Concentration (ppm at STP) | Total VOC<br>Flow Rate<br>(lb/hr) |  |  |  |
| VaporExtraction Wells                                                                                                                                      |                                                               |                                  | Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sectio |                     | 21.46                                |                                   |  |  |  |
| No. 1 (SVE-1)                                                                                                                                              | 780                                                           | 5.8                              | 37.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                  | 6.4                                  | 0.00239                           |  |  |  |
| No. 2 (SVE-2)                                                                                                                                              | 81                                                            | 4.4                              | 40,04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                  | 153                                  | 0.06083                           |  |  |  |
| Vapor Monitoring Probes.                                                                                                                                   | +31                                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Transfer and                         |                                   |  |  |  |
| No. 1 (SVM-1)                                                                                                                                              | n/a                                                           | 1.1                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . n/a               | 0.0                                  | n/a                               |  |  |  |
| No. 2 (SVM-2)                                                                                                                                              | n/a                                                           | 008                              | n/a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a                 | 0,0                                  | n/a                               |  |  |  |
| No. 3 (SVM-3)                                                                                                                                              | n/a                                                           | -35                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                 | 0,0                                  | n/a                               |  |  |  |
| No. 4 (SVM-4)                                                                                                                                              | n/a                                                           | .15                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                 | 0.0                                  | n/a                               |  |  |  |
| Primairy Cartion Adsorptio                                                                                                                                 | r Vessels 👙 📆                                                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                      |                                   |  |  |  |
| Vessel No. 1 Inlet                                                                                                                                         | 84                                                            | 9                                | 51.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80                  | 171                                  | 0.10211                           |  |  |  |
| Vessel No. 1 Outlet                                                                                                                                        | 82                                                            | 4                                | 73.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90                  | 13.3                                 | 0.00893                           |  |  |  |
| Vessel No. 2 Outlet                                                                                                                                        | 80                                                            | 0                                | 93.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90                  | 0.0                                  | 0                                 |  |  |  |
| Vacuum Blower Suction                                                                                                                                      | 80                                                            | <i>/b</i>                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95                  | n/a                                  | n/a                               |  |  |  |
| SVE Blower Run Time (hours): 109.5 11.3  Current Reading (Cumulative) 24-hour Period                                                                       |                                                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                      |                                   |  |  |  |
| Sound Decibel Readings (four locations, as posted)                                                                                                         | : <u>75</u>                                                   | - <u>.3</u><br>1                 | 6/./                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.5<br>E           |                                      | 5                                 |  |  |  |
| Sound Decibel Readings: 75-3 6/./ 81.5 82.5 (four locations, as posted): 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                         |                                                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                      |                                   |  |  |  |
|                                                                                                                                                            |                                                               |                                  | YES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date:               |                                      |                                   |  |  |  |
|                                                                                                                                                            | Time:                                                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                      |                                   |  |  |  |
| 1855 total 50                                                                                                                                              | +m pediced                                                    | to 70 Sc                         | fm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | singed for a second |                                      |                                   |  |  |  |
| 1855 Hotel Scfm Reduced to 70 Scfm  Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it |                                                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                      |                                   |  |  |  |

is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a

Completed form to be included in each SVE System Progress Monitoring Report.

carbon adsorption vessel is replaced.

# Prestart CP Soil Vapor Extraction (SVE) System **Progress Monitoring Form**

| Date: 8/31/03                                         | Day g               | Ambient Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | emperatur    | e:           | 60-8                                       |                                   |
|-------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------------------------------------|-----------------------------------|
| Time: 0530                                            | <u> </u>            | Barometric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pressure     | :            | 30.25                                      |                                   |
|                                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | System Phase | /Operating P | eriod (circle one):                        | -                                 |
| Technician: <u>Soh</u>                                | n lecon             | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1) Performa  | nce Test     | (2) Initial                                | (3) Routine                       |
|                                                       | (See instruction    | sheet for data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | frequency    | of each para | meter!)                                    |                                   |
| · ·                                                   |                     | Draceural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flow         | Rate         | Total VOO                                  | Estimated                         |
| Monitoring/<br>Sampling Point                         | Temperature<br>(°F) | Pressure/<br>Vacuum<br>(in W.C.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ACFM)       | (SCFM)       | Total VOC<br>Concentration<br>(ppm at STP) | Total VOC<br>Flow Rate<br>(lb/hr) |
| VaporÆxtraction:Wells                                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                                            |                                   |
| No. 1 (SVE-1)                                         |                     | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |              |                                            |                                   |
| No. 2 (SVE-2)                                         |                     | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |              |                                            |                                   |
| Vapor Menitoring Probes                               |                     | Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contro |              |              |                                            |                                   |
| No. 1 (SVM-1)                                         | n/a                 | •80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a          | n/a          |                                            | n/a                               |
| No. 2 (SVM-2)                                         | n/a                 | 24.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/a          | n/a          |                                            | n/a                               |
| No. 3 (SVM-3)                                         | n/a                 | -27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a          | n/a          |                                            | n/a                               |
| No. 4 (SVM-4)                                         | n/a                 | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a          | n/a          |                                            | n/a                               |
| Primary Carbon Adsorptio                              | nivessels           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                                            |                                   |
| Vessel No. 1 Inlet                                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                                            |                                   |
| Vessel No. 1 Outlet                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                                            |                                   |
| Vessel No. 2 Outlet                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                                            |                                   |
| Vacuum Blower Suction                                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              | n/a                                        | n/a                               |
| SVE Blower Run Time (h                                |                     | Current Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Cumulative) | 24-1         | nour Period                                |                                   |
| Sound Decibel Readings<br>(four locations, as posted) |                     | 1 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2            | 3            |                                            |                                   |
|                                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                                            |                                   |
| *Was a carbon adsorption                              | en vessel replace   | d?:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NO           |              |                                            |                                   |
|                                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES:         |              |                                            |                                   |
|                                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                                            |                                   |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

#### Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: 8/3/1                                                                                    | 03        | Day 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ambient T                        | emperature      | e: <del>-66</del> | <del>-5</del> 74.8                   |                                   |
|------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------|-------------------|--------------------------------------|-----------------------------------|
| Time: <u>070</u>                                                                               |           | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Barometric                       |                 | .70               | .96                                  |                                   |
| Technician:                                                                                    | John      | Recori/Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | le Brave (                       | (1) Performan   | Operating Pe      | eriod (circle one):<br>(2) Initial   | (3) Routine                       |
|                                                                                                |           | (See instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sheet for data                   | a frequency o   | of each parai     | meter!)                              |                                   |
|                                                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dracoural                        | Flow            | Rate              | Total VOC                            | Estimated                         |
| Monitoring/<br>Sampling Poi                                                                    |           | Temperature<br>(°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)          | (SCFM)            | Total VOC Concentration (ppm at STP) | Total VOC<br>Flow Rate<br>(lb/hr) |
| VaporeExtraction W                                                                             | elis y    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                 | i i               |                                      |                                   |
| No. 1 (SVE-1)                                                                                  | )         | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.4                              | 35.43           | 45                | 16                                   | 0.00537                           |
| No. 2 (SVE-2)                                                                                  | )         | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.7                              | 35,15           | 45                | 198                                  | 0.06651                           |
| Vapor Moniterine R                                                                             | robes     | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                                  |                 |                   |                                      |                                   |
| No. 1 (SVM-1                                                                                   | )         | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180                              | n/a             | n/a               | 0.0                                  | n/aj                              |
| No. 2 (SVM-2                                                                                   | )         | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -36                              | n/a             | n/a               | 2.0                                  | n/a                               |
| No. 3 (SVM-3                                                                                   | )         | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27                               | n/a             | n/a               | 4.7                                  | n/a                               |
| No. 4 (SVM-4                                                                                   | )         | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .07                              | n/a             | n/a               | 0                                    | n/a                               |
| Primary Carbon Ad                                                                              | sorpilar  | ivesseis 😜                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                 |                   |                                      |                                   |
| Vessel No. 1 In                                                                                | let       | 80°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75 8                             | 50.44           | 75                | 137                                  | 0.07669                           |
| Vessel No. 1 Ou                                                                                | ıtlet     | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                | 77.27           | 85                | 24                                   | 0.01523                           |
| Vessel No. 2 Ou                                                                                | itlet     | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                | 87.94           | 85                | 0.0                                  | 0                                 |
| Vacuum Blower Su                                                                               | ction     | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /0                               |                 | 70                | n/a                                  | n/a                               |
| SVE Blower Run Time (hours):    182.7   13.2     Current Reading (Cumulative)   24-hour Period |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                 |                   |                                      |                                   |
| Sound Decibel Rea                                                                              | adings    | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.7                              | 86.1            | 82.1              | 77.                                  | .6                                |
| (four locations, as p                                                                          | _         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                | 2<br>5          | <u>3</u>          | 4                                    |                                   |
| *Was a carbon adsorption vessel replaced?:  YES: Date:                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                 |                   |                                      |                                   |
|                                                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                 | Time:             |                                      |                                   |
| Note: A running to                                                                             | otal of m | nass of VOCs and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | volume of air s                  | shall be mainta | ained for each    | n carbon adsorptio                   | n vessel until it                 |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

# Soil Vapor Extraction (SVE) System Progress Monitoring Form

|                                                                                | -                   | •                                |                           |                |                                            |                                   |
|--------------------------------------------------------------------------------|---------------------|----------------------------------|---------------------------|----------------|--------------------------------------------|-----------------------------------|
| Date: 6/3//03                                                                  | Day 8               | Ambient To                       | emperature                | e:             | 0.1                                        |                                   |
| Time:                                                                          |                     | Barometrio                       | Pressure                  | :3             | 0.22                                       |                                   |
| Technician:                                                                    | n Pewri             |                                  | System Phase (1) Performa | <del></del>    | eriod (circle one):<br>(2) Initial         | (3) Routine                       |
|                                                                                | (See instruction    | sheet for data                   | a frequency o             | of each para   | meter!)                                    |                                   |
|                                                                                |                     |                                  | Flow                      | Rate           | -                                          | Estimated                         |
| Monitoring/<br>Sampling Point                                                  | Temperature<br>(°F) | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)                    | (SCFM)         | Total VOC<br>Concentration<br>(ppm at STP) | Total VOC<br>Flow Rate<br>(lb/hr) |
| Vapor Extraction Wells 🔻                                                       |                     |                                  |                           |                |                                            | 3.5                               |
| No. 1 (SVE-1)                                                                  | 79                  | 4.1                              | 36.47                     | 45             | 6.4                                        | 0,00215                           |
| No. 2 (SVE-2)                                                                  | 81                  | 3.2_                             | 38.45                     | 45             | 184                                        | 0. D6180                          |
| Vapor Monitoring Probes.                                                       |                     |                                  |                           | <b>B</b> ORNAL | 2 (1277)                                   |                                   |
| No. 1 (SVM-1)                                                                  | n/a                 | ,70                              | n/a                       | n/a            | 0.0                                        | n/a                               |
| No. 2 (SVM-2)                                                                  | n/a                 | -45                              | n/a                       | n/a            | 0.0                                        | n/a                               |
| No. 3 (SVM-3)                                                                  | n/a                 | •27                              | n/a                       | n/a            | 0.0                                        | n/a                               |
| No. 4 (SVM-4)                                                                  | n/a                 | .06                              | n/a                       | n/a            | 0-0                                        | n/a                               |
| Primary Garbon Adsorption                                                      | nevessels#          |                                  |                           |                |                                            |                                   |
| Vessel No. 1 Inlet                                                             | 82                  | B                                | 50.62                     | 75             | 121                                        | 0.06774                           |
| Vessel No. 1 Outlet                                                            | 80                  | 3                                | 73.31                     | 85             | 25,2                                       | 0.01599                           |
| Vessel No. 2 Outlet                                                            | 80                  | 0                                | 88.27                     | 85             | 0.0                                        | Ö                                 |
| Vacuum Blower Suction                                                          | 80                  | 10                               |                           | 70             | n/a                                        | n/a                               |
| SVE Blower Run Time (h                                                         | •                   | /93,3<br>Current Readin          |                           |                | our Period                                 |                                   |
| Sound Decibel Readings                                                         | s:                  | 5.8                              | 81.5                      | 85.            | $\frac{9}{4}$ $\frac{82}{4}$               | <u> </u>                          |
| (four locations, as posted)                                                    | ,                   | 1                                | 2<br>5_                   | 3<br>E         | 4                                          |                                   |
| *Was a carbon adsorption                                                       | on vessel replace   | d?:                              | NO<br>YES:                | Date:<br>Time: |                                            |                                   |
| Note: A running total of it is taken off line. Use the carbon adsorption vesse | Carbon Adsorptio    |                                  |                           |                | -                                          |                                   |

# Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: $\frac{9}{103}$                                                          | Day 9               | Ambient T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | emperature            | e: <u>6</u> 2   | 2.4                                        |                                                |
|--------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|--------------------------------------------|------------------------------------------------|
| Time: <u>0600</u>                                                              |                     | Barometric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pressure:             | 30              | . 19                                       |                                                |
| Technician: <u>Joh</u>                                                         | Cecori/Dala         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1) Performa          | nce Test        | eriod (circle one):  (2) Initial  meter!)  | (3) Routine                                    |
| Monitoring/<br>Sampling Point                                                  | Temperature<br>(°F) | Pressure/<br>Vacuum<br>(in W.C.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flow<br>(ACFM)        |                 | Total VOC<br>Concentration<br>(ppm at STP) | Estimated<br>Total VOC<br>Flow Rate<br>(lb/hr) |
| VaporÆxtraction:Wells+                                                         | I and the second    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                 |                                            |                                                |
| No. 1 (SVE-1)                                                                  | 72                  | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35,43                 | 45              | 8.5                                        | 0.00286                                        |
| No. 2 (SVE-2)                                                                  | 79                  | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37.95                 | 45              | 157                                        | 0.05273                                        |
| Vapor Monitoring Probes                                                        | <b>3</b>            | in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |                       |                 |                                            |                                                |
| No. 1 (SVM-1)                                                                  | n/a                 | .60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                   | n/a             | D- <b>O</b>                                | n/a                                            |
| No. 2 (SVM-2)                                                                  | n/a                 | .50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                   | n/a             | 3.5                                        | n/a                                            |
| No. 3 (SVM-3)                                                                  | n/a                 | <b>€</b> 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n/a                   | n/a             | 3. B                                       | n/a                                            |
| No. 4 (SVM-4)                                                                  | n/a                 | •07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                   | n/a             | 0.0                                        | n/a                                            |
| Primary@arbon Adsorptio                                                        | nvesselst;          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                 |                                            |                                                |
| Vessel No. 1 Inlet                                                             | 42075               | . 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49.97                 | 75              | 132                                        | 0.07390                                        |
| Vessel No. 1 Outlet                                                            | 740                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68.62                 | 85              | 27.5                                       | 0.01745                                        |
| Vessel No. 2 Outlet                                                            | 72                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 25              | 0.0                                        |                                                |
| Vacuum Blower Suction                                                          | 72                  | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 70              | n/a                                        | n/a                                            |
| SVE Blower Run Time (h                                                         | ours):              | 206 · (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g (Cumulative)        | 12<br>24-h      | our Period                                 |                                                |
| Sound Decibel Readings  (four locations, as posted):  *Was a carbon adsorption |                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73. (<br>2<br>5<br>NO | 80. (<br>3<br>€ |                                            | 6                                              |
| Note: A running total of r                                                     | ·                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES:                  | Time:           |                                            |                                                |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

# Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: 9/1/03                                                               | Day 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ambient T                        | emperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e: <u>63</u>  | 5.6                                        |                                   |  |  |  |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------|-----------------------------------|--|--|--|
| Time: _/800                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Barometrio                       | : Pressure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30,0          | 8                                          |                                   |  |  |  |
|                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | System Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /Operating Pe | eriod (circle one):                        |                                   |  |  |  |
| Technician: John                                                           | n Kerori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  | (1) Performa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nce Test      | (2) Initial                                | (3) Routine                       |  |  |  |
| (See instruction sheet for data frequency of each parameter!)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                            |                                   |  |  |  |
|                                                                            | Toce moducation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Silection date                   | Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | neterij                                    | Estimated                         |  |  |  |
| Monitoring/<br>Sampling Point                                              | Temperature<br>(°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (SCFM)        | Total VOC<br>Concentration<br>(ppm at STP) | Total VOC<br>Flow Rate<br>(lb/hr) |  |  |  |
| Vapor Extraction Wells                                                     | A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA |                                  | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |               |                                            |                                   |  |  |  |
| No. 1 (SVE-1)                                                              | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.3                              | 35.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45            | 9.8                                        | 0,00329                           |  |  |  |
| No. 2 (SVE-2)                                                              | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,2                              | 37.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45            | 191                                        | 0.06415                           |  |  |  |
| Vapor Monitoring Probes                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |               | safet such such                            |                                   |  |  |  |
| No. 1 (SVM-1)                                                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .85                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . n/a         | 0.0                                        | n/a                               |  |  |  |
| No. 2 (SVM-2)                                                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .44                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a           | 0.0                                        | n/a                               |  |  |  |
| No. 3 (SVM-3)                                                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •25                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a           | 0.0                                        | n/a                               |  |  |  |
| No. 4 (SVM-4)                                                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0045                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a           | 0.0                                        | n/a                               |  |  |  |
| Primary Carbon Adsorption                                                  | rVesselst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                            |                                   |  |  |  |
| Vessel No. 1 Inlet                                                         | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                | 75.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75            | 121                                        | 0,06774                           |  |  |  |
| Vessel No. 1 Outlet                                                        | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                | 72.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85            | 29.9                                       | 0.01897                           |  |  |  |
| Vessel No. 2 Outlet                                                        | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                                | 86.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85            | 0                                          | 0                                 |  |  |  |
| Vacuum Blower Suction                                                      | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70            | n/a                                        | n/a                               |  |  |  |
| SVE Blower Run Time (h                                                     | ours):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z/7.5                            | g (Cumulative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24-h          | our Period                                 |                                   |  |  |  |
| Sound Decibel Readings (four locations, as posted) *Was a carbon adsorptio | $-{\nu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  | 25.9<br>NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85.4<br>E     | 85.5<br>4                                  |                                   |  |  |  |
| The a carrott adoct par                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date:         |                                            |                                   |  |  |  |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time:         |                                            |                                   |  |  |  |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

# Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: <u>9/2/03</u>           | Day 10 SVE          | Ambient T                        | emperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e: <u>6</u> 6  | 7.9                                        |                                                |
|-------------------------------|---------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------|------------------------------------------------|
| Time: <u>0600</u>             |                     | Barometri                        | c Pressure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | .49                                        |                                                |
| Technician: <u>Joh</u>        | Recori/D            | le Brave                         | System Phase (1) Performa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Operating Pe   | eriod (circle one):<br>(2) Initial         | (3) Routine                                    |
|                               | (See instruction    | sheet for dat                    | a frequency o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of each para   | meter!)                                    |                                                |
| Monitoring/<br>Sampling Point | Temperature<br>(°F) | Pressure/<br>Vacuum<br>(in W.C.) | Flow<br>(ACFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Total VOC<br>Concentration<br>(ppm at STP) | Estimated<br>Total VOC<br>Flow Rate<br>(lb/hr) |
| Vapor Extraction Wells        | 4                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200            |                                            |                                                |
| No. 1 (SVE-1)                 | 70                  | 4.1                              | 35,86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45             | -6- 8,2                                    | 0.00275                                        |
| No. 2 (SVE-2)                 | 72                  | 3.6                              | 36.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>45</b>      | 1474                                       | 0,04837                                        |
| Vapor Monitoring Probes       |                     |                                  | The second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of |                |                                            |                                                |
| No. 1 (SVM-1)                 | n/a                 | ·8 <b>8</b>                      | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a            | 8. O.D                                     | n/a                                            |
| No. 2 (SVM-2)                 | n/a                 | . 45                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a            | 9.0                                        | n/a                                            |
| No. 3 (SVM-3)                 | n/a                 | *30                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a            | 00                                         | n/a                                            |
| No. 4 (SVM-4)                 | n/a                 | 106                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a            | 0.0                                        | n/a                                            |
| Primary Carbon Adsorptio      | ntVessels#          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                            |                                                |
| Vessel No. 1 Inlet            | 74                  | 8                                | 49.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75             | 125                                        | 0.06998                                        |
| Vessel No. 1 Outlet           | 72                  | 4                                | 72.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90             |                                            | 0.02398                                        |
| Vessel No. 2 Outlet           | 70                  | 0                                | 86.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85             | 0.0                                        | 0                                              |
| Vacuum Blower Suction         | 71                  | 10                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70             | n/a                                        | n/a                                            |
| SVE Blower Run Time (h        | nours):             | ZZ 9                             | g (Cumulative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24-1           | our Period                                 |                                                |
| Sound Decibel Readings        | 77                  | 2.1                              | 83,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 823            | 31.                                        | 5-                                             |
| (four locations, as posted)   |                     | ) -                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3<br>E         | u 4                                        | <u> </u>                                       |
| *Was a carbon adsorptio       | on vessel replaced  | d?:                              | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                            |                                                |
|                               |                     |                                  | YES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date:<br>Time: |                                            |                                                |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

# Soil Vapor Extraction (SVE) System

**Progress Monitoring Form** 

| Date: 9/2/03                                                                  | Prestart<br>Par 10<br>175 tem ou<br>1245 | Ambient T           | emperatui       | re:6         | 01.8                               |                                   |
|-------------------------------------------------------------------------------|------------------------------------------|---------------------|-----------------|--------------|------------------------------------|-----------------------------------|
| 1100 /5                                                                       | 75 tem ou                                | Day 1               | 3 AS)           |              | 104<br>.07                         |                                   |
| Time:                                                                         | XETT                                     | Barometri           |                 |              |                                    |                                   |
| Technician: John                                                              | Recori/Dal                               | e Brave             | (1) Performa    |              | eriod (circle one):<br>(2) Initial | (3) Routine                       |
|                                                                               | (See instruction                         | sheet for da        | ta frequency    | of each para | meter!)                            |                                   |
|                                                                               |                                          | Pressure/           | Flov            | w Rate       | Total VOC                          | Estimated                         |
| Monitoring/<br>Sampling Point                                                 | Temperature<br>(°F)                      | Vacuum<br>(in W.C.) | (ACFM)          | (SCFM)       | Concentration (ppm at STP)         | Total VOC<br>Flow Rate<br>(lb/hr) |
| Vapor Extraction Wells *                                                      |                                          |                     |                 |              |                                    |                                   |
| No. 1 (SVE-1)                                                                 |                                          |                     |                 |              |                                    |                                   |
| No. 2 (SVE-2)                                                                 |                                          |                     |                 |              |                                    |                                   |
| Vapor Monitoring Probes                                                       |                                          |                     |                 |              |                                    | <b>12</b>                         |
| No. 1 (SVM-1)                                                                 | n/a                                      |                     | n/a             | n/a          |                                    | n/a                               |
| No. 2 (SVM-2)                                                                 | n/a                                      |                     | n/a             | n/a          |                                    | n/a                               |
| No. 3 (SVM-3)                                                                 | n/a                                      |                     | n/a             | n/a          |                                    | n/a                               |
| No. 4 (SVM-4)                                                                 | n/a                                      |                     | n/a             | n/a          |                                    | n/a                               |
| Primary Carbon Adsorptio                                                      | n.Vessels*                               |                     |                 |              |                                    |                                   |
| Vessel No. 1 Inlet                                                            |                                          |                     |                 |              |                                    |                                   |
| Vessel No. 1 Outlet                                                           |                                          |                     |                 |              |                                    |                                   |
| Vessel No. 2 Outlet                                                           |                                          |                     |                 |              |                                    |                                   |
| Vacuum Blower Suction                                                         |                                          |                     |                 |              | n/a                                | n/a                               |
| SVE Blower Run Time (h                                                        | ours):                                   | Current Readin      | ng (Cumulative) | 24-1         | nour Period                        |                                   |
| Sound Decibel Readings                                                        | <b></b>                                  |                     |                 | _            |                                    |                                   |
| (four locations, as posted)                                                   |                                          | 1                   | 2               | 3            | 4                                  |                                   |
| *Was a carbon adsorptio                                                       | on vessel replaced                       | <b>i</b> ?:         | <u> </u>        | Deter        |                                    |                                   |
|                                                                               |                                          |                     | YES:            |              |                                    |                                   |
| Note: A running total of r is taken off line. Use the carbon adsorption vesse | Carbon Adsorption                        |                     |                 |              |                                    |                                   |

# Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: $\frac{9/2}{0.3}$                                                                                                  | Day 10-                                    | ≲ ا <sup>و</sup><br>Ambient T<br>S | emperatur       | e: <u>6</u>           | 3.6°F                                      |                                                |  |  |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------|-----------------|-----------------------|--------------------------------------------|------------------------------------------------|--|--|
| Time: 1735                                                                                                               |                                            | Barometrio                         | c Pressure      | 30.                   | 09                                         |                                                |  |  |
| Technician: System Phase / Operating Period (circle one):  (See instruction sheet for data frequency of each parameter!) |                                            |                                    |                 |                       |                                            |                                                |  |  |
|                                                                                                                          | (See instruction                           | DSIA                               |                 | Rate                  | neteri)                                    |                                                |  |  |
| Monitoring/<br>Sampling Point                                                                                            | Temperature<br>(°F)                        | Pressure/<br>Vacuum<br>(in W.C.)   | (ACFM)          | (SCFM)                | Total VOC<br>Concentration<br>(ppm at STP) | Estimated<br>Total VOC<br>Flow Rate<br>(lb/hr) |  |  |
| Vapor Extraction Wells                                                                                                   |                                            |                                    |                 |                       |                                            |                                                |  |  |
| No. 1 (SVE-1)                                                                                                            | 72                                         | 4.2                                | 35.81           | 45                    | 0.0                                        | 0.0                                            |  |  |
| No. 2 (SVE-2)                                                                                                            | 74                                         | 3.2                                | 37.95           | 45                    | 11.4                                       | 0.00383                                        |  |  |
| Vapor Monitoring Probes                                                                                                  |                                            |                                    |                 |                       | 2,740.2                                    |                                                |  |  |
| No. 1 (SVM-1)                                                                                                            | n/a                                        | .8                                 | n/a             | n/a                   | 0.0                                        | n/a                                            |  |  |
| No. 2 (SVM-2)                                                                                                            | n/a                                        | ø30                                | n/a             | n/a                   | ව.ට                                        | n/a                                            |  |  |
| No. 3 (SVM-3)                                                                                                            | n/a                                        | 2.21                               | n/a             | n/a                   | 0.0                                        | n/a                                            |  |  |
| No. 4 (SVM-4)                                                                                                            | n/a                                        | .01                                | n/a             | n/a                   | 0.0                                        | n/a                                            |  |  |
| Primary Carbon Adsorption                                                                                                | uVestels#1                                 |                                    |                 |                       |                                            | an suran sa                                    |  |  |
| Vessel No. 1 Inlet                                                                                                       | 80                                         | B                                  | 50.44           | 75                    | 0072.1                                     | 0.04036                                        |  |  |
| Vessel No. 1 Outlet                                                                                                      | 78                                         | 3                                  | 77.33           | 90                    | 22.3                                       | 0.01498                                        |  |  |
| Vessel No. 2 Outlet                                                                                                      | 75                                         | 0                                  | 92.60           | 85                    | 7310.0                                     | 0                                              |  |  |
| Vacuum Blower Suction                                                                                                    | 73_                                        | 10                                 |                 | 70                    | n/a                                        | n/a                                            |  |  |
| SVE Blower Run Time (h                                                                                                   | ours):                                     | 241.7<br>Current Readin            |                 | 12.<br>24-h           | Our Period                                 |                                                |  |  |
| Sound Decibel Readings                                                                                                   | : 75                                       | .2                                 | 81.2            | 81.4                  | 86.1                                       |                                                |  |  |
| (four locations, as posted)                                                                                              | ^                                          | <i>j</i> –                         | 5               | <u>81.4</u><br>3<br>E |                                            |                                                |  |  |
| *Was a carbon adsorptio                                                                                                  | *Was a carbon adsorption vessel replaced?: |                                    |                 |                       |                                            |                                                |  |  |
|                                                                                                                          |                                            |                                    | YES:            |                       |                                            |                                                |  |  |
| Note: A running total of r                                                                                               |                                            | volume of all                      | shall be real-t |                       | a corban adacuntia                         |                                                |  |  |

is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a

Completed form to be included in each SVE System Progress Monitoring Report.

carbon adsorption vessel is replaced.

# NYSDEC - Franklin Cleaners Soil Vapor Extraction (SVE) System

# Progress Monitoring Form

| Date: 9/3/03                                                             | Day 11-5/18<br>Day 2-45 | Ambient T                        | emperatur                 | e:                | 2.4                                        |                                                |  |  |  |
|--------------------------------------------------------------------------|-------------------------|----------------------------------|---------------------------|-------------------|--------------------------------------------|------------------------------------------------|--|--|--|
| Time: <u>0600</u>                                                        | Day 2-45                | Barometri                        | c Pressure                | :3                | 0.09                                       |                                                |  |  |  |
| Technician: John                                                         | n Recori                |                                  | System Phase (1) Performa |                   | eriod (circle one):<br>(2) Initial         | (3) Routine                                    |  |  |  |
| (See instruction sheet for data frequency of each parameter!)  Flow Rate |                         |                                  |                           |                   |                                            |                                                |  |  |  |
| Monitoring/<br>Sampling Point                                            | Temperature<br>(°F)     | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)                    | (SCFM)            | Total VOC<br>Concentration<br>(ppm at STP) | Estimated<br>Total VOC<br>Flow Rate<br>(lb/hr) |  |  |  |
| Vapor Extraction Wells                                                   |                         |                                  |                           | The second second |                                            |                                                |  |  |  |
| No. 1 (SVE-1)                                                            | 72                      | 4.0                              | 36.19                     | 45                | 5.9                                        | 0.00198                                        |  |  |  |
| No. 2 (SVE-2)                                                            | 74                      | 7.6                              | 50.77                     | 75                | 65.8                                       | 0.03684                                        |  |  |  |
| Vapor Monitoring Probes                                                  |                         |                                  | Marie and a               |                   |                                            |                                                |  |  |  |
| No. 1 (SVM-1)                                                            | n/a                     | • 8                              | n/a                       | n/a               | 0.0                                        | n/a                                            |  |  |  |
| No. 2 (SVM-2)                                                            | n/a                     | .85                              | n/a                       | n/a               | 0.0                                        | n/a                                            |  |  |  |
| No. 3 (SVM-3)                                                            | n/a                     | .6                               | n/a                       | n/a               | 0.0                                        | n/a                                            |  |  |  |
| No. 4 (SVM-4)                                                            | n/a                     | 017                              | n/a                       | n/a               | 0                                          | n/a                                            |  |  |  |
| Primary Carbon Adsorptio                                                 | n Vessels*              |                                  |                           |                   |                                            |                                                |  |  |  |
| Vessel No. 1 Inlet                                                       | 80                      | 10                               | 52.53                     | 85                | 157 "                                      | 0,09961                                        |  |  |  |
| Vessel No. 1 Outlet                                                      | 75                      | 4                                | 80.88                     | 100               | 42.5                                       | 0.03172                                        |  |  |  |
| Vessel No. 2 Outlet                                                      | 76                      | 0                                | 97.92                     | 95                | 0.0                                        | 0                                              |  |  |  |
| Vacuum Blower Suction                                                    | 74                      | 29                               |                           | 105               | n/a                                        | n/a                                            |  |  |  |
| SVE Blower Run Time (h                                                   | ours):                  | 2-44.1<br>Current Readin         | g (Cumulative)            | 2.4<br>24-h       | our Period                                 |                                                |  |  |  |
| Sound Decibel Readings (four locations, as posted)                       | ,                       | 0 . (<br>1<br>IV                 | 71.3<br>2<br>5            | 77.9<br>3<br>E    | ( <u>69.</u>                               | <u> </u>                                       |  |  |  |
| *Was a carbon adsorption                                                 | n vessel replace        | d?:                              | . NO                      |                   |                                            |                                                |  |  |  |
|                                                                          |                         |                                  | YES:                      | Date:<br>Time:    |                                            |                                                |  |  |  |
| Note: A running total of r                                               | mass of VOCs and        | volume of air                    | shall be mainta           | ained for each    | n carbon adsorptio                         | n vessel until it                              |  |  |  |

is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a

Completed form to be included in each SVE System Progress Monitoring Report.

carbon adsorption vessel is replaced.

# Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: <u>9/3/</u> 03                                                           | Day 11-549<br>Day 2-AS | Ambient T                        | emperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e:               | 64.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------|------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time: /000                                                                     | 2112                   |                                  | c Pressure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Technician: John                                                               | (See instruction       |                                  | 1) Performan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nce Test         | eriod (circle one):  (2) Initial  meter!)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3) Routine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                |                        |                                  | Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rate             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Monitoring/<br>Sampling Point                                                  | Temperature<br>(°F)    | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (SCFM)           | Total VOC<br>Concentration<br>(ppm at STP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total VOC<br>Flow Rate<br>(lb/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Vapor Extraction Wells :                                                       |                        | E. S. Market Manager 1995        | A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR |                  | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| No. 1 (SVE-1)                                                                  | 72                     | 3.8                              | 36.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45               | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| No. 2 (SVE-2)                                                                  | 74                     | 6.8                              | 49.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70               | 71.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Vapor Monitoring Probes                                                        |                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| No. 1 (SVM-1)                                                                  | n/a                    | 0.6                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . n/a            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No. 2 (SVM-2)                                                                  | n/a                    | .55                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No. 3 (SVM-3)                                                                  | n/a                    | ./9                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No. 4 (SVM-4)                                                                  | n/a                    | .095                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Primary Carbon Adsorption                                                      | i Vesselst             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vessel No. 1 Inlet                                                             |                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contra |
| Vessel No. 1 Outlet                                                            |                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vessel No. 2 Outlet                                                            |                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vacuum Blower Suction                                                          | 74                     | 29                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SVE Blower Run Time (h                                                         | ours):                 | Z 48.4                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4. <b>8</b> 24-h | our Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sound Decibel Readings (four locations, as posted)                             |                        | 1                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| *Was a carbon adsorptio                                                        | n vessel replaced      | <b>!?:</b>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Note: A running total of n is taken off line. Use the carbon adsorption vessel | Carbon Adsorption      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# Soil Vapor Extraction (SVE) System **Progress Monitoring Form**

| Date: $\frac{9/3/03}{1800}$                                                                      | Drug 11-51          | Ambient T                        | emperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | »:                | 5.3                                        |                                                |  |  |
|--------------------------------------------------------------------------------------------------|---------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------|------------------------------------------------|--|--|
| Time:                                                                                            | 1) ay 2-1           | م⊤<br>Barometri                  | c Pressure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | 0.00                                       |                                                |  |  |
| Technician: Sohn Recor, Make Bruke (1) Performance Test (2) Initial (3) Routine                  |                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                            |                                                |  |  |
|                                                                                                  | (See instruction    | sheet for dat                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | meter!)                                    |                                                |  |  |
| Monitoring/<br>Sampling Point                                                                    | Temperature<br>(°F) | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rate<br>(SCFM)    | Total VOC<br>Concentration<br>(ppm at STP) | Estimated<br>Total VOC<br>Flow Rate<br>(lb/hr) |  |  |
| Vapor Extraction Wells                                                                           |                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Can be destinated |                                            |                                                |  |  |
| No. 1 (SVE-1)                                                                                    | 74                  | 3.9                              | 36,52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45                | 0.0                                        |                                                |  |  |
| No. 2 (SVE-2)                                                                                    | 76                  | 7.0                              | 52.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75                | 57.1                                       | 0.03197                                        |  |  |
| Vapor Monitoring Probes                                                                          |                     | Section and the second           | Andrew Carlos Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                            |                                                |  |  |
| No. 1 (SVM-1)                                                                                    | n/a                 | ×98                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a               | 0.0                                        | n/a                                            |  |  |
| No. 2 (SVM-2)                                                                                    | n/a                 | .55                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a               | 0.0                                        | n/a                                            |  |  |
| No. 3 (SVM-3)                                                                                    | n/a                 | .35                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a               | 0,0                                        | n/a                                            |  |  |
| No. 4 (SVM-4)                                                                                    | n/a                 | 00/                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a               | 0-0                                        | n/a                                            |  |  |
| Primary Carbon Adsorption                                                                        | n:Vessels₩.         | and the second                   | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                   |                                            |                                                |  |  |
| Vessel No. 1 Inlet                                                                               | 88                  | 10                               | 62.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100               | 114                                        | 0.08509                                        |  |  |
| Vessel No. 1 Outlet                                                                              | 82                  | 2                                | 91.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (00               | 204                                        | 0.15227                                        |  |  |
| Vessel No. 2 Outlet                                                                              | 80                  | O                                | 103.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100               | 0.0                                        | 0                                              |  |  |
| Vacuum Blower Suction                                                                            | 74                  | 29                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105               | n/a                                        | n/a                                            |  |  |
| SVE Blower Run Time (h                                                                           | ours):              | 25 S<br>Current Readin           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | our Period                                 |                                                |  |  |
| Sound Decibel Readings:  (four locations, as posted)  *Was a carbon adsorption vessel replaced?: |                     |                                  | 96.7<br>2<br>5<br>NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82.8<br>E         | 77. 4<br>W                                 | <u>(</u>                                       |  |  |
|                                                                                                  |                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date:<br>Time:    |                                            |                                                |  |  |
| Note: A running total of n                                                                       |                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | •                                          |                                                |  |  |

carbon adsorption vessel is replaced.

# Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: <u>9/4/03</u>           | Day 12-5VE<br>Day 3-AS                    | Ambient T                        | emperature    | e:             | 2./                                        |                                   |  |
|-------------------------------|-------------------------------------------|----------------------------------|---------------|----------------|--------------------------------------------|-----------------------------------|--|
| Time: <u>0600</u>             |                                           | Barometri                        | c Pressure:   | 72             | 29                                         |                                   |  |
| 7                             |                                           |                                  | System Phase  | Operating Pe   | riod (circle one):                         |                                   |  |
| Technician: <u>Jo</u> 4       | in lecoti                                 |                                  | (*) Performan | nce Test       | (2) Initial                                | (3) Routine                       |  |
|                               | (See instruction                          | sheet for dat                    | a frequency o | of each parar  | neter!)                                    |                                   |  |
|                               |                                           |                                  | Flow          |                |                                            | Estimated                         |  |
| Monitoring/<br>Sampling Point | Temperature<br>(°F)                       | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)        | (SCFM)         | Total VOC<br>Concentration<br>(ppm at STP) | Total VOC<br>Flow Rate<br>(lb/hr) |  |
| Vapor Extraction Wells 🗻      |                                           |                                  |               |                |                                            |                                   |  |
| No. 1 (SVE-1)                 | 78                                        | 3.6                              | 37.40         | 45             | 7.6                                        | 0.00255                           |  |
| No. 2 (SVE-2)                 | 78                                        | 6.8                              | 53.05         | 75             | 35                                         | 0.01959                           |  |
| Vapor Monitoring Probes       |                                           |                                  |               |                |                                            |                                   |  |
| No. 1 (SVM-1)                 | n/a                                       | 7-200                            | n/a           | n/a            | 6.2                                        | n/a                               |  |
| No. 2 (SVM-2)                 | n/a                                       | 175                              | n/a           | n/a            | 0                                          | n/a                               |  |
| No. 3 (SVM-3)                 | n/a                                       | .225                             | n/a           | n/a            | 0                                          | n/a                               |  |
| No. 4 (SVM-4)                 | n/a                                       | 002                              | n/a           | n/a            | 0                                          | n/a                               |  |
| Primary Carbon Adsorptio      | nVessels1+ +                              |                                  |               |                |                                            |                                   |  |
| Vessel No. 1 Inlet            | 90                                        | 10                               | 59.80         | 95             | 983                                        | 0.06970                           |  |
| Vessel No. 1 Outlet           | 88                                        | 4                                | 82.84         | 100            | 232                                        | 0.17317                           |  |
| Vessel No. 2 Outlet           | 84                                        | 0                                | 99,38         | 95             | 0                                          | 0                                 |  |
| Vacuum Blower Suction         | 79                                        | 29                               |               | 105            | n/a                                        | n/a                               |  |
| SVE Blower Run Time (h        | ours):                                    | 2 68.                            |               | 12. g          | our Period                                 |                                   |  |
| Sound Decibel Readings        | . 7g                                      | 1                                | 827           | 84.9           | 70.1                                       |                                   |  |
| (four locations, as posted)   | ·                                         | 1<br>/                           | 25            | 3<br>E         | 4                                          |                                   |  |
| *Was a carbon adsorptio       | Was a carbon adsorption vessel replaced?: |                                  |               |                |                                            |                                   |  |
|                               |                                           |                                  |               | Date:<br>Time: | <del></del>                                |                                   |  |
|                               |                                           |                                  |               |                |                                            |                                   |  |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

# Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: <u>9/4/03</u>                                                                                                             | Day 12-5                        | √ <sup>દ</sup><br>Ambient T      | emperatur      | e: <u>7</u>        | <u>૨. ઇ</u>                                |                                                |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|----------------|--------------------|--------------------------------------------|------------------------------------------------|
| Time: <u>/</u> 80つ                                                                                                              |                                 | Barometri                        | c Pressure     | 29                 | 1.76                                       |                                                |
| Technician: John                                                                                                                | n becori                        |                                  | (1) Performa   | 7                  | eriod (circle one):<br>(2) Initial         | (3) Routine                                    |
|                                                                                                                                 | (See instruction                | sheet for dat                    | a frequency o  | of each para       | meter!)                                    |                                                |
| Monitoring/<br>Sampling Point                                                                                                   | Temperature<br>(°F)             | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)         | Rate<br>(SCFM)     | Total VOC<br>Concentration<br>(ppm at STP) | Estimated<br>Total VOC<br>Flow Rate<br>(lb/hr) |
| Vapor Extraction Wells 💉                                                                                                        |                                 |                                  |                |                    |                                            |                                                |
| No. 1 (SVE-1)                                                                                                                   | 80                              | 3.4                              | 29.52          | 35                 | 10.3                                       | 0.00269                                        |
| No. 2 (SVE-2)                                                                                                                   | 80                              | 7.0                              | 49,24          | 70                 | 32.0                                       | 0.01672                                        |
| Vapor Monitoring Probes                                                                                                         |                                 |                                  | La Talland     |                    |                                            |                                                |
| No. 1 (SVM-1)                                                                                                                   | n/a                             | .8                               | n/a            | n/a                | 4.2                                        | n/a                                            |
| No. 2 (SVM-2)                                                                                                                   | n/a                             | . 45                             | n/a            | n/a                | 0.0                                        | n/a                                            |
| No. 3 (SVM-3)                                                                                                                   | n/a                             | 120                              | n/a            | n/a                | 0.0                                        | n/a                                            |
| No. 4 (SVM-4)                                                                                                                   | n/a                             | <i>-</i> 03                      | n/a            | n/a                | 0.0                                        | n/a                                            |
| Primary Carbon Adsorption                                                                                                       | nWessels#                       |                                  |                | Listation is       |                                            |                                                |
| Vessel No. 1 Inlet                                                                                                              | 93                              | /0                               | 53.80          | 85                 | 89.2                                       | 0. 05659                                       |
| Vessel No. 1 Outlet                                                                                                             | 90                              | 4                                | 78.99          | 55                 | 225                                        | 0.15955                                        |
| Vessel No. 2 Outlet                                                                                                             | 88                              | 0                                | 100.12         | 55                 | 0                                          | 0                                              |
| Vacuum Blower Suction                                                                                                           | 84                              | 3 4                              |                | 120                | n/a                                        | n/a                                            |
| SVE Blower Run Time (h                                                                                                          | nours):                         | 280.0<br>Current Readin          | g (Cumulative) | 24-h               | 11.7<br>our Period                         |                                                |
| Sound Decibel Readings (four locations, as posted)  *Was a carbon adsorption foo Haman SKE UP H Value on As AS-1 SVE-1=35 SVE-2 | on vessel replaced to 60 fom 55 | . Sjokenad d                     |                | 90.3<br>3<br>Date: | 80.<br>4                                   | 4                                              |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

# Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: 9/5/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Day 13-5V<br>Day 4-A5 | ر<br>Ambient T                               | emperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e:                     | 63.5                                       |                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------|------------------------------------------------|
| Time: <u>0600</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | Barometri                                    | c Pressure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | .9.85                                      |                                                |
| Technician: 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in Perori             |                                              | System Phase (1) Performat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | eriod (circle one):<br>(2) Initial         | (3) Routine                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (See instruction      |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | neter!)                                    |                                                |
| Monitoring/<br>Sampling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Temperature<br>(°F)   | اسرالدرط<br>Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rate<br>flow<br>(SCFM) | Total VOC<br>Concentration<br>(ppm at STP) | Estimated<br>Total VOC<br>Flow Rate<br>(lb/hr) |
| Vapor Extraction Wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                              | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                        |                                            |                                                |
| No. 1 (SVE-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 76                    | 2.8                                          | 25.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                     | 2.6                                        | 0.00058                                        |
| No. 2 (SVE-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 76                    | 8.4                                          | 52.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80                     | 37.0                                       | 0.01911                                        |
| Vapor Monitoring Probes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | and the second                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                            |                                                |
| No. 1 (SVM-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/a                   | .4                                           | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                    | 0.0                                        | n/a                                            |
| No. 2 (SVM-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/a                   | 180                                          | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                    | 0.0                                        | n/a                                            |
| No. 3 (SVM-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/a                   | .45                                          | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                    | 0.0                                        | n/a                                            |
| No. 4 (SVM-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/a                   | .22                                          | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                    | 0.0                                        | n/a                                            |
| Primary Carbon Adsorption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mVessels# 🥧 🦠         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W.                     |                                            |                                                |
| Vessel No. 1 Inlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89                    | U.                                           | 54.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90                     | 100                                        | 0.06718                                        |
| Vessel No. 1 Outlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84                    | 5.                                           | 78.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                    | 230                                        | 0.17168                                        |
| Vessel No. 2 Outlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                    | 0                                            | 103,85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /90                    | 0                                          | 0                                              |
| Vacuum Blower Suction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77                    | 36                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105                    | n/a                                        | n/a                                            |
| SVE Blower Run Time (hours): 292.0  Current Reading (Current Reading (Curr |                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Z                    | our Period                                 |                                                |
| Sound Decibel Readings (four locations, as posted)  *Was a carbon adsorption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | 3<br>}<br>1?:                                | 79.72<br>5<br>NO<br>YES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81<br>3<br>E           | 84.4<br>**                                 |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | ·                                            | 163.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date:<br>Time:         |                                            |                                                |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

### Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: 9/5/03 Time: 1800                                                    | Day 13-5<br>Day 4-Ag | ∫⊂<br>Ambient T<br>≶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | emperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e:             | 73.4                                       |                                   |
|----------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------|-----------------------------------|
| Time: 1800                                                                 |                      | Barometri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : Pressure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Z              | 9.91                                       |                                   |
| Technician: <u> </u>                                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | System Phase (1) Performan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Operating Pe   | eriod (circle one): (2) Initial            | (3) Routine                       |
|                                                                            | (See msa acaon       | Sheet for dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | neterij                                    | Estimated                         |
| Monitoring/<br>Sampling Point                                              | Temperature<br>(°F)  | Pressure/<br>Vacuum<br>(in W.C.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ACFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (SCFM)         | Total VOC<br>Concentration<br>(ppm at STP) | Total VOC<br>Flow Rate<br>(lb/hr) |
| Vapor/Extraction Wells                                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                |                                            |                                   |
| No. 1 (SVE-1)                                                              | 82                   | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35             | 0.0                                        | 0                                 |
| No. 2 (SVE-2)                                                              | 81                   | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80             | 20.8                                       | 0.01242                           |
| Vapor Monitoring Probes                                                    |                      | The said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the sa |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a Mariana      | <u>. De</u>                                |                                   |
| No. 1 (SVM-1)                                                              | n/a                  | .70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a            | 0.0                                        | n/a                               |
| No. 2 (SVM-2)                                                              | n/a                  | 66.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a            | 0.0                                        | n/a                               |
| No. 3 (SVM-3)                                                              | n/a                  | <b>.3</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a            | 0.0                                        | n/a                               |
| No. 4 (SVM-4)                                                              | n/a                  | olxl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a_           | 0.0                                        | n/a                               |
| Primary Carbon Adsorption                                                  | iVessels#            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                            |                                   |
| Vessel No. 1 Inlet                                                         | 98                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90             | 71.2                                       | 0.04783                           |
| Vessel No. 1 Outlet                                                        | 93                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109            | 179.8                                      | 0.13823                           |
| Vessel No. 2 Outlet                                                        | 89                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108,74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100            | 0                                          | 0                                 |
| Vacuum Blower Suction                                                      | 82                   | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105            | n/a                                        | n/a                               |
| SVE Blower Run Time (h                                                     | ours):               | 304.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g (Cumulative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24-h           | our Period                                 |                                   |
| Sound Decibel Readings (four locations, as posted) *Was a carbon adsorptio | N                    | ).7<br>1<br>1<br>1?:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80 · 1         | 83.5                                       | <u></u>                           |
|                                                                            | _                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date:<br>Time: |                                            |                                   |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

# Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: <u>9/6/03 (</u>                 | Day 5- AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ambient T           | emperature                | ·              | 3.6                                |                                     |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|----------------|------------------------------------|-------------------------------------|
| Time: 0600                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Barometrio          |                           | 77             | .03                                |                                     |
| Technician: 5.72                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | System Phase (1) Performa |                | eriod (circle one):<br>(2) Initial | (3) Routine                         |
|                                       | (See instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sheet for data      | a frequency o             | of each parai  | meter!)                            |                                     |
| Monitoring <i>l</i><br>Sampling Point | Temperature (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pressure/<br>Vacuum |                           | Rate (SCFM)    | Total VOC Concentration            | Estimated<br>Total VOC<br>Flow Rate |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (in W.C.)           |                           | , ,            | (ppm at STP)                       | (lb/hr)                             |
| Vapor Extraction Wells                | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                     |                           |                |                                    |                                     |
| No. 1 (SVE-1)                         | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-8                 | 2508                      | 3 <b>0</b>     | 0.0                                | 0                                   |
| No. 2 (SVE-2)                         | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.6                 | 51.83                     | 80             | 228                                | 0.01361                             |
| Vapor Monitoring Probes               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                           |                |                                    |                                     |
| No. 1 (SVM-1)                         | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .6                  | n/a                       | n/a            | 0.0                                | n/a                                 |
| No. 2 (SVM-2)                         | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,6                  | n/a                       | n/a            | 0.0                                | n/a                                 |
| No. 3 (SVM-3)                         | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 145                 | n/a                       | n/a            | 0.0                                | n/a                                 |
| No. 4 (SVM-4)                         | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .135                | n/a                       | n/a            | 0.0                                | n/a                                 |
| Primary Carbon Adsorption             | iVessels†                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                           |                |                                    |                                     |
| Vessel No. 1 Inlet                    | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                  | 53.76                     | 90             | 79.1                               | 0.05314                             |
| Vessel No. 1 Outlet                   | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                   | 77.35                     | 100            | 106                                | 0.07912                             |
| Vessel No. 2 Outlet                   | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                   | 102.88                    | 100            | 0.0                                | 0                                   |
| Vacuum Blower Suction                 | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36                  |                           | 1/0            | n/a                                | n/a                                 |
| SVE Blower Run Time (h                | ours):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3/6, /              |                           | 12·            | our Period                         |                                     |
|                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                   |                           |                | _                                  |                                     |
| Sound Decibel Readings                | : 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | 82.4                      | 7 <i>E</i> .   | 05:0                               |                                     |
| (four locations, as posted)           | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>V              | 2<br>S                    | <u>-</u>       | <u>د</u> -                         |                                     |
| *Was a carbon adsorptio               | n vessel replaced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i?:                 | NO                        | -              |                                    |                                     |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | YES:                      | Date:<br>Time: |                                    |                                     |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

# Soil Vapor Extraction (SVE) System Progress Monitoring Form

| -                                                                           |                     | •                                | 3                  |                          |                                      |                                   |
|-----------------------------------------------------------------------------|---------------------|----------------------------------|--------------------|--------------------------|--------------------------------------|-----------------------------------|
| Date: 9/6/03                                                                | Day 14-5            | Ambient T                        | emperatur          | e: <u>74</u>             | (.8                                  |                                   |
| Time: <u>/8</u> 00                                                          | Day                 | Barometrio                       | : Pressure         | . 29.                    | 99                                   |                                   |
|                                                                             |                     |                                  | System Phase       | / Onerating Pa           | eriod (circle one):                  |                                   |
| Technician:                                                                 |                     |                                  | (1) Performa       |                          | (2) Initial                          | (3) Routine                       |
|                                                                             |                     |                                  | (1)1 choma         | 100 100                  | (Z) militar                          | (3) Roddine                       |
|                                                                             | (See instruction    | sheet for dat                    | a frequency (      | of each para             | meter!)                              |                                   |
|                                                                             | <u> </u>            | 10515.                           |                    | Rate                     |                                      | Estimated                         |
| Monitoring/<br>Sampling Point                                               | Temperature<br>(°F) | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)             | (SCFM)                   | Total VOC Concentration (ppm at STP) | Total VOC<br>Flow Rate<br>(lb/hr) |
| Vapor Extraction Wells                                                      |                     |                                  |                    |                          |                                      | 42.0                              |
| No. 1 (SVE-1)                                                               | 83                  | 2.9                              | 30.53              | 35                       | 0.0                                  | 0.0 D                             |
| No. 2 (SVE-2)                                                               | 82                  | 2.402                            | 56,87              | 85                       | 16.5                                 | 0.01047                           |
| Vapor Monitoring Probes                                                     |                     |                                  |                    |                          |                                      |                                   |
| No. 1 (SVM-1)                                                               | n/a                 | .5                               | n/a                | n/a                      | 0.0                                  | n/a                               |
| No. 2 (SVM-2)                                                               | n/a                 | B. B. B                          | n/a                | n/a                      | 0.0                                  | n/a                               |
| No. 3 (SVM-3)                                                               | n/a                 | .5                               | n/a                | n/a                      | 0.0                                  | n/a                               |
| No. 4 (SVM-4)                                                               | n/a                 | 12                               | n/a                | n/a                      | 0.0                                  | n/a                               |
| Primary Carbon Adsorptio                                                    | n Vessels#          |                                  |                    |                          |                                      |                                   |
| Vessel No. 1 Inlet                                                          | 98                  | 10                               | 54.28              | 85                       | 67.7                                 | 2.04295                           |
| Vessel No. 1 Outlet                                                         | 94                  | 4                                | 75,37              | 90                       | 154                                  | 0.10345                           |
| Vessel No. 2 Outlet                                                         | 90                  | 0                                | 95.19              | 100                      | 0.0                                  | 0                                 |
| Vacuum Blower Suction                                                       | 84                  | 36                               |                    | 105                      | n/a                                  | n/a                               |
| SVE Blower Run Time (h                                                      | ours):              | 328.                             | •                  | 12. <u>1</u> 2. <u>1</u> | our Period                           |                                   |
| Sound Decibel Readings (four locations, as posted) *Was a carbon adsorption | N                   | 1                                | 89.1<br>2<br>5(NO) | 83.2<br>E                | . 82.0<br>u                          |                                   |
|                                                                             |                     |                                  | YES:               | Date:                    |                                      |                                   |
|                                                                             | -                   |                                  |                    | Time:                    |                                      |                                   |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

# Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: $\frac{9}{7} \frac{1}{03}$                                           | Dn 15               | Ambient To                       | emperature                 | e:             | 59.3                                       |                                                |
|----------------------------------------------------------------------------|---------------------|----------------------------------|----------------------------|----------------|--------------------------------------------|------------------------------------------------|
| Time: <u>0600</u>                                                          |                     | Barometric                       | Pressure                   | :7             | 19.99                                      |                                                |
| Technician: <u>TP.</u>                                                     |                     | (                                | System Phase (1) Performan |                | eriod (circle one):<br>(2) Initial         | (3) Routine                                    |
|                                                                            | (See instruction    | sheet for data                   |                            |                | meter!)                                    |                                                |
| Monitoring/<br>Sampling Point                                              | Temperature<br>(°F) | Pressure/<br>Vacuum<br>(in W.C.) | Flow<br>(ACFM)             | (SCFM)         | Total VOC<br>Concentration<br>(ppm at STP) | Estimated<br>Total VOC<br>Flow Rate<br>(lb/hr) |
| Vapor Extraction Wells                                                     |                     |                                  |                            |                |                                            |                                                |
| No. 1 (SVE-1)                                                              | 73                  | <b>2.3</b>                       | 26.59                      | 30             | 0.0                                        | 0                                              |
| No. 2 (SVE-2)                                                              | 76                  | 9.0                              | 54,34                      | 85             | 10 9.2                                     | 0.00584                                        |
| Vaper Monitoring Probes                                                    |                     |                                  |                            |                |                                            |                                                |
| No. 1 (SVM-1)                                                              | n/a                 | -5                               | n/a                        | n/a            | 0.0                                        | n/a                                            |
| No. 2 (SVM-2)                                                              | n/a                 | - Sep-6                          | n/a                        | n/a            | 0.0                                        | n/a                                            |
| No. 3 (SVM-3)                                                              | n/a                 | 16                               | n/a                        | n/a            | 0.0                                        | n/a                                            |
| No. 4 (SVM-4)                                                              | n/a                 | 02                               | n/a                        | n/a            | 0.0                                        | n/a                                            |
| Primary Carbon Adsorption                                                  | iVesselsW           |                                  |                            |                |                                            |                                                |
| Vessel No. 1 Inlet                                                         | 84                  | 10                               | 56.03                      | 90             | 63.4                                       | 0.04259                                        |
| Vessel No. 1 Outlet                                                        | 80                  | 5                                | 77.49                      | 100            | 85.5                                       | 0.06382                                        |
| Vessel No. 2 Outlet                                                        | 75                  | 0                                | 102.88                     | 100            | 0                                          |                                                |
| Vacuum Blower Suction                                                      | 74                  | 36                               |                            | 110            | n/a                                        | n/a                                            |
| SVE Blower Run Time (h                                                     | ours):              | 340, 4<br>Current Reading        | g (Cumulative)             | 24-h           | our Period                                 |                                                |
| Sound Decibel Readings (four locations, as posted) *Was a carbon adsorptio |                     | 7                                | 35.4<br>25<br>NO           | 82.0<br>3<br>E | 78.9<br>4<br>w                             |                                                |
| rras a carbon ausorptio                                                    | н чезэсперіасес     | A:.                              | YES:                       | Date:<br>Time: |                                            |                                                |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

# Soil Vapor Extraction (SVE) System **Progress Monitoring Form**

| . / /                                                 | ۸<br>               | ogrood in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,,,,,o,,,,,g   | . 01111       |                               |                                   |
|-------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|-------------------------------|-----------------------------------|
| Date: 9/7/03                                          | Day 15              | Ambient T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | emperature     | e:            | 77.0                          |                                   |
| Time: <u>18</u>                                       |                     | Barometri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c Pressure:    |               | -9.94                         |                                   |
| てつ                                                    | •                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ,             | eriod (circle one):           |                                   |
| Technician: 5.7                                       | ·                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1) Performa   | nce Test      | (2) Initial                   | (3) Routine                       |
|                                                       | (See instruction    | sheet for dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a frequency o  | of each para  | meter!)                       |                                   |
|                                                       |                     | Pressure/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flow           | Rate          | Total VOC                     | Estimated                         |
| Monitoring/<br>Sampling Point                         | Temperature<br>(°F) | Vacuum<br>(in W.C.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ACFM)         | (SCFM)        | Concentration<br>(ppm at STP) | Total VOC<br>Flow Rate<br>(lb/hr) |
| Vapor Extraction Wells                                |                     | A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA |                |               |                               |                                   |
| No. 1 (SVE-1)                                         | 88                  | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.34          | 30            | 30.0                          | 0                                 |
| No. 2 (SVE-2)                                         | 84                  | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53.72          | 80            | 10.9                          | 0.00651                           |
| Vapor Monitoring Probes                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |                               |                                   |
| No. 1 (SVM-1)                                         | n/a                 | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/a            | n/a           | 0.0                           | n/a                               |
| No. 2 (SVM-2)                                         | n/a                 | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a            | n/a           | 0.0                           | n/a                               |
| No. 3 (SVM-3)                                         | n/a                 | .3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/a            | n/a           | 0,0                           | n/a                               |
| No. 4 (SVM-4)                                         | n/a                 | .25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a            | n/a           | 0,0                           | n/a                               |
| Primary CarbonsAdsorptio                              | n/Vessels/#:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |                               | Britania (Company)                |
| Vessel No. 1 Inlet                                    | 98                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57.48          | 90            | 57.6                          | 0.03534                           |
| Vessel No. 1 Outlet                                   | 95                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79.64          | 100           | 131                           | 0.09778                           |
| Vessel No. 2 Outlet                                   | 92                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 106.15         | 100           | 0                             | 0                                 |
| Vacuum Blower Suction                                 | 74                  | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 15            | n/a                           | n/a                               |
| SVE Blower Run Time (h                                | ours):              | 351.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |               | 11.2                          |                                   |
| (                                                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g (Cumulative) | 24-1          | our Period                    |                                   |
| 0                                                     | 94.                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93. 190.       | A PARIS       | 2 200                         | 9.9                               |
| Sound Decibel Readings<br>(four locations, as posted) | 5: <u> </u>         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2              | 3             | 4                             |                                   |
| *Was a carbon adsorption                              | on vessel replace   | d?:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NO             |               |                               |                                   |
| ·                                                     | •                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES:           | Date:         |                               |                                   |
|                                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |                               |                                   |
|                                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               | ·                             |                                   |
| Note: A running total of r                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               | •                             |                                   |
| is taken off line. Use the                            | Carbon Ausorption   | ii vessei Dala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FUIII. A NEW   | running total | andii de atarted 69           | on une a                          |

carbon adsorption vessel is replaced.

# Soil Vapor Extraction (SVE) System Progress Monitoring Form

| Date: 9/8/03                                      | Day 16              | Ambient T           | emperature    | e: _63              | 8, /                       |                                   |  |  |  |
|---------------------------------------------------|---------------------|---------------------|---------------|---------------------|----------------------------|-----------------------------------|--|--|--|
| Time: _0600                                       |                     | Barometric          | : Pressure:   | 29.                 | 98                         |                                   |  |  |  |
| Technician: JF                                    | )                   |                     | System Phase  | Operating Pe        | eriod (circle one):        |                                   |  |  |  |
| Technician:                                       |                     |                     | (1) Performar | ice Test            | (2) Initial                | (3) Routine                       |  |  |  |
|                                                   | (See instruction    | sheet for data      | a frequency o | of each parai       | meter!)                    |                                   |  |  |  |
|                                                   |                     | Pressure/           | Flow          | Rate                | Total VOC                  | Estimated                         |  |  |  |
| Monitoring/<br>Sampling Point                     | Temperature<br>(°F) | Vacuum<br>(in W.C.) | (ACFM)        | (SCFM)              | Concentration (ppm at STP) | Total VOC<br>Flow Rate<br>(lb/hr) |  |  |  |
| Vapor Extraction Wells                            |                     |                     |               |                     |                            |                                   |  |  |  |
| No. 1 (SVE-1)                                     | 74                  | 2.7                 | 26.03         | 30                  | 0.0                        | 0                                 |  |  |  |
| No. 2 (SVE-2)                                     | 76                  | 8.2                 | 56.24         | 85                  | 10.7                       | 0.00679                           |  |  |  |
| Vapor Monitoring Probes                           |                     | w.                  |               |                     |                            | - 1.000                           |  |  |  |
| No. 1 (SVM-1)                                     | n/a                 | .59                 | n/a           | n/a                 | 0.0                        | n/a                               |  |  |  |
| No. 2 (SVM-2)                                     | n/a                 | •70                 | n/a           | n/a                 | 0.0                        | n/a                               |  |  |  |
| No. 3 (SVM-3)                                     | n/a                 | .50                 | n/a           | n/a                 | 0,0                        | n/a                               |  |  |  |
| No. 4 (SVM-4)                                     | n/a                 | . 20                | n/a           | n/a                 | 6,0                        | n/a                               |  |  |  |
| Primary Carbon Adsorption                         | i Vessels           |                     |               |                     | 94                         | 42.30                             |  |  |  |
| Vessel No. 1 Inlet                                | 89                  | 10                  | 56.55         | 90                  | 55.6                       | 0. 63735                          |  |  |  |
| Vessel No. 1 Outlet                               | 86                  | 4                   | 82.54         | 100                 | 70.4                       | 0.05255                           |  |  |  |
| Vessel No. 2 Outlet                               | 82                  | 0                   | 104,23        | (00)                | 0                          | 0                                 |  |  |  |
| Vacuum Blower Suction                             | 78                  | 36                  |               | 110                 | n/a                        | n/a                               |  |  |  |
| SVE Blower Run Time (h                            | ours):              | 364,                |               | /2. <sup>24-h</sup> | our Period                 |                                   |  |  |  |
| Sound Decibel Readings                            | 73                  | . 3                 | 82.3          | 72.9                | 77.7                       |                                   |  |  |  |
| _                                                 | •                   | 1                   | 2             | 3                   | 4                          |                                   |  |  |  |
| *Was a carbon adsorption vessel replaced?:  Date: |                     |                     |               |                     |                            |                                   |  |  |  |

Note: A running total of mass of VOCs and volume of air shall be maintained for each carbon adsorption vessel until it is taken off line. Use the Carbon Adsorption Vessel Data Form. A new running total shall be started each time a carbon adsorption vessel is replaced.

Table 1

### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVE-1

| Volatile Organic Compounds |         |         |           |             | _          |             |         |         |
|----------------------------|---------|---------|-----------|-------------|------------|-------------|---------|---------|
| Method T0-1                |         | SVE     | Performan | ce Test (16 | Days: 8/24 | /03 thru 9/ | 8/03)   |         |
|                            | 8/24/03 | 8/24/03 | 8/25/03   | 8/25/03     | 8/26/03    | 8/26/03     | 8/27/03 | 8/27/03 |
| Matrix: Vapor              | a.m.    | p.m.    | a.m.      | p.m.        | a.m.       | p.m.        | a.m.    | p.m.    |
|                            | μg/10L  | μg/10L  | μg/10L    | μg/10L      | μg/10L     | μg/10L      | μg/10L  | μg/10L  |
| 1,1,1-Trichloroethane      | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| 1,1,2,2-Tetrachloroethane  | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| 1,1,2-Trichloroethane      | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| 1,1-Dichloroethane         | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| 1,1-Dichloroethene         | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| 1,2-Dichlorobenzene        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| 1,2-Dichloroethane         | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| 1,2-Dichloropropane        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| 1,3-Dichlorobenzene        | <5.00   | <5.00   | <5.00     | < 5.00      | <5.00      | <5.00       | <5.00   | <5.00   |
| 1,4-Dichlorobenzene        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Acetone                    | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | < 5.00      | <5.00   | < 5.00  |
| Benzene                    | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Bromodichloromethane       | < 5.00  | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Bromoform                  | <5.00   | <5.00   | <5.00     | < 5.00      | <5.00      | <5.00       | <5.00   | <5.00   |
| Bromomethane               | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Carbon Tetrachloride       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Chlorobenzene              | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Chlorodibromomethane       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Chloroethane               | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Chloroform                 | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Chloromethane              | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| cis-1,3-Dichloropropene    | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Ethylbenzene               | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Methyl Ethyl Ketone (MEK)  | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Methylene Chloride         | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| MTBE                       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Tetrachloroethene          | 18.1    | 15.9    | 9.64      | 13.7        | 10.7       | 11.9        | 11.9    | 13.8    |
| Toluene                    | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| trans-1,2-Dichloroethene   | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| trans-1,3-Dichloropropene  | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Trichloroethene            | 10.3    | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Trichlorofluoromethane     | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Vinyl Chloride             | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Xylene, m+p                | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Xylene, o                  | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |

Table 1

**Summary of Analytical Results: SVE-1** 

| Volatile Organic Compounds |                 | _              |                    | _              |                |                |                |                |
|----------------------------|-----------------|----------------|--------------------|----------------|----------------|----------------|----------------|----------------|
| Method T0-1                |                 |                | Performan          | <del></del>    | Days: 8/24     |                |                |                |
|                            | 8/28/03         | 8/28/03        | 8/29/03            | 8/29/03        | 8/30/03        | 8/30/03        | 8/31/03        | 8/31/03        |
| Matrix: Vapor              | a.m.<br>μg/10L  | p.m.<br>μg/10L | a.m.<br>μg/10L     | p.m.<br>μg/10L | a.m.<br>μg/10L | p.m.<br>μg/10L | a.m.<br>μg/10L | p.m.<br>μg/10L |
| 1,1,1-Trichloroethane      | 49/10L<br><5.00 | 45.00          | <sub>2</sub> <5.00 | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1,2,2-Tetrachloroethane  | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1,2-Trichloroethane      | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1-Dichloroethane         | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1-Dichloroethene         | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichlorobenzene        | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloroethane         | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloropropane        | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,3-Dichlorobenzene        | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,4-Dichlorobenzene        | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Acetone                    | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Benzene                    | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromodichloromethane       | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          |
| Bromoform                  | <5.00           | <5.00          | . <5.00            | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromomethane               | < 5.00          | <5.00          | <5.00              | < 5.00         | <5.00          | <5.00          | <5.00          | <5.00          |
| Carbon Tetrachloride       | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          |
| Chlorobenzene              | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chlorodibromomethane       | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          |
| Chloroethane               | <5.00           | <5.00          | <5.00°             | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          |
| Chloroform                 | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | < 5.00         | < 5.00         | <5.00          |
| Chloromethane              | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| cis-1,3-Dichloropropene    | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Ethylbenzene               | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Methyl Ethyl Ketone (MEK)  | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Methylene Chloride         | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| MTBE                       | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Tetrachloroethene          | 11.7            | 14.3           | 12.6               | 15.3           | 12.2           | 13.4           | 13.4           | 14.1           |
| Toluene                    | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| trans-1,2-Dichloroethene   | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| trans-1,3-Dichloropropene  | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Trichloroethene            | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Trichlorofluoromethane     | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Vinyl Chloride             | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Xylene, m+p                | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Xylene, o                  | <5.00           | <5.00          | <5.00              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |

Table 1

**Summary of Analytical Results: SVE-1** 

| Volatile Organic Compounds |                |        |           |             |            |             |        |        |
|----------------------------|----------------|--------|-----------|-------------|------------|-------------|--------|--------|
| Method T0-1                |                | SVE    | Performan | ce Test (16 | Days: 8/24 | /03 thru 9/ | 8/03)  |        |
|                            | 9/1/03         | 9/1/03 | 9/2/03    | 9/2/03      | 9/3/03     | 9/3/03      | 9/4/03 | 9/4/03 |
| Matrix: Vapor              | a.m.           | p.m.   | a.m.      | p.m.        | a.m.       | p.m.        | a.m.   | p.m.   |
|                            | μg/ <b>10L</b> | μg/10L | μg/10L    | μg/10L      | μg/10L     | μg/10L      | μg/10L | μg/10L |
| 1,1,1-Trichloroethane      | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| 1,1,2,2-Tetrachloroethane  | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| 1,1,2-Trichloroethane      | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| 1,1-Dichloroethane         | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| 1,1-Dichloroethene         | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| 1,2-Dichlorobenzene        | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| 1,2-Dichloroethane         | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | < 5.00      | <5.00  | <5.00  |
| 1,2-Dichloropropane        | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| 1,3-Dichlorobenzene        | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| 1,4-Dichlorobenzene        | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Acetone                    | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Benzene                    | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Bromodichloromethane       | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Bromoform                  | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Bromomethane               | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Carbon Tetrachloride       | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Chlorobenzene              | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Chlorodibromomethane       | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Chloroethane               | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Chloroform                 | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Chloromethane              | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| cis-1,3-Dichloropropene    | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Ethylbenzene               | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Methyl Ethyl Ketone (MEK)  | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Methylene Chloride         | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| MTBE                       | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Tetrachloroethene          | n/a*           | 12.3   | 11.6      | 12.8        | 14.3       | 17.0        | <5.00  | 11.1   |
| Toluene                    | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| trans-1,2-Dichloroethene   | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| trans-1,3-Dichloropropene  | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Trichloroethene            | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Trichlorofluoromethane     | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Vinyl Chloride             | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Xylene, m+p                | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Xylene, o                  | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |

Note: Results are reported per 10L (Tenax tube volume).

n/a\* = not available; laboratory instrument failure

Table 1

### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVE-1

| Method T0-1         9/5/03 a.m.         μg/10L         1,1,1-Trichloroethane       <5.00         1,1,2,2-Tetrachloroethane       <5.00         1,1,2-Trichloroethane       <5.00         1,1-Dichloroethane       <5.00         1,1-Dichloroethane       <5.00         1,1-Dichloroethane       <5.00 | SVE Performance 9/5/03 p.m.  μg/10L <5.00 <5.00 <5.00 | 9/6/03<br>a.m.<br>µg/10L<br><5.00 | st (16 Days<br>9/6/03<br>p.m.<br>µg/10L<br><5.00 | 9/7/03<br>a.m.<br>μg/10L | 9/7/03<br>p.m. | 9/8/03<br>a.m. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------|--------------------------------------------------|--------------------------|----------------|----------------|
| Matrix: Vapor       a.m.         μg/10L       1,1,1-Trichloroethane       <5.00         1,1,2,2-Tetrachloroethane       <5.00         1,1,2-Trichloroethane       <5.00         1,1-Dichloroethane       <5.00         1,1-Dichloroethene       <5.00                                                 | p.m.<br>μg/10L<br><5.00<br><5.00                      | a.m.<br>μg/10L<br><5.00           | р.m.<br>µg/10L                                   | а.m.<br>µg/10L           | p.m.           |                |
| μg/10L   1,1,1-Trichloroethane   <5.00   1,1,2,2-Tetrachloroethane   <5.00   1,1,2-Trichloroethane   <5.00   1,1-Dichloroethane   <5.00   1,1-Dichloroethane   <5.00   1,1-Dichloroethane   <5.00   <5.00                                                                                             | μg/10L<br><5.00<br><5.00                              | μg/10L<br><5.00                   | μg/10L                                           | μg/10L                   |                | a.m.           |
| 1,1,1-Trichloroethane       <5.00                                                                                                                                                                                                                                                                     | <5.00<br><5.00                                        | <5.00                             |                                                  |                          |                |                |
| 1,1,2,2-Tetrachloroethane       <5.00                                                                                                                                                                                                                                                                 | <5.00                                                 |                                   | <5.00                                            | -F 00                    | μg/10L         | μg/10L         |
| 1,1,2-Trichloroethane       <5.00                                                                                                                                                                                                                                                                     | _                                                     | <5.00                             | -5.00                                            | <5.00                    | <5.00          | <5.00          |
| 1,1-Dichloroethane<5.00                                                                                                                                                                                                                                                                               | <5.00                                                 |                                   | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| 1,1-Dichloroethene <5.00                                                                                                                                                                                                                                                                              |                                                       | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
|                                                                                                                                                                                                                                                                                                       | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
|                                                                                                                                                                                                                                                                                                       | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| 1,2-Dichlorobenzene <5.00                                                                                                                                                                                                                                                                             | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| 1,2-Dichloroethane <5.00                                                                                                                                                                                                                                                                              | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| 1,2-Dichloropropane <5.00                                                                                                                                                                                                                                                                             | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| 1,3-Dichlorobenzene <5.00                                                                                                                                                                                                                                                                             | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| 1,4-Dichlorobenzene <5.00                                                                                                                                                                                                                                                                             | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| Acetone <5.00                                                                                                                                                                                                                                                                                         | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| Benzene <5.00                                                                                                                                                                                                                                                                                         | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| Bromodichloromethane <5.00                                                                                                                                                                                                                                                                            | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| Bromoform <5.00                                                                                                                                                                                                                                                                                       | <5.00                                                 | <5.00                             | <5.00                                            | < 5.00                   | <5.00          | <5.00          |
| Bromomethane <5.00                                                                                                                                                                                                                                                                                    | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| Carbon Tetrachloride <5.00                                                                                                                                                                                                                                                                            | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| Chlorobenzene <5.00                                                                                                                                                                                                                                                                                   | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | . <5.00        |
| Chlorodibromomethane <5.00                                                                                                                                                                                                                                                                            | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| Chloroethane <5.00                                                                                                                                                                                                                                                                                    | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| Chloroform <5.00                                                                                                                                                                                                                                                                                      | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| Chloromethane <5.00                                                                                                                                                                                                                                                                                   | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| cis-1,3-Dichloropropene <5.00                                                                                                                                                                                                                                                                         | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| Ethylbenzene <5.00                                                                                                                                                                                                                                                                                    | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| Methyl Ethyl Ketone (MEK) <5.00                                                                                                                                                                                                                                                                       | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| Methylene Chloride <5.00                                                                                                                                                                                                                                                                              | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| MTBE <5.00                                                                                                                                                                                                                                                                                            | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| Tetrachloroethene 12.3                                                                                                                                                                                                                                                                                | 13.0                                                  | 11.2                              | 13.9                                             | 11.0                     | 12.8           | 14.8           |
| Toluene <5.00                                                                                                                                                                                                                                                                                         | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| trans-1,2-Dichloroethene <5.00                                                                                                                                                                                                                                                                        | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| trans-1,3-Dichloropropene <5.00                                                                                                                                                                                                                                                                       | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| Trichloroethene <5.00                                                                                                                                                                                                                                                                                 | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| Trichlorofluoromethane <5.00                                                                                                                                                                                                                                                                          | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| Vinyl Chloride <5.00                                                                                                                                                                                                                                                                                  | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| Xylene, m+p <5.00                                                                                                                                                                                                                                                                                     | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |
| Xylene, o <5.00                                                                                                                                                                                                                                                                                       | <5.00                                                 | <5.00                             | <5.00                                            | <5.00                    | <5.00          | <5.00          |

#### Table 1

### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

**Summary of Analytical Results: SVE-1** 

| Volatile Organic Compounds<br>Method T0-1 |                 |        | tial SVE Op<br>Days: 9/9/0 | _      |        |        |
|-------------------------------------------|-----------------|--------|----------------------------|--------|--------|--------|
| Matrix: Vapor                             | 9/18/03         |        | -                          |        |        |        |
|                                           | μ <b>g</b> /10L | μg/10L | μg/10L                     | μg/10L | μg/10L | μg/10L |
| 1,1,1-Trichloroethane                     | < 5.00          |        |                            |        |        |        |
| 1,1,2,2-Tetrachloroethane                 | <5.00           |        |                            |        |        |        |
| 1,1,2-Trichloroethane                     | <5.00           |        |                            |        | :      |        |
| 1,1-Dichloroethane                        | <5.00           |        |                            |        |        |        |
| 1,1-Dichloroethene                        | <5.00           |        |                            |        |        |        |
| 1,2-Dichlorobenzene                       | <5.00           |        |                            |        |        |        |
| 1,2-Dichloroethane                        | <5.00           |        |                            |        |        |        |
| 1,2-Dichloropropane                       | <5.00           |        |                            |        |        |        |
| 1,3-Dichlorobenzene                       | <5.00           |        |                            |        |        |        |
| 1,4-Dichlorobenzene                       | <5.00           |        |                            |        |        |        |
| Acetone                                   | <5.00           |        |                            |        |        |        |
| Benzene                                   | <5.00           |        |                            |        |        |        |
| Bromodichloromethane                      | <5.00           |        |                            |        |        |        |
| Bromoform                                 | <5.00           |        |                            |        |        |        |
| Bromomethane                              | <5.00           |        |                            |        |        |        |
| Carbon Tetrachloride                      | <5.00           |        |                            |        |        |        |
| Chlorobenzene                             | <5.00           |        |                            |        |        |        |
| Chlorodibromomethane                      | <5.00           |        |                            |        |        |        |
| Chloroethane                              | <5.00           |        |                            |        |        |        |
| Chloroform                                | <5.00           |        |                            |        |        |        |
| Chloromethane                             | <5.00           |        |                            |        |        |        |
| cis-1,3-Dichloropropene                   | <5.00           |        |                            |        |        |        |
| Ethylbenzene                              | <5.00           |        |                            |        |        |        |
| Methyl Ethyl Ketone (MEK)                 | <5.00           |        |                            |        |        |        |
| Methylene Chloride                        | <5.00           |        |                            |        |        |        |
| MTBE                                      | <5.00           |        |                            |        |        |        |
| Tetrachloroethene                         | 20.0            |        |                            |        |        |        |
| Toluene                                   | <5.00           |        |                            |        |        |        |
| trans-1,2-Dichloroethene                  | <5.00           |        |                            |        |        |        |
| trans-1,3-Dichloropropene                 | <5.00           |        |                            |        |        |        |
| Trichloroethene                           | <5.00           |        |                            |        |        |        |
| Trichlorofluoromethane                    | <5.00           |        |                            |        |        |        |
| Vinyl Chloride                            | <5.00           |        |                            |        |        |        |
| Xylene, m+p                               | <5.00           |        |                            |        |        |        |
| Xylene, o                                 | <5.00           |        |                            |        |        |        |

Table 1

Summary of Analytical Results: SVE-2

| Volatile Organic Compounds |         |         |           |             |            |              |         |         |
|----------------------------|---------|---------|-----------|-------------|------------|--------------|---------|---------|
| Method T0-1                |         | SVE     | Performan | ce Test (16 | Days: 8/24 | 1/03 thru 9/ | 8/03)   |         |
|                            | 8/24/03 | 8/24/03 | 8/25/03   | 8/25/03     | 8/26/03    | 8/26/03      | 8/27/03 | 8/27/03 |
| Matrix: Vapor              | a.m.    | p.m.    | a.m.      | p.m.        | a.m.       | p.m.         | a.m.    | p.m.    |
|                            | μg/10L  | μg/10L  | μg/10L    | μg/10L      | μg/10L     | μg/10L       | μg/10L  | μg/10L  |
| 1,1,1-Trichloroethane      | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| 1,1,2,2-Tetrachloroethane  | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| 1,1,2-Trichloroethane      | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| 1,1-Dichloroethane         | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| 1,1-Dichloroethene         | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | < 5.00  |
| 1,2-Dichlorobenzene        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| 1,2-Dichloroethane         | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | < 5.00  |
| 1,2-Dichloropropane        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| 1,3-Dichlorobenzene        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| 1,4-Dichlorobenzene        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Acetone                    | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Benzene                    | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Bromodichloromethane       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Bromoform                  | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Bromomethane               | 6.31    | <5̂.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Carbon Tetrachloride       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Chlorobenzene              | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Chlorodibromomethane       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Chloroethane               | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Chloroform                 | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Chloromethane              | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| cis-1,3-Dichloropropene    | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Ethylbenzene               | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Methyl Ethyl Ketone (MEK)  | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Methylene Chloride         | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| MTBE                       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Tetrachloroethene          | 18.0    | 15.1    | 7.58      | 14.0        | 19.0       | 13.5         | 15.7    | 1100    |
| Toluene                    | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| trans-1,2-Dichloroethene   | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| trans-1,3-Dichloropropene  | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Trichloroethene            | 10.3    | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Trichlorofluoromethane     | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Vinyl Chloride             | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Xylene, m+p                | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Xylene, o                  | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |

Table 1

Summary of Analytical Results: SVE-2

| Volatile Organic Compounds |                 |                 |                 |                          |                 |                 |                 |                 |
|----------------------------|-----------------|-----------------|-----------------|--------------------------|-----------------|-----------------|-----------------|-----------------|
| Method T0-1                |                 | SVE             | Performan       | ce Test (16              | Days: 8/24      | /03 thru 9/     | 8/03)           |                 |
|                            | 8/28/03         | 8/28/03         | 8/29/03         | 8/29/03                  | 8/30/03         | 8/30/03         | 8/31/03         | 8/31/03         |
| Matrix: Vapor              | a.m.            | p.m.            | a.m.            | p.m.                     | a.m.            | p.m.            | a.m.            | p.m.            |
| 1,1,1-Trichloroethane      | μg/10L<br><5.00 | μg/10L<br><5.00 | μg/10L<br><5.00 | μ <b>g/</b> 10L<br><5.00 | μg/10L<br><5.00 | μg/10L<br><5.00 | μg/10L<br><5.00 | μg/10L<br><5.00 |
| 1,1,2,2-Tetrachloroethane  | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| 1,1,2-Trichloroethane      | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| 1,1-Dichloroethane         | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| 1,1-Dichloroethene         | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| 1,2-Dichlorobenzene        | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| 1,2-Dichloroethane         | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| 1,2-Dichloropropane        | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| 1,3-Dichlorobenzene        | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| 1,4-Dichlorobenzene        | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| Acetone                    | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| Benzene                    | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| Bromodichloromethane       | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| Bromoform                  | <5.00           | <5.00           | < 5.00          | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| Bromomethane               | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| Carbon Tetrachloride       | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| Chlorobenzene              | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | < 5.00          | <5.00           | <5.00           |
| Chlorodibromomethane       | <5.00           | <5.00           | <5.00           | < 5.00                   | <5.00           | <5.00           | <5.00           | <5.00           |
| Chloroethane               | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| Chloroform                 | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| Chloromethane              | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| cis-1,3-Dichloropropene    | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| Ethylbenzene               | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| Methyl Ethyl Ketone (MEK)  | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| Methylene Chloride         | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| MTBE                       | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| Tetrachloroethene          | 12.8            | 15.5            | 12.2            | 14.2                     | 15.9            | 14.9            | 14.8            | 17.0            |
| Toluene                    | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| trans-1,2-Dichloroethene   | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| trans-1,3-Dichloropropene  | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| Trichloroethene            | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| Trichlorofluoromethane     | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| Vinyl Chloride             | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| Xylene, m+p                | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |
| Xylene, o                  | <5.00           | <5.00           | <5.00           | <5.00                    | <5.00           | <5.00           | <5.00           | <5.00           |

Table 1

**Summary of Analytical Results: SVE-2** 

| Volatila Ougguia Compounds                |                | _      |           |             |            | ~           |        |        |
|-------------------------------------------|----------------|--------|-----------|-------------|------------|-------------|--------|--------|
| Volatile Organic Compounds<br>Method T0-1 |                | SVE    | Performan | ce Test (16 | Days: 8/24 | /03 thru 9/ | 8/03)  |        |
| 172.1104 10-1                             | 9/1/03         | 9/1/03 | 9/2/03    | 9/2/03      | 9/3/03     | 9/3/03      | 9/4/03 | 9/4/03 |
| Matrix: Vapor                             | a.m.           | p.m.   | a.m.      | p.m.        | a.m.       | p.m.        | a.m.   | p.m.   |
| 1100                                      | μ <b>g/10L</b> | μg/10L | μg/10L    | μg/10L      | μg/10L     | μg/10L      | μg/10L | μg/10L |
| 1,1,1-Trichloroethane                     | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| 1,1,2,2-Tetrachloroethane                 | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| 1,1,2-Trichloroethane                     | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| 1,1-Dichloroethane                        | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| 1,1-Dichloroethene                        | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| 1,2-Dichlorobenzene                       | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | < 5.00 |
| 1,2-Dichloroethane                        | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | < 5.00      | <5.00  | <5.00  |
| 1,2-Dichloropropane                       | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| 1,3-Dichlorobenzene                       | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | < 5.00      | <5.00  | <5.00  |
| 1,4-Dichlorobenzene                       | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Acetone                                   | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Benzene                                   | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | < 5.00      | <5.00  | <5.00  |
| Bromodichloromethane                      | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Bromoform                                 | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Bromomethane                              | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Carbon Tetrachloride                      | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Chlorobenzene                             | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Chlorodibromomethane                      | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Chloroethane                              | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Chloroform                                | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Chloromethane                             | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| cis-1,3-Dichloropropene                   | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Ethylbenzene                              | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Methyl Ethyl Ketone (MEK)                 | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Methylene Chloride                        | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| MTBE                                      | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Tetrachloroethene                         | n/a*           | 17.8   | 19.4      | <5.00       | 19.6       | 72.0        | 13.8   | 13.3   |
| Toluene                                   | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| trans-1,2-Dichloroethene                  | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| trans-1,3-Dichloropropene                 | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Trichloroethene                           | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Trichlorofluoromethane                    | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Vinyl Chloride                            | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Xylene, m+p                               | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |
| Xylene, o                                 | n/a*           | <5.00  | <5.00     | <5.00       | <5.00      | <5.00       | <5.00  | <5.00  |

Note: Results are reported per 10L (Tenax tube volume).

n/a\* = not available; laboratory instrument failure

Table 1

### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVE-2

| Volatile Organic Compounds |                |           |           |             |              |             |                 |
|----------------------------|----------------|-----------|-----------|-------------|--------------|-------------|-----------------|
| Method T0-1                |                | SVE Perfo | rmance Te | st (16 Days | : 8/24/03 th | ıru 9/8/03) |                 |
| 17000                      | 9/5/03         | 9/5/03    | 9/6/03    | 9/6/03      | 9/7/03       | 9/7/03      | 9/8/03          |
| Matrix: Vapor              | a.m.           | p.m.      | a.m.      | p.m.        | a.m.         | p.m.        | a.m.            |
|                            | μ <b>g/10L</b> | μg/10L    | μg/10L    | μg/10L      | μg/10L       | μg/10L      | μ <b>g</b> /10L |
| 1,1,1-Trichloroethane      | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| 1,1,2,2-Tetrachloroethane  | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| 1,1,2-Trichloroethane      | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| 1,1-Dichloroethane         | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| 1,1-Dichloroethene         | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| 1,2-Dichlorobenzene        | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| 1,2-Dichloroethane         | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| 1,2-Dichloropropane        | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| 1,3-Dichlorobenzene        | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| 1,4-Dichlorobenzene        | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | < 5.00          |
| Acetone                    | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| Benzene                    | <5.00          | <5.00     | < 5.00    | <5.00       | <5.00        | < 5.00      | <5.00           |
| Bromodichloromethane       | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| Bromoform                  | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| Bromomethane               | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| Carbon Tetrachloride       | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | < 5.00      | <5.00           |
| Chlorobenzene              | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| Chlorodibromomethane       | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| Chloroethane               | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| Chloroform                 | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| Chloromethane              | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| cis-1,3-Dichloropropene    | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| Ethylbenzene               | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| Methyl Ethyl Ketone (MEK)  | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| Methylene Chloride         | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| MTBE                       | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| Tetrachloroethene          | 10.7           | 13.7      | <5.00     | 12.9        | 9.67         | 16.3        | 16.9            |
| Toluene                    | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| trans-1,2-Dichloroethene   | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| trans-1,3-Dichloropropene  | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| Trichloroethene            | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| Trichlorofluoromethane     | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| Vinyl Chloride             | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| Xylene, m+p                | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |
| Xylene, o                  | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00           |

#### Table 1

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

**Summary of Analytical Results: SVE-2** 

| Volatile Organic Compounds | Initial SVE Operating Period (42 days: 9/9/03 thru 10/20/03) |        |                 |             |                 |        |  |  |  |  |
|----------------------------|--------------------------------------------------------------|--------|-----------------|-------------|-----------------|--------|--|--|--|--|
| Method T0-1                |                                                              | (42 (  | lays: 9/9/03    | 3 thru 10/2 | 0/03)           |        |  |  |  |  |
| Matrix: Vapor              | 9/18/03                                                      |        |                 |             |                 |        |  |  |  |  |
|                            | μg/10L                                                       | μg/10L | μ <b>g</b> /10L | μg/10L      | μ <b>g</b> /10L | μg/10L |  |  |  |  |
| 1,1,1-Trichloroethane      | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| 1,1,2,2-Tetrachloroethane  | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| 1,1,2-Trichloroethane      | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| 1,1-Dichloroethane         | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| 1,1-Dichloroethene         | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| 1,2-Dichlorobenzene        | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| 1,2-Dichloroethane         | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| 1,2-Dichloropropane        | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| 1,3-Dichlorobenzene        | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| 1,4-Dichlorobenzene        | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Acetone                    | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Benzene                    | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Bromodichloromethane       | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Bromoform                  | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Bromomethane               | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Carbon Tetrachloride       | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Chlorobenzene              | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Chlorodibromomethane       | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Chloroethane               | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Chloroform                 | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Chloromethane              | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| cis-1,3-Dichloropropene    | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Ethylbenzene               | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Methyl Ethyl Ketone (MEK)  | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Methylene Chloride         | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| MTBE                       | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Tetrachloroethene          | 19.2                                                         |        |                 |             |                 |        |  |  |  |  |
| Toluene                    | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| trans-1,2-Dichloroethene   | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| trans-1,3-Dichloropropene  | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Trichloroethene            | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Trichlorofluoromethane     | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Vinyl Chloride             | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Xylene, m+p                | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |
| Xylene, o                  | <5.00                                                        |        |                 |             |                 |        |  |  |  |  |

Table 1

Summary of Analytical Results: SVM-1

| Volatile Organic Compounds  Method T0-1                                                                        |         | SVE     | Performan      | ce Test (16 | Days: 8/24 | /03 thru 9/3 | 8/03)   |                 |
|----------------------------------------------------------------------------------------------------------------|---------|---------|----------------|-------------|------------|--------------|---------|-----------------|
|                                                                                                                | 8/24/03 | 8/24/03 | 8/25/03        | 8/25/03     | 8/26/03    | 8/26/03      | 8/27/03 | 8/27/03         |
| Matrix: Vapor                                                                                                  | a.m.    | p.m.    | a.m.           | p.m.        | a.m.       | p.m.         | a.m.    | p.m.            |
| Barrier Committee - John Committee Committee Committee Committee Committee Committee Committee Committee Commi | μg/10L  | μg/10L  | μg/10 <b>L</b> | μg/10L      | μg/10L     | μg/10L       | μg/10L  | μ <b>g</b> /10L |
| 1,1,1-Trichloroethane                                                                                          | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| 1,1,2,2-Tetrachloroethane                                                                                      | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| 1,1,2-Trichloroethane                                                                                          | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| 1,1-Dichloroethane                                                                                             | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| 1,1-Dichloroethene                                                                                             | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| 1,2-Dichlorobenzene                                                                                            | <5.00   | <5.00   | < 5.00         | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| 1,2-Dichloroethane                                                                                             | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| 1,2-Dichloropropane                                                                                            | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| 1,3-Dichlorobenzene                                                                                            | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| 1,4-Dichlorobenzene                                                                                            | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| Acetone                                                                                                        | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| Benzene                                                                                                        | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| Bromodichloromethane                                                                                           | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| Bromoform                                                                                                      | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| Bromomethane                                                                                                   | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| Carbon Tetrachloride                                                                                           | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| Chlorobenzene                                                                                                  | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| Chlorodibromomethane                                                                                           | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | < 5.00  | <5.00           |
| Chloroethane                                                                                                   | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| Chloroform                                                                                                     | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| Chloromethane                                                                                                  | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| cis-1,3-Dichloropropene                                                                                        | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| Ethylbenzene                                                                                                   | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| Methyl Ethyl Ketone (MEK)                                                                                      | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| Methylene Chloride                                                                                             | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| МТВЕ                                                                                                           | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| Tetrachloroethene                                                                                              | 16.1    | 9.71    | <5.00          | 10.1        | <5.00      | 5.47         | 5.39    | <5.00           |
| Toluene                                                                                                        | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| trans-1,2-Dichloroethene                                                                                       | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| trans-1,3-Dichloropropene                                                                                      | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| Trichloroethene                                                                                                | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| Trichlorofluoromethane                                                                                         | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| Vinyl Chloride                                                                                                 | <5.00   | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| Xylene, m+p                                                                                                    | < 5.00  | <5.00   | <5.00          | <5.00       | <5.00      | <5.00        | <5.00   | <5.00           |
| Xylene, o                                                                                                      | <5.00   | <5.00   | <5.00          | <5.00       | < 5.00     | <5.00        | <5.00   | < 5.00          |

Table 1

Summary of Analytical Results: SVM-1

| Volatile Organic Compounds |                 |                |                 |                |                 |                |                 |                |
|----------------------------|-----------------|----------------|-----------------|----------------|-----------------|----------------|-----------------|----------------|
| Method T0-1                |                 |                |                 |                |                 | /03 thru 9/    | <u> </u>        |                |
| Matrix: Vapor              | 8/28/03<br>a.m. | 8/28/03        | 8/29/03<br>a.m. | 8/29/03        | 8/30/03<br>a.m. | 8/30/03        | 8/31/03<br>a.m. | 8/31/03        |
| Manthe, Fapor              | μg/10L          | p.m.<br>μg/10L | μg/10L          | p.m.<br>μg/10L | μg/10L          | p.m.<br>μg/10L | μg/10L          | p.m.<br>μg/10L |
| 1,1,1-Trichloroethane      | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| 1,1,2,2-Tetrachloroethane  | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| 1,1,2-Trichloroethane      | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| 1,1-Dichloroethane         | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| 1,1-Dichloroethene         | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| 1,2-Dichlorobenzene        | <5.00           | <5.00          | <5.00           | < 5.00         | <5.00           | <5.00          | <5.00           | <5.00          |
| 1,2-Dichloroethane         | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| 1,2-Dichloropropane        | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| 1,3-Dichlorobenzene        | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| 1,4-Dichlorobenzene        | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| Acetone                    | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| Benzene                    | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| Bromodichloromethane       | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| Bromoform                  | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| Bromomethane               | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| Carbon Tetrachloride       | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| Chlorobenzene              | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| Chlorodibromomethane       | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| Chloroethane               | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| Chloroform                 | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | < 5.00         | < 5.00          | <5.00          |
| Chloromethane              | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| cis-1,3-Dichloropropene    | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| Ethylbenzene               | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| Methyl Ethyl Ketone (MEK)  | <5.00           | <5.00          | < 5.00          | <5.00          | <5.00           | < 5.00         | <5.00           | <5.00          |
| Methylene Chloride         | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| MTBE                       | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| Tetrachloroethene          | 14.9            | 6.19           | <5.00           | <5.00          | 7.41            | <5.00          | <5.00           | 5.24           |
| Toluene                    | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| trans-1,2-Dichloroethene   | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| trans-1,3-Dichloropropene  | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| Trichloroethene            | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| Trichlorofluoromethane     | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| Vinyl Chloride             | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| Xylene, m+p                | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          | <5.00           | <5.00          |
| Xylene, o                  | <5.00           | <5.00          | <5.00           | <5.00          | < 5.00          | <5.00          | < 5.00          | <5.00          |

Table 1

### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVM-1

| Volatile Organic Compounds |                |                  |                |                |            |                 | _               |        |
|----------------------------|----------------|------------------|----------------|----------------|------------|-----------------|-----------------|--------|
| Method T0-1                |                | SVE              | Performan      | ce Test (16    | Days: 8/24 | 1/03 thru 9/    | 8/03)           |        |
|                            | 9/1/03         | 9/1/03           | 9/2/03         | 9/2/03         | 9/3/03     | 9/3/03          | 9/4/03          | 9/4/03 |
| Matrix: Vapor              | a.m.           | p.m.             | a.m.           | p.m.           | a.m.       | p.m.            | a.m.            | p.m.   |
| 1 1 1 Tricklessothers      | μg/10L<br>n/a* | μg/10L           | μg/10L         | μg/10L         | μg/10L     | μg/10L<br><5.00 | μg/10L<br><5.00 | μg/10L |
| 1,1,1-Trichloroethane      | _              | <5.00<br><5.00   | <5.00<br><5.00 | <5.00<br><5.00 | <5.00      |                 |                 | <5.00  |
| 1,1,2,2-Tetrachloroethane  | n/a*           |                  |                |                | <5.00      | <5.00           | <5.00           | <5.00  |
| 1,1,2-Trichloroethane      | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| 1,1-Dichloroethane         | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| 1,1-Dichloroethene         | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| 1,2-Dichlorobenzene        | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| 1,2-Dichloroethane         | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| 1,2-Dichloropropane        | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| 1,3-Dichlorobenzene        | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| 1,4-Dichlorobenzene        | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| Acetone                    | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| Benzene                    | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| Bromodichloromethane       | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| Bromoform                  | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| Bromomethane               | n/a*           | <b>&lt;</b> 5.00 | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| Carbon Tetrachloride       | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| Chlorobenzene              | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| Chlorodibromomethane       | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | < 5.00          | <5.00           | <5.00  |
| Chloroethane               | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| Chloroform                 | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| Chloromethane              | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| cis-1,3-Dichloropropene    | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| Ethylbenzene               | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| Methyl Ethyl Ketone (MEK)  | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | < 5.00 |
| Methylene Chloride         | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| MTBE                       | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| Tetrachloroethene          | n/a*           | <5.00            | <5.00          | 10.8           | 5.42       | 18.7            | <5.00           | <5.00  |
| Toluene                    | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| trans-1,2-Dichloroethene   | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| trans-1,3-Dichloropropene  | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| Trichloroethene            | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| Trichlorofluoromethane     | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| Vinyl Chloride             | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| Xylene, m+p                | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |
| Xylene, o                  | n/a*           | <5.00            | <5.00          | <5.00          | <5.00      | <5.00           | <5.00           | <5.00  |

Note: Results are reported per 10L (Tenax tube volume).

n/a\* = not available; laboratory instrument failure

Table 1

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVM-1

| Volatile Organic Compounds |                |           | -         |             |              | V.          | **     |
|----------------------------|----------------|-----------|-----------|-------------|--------------|-------------|--------|
| Method T0-1                |                | SVE Perfo | rmance Te | st (16 Days | : 8/24/03 tl | aru 9/8/03) |        |
|                            | 9/5/03         | 9/5/03    | 9/6/03    | 9/6/03      | 9/7/03       | 9/7/03      | 9/8/03 |
| Matrix: Vapor              | a.m.           | p.m.      | a.m.      | p.m.        | a.m.         | p.m.        | a.m.   |
|                            | μg/ <b>10L</b> | μg/10L    | μg/10L    | μg/10L      | μg/10L       | μg/10L      | μg/10L |
| 1,1,1-Trichloroethane      | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,1,2,2-Tetrachloroethane  | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,1,2-Trichloroethane      | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,1-Dichloroethane         | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,1-Dichloroethene         | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,2-Dichlorobenzene        | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,2-Dichloroethane         | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,2-Dichloropropane        | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,3-Dichlorobenzene        | <5.00          | < 5.00    | <5.00     | <5.00       | <5.00        | <5.00       | < 5.00 |
| 1,4-Dichlorobenzene        | <5.00          | < 5.00    | <5.00     | <5.00       | <5.00        | <5.00       | < 5.00 |
| Acetone                    | <5.00          | < 5.00    | <5.00     | < 5.00      | < 5.00       | <5.00       | <5.00  |
| Benzene                    | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Bromodichloromethane       | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Bromoform                  | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Bromomethane               | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Carbon Tetrachloride       | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | < 5.00 |
| Chlorobenzene              | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Chlorodibromomethane       | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Chloroethane               | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Chloroform                 | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Chloromethane              | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| cis-1,3-Dichloropropene    | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Ethylbenzene               | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Methyl Ethyl Ketone (MEK)  | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Methylene Chloride         | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| MTBE                       | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Tetrachloroethene          | <5.00          | 15.3      | 7.63      | 19.4        | 14.7         | 18.0        | <5.00  |
| Toluene                    | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| trans-1,2-Dichloroethene   | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| trans-1,3-Dichloropropene  | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Trichloroethene            | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Trichlorofluoromethane     | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Vinyl Chloride             | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Xylene, m+p                | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Xylene, o                  | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |

#### Table 1

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

Summary of Analytical Results: SVM-1

| Volatile Organic Compounds  Method T0-1 | Initial SVE Operating Period (42 Days: 9/9/03 thru 10/20/03) |        |             |             |        |        |  |  |  |  |
|-----------------------------------------|--------------------------------------------------------------|--------|-------------|-------------|--------|--------|--|--|--|--|
| Matrix: Vapor                           | 918/03                                                       | (421   | Jays. 3/3/0 | 5 tinu 10/2 | .0/03) |        |  |  |  |  |
|                                         | μg/10L                                                       | μg/10L | μg/10L      | μg/10L      | μg/10L | μg/10L |  |  |  |  |
| 1,1,1-Trichloroethane                   | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| 1,1,2,2-Tetrachloroethane               | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| 1,1,2-Trichloroethane                   | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| 1,1-Dichloroethane                      | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| 1,1-Dichloroethene                      | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| 1,2-Dichlorobenzene                     | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| 1,2-Dichloroethane                      | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| 1,2-Dichloropropane                     | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| 1,3-Dichlorobenzene                     | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| 1,4-Dichlorobenzene                     | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Acetone                                 | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Benzene                                 | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Bromodichloromethane                    | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Bromoform                               | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Bromomethane                            | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Carbon Tetrachloride                    | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Chlorobenzene                           | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Chlorodibromomethane                    | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Chloroethane                            | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Chloroform                              | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Chloromethane                           | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| cis-1,3-Dichloropropene                 | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Ethylbenzene                            | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Methyl Ethyl Ketone (MEK)               | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Methylene Chloride                      | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| MTBE                                    | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Tetrachloroethene                       | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Toluene                                 | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| trans-1,2-Dichloroethene                | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| trans-1,3-Dichloropropene               | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Trichloroethene                         | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Trichlorofluoromethane                  | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Vinyl Chloride                          | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Xylene, m+p                             | <5.00                                                        |        |             |             |        |        |  |  |  |  |
| Xylene, o                               | <5.00                                                        |        |             |             |        |        |  |  |  |  |

Table 1

Summary of Analytical Results: SVM-2

| Volatile Organic Compounds | 1       |         |           |             |            |              |         |         |
|----------------------------|---------|---------|-----------|-------------|------------|--------------|---------|---------|
| Method T0-1                |         | SVE     | Performan | ce Test (16 | Days: 8/24 | 1/03 thru 9/ | 8/03)   |         |
|                            | 8/24/03 | 8/24/03 | 8/25/03   | 8/25/03     | 8/26/03    | 8/26/03      | 8/27/03 | 8/27/03 |
| Matrix: Vapor              | a.m.    | p.m.    | a.m.      | p.m.        | a.m.       | p.m.         | a.m.    | p.m.    |
| i=                         | μg/10L  | μg/10L  | μg/10L    | μg/10L      | μg/10L     | μg/10L       | μg/10L  | μg/10L  |
| 1,1,1-Trichloroethane      | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| 1,1,2,2-Tetrachloroethane  | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| 1,1,2-Trichloroethane      | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| 1,1-Dichloroethane         | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| 1,1-Dichloroethene         | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| 1,2-Dichlorobenzene        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| 1,2-Dichloroethane         | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| 1,2-Dichloropropane        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| 1,3-Dichlorobenzene        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| 1,4-Dichlorobenzene        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Acetone                    | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Benzene                    | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Bromodichloromethane       | <5.00   | <5.00   | <5.00     | <5.00       | < 5.00     | <5.00        | <5.00   | <5.00   |
| Bromoform                  | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Bromomethane               | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Carbon Tetrachloride       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Chlorobenzene              | 117     | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Chlorodibromomethane       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Chloroethane               | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Chloroform                 | 719     | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Chloromethane              | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| cis-1,3-Dichloropropene    | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Ethylbenzene               | 41.0    | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Methyl Ethyl Ketone (MEK)  | 146     | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Methylene Chloride         | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| МТВЕ                       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Tetrachloroethene          | 17100   | 10.7    | 7.33      | 11.9        | 9.83       | 174          | 11.3    | 10.8    |
| Toluene                    | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| trans-1,2-Dichloroethene   | 87.1    | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| trans-1,3-Dichloropropene  | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Trichloroethene            | 3580    | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Trichlorofluoromethane     | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Vinyl Chloride             | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Xylene, m+p                | 31.3    | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |
| Xylene, o                  | 13.5    | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | <5.00   |

Note: Results are reported per 10L (Tenax tube volume).

. . 2.

Table 1

Summary of Analytical Results: SVM-2

| Volatile Organic Compounds | -               |                |                 |                |                |                |                |                |
|----------------------------|-----------------|----------------|-----------------|----------------|----------------|----------------|----------------|----------------|
| Method T0-1                | 1 22            |                |                 |                |                | /03 thru 9/    |                |                |
| Matrix: Vapor              | 8/28/03<br>a.m. | 8/28/03        | 8/29/03<br>a.m. | 8/29/03        | 8/30/03        | 8/30/03        | 8/31/03        | 8/31/03        |
| mauri, rapor               | μg/10L          | p.m.<br>μg/10L | μg/10L          | p.m.<br>μg/10L | a.m.<br>μg/10L | p.m.<br>μg/10L | a.m.<br>μg/10L | p.m.<br>μg/10L |
| 1,1,1-Trichloroethane      | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| 1,1,2,2-Tetrachloroethane  | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| 1,1,2-Trichloroethane      | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| 1,1-Dichloroethane         | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| 1,1-Dichloroethene         | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| 1,2-Dichlorobenzene        | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| 1,2-Dichloroethane         | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| 1,2-Dichloropropane        | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| 1,3-Dichlorobenzene        | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| 1,4-Dichlorobenzene        | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| Acetone                    | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| Benzene                    | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| Bromodichloromethane       | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| Bromoform                  | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| Bromomethane               | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | < 5.00         | <5.00          | n/a*           |
| Carbon Tetrachloride       | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| Chlorobenzene              | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| Chlorodibromomethane       | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| Chloroethane               | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| Chloroform                 | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| Chloromethane              | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| cis-1,3-Dichloropropene    | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| Ethylbenzene               | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| Methyl Ethyl Ketone (MEK)  | < 5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| Methylene Chloride         | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| MTBE                       | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| Tetrachloroethene          | 9.08            | 13.3           | 12.9            | 12.8           | 16.5           | 9.31           | 12.0           | n/a*           |
| Toluene                    | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| trans-1,2-Dichloroethene   | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| trans-1,3-Dichloropropene  | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| Trichloroethene            | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| Trichlorofluoromethane     | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| Vinyl Chloride             | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| Xylene, m+p                | <5.00           | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |
| Xylene, o                  | < 5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          | n/a*           |

Note: Results are reported per 10L (Tenax tube volume).

n/a\* = not available; laboratory instrument failure

Table 1

Summary of Analytical Results: SVM-2

| Volatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                |                |                |                |                |                |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|
| Method T0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                | Performan      | ce Test (16    | Days: 8/24     | /03 thru 9/    | 8/03)          |                 |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 9/1/03         | 9/1/03         | 9/2/03         | 9/2/03         | 9/3/03         | 9/3/03         | 9/4/03         | 9/4/03          |
| Matrix: Vapor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a.m.<br>μg/10L | p.m.<br>μg/10L | a.m.<br>μg/10L | p.m.<br>μg/10L | a.m.<br>μg/10L | p.m.<br>μg/10L | a.m.<br>μg/10L | p.m.            |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | 45.00          | μg/10L<br><5.00 |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n/a*           | <5.00          | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          | <5.00           |
| Carbon Tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| Chlorodibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | < 5.00          |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| Methyl Ethyl Ketone (MEK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | < 5.00          |
| MTBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/a*           | 12.1           | 11.0           | 5.26           | 15.1           | 16.6           | 17.9           | 10.8            |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| trans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | < 5.00          |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>n/a</u> *   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| Xylene, m+p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |
| Xylene, o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/a*           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |

Note: Results are reported per 10L (Tenax tube volume).

 $n/a^* = not$  available; laboratory instrument failure

Table 1

#### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVM-2

| Volatile Organic Compounds |                |                |                |                |                |                |                |
|----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Method T0-1                |                | SVE Perfo      | rmance Te      | st (16 Days    | : 8/24/03 tl   | ıru 9/8/03)    |                |
|                            | 9/5/03         | 9/5/03         | 9/6/03         | 9/6/03         | 9/7/03         | 9/7/03         | 9/8/03         |
| Matrix: Vapor              | a.m.<br>μg/10L | p.m.<br>μg/10L | a.m.<br>μg/10L | p.m.<br>μg/10L | a.m.<br>μg/10L | p.m.<br>μg/10L | a.m.<br>μg/10L |
| 1,1,1-Trichloroethane      | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1,2,2-Tetrachloroethane  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1,2-Trichloroethane      | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1-Dichloroethane         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1-Dichloroethene         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichlorobenzene        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloroethane         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloropropane        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,3-Dichlorobenzene        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,4-Dichlorobenzene        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Acetone                    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Benzene                    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromodichloromethane       | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromoform                  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromomethane               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Carbon Tetrachloride       | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chlorobenzene              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chlorodibromomethane       | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chloroethane               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chloroform                 | <5.00          | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          | < 5.00         |
| Chloromethane              | < 5.00         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | < 5.00         |
| cis-1,3-Dichloropropene    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Ethylbenzene               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | < 5.00         |
| Methyl Ethyl Ketone (MEK)  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | < 5.00         |
| Methylene Chloride         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| MTBE                       | < 5.00         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | < 5.00         |
| Tetrachloroethene          | 14.8           | 14.5           | 17.3           | 13.5           | 15.7           | 19.0           | 14.4           |
| Toluene                    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| trans-1,2-Dichloroethene   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| trans-1,3-Dichloropropene  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Trichloroethene            | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Trichlorofluoromethane     | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Vinyl Chloride             | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Xylene, m+p                | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Xylene, o                  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |

#### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

## Summary of Analytical Results: SVM-2

| Volatile Organic Compounds<br>Method T0-1 | Initial SVE Operating Period (42 Days: 9/9/03 thru 10/20/03) |        |        |        |        |        |  |  |  |  |
|-------------------------------------------|--------------------------------------------------------------|--------|--------|--------|--------|--------|--|--|--|--|
| Matrix: Vapor                             | 9/18/03                                                      |        |        |        |        |        |  |  |  |  |
|                                           | μ <b>g/1</b> 0L                                              | μg/10L | μg/10L | μg/10L | μg/10L | μg/10L |  |  |  |  |
| 1,1,1-Trichloroethane                     | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| 1,1,2-Trichloroethane                     | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| 1,1-Dichloroethane                        | <5.00                                                        |        |        |        | _      |        |  |  |  |  |
| 1,1-Dichloroethene                        | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| 1,2-Dichlorobenzene                       | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| 1,2-Dichloroethane                        | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| 1,2-Dichloropropane                       | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| 1,3-Dichlorobenzene                       | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| 1,4-Dichlorobenzene                       | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| Acetone                                   | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| Benzene                                   | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| Bromodichloromethane                      | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| Bromoform                                 | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| Bromomethane                              | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| Carbon Tetrachloride                      | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| Chlorobenzene                             | < 5.00                                                       |        |        |        |        |        |  |  |  |  |
| Chlorodibromomethane                      | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| Chloroethane                              | <5.00                                                        |        |        |        | •      |        |  |  |  |  |
| Chloroform                                | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| Chloromethane                             | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| cis-1,3-Dichloropropene                   | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| Ethylbenzene                              | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| Methyl Ethyl Ketone (MEK)                 | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| Methylene Chloride                        | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| MTBE                                      | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| Tetrachloroethene                         | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| Toluene                                   | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| trans-1,2-Dichloroethene                  | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| trans-1,3-Dichloropropene                 | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| Trichloroethene                           | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| Trichlorofluoromethane                    | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| Vinyl Chloride                            | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| Xylene, m+p                               | <5.00                                                        |        |        |        |        |        |  |  |  |  |
| Xylene, o                                 | <5.00                                                        |        |        |        |        |        |  |  |  |  |

Table 1

#### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVM-3

| Volatile Organic Compounds |                |                |                |                |                |                |                |                |
|----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Method T0-1                |                |                |                |                | Days: 8/24     |                |                |                |
| V Y.                       | 8/24/03        | 8/24/03        | 8/25/03        | 8/25/03        | 8/26/03        | 8/26/03        | 8/27/03        | 8/27/03        |
| Matrix: Vapor              | a.m.<br>μg/10L | p.m.<br>μg/10L | a.m.<br>μg/10L | p.m.<br>μg/10L | a.m.<br>μg/10L | p.m.<br>μg/10L | a.m.<br>μg/10L | p.m.<br>μg/10L |
| 1,1,1-Trichloroethane      | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1,2,2-Tetrachloroethane  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1,2-Trichloroethane      | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1-Dichloroethane         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1-Dichloroethene         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichlorobenzene        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloroethane         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloropropane        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5:00          |
| 1,3-Dichlorobenzene        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,4-Dichlorobenzene        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Acetone                    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Benzene                    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromodichloromethane       | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromoform                  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | < 5.00         |
| Bromomethane               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Carbon Tetrachloride       | <5.00          | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          | <5.00          | <5.00          |
| Chlorobenzene              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chlorodibromomethane       | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chloroethane               | < 5.00         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chloroform                 | <5.00          | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          | < 5.00         | <5.00          |
| Chloromethane              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| cis-1,3-Dichloropropene    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          |
| Ethylbenzene               | <5.00          | <5.00          | 9.29           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Methyl Ethyl Ketone (MEK)  | <5.00          | <5.00          | 84.3           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Methylene Chloride         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| MTBE                       | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Tetrachloroethene          | 13.1           | 11.0           | 3440           | 10.4           | 10.3           | 12.1           | 8.71           | 14.1           |
| Toluene                    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| trans-1,2-Dichloroethene   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| trans-1,3-Dichloropropene  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Trichloroethene            | <5.00          | <5.00          | 141            | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Trichlorofluoromethane     | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Vinyl Chloride             | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Xylene, m+p                | <5.00          | <5.00          | 10.2           | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Xylene, o                  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |

Table 1

**Summary of Analytical Results: SVM-3** 

| Volatile Organic Compounds<br>Method T0-1 |                | SVE     | Performan | ce Test (16 | Days: 8/24 |                | 8/03)   |         |
|-------------------------------------------|----------------|---------|-----------|-------------|------------|----------------|---------|---------|
|                                           | 8/28/03        | 8/28/03 | 8/29/03   | 8/29/03     | 8/30/03    | 8/30/03        | 8/31/03 | 8/31/03 |
| Matrix: Vapor                             | a.m.           | p.m.    | a.m.      | p.m.        | a.m.       | p.m.           | a.m.    | p.m.    |
|                                           | μg/10 <b>L</b> | μg/10L  | μg/10L    | μg/10L      | μg/10L     | μ <b>g/10L</b> | μg/10L  | μg/10L  |
| 1,1,1-Trichloroethane                     | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| 1,1,2,2-Tetrachloroethane                 | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| 1,1,2-Trichloroethane                     | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| 1,1-Dichloroethane                        | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| 1,1-Dichloroethene                        | <5.00          | <5.00   | <5.00     | <5.00       | < 5.00     | <5.00          | <5.00   | n/a*    |
| 1,2-Dichlorobenzene                       | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| 1,2-Dichloroethane                        | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| 1,2-Dichloropropane                       | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| 1,3-Dichlorobenzene                       | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| 1,4-Dichlorobenzene                       | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Acetone                                   | <5.00          | < 5.00  | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Benzene                                   | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Bromodichloromethane                      | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Bromoform                                 | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Bromomethane                              | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Carbon Tetrachloride                      | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Chlorobenzene                             | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Chlorodibromomethane                      | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Chloroethane                              | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Chloroform                                | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Chloromethane                             | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| cis-1,3-Dichloropropene                   | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Ethylbenzene                              | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Methyl Ethyl Ketone (MEK)                 | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Methylene Chloride                        | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| MTBE                                      | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Tetrachloroethene                         | 15.6           | <5.00   | 16.6      | 16.1        | 12.6       | 10.8           | 11.2    | n/a*    |
| Toluene                                   | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| trans-1,2-Dichloroethene                  | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| trans-1,3-Dichloropropene                 | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Trichloroethene                           | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Trichlorofluoromethane                    | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Vinyl Chloride                            | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Xylene, m+p                               | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |
| Xylene, o                                 | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00          | <5.00   | n/a*    |

Note: Results are reported per 10L (Tenax tube volume).

 $n/a^* = not$  available; laboratory instrument failure

Table 1

**Summary of Analytical Results: SVM-3** 

| Volatile Organic Compounds<br>Method T0-1 |        | SVE    | Performan | ce Test (16 | Days: 8/24 | 1/03 thru 9/ | 8/03)  |        |
|-------------------------------------------|--------|--------|-----------|-------------|------------|--------------|--------|--------|
|                                           | 9/1/03 | 9/1/03 | 9/2/03    | 9/2/03      | 9/3/03     | 9/3/03       | 9/4/03 | 9/4/03 |
| Matrix: Vapor                             | a.m.   | p.m.   | a.m.      | p.m.        | a.m.       | p.m.         | a.m.   | p.m.   |
|                                           | μg/10L | μg/10L | μg/10L    | μg/10L      | μg/10L     | μg/10L       | μg/10L | μg/10L |
| 1,1,1-Trichloroethane                     | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| 1,1,2,2-Tetrachloroethane                 | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| 1,1,2-Trichloroethane                     | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| 1,1-Dichloroethane                        | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | < 5.00       | <5.00  | <5.00  |
| 1,1-Dichloroethene                        | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| 1,2-Dichlorobenzene                       | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| 1,2-Dichloroethane                        | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| 1,2-Dichloropropane                       | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| 1,3-Dichlorobenzene                       | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| 1,4-Dichlorobenzene                       | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Acetone                                   | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Benzene                                   | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Bromodichloromethane                      | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Bromoform                                 | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Bromomethane                              | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Carbon Tetrachloride                      | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Chlorobenzene                             | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Chlorodibromomethane                      | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Chloroethane                              | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Chloroform                                | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Chloromethane                             | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| cis-1,3-Dichloropropene                   | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Ethylbenzene                              | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Methyl Ethyl Ketone (MEK)                 | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Methylene Chloride                        | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| MTBE                                      | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Tetrachloroethene                         | 12.0   | 15.9   | 15.7      | 8.61        | 9.54       | 13.6         | 19.8   | 16.1   |
| Toluene                                   | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| trans-1,2-Dichloroethene                  | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| trans-1,3-Dichloropropene                 | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Trichloroethene                           | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Trichlorofluoromethane                    | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Vinyl Chloride                            | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Xylene, m+p                               | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |
| Xylene, o                                 | <5.00  | <5.00  | <5.00     | <5.00       | <5.00      | <5.00        | <5.00  | <5.00  |

Table 1

Summary of Analytical Results: SVM-3

| Volatile Organic Compounds | •              | _         |           |             |              | <del></del> |        |
|----------------------------|----------------|-----------|-----------|-------------|--------------|-------------|--------|
| Method T0-1                |                | SVE Perfo | rmance Te | st (16 Days | : 8/24/03 th | ıru 9/8/03) |        |
|                            | 9/5/03         | 9/5/03    | 9/6/03    | 9/6/03      | 9/7/03       | 9/7/03      | 9/8/03 |
| Matrix: Vapor              | a.m.           | p.m.      | a.m.      | p.m.        | a.m.         | p.m.        | a.m.   |
|                            | μg/ <b>10L</b> | μg/10L    | μg/10L    | μg/10L      | μg/10L       | μg/10L      | μg/10L |
| 1,1,1-Trichloroethane      | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,1,2,2-Tetrachloroethane  | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,1,2-Trichloroethane      | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,1-Dichloroethane         | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,1-Dichloroethene         | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,2-Dichlorobenzene        | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,2-Dichloroethane         | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,2-Dichloropropane        | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,3-Dichlorobenzene        | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,4-Dichlorobenzene        | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Acetone                    | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Benzene                    | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Bromodichloromethane       | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Bromoform                  | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Bromomethane               | <5.00 °        | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Carbon Tetrachloride       | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Chlorobenzene              | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Chlorodibromomethane       | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Chloroethane               | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | < 5.00 |
| Chloroform                 | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Chloromethane              | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | < 5.00 |
| cis-1,3-Dichloropropene    | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Ethylbenzene               | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Methyl Ethyl Ketone (MEK)  | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Methylene Chloride         | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| MTBE                       | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Tetrachloroethene          | <5.00          | 12.1      | 13.1      | 12.8        | 13.0         | 18.1        | 19.3   |
| Toluene                    | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| trans-1,2-Dichloroethene   | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| trans-1,3-Dichloropropene  | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Trichloroethene            | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Trichlorofluoromethane     | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Vinyl Chloride             | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Xylene, m+p                | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Xylene, o                  | <5.00          | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVM-3

| Volatile Organic Compounds<br>Method T0-1 | Initial SVE Operating Period<br>(42 Days: 9/9/03 thru 10/21/03) |        |             |           |        |        |  |  |  |  |
|-------------------------------------------|-----------------------------------------------------------------|--------|-------------|-----------|--------|--------|--|--|--|--|
| Matrix: Vapor                             | 9/18/03                                                         | (42.1  | Jays. 31310 | 3 mu 10/2 | 1703)  |        |  |  |  |  |
|                                           | μg/10L                                                          | μg/10L | μg/10L      | μg/10L    | μg/10L | μg/10L |  |  |  |  |
| 1,1,1-Trichloroethane                     | <5.00                                                           |        |             |           |        | _      |  |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| 1,1,2-Trichloroethane                     | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| 1,1-Dichloroethane                        | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| 1,1-Dichloroethene                        | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| 1,2-Dichlorobenzene                       | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| 1,2-Dichloroethane                        | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| 1,2-Dichloropropane                       | <5.00                                                           | _      |             |           |        |        |  |  |  |  |
| 1,3-Dichlorobenzene                       | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| 1,4-Dichlorobenzene                       | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Acetone                                   | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Benzene                                   | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Bromodichloromethane                      | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Bromoform                                 | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Bromomethane                              | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Carbon Tetrachloride                      | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Chlorobenzene                             | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Chlorodibromomethane                      | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Chloroethane                              | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Chloroform                                | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Chloromethane                             | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| cis-1,3-Dichloropropene                   | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Ethylbenzene                              | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Methyl Ethyl Ketone (MEK)                 | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Methylene Chloride                        | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| MTBE                                      | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Tetrachloroethene                         | 6.95                                                            |        |             |           |        |        |  |  |  |  |
| Toluene                                   | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| trans-1,2-Dichloroethene                  | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| trans-1,3-Dichloropropene                 | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Trichloroethene                           | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Trichlorofluoromethane                    | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Vinyl Chloride                            | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Xylene, m+p                               | <5.00                                                           |        |             |           |        |        |  |  |  |  |
| Xylene, o                                 | <5.00                                                           |        |             |           | ,      |        |  |  |  |  |

Table 1

Summary of Analytical Results: SVM-4

| Volatile Organic Compounds<br>Method T0-1 |         | SVE             | Performan      | ce Test (16 | Days: 8/24     | 1/03 thru 9/ | 8/03)   |         |
|-------------------------------------------|---------|-----------------|----------------|-------------|----------------|--------------|---------|---------|
|                                           | 8/24/03 | 8/24/03         | 8/25/03        | 8/25/03     | 8/26/03        | 8/26/03      | 8/27/03 | 8/27/03 |
| Matrix: Vapor                             | a.m.    | p.m.            | a.m.           | p.m.        | a.m.           | p.m.         | a.m.    | p.m.    |
|                                           | μg/10L  | μ <b>g/10</b> L | μg/10 <b>L</b> | μg/10L      | μg/10 <b>L</b> | μg/10L       | μg/10L  | μg/10L  |
| 1,1,1-Trichloroethane                     | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| 1,1,2,2-Tetrachloroethane                 | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| 1,1,2-Trichloroethane                     | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| 1,1-Dichloroethane                        | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| 1,1-Dichloroethene                        | < 5.00  | <5.00           | <5.00          | <5.00       | <5.00          | < 5.00       | <5.00   | <5.00   |
| 1,2-Dichlorobenzene                       | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| 1,2-Dichloroethane                        | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | < 5.00  |
| 1,2-Dichloropropane                       | <5.00   | <5.00           | <5.00          | < 5.00      | <5.00          | <5.00        | <5.00   | <5.00   |
| 1,3-Dichlorobenzene                       | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | < 5.00       | <5.00   | <5.00   |
| 1,4-Dichlorobenzene                       | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| Acetone                                   | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| Benzene                                   | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | < 5.00  |
| Bromodichloromethane                      | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| Bromoform                                 | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| Bromomethane                              | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| Carbon Tetrachloride                      | <5.00   | <5.00           | <5.00          | < 5.00      | <5.00          | <5.00        | <5.00   | <5.00   |
| Chlorobenzene                             | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| Chlorodibromomethane                      | <5.00   | < 5.00          | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| Chloroethane                              | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| Chloroform                                | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| Chloromethane                             | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | < 5.00  | <5.00   |
| cis-1,3-Dichloropropene                   | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| Ethylbenzene                              | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| Methyl Ethyl Ketone (MEK)                 | 10200   | 96.7            | 54.7           | 40.9        | 16.0           | 5.59         | 5.59    | 7.80    |
| Methylene Chloride                        | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| MTBE                                      | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| Tetrachloroethene                         | 3570    | 11.8            | 8.97           | 8.91        | 10.4           | 9.23         | 8.34    | 8.34    |
| Toluene                                   | 27.6    | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| trans-1,2-Dichloroethene                  | <5.00   | < 5.00          | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| trans-1,3-Dichloropropene                 | < 5.00  | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| Trichloroethene                           | 148     | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| Trichlorofluoromethane                    | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| Vinyl Chloride                            | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| Xylene, m+p                               | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |
| Xylene, o                                 | <5.00   | <5.00           | <5.00          | <5.00       | <5.00          | <5.00        | <5.00   | <5.00   |

#### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

Summary of Analytical Results: SVM-4

| Volatile Organia Compounds                |         |         |           |             |            |              |         |         |
|-------------------------------------------|---------|---------|-----------|-------------|------------|--------------|---------|---------|
| Volatile Organic Compounds<br>Method T0-1 |         | SVE     | Performan | ce Test (16 | Days: 8/24 | 1/03 thru 9/ | 8/03)   |         |
|                                           | 8/28/03 | 8/28/03 | 8/29/03   | 8/29/03     | 8/30/03    | 8/30/03      | 8/31/03 | 8/31/03 |
| Matrix: Vapor                             | a.m.    | p.m.    | a.m.      | p.m.        | a.m.       | p.m.         | a.m.    | p.m.    |
|                                           | μg/10L  | μg/10L  | μg/10L    | μg/10L      | μg/10L     | μg/10L       | μg/10L  | μg/10L  |
| 1,1,1-Trichloroethane                     | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| 1,1,2,2-Tetrachloroethane                 | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | < 5.00       | <5.00   | n/a*    |
| 1,1,2-Trichloroethane                     | <5.00   | <5.00   | < 5.00    | <5.00       | < 5.00     | <5.00        | <5.00   | n/a*    |
| 1,1-Dichloroethane                        | <5.00   | <5.00   | < 5.00    | <5.00       | < 5.00     | <5.00        | <5.00   | n/a*    |
| 1,1-Dichloroethene                        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| 1,2-Dichlorobenzene                       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| 1,2-Dichloroethane                        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| 1,2-Dichloropropane                       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| 1,3-Dichlorobenzene                       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| 1,4-Dichlorobenzene                       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Acetone                                   | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Benzene                                   | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Bromodichloromethane                      | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Bromoform                                 | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Bromomethane                              | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Carbon Tetrachloride                      | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Chlorobenzene                             | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | < 5.00  | n/a*    |
| Chlorodibromomethane                      | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Chloroethane                              | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Chloroform                                | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Chloromethane                             | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| cis-1,3-Dichloropropene                   | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Ethylbenzene                              | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Methyl Ethyl Ketone (MEK)                 | 5.94    | 5.94    | 5.35      | 5.02        | <5.00      | <5.00        | 101     | n/a*    |
| Methylene Chloride                        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| MTBE                                      | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Tetrachloroethene                         | 19.4    | 9.35    | 17.1      | 10.5        | 9.88       | 9.79         | 9.34    | n/a*    |
| Toluene                                   | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| trans-1,2-Dichloroethene                  | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| trans-1,3-Dichloropropene                 | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Trichloroethene                           | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Trichlorofluoromethane                    | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | < 5.00  | n/a*    |
| Vinyl Chloride                            | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Xylene, m+p                               | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Xylene, o                                 | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | < 5.00  | n/a*    |

Note: Results are reported per 10L (Tenax tube volume).

n/a\* = not available; laboratory instrument failure

Table 1

Summary of Analytical Results: SVM-4

| Volatile Organic Compounds |                 |                 |                 |                 |                 |                 |                 |                 |
|----------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Method T0-1                |                 | SVE             | Performan       | ce Test (16     | Days: 8/24      | /03 thru 9/     | 8/03)           |                 |
|                            | 9/1/03          | 9/1/03          | 9/2/03          | 9/2/03          | 9/3/03          | 9/3/03          | 9/4/03          | 9/4/03          |
| Matrix: Vapor              | a.m.            | p.m.<br>μg/10L  | a.m.            | p.m.            | a.m.            | p.m.            | a.m.            | p.m.            |
| 1,1,1-Trichloroethane      | μg/10L<br><5.00 | 49/10L<br><5.00 | μg/10L<br><5.00 | μg/10L<br><5.00 | μg/10L<br><5.00 | μg/10L<br><5.00 | μg/10L<br><5.00 | μg/10L<br><5.00 |
| 1,1,2,2-Tetrachloroethane  | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| 1,1,2-Trichloroethane      | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| 1,1-Dichloroethane         | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| 1,1-Dichloroethene         | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| 1,2-Dichlorobenzene        | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| 1,2-Dichloroethane         | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| 1,2-Dichloropropane        | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| 1,3-Dichlorobenzene        | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| 1,4-Dichlorobenzene        | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| Acetone                    | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| Benzene                    | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| Bromodichloromethane       | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| Bromoform                  | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| Bromomethane               | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| Carbon Tetrachloride       | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| Chlorobenzene              | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| Chlorodibromomethane       | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| Chloroethane               | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| Chloroform                 | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| Chloromethane              | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| cis-1,3-Dichloropropene    | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| Ethylbenzene               | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| Methyl Ethyl Ketone (MEK)  | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | 22.2            | <5.00           |
| Methylene Chloride         | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| MTBE                       | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | < 5.00          | <5.00           | <5.00           |
| Tetrachloroethene          | 8.57            | 13.0            | 11.7            | 9.65            | 14.6            | 15.7            | 16.5            | 10.5            |
| Toluene                    | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| trans-1,2-Dichloroethene   | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| trans-1,3-Dichloropropene  | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| Trichloroethene            | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | < 5.00          | <5.00           | <5.00           |
| Trichlorofluoromethane     | <5.00           | <5.00           | < 5.00          | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| Vinyl Chloride             | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           |
| Xylene, m+p                | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | < 5.00          | <5.00           | <5.00           |
| Xylene, o                  | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | <5.00           | < 5.00          |

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVM-4

| Matrix: Vapor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Volatile Organic Compounds |        |           |           |             |              |             |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------|-----------|-----------|-------------|--------------|-------------|--------|
| Matrix: Vapor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |        | SVE Perfo | rmance Te | st (16 Days | : 8/24/03 tl | hru 9/8/03) |        |
| hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   hg/10L   h |                            | 9/5/03 | 9/5/03    | 9/6/03    | 9/6/03      | 9/7/03       | 9/7/03      | 9/8/03 |
| 1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Matrix: Vapor              |        |           |           |             |              |             |        |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |        |           |           | _           |              |             |        |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |        |           |           |             |              |             |        |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |        |           |           |             |              |             | <5.00  |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,1-Dichloroethene         | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2-Dichlorobenzene        | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2-Dichloroethane         | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2-Dichloropropane        | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,3-Dichlorobenzene        | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Senzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,4-Dichlorobenzene        | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Acetone                    | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Benzene                    | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bromodichloromethane       | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Carbon Tetrachloride         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00 </td <td>Bromoform</td> <td>&lt;5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bromoform                  | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Chlorobenzene         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bromomethane               | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Chlorodibromomethane         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00 </td <td>Carbon Tetrachloride</td> <td>&lt; 5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Carbon Tetrachloride       | < 5.00 | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Chloroethane         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chlorobenzene              | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Chloroform         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chlorodibromomethane       | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Chloromethane         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chloroethane               | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| cis-1,3-Dichloropropene         <5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chloroform                 | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Ethylbenzene         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chloromethane              | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Methyl Ethyl Ketone (MEK)         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cis-1,3-Dichloropropene    | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Methylene Chloride         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00 <td>Ethylbenzene</td> <td>&lt;5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ethylbenzene               | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Methylene Chloride         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00 <td>Methyl Ethyl Ketone (MEK)</td> <td>&lt;5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td> <td>&lt;5.00</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Methyl Ethyl Ketone (MEK)  | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| MTBE         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Tetrachloroethene         13.5         10.7         13.1         11.4         15.0         12.1         13.8           Toluene         <5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Toluene         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tetrachloroethene          |        |           |           |             |              |             | 13.8   |
| trans-1,2-Dichloroethene         <5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Toluene                    |        |           |           |             |              |             | <5.00  |
| trans-1,3-Dichloropropene         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | trans-1,2-Dichloroethene   | <5.00  |           |           |             |              |             | <5.00  |
| Trichloroethene         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | trans-1,3-Dichloropropene  |        |           |           |             |              |             | <5.00  |
| Trichlorofluoromethane         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00         <5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del></del>                |        |           |           |             |              |             | <5.00  |
| Vinyl Chloride <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Trichlorofluoromethane     |        |           |           |             |              |             | <5.00  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |        |           |           |             |              |             | <5.00  |
| Xylene, m+p   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00   <5.00  |                            |        |           |           |             |              |             | <5.00  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |        |           |           |             |              |             | <5.00  |

#### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVM-4

| Volatile Organic Compounds<br>Method T0-1 | Initial SVE Operating Period<br>(42 Days: 9/9/03 thru 10/20/03) |        |        |        |        |        |  |  |  |  |
|-------------------------------------------|-----------------------------------------------------------------|--------|--------|--------|--------|--------|--|--|--|--|
| Matrix: Vapor                             | 9/18/03                                                         |        |        |        |        |        |  |  |  |  |
|                                           | μg/10L                                                          | μg/10L | μg/10L | μg/10L | μg/10L | μg/10L |  |  |  |  |
| 1,1,1-Trichloroethane                     | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | <5.00                                                           |        |        | •      |        |        |  |  |  |  |
| 1,1,2-Trichloroethane                     | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| 1,1-Dichloroethane                        | < 5.00                                                          |        |        |        |        |        |  |  |  |  |
| 1,1-Dichloroethene                        | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| 1,2-Dichlorobenzene                       | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| 1,2-Dichloroethane                        | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| 1,2-Dichloropropane                       | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| 1,3-Dichlorobenzene                       | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| 1,4-Dichlorobenzene                       | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| Acetone                                   | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| Benzene                                   | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| Bromodichloromethane                      | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| Bromoform                                 | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| Bromomethane                              | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| Carbon Tetrachloride                      | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| Chlorobenzene                             | <5.00                                                           | _      |        |        |        |        |  |  |  |  |
| Chlorodibromomethane                      | <5.00                                                           |        |        |        |        | _      |  |  |  |  |
| Chloroethane                              | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| Chloroform                                | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| Chloromethane                             | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| cis-1,3-Dichloropropene                   | <5.00                                                           |        |        |        |        | _      |  |  |  |  |
| Ethylbenzene                              | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| Methyl Ethyl Ketone (MEK)                 | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| Methylene Chloride                        | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| MTBE                                      | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| Tetrachloroethene                         | 13.8                                                            |        |        |        |        |        |  |  |  |  |
| Toluene                                   | <5.00                                                           |        |        |        |        | _      |  |  |  |  |
| trans-1,2-Dichloroethene                  | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| trans-1,3-Dichloropropene                 | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| Trichloroethene                           | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| Trichlorofluoromethane                    | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| Vinyl Chloride                            | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| Xylene, m+p                               | <5.00                                                           |        |        |        |        |        |  |  |  |  |
| Xylene, o                                 | <5.00                                                           |        |        |        |        |        |  |  |  |  |

Table 1

## Summary of Analytical Results: Carbon Vessel 1 (CV-1) Inlet

| Volatile Organic Compounds |                |                |                |                |                 |                |                |                |
|----------------------------|----------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|
| Method T0-1                |                |                |                |                | Days: 8/24      |                |                |                |
| Matrix: Vapor              | 8/24/03        | 8/24/03        | 8/25/03        | 8/25/03        | 8/26/03<br>a.m. | 8/26/03        | 8/27/03        | 8/27/03        |
| Mairex: Vapor              | a.m.<br>μg/10L | p.m.<br>μg/10L | a.m.<br>μg/10L | p.m.<br>μg/10L | μg/10L          | p.m.<br>μg/10L | a.m.<br>μg/10L | p.m.<br>μg/10L |
| 1,1,1-Trichloroethane      | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| 1,1,2,2-Tetrachloroethane  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| 1,1,2-Trichloroethane      | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| 1,1-Dichloroethane         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| 1,1-Dichloroethene         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| 1,2-Dichlorobenzene        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloroethane         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloropropane        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| 1,3-Dichlorobenzene        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| 1,4-Dichlorobenzene        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| Acetone                    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | < 5.00         | <5.00          |
| Benzene                    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| Bromodichloromethane       | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| Bromoform                  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| Bromomethane               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| Carbon Tetrachloride       | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| Chlorobenzene              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| Chlorodibromomethane       | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| Chloroethane               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| Chloroform                 | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00           | <5.00          | < 5.00         | <5.00          |
| Chloromethane              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | < 5.00         | <5.00          |
| cis-1,3-Dichloropropene    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| Ethylbenzene               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| Methyl Ethyl Ketone (MEK)  | <5.00          | 5.12           | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| Methylene Chloride         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| MTBE                       | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| Tetrachloroethene          | 15.3           | 10.2           | 6.37           | 17.1           | 13.5            | 15.2           | 12.5           | 15.6           |
| Toluene                    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| trans-1,2-Dichloroethene   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| trans-1,3-Dichloropropene  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | < 5.00         |
| Trichloroethene            | 6.56           | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| Trichlorofluoromethane     | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| Vinyl Chloride             | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| Xylene, m+p                | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |
| Xylene, o                  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           | <5.00          | <5.00          | <5.00          |

Table 1

#### Summary of Analytical Results: Carbon Vessel 1 (CV-1) Inlet

| Volatile Organic Compounds                                                                                     | _              |         |           |             |            |              |         |         |
|----------------------------------------------------------------------------------------------------------------|----------------|---------|-----------|-------------|------------|--------------|---------|---------|
| Method T0-1                                                                                                    |                | SVE     | Performan | ce Test (16 | Days: 8/24 | /03 thru 9/3 | 8/03)   |         |
| 3 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. | 8/28/03        | 8/28/03 | 8/29/03   | 8/29/03     | 8/30/03    | 8/30/03      | 8/31/03 | 8/31/03 |
| Matrix: Vapor                                                                                                  | a.m.           | p.m.    | a.m.      | p.m.        | a.m.       | p.m.         | a.m.    | p.m.    |
|                                                                                                                | μg/10 <b>L</b> | μg/10L  | μg/10L    | μg/10L      | μg/10L     | μg/10L       | μg/10L  | μg/10L  |
| 1,1,1-Trichloroethane                                                                                          | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| 1,1,2,2-Tetrachloroethane                                                                                      | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| 1,1,2-Trichloroethane                                                                                          | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| 1,1-Dichloroethane                                                                                             | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| 1,1-Dichloroethene                                                                                             | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| 1,2-Dichlorobenzene                                                                                            | <5.00          | <5.00   | <5.00     | < 5.00      | <5.00      | <5.00        | < 5.00  | n/a*    |
| 1,2-Dichloroethane                                                                                             | <5.00          | <5.00   | <5.00     | <5.00       | < 5.00     | <5.00        | <5.00   | n/a*    |
| 1,2-Dichloropropane                                                                                            | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| 1,3-Dichlorobenzene                                                                                            | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| 1,4-Dichlorobenzene                                                                                            | <5.00          | <5.00   | < 5.00    | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Acetone                                                                                                        | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Benzene                                                                                                        | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | < 5.00       | <5.00   | n/a*    |
| Bromodichloromethane                                                                                           | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Bromoform                                                                                                      | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | < 5.00       | <5.00   | n/a*    |
| Bromomethane                                                                                                   | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Carbon Tetrachloride                                                                                           | <5.00          | <5.00   | < 5.00    | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Chlorobenzene                                                                                                  | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Chlorodibromomethane                                                                                           | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Chloroethane                                                                                                   | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Chloroform                                                                                                     | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Chloromethane                                                                                                  | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| cis-1,3-Dichloropropene                                                                                        | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Ethylbenzene                                                                                                   | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Methyl Ethyl Ketone (MEK)                                                                                      | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Methylene Chloride                                                                                             | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| MTBE                                                                                                           | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Tetrachloroethene                                                                                              | 20.0           | 14.8    | 24.5      | 21.4        | 17.0       | 16.7         | 15.6    | n/a*    |
| Toluene                                                                                                        | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| trans-1,2-Dichloroethene                                                                                       | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| trans-1,3-Dichloropropene                                                                                      | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Trichloroethene                                                                                                | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Trichlorofluoromethane                                                                                         | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Vinyl Chloride                                                                                                 | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Xylene, m+p                                                                                                    | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |
| Xylene, o                                                                                                      | <5.00          | <5.00   | <5.00     | <5.00       | <5.00      | <5.00        | <5.00   | n/a*    |

Note: Results are reported per 10L (Tenax tube volume).

n/a\* = not available; laboratory instrument failure

Table 1

## Summary of Analytical Results: Carbon Vessel 1 (CV-1) Inlet

| Matrix: Vapor                         | 9/1/03 |                                                     | Performan |        |                |        |        |        |  |  |  |  |
|---------------------------------------|--------|-----------------------------------------------------|-----------|--------|----------------|--------|--------|--------|--|--|--|--|
| Matrix: Vapor                         |        | SVE Performance Test (16 Days: 8/24/03 thru 9/8/03) |           |        |                |        |        |        |  |  |  |  |
|                                       | a-m    | 9/1/03                                              | 9/2/03    | 9/2/03 | 9/3/03         | 9/3/03 | 9/4/03 | 9/4/03 |  |  |  |  |
|                                       | a.m.   | p.m.                                                | a.m.      | p.m.   | a.m.           | p.m.   | a.m.   | p.m.   |  |  |  |  |
|                                       | μg/10L | μg/10L                                              | μg/10L    | μg/10L | μ <b>g/10L</b> | μg/10L | μg/10L | μg/10L |  |  |  |  |
|                                       | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
|                                       | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
|                                       | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| · · · · · · · · · · · · · · · · · · · | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
|                                       | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
|                                       | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| 1,2-Dichloroethane                    | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| 1,2-Dichloropropane                   | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| 1,3-Dichlorobenzene                   | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| 1,4-Dichlorobenzene                   | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | < 5.00 | < 5.00 |  |  |  |  |
| Acetone                               | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| Benzene                               | <5.00  | <5.00                                               | < 5.00    | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| Bromodichloromethane                  | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| Bromoform                             | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| Bromomethane                          | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| Carbon Tetrachloride                  | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| Chlorobenzene                         | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| Chlorodibromomethane                  | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| Chloroethane                          | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| Chloroform                            | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| Chloromethane                         | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| cis-1,3-Dichloropropene               | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| Ethylbenzene                          | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| Methyl Ethyl Ketone (MEK)             | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
|                                       | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
|                                       | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| Tetrachloroethene                     | 9.74   | 14.8                                                | 17.1      | 15.7   | 16.3           | 14.0   | 15.4   | 15.8   |  |  |  |  |
|                                       | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
|                                       | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
|                                       | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | < 5.00 |  |  |  |  |
| * * *                                 | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
|                                       | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
|                                       | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
| <u> </u>                              | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |
|                                       | <5.00  | <5.00                                               | <5.00     | <5.00  | <5.00          | <5.00  | <5.00  | <5.00  |  |  |  |  |

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: Carbon Vessel 1 (CV-1) Inlet

| Volatile Organic Compounds |        |           |           |             | _            |             |        |
|----------------------------|--------|-----------|-----------|-------------|--------------|-------------|--------|
| Method T0-1                |        | SVE Perfo | rmance Te | st (16 Days | : 8/24/03 th | ıru 9/8/03) |        |
|                            | 9/5/03 | 9/5/03    | 9/6/03    | 9/6/03      | 9/7/03       | 9/7/03      | 9/8/03 |
| Matrix: Vapor              | a.m.   | p.m.      | a.m.      | p.m.        | a.m.         | p.m.        | a.m.   |
|                            | μg/10L | μg/10L    | μg/10L    | μg/10L      | μg/10L       | μg/10L      | μg/10L |
| 1,1,1-Trichloroethane      | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,1,2,2-Tetrachloroethane  | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,1,2-Trichloroethane      | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,1-Dichloroethane         | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,1-Dichloroethene         | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,2-Dichlorobenzene        | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,2-Dichloroethane         | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,2-Dichloropropane        | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,3-Dichlorobenzene        | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| 1,4-Dichlorobenzene        | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | < 5.00      | <5.00  |
| Acetone                    | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Benzene                    | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Bromodichloromethane       | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | < 5.00      | <5.00  |
| Bromoform                  | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Bromomethane               | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Carbon Tetrachloride       | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Chlorobenzene              | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Chlorodibromomethane       | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Chloroethane               | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Chloroform                 | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Chloromethane              | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| cis-1,3-Dichloropropene    | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Ethylbenzene               | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Methyl Ethyl Ketone (MEK)  | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Methylene Chloride         | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| MTBE                       | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Tetrachloroethene          | 12.7   | 14.9      | 13.7      | 17.8        | 15.2         | 16.7        | 15.0   |
| Toluene                    | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| trans-1,2-Dichloroethene   | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| trans-1,3-Dichloropropene  | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Trichloroethene            | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Trichlorofluoromethane     | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Vinyl Chloride             | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Xylene, m+p                | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |
| Xylene, o                  | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |

#### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

## Summary of Analytical Results: Carbon Vessel 1 (CV-1) Inlet

| Volatile Organic Compounds | Initial SVE Operating Period (42 Days: 9/9/03 thru 10/20/03) |        |             |             |                |        |  |  |  |  |
|----------------------------|--------------------------------------------------------------|--------|-------------|-------------|----------------|--------|--|--|--|--|
| Method T0-1                |                                                              | (42 1  | Jays: 9/9/0 | 3 thru 10/2 | 0/03)          |        |  |  |  |  |
| Matrix: Vapor              | 9/18/03                                                      |        |             |             |                |        |  |  |  |  |
|                            | μg/10L                                                       | μg/10L | μg/10L      | μg/10L      | μ <b>g/10L</b> | μg/10L |  |  |  |  |
| 1,1,1-Trichloroethane      | <5.00                                                        |        |             | 1           |                |        |  |  |  |  |
| 1,1,2,2-Tetrachloroethane  | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| 1,1,2-Trichloroethane      | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| 1,1-Dichloroethane         | <5.00                                                        |        |             | -           |                |        |  |  |  |  |
| 1,1-Dichloroethene         | <5.00                                                        |        | l.          | Į.          |                |        |  |  |  |  |
| 1,2-Dichlorobenzene        | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| 1,2-Dichloroethane         | <5.00                                                        |        |             |             | _              |        |  |  |  |  |
| 1,2-Dichloropropane        | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| 1,3-Dichlorobenzene        | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| 1,4-Dichlorobenzene        | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| Acetone                    | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| Benzene                    | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| Bromodichloromethane       | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| Bromoform                  | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| Bromomethane               | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| Carbon Tetrachloride       | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| Chlorobenzene              | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| Chlorodibromomethane       | <5.00                                                        |        |             |             | _              |        |  |  |  |  |
| Chloroethane               | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| Chloroform                 | <5.00                                                        |        |             |             | i.             |        |  |  |  |  |
| Chloromethane              | <5.00                                                        | _      |             |             |                |        |  |  |  |  |
| cis-1,3-Dichloropropene    | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| Ethylbenzene               | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| Methyl Ethyl Ketone (MEK)  | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| Methylene Chloride         | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| MTBE                       | <5.00                                                        |        | _           |             |                | i      |  |  |  |  |
| Tetrachloroethene          | 16.2                                                         |        |             |             |                |        |  |  |  |  |
| Toluene                    | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| trans-1,2-Dichloroethene   | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| trans-1,3-Dichloropropene  | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| Trichloroethene            | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| Trichlorofluoromethane     | <5.00                                                        |        |             | -           |                |        |  |  |  |  |
| Vinyl Chloride             | <5.00                                                        |        |             |             |                |        |  |  |  |  |
| Xylene, m+p                | <5.00                                                        |        |             | _           |                |        |  |  |  |  |
| Xylene, o                  | <5.00                                                        |        |             | _           |                |        |  |  |  |  |

Table 1

#### Summary of Analytical Results: Carbon Vessel 1 (CV-1) Outlet

| Volatile Organic Compounds |                 |                 | _         |             |                |             |         |               |
|----------------------------|-----------------|-----------------|-----------|-------------|----------------|-------------|---------|---------------|
| Method T0-1                |                 | SVE             | Performan | ce Test (16 | Days: 8/24     | /03 thru 9/ | 8/03)   |               |
|                            | 8/24/03         | 8/24/03         | 8/25/03   | 8/25/03     | 8/26/03        | 8/26/03     | 8/27/03 | 8/27/03       |
| Matrix: Vapor              | a.m.            | p.m.            | a.m.      | p.m.        | a.m.           | p.m.        | a.m.    | p.m.          |
|                            | μ <b>g</b> /10L | μ <b>g/1</b> 0L | μg/10L    | μg/10L      | μg/1 <b>0L</b> | μg/10L      | μg/10L  | μg/10L        |
| 1,1,1-Trichloroethane      | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| 1,1,2,2-Tetrachloroethane  | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| 1,1,2-Trichloroethane      | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| 1,1-Dichloroethane         | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| 1,1-Dichloroethene         | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5 <u>.00</u> |
| 1,2-Dichlorobenzene        | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| 1,2-Dichloroethane         | <5.00           | < 5.00          | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| 1,2-Dichloropropane        | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| 1,3-Dichlorobenzene        | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| 1,4-Dichlorobenzene        | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Acetone                    | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Benzene                    | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Bromodichloromethane       | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Bromoform                  | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Bromomethane               | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Carbon Tetrachloride       | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Chlorobenzene              | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Chlorodibromomethane       | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Chloroethane               | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Chloroform                 | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Chloromethane              | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| cis-1,3-Dichloropropene    | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Ethylbenzene               | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Methyl Ethyl Ketone (MEK)  | <5.00           | 6.93            | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Methylene Chloride         | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| MTBE                       | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Tetrachloroethene          | 13.1            | 13.5            | 8.22      | 14.0        | 10.9           | <5.00       | 9.49    | 14.3          |
| Toluene                    | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| trans-1,2-Dichloroethene   | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| trans-1,3-Dichloropropene  | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Trichloroethene            | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Trichlorofluoromethane     | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Vinyl Chloride             | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Xylene, m+p                | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |
| Xylene, o                  | <5.00           | <5.00           | <5.00     | <5.00       | <5.00          | <5.00       | <5.00   | <5.00         |

Table 1

#### Summary of Analytical Results: Carbon Vessel 1 (CV-1) Outlet

| Volatile Organic Compounds |         |         |           |                |            |                |         |         |
|----------------------------|---------|---------|-----------|----------------|------------|----------------|---------|---------|
| Method T0-1                |         | SVE     | Performan | ce Test (16    | Days: 8/24 | 1/03 thru 9/   | 8/03)   |         |
|                            | 8/28/03 | 8/28/03 | 8/29/03   | 8/29/03        | 8/30/03    | 8/30/03        | 8/31/03 | 8/31/03 |
| Matrix: Vapor              | a.m.    | p.m.    | a.m.      | p.m.           | a.m.       | p.m.           | a.m.    | p.m.    |
|                            | μg/10L  | μg/10L  | μg/10L    | μg/10 <b>L</b> | μg/10L     | μg/10 <b>L</b> | μg/10L  | μg/10L  |
| 1,1,1-Trichloroethane      | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| 1,1,2,2-Tetrachloroethane  | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| 1,1,2-Trichloroethane      | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| 1,1-Dichloroethane         | <5.00   | <5.00   | <5.00     | <5.00          | < 5.00     | <5.00          | <5.00   | n/a*    |
| 1,1-Dichloroethene         | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| 1,2-Dichlorobenzene        | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| 1,2-Dichloroethane         | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| 1,2-Dichloropropane        | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| 1,3-Dichlorobenzene        | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| 1,4-Dichlorobenzene        | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| Acetone                    | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| Benzene                    | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| Bromodichloromethane       | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| Bromoform                  | < 5.00  | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| Bromomethane               | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| Carbon Tetrachloride       | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| Chlorobenzene              | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| Chlorodibromomethane       | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| Chloroethane               | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| Chloroform                 | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| Chloromethane              | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| cis-1,3-Dichloropropene    | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| Ethylbenzene               | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| Methyl Ethyl Ketone (MEK)  | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| Methylene Chloride         | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| MTBE                       | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | < 5.00  | n/a*    |
| Tetrachloroethene          | 16.0    | 15.8    | 18.4      | 17.4           | 15.4       | 15.9           | 15.5    | n/a*    |
| Toluene                    | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| trans-1,2-Dichloroethene   | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| trans-1,3-Dichloropropene  | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | . <5.00 | n/a*    |
| Trichloroethene            | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| Trichlorofluoromethane     | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| Vinyl Chloride             | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| Xylene, m+p                | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |
| Xylene, o                  | <5.00   | <5.00   | <5.00     | <5.00          | <5.00      | <5.00          | <5.00   | n/a*    |

Note: Results are reported per 10L (Tenax tube volume).

n/a\* = not available; laboratory instrument failure

Table 1

## Summary of Analytical Results: Carbon Vessel 1 (CV-1) Outlet

| Volatile Organic Compounds |                |                |                |                |                |                |                |                |
|----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Method T0-1                |                |                |                | <del></del>    | Days: 8/24     |                | <del></del>    |                |
| <b>1</b>                   | 9/1/03         | 9/1/03         | 9/2/03<br>a.m. | 9/2/03         | 9/3/03<br>a.m. | 9/3/03         | 9/4/03<br>a.m. | 9/4/03         |
| Matrix: Vapor              | a.m.<br>μg/10L | p.m.<br>μg/10L | μg/10L         | p.m.<br>μg/10L | μg/10L         | p.m.<br>μg/10L | μg/10L         | p.m.<br>μg/10L |
| 1,1,1-Trichloroethane      | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1,2,2-Tetrachloroethane  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1,2-Trichloroethane      | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1-Dichloroethane         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1-Dichloroethene         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichlorobenzene        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloroethane         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloropropane        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,3-Dichlorobenzene        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,4-Dichlorobenzene        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Acetone                    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Benzene                    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromodichloromethane       | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromoform                  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromomethane               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Carbon Tetrachloride       | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chlorobenzene              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chlorodibromomethane       | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chloroethane               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chloroform                 | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chloromethane              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          |
| cis-1,3-Dichloropropene    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Ethylbenzene               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          |
| Methyl Ethyl Ketone (MEK)  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Methylene Chloride         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| MTBE                       | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Tetrachloroethene          | 10.9           | 12.1           | 18.9           | 15.9           | 18.4           | 15.2           | 16.7           | 17.5           |
| Toluene                    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| trans-1,2-Dichloroethene   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| trans-1,3-Dichloropropene  | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Trichloroethene            | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Trichlorofluoromethane     | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Vinyl Chloride             | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Xylene, m+p                | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Xylene, o                  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |

Table 1

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: Carbon Vessel 1 (CV-1) Outlet

| Volatile Organic Compounds |                |                |                |                |                |                |                |
|----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Method T0-1                |                |                |                | st (16 Days    | : 8/24/03 tl   | ıru 9/8/03)    |                |
| <b>1</b> 2.50 W            | 9/5/03         | 9/5/03         | 9/6/03         | 9/6/03         | 9/7/03         | 9/7/03         | 9/8/03         |
| Matrix: Vapor              | a.m.<br>μg/10L | p.m.<br>μg/10L | a.m.<br>μg/10L | p.m.<br>μg/10L | a.m.<br>μg/10L | p.m.<br>μg/10L | a.m.<br>μg/10L |
| 1,1,1-Trichloroethane      | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1,2,2-Tetrachloroethane  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1,2-Trichloroethane      | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1-Dichloroethane         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1-Dichloroethene         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichlorobenzene        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloroethane         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloropropane        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,3-Dichlorobenzene        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,4-Dichlorobenzene        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Acetone                    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Benzene                    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromodichloromethane       | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromoform                  | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromomethane               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Carbon Tetrachloride       | < 5.00         | <5.00          | < 5.00         | <5.00          | <5.00          | <5.00          | <5.00          |
| Chlorobenzene              | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          | <5.00          | <5.00          |
| Chlorodibromomethane       | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          | <5.00          | <5.00          |
| Chloroethane               | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          | <5.00          | <5.00          |
| Chloroform                 | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | < 5.00         | < 5.00         |
| Chloromethane              | < 5.00         | <5.00          | < 5.00         | < 5.00         | <5.00          | <5.00          | <5.00          |
| cis-1,3-Dichloropropene    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Ethylbenzene               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Methyl Ethyl Ketone (MEK)  | < 5.00         | <5.00          | < 5.00         | <5.00          | <5.00          | <5.00          | <5.00          |
| Methylene Chloride         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| MTBE                       | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Tetrachloroethene          | 20.1           | 14.6           | 12.0           | 14.2           | 17.9           | 14.1           | 15.4           |
| Toluene                    | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          | <5.00          | <5.00          |
| trans-1,2-Dichloroethene   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| trans-1,3-Dichloropropene  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Trichloroethene            | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Trichlorofluoromethane     | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Vinyl Chloride             | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Xylene, m+p                | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Xylene, o                  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |

#### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

## Summary of Analytical Results: Carbon Vessel 1 (CV-1) Outlet

| Volatile Organic Compounds<br>Method T0-1 | Initial SVE Operating Period (42 Days: 9/9/03 thru 10/20/03) |                |        |        |        |                 |  |  |  |  |  |
|-------------------------------------------|--------------------------------------------------------------|----------------|--------|--------|--------|-----------------|--|--|--|--|--|
| Matrix: Vapor                             | 9/18/03                                                      |                |        |        |        |                 |  |  |  |  |  |
|                                           | μg/10L                                                       | μ <b>g/10L</b> | μg/10L | μg/10L | μg/10L | μ <b>g</b> /10L |  |  |  |  |  |
| 1,1,1-Trichloroethane                     | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| 1,1,2-Trichloroethane                     | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| 1,1-Dichloroethane                        | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| 1,1-Dichloroethene                        | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| 1,2-Dichlorobenzene                       | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| 1,2-Dichloroethane                        | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| 1,2-Dichloropropane                       | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| 1,3-Dichlorobenzene                       | < 5.00                                                       |                |        |        |        |                 |  |  |  |  |  |
| 1,4-Dichlorobenzene                       | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| Acetone                                   | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| Benzene                                   | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| Bromodichloromethane                      | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| Bromoform                                 | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| Bromomethane                              | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| Carbon Tetrachloride                      | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| Chlorobenzene                             | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| Chlorodibromomethane                      | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| Chloroethane                              | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| Chloroform                                | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| Chloromethane                             | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| cis-1,3-Dichloropropene                   | <5.00                                                        |                |        |        | · 1    | _               |  |  |  |  |  |
| Ethylbenzene                              | <5.00                                                        |                |        |        |        | _               |  |  |  |  |  |
| Methyl Ethyl Ketone (MEK)                 | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| Methylene Chloride                        | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| MTBE                                      | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| Tetrachloroethene                         | 12.9                                                         |                |        |        |        |                 |  |  |  |  |  |
| Toluene                                   | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| trans-1,2-Dichloroethene                  | <5.00                                                        | _              |        |        |        |                 |  |  |  |  |  |
| trans-1,3-Dichloropropene                 | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| Trichloroethene                           | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| Trichlorofluoromethane                    | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| Vinyl Chloride                            | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| Xylene, m+p                               | <5.00                                                        |                |        |        |        |                 |  |  |  |  |  |
| Xylene, o                                 | < 5.00                                                       |                |        |        |        |                 |  |  |  |  |  |

Table 1

#### Summary of Analytical Results: Carbon Vessel 2 (CV-2) Outlet

|                            |         |         |           |             |            | -           |         |         |
|----------------------------|---------|---------|-----------|-------------|------------|-------------|---------|---------|
| Volatile Organic Compounds |         |         |           |             |            |             |         |         |
| Method T0-1                |         | SVE     | Performan | ce Test (16 | Days: 8/24 | /03 thru 9/ | 8/03)   |         |
| 7±                         | 8/24/03 | 8/24/03 | 8/25/03   | 8/25/03     | 8/26/03    | 8/26/03     | 8/27/03 | 8/27/03 |
| Matrix: Vapor              | a.m.    | p.m.    | a.m.      | p.m.        | a.m.       | p.m.        | a.m.    | p.m.    |
|                            | μg/10L  | μg/10L  | μg/10L    | μg/10L      | μg/10L     | μg/10L      | μg/10L  | μg/10L  |
| 1,1,1-Trichloroethane      | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| 1,1,2,2-Tetrachloroethane  | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| 1,1,2-Trichloroethane      | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| 1,1-Dichloroethane         | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| 1,1-Dichloroethene         | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| 1,2-Dichlorobenzene        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| 1,2-Dichloroethane         | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| 1,2-Dichloropropane        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| 1,3-Dichlorobenzene        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| 1,4-Dichlorobenzene        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Acetone                    | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Benzene                    | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Bromodichloromethane       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Bromoform                  | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Bromomethane               | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Carbon Tetrachloride       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Chlorobenzene              | <5.00   | <5.00   | < 5.00    | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Chlorodibromomethane       | <5.00   | <5.00   | < 5.00    | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Chloroethane               | <5.00   | <5.00   | < 5.00    | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Chloroform                 | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Chloromethane              | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| cis-1,3-Dichloropropene    | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Ethylbenzene               | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Methyl Ethyl Ketone (MEK)  | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Methylene Chloride         | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| MTBE                       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Tetrachloroethene          | 9.94    | 10.4    | 21.1      | 8.22        | 14.9       | 8.02        | 10.4    | 14.2    |
| Toluene                    | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| trans-1,2-Dichloroethene   | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| trans-1,3-Dichloropropene  | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Trichloroethene            | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Trichlorofluoromethane     | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Vinyl Chloride             | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Xylene, m+p                | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |
| Xylene, o                  | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | <5.00   |

#### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

## Summary of Analytical Results: Carbon Vessel 2 (CV-2) Outlet

| Volatile Organic Compounds<br>Method T0-1 |         | SVE     | Performan | ce Test (16 | Days: 8/24 | /03 thru 9/ |         |         |
|-------------------------------------------|---------|---------|-----------|-------------|------------|-------------|---------|---------|
|                                           | 8/28/03 | 8/28/03 | 8/29/03   | 8/29/03     | 8/30/03    | 8/30/03     | 8/31/03 | 8/31/03 |
| Matrix: Vapor                             | a.m.    | p.m.    | a.m.      | p.m.        | a.m.       | p.m.        | a.m.    | p.m.    |
|                                           | μg/10L  | μg/10L  | μg/10L    | μg/10L      | μg/10L     | μg/10L      | μg/10L  | μg/10L  |
| 1,1,1-Trichloroethane                     | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| 1,1,2,2-Tetrachloroethane                 | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| 1,1,2-Trichloroethane                     | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| 1,1-Dichloroethane                        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| 1,1-Dichloroethene                        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| 1,2-Dichlorobenzene                       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| 1,2-Dichloroethane                        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| 1,2-Dichloropropane                       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| 1,3-Dichlorobenzene                       | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| 1,4-Dichlorobenzene                       | <5.00   | <5.00   | <5.00     | < 5.00      | <5.00      | <5.00       | <5.00   | n/a*    |
| Acetone                                   | < 5.00  | <5.00   | < 5.00    | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| Benzene                                   | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| Bromodichloromethane                      | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| Bromoform                                 | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| Bromomethane                              | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| Carbon Tetrachloride                      | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| Chlorobenzene                             | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| Chlorodibromomethane                      | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| Chloroethane                              | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| Chloroform                                | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| Chloromethane                             | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00.  | n/a*    |
| cis-1,3-Dichloropropene                   | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| Ethylbenzene                              | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| Methyl Ethyl Ketone (MEK)                 | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| Methylene Chloride                        | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| MTBE                                      | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| Tetrachloroethene                         | 18.8    | 10.0    | 9.65      | 5.46        | 9.58       | 9.42        | 11.1    | n/a*    |
| Toluene                                   | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| trans-1,2-Dichloroethene                  | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| trans-1,3-Dichloropropene                 | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| Trichloroethene                           | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| Trichlorofluoromethane                    | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| Vinyl Chloride                            | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| Xylene, m+p                               | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |
| Xylene, o                                 | <5.00   | <5.00   | <5.00     | <5.00       | <5.00      | <5.00       | <5.00   | n/a*    |

Note: Results are reported per 10L (Tenax tube volume).

 $n/a^* = not$  available; laboratory instrument failure

Table 1

## Summary of Analytical Results: Carbon Vessel 2 (CV-2) Outlet

| Volatile Organic Compounds | SVE Performance Test (16 Days: 8/24/03 thru 9/8/03) |                |                |                |                |                |                |                |  |  |  |  |  |
|----------------------------|-----------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--|--|--|--|
| Method T0-1                |                                                     |                |                |                | <del></del>    |                |                |                |  |  |  |  |  |
| Matrix: Vapor              | 9/1/03<br>a.m.                                      | 9/1/03<br>p.m. | 9/2/03<br>a.m. | 9/2/03<br>p.m. | 9/3/03<br>a.m. | 9/3/03<br>p.m. | 9/4/03<br>a.m. | 9/4/03<br>p.m. |  |  |  |  |  |
|                            | μg/10L                                              | μg/10L         | μg/10L         | μg/10L         | μg/10L         | μg/10L         | μg/10L         | μg/10L         |  |  |  |  |  |
| 1,1,1-Trichloroethane      | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane  | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | < 5.00         | <5.00          |  |  |  |  |  |
| 1,1,2-Trichloroethane      | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| 1,1-Dichloroethane         | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| 1,1-Dichloroethene         | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| 1,2-Dichlorobenzene        | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| 1,2-Dichloroethane         | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| 1,2-Dichloropropane        | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| 1,3-Dichlorobenzene        | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| 1,4-Dichlorobenzene        | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| Acetone                    | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| Benzene                    | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| Bromodichloromethane       | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          |  |  |  |  |  |
| Bromoform                  | <5.00                                               | < 5.00         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| Bromomethane               | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| Carbon Tetrachloride       | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| Chlorobenzene              | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| Chlorodibromomethane       | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| Chloroethane               | <5.00                                               | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| Chloroform                 | <5.00                                               | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| Chloromethane              | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| cis-1,3-Dichloropropene    | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| Ethylbenzene               | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| Methyl Ethyl Ketone (MEK)  | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | < 5.00         | <5.00          | <5.00          |  |  |  |  |  |
| Methylene Chloride         | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| MTBE                       | <5.00                                               | < 5.00         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| Tetrachloroethene          | 12.8                                                | 16.6           | 18.6           | 16.3           | 17.2           | 1430           | 14.2           | 12.4           |  |  |  |  |  |
| Toluene                    | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| trans-1,2-Dichloroethene   | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| trans-1,3-Dichloropropene  | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| Trichloroethene            | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| Trichlorofluoromethane     | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| Vinyl Chloride             | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| Xylene, m+p                | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |
| Xylene, o                  | <5.00                                               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |  |  |

Table 1

## Summary of Analytical Results: Carbon Vessel 2 (CV-2) Outlet

| Volatile Organic Compounds |        |           |           |             |              |             |        |  |  |  |  |  |
|----------------------------|--------|-----------|-----------|-------------|--------------|-------------|--------|--|--|--|--|--|
| Method T0-1                |        | SVE Perfo | rmance Te | st (16 Days | : 8/24/03 th | ıru 9/8/03) |        |  |  |  |  |  |
|                            | 9/5/03 | 9/5/03    | 9/6/03    | 9/6/03      | 9/7/03       | 9/7/03      | 9/8/03 |  |  |  |  |  |
| Matrix: Vapor              | a.m.   | p.m.      | a.m.      | p.m.        | a.m.         | p.m.        | a.m.   |  |  |  |  |  |
| 1 1 1 7:-114               | μg/10L | μg/10L    | μg/10L    | μg/10L      | μg/10L       | μg/10L      | μg/10L |  |  |  |  |  |
| 1,1,1-Trichloroethane      | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane  | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| 1,1,2-Trichloroethane      | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| 1,1-Dichloroethane         | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| 1,1-Dichloroethene         | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| 1,2-Dichlorobenzene        | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| 1,2-Dichloroethane         | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| 1,2-Dichloropropane        | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| 1,3-Dichlorobenzene        | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| 1,4-Dichlorobenzene        | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| Acetone                    | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| Benzene                    | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| Bromodichloromethane       | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | < 5.00 |  |  |  |  |  |
| Bromoform                  | < 5.00 | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| Bromomethane               | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| Carbon Tetrachloride       | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| Chlorobenzene              | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| Chlorodibromomethane       | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| Chloroethane               | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| Chloroform                 | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | < 5.00 |  |  |  |  |  |
| Chloromethane              | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| cis-1,3-Dichloropropene    | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| Ethylbenzene               | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| Methyl Ethyl Ketone (MEK)  | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| Methylene Chloride         | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| MTBE                       | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| Tetrachloroethene          | 14.4   | 13.4      | 12.1      | 11.7        | 13.3         | 15.4        | 13.2   |  |  |  |  |  |
| Toluene                    | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| trans-1,2-Dichloroethene   | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| trans-1,3-Dichloropropene  | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| Trichloroethene            | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| Trichlorofluoromethane     | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| Vinyl Chloride             | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| Xylene, m+p                | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |
| Xylene, o                  | <5.00  | <5.00     | <5.00     | <5.00       | <5.00        | <5.00       | <5.00  |  |  |  |  |  |

#### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

#### Summary of Analytical Results: Carbon Vessel 2 (CV-2) Outlet

| Volatile Organic Compounds<br>Method T0-1 | Initial SVE Operating Period (42 Days: 9/9/03 thru 10/20/03) |        |        |        |        |        |  |  |  |  |  |  |
|-------------------------------------------|--------------------------------------------------------------|--------|--------|--------|--------|--------|--|--|--|--|--|--|
| Matrix: Vapor                             | 9/18/03                                                      | (      |        |        |        |        |  |  |  |  |  |  |
|                                           | μg/10 <b>L</b>                                               | μg/10L | μg/10L | μg/10L | μg/10L | μg/10L |  |  |  |  |  |  |
| 1,1,1-Trichloroethane                     | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | <5.00                                                        |        |        |        | _      |        |  |  |  |  |  |  |
| 1,1,2-Trichloroethane                     | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| 1,1-Dichloroethane                        | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| 1,1-Dichloroethene                        | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| 1,2-Dichlorobenzene                       | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| 1,2-Dichloroethane                        | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| 1,2-Dichloropropane                       | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| 1,3-Dichlorobenzene                       | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| 1,4-Dichlorobenzene                       | <5.00                                                        |        |        |        |        | :      |  |  |  |  |  |  |
| Acetone                                   | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| Benzene                                   | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| Bromodichloromethane                      | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| Bromoform                                 | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| Bromomethane                              | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| Carbon Tetrachloride                      | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| Chlorobenzene                             | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| Chlorodibromomethane                      | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| Chloroethane                              | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| Chloroform                                | <5.00                                                        |        |        |        |        | · · ·  |  |  |  |  |  |  |
| Chloromethane                             | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| cis-1,3-Dichloropropene                   | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| Ethylbenzene                              | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| Methyl Ethyl Ketone (MEK)                 | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| Methylene Chloride                        | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| MTBE                                      | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| Tetrachloroethene                         | 19.4                                                         |        |        |        |        |        |  |  |  |  |  |  |
| Toluene                                   | <5.00                                                        | _      |        |        |        |        |  |  |  |  |  |  |
| trans-1,2-Dichloroethene                  | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| trans-1,3-Dichloropropene                 | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| Trichloroethene                           | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| Trichlorofluoromethane                    | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| Vinyl Chloride                            | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| Xylene, m+p                               | <5.00                                                        |        |        |        |        |        |  |  |  |  |  |  |
| Xylene, o                                 | <5.00                                                        | _      |        |        |        |        |  |  |  |  |  |  |

#### AS PERFORMANCE TEST REPORT



Geoscience Services Division
7280 Caswell Street, N. Syracuse, NY 13212 • Phone (315) 476-4410 • Fax (315) 458-0526

September 15, 2003

Mr. Frank DeVita *Dvirka and Bartilucci* 330 Crossways Park Dr. Woodbury, NY 11797-2015

| SUBMITTED                                                                                                                                                                                                                                                                  |                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| APPROVED                                                                                                                                                                                                                                                                   | О                                    |
| APPROVED AS NOTED                                                                                                                                                                                                                                                          | O                                    |
| REVISED AND RESUBMITTED                                                                                                                                                                                                                                                    | ले                                   |
| DISAPPROVED                                                                                                                                                                                                                                                                | а                                    |
| THIS MATERIAL HAS BEEN CHECKED GENERAL ARRANGEMENT AND COMPLIA WITH SPECIFICATION AND CONTR DRAWINGS. APPROVAL OF THIS MATER SHALL NOT RELIEVE THE CONTACTOR THE RESPONSBILITY FOR DIMENSIONAL OTHER ERRORS AND OMMISSIONS, OR GUARANTIES REQUIRED BY THE CONTR DOCUMENTS. | NCE<br>ACT<br>RIAL<br>OF<br>OR<br>OF |
| ENVIRONMENTAL PRODUCTS & SERVICES, INC.                                                                                                                                                                                                                                    |                                      |
| BY DINBY DATE 11-19-6                                                                                                                                                                                                                                                      | 3                                    |

Project Name:

**NYSDEC – Franklin Cleaners Site** 

Contract Number:

D004184

Contractor's Name:

Environmental Products & Services, Inc.

Report Number:

One (of one)

Reporting Period Dates:

September 2, 2003 to September 8, 2003

Date of Report:

**September 15, 2003** 

Name of Report:

AIR SPARGING PERFORMANCE TEST REPORT --

REVISED

Dear Mr. DeVita:

Environmental Products and Services, Inc. (EPS) is pleased to provide the following Air Sparging Performance Test Report. This report is being submitted within seven days of completing the Air Sparging Performance Test.

- AS Performance Test Start Date: September 2, 2003 at 12:45 hours (Official start of the AS system was on day 10 of the SVE System Performance Test. Background and baseline data collected prior to the above date.)
- AS Performance Test End Date: September 8, 2003 (reflects 7-day run time)
  Report due by September 15, 2003.

In accordance with Section 4.2.I of the Contract Document, the following information is provided.

- 1. Field reports are provided as recorded on the AS Sampling, Monitoring and Reporting Forms, copies attached. These include data reflecting:
  - Pre-AS Groundwater Sampling event: August 18, 2003 (FC-1, FC-2) and August 20, 2003 (ASM-1 and ASM-2)
  - Two hours prior to start up: September 2, 2003
  - Two hours after initial start-up: September 2, 2003
  - Field reports: September 2 through September 8, 2003
- 2. Total Run time (hours) for the AS blower for each 24-hour period during the AS Performance Test:

| Day | Date   | Daily Run Time<br>(hours) | Cumulative Run<br>Time (hours) |
|-----|--------|---------------------------|--------------------------------|
| 1   | 9/2/03 | 5.75 ✓                    | 5.75                           |
| 2   | 9/3/03 | 16                        | 21.75                          |
| 3   | 9/4/03 | 24                        | 45.75                          |
| 4   | 9/5/03 | 24                        | 69.75                          |
| 5   | 9/6/03 | 24                        | 93.75                          |
| 6   | 9/7/03 | 24                        | 117.75                         |
| 7   | 9/8/03 | 246                       | 141.75 123 5                   |

131.9 123.5 8.4 27

- 3. Total down-time, if any, for the AS System during the AS Performance Test: \( \sqrt{13.5}\) hours (September 2-3, 2003). See attached Air Sparging System Down-Time Form.
- 4. Daily and total cumulative air flow in standard cubic feet injected into the aquifer by each air sparging well during the AS Performance Test:

| Day | Date   | AS-1<br>Daily (cf) | Cumulative (cf) | AS-2<br>Daily (cf) | Cumulative (cf) | AS-3<br>Daily (cf) | Cumulative (cf) |
|-----|--------|--------------------|-----------------|--------------------|-----------------|--------------------|-----------------|
| 1   | 9/2/03 | √ 3,450            | 3,450           | 3,450              | 3,450           | 3,450              | 3,450           |
| 2   | 9/3/03 | 11,520             | 14,970          | 9,600              | 13,050          | 7,680              | 11,130          |
| 3   | 9/4/03 | √ 13,680           | 28,650          | 14,112             | 27,162          | 14,256             | 25,386          |
| 4   | 9/5/03 | , 14,400           | 43,050          | 14,112             | 41,274          | _10,080            | 35,466          |
| 5   | 9/6/03 | y 14,400           | 57,450          | <sub>√</sub> 8,640 | 49,914          | <i>J</i> 14,400    | 49,866          |
| 6   | 9/7/03 | 14,112             | 71,562          | 13,680             | 63,594          | 9,792              | 59,658          |
| 7   | 9/8/03 | 14,112             | 85,674          | 13,680             | 77,274          | 2,936              | 69,594          |
| •   |        | 3578               | 75090           | 3420               | 80694           | 2484               | 62142           |

Page 3

5. Number of hours each well was used during each 24-hour period and cumulative number of hours each well has been used during the AS Performance Test:

| Day | Date   | AS-1<br>(hours) | Cumulative | AS-2<br>(hours) | Cumulative | AS-3<br>(hours) | Cumulative |
|-----|--------|-----------------|------------|-----------------|------------|-----------------|------------|
| 1   | 9/2/03 | 5.75            | 5.75       | 5.75            | 5.75       | 5.75            | 5.75       |
| 2   | 9/3/03 | 16              | 21.75      | 16              | 21.75      | 16              | 21.75      |
| 3   | 9/4/03 | 24              | 45.75      | 24              | 45.75      | 24              | 45.75      |
| 4   | 9/5/03 | 24              | 69.75      | 24              | 69.75      | 24              | 69.75      |
| 5   | 9/6/03 | 24              | 93.75      | 24              | 93.75      | 24              | 93.75      |
| 6   | 9/7/03 | 24              | 117.75     | 24              | 117.75     | 24              | 117.75     |
| 7   | 9/8/03 | 246             | 141.75     | 246             | 141.75     | 24 6            | 141.75     |

All AS wells were on line during the AS Performance Test.

123.75.

- 6. Concentrations of each volatile organic compound, iron and manganese detected, if any, in the groundwater samples collected on August 21, 2003 (one event prior to AS startup; ASM-1, ASM-2, FC-1, FC-2) are summarized on Table 2, attached. Complete analytical results are also attached.
- 7. Concentrations of each volatile organic compound detected from vapor samples collected from each Vapor Monitoring Probe (SVM-1, SVM-2, SVM-3, and SVM-4) during the AS Performance Test (September 2 to 8, 2003) are summarized in Table 1, attached. Complete analytical results are also attached.
- 8. Waste was not generated during the AS Performance Test.

If you have questions regarding this report, please do not hesitate to call our office at (315) 476-4410 or (800) 262-1012.

Very truly yours,

ENVIRONMENTAL PRODUCTS & SERVICES, INC.

R. Dale Braue CEM, RHSP (Ext. 150)

Director of Geoscience Services.

RDB/ms 3119.K0122 Enclosures:

AS Sampling, Monitoring, and Reporting Forms

AS System Down-Time Form (September 2-3, 2003)

Table 1 – Summary of Analytical Results (Vapor: SVM-1, SVM-2, SVM-3, and SVM-4)

Table 2 – Summary of Groundwater Analytical Results

Laboratory (Vapor) Analytical Results (ELS, excerpts, SVM-1, SVM-2, SVM-3, and SVM-4)

Laboratory Groundwater Analytical Results (Chemtech)



Geoscience Services Division
7280 Caswell Street, N. Syracuse, NY 13212 • Phone (315) 476-4410 • Fax (315) 458-0526

November 19, 2003

Mr. Frank DeVita *Dvirka and Bartilucci*330 Crossways Park Dr.

Woodbury, NY 11797-2015

| SUBMITTED                                                                                                                                                                                                                                                                 |                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| APPROVED                                                                                                                                                                                                                                                                  | О                                     |
| APPROVED AS NOTED                                                                                                                                                                                                                                                         |                                       |
| REVISED AND RESUBMITTED                                                                                                                                                                                                                                                   |                                       |
| DISAPPROVED                                                                                                                                                                                                                                                               |                                       |
| THIS MATERIAL HAS BEEN CHECKED GENERAL ARRANGEMENT AND COMPLIA WITH SPECIFICATION AND CONTR DRAWINGS. APPROVAL OF THIS MATE SHALL NOT RELIEVE THE CONTACTOR THE RESPONSBILITY FOR DIMENSIONAL OTHER ERRORS AND OMMISSIONS, OF GUARANTIES REQUIRED BY THE CONTR DOCUMENTS. | NCE<br>RACT<br>RIAL<br>OF<br>OR<br>OR |
| ENVIRONMENTAL PRODUCTS & SERVICES, INC.                                                                                                                                                                                                                                   |                                       |
| BY P DBrace DATE 11-19-                                                                                                                                                                                                                                                   | 03                                    |

Project Name:

**NYSDEC - Franklin Cleaners Site** 

Contract Number:

D004184

Subject:

Air Sparging Performance Test Report

Dear Mr. DeVita:

Environmental Products and Services, Inc. (EPS) is pleased to provide the following response to your comments regarding our submittal of the Air Sparging Performance Test Report (Report) dated September 15, 2003.

#### **General Comments Section**

Regarding the performance criterion of the AS system, NYSDEC is examining the requirement for further testing. EPS awaits further comments.

#### **Item 1: Field Reports**

- 1. The field data required for the pre-AS sample event of groundwater monitoring wells ASM-1, ASM-2, FC-1, and FC-2 were collected on EPS Site Visit Report forms. The data collected on August 18 and 20, 2003 has been recorded on the AS Sampling, Monitoring and Reporting forms and are included in the revised Report, attached.
- 5. The required scfm to acfm conversions have been recorded on the monitoring forms and are included in the revised Report, attached.

- 6. The required pressure/vacuum readings are recorded on the SVE monitoring form. The pressure/vacuum readings for September 5, 2003 (06:00 and 18:00), and September 6, 2003 (06:00) have been copied on the AS monitoring forms and are included in the revised Report, attached. Future monitoring events will include this data on both forms.
- 7. Total VOC concentrations obtained from PID field readings at each vapor monitoring probe were recorded on the SVE monitoring form. That data has been copied to the appropriate AS monitoring forms that are included in the revised Report, attached. Future AS monitoring forms will include this data. (Note: comments on copies of the AS monitoring form indicate your intent of "lab results" to be included in this section of the monitoring form. This is incorrect, as VOC field data is collected with a PID during the monitoring event. Laboratory analytical results are provided in the summary tables and laboratory analytical results included in the Report.)

#### **Item 2: Total Run Time for the Air Sparging Blower**

The hour meter reading of 131.9 hours does not reflect the entire day. Cumulative run time hours have been calculated based on whole days (to midnight of each day) and based on precise down-time data, when applicable. Our worksheet (copy attached), has been updated to reflect an "official" AS system start date and time of September 2, 2003 at 12:45 hours.

In addition, the monitoring form has been updated to include the exact time the blower hour meter reading is collected to provide data to support/coincide with our calculations. The tables within the revised Report have been updated to reflect the official start of the AS system identified above.

#### **Item 3: Air Sparging System Down-Time**

The system down-time form for September 2, 2003 has been included in the revised Report, attached.

#### Item 4: Daily and Cumulative Flow of the Air Sparge Wells

- 4. The daily air flow injected into the aquifer by each air sparging well has been added to the table, and calculations are updated to reflect the official start date identified above.
- 5. (Listed as "3" in comment letter, which is the system down-time item.) The cumulative flow of the air sparge wells ("5") of the revised Report has been updated to reflect the official start date identified above.

#### Item 5: Daily and Cumulative Run time of the Air Sparge Wells

Cumulative air sparge well run time hours have been calculated based on whole days (to midnight of each day) and based on precise AS system down-time data, when applicable. Our worksheet (copy attached), has been updated to reflect an "official" AS system start date and time of September 2, 2003 at 12:45 hours.

In addition, the monitoring form has been updated to include the exact time the blower hour meter reading is collected to provide data to support/coincide with blower and sparge well run time calculations. The tables within the revised Report, attached, have been updated to reflect the official start of the AS system identified above.

#### **Item 6: Groundwater Sample Results**

Groundwater analytical results are provided in Table 2 and have been included in the revised Report, attached.

If you have questions regarding this report, please do not hesitate to call our office at (315) 476-4410 or (800) 262-1012.

Very truly yours,

ENVIRONMENTAL PRODUCTS & SERVICES, INC.

R. Dale Braue CEM, RHSP (Ext. 150)

Director of Geoscience Services.

RDB/ms 3118.K0122

Enclosures: Internal Worksheet/Table of Calculations

Air Sparging Performance Test Report – Revised

Internal Worksheet for NYSDEC/Franklin Cleaners

report item 2 and 4 for AS REPORT (air flow injected into the aquifer at air sparge injection points) ROWS ARE HIDDEN WHEN PAGE GETS TOO LONG AND INFO NO LONGER NEEDED.

scfm x 60 min x # run time hours that day

Official start of AS system: 12:45 hours on 9/2/03 (per D&B) ACFM = scfm [14.7/(14.7+ psig)] [(460 + deg.F)/520]

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            | ACFM          |                                        |              | 9.43       | 9.04  | #VALUE! | 9.01  | 9.28  | 8.90   | 9.18  | 9.35   | 9.19  | 9.28   | 9.23  | 60.6   | 9.04   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|---------------|----------------------------------------|--------------|------------|-------|---------|-------|-------|--------|-------|--------|-------|--------|-------|--------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            | temp (F)      |                                        |              | 72         | 74    | 80      | 72    | 72    | 77     | 74    | 79     | 75    | 80     | 77    | 80     | 77     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            | psig          |                                        |              | 1.25       | 2     | ٠.      | 2     | 1.5   | 1.5    | 1.75  | 1.6    | 1.75  | 1.75   | 1.75  | 1.75   | 1.75   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            | time          |                                        |              | 12:45      | 14:45 | 18:00   | 8:00  | 9:00  | 18:00  | 00:9  | 18:00  | 00:9  | 18:00  | 00:9  | 18:00  | 00:9   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            | cumulative cf | ,                                      |              | 3,450      |       | 14,970  |       |       | 28,650 |       | 43,050 |       | 57,450 |       | 71,562 | 85,674 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            | daily cf      |                                        |              | 3,450      |       | 11,520  |       |       | 13,680 |       | 14,400 |       | 14,400 |       | 14,112 | 14,112 |
| the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |             |            | SCFM          |                                        |              | 10         | 10    | 12      | 10    | 10    | 9.5    | 10    | 10     | 10    | 10     | 10    | 9.8    | 9.8    |
| cumulative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DOWN TIME   | hours      |               |                                        |              | 18.25      |       | 26.25   |       |       | 26.25  |       | 26.25  |       | 26.25  |       | 26.25  | 26.25  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | blower down | time hours |               | und data collected                     |              | 18.25      |       | 8.00    |       |       | 0.00   |       | 0.00   |       | 0.00   |       | 00.0   | 00.0   |
| cumulative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RUN TIME    | hours      |               | baseline and background data collected | 0.0          | 5.75       |       | 21.75   |       |       | 45.75  |       | 69.75  |       | 93.75  |       | 117.75 | 141.75 |
| AS blower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | daily run   | hours      |               | 0 base                                 | j<br>°       | 5.75       |       | 16      |       |       | 24     |       | 24     |       | 24     |       | 24     | . 24   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 2003       |               | 31-Aug                                 | AS Per 1-Sep | Test 2-Sep | 2-Sep | 3-Sep   | 3-Sep | 4-Sep | 4-Sep  | 5-Sep | 5-Sep  | daS-9 | daS-9  | 7-Sep | 7-Sep  | 8-Sep  |

Internal Worksheet for Franklin Cleaners

report item 2 and 4 for AS REPORT (air flow injected into the aquifer at air sparge injection points) ROWS ARE HIDDEN WHEN PAGE GETS TOO LONG AND INFO NO LONGER NEEDED.

scfm x 60 min x# run time hours that day

Official start of AS system 9/2/03 at 12:45 hours (per D&B)

|                          |              |            | ACFM               |                                                                                                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.46   | #VALUE! | 8.64  | 7.53   | 8.46  | 8.51   | 60.9  | 6.11   | 3.48  | 8.76   | 5.24  | 5.96   | 6.04   |  |     |     |
|--------------------------|--------------|------------|--------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|--------|--|-----|-----|
|                          |              |            | temp (F)           |                                                                                                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82     | ¿       | 38    | 83     | 40    | 40     | 42    | 40     | 42    | 42     | 40    | 42     | 42     |  |     |     |
|                          |              |            | psig               |                                                                                                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5    | 1.5     | 1.6   | 1.6    | 7     | 1.75   | 1.6   | 1.5    | 1.6   | 1.5    | 1.5   | 1.5    | 1.5    |  |     |     |
|                          |              |            | time               |                                                                                                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12:45  | 14:45   | 8:00  | 18:00  | 00:9  | 18:00  | 00:9  | 18:00  | 9:00  | 18:00  | 9:00  | 18:00  | 00:9   |  |     |     |
|                          |              |            | cumulative of time |                                                                                                                 | ,                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,450  |         |       | 11,130 |       | 25,386 |       | 35,466 |       | 49,866 |       | 59,658 | 69,594 |  |     |     |
| AS-3                     |              |            | daily cf           |                                                                                                                 |                       | A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A CALLEST AND A  | 3,450  |         |       | 7,680  | ,     | 14,256 |       | 10,080 |       | 14,400 |       | 9,792  | 9;636  |  |     |     |
|                          |              |            | SCFM               |                                                                                                                 |                       | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 1.0    | 10      | 10    | 8      | 10    | 6.6    | 7     | 7      | 4     | 10     | 9     | 8.9    | 6.9    |  |     |     |
|                          | cumulative   | DOWN TIME  | hours              |                                                                                                                 | cted.                 | cted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | scted. | ected.  |       | 18.25  |       |        | 8.0   |        | 8.0   |        | 8.0   |        | 8.0    |  | 8.0 | 8.0 |
|                          | blower       | down time  | hours              |                                                                                                                 | ound data collected   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.25  |         |       | 8.00   |       | 0.00   |       | 0.00   |       | 0.00   |       | 0.00   | 00.00  |  |     |     |
| A                        | cumulative   | RUN TEME   | in Tiberts         | المارية المارية المارية المارية المارية المارية المارية المارية المارية المارية المارية المارية المارية المارية | baseline and backgrou | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.75   |         |       | 21.8   |       | 45.8   |       | 69.8   |       | 93.8   |       | 117.8  | 141.75 |  |     |     |
| Post<br>lecent<br>les ex | ian<br>L     | blower run | time hours . hours | W Para                                                                                                          | 0                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.75   |         |       | 16     |       | 24     |       | 24     |       | 24     |       | 24     | 24     |  |     |     |
| A 10 mm                  | ere en la se | er.        | day                |                                                                                                                 | 31-Aug                | 1-Sep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-Sep  | 2-Sep   | 3-Sep | 3-Sep  | 4-Sep | 4-Sep  | 5-Sep | 5-Sep  | deS-9 | deS-9  | 7-Sep | 7-Sep  | 8-Sep  |  |     |     |
| 2003                     |              |            |                    |                                                                                                                 |                       | AS Perf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Test   |         |       |        |       |        |       |        |       |        |       |        |        |  |     |     |

#### Air Sparging System

Sampling, Monitoring and Reporting Form

| Date:       | 8-18-03 (PI            | _Ambient Temperature:                         | 35°F        |
|-------------|------------------------|-----------------------------------------------|-------------|
| Time:       | see below              | Barometric Pressure:                          |             |
|             |                        | System Phase / Operating Period (circle one): |             |
| Technician: | Dale Brave             | (1) Performance Test (2) Initial              | (3) Routine |
|             | (See instruction sheet | for data frequency of each parameter!)        |             |

|                               | (See msu             | uction sneet to | r data Trequenc            | y or each para      | meterij                       |                                                  |
|-------------------------------|----------------------|-----------------|----------------------------|---------------------|-------------------------------|--------------------------------------------------|
| Monitoring/<br>Sampling Point | Temperature<br>.(P)' | рН              | Conductivity<br>(umhos/cm) | Turbidity<br>(NTUs) | Dissolved<br>Oxygen<br>(mg/l) | Depth to<br>Water Table<br>(feet below<br>grade) |
| ASM-1                         |                      |                 | Appeal A                   | W. In the           | d T M                         | 100                                              |
| Volume-1                      |                      |                 |                            |                     |                               |                                                  |
| Volume-2                      |                      |                 |                            |                     |                               |                                                  |
| Volume 3                      |                      |                 |                            |                     |                               |                                                  |
| Sample                        |                      |                 |                            |                     |                               |                                                  |
| ASM-2                         |                      |                 |                            |                     | 1 - 1 - M                     | 11.00                                            |
| Volume 1                      |                      |                 |                            |                     |                               |                                                  |
| Volume 2                      |                      |                 |                            |                     |                               |                                                  |
| Volume 3                      |                      |                 |                            |                     |                               |                                                  |
| Sample                        |                      |                 |                            |                     |                               |                                                  |
| EG-1                          |                      |                 |                            |                     |                               | 20108                                            |
| 1600 Volume 4                 | - 15                 | 5.9             | 0.16                       | 7990                | 7.7                           |                                                  |
| 1610 Volume 2                 | 14                   | 5.7             | 0.18                       | >990                | 7.8                           |                                                  |
| 1623 Volume 3                 | 14                   | 5.8             | 0.19                       | >990                | 7.7                           |                                                  |
| Sample                        |                      |                 |                            |                     |                               |                                                  |
| FG-22                         |                      | 4.5             |                            | 14.4 May 17.4       | 416                           | 20/31                                            |
| 1420 Volume 1                 | 18                   | 5,8             | 0.66                       | >990                | 7-1                           |                                                  |
| 1440 Volume 2                 | 17                   | 6,0             | 0.55                       | 7990                | 6.2                           |                                                  |
| 1502 Volume 3                 | 16                   | 61              | 0.52                       | 7990                | 6.5                           |                                                  |
| Sample                        |                      |                 |                            |                     |                               |                                                  |

|                               |                  |                                  | Flow   | Rate   |                     |
|-------------------------------|------------------|----------------------------------|--------|--------|---------------------|
| Monitoring/<br>Sampling Point | Temperature (°F) | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM) | (SCFM) | Total VOCs<br>(ppm) |
| Air Sparging Well 1 (AS-1)    |                  |                                  |        |        | n/a                 |
| Air Sparging Well 2 (AS-2)    |                  |                                  |        |        | n/a                 |
| Air Sparging Well 3 (AS-3)    |                  |                                  |        |        | n/a                 |
| Vapor Monitoring Probes:      |                  |                                  |        |        |                     |
| No. 1 (SVM-1)                 | n/a              |                                  | n/a    | n/a    |                     |
| No. 2 (SVM-2)                 | n/a              |                                  | n/a    | n/a    |                     |
| No. 3 <b>(SVM-3)</b>          | n/a              |                                  | n/a    | n/a    |                     |
| No. 4 (SVM-4)                 | n/a              |                                  | n/a    | n/a    |                     |

Completed form to be included in each Air Sparging Monitoring Report.

#### **Air Sparging System**

Sampling, Monitoring and Reporting Form

1 Pre-AS Sumpling

|   | Date:                         | 8/20/03              | 3               | Ambient Ten                   | nperature:          | 1 85                          | ° F                                              |  |
|---|-------------------------------|----------------------|-----------------|-------------------------------|---------------------|-------------------------------|--------------------------------------------------|--|
|   | Time:                         | see be               | low_            | Barometric F                  | c Pressure:         |                               |                                                  |  |
|   | Technician:                   |                      |                 | System Phase / Op             | •                   |                               |                                                  |  |
|   | Technician:                   | Buchn F              | ecoru           | . ( <del>1) Perfermance</del> | •                   | •                             | (3) Routine                                      |  |
|   |                               | (See instr           | uction sheet fo | r data frequency              | of each para        | meter!)                       |                                                  |  |
|   | Monitoring/<br>Sampling Point | Temperature<br>_(°C) | pН              | Conductivity<br>(umhos/cm)    | Turbidity<br>(NTUs) | Dissolved<br>Oxygen<br>(mg/l) | Depth to<br>Water Table<br>(feet below<br>grade) |  |
|   | ASME                          |                      |                 | A Park                        | e gr                |                               | 1,43                                             |  |
| - | 1318 Volume 1                 | 19                   | 6.2             | 0.30                          | >990                | 7.6                           |                                                  |  |
|   | <b>337_</b> Volume 2          | 18                   | 6.4             | 0.30                          | >990                | 7.3                           |                                                  |  |
|   | 1349 Volume 3                 | 18                   | 6.5             | 0.29                          | 7900                | 7.3                           |                                                  |  |
|   | Sample                        |                      |                 |                               |                     |                               |                                                  |  |
|   | ASM-2                         |                      |                 | <b>3</b> 5 11                 |                     |                               | 20.88                                            |  |
| - | 0951 Volume 1                 |                      | 4.6             | 0.24                          | >640                | 7.2                           |                                                  |  |
|   | 1015 Volume 2                 | 16_                  | 5.9             | 0,23                          | >990                | 8.1                           |                                                  |  |
|   | 1044 Volume 3                 | 17_                  | 5.8             | 0,22                          | >990                | (0,5                          |                                                  |  |
|   | Sample                        |                      |                 |                               |                     |                               |                                                  |  |
| , | FC-1                          |                      | 0.00            | *                             |                     | 100                           |                                                  |  |
|   | Volume 1                      |                      |                 |                               | ·                   |                               |                                                  |  |
|   | Volume 2                      |                      |                 |                               |                     |                               |                                                  |  |
|   | Volume 3                      |                      |                 |                               |                     |                               |                                                  |  |
|   | Sample                        |                      |                 |                               |                     |                               |                                                  |  |
|   | FC=2                          |                      |                 |                               |                     |                               |                                                  |  |
|   | Volume 1                      |                      |                 |                               |                     |                               |                                                  |  |
|   | Volume 2                      |                      |                 |                               |                     |                               |                                                  |  |
|   | Volume 3                      |                      |                 |                               |                     |                               |                                                  |  |
|   | Sample                        |                      |                 |                               |                     |                               |                                                  |  |
|   | Hour Meter Read               | ding:                | Current Readin  | ng (Cumulative)               | 24-hour             | Period                        |                                                  |  |
|   |                               |                      |                 |                               | Flow                | Rate                          |                                                  |  |
|   | Monito                        | oringl               | Temperature     | Pressure/                     |                     |                               | Total VOCs                                       |  |
|   | Samplin                       | -                    | <u>-</u>        | Vacuum                        | (ACFM)              | (SCFM)                        | (ppm)                                            |  |
|   |                               |                      | (°F)            | (in W.C.)                     |                     |                               |                                                  |  |
|   | Air Sparging Well             |                      |                 |                               |                     |                               | n/a                                              |  |
|   | Air Sparging Well             |                      |                 |                               | -                   |                               | n/a                                              |  |
|   | Air Sparging Well             |                      |                 |                               |                     |                               | n/a                                              |  |
|   | Vapor Monitoring              |                      |                 |                               |                     |                               |                                                  |  |
|   | No. 1 (S                      | •                    | n/a             |                               | n/a                 | n/a                           |                                                  |  |
|   | No. 2 (S                      | •                    | n/a             |                               | n/a                 | n/a                           |                                                  |  |
| , | No. 3 (S                      | •                    | n/a             |                               | n/a_                | n/a                           |                                                  |  |
|   | No. 4 (S                      | SVM-4)               | n/a             |                               | n/a                 | n/a                           | [                                                |  |

Completed form to be included in each Air Sparging Monitoring Report.

No. 4 (SVM-4)

| Base line Sampling, Monitoring and Reporting Form  Day 1 (A5)  Date:  9/2/03 Day 9 (8 v Ambient Temperature: 6/.8  Time:  100/1245 Barometric Pressure: 30.07  System Phase / Operating Period (circle one): |             |               |                  |                 |               |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|------------------|-----------------|---------------|-----------------|
| Base live<br>Data                                                                                                                                                                                            | Sampi       | ing, Monite   | oring and R      | eporting i      | rorm          |                 |
| Darta                                                                                                                                                                                                        | . / /       | Day 1         | (D)              |                 | ( ( )         |                 |
| Date:                                                                                                                                                                                                        | 9/2/03      | Day 9 (SV     | Ambient Ter      | nperature:      | 61.8          |                 |
|                                                                                                                                                                                                              | /           |               |                  |                 | 1245          |                 |
| Time:                                                                                                                                                                                                        | 1100/124    | 5             | Barometric I     | Pressure:       | 30.07         |                 |
| •                                                                                                                                                                                                            |             |               | System Phase / O | perating Period | (circle one): |                 |
| Technician:                                                                                                                                                                                                  | John Roc    | will but B.   | (1) Performance  | e Test ) (2     |               | (3) Routine     |
| •                                                                                                                                                                                                            |             |               | r data frequenc  |                 | •             |                 |
|                                                                                                                                                                                                              |             |               |                  |                 | Dissolved     | Depth to        |
| Monitoring/                                                                                                                                                                                                  | Temperature | рН            | Conductivity     | Turbidity       | Oxygen        | Water Table     |
| Sampling Point                                                                                                                                                                                               | (°F)        |               | (umhos/cm)       | (NTUs)          | (mg/l)        | (feet below     |
| ASM:1                                                                                                                                                                                                        |             |               |                  | 4.0             |               | grade)<br>22.// |
| Volume 1                                                                                                                                                                                                     |             |               |                  |                 |               |                 |
| Volume 2                                                                                                                                                                                                     |             |               |                  |                 |               |                 |
| Volume 3                                                                                                                                                                                                     |             |               |                  |                 |               |                 |
| Sample                                                                                                                                                                                                       |             |               |                  |                 |               |                 |
| ASM-2                                                                                                                                                                                                        | 推進等         |               |                  | 4.50            |               | 11.68           |
| Volume 1                                                                                                                                                                                                     |             |               |                  |                 |               |                 |
| Volume 2                                                                                                                                                                                                     |             |               |                  |                 |               |                 |
| Volume 3                                                                                                                                                                                                     |             |               |                  |                 |               |                 |
| Sample                                                                                                                                                                                                       | ***         |               |                  |                 |               |                 |
| FC-1                                                                                                                                                                                                         | 1           |               | c A              | 1 A             | CA OF         |                 |
| Volume 1<br>Volume 2                                                                                                                                                                                         |             | 0/7           | rclax            | //>             | SVWU          | <b></b>         |
| Volume 3                                                                                                                                                                                                     |             | e C           |                  |                 |               | <del></del>     |
| Sample                                                                                                                                                                                                       |             | 10            | 9/2/02           | (0)             | :45           |                 |
| FC:2                                                                                                                                                                                                         |             |               | 4/3/             |                 | ,,,,          |                 |
| Volume 1                                                                                                                                                                                                     |             |               |                  |                 |               |                 |
| Volume 2                                                                                                                                                                                                     |             |               |                  |                 |               |                 |
| Volume 3                                                                                                                                                                                                     |             |               |                  |                 |               |                 |
| Sample                                                                                                                                                                                                       |             |               |                  |                 |               |                 |
| Hour Meter Read                                                                                                                                                                                              | dina:       |               |                  |                 |               |                 |
|                                                                                                                                                                                                              | 9.          | Current Readi | ng (Cumulative)  | 24-hou          | r Period      |                 |
|                                                                                                                                                                                                              |             |               |                  |                 |               |                 |
|                                                                                                                                                                                                              |             |               | psig             | Flow            | Rate          |                 |
| Monito                                                                                                                                                                                                       | oring/      | Temperature   | Pressure/        | (40514)         | (COEM)        | Total VOCs      |
| Samplin                                                                                                                                                                                                      | g Point     | (°F)          | (in W.C.)        | (ACFM)          | (SCFM)        | (ppm)           |
| Air Sparging Well                                                                                                                                                                                            | 1 (AS-1)    | 72            | 0/1.25           | 9.43            | 0/10          | n/a             |
| Air Sparging Well                                                                                                                                                                                            |             | 84            | 0/1.50           | 4.49            | 0/10          | n/a             |
| Air Sparging Well                                                                                                                                                                                            |             | 82            | 0/1.50           | 9.46            | 0/10          | n/a             |
| Vapor Monitoring                                                                                                                                                                                             | Probes:     |               | time /           |                 |               |                 |
| No. 1 (S                                                                                                                                                                                                     | SVM-1)      | n/a           | 0.80             | n/a             | n/a           | Ü               |
| No. 2 (S                                                                                                                                                                                                     | 6VM-2)      | n/a           | 0.30             | n/a             | n/a           | 0               |

Completed form to be included in each Air Sparging Monitoring Report.

n/a

n/a

No. 3 (SVM-3)

No. 4 (SVM-4)

n/a

n/a

n/a

n/a

0.30 0,21

10,0

### Air Sparging System Sampling, Monitoring and Reporting Form

| Date:                         | 9/2/03        | <u> </u>               | _Ambient Ten                     | nperature:          | 62.9                          |                                                  |
|-------------------------------|---------------|------------------------|----------------------------------|---------------------|-------------------------------|--------------------------------------------------|
| Time:                         | 9/2/03        |                        | _Barometric F                    | Pressure:           | 30.08                         | 3                                                |
|                               |               |                        | System Phase / O                 | perating Period     | (circle one):                 |                                                  |
| Technician:                   | John Reco     | sci ,                  | (1) Performance                  | e Test (2           | 2) Initial                    | (3) Routine                                      |
|                               |               |                        | or data frequency                |                     | •                             |                                                  |
| Monitoring/<br>Sampling Point | Temperature   | рН                     | Conductivity<br>(umhos/cm)       | Turbidity<br>(NTUs) | Dissolved<br>Oxygen<br>(mg/l) | Depth to<br>Water Table<br>(feet below<br>grade) |
| ASMH1                         |               |                        |                                  |                     |                               | 7211                                             |
| Volume 1                      |               |                        |                                  |                     |                               |                                                  |
| Volume 2                      |               |                        |                                  |                     |                               |                                                  |
| Volume 3                      |               |                        |                                  |                     |                               |                                                  |
| Sample                        |               |                        |                                  |                     |                               |                                                  |
| ASM-2                         |               |                        |                                  |                     |                               | 11.67                                            |
| Volume 1                      |               |                        |                                  |                     |                               |                                                  |
| Volume 2                      |               |                        |                                  |                     |                               |                                                  |
| Volume 3                      |               |                        |                                  |                     |                               |                                                  |
| Sample                        |               |                        |                                  |                     |                               |                                                  |
| FG-1                          | 1441-35-04-05 |                        |                                  |                     |                               |                                                  |
| Volume 1                      |               |                        | <u> </u>                         |                     |                               |                                                  |
| Volume 2                      |               |                        |                                  |                     |                               |                                                  |
| Volume 3                      |               |                        |                                  |                     |                               |                                                  |
| Sample                        |               |                        |                                  |                     |                               |                                                  |
| FC-2                          |               |                        |                                  | No.                 |                               |                                                  |
| Volume 1                      |               |                        |                                  |                     |                               |                                                  |
| Volume 2                      |               |                        |                                  |                     |                               |                                                  |
| Volume 3                      |               |                        |                                  |                     |                               |                                                  |
| Sample                        |               |                        |                                  |                     |                               |                                                  |
| Hour Meter Read               | ding:         | 7. 4<br>Current Readin | ng (Cumulative)                  | N A 24-hour         |                               |                                                  |
|                               |               |                        |                                  | Flow                | Rate                          |                                                  |
| Samplin                       | •             | Temperature<br>(°F)    | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)              | (SCFM)                        | Total VOCs<br>(ppm)                              |
| Air Sparging Well             | · · · ·       | 740                    | 2/55,46                          | 9.04                | 10                            | n/a                                              |
| Air Sparging Well             |               | 82                     | 1.5/4150                         | 9.46                | 10                            | n/a                                              |
| Air Sparging Well             | 3 (AS-3)      | *                      | 1.5/4.60                         | n/a                 | 10                            | n/a                                              |
| Vapor Monitoring              | Probes:       |                        |                                  |                     |                               |                                                  |
| No. 1 (S                      | SVM-1)        | n/a                    | .75/20.80                        | n/a                 | n/a                           | 0                                                |
| No. 2 (S                      | ' '           | n/a                    | 14/3.8                           | n/a                 | n/a                           | 0                                                |

Pos.

POS.

n/a

n/a

Completed form to be included in each Air Sparging Monitoring Report.

No. 3 (SVM-3)

No. 4 (SVM-4)

EPS Project #K0122

n/a

n/a

n/a

n/a

6

#### **Air Sparging System**

Sampling, Monitoring and Reporting Form

| Date:                                                         | (9/3/03)            | Day LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ambient Ter                | nnoraturo:                        | 107 4                         | 1                                       |       |  |  |  |
|---------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------|-------------------------------|-----------------------------------------|-------|--|--|--|
| Date.                                                         | (710703)            | 179 11 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ambient Tei                | i / / /                           |                               |                                         | -     |  |  |  |
| Ti                                                            | 00                  | 1 1 . ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Barometric I               | Hed auto                          | @ 1000                        | <b>-</b> 0                              |       |  |  |  |
| Time: (                                                       | 0000 1545           | tem Ducker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Barometric                 | Pressure:                         | 30.0                          | <u> </u>                                | _     |  |  |  |
|                                                               |                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | System Phase / O           |                                   | •                             |                                         |       |  |  |  |
| Technician:                                                   | John Peco           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1) Performance            |                                   | !) Initial                    | (3) Routine                             |       |  |  |  |
| (See instruction sheet for data frequency of each parameter!) |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                   |                               |                                         |       |  |  |  |
| Monitoring/<br>Sampling Point                                 | Temperature<br>(°F) | рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conductivity<br>(umhos/cm) | Turbidity<br>(NTUs)               | Dissolved<br>Oxygen<br>(mg/l) | Depth to Water Table (feet below grade) |       |  |  |  |
| ASM:48                                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second             | 13.2 37                           |                               | A STATE OF                              | 22.1  |  |  |  |
| Volume 1                                                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                   |                               |                                         | i     |  |  |  |
| Volume 2                                                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                   |                               |                                         | 1     |  |  |  |
| Volume 3                                                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                   |                               |                                         | l     |  |  |  |
| Sample                                                        | 900                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                   |                               |                                         |       |  |  |  |
| ASM-2                                                         | <u> </u>            | Actual Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the |                            | and and an analysis of the second |                               |                                         | 11.68 |  |  |  |
| Volume 1<br>Volume 2                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ                          |                                   |                               |                                         | ŀ     |  |  |  |
| Volume 3                                                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | (minutes)                         |                               |                                         | ł     |  |  |  |
| Sample                                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | k:                                |                               | <del> </del>                            |       |  |  |  |
| FGSID T                                                       |                     | 7 (0.279)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                   |                               |                                         | i     |  |  |  |
| Volume 1                                                      |                     | STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE |                            |                                   |                               |                                         | Ī     |  |  |  |
| Volume 2                                                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                   |                               |                                         | İ     |  |  |  |
| Volume 3                                                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                   |                               |                                         |       |  |  |  |
| Sample                                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                   |                               |                                         | i     |  |  |  |
| FC52kft                                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$20,000 LONG              |                                   |                               |                                         |       |  |  |  |
| Volume 1                                                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                   |                               |                                         | i     |  |  |  |
| Volume 2                                                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                   |                               | ļ                                       | j     |  |  |  |
| Volume 3                                                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                   |                               |                                         |       |  |  |  |
| Sample                                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                   |                               | <del></del>                             | i     |  |  |  |
| Hour Meter Read                                               | ding:<br>           | 16.3<br>Current Readin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng (Cumulative)            |                                   | Period                        |                                         |       |  |  |  |
|                                                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PSig                       | Flow                              | Rate                          |                                         |       |  |  |  |
| Monit                                                         | oring/              | Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pressure/                  |                                   |                               | Total VOCs                              |       |  |  |  |
|                                                               | ng Point            | <b>(0</b> m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vacuum                     | (ACFM)                            | (SCFM)                        | (ppm)                                   | 1     |  |  |  |
| Air Sparging Wel                                              | 11/49-1)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (in W.C.)                  |                                   |                               |                                         | l     |  |  |  |
| Air Sparging Wel                                              | <u>-</u>            | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2/55.46                    | 0.81                              | 10                            | n/a<br>n/a                              |       |  |  |  |
| Air Sparging Wel                                              |                     | 80<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.6/44.37                  | 9.37<br>7.53                      | 10                            | n/a                                     |       |  |  |  |
| Vapor Monitoring                                              |                     | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>! • [17.3]</i>          | 1.50                              | 10                            | 11/4                                    |       |  |  |  |
|                                                               | SVM-1)              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.6/16.63                  | n/a                               | n/a                           | 0.0                                     |       |  |  |  |
|                                                               | SVM-2)              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .55 Food                   | n/a                               | n/a                           | 0.0                                     |       |  |  |  |
| ,                                                             | SVM-3)              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .19/5.27                   | n/a                               | n/a                           | 0.0                                     |       |  |  |  |

Completed form to be included in each Air Sparging Monitoring Report. 5UE - 1 3. 8 P10 5.2

SVE-1 3.8

n/a

EPS Project #K0122

No. 4 (SVM-4)

SVE-2 6.8

PID 71.4

Environmental Products & Services, Inc.

#### **Air Sparging System**

Sampling, Monitoring and Reporting Form

| Date:                         | 7/03/03                                | ) Vay (/                | _Ambient Ter                     | nperature:          | 65.5                          |                                                  |
|-------------------------------|----------------------------------------|-------------------------|----------------------------------|---------------------|-------------------------------|--------------------------------------------------|
| Time:                         | 1800                                   |                         | _Barometric                      | Pressure:           | 30.00                         | •                                                |
|                               | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                         | System Phase / O                 | _                   | (circle one):                 |                                                  |
| Technician:                   | 261 11R                                |                         | (1) Performance                  | •                   | ) Initial                     | (3) Routine                                      |
|                               | (See instr                             | uction sheet fo         | r data frequenc                  | y of each para      | meter!)                       |                                                  |
| Monitoring/<br>Sampling Point | Temperature<br>(°F)                    | рН                      | Conductivity<br>(umhos/cm)       | Turbidity<br>(NTUs) | Dissolved<br>Oxygen<br>(mg/l) | Depth to<br>Water Table<br>(feet below<br>grade) |
| ASM-1                         |                                        | 200                     | 4444                             | _add to             |                               |                                                  |
| Volume 1                      |                                        |                         |                                  |                     |                               |                                                  |
| Volume 2                      |                                        |                         |                                  |                     |                               |                                                  |
| Volume 3                      |                                        |                         |                                  |                     |                               |                                                  |
| Sample                        |                                        |                         |                                  |                     |                               |                                                  |
| ASM-2                         |                                        |                         | A                                |                     | A AV                          |                                                  |
| Volume 1                      |                                        |                         |                                  |                     |                               |                                                  |
| Volume 2                      |                                        |                         |                                  |                     |                               |                                                  |
| Volume 3                      |                                        |                         |                                  |                     |                               |                                                  |
| Sample                        |                                        |                         |                                  |                     |                               |                                                  |
| F.G-1                         |                                        | To the                  |                                  |                     |                               |                                                  |
| Volume 1                      | · · · · · · · · · · · · · · · · · · ·  |                         |                                  |                     |                               |                                                  |
| Volume 2                      |                                        |                         |                                  |                     |                               |                                                  |
| Volume 3                      |                                        |                         |                                  |                     |                               |                                                  |
| Sample                        |                                        |                         |                                  |                     |                               |                                                  |
| FC-2                          | 2 (4)                                  |                         |                                  |                     |                               |                                                  |
| Volume 1                      |                                        |                         |                                  |                     |                               |                                                  |
| Volume 2                      |                                        |                         |                                  |                     |                               |                                                  |
| Volume 3                      | ·                                      |                         |                                  |                     |                               |                                                  |
| Sample                        | <del></del>                            |                         |                                  |                     |                               |                                                  |
| Hour Meter Read               | ding:                                  | 23. O<br>Current Readin | ng (Cumulative)                  |                     | Period                        |                                                  |
|                               |                                        |                         |                                  | Flow                | Rate                          |                                                  |
| Monito<br>Samplin             | •                                      | Temperature<br>(°F)     | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)              | (SCFM)                        | Total VOCs<br>(ppm)                              |
| Air Sparging Well             | 1 (AS-1)                               | 800                     | Ø                                |                     | 12                            | n/a                                              |
| Air Sparging Well             | ` '                                    | 810                     | 1.5/41.60                        | 9.44                | 10                            | n/a                                              |
| Air Sparging Well             | 3 (AS-3)                               | 39                      | B1.5/41.60                       |                     | 8                             | n/a                                              |
| Vapor Monitoring              | Probes:                                |                         |                                  |                     |                               |                                                  |
| No. 1 (S                      | SVM-1)                                 | n/a                     | .98                              | n/a                 | n/a                           | 0                                                |
| No. 2 (S                      | SVM-2)                                 | n/a                     | 155                              | n/a                 | n/a                           | 0                                                |

Completed form to be included in each Air Sparging Monitoring Report.

n/a

n/a

×01

No. 3 (SVM-3)

No. 4 (SVM-4)

0

0

n/a

n/a

n/a

#### **Air Sparging System**

## Sampling, Monitoring and Reporting Form

| Date:                         | 9/4/03              | Day 12 SVE          | Ambient Ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Temperature: 70. /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-------------------------------|---------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Time:                         | 2/20                |                     | -<br>Barometric I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Droccuro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.79                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| line.                         | 0600                |                     | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                               | 71 0                | •                   | System Phase / O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Technician:                   | John Pe             |                     | Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     | (3) Routine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                               | (See instru         | uction sheet to     | or data frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | y of each para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | meter!)                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Monitoring/<br>Sampling Point | Temperature<br>(°F) | рН                  | Conductivity<br>(umhos/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Turbidity<br>(NTUs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dissolved<br>Oxygen<br>(mg/l)         | Depth to<br>Water Table<br>(feet below<br>grade)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| asm-1                         |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro |                                       | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Volume 1                      |                     |                     | William Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Con |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 337                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Volume 2                      |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Volume 3                      |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Sample                        |                     |                     | And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ASM-2                         | . 7                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>(X)</b>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Volume 1                      | L                   | <b> </b>            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Volume 2                      |                     | (                   | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del>  </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b> </b> J                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Volume 3                      | <b></b>             | <b> </b>            | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b></b>                               | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Sample                        |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a.                                    | Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of th |  |
| FG-1<br>Volume 1              |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LAN. A S                              | is to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Volume 1<br>Volume 2          |                     | <del></del>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Volume 3                      |                     | <del></del>         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Sample                        |                     | <del></del>         | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| FC-2                          |                     |                     | 3.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Volume 1                      |                     | Marie Marie Company |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Volume 2                      |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Volume 3                      |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Sample                        |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Hour Meter Read               | ding                | 35.8                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| nour motor real               | mig.                |                     | ng (Cumulative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24-hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                               |                     |                     | .9 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                               |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rate                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Monito<br>Samplin             | ng Point            | Temperature<br>(°F) | Pressure/<br>Vacuum<br>(in W.C.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ACFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (SCFM)                                | Total VOCs<br>(ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Air Sparging Well             |                     | 72                  | 1.5/41.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                    | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Air Sparging Well             | · ,                 | BY                  | 1.5/41.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                    | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Air Sparging Well             |                     | 40                  | 2/55,464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                    | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Vapor Monitoring              | L                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| No. 1 <b>(S</b>               | 3VM-1)              | n/a                 | .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                                   | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

Completed form to be included in each Air Sparging Monitoring Report.

n/a

n/a

n/a

.75

1225

No. 2 (SVM-2)

No. 3 (SVM-3)

No. 4 (SVM-4)

D

O

n/a

n/a

n/a

n/a

n/a

## Air Sparging System Sampling, Monitoring and Reporting Form

Day 3 AS

| Date.                                                                                                                                                                             | 7/4/05               | My (L)                                                                                                                                                                  | -<br>-                           | nperature.           | 70.0                          |                                                  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------|-------------------------------|--------------------------------------------------|--|
| Time:                                                                                                                                                                             | 1800                 |                                                                                                                                                                         | Barometric I                     | Pressure:            | <u> </u>                      | 76                                               |  |
| Technician:                                                                                                                                                                       |                      | System Phase / Operating Period (circle one):  John Record (1) Performance Test) (2) Initial (3) Routine  (See instruction sheet for data frequency of each parameter!) |                                  |                      |                               |                                                  |  |
| Monitoring/<br>Sampling Point                                                                                                                                                     | Temperature<br>(°F)  | рН                                                                                                                                                                      | Conductivity<br>(umhos/cm)       | Turbidity<br>(NTUs)  | Dissolved<br>Oxygen<br>(mg/l) | Depth to<br>Water Table<br>(feet below<br>grade) |  |
| Volume 1 Volume 2 Volume 3 Sample ASM-2 Volume 1 Volume 2 Volume 3 Sample FC-1 Volume 1 Volume 2 Volume 3 Volume 3 Volume 3 Volume 3 Volume 3 Volume 3 Volume 1 Volume 2 Volume 3 |                      |                                                                                                                                                                         |                                  |                      |                               |                                                  |  |
| Sample<br>Hour Meter Read                                                                                                                                                         | ding:                | 47.5<br>Current Readin                                                                                                                                                  | ng (Cumulative)                  | 24-hour              | Period                        |                                                  |  |
| - Monite<br>Samplin                                                                                                                                                               | _                    | Temperature                                                                                                                                                             | Pressure/<br>Vacuum<br>(in W.C.) | Flow<br>(ACFM)       | Rate (SCFM)                   | Total VOCs<br>(ppm)                              |  |
| Air Sparging Well<br>Air Sparging Well<br>Air Sparging Well<br>Vapor Monitoring                                                                                                   | 2 (AS-2)<br>3 (AS-3) | 77<br>85<br>40                                                                                                                                                          | 1.6/44.37 1.5/41.60 1.785/48.53  | 8.90<br>9.32<br>8.51 | 9.5<br>9.8<br>9.9             | n/a<br>n/a<br>n/a                                |  |
| No. 1 (\$                                                                                                                                                                         |                      | n/a                                                                                                                                                                     | .8                               | n/a                  | n/a                           | 4,2                                              |  |

Completed form to be included in each Air Sparging Monitoring Report.

n/a

n/a

n/a

.45

. 20

-03

n/a

n/a

n/a

No. 2 (SVM-2)

No. 3 (SVM-3)

No. 4 (SVM-4)

n/a

n/a

n/a

0.0

0.0

0.0

#### **Air Sparging System**

Sampling, Monitoring and Reporting Form

| Date:                             | 9/5/03                     | Day 13 SVE     | Ambient Ter                                        | nperature:          | 63.5                          |                                                  |  |
|-----------------------------------|----------------------------|----------------|----------------------------------------------------|---------------------|-------------------------------|--------------------------------------------------|--|
| Time:                             | 0600                       |                | Barometric I                                       |                     |                               | 29.85                                            |  |
| Technician:                       | John Pecor                 |                | System Phase / O  (1) Performance r data frequency | Test (2             | ) Initial                     | (3) Routine                                      |  |
| Monitoring/<br>Sampling Point     | Temperature<br>(°F)        | рН             | Conductivity<br>(umhos/cm)                         | Turbidity<br>(NTUs) | Dissolved<br>Oxygen<br>(mg/l) | Depth to<br>Water Table<br>(feet below<br>grade) |  |
| Volume 1 Volume 2 Volume 3        |                            |                |                                                    |                     |                               |                                                  |  |
| Sample ASM-2 Volume 1             | 22.2                       |                |                                                    |                     | 1.02                          |                                                  |  |
| Volume 2<br>Volume 3<br>Sample    |                            |                |                                                    |                     |                               |                                                  |  |
| Volume 1 Volume 2 Volume 3        |                            |                |                                                    |                     |                               |                                                  |  |
| Sample<br>FC-2<br>Volume 1        |                            |                |                                                    |                     |                               |                                                  |  |
| Volume 2<br>Volume 3<br>Sample    |                            |                |                                                    |                     |                               |                                                  |  |
| Hour Meter Rea                    | ding:                      | Current Readii | ng (Cumulative)                                    |                     | Period                        |                                                  |  |
| •                                 | ng Point                   | Temperature    | Pressure/<br>Vacuum<br>(in W.C.)                   | (ACFM)              | (SCFM)                        | Total VOCs<br>(ppm)                              |  |
| Air Sparging Wel                  | 2 (AS-2)                   | ₹74<br>82      | 1.75 16.                                           | 99.46               | 10                            | n/a<br>n/a                                       |  |
| Air Sparging Wel Vapor Monitoring | Probes:                    | イン<br>n/a      | 1.6/27.73                                          | 6. 09<br>n/a        | n/a                           | n/a                                              |  |
| No. 2 (                           | SVM-1)<br>SVM-2)<br>SVM-3) | n/a<br>n/a     | 0.80                                               | n/a<br>n/a          | n/a<br>n/a<br>n/a             | 0                                                |  |
| No. 4 (                           | C1/8# 41                   | nla            |                                                    | nla                 | n/o                           | //                                               |  |

Completed form to be included in each Air Sparging Monitoring Report.

#### **Air Sparging System**

Sampling, Monitoring and Reporting Form

| Day H-A5

| Date:                         | 9/5/03              | Day (3 SVC          | Ambient Ter                                                                                                   | nperature:          | <u> 73.</u>                   | 9                                    |
|-------------------------------|---------------------|---------------------|---------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------|--------------------------------------|
| Time:                         | 1800                |                     | Barometric I                                                                                                  | Pressure:           | 29.9,                         | /                                    |
|                               |                     |                     | -<br>System Phase / O                                                                                         | perating Period     | (circle one):                 |                                      |
| Technician:                   | J. P.               |                     | (1) Performance                                                                                               |                     | •                             | (3) Routine                          |
|                               |                     | uction sheet fo     | r data frequenc                                                                                               |                     | •                             | (0) (000000                          |
|                               | 1000 11134          | Total Street 10     | data irequent                                                                                                 | y or each para      |                               | Depth to                             |
| Monitoring/<br>Sampling Point | Temperature<br>(°F) | рН                  | Conductivity<br>(umhos/cm)                                                                                    | Turbidity<br>(NTUs) | Dissolved<br>Oxygen<br>(mg/l) | Water Table<br>(feet below<br>grade) |
| ASM-1                         | 4* A                |                     | 14 1000                                                                                                       | .20                 |                               | 4                                    |
| Volume 1                      |                     |                     |                                                                                                               |                     | •                             |                                      |
| Volume 2                      |                     |                     |                                                                                                               |                     |                               |                                      |
| Volume 3                      |                     |                     |                                                                                                               |                     |                               |                                      |
| Sample                        |                     |                     |                                                                                                               |                     |                               |                                      |
| ASM-2                         |                     |                     |                                                                                                               | V 100 - 120         | * - *                         |                                      |
| Volume 1                      |                     |                     |                                                                                                               |                     |                               |                                      |
| Volume 2                      |                     |                     |                                                                                                               |                     |                               |                                      |
| Volume 3                      |                     |                     |                                                                                                               |                     |                               |                                      |
| Sample                        |                     |                     | N. 1                                                                                                          |                     | Section 186.                  |                                      |
| FC-1                          |                     |                     | 49.00                                                                                                         |                     | 11.4                          |                                      |
| Volume 1                      |                     |                     |                                                                                                               |                     |                               |                                      |
| Volume 2                      |                     |                     |                                                                                                               |                     |                               |                                      |
| Volume 3                      |                     |                     |                                                                                                               |                     | ;                             |                                      |
| Sample                        |                     |                     | are a second and a second and a second and a second and a second and a second and a second and a second and a |                     |                               |                                      |
| FC-2<br>Volume 1              | N. 152 1.153        |                     |                                                                                                               |                     |                               |                                      |
| Volume 1<br>Volume 2          |                     |                     |                                                                                                               |                     |                               |                                      |
| Volume 3                      |                     |                     |                                                                                                               |                     |                               |                                      |
| Sample                        |                     |                     |                                                                                                               |                     |                               |                                      |
| Hour Meter Read               | ding:               | Current Readin      | 7<br>ng (Cumulative)                                                                                          | 11.7<br>24-hour     | Period                        |                                      |
|                               |                     |                     |                                                                                                               | Flow                | Rate                          |                                      |
| Monito<br>Samplin             | g Point             | Temperature<br>(°F) | Pressure/<br>Vacuum<br>(in W.C.)                                                                              | (ACFM)              | (SCFM)                        | Total VOCs<br>(ppm)                  |
| Air Sparging Well             | •                   | 79                  | 1.6/27.73                                                                                                     | 9.35                | 10                            | n/a                                  |
| Air Sparging Well             | •                   | 82                  | 1.4/38.52                                                                                                     | 9.33                | 9.8                           | n/a                                  |
| Air Sparging Well             | <u> </u>            | 40                  | 1.5/41.59                                                                                                     | 6.11                | 7                             | n/a                                  |
| Vapor Monitoring              |                     |                     |                                                                                                               |                     |                               | <u> </u>                             |
| No 1 (5                       | SVM-1)              | n/a                 | 1770                                                                                                          | n/a                 | n/a                           | ()                                   |

Completed form to be included in each Air Sparging Monitoring Report.

n/a

n/a

n/a

No. 2 (SVM-2)

No. 3 (SVM-3)

No. 4 (SVM-4)

n/a

n/a

n/a

n/a

n/a

#### **Air Sparging System**

# Sampling, Monitoring and Reporting Form Aug. 4- As Ambient Temperature: 50

| Date:                         | 916103 60           | 4143VE)         | Ambient Ten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nperature:                                       | 30.0                                    |                                                  |
|-------------------------------|---------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|--------------------------------------------------|
| Time:                         | 0600                |                 | _Barometric F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pressure:                                        | 30.07                                   |                                                  |
| Technician:                   | う?<br>(See instr    | uction sheet fo | System Phase / Op<br>(1) Performance<br>or data frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e Test (2                                        | 2) Initial                              | (3) Routine                                      |
| Monitoring/<br>Sampling Point | Temperature<br>(°F) | рН              | Conductivity<br>(umhos/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Turbidity<br>(NTUs)                              | Dissolved<br>Oxygen<br>(mg/l)           | Depth to<br>Water Table<br>(feet below<br>grade) |
| ASM-1                         |                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                         |                                                  |
| Volume 1                      |                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                         |                                                  |
| Volume 2                      |                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                         |                                                  |
| Volume 3                      |                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                         |                                                  |
| Sample                        |                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                         |                                                  |
| ASM-2                         | 1999 C. 1999        |                 | Section 11 married and the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section o |                                                  |                                         |                                                  |
| Volume 1                      | l!                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b></b> '                                        |                                         |                                                  |
| Volume 2                      | <b>!</b> '          | <u> </u>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                         |                                         |                                                  |
| Volume 3                      |                     | <b></b> !       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                         |                                         |                                                  |
| Sample                        |                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                         |                                                  |
| FC-1                          |                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                         | 1 3 m                                            |
| Volume 1                      | <b> </b>            | <del> </del> -' | <del> </del> '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b> </b> '                                       | <u> </u>                                |                                                  |
| Volume 2                      | L                   | <b> </b>        | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>                                     </del> |                                         |                                                  |
| Volume 3                      |                     | <b></b>         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b></b>                                          | ļ                                       |                                                  |
| Sample                        |                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                         |                                                  |
| FC=2                          |                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                         |                                                  |
| Volume 1                      | <b> </b>            | <b></b>         | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b></b>                                          | <u> </u>                                |                                                  |
| Volume 2                      |                     | <b></b>         | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ļJ                                               | <del></del>                             |                                                  |
| Volume 3                      |                     | <del> </del>    | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b></b>                                          | <del> </del> '                          | <b></b>                                          |
| Sample                        |                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                | <u> </u>                                |                                                  |
| Hour Meter Read               | ding:               | 83.7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                               |                                         |                                                  |
|                               |                     | Current Readir  | ng (Cumulative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24-hour                                          | r Period                                | ,                                                |
|                               |                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow                                             | Rate                                    |                                                  |
| **                            |                     | 1               | Pressure/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |                                         |                                                  |
| Monite                        | -                   | Temperature     | Vacuum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ACFM)                                           | (SCFM)                                  | Total VOCs                                       |
| Samplin                       | ig Point            | (°F)            | (in W.C.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  | ( , , , , , , , , , , , , , , , , , , , | (ppm)                                            |
| Air Sparging Well             | 1 (AS-1)            | 75              | 1.55/48.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.19                                             | 10                                      | n/a                                              |
| Air Sparging Well             | 2 (AS-2)            | 83              | 15 /41.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.48                                             | 10                                      | n/a                                              |
| Air Sparging Well             | 3 (AS-3)            | 42              | 1.6 / 27.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,48                                             | 4                                       | n/a                                              |
| Vapor Monitoring              | Probes:             | -               | 7.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                         |                                                  |
| No 1 (9                       |                     | n/a             | 0 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                                              | n/a                                     | (*)                                              |

Completed form to be included in each Air Sparging Monitoring Report.

n/a

n/a

n/a

No. 2 (SVM-2)

No. 3 (SVM-3)

No. 4 (SVM-4)

n/a

n/a

n/a

n/a

n/a

#### **Air Sparging System**

Sampling, Monitoring and Reporting Form

Day 4-A5

| Date:                         | 9/6/4 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Day 14-5V       | Mmbient Ter                                      | nperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74.8                          | <u> </u>                                         |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------|
| Time:                         | 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | Barometric l                                     | Pressure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29. <b>9</b>                  | 9                                                |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | System Phase / O                                 | perating Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (circle one):                 |                                                  |
| Technician:                   | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | (1) Performance                                  | e Test (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) Initial                     | (3) Routine                                      |
|                               | (See instr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uction sheet fo | r data frequenc                                  | y of each para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | meter!)                       |                                                  |
| Monitoring/<br>Sampling Point | Temperature<br>(°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | рН              | Conductivity<br>(umhos/cm)                       | Turbidity<br>(NTUs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dissolved<br>Oxygen<br>(mg/l) | Depth to<br>Water Table<br>(feet below<br>grade) |
| ASM-1                         | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                                  | 244 S. Z.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                                  |
| Volume 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                  |
| Volume 2                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                  |
| Volume 3                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                  |
| Sample                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                  |
| ASM-2                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | ha a los alias alias                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                  |
| Volume 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                  |
| Volume 2                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                  |
| Volume 3                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                  |
| Sample                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | MARKE PERSON SET TO THE PERSON TO PERSON SET SET | Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of the Constant of th |                               |                                                  |
| FG-1                          | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                  |
| Volume 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .,                            |                                                  |
| Volume 2                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                  |
| Volume 3                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                  |
| Sample                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                  |
| FC-2                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | engladistantik  |                                                  | 7/10/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | 4.00                                             |
| Volume 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                  |
| Volume 2                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                  |
| Volume 3                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                  |
| , Sample                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | /20.0                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                  |
| Hour Meter Read               | ling:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96 - 7          | 2/86.8                                           | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                                                  |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Current Readir  | ng (Cumulative)                                  | 24-hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                  |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                  | Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rate                          |                                                  |
| · Monito                      | oring/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Temperature     | Pressure/                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Total VOCs                                       |
| Samplin                       | · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (°F)            | Vacuum                                           | (ACFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (SCFM)                        | (ppm)                                            |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | (in W.C.)                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                  |
| Air Sparging Well             | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80              | 1.75/4853                                        | 9.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                            | n/a                                              |
| Air Sparging Well             | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 85              | 1.5/41.59                                        | 5.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76                            | n/a                                              |
| Air Sparging Well             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42              | 1.5/41.59                                        | 8.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                            | n/a                                              |
| Vapor Monitoring              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                  |
| No. 1 (S                      | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/a             | ٠٢                                               | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                           | 0                                                |
| No. 2 (S                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>n/a</u>      | .8                                               | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                           | Q                                                |
| 1 10 3 10                     | 21/10/21 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n/a !           |                                                  | n/o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nlo                           | <i>a</i> 1                                       |

Completed form to be included in each Air Sparging Monitoring Report.

n/a

No. 4 (SVM-4)

n/a

#### Air Sparging System

## Sampling, Monitoring and Reporting Form Sampling 5-A5

| Date:                         | 9/7/03                   | Day 15-5VE          | Ambient Te                       | mperature:          | 59.3                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------|--------------------------|---------------------|----------------------------------|---------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time:                         | 0600                     |                     | Barometric                       | Pressure:           | 29.99                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                          |                     | System Phase / O                 | perating Period     | (circle one):                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Technician:                   | <b>つ.</b> ?.             |                     | (1) Performance                  | e Test (2           | 2) Initial                    | (3) Routine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                               | (See instr               | uction sheet fo     | r data frequenc                  | y of each para      | meter!)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Monitoring/<br>Sampling Point | Temperature<br>(°F)      | рН                  | Conductivity<br>(umhos/cm)       | Turbidity<br>(NTUs) | Dissolved<br>Oxygen<br>(mg/l) | Depth to<br>Water Table<br>(feet below<br>grade)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ASM:1                         |                          |                     |                                  |                     | 100                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Volume 1                      |                          |                     |                                  |                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Volume 2                      |                          |                     |                                  |                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Volume 3                      |                          |                     |                                  |                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample<br>ASM-2               | eres eres eres eres eres |                     |                                  |                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Volume 1                      | 35 35 35 and 15 and 15   |                     | Bell comments and the second     | Telephone Telephone |                               | Cardinal Garage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Volume 2                      |                          |                     |                                  |                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Volume 3                      |                          |                     |                                  |                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample                        |                          |                     |                                  |                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FG-1                          |                          | 100                 |                                  |                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Volume 1                      |                          |                     |                                  |                     |                               | Company of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of |
| Volume 2                      |                          |                     |                                  |                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Volume 3                      |                          |                     |                                  |                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample                        |                          |                     |                                  |                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FC42                          |                          |                     |                                  | 11.00               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Volume 1                      |                          |                     |                                  |                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Volume 2                      |                          |                     |                                  |                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Volume 3                      |                          |                     |                                  |                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample                        |                          |                     |                                  |                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Hour Meter Read               | ling:                    | Current Readi       | ng (Cumulative)                  | 24-hou              | Period                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                               |                          |                     |                                  | Flow                | Rate                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Monito<br>Samplin             | g Point                  | Temperature<br>(°F) | Pressure/<br>Vacuum<br>(in W.C.) | (ACFM)              | (SCFM)                        | Total VOCs<br>(ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Air Sparging Well             | _ ` ′                    | רר                  | 1.75/48.53                       | 9.23                | <i>(</i> 0                    | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Air Sparging Well             | 2 (AS-2)                 | 83                  | 1.5/4159                         | 9.48                | 10                            | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

2.5

0.6

0.6

0,2

n/a

n/a

n/a

n/a

Completed form to be included in each Air Sparging Monitoring Report.

40

n/a

n/a

n/a

n/a

Air Sparging Well 3 (AS-3)

Vapor Monitoring Probes:

No. 1 (SVM-1)

No. 2 (SVM-2)

No. 3 (SVM-3)

No. 4 (SVM-4)

n/a

n/a

n/a

n/a

#### **Air Sparging System**

## Sampling, Monitoring and Reporting Form Day 5-AS

w (√-≲νεAmbient Temperature:

|                               | 0 \                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
|-------------------------------|---------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Time:                         | 1800                |                     | Barometric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pressure:           | 29.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                         |
|                               |                     |                     | System Phase / Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | perating Period     | (circle one):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |
| Technician:                   | - 2 P               | /                   | (1) Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test) (2            | ) Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3) Routine                                      |
|                               | (See instr          | uction sheet fo     | r data frequene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y of each para      | meter!)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| Monitoring/<br>Sampling Point | Temperature<br>(°F) | рН                  | Conductivity<br>(umhos/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Turbidity<br>(NTUs) | Dissolved<br>Oxygen<br>(mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Depth to<br>Water Table<br>(feet below<br>grade) |
| ASM-1                         |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.4                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Volume 1                      |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Volume 2                      |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Volume 3                      |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Sample                        |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| ASM=2                         |                     |                     | State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state |                     | A Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Share Shar |                                                  |
| Volume 1                      |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Volume 2                      |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Volume 3                      |                     |                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Sample                        |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |
| FC-1                          |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>3</b> 4          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 (4)                                            |
| Volume 1                      |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Volume 2<br>Volume 3          |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Sample                        |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| FC-2                          |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 1945 - F. San Jan 5-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
| Volume 1                      |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |
| Volume 2                      |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Volume 3                      |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Sample                        |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Hour Meter Read               | ling:               | Current Readi       | ng (Cumulative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (                   | Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
|                               |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow                | Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
| - Monito<br>Samplin           | -                   | Temperature<br>(°F) | Pressure/<br>Vacuum<br>(in W.C.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ACFM)              | (SCFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total VOCs<br>(ppm)                              |
| Air Sparging Well             |                     | 80                  | 1-75/4853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.09                | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                                              |
| Air Sparging Well             |                     | 84                  | 1.5/41.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.02                | 9-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                                              |
| Air Sparging Well             |                     | 42                  | 1.5/41.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.96                | 6-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                                              |
| Vapor Monitoring              | Probes:             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| No. 1 (S                      | SVM-1)              | n/a                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a                 | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                |

0.60

0.30

0.25

n/a

n/a

n/a

Completed form to be included in each Air Sparging Monitoring Report.

n/a

n/a

n/a

No. 2 (SVM-2)

No. 3 (SVM-3)

No. 4 (SVM-4)

Date:

Ū

n/a

n/a

#### **Air Sparging System**

Sampling, Monitoring and Reporting Form

| Date:                         | 9/8/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vay 1651                           | <u>⊈</u> Ambient Ten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                                                  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| Time:                         | 060D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | Barometric F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pressure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29.98                                            | >                                                |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | -<br>System Phase / Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | perating Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| Technician:                   | 5P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | (1) Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | (3) Routine                                      |
|                               | (See instr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    | or data frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                |                                                  |
| Monitoring/<br>Sampling Point | Temperature<br>(°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | рН                                 | Conductivity<br>(umhos/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Turbidity<br>(NTUs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dissolved<br>Oxygen<br>(mg/l)                    | Depth to<br>Water Table<br>(feet below<br>grade) |
| ASM-1                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathcal{F} = \{ (x,y), (y,y) \}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| Volume 1                      | To The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| Volume 2                      | / BEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| Volume 3                      | 16th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| Sample                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                                  |                                                  |
| ASM-2                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| Volume 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| Volume 2                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                                                  |
| Volume 3                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| Sample                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| FC-1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 1.1                                              |
| Volume 1                      | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |                                                  |
| Volume 2                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |                                                  |
| Volume 3                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |                                                  |
| Sample FC-2                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| Volume 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | San Maria San San San San San San San San San Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| Volume 1<br>Volume 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| Volume 3                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                  | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | -                                                |
| Sample                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                     </del> | -                                                |
| <u> </u>                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121 0                              | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                         |                                                  |
| Hour Meter Read               | ling:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 131.                               | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                  |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Current Readir                     | ng (Cumulative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24-nour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r Period                                         |                                                  |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rate                                             |                                                  |
| Monito<br>Samplin             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Temperature<br>(°F)                | Pressure/<br>Vacuum<br>(in W.C.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ACFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (SCFM)                                           | Total VOCs<br>(ppm)                              |
| Air Sparging Well             | 1 (AS-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | רד                                 | 1.75/48.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.8                                              | n/a                                              |
| Air Sparging Well             | 2 (AS-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84                                 | 1.4 138.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.5                                              | n/a                                              |
| Air Sparging Well             | 3 (AS-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42                                 | 15/41.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.9                                              | n/a                                              |
| Vapor Monitoring              | Probes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| No. 1 (S                      | 3VM-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n/a                                | -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                                              | $\overline{\Omega}$                              |

Completed form to be included in each Air Sparging Monitoring Report.

n/a

n/a

n/a

,50

120

No. 2 (SVM-2)

No. 3 (SVM-3)

No. 4 (SVM-4)

n/a

n/a

n/a

n/a

n/a

#### SPLIT SAMPLING RESULTS



330 Crossways Park Drive, Woodbury, New York, 11797-2015 516-364-9890 • 718-460-3634 • Fax: 516-364-9045 e-mail: db-eng@worldnet.att.net

September 18, 2003

#### Principals

Nicholas J. Bartilucci, P.E. President

Henry J. Chlupsa, P.E. Executive Vice President

Thomas F. Maher, P.E. Vice President

Robert T. Burns, P.E. Vice President

Richard M. Walka

Steven A. Fangmann, P.E. Vice President

Theodore S. Pytlar, Jr.

#### Senior Associates

Anthony O. Conetta, P.E.

Dennis F. Koehler, P.E.

Joseph H. Marturano

John A. Mirando, P.E.

Kenneth J. Pritchard, P.E.

Brian M. Veith, P.E.

#### Associates

Joseph F. Baader

Garrett M. Byrnes, P.E.

Rudolph F. Cannavale

Joseph A. Fioraliso, P.E.

Thomas P. Fox. P.G.

Gerald Gould, C.P.G. William D. Merklin, P.E.

Michael Neuberger, P.E.

Edward J. Reilly

Charles J. Wachsmuth, P.E. Kenneth P. Wenz, Jr., C.P.G. Jeffery E. Trad, P.E.

**Bureau of Construction Services** 

Division of Environmental Remediation

New York State Department of Environmental Conservation

625 Broadway, 12th Floor

Albany, NY 12233-7013

Re: Franklin Cleaners Site

NYSDEC Contract No. D004184

Site No. 1-30-050 D&B No. 1851

Dear Mr. Trad:

Enclosed please find a table summarizing the analytical results for soil vapor samples collected by Environmental Products and Services, Inc. during the morning of September 4, 2003, as part of the Soil Vapor Extraction System Performance Test at the above-referenced site. The table also provides analytical results for the split samples collected by this office. A schematic (Figure 1) showing the sample locations has also been enclosed for your reference.

Please do not hesitate to contact me at (516) 364-9890 if you have any questions.

Very truly yours,

Frank Dolita

Frank DeVita Project Manager

FD(t)/ld **Enclosures** 

cc:

J. Yavonditte, NYSDEC

T. Maher, D&B

M. Wright, D&B

S. Tauss, D&B

D. Braue, EPS

J. Pecori, EPS

+1851\FD03(B)LTR-23.DOC(R01)

TABLE 1
FRANKLIN CLEANERS SITE
NYSDEC CONTRACT No. D004184 / SITE No. 1-30-050
SOIL VAPOR EXTRACTION (SVE) PERFORMANCE TEST AIR SAMPLE RESULTS

| מייות                                                                                        | 11/10                | CVE_4 (AM)           |                        | SVF-2 (AM) |               | SW                         | SVM-1 (AM)    | S             | SVM-2 (AM) |               |
|----------------------------------------------------------------------------------------------|----------------------|----------------------|------------------------|------------|---------------|----------------------------|---------------|---------------|------------|---------------|
| SAMPLE ID                                                                                    | AIR                  | AIR                  | AIR                    |            | AIR           | AIR                        | AIR           | AIR           |            | AIR           |
| DATE OF COLLECTION                                                                           | 09/04/2003           | 09/04/2003           | 09/04/2003             | _          | 09/04/2003    | 09/04/2003                 | 09/04/2003    | 09/04/2003    | 30         | 09/04/2003    |
| COLLECTED BY                                                                                 | FP&S                 | D&B                  | EP&S                   |            | D&B           | EP&S                       | D&B           | EP&S          |            | D&B           |
| UNITS                                                                                        | (nd/L)               | (ng/L)               | (ng/L)                 |            | (ng/L)        | (ng/L)                     | (ng/L)        | (ng/L)        | -          | (ng/L)        |
| VOCs                                                                                         |                      |                      |                        |            |               |                            |               |               |            |               |
| 1,1,1-trichloroethane                                                                        | )                    | 0.0260 A             |                        | _<br>_     | <b>)</b>      | <b>-</b>                   | 0.0330 A      | o :           | 0.000      |               |
| 1,1,2,2-tetrachloroethane                                                                    | ם                    | _                    |                        | <b>-</b>   | <b>)</b>      | <b>-</b>                   | <b>&gt;</b> : | <b>&gt;</b> = |            | <b>&gt;</b> : |
| 1,1,2-trichloroethane                                                                        | כ                    | <b>-</b>             |                        | <b>-</b>   | <b>&gt;</b> : | <b>→</b>                   | 0             | <b>-</b>      | _          | <b>&gt;</b>   |
| 1,1-dichloroethane                                                                           | >                    | 0.0024               |                        |            |               | <b>-</b>                   | 0.001/        | <b>-</b>      |            | o :           |
| 1,1-dichloroethene                                                                           | >                    | 0.0053               |                        |            | 0.0032        | <b>&gt;</b> :              | <b>-</b>      |               |            | <b>&gt;</b> : |
| 1,2-dichlorobenzene                                                                          | <b>⊃</b>             | _                    |                        |            | <b>ɔ</b> :    | <b>-</b>                   | ⊃ :<br>       | o :           |            | <b>&gt;</b> : |
| 1,2-dichloroethane                                                                           | >                    | <u> </u>             |                        | _<br>_     | <b>)</b>      | <b>-</b>                   | <b>-</b>      | <b>-</b>      |            | <b>&gt;</b> : |
| 1,2-dichloropropane                                                                          | >                    | _                    |                        | _<br>_     | <b>)</b>      | ⊃ :<br>                    | <b>-</b> :    | o :           |            | <b>&gt;</b> : |
| 1,3-dichlorobenzene                                                                          | <b>&gt;</b>          | _                    |                        | _          |               | <b>-</b>                   | <b>-</b>      | o :           | _          | <b>&gt;</b> : |
| 1,4-dichlorobenzene                                                                          | ⊃                    |                      |                        | _          | 0.0018        | o :                        | )             | o :           |            |               |
| acetone                                                                                      | >                    |                      |                        | _          |               | <b>-</b>                   |               | · -           | 0.0033     |               |
| benzene                                                                                      | <b>-</b>             | 0.0003 JB            |                        |            | 0.0006<br>JB  | <b>-</b>                   | 9000.0        | <b>-</b>      | 0.0004     | 원 :           |
| bromodichloromethane                                                                         | ⊃                    | <u> </u>             |                        | _          | <b>&gt;</b>   | <u> </u>                   | <b>-</b>      | o :           | -          | ⊃:            |
| bromoform                                                                                    | >                    | _                    |                        | _          |               | _                          |               | <b>-</b>      |            |               |
| bromomethane                                                                                 | <b>¬</b>             | 0.0190 B             |                        |            | 0.0081 B      | _                          | 0.0120 B      | <b>-</b>      | 0.0029     | B :           |
| carbon disulfide                                                                             | ΣX                   | _                    | Ž                      |            | <b>⊃</b>      | WZ.                        |               | Z             |            |               |
| carbon tetrachloride                                                                         | ⊃                    | _                    |                        | _          | >             | _                          | _             | _             | 0.0004     |               |
| chlorobenzene                                                                                | _                    | 0.0055               |                        |            | 0.0021        | _                          | _             |               |            | >             |
| chlorodibromomethane                                                                         | - =                  |                      |                        |            |               | <u> </u>                   |               | _             | _          | 5             |
| Chloroethane                                                                                 | · =                  | -                    |                        | _          |               | _                          | _             | _             |            | Þ             |
| chloroform                                                                                   | > =                  | 0.0013               |                        | _          | 0.0025        | _                          | 0.0013        | _             | 0.0056     |               |
| chloromethane                                                                                | > =                  | 0.0019               |                        |            | 0.0048        |                            | 0.0010        | _             | 0.0012     | ~             |
| Circle Control Control Circ. 1 2-dichloroethene                                              | N N                  |                      | Z                      |            | 0.0030        | WN                         | )             | Z             |            | כ             |
| cis-1 3-dichloropropene                                                                      | =                    |                      |                        | _          | =             | =                          |               | <u> </u>      | _          | _             |
| dibromochloromethane                                                                         | Z Z                  |                      | Z                      |            | ) )           | N N                        | ) <b>)</b>    | WN            |            | ) ⊃           |
| athylhenzene                                                                                 | =                    | 1. 80000             | <u> </u>               | 0.0        | 0.0004        |                            | 0.0012        | <u> </u>      | 0.0006     |               |
| methyl ethyl ketone (mek)                                                                    | o' =                 |                      |                        | _          | ) =<br>:      | -                          | 0.0026        | · >           | 0.0008     | , –,          |
| methylene chloride                                                                           | =                    | 0 0010               | _                      |            | 0.0013        | -=                         | 0.0005        | ח             | 0.0021     |               |
| mthe                                                                                         | =                    |                      |                        | 000        | 0.000         |                            | 0.0012        | _             | 0.0008     | -n            |
| Styrene                                                                                      | N Z                  |                      | Z                      |            |               | Z                          | 0.0002        | Z             |            | _             |
| tetrachloroethene                                                                            | <b>¬</b>             | 1.1000 A             | 1.38                   | 5.0        | 5.0000 A      | <b>-</b>                   |               | 1.79          | 0.9100     | 4             |
| toluene                                                                                      | <b>-</b>             | 0.0010               |                        |            |               | <b>→</b>                   | 0.0022        | _             | 0.0014     | _             |
| trans-1,2-dichloroethene                                                                     | >                    | 0.0019               |                        | _          | ⊃             | >                          | _             | <b>¬</b>      |            | ⊃             |
| trans-1,3-dichloropropene                                                                    | >                    | <u></u>              |                        | _          | ⊃             | >                          | n             | _             |            | Þ             |
| trichloroethene                                                                              | <b>&gt;</b>          | 0.0220 A             |                        |            | 0.0220 A      | <b>¬</b>                   | 0.0001        | <b>→</b>      | 0.0005     |               |
| trichlorofluoromethane                                                                       | <b>¬</b>             | 0.0013               |                        |            | 0.0009<br>J   | <b>¬</b>                   | C 6000.0      | _             | 0.0008     | ٦<br>«        |
| vinyl chloride                                                                               | >                    | ח                    | _                      | _          | <b>-</b>      | _                          | _             | _             |            | כ             |
| xylene, m+p                                                                                  | <b>¬</b>             | 0.0040               |                        | _          | 0.0015        | >                          | 0.0054        | <u> </u>      | 0.0020     | •             |
| xylene, o                                                                                    | >                    | 0.0012               |                        |            | 0.0005<br>J   | <u> </u>                   | 0.0016        | ח             | 0.0008     | 7             |
| NOTES:                                                                                       |                      |                      |                        |            |               |                            |               |               |            |               |
| U: Compound analyzed for but not detected                                                    | ut not detected      |                      |                        |            |               | NA: Not Available          |               |               |            |               |
| B: Concentration is between instrument detection limit and contract required detection limit | instrument detection | limit and contract n | equired detection limi |            |               | NM: Not Monitored          |               |               |            |               |
| J: Estimated                                                                                 | 41000                |                      |                        |            |               | ug/l = Microgram per liter | liter         |               |            |               |

U. Compound analyzed for but not detected
B. Concentration is between instrument detection limit and contract required detection limit
J. Estimated
A. Concentration exceeds calibration limit

Franklin\_soil\_vapor.xls

TABLE 1 (Continued)
FRANKLIN CLEANERS SITE
NYSDEC CONTRACT No. D004184 / SITE No. 1-30-050
SOIL VAPOR EXTRACTION (SVE) PERFORMANCE TEST AIR SAMPLE RESULTS

| PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAMPLEID                  | MAS           | SVM-3(AM)     | AS             | SVM-4 (AM)  | CV-1 IN       | CV-1 INLET (AM) | CV-1 OL       | CV-1 OUTLET (AM) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|---------------|----------------|-------------|---------------|-----------------|---------------|------------------|
| CONTINENTION         GRAPH/2003         CONTINENTION         CONTINENTION         CONTINENTION         CONTINENTIAL         CONTINENTIAL <th>SAMPI E TVPE</th> <th>1</th> <th></th> <th>1</th> <th></th> <th>AIR</th> <th>AIR</th> <th>AIR</th> <th>AIR</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SAMPI E TVPE              | 1             |               | 1              |             | AIR           | AIR             | AIR           | AIR              |
| Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Com   | DATE OF COLLECTION        | 09/04/2003    | 09/04/2003    | 09/04/2003     | 09/04/2003  | 09/04/2003    | 09/04/2003      | 09/04/2003    | 09/04/2003       |
| Control (Light)   Cogn.)   Cogn.   Cogn.)   Cogn.    | COLLECTED BY              | FP&S          | D&B           | EP&S           | D&B         | EP&S          | D&B             | EP&S          | D&B              |
| Interconcentrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UNITS                     | (na/L)        | (nd/L)        | (ng/L)         | (ng/L)      | (ng/L)        | (ng/L)          | (ng/L)        | (ng/L)           |
| Participation of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th   | VOCS                      |               |               |                |             |               |                 |               |                  |
| Activition of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of th   | 1,1,1-trichloroethane     | 5             |               | n              | <b>D</b>    | ר כ           | Z.              | <b>ɔ</b> :    | O.0970           |
| Tricklocentenee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1,2,2-tetrachioroethane | <b>¬</b>      | <b>¬</b>      | <u> </u>       | <b>o</b>    | <b>⊃</b>      | Σ<br>Z          | <b>-</b>      | <b>-</b> :       |
| Chicocellane   Decision   Decis   | 1,1,2-trichloroethane     | <b>&gt;</b>   | <b>&gt;</b>   | <u> </u>       | <u> </u>    | <b>&gt;</b>   | Ž.              | <b>-</b>      |                  |
| Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Cont   | 1,1-dichloroethane        | <b>¬</b>      | <b>¬</b>      | <u> </u>       | <b>&gt;</b> | ⊃             | Z.              | <b>&gt;</b> : | 0.0031           |
| the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confiden | 1,1-dichloroethene        | <b>-</b>      | >             | <b>¬</b>       | n           | ⊃             | Z               | <b>-</b>      |                  |
| Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Cont   | 1,2-dichlorobenzene       | <b>¬</b>      | <b>→</b>      | _              | <u> </u>    | <u> </u>      | ¥Z.             | <b>-</b>      | <b>-</b>         |
| the checkerse by the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers of the checkers  | 1,2-dichloroethane        | >             | <b>¬</b>      | <u> </u>       | <b>-</b>    | <b>D</b>      | ¥Z.             | <b>⊃</b> :    | <b>&gt;</b> :    |
| the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlorobersone by the chlor | 1,2-dichloropropane       | n             | <b>¬</b>      | <b>&gt;</b>    | <u> </u>    | <u> </u>      | ¥.              | <b>-</b>      | <b>-</b>         |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,3-dichlorobenzene       | <b>¬</b>      | כ             | ⊃<br>          | <b>&gt;</b> | <b>&gt;</b> : | ZZ:             | <b>-</b>      | <b>-</b>         |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,4-dichlorobenzene       | <b>¬</b>      |               | <b>&gt;</b>    |             | <b>&gt;</b> : | ΣZ.             | <u>-</u>      |                  |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | acetone                   | <b>¬</b>      |               | <u> </u>       |             | <b>&gt;</b> : | Z :             | <b>&gt;</b> : |                  |
| Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occi   | benzene                   | <b>ɔ</b>      |               | <b>-</b>       |             | <u> </u>      | NZ              | <b>-</b>      |                  |
| Officeration         U         0.0022         B         U         NM         U         U         U         U         U         U         NM         U </td <td>bromodichloromethane</td> <td>⊃</td> <td><b>¬</b></td> <td>⊃ <sup>-</sup></td> <td><b>-</b></td> <td><b>)</b></td> <td>Z.</td> <td><b>&gt;</b> :</td> <td><b>⊃</b>·3</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | bromodichloromethane      | ⊃             | <b>¬</b>      | ⊃ <sup>-</sup> | <b>-</b>    | <b>)</b>      | Z.              | <b>&gt;</b> : | <b>⊃</b> ·3      |
| In matching between the retraction of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of the children of t                        | bromoform                 | <b>&gt;</b>   |               | _              |             | <b>-</b>      | ZZ.             | <b>-</b> :    |                  |
| number of distributions         NM         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U <td>bromomethane</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>¥.</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bromomethane              |               |               |                |             |               | ¥.              |               |                  |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | carbon disulfide          |               | <b>-</b>      |                | )<br>       |               | Z :             |               |                  |
| Outcome than explained in contraction         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | carbon tetrachloride      | <b>&gt;</b>   | <b>&gt;</b>   | <b>&gt;</b>    | <b>)</b>    | <b>-</b>      | E I             | <b>-</b>      | <b>&gt;</b> :    |
| Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occidence   Occi   | chlorobenzene             | >             | <b>→</b>      | <b>-</b>       | o :         | <b>→</b> :    | ZZ :            | <b>&gt;</b> : | <b>-</b>         |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | chlorodibromomethane      | <b>&gt;</b>   | <b>-</b>      | <b>-</b>       | <b>)</b>    | <b>-</b> :    | WZ :            | <b>&gt;</b> : | <b>-</b> -       |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | chloroethane              | <b>&gt;</b> : | <b>-</b>      | <b>→</b> :     |             | o :           | E S             | o :           | 0 4              |
| monthane         NM         U         0,0001         NM         U         U         NM         U         U         U         U         NM         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | chloroform                | <b>-</b> :    |               | <b>-</b>       | 0.0026      | <b>&gt;</b> : | N I             | <b>-</b>      |                  |
| Addiction persone NM U U U NM U 0.0003 J NM NM NM NM NM NM NM NM NM NM NM NM NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | chloromethane             |               |               |                | 0.0011      |               | Z Z             |               |                  |
| Additionappoint NM 0,0005 J NM 0,0003 J NM NM NM NM NM NM NM NM NM NM NM NM NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cis-1,2-dichloroethene    |               | <b>-</b>      |                |             |               |                 |               |                  |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cis-1,3-dichloropropene   |               | <b>&gt;</b> = |                | <b>-</b>    |               | N N             |               | <b>&gt;</b> =    |
| Activity ketone (mek)   U   0.0023   S.22   A   0.0025   A   U   NM   U   0.0023   C.0020   U   NM   U   0.0002   U   0.0002   U   0.0002   U   0.0002   U   0.0001   U   0.0001   U   0.0001   U   0.0001   U   U   0.0001   U   U   U   U   U   U   U   U   U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | albioliocinologicaliana   |               |               |                |             |               |                 |               |                  |
| NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | emylbenzene               | <b>&gt;</b> = |               |                |             | > =           | N. W            | <b>&gt;</b> = |                  |
| NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | methylene chloride        | > =           | 0.0023        |                |             | <b>-</b>      | Z               |               |                  |
| hloroethene 1.98 U 0.0001 J NM 0.0001 J NM 1.67 U 0.0012 H.54 NM 1.67 U 0.0012 H.54 U NM 1.67 U 0.0012 H.54 U NM 1.67 U 0.0012 H.54 U NM 1.67 U 0.0012 H.54 U NM 1.67 U 0.0012 H.54 U NM 1.67 U 0.0012 H.54 U NM 1.67 U 0.0012 H.54 U NM 1.67 U 0.0012 H.54 U 0.0007 J U 0.0028 H.54 U NM H.54 U 0.0007 J U 0.0028 H.54 U NM H.54 U 0.0019 H.54 U 0.00014 J U 0.00014 J U NM H.54 U 0.00019 H.54 U 0.00014 J U NM H.54 U NM H.55 U 0.00014 J U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U 0.00014 J U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM H.55 U NM  | mthe                      | > =           |               |                | 0.0012      | ) ⊃           | Z               | · >           | 0.0040           |
| hene 1.98 0.9000 A 1.65 0.8600 A 1.54 NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67 U NM 1.67  | styrene                   |               |               |                |             |               | ZZ<br>Z         | ΣN            |                  |
| Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoording         Uncoord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tetrachloroethene         | 1.98          |               | 1.65           |             | 1.54          | WZ              | 1.67          | 5.5000 A         |
| hloroethene U U U U U U U U U U U U U U U NM U U NM U U NM U U U NM U U U NM U U U NM U U U NM U U U NM U U U NM U U U NM U U U NM U U NM U U U NM U U U NM U U U NM U U U NM U U U NM U U U U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | toluene                   |               |               |                | 0.0012      |               | WN              | <u> </u>      | 0.0020           |
| hioropropene U 0.0007 J U 0.0028 U NM U NM U O O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | trans-1,2-dichloroethene  | 5             | <b>¬</b>      | <u> </u>       | >           | _             | Z               | כ             | 0.0044           |
| ne         U         0.0007         J         U         0.0028         U         NM         U           omethane         U         0.0007         J         U         0.0023         U         NM         U           U         0.0019         U         0.0001         U         NM         U         U           U         0.0007         J         U         0.0004         J         NM         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | trans-1,3-dichloropropene | כ             | <b>¬</b>      | _              | <b>-</b>    | כ             | Z.              | _             |                  |
| omethane         U         0.0007         J         U         0.0023         U         NM         U           U         0.0019         U         0.0001         U         NM         U           U         0.0007         J         U         0.0004         J         NM         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | trichloroethene           | n<br>n        |               | ¬              | 0.0028      | J             | WN              | <b>¬</b>      | 0.4000 A         |
| U 0.0019 U 0.0011 U NM U 0.00011 U NM U 0.00011 U NM U 0.00007 U NM U 0.00007 U NM U 0.00007 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | trichlorofluoromethane    | <b>)</b>      |               | <b>-</b>       |             | <b>)</b>      | N.              | <b>¬</b> :    |                  |
| U 0.00019 U 0.00014 U NMM U 0.00004 U NMM U U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vinyl chloride            | <b>ɔ</b> :    |               | <b>&gt;</b>    |             | <b>-</b>      | NZ.             | <b>-</b> :    | ¬                |
| 0 0.0000 5 0 0.00004 5 0 0 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | xylene, m+p               | <b>&gt;</b> : | 0.0019        | <b>-</b>       |             | <b>&gt;</b> : | Z               | <b>&gt;</b> = | 0.0020           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (xylene, o                |               | 0.000.0       |                |             |               | MIN             |               | 0.000/           |

Compound analyzed for but not detected
B. Concentration is between instrument detection limit and contract required detection limit
J. Estimated
A. Concentration exceeds calibration limit

NA: Not Available NM: Not Monitored ug/l = Microgram per liter

Franklin\_soil\_vapor.xls

# TABLE 1 (Continued) FRANKLIN CLEANERS SITE NYSDEC CONTRACT No. D004184 / SITE No. 1-30-050 SOIL VAPOR EXTRACTION (SVE) PERFORMANCE TEST AIR SAMPLE RESULTS

| SAMPLEID                                                                                          | CV-2 OU              | CV-2 OUTLET (AM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                              |   |   |
|---------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------|---|---|
| SAMPLE TYPE                                                                                       | AIR                  | AIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                              |   |   |
| DATE OF COLLECTION                                                                                | 09/04/2003           | 09/04/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                              |   |   |
| COLLECTED BY                                                                                      | EP&S                 | D&B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                              |   |   |
| UNITS                                                                                             | (ng/L)               | (ng/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                              |   |   |
| VOCs                                                                                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |   |   |
| 1,1,1-trichloroethane                                                                             | <b>n</b>             | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                              |   |   |
| 1,1,2,2-tetrachloroethane                                                                         | ⊃                    | Z.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                     |                              |   |   |
| 1,1,2-trichloroethane                                                                             | <b>&gt;</b> :        | Z.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                              |   |   |
| 1,1-dichloroethane                                                                                | <b>&gt;</b> :        | Σ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                              |   |   |
| 1,1-dichloroethene                                                                                | <b>)</b>             | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                              |   |   |
| 1,2-dichlorobenzene                                                                               | <b>&gt;</b>          | ΣZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                              |   |   |
| 1,2-dichloroethane                                                                                | ⊃                    | Σ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                     |                              |   |   |
| 1,2-dichloropropane                                                                               | <b>&gt;</b>          | Ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                              |   |   |
| 1,3-dichlorobenzene                                                                               | >                    | Z.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                     |                              |   |   |
| 1,4-dichlorobenzene                                                                               | >                    | ¥Z.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                              |   |   |
| acetone                                                                                           | <b>&gt;</b>          | ΣX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                     |                              |   |   |
| benzene                                                                                           | <b>¬</b>             | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                              |   |   |
| bromodichloromethane                                                                              | <b>&gt;</b>          | ΣZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | _                            |   |   |
| bromoform                                                                                         | >                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                     |                              |   |   |
| bromomethane                                                                                      | <b>&gt;</b>          | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                              |   |   |
| carbon disulfide                                                                                  | ΣZ                   | ΣZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                              |   | _ |
| carbon tetrachloride                                                                              | <b>¬</b>             | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                              |   |   |
| chlorobenzene                                                                                     | =                    | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                     |                              |   |   |
| chlorodibromomethane                                                                              | ) ⊃                  | Ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                              |   |   |
| chloroethane                                                                                      | · =                  | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | _                            |   | _ |
| chloroform                                                                                        | > =                  | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                     |                              |   | • |
| chloromethane                                                                                     | · =                  | × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                              |   |   |
| circlellieulalie                                                                                  | N N                  | Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                              |   |   |
| cis-1,2-dichlororonopene                                                                          | =                    | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                     |                              |   |   |
| dibromochloromethane                                                                              | N N                  | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                              |   |   |
| ethylbenzene                                                                                      | <b>¬</b>             | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                              |   |   |
| methyl ethyl ketone (mek)                                                                         | ) ⊃                  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                     |                              |   |   |
| methylene chloride                                                                                | _                    | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                              |   |   |
| mtbe                                                                                              | ) )                  | Ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                              | - |   |
| styrene                                                                                           | Z                    | Ψ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                              |   |   |
| tetrachloroethene                                                                                 | 1.42                 | WN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                              |   |   |
| toluene                                                                                           | <b>¬</b>             | NZ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                     | _                            |   |   |
| trans-1,2-dichloroethene                                                                          | <b>¬</b>             | WN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                     |                              | ` |   |
| trans-1,3-dichloropropene                                                                         | >                    | ΣZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                              |   |   |
| trichloroethene                                                                                   | П                    | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                              |   |   |
| trichlorofluoromethane                                                                            | ) )                  | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                              |   |   |
| vioy chloride                                                                                     | =                    | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                              |   |   |
| xylene m‡n                                                                                        | =                    | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                              |   |   |
| Aylene, m.p.                                                                                      | <b>=</b>             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                              |   |   |
| xyiene, o                                                                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |   |   |
| NOTES:                                                                                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | OHOLOGICA SOLVE              |   |   |
| U. Compound analyzed for but not detected                                                         | out not detected     | the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | timil a citata to the | NA: Not Available            |   |   |
| B: Concentration is between instrument detection littlit and contract required detection littlit. | Instrument detection | n iimiit and contract requ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | Min. NOI MOINGING CO.        |   |   |
| J: Estimated                                                                                      | timit or itemit      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | ug/i – iviciogiaiii pei iici |   |   |

U: Compound analyzed for but not detected
B: Concentration is between instrument detection limit and contract required detection limit
J: Estimated
A: Concentration exceeds calibration limit

Franklin\_soil\_vapor.xls

\\N\4\CADwork\1851\SVE System As-Built\1851\_Sample\_Location\_Map.dwg, 09/17/03 12:03:49 PM, SMasarik

CONSULTING ENGINEERS
A DIVISION OF WILLIAM F COSULICH ASSOCIATES, P.C.

#### APPENDIX G

OPERATION, MAINTENANCE AND MONITORING REPORTS

FILE Copy 1851



330 Crossways Park Drive, Woodbury, New York, 11797-2015 516-364-9890 • 718-460-3634 • Fax: 516-364-9045 e-mail: db-eng@worldnet.att.net

August 25, 2004

#### **Principals**

Nicholas J. Bartilucci, P.E. President

Henry J. Chlupsa, P.E. Executive Vice President

Thomas F. Maher, P.E. Vice President

Robert T. Burns, P.E.

Richard M. Walka Vice President

Steven A. Fangmann, P.E.

Theodore S. Pytlar, Jr. Vice President

#### **Senior Associates**

Anthony O. Conetta, P.E.

Dennis F. Koehler, P.E.

Joseph H. Marturano

John A. Mirando, P.E.

Kenneth J. Pritchard, P.E.

Brian M. Veith, P.E.

#### **Associates**

Joseph F. Baader

Garrett M. Byrnes, P.E.

Rudolph F. Cannavale

Joseph A. Fioraliso, P.E.

Thomas P. Fox, P.G.

Gerald Gould, C.P.G William D. Merklin, P.E.

Michael Neuberger, P.E.

Edward J. Reilly

Charles J. Wachsmuth, P.E.

Kenneth P. Wenz, Jr. C.P.G.

Jeffrey E. Trad, P.E.
Bureau of Construction Services
Division of Environmental Remediation
New York State Department of Environmental Conservation
625 Broadway, 12th Floor
Albany, NY 12233-7013

Re: Fr

Franklin Cleaners Site (Site No. 1-30-050)

NYSDEC Contract No. D004184

Combined Quarterly Report – 1<sup>st</sup> and 2<sup>nd</sup> Quarter

Reporting Period - September 9, 2003 through March 31, 2004

D&B No. 1851-05

Dear Mr. Trad:

The purpose of this letter is to summarize the results of progress monitoring and the progress of remediation at the Franklin Cleaners Site (see Figure 1), for the period of September 9, 2003 through March 31, 2004. The information contained within this report is a compilation of the progress monitoring reports submitted by Environmental Products and Services (EP&S), the remedial construction and operation and maintenance contractor, as well as split sampling performed by Dvirka and Bartilucci Consulting Engineers (D&B) as per the requirements of the approved Remedial Construction Inspection Work Plan Amendment, dated October 2003.

#### Soil Vapor Extraction System Operation

According to EP&S reports, soil vapor extraction wells SVE-1 and SVE-2 operated at average extraction rates of 33.6 standard cubic feet per minute (scfm) and 79.4 scfm, respectively during the period. Vacuum at the well heads averaged 3.8 inches of water gauge (in. w.c.) and 8.0 in. w.c. for SVE-1 and SVE-2, respectively. Approximately 28,000,000 cubic feet of soil vapor has been extracted, treated and discharged to the atmosphere since system startup. Vacuum at each of the four vapor monitoring probes averaged 0.7 in. w.c., 0.7 in. w.c., 0.5 in. w.c. and 0.3 in. w.c. for SVM-1, SVM-2, SVM-3 and SVM-4, respectively.

#### **Dvirka and Bartilucci**

CONSULTING ENGINEERS

Jeffrey E. Trad, P.E.
Bureau of Construction Services
Division of Environmental Remediation
New York State Department of Environmental Conservation
August 25, 2004

Page 2

During the period, the soil vapor extraction system was inoperative for approximately 711 hours due to routine maintenance activities and system alarm conditions. A detailed description of system alarm conditions is presented in the downtime forms prepared by EP&S (see Attachment A).

#### **Air Sparging System Operation**

According to EP&S reports, air sparging wells AS-1, AS-2 and AS-3 operated at average air injection rates of 8.8 scfm, 8.8 scfm and 5.4 scfm, respectively, during the period. Air injection pressures at the well heads averaged 1.1 pounds per square inch (psi), 0.9 psi and 1.3 psi for AS-1, AS-2 and AS-3, respectively. The air sparging system was inoperative for approximately 1,219 hours due to routine maintenance activities and system alarm conditions. A detailed description of system alarm conditions is presented in the downtime forms (see Attachment A).

#### Soil Vapor Extraction System Sampling

Vapor phase samples were collected by EP&S from each of the two soil vapor extraction wells, at each of the four soil vapor monitoring probes and at the inlet and outlet of each carbon adsorption vessel at a frequency of once per week during the six week initial operating period and twice per month during the routine operating period. Each sample was analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method TO-1. Split samples were collected by D&B at each of the two soil vapor extraction wells, at each of the four vapor monitoring probes and at the outlet of the carbon adsorption vessel CV-1 on October 2, 2003. The split samples were analyzed for VOCs by USEPA Method TO-17.

Sample results are shown in Tables 1 and 2. As can be seen from the tables, concentrations of tetrachloroethene (PCE) detected within soil vapor extraction wells SVE-1 and SVE-2 have decreased from 2.0 micrograms per liter (ug/l) and 1.9 ug/l, respectively, on September 18, 2003 to < 0.5 ug/l within each well on March 24, 2004. During the period, trace amounts of other VOCs, including trichloroethene, 1,1,1-trichloroethane, carbon tetrachloride and methylene chloride, were also detected in extraction wells SVE-1 and SVE-2.

During the period, the rate of extraction of PCE by SVE-1 decreased from approximately 0.005 pounds per hour (lbs/hr) to < 0.002 lbs/hr. The rate of extraction of PCE by SVE-2 decreased from approximately 0.01 pounds per hour (lbs/hr) to < 0.004 lbs/hr. Refer to the attached trendline graph (Graph 1) showing PCE removal rates at SVE-1 and SVE-2 during the period. An estimated total of 0.4 pounds and 1.2 pounds of PCE were extracted by SVE-1 and SVE-2,

#### **Dvirka and Bartilucci**

CONSULTING ENGINEERS

Jeffrey E. Trad, P.E.
Bureau of Construction Services
Division of Environmental Remediation
New York State Department of Environmental Conservation
August 25, 2004

Page 3

respectively, this period. The estimated maximum emission rate of PCE at the discharge stack of the soil vapor extraction system was 0.0012 lb/hr during the period. The estimated maximum emission rate of Total VOCs at the discharge stack of the of the soil vapor extraction system was 0.00269 lb/hr during the period.

#### **Groundwater Quality Data**

Samples were collected by EP&S from groundwater monitoring wells ASM-1 and ASM-2 at a frequency of once every two weeks during the 6-week initial operating period and once per month during the routine operating period. Each sample was analyzed for VOCs by USEPA Method 8260, as well as iron and manganese by USEPA Method 200.7. The locations of the wells are shown on Figure 2.

Analytical results for the monitoring well samples are shown in Table 3. As can be seen on the table, concentrations of PCE detected within wells ASM-1 and ASM-2 have declined from 58 ug/l and 68 ug/l, as reported for the August 21, 2003 baseline sampling event, to 1.0 ug/l and 1.1 ug/l, respectively, on March 25, 2004. Refer to the attached trend line graphs (Graphs 2 and 3), which present PCE concentrations detected in samples collected from ASM-1 and ASM-2.

Concentrations of manganese detected in groundwater samples collected from ASM-1 and ASM-2 have remained fairly stable since system start-up. However, iron concentrations in wells ASM-1 and ASM-2 have fluctuated during the period. The maximum concentration of iron detected within well ASM-1 was 1,370 ug/l on September 24, 2003, but has recently decreased to 342 ug/l. Similarly, the maximum concentration of iron detected within well ASM-2 was 2,170 ug/l on December 23, 2003, and decreased to 115 ug/l March 2004.

#### **Conclusions**

Based on the data presented above, the following can be concluded:

- Vapor phase sample results show that mass removal rates for extraction wells SVE-1 and SVE-2 have decreased to non-detectable levels, while based on vacuum measurements in the vapor monitoring probes, influence is being exerted on the targeted area.
- Groundwater sample results show that concentrations of PCE within wells ASM-1 and ASM-2 have declined below the NYSDEC Class GA Groundwater Standard since startup of the air sparging system.

#### **Dvirka and Bartilucci**

CONSULTING ENGINEERS

Jeffrey E. Trad, P.E.
Bureau of Construction Services
Division of Environmental Remediation
New York State Department of Environmental Conservation
August 25, 2004

Page 4

#### Recommendations

- Operation of the SVE system should be continued to minimize the potential for impacts associated with continued operation of the air sparge system.
- In consideration of the sustained decline of PCE concentrations within groundwater, consideration should be given to "cycling" the air sparging wells and monitoring for a "bounce back" of elevated PCE concentrations.

Please do not hesitate to contact me at (516) 364-9890 if you have any questions.

Very truly yours,

Frank DeVita Project Manager

FDt/cmc,ld Enclosure

cc: D. Glass, D&B

J. Neri, H2M

♦1851\FD06154JET.DOC(R05)

.

FIGURE 1

F:/1851/On Site - Quarterly reports/2nd Quarter/FIGURE 1-1 SITE LOCATION MAP dwg, 05/21/04 04:42:44 PM, FDeVita

CONSULTING ENGINEERS
A DIVISION OF WILLIAM F COSULICH ASSOCIATES, P.C.

#### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

Summary of Analytical Results: SVE-1

| Volatile Organic Compounds  Method T0-1 |                    |                | itial SVE O<br>Days: 9/9/0 |         |                |                |
|-----------------------------------------|--------------------|----------------|----------------------------|---------|----------------|----------------|
| Matrix: Vapor                           | 9/18/03            | 9/24/03        | 10/2/03                    | 10/8/03 | 10/15/03       | 10/23/03       |
|                                         | μg/10 <b>L</b>     | μ <b>g/10L</b> | μ <b>g/10</b> L            | `μg/10L | μ <b>g/10L</b> | μ <b>g/10L</b> |
| 1,1,1-Trichloroethane                   | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| 1,1,2,2-Tetrachloroethane               | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| 1,1,2-Trichloroethane                   | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| 1,1-Dichloroethane                      | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| 1,1-Dichloroethene                      | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| 1,2-Dichlorobenzene                     | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| 1,2-Dichloroethane                      | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| 1,2-Dichloropropane                     | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| 1,3-Dichlorobenzene                     | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| 1,4-Dichlorobenzene                     | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Acetone                                 | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Benzene                                 | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Bromodichloromethane                    | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Bromoform                               | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Bromomethane                            | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Carbon Tetrachloride                    | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Chlorobenzene                           | <sup>-</sup> <5.00 | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Chlorodibromomethane                    | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Chloroethane                            | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Chloroform                              | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Chloromethane                           | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| cis-1,3-Dichloropropene                 | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Ethylbenzene                            | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Methyl Ethyl Ketone (MEK)               | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Methylene Chloride                      | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| MTBE                                    | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Tetrachloroethene                       | 20.0               | 6.94           | 13.1                       | 9.06    | 5.27           | 13.7           |
| Toluene                                 | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| trans-1,2-Dichloroethene                | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| trans-1,3-Dichloropropene               | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Trichloroethene                         | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Trichlorofluoromethane                  | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Vinyl Chloride                          | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Xylene, m+p                             | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |
| Xylene, o                               | <5.00              | <5.00          | <5.00                      | <5.00   | <5.00          | <5.00          |

Note: Results are reported per 10L (Tenax tube volume).

#### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

**Summary of Vapor Analytical Results: SVE-1** 

| Volatile Organic Compounds  Method T0-1 |              |              |              | itine SVE O  |         |              | · -          | _       |
|-----------------------------------------|--------------|--------------|--------------|--------------|---------|--------------|--------------|---------|
| Matrix: Vapor                           | 11/12/03     | 11/26/03     | 12/10/03     | 12/22/03     | 1/14/04 | 1/30/04      | 2/11/04      | 2/25/04 |
|                                         | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μg/L    | μ <b>g/L</b> | μ <b>g/L</b> | μg/L    |
| 1,1,1-Trichloroethane                   | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | <0.0005      | 0.006        | 0.004   |
| 1,1,2,2-Tetrachloroethane               | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | <0.0005      | <0.0005      | <0.0005 |
| 1,1,2-Trichloroethane                   | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | <0.0005      | <0.0005      | <0.0005 |
| 1,1-Dichloroethane                      | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | <0.0005      | <0.0005      | <0.0005 |
| 1,1-Dichloroethene                      | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | <0.0005      | <0.0005      | <0.0005 |
| 1,2-Dichlorobenzene                     | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | <0.0005      | <0.0005      | <0.0005 |
| 1,2-Dichloroethane                      | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | <0.0005      | <0.0005      | <0.0005 |
| 1,2-Dichloropropane                     | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | <0.0005      | <0.0005      | <0.0005 |
| 1,3-Dichlorobenzene                     | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | <0.0005      | <0.0005      | <0.0005 |
| 1,4-Dichlorobenzene                     | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | <0.0005      | <0.0005      | <0.0005 |
| Acetone                                 | <0.5         | <0.5         | <0.5         | n/a          | 0.002   | 0.039E       | 0.018E       | 0.025E  |
| Benzene                                 | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | 0.050        | 0.048E       | 0.063E  |
| Bromodichloromethane                    | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | <0.0005      | <0.0005      | <0.0005 |
| Bromoform                               | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | <0.0005      | <0.0005      | <0.0005 |
| Bromomethane                            | 2.72         | <0.5         | <0.5         | n/a          | <0.0005 | <0.0005      | <0.0005      | <0.0005 |
| Carbon Tetrachloride                    | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | 0.001        | 0.001        | <0.0005 |
| Chlorobenzene                           | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | 0.001        | <0.0005      | <0.0005 |
| Chlorodibromomethane                    | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | <0.0005      | <0.0005      | <0.0005 |
| Chloroethane                            | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | <0.0005      | 0.002        | <0.0005 |
| Chloroform                              | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | 0.001        | 0.001        | <0.0005 |
| Chloromethane                           | 71           | <0.5         | <0.5         | n/a          | <0.0005 | 0.001        | <0.0005      | 0.001   |
| cis-1,3-Dichloropropene                 | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | <0.0005      | <0.0005      | <0.0005 |
| Ethylbenzene                            | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | 0.001        | 0.001        | 0.003   |
| MEK (2-Butanone)                        | <0.5         | <0.5         | <0.5         | n/a          | 0.002   | 0.089E       | 0.004        | 0.004   |
| Methylene Chloride                      | <0.5         | <0.5         | <0.5         | n/a          | 0.020E  | 0.146        | 0.008        | 0.019E  |
| MTBE                                    | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | 0.006        | 0.001        | 0.001   |
| Tetrachloroethene                       | 1.20         | <0.5         | <0.5         | n/a          | 0.105E  | 0.163E       | 0.329E       | 1.191E  |
| Toluene                                 | <0.5         | <0.5         | <0.5         | n/a          | 0.0010  | 0.016E       | 0.005        | 0.008   |
| trans-1,2-Dichloroethene                | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | <0.0005      | <0.0005      | <0.0005 |
| trans-1,3-Dichloropropene               | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | <0.0005      | <0.0005      | <0.0005 |
| Trichloroethene                         | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | 0.001        | 0.001        | 0.001   |
| Trichlorofluoromethane                  | <0.5         | <0.5         | <0.5         | n/a          | <0.0007 | 0.001        | 0.001        | 0.001   |
| Vinyl Chloride                          | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | <0.0005      | <0.0005      | <0.0005 |
| Xylene, m+p                             | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | 0.003        | 0.002        | 0.010E  |
| Xylene, o                               | <0.5         | <0.5         | <0.5         | n/a          | <0.0005 | 0.001        | 0.001        | 0.003   |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Cherntech E=result exceeds calibration range, estimated value.

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: SVE-1

| Volatile Organic Compounds |              |              |              | tine SVE O   | -           |              |      |              |
|----------------------------|--------------|--------------|--------------|--------------|-------------|--------------|------|--------------|
| Method T0-1                |              |              | (34 M        | onths: 10/21 | 1/03 thru 8 | (25/06)      |      |              |
| Matrix: Vapor              | 3/11/04      | 3/24/04*     |              |              |             |              |      |              |
|                            | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μg/L        | μ <b>g/L</b> | μg/L | μ <b>g/L</b> |
| 1,1,1-Trichloroethane      | <0.0005      | <0.5         |              |              |             |              |      | ,            |
| 1,1,2,2-Tetrachloroethane  | <0.0005      | <0.5         |              |              |             |              |      |              |
| 1,1,2-Trichloroethane      | <0.0005      | <0.5         |              |              |             |              |      |              |
| 1,1-Dichloroethane         | <0.0005      | <0.5         |              |              |             |              |      |              |
| 1,1-Dichloroethene         | <0.0005      | <0.5         |              |              |             |              |      |              |
| 1,2-Dichlorobenzene        | <0.0005      | <0.5         |              |              |             |              |      |              |
| 1,2-Dichloroethane         | <0.0005      | <0.5         |              |              |             |              |      |              |
| 1,2-Dichloropropane        | <0.0005      | <0.5         |              |              |             |              |      | e partie     |
| 1,3-Dichlorobenzene        | <0.0005      | <0.5         | ,            |              |             |              |      |              |
| 1,4-Dichlorobenzene        | <0.0005      | <0.5         |              |              |             |              |      |              |
| Acetone                    | 0.0010       | <0.5         |              |              |             | ŀ            |      |              |
| Benzene                    | 0.0005       | <0.5         |              |              |             |              |      |              |
| Bromodichloromethane       | <0.0005      | <0.5         | ·            |              |             |              |      |              |
| Bromoform                  | <0.0005      | <0.5         |              |              |             |              |      | ,,           |
| Bromomethane               | <0.0005      | <0.5         |              |              |             |              |      |              |
| Carbon Tetrachloride       | <0.0005      | <0.5         |              |              |             |              |      |              |
| Chlorobenzene              | <0.0005      | <0.5         |              |              |             |              |      |              |
| Chlorodibromomethane       | <0.0005      | <0.5         |              |              |             |              |      |              |
| Chloroethane               | <0.0005      | <0.5         |              |              |             |              |      |              |
| Chloroform                 | <0.0005      | <0.5         |              |              |             |              |      |              |
| Chloromethane              | 0.0017       | <0.5         |              |              |             |              |      |              |
| cis-1,3-Dichloropropene    | <0.0005      | <0.5         |              |              |             |              |      |              |
| Ethylbenzene               | <0.0005      | <0.5         |              |              |             |              |      |              |
| MEK (2-Butanone)           | 0.0030       | <0.5         |              |              |             |              |      |              |
| Methylene Chloride         | <0.0005      | <0.5         |              |              |             |              |      |              |
| MTBE                       | <0.0005      | <0.5         |              |              |             |              |      |              |
| Tetrachloroethene          | 0.1175E      | <0.5         |              |              | •           |              |      |              |
| Toluene                    | <0.0005      | <0.5         |              |              |             |              |      |              |
| trans-1,2-Dichloroethene   | <0.0005      | <0.5         |              | ,            |             |              |      | ,            |
| trans-1,3-Dichloropropene  | <0.0005      | <0.5         |              |              |             |              |      |              |
| Trichloroethene            | <0.0005      | <0.5         |              |              |             |              |      |              |
| Trichlorofluoromethane     | <0.0007      | <0.5         |              |              |             |              |      |              |
| Vinyl Chloride             | <0.0005      | <0.5         |              |              |             |              |      |              |
| Xylene, m+p                | <0.0005      | <0.5         |              |              |             |              |      |              |
| Xylene, o                  | <0.0005      | <0.5         |              |              |             |              |      |              |

As of 1/14/04, vapor samples analyzed by Chemtech

E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

#### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVE-2

| Volatile Organic Compounds<br>Method T0-1 |             |         | itial SVE C | -              |                |                  |
|-------------------------------------------|-------------|---------|-------------|----------------|----------------|------------------|
| Method 10-1                               | <del></del> | (42     | days: 9/9/  | U3 taru 10/2   | 20/03)<br>T    | Г                |
| Matrix: Vapor                             | 9/18/03     | 9/24/03 | 10/2/03     | 10/8/03        | 10/15/03       | 10/23/03         |
|                                           | μg/10L      | μg/10L  | μg/10L      | μg/10 <b>L</b> | μ <b>g/10L</b> | μg/10 <b>t</b> _ |
| 1,1,1-Trichloroethane                     | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| 1,1,2,2-Tetrachloroethane                 | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| 1,1,2-Trichloroethane                     | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| 1,1-Dichloroethane                        | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| 1,1-Dichloroethene                        | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| 1,2-Dichlorobenzene                       | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| 1,2-Dichloroethane                        | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| 1,2-Dichloropropane                       | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| 1,3-Dichlorobenzene                       | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| 1,4-Dichlorobenzene                       | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| Acetone                                   | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| Benzene                                   | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| Bromodichloromethane                      | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| Bromoform                                 | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| Bromomethane                              | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| Carbon Tetrachloride                      | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| Chlorobenzene                             | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| Chlorodibromomethane                      | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| Chloroethane                              | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| Chloroform                                | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| Chloromethane                             | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| cis-1,3-Dichloropropene                   | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| Ethylbenzene                              | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| Methyl Ethyl Ketone (MEK)                 | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| Methylene Chloride                        | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | 6.58             |
| MTBE                                      | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| Tetrachloroethene                         | 19.2        | 13.5    | 18.5        | 9.74           | <5.00          | 15.6             |
| Toluene                                   | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| trans-1,2-Dichloroethene                  | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| trans-1,3-Dichloropropene                 | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| Trichloroethene                           | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| Trichlorofluoromethane                    | <5.00       | <5.00   | . <5.00     | <5.00          | <5.00          | <5.00            |
| Vinyl Chloride                            | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| Xylene, m+p                               | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |
| Xylene, o                                 | <5.00       | <5.00   | <5.00       | <5.00          | <5.00          | <5.00            |

Note: Results are reported per 10L (Tenax tube volume).

#### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

Summary of Vapor Analytical Results: SVE-2

| Volatile Organic Compounds<br>Method T0-1 | Routine SVE Operating Period (34 Months: 10/21/03 thru 8/25/06) |              |                   |              |              |              |         |              |
|-------------------------------------------|-----------------------------------------------------------------|--------------|-------------------|--------------|--------------|--------------|---------|--------------|
| Matrix: Vapor                             | 11/12/03                                                        | 11/26/03     | 12/10/03          | 12/22/03     | 1/14/04      | 1/30/04      | 2/11/04 | 2/25/04      |
|                                           | μ <b>g/L</b>                                                    | μ <b>g/L</b> | μg/L              | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μg/L    | μ <b>g/L</b> |
| 1,1,1-Trichloroethane                     | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | <0.0005      |
| 1,1,2,2-Tetrachloroethane                 | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | <0.0005      |
| 1,1,2-Trichloroethane                     | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | <0.0005      |
| 1,1-Dichloroethane                        | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | <0.0005      |
| 1,1-Dichloroethene                        | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | <0.0005      |
| 1,2-Dichlorobenzene                       | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | <0.0005      |
| 1,2-Dichloroethane                        | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | <0.0005      |
| 1,2-Dichloropropane                       | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | <0.0005      |
| 1,3-Dichlorobenzene                       | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | <0.0005      |
| 1,4-Dichlorobenzene                       | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | 0.001   | <0.0005      |
| Acetone                                   | <0.5                                                            | <0.5         | <0.5              | n/a          | 0.001        | 0.040E       | <0.0005 | 0.008        |
| Benzene                                   | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | 0.037E       | 0.013E  | 0.028E       |
| Bromodichloromethane                      | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | <0.0005      |
| Bromoform                                 | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | <0.0005      |
| Bromomethane                              | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | < 0.0005     |
| Carbon Tetrachloride                      | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | 0.001        | <0.0005 | <0.0005      |
| Chlorobenzene                             | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | <0.0005      |
| Chlorodibromomethane                      | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | <0.0005      |
| Chloroethane                              | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | <0.0005      |
| Chloroform                                | <0.5                                                            | <0.5         | <0.5              | n/a          | 0.0005       | 0.001        | 0.001   | <0.0005      |
| Chloromethane                             | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | <0.0005      |
| cis-1,3-Dichloropropene                   | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | <0.0005      |
| Ethylbenzene                              | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | 0.001        | <0.0005 | <0.0005      |
| MEK (2-Butanone)                          | <0.5                                                            | <0.5         | <0.5              | n/a          | 0.0014       | 0.088E       | <0.0005 | 0.001        |
| Methylene Chloride                        | <0.5                                                            | <0.5         | <0.5              | n/a          | 0.002        | 0.122E       | <0.0005 | 0.002        |
| MTBE                                      | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | 0.006        | <0.0005 | <0.0005      |
| Tetrachloroethene                         | 1.58                                                            | .963         | <0.5              | n/a          | 0.076E       | 0.232E       | 0.441E  | 0.392E       |
| Toluene                                   | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | 0.017        | 0.001   | 0.001        |
| trans-1,2-Dichloroethene                  | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | <0.0005      |
| trans-1,3-Dichloropropene                 | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | <0.0005      |
| Trichloroethene                           | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | 0.001        | 0.002   | <0.0005      |
| Trichlorofluoromethane                    | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0007      | 0.001        | 0.001   | <0.0007      |
| Vinyl Chloride                            | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | <0.0005      | <0.0005 | <0.0005      |
| Xylene, m+p                               | <0.5                                                            | <0.5         | <0.5              | n/a          | <0.0005      | 0.003        | <0.0005 | <0.0005      |
| Xylene, o                                 | <0.5                                                            | <0.5         | <del>-</del> <0.5 | n/a          | <0.0005      | 0.001        | <0.0005 | < 0.0005     |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech E=result exceeds calibration range, estimated value.

#### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

**Summary of Vapor Analytical Results: SVE-2** 

| Volatile Organic Compounds<br>Method T0-1 | Routine SVE Operating Period (34 Months: 10/21/03 thru 8/2506) |                     |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
|-------------------------------------------|----------------------------------------------------------------|---------------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|
| . Matrix: Vapor                           | 3/11/04                                                        | 3/24/04*            |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
|                                           | μ <b>g/L</b>                                                   | μ <b>g/<u>L</u></b> | μ <b>g/L</b> | μ <b>g/L</b> | · μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> |
| 1,1,1-Trichloroethane                     | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              | ļ            |
| 1,1,2,2-Tetrachloroethane                 | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| 1,1,2-Trichloroethane                     | <0.0005                                                        | <0.5                |              | ·            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| 1,1-Dichloroethane                        | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| 1,1-Dichloroethene                        | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| 1,2-Dichlorobenzene                       | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              | ,            |
| 1,2-Dichloroethane                        | < 0.0005                                                       | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| 1,2-Dichloropropane                       | < 0.0005                                                       | <0.5                |              |              | To the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th |              |              |              |
| 1,3-Dichlorobenzene                       | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| 1,4-Dichlorobenzene                       | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| Acetone                                   | 0.010E                                                         | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| Benzene                                   | 0.006                                                          | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| Bromodichloromethane                      | < 0.0005                                                       | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| Bromoform                                 | <0.0005                                                        | <0.5                |              |              | . :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |              | ,            |
| Bromomethane                              | <0.0005                                                        | <0.5                |              |              | : '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |              |              |
| Carbon Tetrachloride                      | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| Chlorobenzene                             | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| Chlorodibromomethane                      | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| Chloroethane                              | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| Chloroform                                | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| Chloromethane                             | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| cis-1,3-Dichloropropene                   | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| Ethylbenzene                              | <0.0005                                                        | <0.5                |              |              | . :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |              |              |
| MEK (2-Butanone)                          | 0.009                                                          | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| Methylene Chloride                        | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            |              |              |
| MTBE                                      | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,            |              |              |
| Tetrachloroethene                         | 0.040E                                                         | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| Toluene                                   | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| trans-1,2-Dichloroethene                  | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| trans-1,3-Dichloropropene                 | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| Trichloroethene                           | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| Trichlorofluoromethane                    | <0.0007                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| Vinyl Chloride                            | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| Xylene, m+p                               | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |
| Xylene, o                                 | <0.0005                                                        | <0.5                |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |

As of 1/14/04, vapor samples analyzed by Chemtech

E-result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Table 1

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: Carbon Vessel 1 (CV-1) Inlet

| Volatile Organic Compounds | Initial SVE Operating Period    |                 |                |                |          |                |  |  |
|----------------------------|---------------------------------|-----------------|----------------|----------------|----------|----------------|--|--|
| Method T0-1                | (42 Days: 9/9/03 thru 10/20/03) |                 |                |                |          |                |  |  |
| Matrix: Vapor              | 9/18/03                         | 9/24/03         | 10/2/03        | 10/8/03        | 10/15/03 | 10/23/03       |  |  |
|                            | μg/10L                          | μ <b>g/10</b> L | μ <b>g/10L</b> | μg/10 <b>L</b> | μg/10L   | μ <b>g/10L</b> |  |  |
| 1,1,1-Trichloroethane      | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| 1,1,2,2-Tetrachloroethane  | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| 1,1,2-Trichloroethane      | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| 1,1-Dichloroethane         | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| 1,1-Dichloroethene         | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| 1,2-Dichlorobenzene        | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| 1,2-Dichloroethane         | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| 1,2-Dichloropropane        | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| 1,3-Dichlorobenzene        | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| 1,4-Dichlorobenzene        | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Acetone                    | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Benzene                    | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Bromodichloromethane       | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Bromoform                  | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Bromomethane               | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Carbon Tetrachloride       | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Chlorobenzene              | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Chlorodibromomethane       | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Chloroethane               | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Chloroform                 | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Chloromethane              | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| cis-1,3-Dichloropropene    | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Ethylbenzene               | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Methyl Ethyl Ketone (MEK)  | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Methylene Chloride         | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| МТВЕ                       | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Tetrachloroethene          | 16.2 .                          | 13.4            | 19.9           | 11.7           | 23.2     | 52.8           |  |  |
| Toluene                    | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| trans-1,2-Dichloroethene   | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| trans-1,3-Dichloropropene  | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Trichloroethene            | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Trichlorofluoromethane     | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Vinyl Chloride             | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Xylene, m+p                | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |
| Xylene, o                  | <5.00                           | <5.00           | <5.00          | <5.00          | <5.00    | <5.00          |  |  |

Note: Results are reported per 10L (Tenax tube volume).

#### Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

### Summary of Vapor Analytical Results: Carbon Vessel 1 (CV-1) Inlet

| Volatile Organic Compounds<br>Method T0-1 |              |          |              | tine SVE Op | -            |              |          |              |
|-------------------------------------------|--------------|----------|--------------|-------------|--------------|--------------|----------|--------------|
| Matrix: Vapor                             | 11/12/03     | 11/26/03 | 12/10/03     | 12/22/03    | 1/14/04      | 1/30/04      | 2/11/04  | 2/25/04      |
|                                           | μ <b>g/L</b> | μg/L     | μ <b>g/L</b> | μg/L 、      | μ <b>g/L</b> | μ <b>g/L</b> | μg/L     | μ <b>g/L</b> |
| 1,1,1-Trichloroethane                     | <0.5         | <0.5     | <0.5         | n/a         | <0.0005      | 0.0015       | 0.001    | <0.0005      |
| 1,1,2,2-Tetrachloroethane                 | <0.5         | <0.5     | <0.5         | n/a         | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| 1,1,2-Trichloroethane                     | <0.5         | <0.5     | <0.5         | n/a         | <0.0005      | < 0.0005     | < 0.0005 | <0.0005      |
| 1,1-Dichloroethane                        | <0.5         | <0.5     | <0.5         | n/a         | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| 1,1-Dichloroethene                        | <0.5         | <0.5     | <0.5         | n/a         | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| 1,2-Dichlorobenzene                       | <0.5         | <0.5     | <0.5         | n/a         | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| 1,2-Dichloroethane                        | <0.5         | <0.5     | <0.5         | n/a         | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| 1,2-Dichloropropane                       | <0.5         | <0.5     | <0.5         | n/a         | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| 1,3-Dichlorobenzene                       | <0.5         | <0.5     | <0.5         | n/a         | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| 1,4-Dichlorobenzene                       | <0.5         | <0.5     | < 0.5        | n/a         | <0.0005      | <0.0005      | 0.001    | <0.0005      |
| Acetone                                   | <0.5         | <0.5     | <0.5         | n/a         | 0.004        | 0.0475E      | <0.0005  | 0.003        |
| Benzene                                   | <0.5         | < 0.5    | <0.5         | n/a         | <0.0005      | 0.0342E      | 0.007    | 0.004        |
| Bromodichloromethane                      | <0.5         | <0.5     | <0.5         | n/a         | < 0.0005     | <0.0005      | <0.0005  | <0.0005      |
| Bromoform                                 | <0.5         | < 0.5    | <0.5         | n/a         | <0.0005      | < 0.0005     | <0.0005  | <0.0005      |
| Bromomethane                              | <0.5         | < 0.5    | <0.5         | n/a         | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| Carbon Tetrachloride                      | <0.5         | < 0.5    | <0.5         | n/a         | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| Chlorobenzene                             | <0.5         | < 0.5    | <0.5         | n/a         | <0.0005      | 0.0003       | <0.0005  | <0.0005      |
| Chlorodibromomethane                      | <0.5         | < 0.5    | <0.5         | n/a         | <0.0005      | < 0.0005     | <0.0005  | <0.0005      |
| Chloroethane                              | <0.5         | <0.5     | < 0.5        | n/a         | <0.0005      | <0.0005      | <0.0005  | 0.001        |
| Chloroform                                | <0.5         | <0.5     | <0.5         | n/a         | <0.0005      | 0.0011       | <0.0005  | < 0.0005     |
| Chloromethane                             | <0.5         | < 0.5    | <0.5         | n/a         | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| cis-1,3-Dichloropropene                   | <0.5         | < 0.5    | < 0.5        | n/a         | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| Ethylbenzene                              | <0.5         | <0.5     | <0.5         | n/a         | <0.0005      | 0.0010       | <0.0005  | <0.0005      |
| MEK (2-Butanone)                          | <0.5         | <0.5     | <0.5         | n/a         | <0.0005      | 0.0097       | <0.0005  | < 0.0005     |
| Methylene Chloride                        | <0.5         | <0.5     | <0.5         | n/a         | 0.003        | 0.0161E      | 0.001    | < 0.0005     |
| MTBE                                      | <0.5         | <0.5     | <0.5         | n/a         | <0.0005      | 0.0050       | <0.0005  | < 0.0005     |
| Tetrachloroethene                         | 1.05         | 1.09     | .866         | n/a         | 0.042E       | 0.2364E      | 0.425E   | 0.030E       |
| Toluene                                   | <0.5         | <0.5     | <0.5         | n/a         | 0.0006       | 0.0163E      | 0.001    | <0.0005      |
| trans-1,2-Dichloroethene                  | · <0.5       | <0.5     | <0.5         | n/a         | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| trans-1,3-Dichloropropene                 | <0.5         | <0.5     | <0.5         | n/a         | <0.0005      | <0.0005      | <0.0005  | < 0.0005     |
| Trichloroethene                           | <0.5         | <0.5     | <0.5         | n/a         | <0.0005      | 0.0016       | 0.001    | <0.0005      |
| Trichlorofluoromethane                    | <0.5         | <0.5     | <0.5         | n/a         | <0.0007      | < 0.0007     | <0.0007  | <0.0007      |
| Vinyl Chloride                            | <0.5         | <0.5     | <0.5         | n/a         | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| Xylene, m+p                               | <0.5         | <0.5     | <0.5         | n/a         | <0.0005      | 0.0026       | 0.001    | <0.0005      |
| Xylene, o                                 | <0.5         | <0.5     | <0.5         | n/a         | <0.0005      | 0.0009       | <0.0005  | <0.0005      |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

### -

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

## Summary of Vapor Analytical Results: Carbon Vessel 1 (CV-1) Inlet

| Volatile Organic Compounds<br>Method T0-1 |          |              |              |              | perating Pe<br>1/03 thru 8/ |              |          |              |
|-------------------------------------------|----------|--------------|--------------|--------------|-----------------------------|--------------|----------|--------------|
| Matrix: Vapor                             | 3/11/04  | 3/24/04*     |              |              |                             |              |          |              |
|                                           | μg/L     | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μg/L                        | μ <b>g/L</b> | μg/L     | μg/ <b>L</b> |
| 1,1,1-Trichloroethane                     | <0.0005  | <0.5         |              |              |                             |              |          |              |
| 1,1,2,2-Tetrachloroethane                 | <0.0005  | <0.5         |              |              |                             |              |          |              |
| 1,1,2-Trichloroethane                     | <0.0005  | <0.5         |              |              |                             |              | <u> </u> |              |
| 1,1-Dichloroethane                        | <0.0005  | <0.5         |              |              |                             |              |          | · ·          |
| 1,1-Dichloroethene                        | <0.0005  | <0.5         |              |              |                             |              |          |              |
| 1,2-Dichlorobenzene                       | <0.0005  | <0.5         |              |              |                             |              |          |              |
| 1,2-Dichloroethane                        | <0.0005  | <0.5         |              |              |                             |              |          |              |
| 1,2-Dichloropropane                       | <0.0005  | <0.5         | e come nue   | Karrier i    | ne ne ne ne ne ne           | ******       |          |              |
| 1,3-Dichlorobenzene                       | <0.0005  | <0.5         |              |              |                             |              |          |              |
| 1,4-Dichlorobenzene                       | <0.0005  | <0.5         | _            |              |                             |              |          |              |
| Acetone                                   | <0.0005  | < 0.5        |              |              |                             |              |          |              |
| Benzene                                   | <0.0005  | <0.5         |              |              |                             |              |          |              |
| Bromodichloromethane                      | <0.0005  | < 0.5        |              |              |                             |              |          |              |
| Bromoform                                 | <0.0005  | <0.5         |              |              | :                           |              |          | :            |
| Bromomethane                              | <0.0005  | <0.5         |              |              |                             |              |          |              |
| Carbon Tetrachloride                      | <0.0005  | <0.5         |              |              |                             |              |          |              |
| Chlorobenzene                             | <0.0005  | <0.5         |              |              |                             |              |          |              |
| Chlorodibromomethane                      | <0.0005  | <0.5         |              |              |                             |              |          |              |
| Chloroethane                              | <0.0005  | <0.5         |              |              |                             |              |          |              |
| Chloroform                                | < 0.0005 | <0.5         |              |              |                             |              |          |              |
| Chloromethane                             | <0.0005  | <0.5         |              |              |                             |              |          |              |
| cis-1,3-Dichloropropene                   | <0.0005  | <0.5         |              |              |                             |              |          |              |
| Ethylbenzene                              | < 0.0005 | <0.5         |              |              |                             |              |          |              |
| MEK (2-Butanone)                          | <0.0005  | <0.5         |              |              |                             |              |          |              |
| Methylene Chloride                        | <0.0005  | <0.5         |              |              |                             |              |          |              |
| MTBE                                      | <0.0005  | <0.5         |              |              |                             |              |          |              |
| Tetrachloroethene                         | 0.0960E  | <0.5         |              |              |                             |              |          |              |
| Toluene                                   | <0.0005  | <0.5         |              |              |                             |              |          |              |
| trans-1,2-Dichloroethene                  | <0.0005  | <0.5         |              | ,            |                             |              |          |              |
| trans-1,3-Dichloropropene                 | <0.0005  | <0.5         | -            |              |                             | · _          |          |              |
| Trichloroethene                           | <0.0005  | <0.5         |              |              |                             |              |          |              |
| Trichlorofluoromethane                    | <0.0007  | <0.5         |              |              |                             |              |          |              |
| Vinyl Chloride                            | <0.0005  | <0.5         |              |              |                             |              |          |              |
| Xylene, m+p                               | <0.0005  | <0.5         |              |              |                             |              |          |              |
| Xylene, o                                 | <0.0005  | <0.5         |              |              |                             |              |          |              |

As of 1/14/04, vapor samples analyzed by Chemtech.

E-result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: Carbon Vessel 1 (CV-1) Outlet

| Volatile Organic Compounds | Initial SVE Operating Period |                |            |         |                |          |  |  |  |  |  |
|----------------------------|------------------------------|----------------|------------|---------|----------------|----------|--|--|--|--|--|
| Method T0-1                |                              |                | Days: 9/9/ |         |                |          |  |  |  |  |  |
| Matrix: Vapor              | 9/18/03                      | 9/24/03        | 10/2/03    | 10/8/03 | 10/15/03       | 10/23/03 |  |  |  |  |  |
|                            | μg/10L                       | μ <b>g/10L</b> | μg/10L     | μg/10L  | μ <b>g/10L</b> | μg/10L   |  |  |  |  |  |
| 1,1,1-Trichloroethane      | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane  | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| 1,1,2-Trichloroethane      | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| 1,1-Dichloroethane         | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| 1,1-Dichloroethene         | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| 1,2-Dichlorobenzene        | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| 1,2-Dichloroethane         | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| 1,2-Dichloropropane        | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| 1,3-Dichlorobenzene        | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| 1,4-Dichlorobenzene        | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Acetone                    | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Benzene                    | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Bromodichloromethane       | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Bromoform                  | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Bromomethane               | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Carbon Tetrachloride       | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Chlorobenzene              | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Chlorodibromomethane       | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Chloroethane               | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Chloroform                 | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Chloromethane              | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| cis-1,3-Dichloropropene    | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Ethylbenzene               | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Methyl Ethyl Ketone (MEK)  | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Methylene Chloride         | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | 14.2     |  |  |  |  |  |
| МТВЕ                       | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Tetrachloroethene          | 15.4                         | 12.9           | 13.6       | 14.4    | 24.2           | 63.0     |  |  |  |  |  |
| Toluene                    | < <u>5.00</u>                | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| trans-1,2-Dichloroethene   | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| trans-1,3-Dichloropropene  | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Trichloroethene            | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Trichlorofluoromethane     | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Vinyl Chloride             | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Xylene, m+p                | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |
| Xylene, o                  | <5.00                        | <5.00          | <5.00      | <5.00   | <5.00          | <5.00    |  |  |  |  |  |

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

## Summary of Vapor Analytical Results: Carbon Vessel 1 (CV-1) Outlet

|                           | 11/12/03 | 11/26/03 | 12/10/03 | 12/22/03     | 1/14/04 | 1/30/04  | 2/11/04  | 2/25/04  |
|---------------------------|----------|----------|----------|--------------|---------|----------|----------|----------|
| Matrix: Vapor             |          |          |          |              |         |          |          |          |
|                           | μg/L     | μg/L     | μg/L     | μ <b>g/L</b> | μg/L    | μg/L     | μg/L     | μg/L     |
| 1,1,1-Trichloroethane     | <0.5     | <0.5     | <0.5     | n/a          | 0.009   | 0.0016   | <0.0005  | <0.0005  |
| 1,1,2,2-Tetrachloroethane | <0.5     | <0.5     | <0.5     | n/a .        | <0.0005 | <0.0005  | <0.0005  | <0.0005  |
| 1,1,2-Trichloroethane     | <0.5     | <0.5     | <0.5     | n/a          | <0.0005 | <0.0005  | <0.0005  | <0.0005  |
| 1,1-Dichloroethane        | <0.5     | <0.5     | <0.5     | n/a          | <0.0005 | <0.0005  | <0.0005  | <0.0005  |
| 1,1-Dichloroethene        | <0.5     | <0.5     | <0.5     | n/a          | 0.0018  | <0.0005  | <0.0005  | <0.0005  |
| 1,2-Dichlorobenzene       | <0.5     | <0.5     | <0.5     | n/a          | <0.0005 | <0.0005  | < 0.0005 | <0.0005  |
| 1,2-Dichloroethane        | <0.5     | <0.5     | <0.5     | n/a          | <0.0005 | <0.0005  | <0.0005  | <0.0005  |
| 1,2-Dichloropropane       | <0.5     | <0.5     | <0.5     | n/a          | <0.0005 | <0.0005  | <0.0005  | < 0.0005 |
| 1,3-Dichlorobenzene       | <0.5     | <0.5     | <0.5     | n/a          | <0.0005 | <0.0005  | <0.0005  | <0.0005  |
| 1,4-Dichlorobenzene       | <0.5     | <0.5     | <0.5     | n/a          | 0.025E  | <0.0005  | <0.0005  | <0.0005  |
| Acetone                   | <0.5     | <0.5     | <0.5     | n/a          | 0.165E  | 0.0027   | <0.0005  | 0.005    |
| Benzene                   | <0.5     | <0.5     | < 0.5    | n/a          | 0.092E  | 0.0133E  | 0.001    | 0.006    |
| Bromodichloromethane      | <0.5     | <0.5     | <0.5     | n/a          | <0.0005 | <0.0005  | <0.0005  | <0.0005  |
| Bromoform                 | <0.5     | <0.5     | <0.5     | n/a          | <0.0005 | <0.0005  | <0.0005  | <0.0005  |
| Bromomethane              | <0.5     | <0.5     | <0.5     | n/a          | 0.005   | <0.0005  | <0.0005  | < 0.0005 |
| Carbon Tetrachloride      | <0.5     | <0.5     | <0.5     | n/a          | 0.009   | <0.0005  | <0.0005  | <0.0005  |
| Chlorobenzene             | <0.5     | <0.5     | <0.5     | n/a          | <0.0005 | <0.0005  | <0.0005  | <0.0005  |
| Chlorodibromomethane      | <0.5     | <0.5     | <0.5     | n/a          | <0.0005 | <0.0005  | <0.0005  | <0.0005  |
| Chloroethane              | <0.5     | <0.5     | <0.5     | n/a          | 0.026E  | < 0.0005 | <0.0005  | <0.0005  |
| Chloroform                | <0.5     | <0.5     | <0.5     | n/a          | 0.020E  | <0.0005  | <0.0005  | < 0.0005 |
| Chloromethane             | <0.5     | < 0.5    | <0.5     | n/a          | 0.362E  | 0.0190E  | <0.0005  | <0.0005  |
| cis-1,3-Dichloropropene   | <0.5     | <0.5     | <0.5     | n/a          | <0.0005 | < 0.0005 | <0.0005  | <0.0005  |
| Ethylbenzene              | <0.5     | <0.5     | <0.5     | n/a          | 0.010E  | <0.0005  | <0.0005  | < 0.0005 |
| MEK (2-Butanone)          | <0.5     | <0.5     | <0.5     | n/a          | <0.0005 | 0.0037   | <0.0005  | < 0.0005 |
| Methylene Chloride        | <0.5     | <0.5     | <0.5     | n/a          | 0.667E  | 0.0092   | <0.0005  | 0.001    |
| MTBE                      | <0.5     | <0.5     | <0.5     | n/a          | 0.042E  | 0.0030   | <0.0005  | <0.0005  |
| Tetrachloroethene         | .809     | 1.17     | .934     | n/a          | 0.755E  | 0.0392E  | 0.204E   | 0.062E   |
| Toluene                   | <0.5     | <0.5     | <0.5     | n/a          | 0.058E  | 0.0065   | < 0.0005 | 0.001    |
| trans-1,2-Dichloroethene  | <0.5     | <0.5     | <0.5     | n/a          | <0.0005 | <0.0005  | <0.0005  | < 0.0005 |
| trans-1,3-Dichloropropene | <0.5     | <0.5     | <0.5     | n/a          | <0.0005 | <0.0005  | <0.0005  | <0.0005  |
| Trichloroethene           | <0.5     | <0.5     | <0.5     | n/a          | 0.033E  | 0.0006   | <0.0005  | <0.0005  |
| Trichlorofluoromethane    | <0.5     | <0.5     | <0.5     | n/a          | 0.028E  | <0.0007  | <0.0007  | < 0.0007 |
| Vinyl Chloride            | <0.5     | <0.5     | <0.5     | n/a          | 0.004   | <0.0005  | < 0.0005 | < 0.0005 |
| Xylene, m+p               | <0.5     | <0.5     | <0.5     | n/a          | 0.053E  | 0.0009   | <0.0005  | 0.001    |
| Xylene, o                 | <0.5     | <0.5     | <0.5     | n/a          | 0.023E  | <0.0005  | <0.0005  | < 0.0005 |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: Carbon Vessel 1 (CV-1) Outlet

| Matrix: Vapor             | 3/11/04  | 3/24/04*     | -            |               |              |      |      |              |
|---------------------------|----------|--------------|--------------|---------------|--------------|------|------|--------------|
|                           | μg/L     | μ <b>g/L</b> | μ <b>g/L</b> | μg/L          | μ <b>g/L</b> | μg/L | μg/L | μ <b>g/L</b> |
| 1,1,1-Trichloroethane     | <0.0005  | <0.5         |              |               |              |      |      |              |
| 1,1,2,2-Tetrachloroethane | < 0.0005 | <0.5         |              |               |              |      |      |              |
| 1,1,2-Trichloroethane     | <0.0005  | <0.5         |              |               |              |      |      |              |
| 1,1-Dichloroethane        | <0.0005  | <0.5         |              |               |              |      |      |              |
| 1,1-Dichloroethene        | <0.0005  | <0.5         |              |               |              | }    |      |              |
| 1,2-Dichlorobenzene       | <0.0005  | <0.5         |              |               |              |      |      |              |
| 1,2-Dichloroethane        | <0.0005  | <0.5         |              |               |              |      |      |              |
| 1,2-Dichloropropane       | <0.0005  | <0.5         |              |               |              |      |      |              |
| 1,3-Dichlorobenzene       | <0.0005  | <0.5         |              |               |              |      |      |              |
| 1,4-Dichlorobenzene       | <0.0005  | <0.5         |              | t attended to |              |      |      |              |
| Acetone                   | 0.006    | <0.5         |              |               |              |      |      | , etc.       |
| Benzene                   | 0.005    | <0.5         |              |               |              |      |      |              |
| Bromodichloromethane      | <0.0005  | <0.5         |              |               |              |      |      |              |
| Bromoform                 | <0.0005  | <0.5         |              |               |              |      |      |              |
| Bromomethane              | <0.0005  | <0.5         |              |               |              |      |      |              |
| Carbon Tetrachloride      | <0.0005  | <0.5         |              |               |              |      |      |              |
| Chlorobenzene             | <0.0005  | <0.5         |              |               |              |      |      |              |
| Chlorodibromomethane      | <0.0005  | <0.5         |              |               |              |      |      |              |
| Chloroethane              | <0.0005  | <0.5         |              |               |              |      |      |              |
| Chloroform                | <0.0005  | <0.5         |              |               |              |      |      |              |
| Chloromethane             | <0.0005  | <0.5         |              |               |              |      |      |              |
| cis-1,3-Dichloropropene   | <0.0005  | <0.5         |              |               |              |      |      |              |
| Ethylbenzene              | <0.0005  | <0.5         |              |               |              |      |      |              |
| MEK (2-Butanone)          | <0.0005  | <0.5         |              |               |              |      |      |              |
| Methylene Chloride        | <0.0005  | <0.5         |              |               |              |      |      |              |
| MTBE                      | <0.0005  | <0.5         |              |               |              |      |      |              |
| Tetrachloroethene         | 0.531E   | 0.51         |              |               |              |      |      |              |
| Toluene                   | <0.0005  | < 0.5        |              |               |              |      |      |              |
| trans-1,2-Dichloroethene  | <0.0005  | <0.5         |              |               |              |      |      |              |
| trans-1,3-Dichloropropene | <0.0005  | <0.5         |              |               |              |      |      |              |
| Trichloroethene           | <0.0005  | <0.5         |              |               |              |      |      |              |
| Trichlorofluoromethane    | <0.0007  | <0.5         |              |               |              |      |      |              |
| Vinyl Chloride            | <0.0005  | <0.5         |              |               |              |      |      |              |
| Xylene, m+p               | <0.0005  | <0.5         |              |               |              |      |      |              |
| Xylene, o                 | <0.0005  | <0.5         |              |               | •            |      |      |              |

As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: Carbon Vessel 2 (CV-2) Outlet

|                                           |                                                               | _              |                 |            |                 |            |  |  |  |  |  |  |
|-------------------------------------------|---------------------------------------------------------------|----------------|-----------------|------------|-----------------|------------|--|--|--|--|--|--|
| Volatile Organic Compounds<br>Method T0-1 | Initial SVE Operating Period  (42 Days: 9/9/03 thru 10/20/03) |                |                 |            |                 |            |  |  |  |  |  |  |
| Matrix: Vapor                             | 09/18/2003                                                    | 09/24/2003     | 10/02/2003      | 10/08/2003 | 10/15/2003      | 10/23/2003 |  |  |  |  |  |  |
|                                           | μg/10L                                                        | μ <b>g/10L</b> | μ <b>g</b> /10L | μg/10L     | μ <b>g</b> /10L | μg/10L     |  |  |  |  |  |  |
| 1,1,1-Trichloroethane                     | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| 1,1,2-Trichloroethane                     | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| 1,1-Dichloroethane                        | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| 1,1-Dichloroethene                        | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| 1,2-Dichlorobenzene                       | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| 1,2-Dichloroethane                        | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| 1,2-Dichloropropane                       | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| 1,3-Dichlorobenzene                       | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| 1,4-Dichlorobenzene                       | < 5.00                                                        | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| Acetone                                   | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| Benzene                                   | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| Bromodichloromethane                      | <5,00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| Bromoform                                 | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| Bromomethane                              | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| Carbon Tetrachloride                      | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| Chlorobenzene                             | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| Chlorodibromomethane                      | < 5.00                                                        | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| Chloroethane                              | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| Chloroform                                | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| Chloromethane                             | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| cis-1,3-Dichloropropene                   | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| Ethylbenzene                              | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| Methyl Ethyl Ketone (MEK)                 | <5.00                                                         | < 5.00         | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| Methylene Chloride                        | <5.00                                                         | · <5.00        | <5.00           | < 5.00     | <5.00           | 34.1       |  |  |  |  |  |  |
| MTBE                                      | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| Tetrachloroethene                         | 19.4                                                          | 12.0           | 18.4            | <5.00      | 36.3            | 37.5       |  |  |  |  |  |  |
| Toluene                                   | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| trans-1,2-Dichloroethene                  | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| trans-1,3-Dichloropropene                 | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| Trichloroethene                           | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| Trichlorofluoromethane                    | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | 13.1       |  |  |  |  |  |  |
| Vinyl Chloride                            | <5.00                                                         | <5.00          | <5.00           | . <5.00    | <5.00           | <5.00      |  |  |  |  |  |  |
| Xylene, m+p                               | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |
| Xylene, o                                 | <5.00                                                         | <5.00          | <5.00           | <5.00      | <5.00           | <5.00      |  |  |  |  |  |  |

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

### Summary of Vapor Analytical Results: Carbon Vessel 2 (CV-2) Outlet

|                                         | Routine SVE Operating Period |              |          |                            |              |              |              |          |  |  |  |
|-----------------------------------------|------------------------------|--------------|----------|----------------------------|--------------|--------------|--------------|----------|--|--|--|
| Volatile Organic Compounds  Method T0-1 |                              |              |          | ine SVE Op<br>nths: 10/21/ | _            |              |              |          |  |  |  |
| Matrix: Vapor                           | 11/12/03                     | 11/26/03     | 12/10/03 | 12/22/03                   | 1/14/04      | 1/30/04      | 2/11/04      | 2/25/04  |  |  |  |
|                                         | μ <b>g/L</b>                 | μ <b>g/Ľ</b> | μg/L     | μg/L                       | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μg/L     |  |  |  |
| 1,1,1-Trichloroethane                   | <0.5                         | <0.5         | <0.5     | n/a                        | 0.0024       | 0.0007       | <0.0005      | <0.0005  |  |  |  |
| 1,1,2,2-Tetrachloroethane               | <0.5                         | <0.5         | <0.5     | n/a                        | <0.0005      | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| 1,1,2-Trichloroethane                   | <0.5                         | <0.5         | <0.5     | n/a                        | < 0.0005     | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| 1,1-Dichloroethane                      | <0.5                         | <0.5         | <0.5     | n/a                        | <0.0005      | < 0.0005     | < 0.0005     | <0.0005  |  |  |  |
| 1,1-Dichloroethene                      | <0.5                         | <0.5         | <0.5     | n/a                        | <0.0005      | <0.0005      | < 0.0005     | <0.0005  |  |  |  |
| 1,2-Dichlorobenzene                     | < 0.5                        | <0.5         | <0.5     | n/a                        | < 0.0005     | <0.0005      | < 0.0005     | <0.0005  |  |  |  |
| 1,2-Dichloroethane                      | <0.5                         | <0.5         | <0.5     | n/a                        | <0.0005      | <0.0005      | < 0.0005     | <0.0005  |  |  |  |
| 1,2-Dichloropropane                     | <0.5                         | <0.5         | <0.5     | n/a                        | <0.0005      | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| 1,3-Dichlorobenzene                     | <0.5                         | <0.5         | <0.5     | n/a                        | <0.0005      | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| 1,4-Dichlorobenzene                     | <0.5                         | <0.5         | <0.5     | n/a                        | 0.0006       | < 0.0005     | < 0.0005     | < 0.0005 |  |  |  |
| Acetone                                 | <0.5                         | <0.5         | <0.5     | n/a                        | 0.029        | 0.0164E      | 0.001        | < 0.0005 |  |  |  |
| Benzene                                 | <0.5                         | <0.5         | <0.5     | n/a                        | 0.058E       | 0.0358E      | 0.002        | <0.0005  |  |  |  |
| Bromodichloromethane                    | <0.5                         | <0.5         | <0.5     | n/a                        | <0.0005      | <0.0005      | < 0.0005     | <0.0005  |  |  |  |
| Bromoform                               | <0.5                         | <0.5         | <0.5     | n/a                        | < 0.0005     | < 0.0005     | <0.0005      | <0.0005  |  |  |  |
| Bromomethane                            | <0.5                         | <0.5         | <0.5     | n/a                        | <0.0005      | <0.0005      | < 0.0005     | <0.0005  |  |  |  |
| Carbon Tetrachloride                    | <0.5                         | <0.5         | <0.5     | n/a                        | <0.0005      | < 0.0005     | < 0.0005     | <0.0005  |  |  |  |
| Chlorobenzene                           | <0.5                         | <0.5         | <0.5     | n/a                        | 0.0007       | < 0.0005     | < 0.0005     | < 0.0005 |  |  |  |
| Chlorodibromomethane                    | <0.5                         | <0.5         | <0.5     | n/a                        | <0.0005      | <0.0005      | <0.0005      | < 0.0005 |  |  |  |
| Chloroethane                            | <0.5                         | <0.5         | <0.5     | n/a                        | <0.0005      | < 0.0005     | < 0.0005     | < 0.0005 |  |  |  |
| Chloroform                              | <0.5                         | <0.5         | <0.5     | n/a                        | 0.010        | 0.0016       | <0.0005      | <0.0005  |  |  |  |
| Chloromethane                           | <0.5                         | <0.5         | <0.5     | n/a                        | <0.0005      | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| cis-1,3-Dichloropropene                 | <0.5                         | <0.5         | <0.5     | n/a                        | <0.0005      | <0.0005      | <0.0005      | < 0.0005 |  |  |  |
| Ethylbenzene                            | <0.5                         | <0.5         | < 0.5    | n/a                        | 0.0008       | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| MEK (2-Butanone)                        | <0.5                         | <0.5         | <0.5     | n/a                        | 0.009        | 0.0014       | <0.0005      | < 0.0005 |  |  |  |
| Methylene Chloride                      | <0.5                         | <0.5         | <0.5     | n/a                        | 0.011E       | 0.0043       | <0.0005      | < 0.0005 |  |  |  |
| MTBE                                    | <0.5                         | <0.5         | <0.5     | n/a                        | 0.006        | 0.0009       | <0.0005      | < 0.0005 |  |  |  |
| Tetrachloroethene                       | .912                         | 1.06         | .653     | n/a                        | 0.866E       | 0.3208E      | 0.345E       | 0.204E   |  |  |  |
| Toluene                                 | <0.5                         | <0.5         | <0.5     | n/a                        | 0.012E       | 0.0024       | <0.0005      | <0.0005  |  |  |  |
| trans-1,2-Dichloroethene                | <0.5                         | <0.5         | <0.5     | n/a                        | <0.0005      | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| trans-1,3-Dichloropropene               | <0.5                         | <0.5         | <0.5     | n/a                        | <0.0005      | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| Trichloroethene                         | <0.5                         | <0.5         | <0.5     | n/a                        | 0.051E       | 0.0009       | <0.0005      | <0.0005  |  |  |  |
| Trichlorofluoromethane                  | <0.5                         | <0.5         | <0.5     | n/a                        | < 0.0007     | <0.0007.     | <0.0007      | <0.0007  |  |  |  |
| Vinyl Chloride                          | <0.5                         | <0.5         | <0.5     | n/a                        | < 0.0005     | < 0.0005     | <0.0005      | < 0.0005 |  |  |  |
| Xylene, m+p                             | <0.5                         | <0.5         | <0.5     | n/a                        | 0.004        | <0.0005      | <0.0005      | < 0.0005 |  |  |  |
| Xylene, o                               | <0.5                         | <0.5         | <0.5     | n/a                        | 0.0016       | < 0.0005     | <0.0005      | < 0.0005 |  |  |  |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: Carbon Vessel 2 (CV-2) Outlet

| Volatile Organic Compounds<br>Method T0-1 |              |          |              |       | Operating Po |      |              |                   |
|-------------------------------------------|--------------|----------|--------------|-------|--------------|------|--------------|-------------------|
| Matrix: Vapor                             | 3/11/04      | 3/24/04* |              |       |              |      |              |                   |
|                                           | μ <b>g/L</b> | μg/L     | μ <b>g/L</b> | μg/L  | μ <b>g/L</b> | μg/L | μ <b>g/L</b> | μg/L              |
| 1,1,1-Trichloroethane                     | < 0.0005     | <0.5     |              |       |              |      |              |                   |
| 1,1,2,2-Tetrachloroethane                 | < 0.0005     | <0.5     |              |       |              |      |              |                   |
| 1,1,2-Trichloroethane                     | <0.0005      | <0.5     |              |       |              |      |              |                   |
| 1,1-Dichloroethane                        | < 0.0005     | <0.5     |              |       |              |      |              |                   |
| 1,1-Dichloroethene                        | < 0.0005     | <0.5     |              |       |              |      |              |                   |
| 1,2-Dichlorobenzene                       | < 0.0005     | <0.5     |              |       |              |      |              |                   |
| 1,2-Dichloroethane                        | < 0.0005     | <0.5     |              |       |              |      |              |                   |
| 1,2-Dichloropropane                       | < 0.0005     | <0.5     |              | relia |              | -    |              | an in green ee in |
| 1,3-Dichlorobenzene                       | < 0.0005     | <0.5     |              |       |              | ,    |              |                   |
| 1,4-Dichlorobenzene                       | < 0.0005     | <0.5     |              |       |              |      |              |                   |
| Acetone                                   | 0.0009       | <0.5     |              |       |              |      |              |                   |
| Benzene                                   | 0.0005       | <0.5     |              |       |              |      |              |                   |
| Bromodichloromethane                      | < 0.0005     | <0.5     |              |       |              |      |              |                   |
| Bromoform                                 | < 0.0005     | <0.5     |              |       |              |      |              |                   |
| Bromomethane                              | <0.0005      | <0.5     |              |       |              |      |              |                   |
| Carbon Tetrachloride                      | < 0.0005     | <0.5     |              |       |              |      |              |                   |
| Chlorobenzene                             | <0.0005      | <0.5     |              |       |              |      |              | _                 |
| Chlorodibromomethane                      | <0.0005      | <0.5     |              |       |              |      |              |                   |
| Chloroethane                              | < 0.0005     | <0.5     |              |       |              |      |              |                   |
| Chloroform                                | < 0.0005     | <0.5     |              |       |              |      |              |                   |
| Chloromethane                             | 0.0163E      | <0.5     |              |       |              |      |              |                   |
| cis-1,3-Dichloropropene                   | < 0.0005     | <0.5     |              |       |              |      |              |                   |
| Ethylbenzene                              | <0.0005      | <0.5     |              |       |              |      |              |                   |
| MEK (2-Butanone)                          | <0.0005      | <0.5     |              |       |              |      |              |                   |
| Methylene Chloride                        | <0.0005      | <0.5     |              |       |              |      |              |                   |
| МТВЕ                                      | < 0.0005     | <0.5     |              |       |              |      |              |                   |
| Tetrachloroethene                         | 1.4169E      | <0.5     |              |       |              |      |              |                   |
| Toluene                                   | <0.0005      | <0.5     |              |       |              |      |              |                   |
| trans-1,2-Dichloroethene                  | <0.0005      | <0.5     |              |       |              |      |              |                   |
| trans-1,3-Dichloropropene                 | <0.0005      | <0.5     |              |       |              |      |              |                   |
| Trichloroethene                           | <0.0005      | <0.5     |              |       |              |      |              |                   |
| Trichlorofluoromethane                    | <0.0007      | <0.5     |              |       |              |      |              |                   |
| Vinyl Chloride                            | <0.0005      | <0.5     |              |       |              |      |              |                   |
| Xylene, m+p                               | <0.0005      | <0.5     |              |       |              |      |              |                   |
| Xylene, o                                 | < 0.0005     | <0.5     |              |       |              |      |              |                   |

As of 1/14/04, vapor samples analyzed by Chemtech.

E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVM-1

| Volatile Organic Compounds<br>Method T0-1 |          |          | itial SVE O     |          |          |                |
|-------------------------------------------|----------|----------|-----------------|----------|----------|----------------|
| Matrix: Vapor                             | 09/18/03 | 09/24/03 | 10/02/03        | 10/08/03 | 10/15/03 | 10/23/03       |
|                                           | μg/10L   | μg/10L   | μg/10L          | μg/10L   | μg/10L   | μ <b>g/10L</b> |
| 1,1,1-Trichloroethane                     | <5.00    | <5.00    | · < <u>5.00</u> | <5.00    | <5.00    | <5.00          |
| 1,1,2,2-Tetrachloroethane                 | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| 1,1,2-Trichloroethane                     | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| 1,1-Dichloroethane                        | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| 1,1-Dichloroethene                        | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| 1,2-Dichlorobenzene                       | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| 1,2-Dichloroethane                        | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| 1,2-Dichloropropane                       | <5.00    | <5.00    | <5:00           | <5.00    | <5.00    | <5.00          |
| 1,3-Dichlorobenzene                       | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| 1,4-Dichlorobenzene                       | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| Acetone                                   | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| Benzene                                   | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| Bromodichloromethane                      | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| Bromoform                                 | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| Bromomethane                              | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| Carbon Tetrachloride                      | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| Chlorobenzene                             | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| Chlorodibromomethane                      | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| Chloroethane                              | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| Chloroform                                | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| Chloromethane                             | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| cis-1,3-Dichloropropene                   | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| Ethylbenzene                              | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| Methyl Ethyl Ketone (MEK)                 | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| Methylene Chloride                        | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| МТВЕ                                      | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| Tetrachloroethene                         | 6.15     | <5.00    | 7.57            | <5.00    | <5.00    | <5.00          |
| Toluene                                   | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| trans-1,2-Dichloroethene                  | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| trans-1,3-Dichloropropene                 | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| Trichloroethene                           | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| Trichlorofluoromethane                    | · <5.00  | <5.00    | <5.00           | . <5.00  | <5.00    | <5.00          |
| Vinyl Chloride                            | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| Xylene, m+p                               | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |
| Xylene, o                                 | <5.00    | <5.00    | <5.00           | <5.00    | <5.00    | <5.00          |

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: SVM-1

| Volatile Organic Compounds<br>Method T0-1 |              |          |              | onths: 10/21 |          |          |          |              |
|-------------------------------------------|--------------|----------|--------------|--------------|----------|----------|----------|--------------|
| Matrix: Vapor                             | 11/12/03     | 11/26/03 | 12/10/03     | 12/22/03     | 01/14/04 | 01/30/04 | 02/11/04 | 02/25/04     |
|                                           | μ <b>g/L</b> | μg/L     | μ <b>g/L</b> | μg/L         | μg/L     | μg/L     | μg/L     | μ <b>g/L</b> |
| 1,1,1-Trichloroethane                     | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | 0.0007   | <0.0005  | <0.0005      |
| 1,1,2,2-Tetrachloroethane                 | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | <0.0005  | <0.0005  | <0.0005      |
| 1,1,2-Trichloroethane                     | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | <0.0005  | <0.0005  | <0.0005      |
| 1,1-Dichloroethane                        | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | <0.0005  | <0.0005  | <0.0005      |
| 1,1-Dichloroethene                        | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | <0.0005  | <0.0005  | <0.0005      |
| 1,2-Dichlorobenzene                       | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | <0.0005  | <0.0005  | <0.0005      |
| 1,2-Dichloroethane                        | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | <0.0005  | <0.0005  | <0.0005      |
| 1,2-Dichloropropane                       | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | <0.0005  | <0.0005  | <0.0005      |
| 1,3-Dichlorobenzene                       | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | <0.0005  | <0.0005  | <0.0005      |
| 1,4-Dichlorobenzene                       | <0.5         | <0.5     | <0.5         | n/a.         | <0.0005  | <0.0005  | 0.001    | <0.0005      |
| Acetone                                   | <0.5         | <0.5     | <0.5         | n/a          | 0.003    | <0.0005  | 0.005    | 0.005        |
| Benzene                                   | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | 0.0238   | 0.005    | 0.003        |
| Bromodichloromethane                      | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | <0.0005  | <0.0005  | <0.0005      |
| Bromoform                                 | <0.5         | <0.5     | < 0.5        | n/a          | <0.0005  | <0.0005  | <0.0005  | <0.0005      |
| Bromomethane                              | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | <0.0005  | <0.0005  | < 0.0005     |
| Carbon Tetrachloride                      | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | < 0.0005 | < 0.0005 | <0.0005      |
| Chlorobenzene                             | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | <0.0005  | <0.0005  | <0.0005      |
| Chlorodibromomethane                      | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | <0.0005  | <0.0005  | <0.0005      |
| Chloroethane                              | <0.5         | <0.5     | < 0.5        | n/a          | <0.0005  | <0.0005  | <0.0005  | < 0.0005     |
| Chloroform                                | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | 0.0006   | <0.0005  | <0.0005      |
| Chloromethane                             | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | 0.0625E  | <0.0005  | 0.002        |
| cis-1,3-Dichloropropene                   | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | <0.0005  | <0.0005  | <0.0005      |
| Ethylbenzene                              | < 0.5        | <0.5     | <0.5         | n/a          | <0.0005  | 0.0007   | <0.0005  | <0.0005      |
| MEK (2-Butanone)                          | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | <0.0005  | 0.023E   | 0.002        |
| Methylene Chloride                        | <0.5         | <0.5     | <0.5         | n/a          | 0.0013   | 0.0075   | <0.0005  | 0.003        |
| MTBE                                      | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | 0.0023   | <0.0005  | <0.0005      |
| Tetrachloroethene                         | <0.5         | <0.5     | <0.5         | n/a          | 0.004    | 0.2874E  | 0.009    | 0.335E       |
| Toluene                                   | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | 0.0126E  | < 0.0005 | 0.001        |
| trans-1,2-Dichloroethene                  | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | <0.0005  | <0.0005  | <0.0005      |
| trans-1,3-Dichloropropene                 | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | <0.0005  | <0.0005  | <0.0005      |
| Trichloroethene                           | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | 0.0010   | <0.0005  | <0.0005      |
| Trichlorofluoromethane                    | <0.5         | <0.5     | <0.5         | n/a          | <0.0007  | < 0.0007 | <0.0007  | <0.0007      |
| Vinyl Chloride                            | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | <0.0005  | <0.0005  | <0.0005      |
| Xylene, m+p                               | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | 0.0018   | <0.0005  | 0.001        |
| Xylene, o                                 | <0.5         | <0.5     | <0.5         | n/a          | <0.0005  | 0.0005   | <0.0005  | <0.0005      |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

## Summary of Vapor Analytical Results: SVM-1

| Volatile Organic Compounds<br>Method T0-1 |              |              |      |          | perating Pe<br>1/03 thru 8/ |              |              |       |
|-------------------------------------------|--------------|--------------|------|----------|-----------------------------|--------------|--------------|-------|
| Matrix: Vapor                             | 3/11/04      | 3/24/04*     |      |          |                             |              |              |       |
|                                           | μ <b>g/L</b> | μ <b>g/L</b> | μg/L | μg/L     | μg/L                        | μ <b>g/L</b> | μ <b>g/L</b> | μg/L  |
| 1,1,1-Trichloroethane                     | <0.0005      | <0.5         |      |          |                             |              |              |       |
| 1,1,2,2-Tetrachloroethane                 | <0.0005      | <0.5         |      |          |                             |              |              |       |
| 1,1,2-Trichloroethane                     | <0.0005      | <0.5         |      |          |                             |              |              |       |
| 1,1-Dichloroethane                        | <0.0005      | <0.5         |      |          |                             |              |              |       |
| 1,1-Dichloroethene                        | <0.0005      | <0.5         |      |          |                             |              |              |       |
| 1,2-Dichlorobenzene                       | <0.0005      | <0.5         |      |          |                             |              |              |       |
| 1,2-Dichloroethane                        | <0.0005      | <0.5         |      |          |                             |              |              |       |
| 1,2-Dichloropropane                       | <0.0005      | <0.5         |      | er segal |                             |              |              | 127.1 |
| 1,3-Dichlorobenzene                       | <0.0005      | < 0.5        |      |          |                             |              |              |       |
| 1,4-Dichlorobenzene                       | <0.0005      | <0.5         |      |          |                             |              |              |       |
| Acetone                                   | 0.0143E      | <0.5         |      |          |                             |              |              |       |
| Benzene                                   | 0.0199E      | <0.5         |      |          |                             |              |              |       |
| Bromodichloromethane                      | <0.0005      | <0.5         |      |          |                             |              |              |       |
| Bromoform                                 | < 0.0005     | <0.5         |      |          |                             |              |              |       |
| Bromomethane                              | <0.0005      | <0.5         |      |          |                             |              |              |       |
| Carbon Tetrachloride                      | < 0.0005     | <0.5         |      |          |                             |              |              |       |
| Chlorobenzene                             | <0.0005      | <0.5         |      |          |                             |              |              |       |
| Chlorodibromomethane                      | < 0.0005     | <0.5         |      |          |                             |              |              |       |
| Chloroethane                              | < 0.0005     | <0.5         |      |          |                             |              |              |       |
| Chloroform                                | <0.0005      | <0.5         |      |          |                             |              |              |       |
| Chloromethane                             | <0.0005      | <0.5         |      |          |                             |              |              |       |
| cis-1,3-Dichloropropene                   | <0.0005      | <0.5         |      |          |                             |              |              |       |
| Ethylbenzene                              | <0.0005      | <0.5         |      |          |                             |              |              |       |
| MEK (2-Butanone)                          | 0.1711E      | <0.5         |      |          |                             |              |              |       |
| Methylene Chloride                        | 0.0006       | <0.5         |      |          |                             |              |              |       |
| МТВЕ                                      | <0.0005      | <0.5         |      | ٠.       |                             |              |              |       |
| Tetrachloroethene                         | 0.1746E      | <0.5         |      |          |                             |              |              |       |
| Toluene                                   | 0.0012       | <0.5         |      |          |                             |              |              |       |
| trans-1,2-Dichloroethene                  | <0.0005      | <0.5         |      |          |                             |              |              |       |
| trans-1,3-Dichloropropene                 | <0.0005      | <0.5         |      |          |                             |              |              |       |
| Trichloroethene                           | <0.0005      | <0.5         |      |          |                             |              |              |       |
| Trichlorofluoromethane                    | <0.0007      | <0.5         |      |          |                             |              |              |       |
| Vinyl Chloride                            | <0.0005      | <0.5         |      | :        |                             |              |              |       |
| Xylene, m+p                               | <0.0005      | <0.5         |      |          |                             |              |              |       |
| Xylene, o                                 | <0.0005      | <0.5         |      |          |                             |              |              |       |

As of 1/14/04, vapor samples analyzed by Chemtech.

E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVM-2

| Volatile Organic Compounds |                |                |            | perating Pe |          |                |
|----------------------------|----------------|----------------|------------|-------------|----------|----------------|
| Method T0-1                | <del></del>    | (42            | Days: 9/9/ | 03 thru 10/ | 20/03)   |                |
| Matrix: Vapor              | 9/18/03        | 9/24/03        | 10/2/03    | 10/8/03     | 10/15/03 | 10/23/03       |
|                            | μ <b>g/10L</b> | μ <b>g/10L</b> | μg/10L     | μg/10L      | μg/10L   | μ <b>g/10L</b> |
| 1,1,1-Trichloroethane      | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| 1,1,2,2-Tetrachloroethane  | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| 1,1,2-Trichloroethane      | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| 1,1-Dichloroethane         | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| 1,1-Dichloroethene         | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| 1,2-Dichlorobenzene        | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| 1,2-Dichloroethane         | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5. <u>00</u>  |
| 1,2-Dichloropropane        | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| 1,3-Dichlorobenzene        | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| 1,4-Dichlorobenzene        | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Acetone                    | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Benzene                    | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Bromodichloromethane       | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Bromoform                  | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Bromomethane               | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Carbon Tetrachloride       | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Chlorobenzene              | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Chlorodibromomethane       | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Chloroethane               | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Chloroform                 | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Chloromethane              | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| cis-1,3-Dichloropropene    | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Ethylbenzene               | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Methyl Ethyl Ketone (MEK)  | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Methylene Chloride         | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| МТВЕ                       | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Tetrachloroethene          | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Toluene                    | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| trans-1,2-Dichloroethene   | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| trans-1,3-Dichloropropene  | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Trichloroethene            | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Trichlorofluoromethane     | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Vinyl Chloride             | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Xylene, m+p                | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |
| Xylene, o                  | <5.00          | <5.00          | <5.00      | <5.00       | <5.00    | <5.00          |

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: SVM-2

| Volatile Organic Compounds<br>Method T0-1 |          |          |          | tine SVE Op<br>onths: 10/21 | -        |          |          |          |
|-------------------------------------------|----------|----------|----------|-----------------------------|----------|----------|----------|----------|
| Matrix: Vapor                             | 11/12/03 | 11/26/03 | 12/10/03 | 12/22/03                    | 01/14/04 | 01/30/04 | 02/11/04 | 02/25/04 |
|                                           | μg/L     | μg/L     | μg/L     | μg/L                        | μg/L     | μg/L     | μg/L     | μg/L     |
| 1,1,1-Trichloroethane                     | <0.5     | <0.5     | <0.5     | n/a                         | < 0.0005 | <0.0005  | < 0.0005 | <0.0005  |
| 1,1,2,2-Tetrachloroethane                 | <0.5     | <0.5     | <0.5     | n/a                         | <0.0005  | <0.0005  | <0.0005  | < 0.0005 |
| 1,1,2-Trichloroethane                     | <0.5     | <0.5     | <0.5     | n/a                         | <0.0005  | <0.0005  | <0.0005  | <0.0005  |
| 1,1-Dichloroethane                        | <0.5     | <0.5     | <0.5     | n/a                         | <0.0005  | <0.0005  | <0.0005  | <0.0005  |
| 1,1-Dichloroethene                        | <0.5     | <0.5     | <0.5     | n/a                         | <0.0005  | <0.0005  | <0.0005  | <0.0005  |
| 1,2-Dichlorobenzene                       | <0.5     | <0.5     | <0.5     | n/a                         | <0.0005  | <0.0005  | <0.0005  | <0.0005  |
| 1,2-Dichloroethane                        | <0.5     | <0.5     | <0.5     | n/a                         | <0.0005  | <0.0005  | <0.0005  | <0.0005  |
| 1,2-Dichloropropane                       | <0.5     | <0.5     | <0.5     | n√a                         | <0.0005  | < 0.0005 | <0.0005  | <0.0005  |
| 1,3-Dichlorobenzene                       | <0.5     | <0.5     | <0.5     | n/a                         | < 0.0005 | <0.0005  | <0.0005  | < 0.0005 |
| 1,4-Dichlorobenzene                       | <0.5     | <0.5     | <0.5     | n/a                         | <0.0005  | < 0.0005 | < 0.0005 | < 0.0005 |
| Acetone                                   | <0.5     | <0.5     | <0.5     | n/a                         | 0.0018   | 0.0226E  | 0.002    | 0.017E   |
| Benzene                                   | <0.5     | <0.5     | <0.5     | n/a                         | <0.0005  | 0.0032   | 0.003    | 0.019E   |
| Bromodichloromethane                      | <0.5     | <0.5     | <0.5     | n/a                         | <0.0005  | < 0.0005 | <0.0005  | <0.0005  |
| Bromoform                                 | <0.5     | <0.5     | <0.5     | n/a                         | < 0.0005 | < 0.0005 | <0.0005  | <0.0005  |
| Bromomethane                              | <0.5     | <0.5     | <0.5     | n/a                         | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 |
| Carbon Tetrachloride                      | <0.5     | <0.5     | <0.5     | n/a                         | < 0.0005 | < 0.0005 | < 0.0005 | <0.0005  |
| Chlorobenzene                             | <0.5     | <0.5     | <0.5     | n/a                         | <0.0005  | 0.0010   | < 0.0005 | <0.0005  |
| Chlorodibromomethane                      | <0.5     | <0.5     | <0.5     | n/a                         | < 0.0005 | < 0.0005 | < 0.0005 | <0.0005  |
| Chloroethane                              | <0.5     | <0.5     | <0.5     | n/a                         | <0.0005  | <0.0005  | < 0.0005 | <0.0005  |
| Chloroform                                | <0.5     | <0.5     | <0.5     | n/a                         | < 0.0005 | < 0.0005 | < 0.0005 | <0.0005  |
| Chloromethane                             | <0.5     | <0.5     | <0.5     | n/a                         | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 |
| cis-1,3-Dichloropropene                   | <0.5     | <0.5     | < 0.5    | n/a                         | < 0.0005 | <0.0005  | < 0.0005 | < 0.0005 |
| Ethylbenzene                              | <0.5     | <0.5     | < 0.5    | n/a                         | < 0.0005 | 0.0016   | < 0.0005 | 0.001    |
| MEK (2-Butanone)                          | <0.5     | <0.5     | <0.5     | n/a                         | 0.0131   | 0.0883E  | 0.003    | 0.009    |
| Methylene Chloride                        | <0.5     | <0.5     | <0.5     | n/a                         | 0.0008   | < 0.0005 | < 0.0005 | 0.007    |
| МТВЕ                                      | <0.5     | <0.5     | <0.5     | n/a                         | <0.0005  | < 0.0005 | <0.0005  | 0.000    |
| Tetrachloroethene                         | <0.5     | <0.5     | <0.5     | n/a                         | <0.0005  | 0.2395E  | 0.006    | 0.108E   |
| Toluene                                   | <0.5     | <0.5     | <0.5     | n/a                         | < 0.0005 | 0.0069   | < 0.0005 | 0.002    |
| trans-1,2-Dichloroethene                  | <0.5     | <0.5     | <0.5     | n/a                         | < 0.0005 | < 0.0005 | < 0.0005 | <0.0005  |
| trans-1,3-Dichloropropene                 | <0.5     | <0.5     | <0.5     | n/a                         | < 0.0005 | < 0.0005 | < 0.0005 | <0.0005  |
| Trichloroethene                           | <0.5     | <0.5     | <0.5     | n/a                         | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 |
| Trichlorofluoromethane                    | <0.5     | <0.5     | <0.5     | n/a                         | < 0.0007 | < 0.0007 | < 0.0007 | < 0.0007 |
| Vinyl Chloride                            | <0.5     | <0.5     | <0.5     | . n/a                       | <0.0005  | < 0.0005 | <0.0005  | <0.0005  |
| Xylene, m+p                               | <0.5     | <0.5     | . <0.5   | n/a                         | <0.0005  | 0.0041   | <0.0005  | 0.002    |
| Xylene, o                                 | <0.5     | <0.5     | <0.5     | n/a                         | < 0.0005 | 0.0013   | < 0.0005 | 0.001    |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech E=result exceeds calibration range, estimated value.

### Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

### Summary of Vapor Analytical Results: SVM-2

| Volatile Organic Compounds<br>Method T0-1 |          | Routine SVE Operating Period (34 Months: 10/10/03 thru 8/25/06) |      |              |               |                        |       |          |  |  |  |
|-------------------------------------------|----------|-----------------------------------------------------------------|------|--------------|---------------|------------------------|-------|----------|--|--|--|
| Matrix: Vapor                             | 3/11/04  | 3/24/04*                                                        |      |              |               |                        |       |          |  |  |  |
|                                           | μg/L     | μg/L                                                            | μg/L | μ <b>g/L</b> | μg/L          | μ <b>g/L</b>           | μg/L  | μg/L     |  |  |  |
| 1,1,1-Trichloroethane                     | <0.0005  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | < 0.0005 | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| 1,1,2-Trichloroethane                     | <0.0005  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| 1,1-Dichloroethane                        | <0.0005  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| 1,1-Dichloroethene                        | <0.0005  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| 1,2-Dichlorobenzene                       | <0.0005  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| 1,2-Dichloroethane                        | <0.0005  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| 1,2-Dichloropropane                       | <0.0005  | <0.5                                                            |      |              | N 100 8 100 8 | ***** ***** ***** **** | FII . | er er er |  |  |  |
| 1,3-Dichlorobenzene                       | <0.0005  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| 1,4-Dichlorobenzene                       | <0.0005  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| Acetone                                   | 0.0646E  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| Benzene                                   | 0.0095   | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| Bromodichloromethane                      | <0.0005  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| Bromoform                                 | <0.0005  | <0.5                                                            |      |              |               |                        | . ,   |          |  |  |  |
| Bromomethane                              | < 0.0005 | <0.5                                                            |      |              |               |                        |       | ·        |  |  |  |
| Carbon Tetrachloride                      | <0.0005  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| Chlorobenzene                             | <0.0005  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| Chlorodibromomethane                      | < 0.0005 | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| Chloroethane                              | <0.0005  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| Chloroform                                | <0.0005  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| Chloromethane                             | <0.0005  | <0.5                                                            |      |              |               | -                      |       |          |  |  |  |
| cis-1,3-Dichloropropene                   | <0.0005  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| Ethylbenzene                              | <0.0005  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| MEK (2-Butanone)                          | 0.4832E  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| Methylene Chloride                        | <0.0005  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| МТВЕ                                      | <0.0005  | <0.5                                                            | -    |              |               |                        |       |          |  |  |  |
| Tetrachloroethene                         | 0.0250E  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| Toluene                                   | 0.0014   | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| trans-1,2-Dichloroethene                  | <0.0005  | <0.5                                                            |      | -            |               |                        |       |          |  |  |  |
| trans-1,3-Dichloropropene                 | < 0.0005 | <0.5                                                            |      |              | 1             |                        |       |          |  |  |  |
| Trichloroethene                           | < 0.0005 | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| Trichlorofluoromethane                    | < 0.0007 | <0.5                                                            | -    |              |               |                        |       |          |  |  |  |
| Vinyl Chloride                            | <0.0005  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| Xylene, m+p                               | < 0.0005 | <0.5                                                            |      |              |               |                        |       |          |  |  |  |
| Xylene, o                                 | <0.0005  | <0.5                                                            |      |              |               |                        |       |          |  |  |  |

As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVM-3

| Volatile Organic Compounds<br>Method T0-1 |         |                | itial SVE C<br>Days: 9/9/ |                |               |          |
|-------------------------------------------|---------|----------------|---------------------------|----------------|---------------|----------|
| Matrix: Vapor                             | 9/18/03 | 9/24/03        | 10/2/03                   | 10/8/03        | 10/15/03      | 10/23/03 |
|                                           | μg/10L  | μ <b>g/10L</b> | μ <b>g/10L</b>            | μ <b>g/10L</b> | μg/10L        | μg/10L   |
| 1,1,1-Trichloroethane                     | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| 1,1,2,2-Tetrachloroethane                 | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| 1,1,2-Trichloroethane                     | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| 1,1-Dichloroethane                        | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| 1,1-Dichloroethene                        | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| 1,2-Dichlorobenzene                       | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| 1,2-Dichloroethane                        | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| 1,2-Dichloropropane                       | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| 1,3-Dichlorobenzene                       | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| 1,4-Dichlorobenzene                       | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| Acetone                                   | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| Benzene                                   | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| Bromodichloromethane                      | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| Bromoform                                 | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| Bromomethane                              | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| Carbon Tetrachloride                      | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| Chlorobenzene                             | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| Chlorodibromomethane                      | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| Chloroethane                              | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| Chloroform                                | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | < 5.00   |
| Chloromethane                             | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| cis-1,3-Dichloropropene                   | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| Ethylbenzene                              | <5.00   | <5.00          | <5.00                     | <5.00          | <5 <u>.00</u> | <5.00    |
| Methyl Ethyl Ketone (MEK)                 | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| Methylene Chloride                        | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| МТВЕ                                      | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| Tetrachloroethene                         | 6.95    | <5.00          | <5.00                     | 16.1           | <5 <u>.00</u> | <5.00    |
| Toluene                                   | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| trans-1,2-Dichloroethene                  | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| trans-1,3-Dichloropropene                 | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| Trichloroethene                           | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| Trichlorofluoromethane                    | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| Vinyl Chloride                            | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| Xylene, m+p                               | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |
| Xylene, o                                 | <5.00   | <5.00          | <5.00                     | <5.00          | <5.00         | <5.00    |

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: SVM-3

| Volatile Organic Compounds |          |              |                                       | atine SVE O  |          |              |          |          |
|----------------------------|----------|--------------|---------------------------------------|--------------|----------|--------------|----------|----------|
| Method T0-1                |          |              | · · · · · · · · · · · · · · · · · · · | onths: 10/21 |          |              | _        |          |
| Matrix: Vapor              | 11/12/03 | 11/26/03     | 12/10/03                              | 12/22/03     | 01/14/04 | 01/30/04     | 02/11/04 | 02/25/04 |
|                            | μg/L     | μ <b>g/L</b> | μg/L                                  | μg/L         | μg/L     | μ <b>g/L</b> | μg/L     | μg/L     |
| 1,1,1-Trichloroethane      | <0.5     | <0.5         | <0.5                                  | n/a          | <0.0005  | < 0.0005     | <0.0005  | <0.0005  |
| 1,1,2,2-Tetrachloroethane  | <0.5     | <0.5         | <0.5                                  | n/a          | < 0.0005 | <0.0005      | <0.0005  | <0.0005  |
| 1,1,2-Trichloroethane      | <0.5     | <0.5         | <0.5                                  | n/a          | <0.0005  | < 0.0005     | <0.0005  | <0.0005  |
| 1,1-Dichloroethane         | <0.5     | <0.5         | <0.5                                  | n/a          | <0.0005  | < 0.0005     | <0.0005  | <0.0005  |
| 1,1-Dichloroethene         | <0.5     | <0.5         | <0.5                                  | n/a          | <0.0005  | <0.0005      | <0.0005  | <0.0005  |
| 1,2-Dichlorobenzene        | <0.5     | <0.5         | <0.5                                  | n/a          | <0.0005  | < 0.0005     | < 0.0005 | <0.0005  |
| 1,2-Dichloroethane         | <0.5     | <0.5         | <0.5                                  | n/a          | <0.0005  | <0.0005      | <0.0005  | <0.0005  |
| 1,2-Dichloropropane        | <0.5     | <0.5         | <0.5                                  | n/a          | <0.0005  | <0.0005      | < 0.0005 | <0.0005  |
| 1,3-Dichlorobenzene        | <0.5     | <0.5         | <0.5                                  | n/a          | <0.0005  | < 0.0005     | < 0.0005 | < 0.0005 |
| 1,4-Dichlorobenzene        | <0.5     | <0.5         | <0.5                                  | n/a          | 0.093E   | < 0.0005     | < 0.0005 | < 0.0005 |
| Acetone                    | <0.5     | <0.5         | <0.5                                  | n/a          | 0.055E   | 0.0640E      | 0.002    | 0.017E   |
| Benzene                    | <0.5     | <0.5         | <0.5                                  | n/a          | 0.046E   | 0.0521E      | 0.005    | 0.022E   |
| Bromodichloromethane       | <0.5     | <0.5         | <0.5                                  | n/a          | <0.0005  | < 0.0005     | <0.0005  | <0.0005  |
| Bromoform                  | <0.5     | -<0.5        | <0.5                                  | n/a          | < 0.0005 | < 0.0005     | < 0.0005 | <0.0005  |
| Bromomethane               | <0.5     | <0.5         | <0.5                                  | n/a          | <0.0005  | < 0.0005     | <0.0005  | <0.0005  |
| Carbon Tetrachloride       | <0.5     | <0.5         | <0.5                                  | n/a          | 0.004    | < 0.0005     | < 0.0005 | <0.0005  |
| Chlorobenzene              | <0.5     | <0.5         | <0.5                                  | n/a          | <0.0005  | 0.0006       | < 0.0005 | <0.0005  |
| Chlorodibromomethane       | <0.5     | <0.5         | <0.5                                  | n/a          | <0.0005  | < 0.0005     | <0.0005  | <0.0005  |
| Chloroethane               | <0.5     | <0.5         | <0.5                                  | n/a          | < 0.0005 | < 0.0005     | < 0.0005 | <0.0005  |
| Chloroform                 | <0.5     | <0.5         | <0.5                                  | n/a          | 0.0012   | 0.0007       | < 0.0005 | <0.0005  |
| Chloromethane              | <0.5     | <0.5         | <0.5                                  | n/a          | < 0.0005 | 0.0006       | < 0.0005 | 0.002    |
| cis-1,3-Dichloropropene    | <0.5     | <0.5         | <0.5                                  | n/a          | < 0.0005 | < 0.0005     | < 0.0005 | <0.0005  |
| Ethylbenzene               | <0.5     | <0.5         | <0.5                                  | n/a          | 0.050E   | 0.0008       | <0.0005  | 0.001    |
| MEK (2-Butanone)           | <0.5     | <0.5         | <0.5                                  | n/a          | 0.022    | 0.1115E      | 0.003    | 0.002    |
| Methylene Chloride         | <0.5     | <0.5         | <0.5                                  | n/a          | 0.011E   | 0.0174E      | < 0.0005 | 0.004    |
| МТВЕ                       | <0.5     | <0.5         | <0.5                                  | n/a          | 0.012E   | 0.0055       | < 0.0005 | <0.0005  |
| Tetrachloroethene          | <0.5     | <0.5         | <0.5                                  | n/a          | 0.031E   | 0.3028E      | 0.018E   | 0.075E   |
| Toluene                    | <0.5     | <0.5         | <0.5                                  | n/a          | 0.090E   | 0.0128E      | 0.001    | 0.002    |
| trans-1,2-Dichloroethene   | <0.5     | <0.5         | <0.5                                  | n/a          | < 0.0005 | < 0.0005     | < 0.0005 | < 0.0005 |
| trans-1,3-Dichloropropene  | <0.5     | <0.5         | <0.5                                  | n/a          | <0.0005  | < 0.0005     | < 0.0005 | <0.0005  |
| Trichloroethene            | <0.5     | <0.5         | <0.5                                  | n/a          | 0.009    | 0.0010       | <0.0005  | < 0.0005 |
| Trichlorofluoromethane     | <0.5     | <0.5         | <0.5                                  | n/a          | 0.0010   | <0.0007      | < 0.0007 | < 0.0007 |
| Vinyl Chloride             | <0.5     | <0.5         | <0.5                                  | n/a          | <0.0005  | <0.0005      | <0.0005  | < 0.0005 |
| Xylene, m+p                | <0.5     | <0.5         | <0.5                                  | n/a          | 0.210E   | 0.0021       | <0.0005  | 0.002    |
| Xylene, o                  | <0.5     | <0.5         | <0.5                                  | n/a          | 0.102E   | 0.007        | <0.0005  | 0.001    |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

### Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: SVM-3

| Volatile Organic Compounds |          |          |              | tine SVE Op      | _                                       |              |      | <u> </u> |
|----------------------------|----------|----------|--------------|------------------|-----------------------------------------|--------------|------|----------|
| Method T0-1                | <u> </u> |          | (34 MC       | onths: 10/21     | /03 thru 8/                             | 23/06)<br>T  | Τ    | Т        |
| Matrix: Vapor              | 3/11/04  | 3/24/04* |              |                  |                                         |              |      |          |
|                            | μg/L     | μg/L     | μ <b>g/L</b> | μg/L             | μg/L                                    | μ <b>g/L</b> | μg/L | μg/L     |
| 1,1,1-Trichloroethane      | <0.0005  | <0.5     |              |                  |                                         |              |      |          |
| 1,1,2,2-Tetrachloroethane  | <0.0005  | <0.5     |              |                  |                                         |              |      |          |
| 1,1,2-Trichloroethane      | < 0.0005 | <0.5     |              |                  |                                         |              |      |          |
| 1,1-Dichloroethane         | <0.0005  | <0.5     |              |                  |                                         |              |      |          |
| 1,1-Dichloroethene         | <0.0005  | <0.5     |              | !                |                                         |              |      |          |
| 1,2-Dichlorobenzene        | <0.0005  | <0.5     |              |                  |                                         |              |      |          |
| 1,2-Dichloroethane         | <0.0005  | <0.5     |              |                  |                                         |              |      |          |
| 1,2-Dichloropropane        | <0.0005  | <0.5     |              | April 1 may 1 mg | -                                       |              |      | entre e  |
| 1,3-Dichlorobenzene        | <0.0005  | <0.5     |              |                  |                                         |              |      |          |
| 1,4-Dichlorobenzene        | <0.0005  | <0.5     |              |                  |                                         |              |      |          |
| Acetone                    | 0.0105E  | <0.5     |              |                  |                                         |              |      |          |
| Benzene                    | 0.0162E  | <0.5     |              |                  |                                         |              |      |          |
| Bromodichloromethane       | < 0.0005 | <0.5     |              |                  |                                         |              |      |          |
| Bromoform                  | <0.0005  | ౢ<0.5    |              |                  |                                         |              |      |          |
| Bromomethane               | <0.0005  | <0.5     |              |                  |                                         |              |      |          |
| Carbon Tetrachloride       | <0.0005  | <0.5     |              |                  |                                         |              |      |          |
| Chlorobenzene              | <0.0005  | <0.5     |              |                  |                                         |              |      |          |
| Chlorodibromomethane       | <0.0005  | <0.5     |              |                  |                                         |              |      |          |
| Chloroethane               | <0.0005  | <0.5     |              |                  |                                         |              |      |          |
| Chloroform                 | <0.0005  | <0.5     |              |                  |                                         |              |      |          |
| Chloromethane              | < 0.0005 | <0.5     |              |                  |                                         |              |      |          |
| cis-1,3-Dichloropropene    | < 0.0005 | <0.5     |              |                  |                                         |              |      |          |
| Ethylbenzene               | <0.0005  | <0.5     |              |                  |                                         |              |      |          |
| MEK (2-Butanone)           | 0.0125E  | <0.5     |              |                  |                                         |              |      |          |
| Methylene Chloride         | <0.0005  | <0.5     |              |                  |                                         |              |      |          |
| МТВЕ                       | <0.0005  | <0.5     |              |                  |                                         |              | ·    |          |
| Tetrachloroethene          | 0.0394E  | <0.5     |              |                  |                                         |              |      |          |
| Toluene                    | 0.0009   | <0.5     |              |                  |                                         |              |      |          |
| trans-1,2-Dichloroethene   | <0.0005  | <0.5     |              |                  |                                         |              |      |          |
| trans-1,3-Dichloropropene  | <0.0005  | <0.5     |              |                  |                                         |              |      |          |
| Trichloroethene            | <0.0005  | <0.5     |              |                  |                                         |              |      |          |
| Trichlorofluoromethane     | <0.0007  | <0.5     |              |                  |                                         |              |      |          |
| Vinyl Chloride             | <0.0005  | <0.5     |              |                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              |      |          |
| Xylene, m+p                | <0.0005  | <0.5     |              |                  |                                         |              |      |          |
| Xylene, o                  | <0.0005  | <0.5     |              |                  |                                         |              |      |          |

As of 1/14/04, vapor samples analyzed by Chemtech.

E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

330 Crossways Park Drive, Woodbury, New York, 11797-2015 516-364-9890 • 718-460-3634 • Fax: 516-364-9045 e-mail: findingsolutions@db-eng.com

February 7, 2005

#### Principals

Nicholas J. Bartilucci, P.E. President

Henry J. Chlupsa, P.E. Executive Vice President

Steven A. Fangmann, P.E. Senior Vice President

Richard M. Walka Senior Vice President

John A. Mirando, P.E. Vice President

Anthony O. Conetta, P.E. Vice President

Dennis F. Koehler, P.E. Vice President

Joseph H. Marturano Vice President

Kenneth J. Pritchard, P.E. Vice President

Theodore S. Pytlar, Jr. Vice President

Brian M. Veith, P.E Vice President

#### Senior Associates

Garrett M. Byrnes, P.E.

David S. Glass, P.E.

Gerald Gould, C.P.G.

William D. Merklin, P.E.

Michael Neuberger, P.E.

Kenneth P. Wenz, Jr., C.P.G.

#### Associates

Joseph F. Baader

Steven M. Cabrera

Rudolph F. Cannavale

Christopher M. Clement Stefanos J. Eapen, R.A.

Joseph A. Fioraliso, P.E.

Thomas P. Fox, P.G.

Christopher W. Francis

Robert L. Haynie, P.E.

Michael R. Hofgren

Andrew T. Lehman

Edward J. Reilly

Daniel Shabat, P.E.

Charles J. Wachsmuth, P.E.

Jeffrey E. Trad, P.E. Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway, 12th Floor Albany, NY 12233-7013

Re: Franklin Cleaners Site (Site No. 1-30-050)

NYSDEC Contract No. D004184 Quarterly Report – 3rd Quarter

Reporting Period – April 1, 2004 through June 30, 2004

D&B No. 1851-05

Dear Mr. Trad:

The purpose of this letter is to summarize the results of progress monitoring and the progress of remediation at the Franklin Cleaners Site (see Figures 1 and 2), for the period of April 1, 2004 through June 30, 2004. The information contained in this report is a compilation of the progress monitoring reports submitted by Environmental Products and Services (EP&S), the remedial construction and operation and maintenance contractor.

### **Soil Vapor Extraction System Operation**

According to EP&S reports, soil vapor extraction wells SVE-1 and SVE-2 operated at average extraction rates of 44.2 standard cubic feet per minute (scfm) and 77.5 scfm, respectively, during the period. Vacuum at the well heads averaged 4.4 inches of water gauge (in. w.c.) and 8.0 in. w.c. for SVE-1 and SVE-2, respectively. Approximately 42,000,000 cubic feet of soil vapor has been extracted, treated and discharged to the atmosphere since system startup. During the period, vacuum at each of the four vapor monitoring probes averaged 0.7 in. w.c., 0.5 in. w.c., 0.6 in. w.c. and 0.5 in. w.c. for SVM-1, SVM-2, SVM-3 and SVM-4, respectively.

**CONSULTING ENGINEERS** 

Jeffrey E. Trad, P.E. Division of Environmental Remediation New York State Department of Environmental Conservation February 7, 2005 Page 2

The soil vapor extraction system was inoperative for approximately 112 hours during the period due to system alarm conditions. A detailed description of system alarm conditions is presented in the downtime forms prepared by EP&S (see Attachment A).

### **Air Sparging System Operation**

According to EP&S reports, air sparging wells AS-1, AS-2 and AS-3 operated at average air injection rates of 6.4 scfm, 6.6 scfm and 4.3 scfm, respectively, during the period. Air injection pressures at the well heads averaged 1.3 pounds per square inch (psi), 1.3 psi and 1.8 psi for AS-1, AS-2 and AS-3, respectively. The air sparging system was inoperative for approximately 183 hours due to shutdown for groundwater sampling, routine maintenance activities and system alarm conditions. A detailed description of system alarm conditions is presented in the downtime forms (see Attachment A).

### **Soil Vapor Extraction System Sampling**

Vapor phase samples were collected by EP&S from each of the two soil vapor extraction wells, at each of the four soil vapor monitoring probes and at the inlet and outlet of each carbon adsorption vessel at a frequency of twice per month during the routine operating period. Each sample was analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method TO-1.

Sample results are shown in Table 1. As can be seen on the table, concentrations of tetrachloroethene (PCE) detected in soil vapor collected from SVE-1 ranged from 0.001 microgram per liter (ug/l) on April 21, 2004, to 0.87 ug/l on May 24, 2004. Similarly, concentrations of PCE detected in soil vapor collected from SVE-2 ranged from <0.0005 microgram per liter (ug/l) on April 21, 2004, to 0.3816 ug/l on April 7, 2004. During the period, trace amounts of other VOCs, including 1,1,1 trichloroethane, 1,4 dichlorobenzene, acetone, benzene, chloroform, chloromethane, ethylbenzene, 2-butanone, methylene chloride, trichloroethene, toluene and xylenes, were also detected in extraction SVE-1 and/or SVE-2.

Based on the above sampling results, during the period, the rate of extraction of PCE by SVE-1 ranged from approximately 0.002 pound per hour (lb/hr) to <0.006 lb/hr. The rate of extraction of PCE by SVE-2 ranged from approximately 0.002 pound per hour (lb/hr) to <0.003 lb/hr. Refer to the attached trendline graph (Graph 1) showing PCE removal rates for SVE-1 and SVE-2 since start-up. An estimated combined total of 0.2 pound of PCE were extracted by SVE-1 and SVE-2 this period. The reported maximum emission rate of PCE and total VOCs from the discharge stack of the soil vapor extraction system was 0.41 lb/day (or approximately 0.02 lb/hr) during the period.

CONSULTING ENGINEERS

Jeffrey E. Trad, P.E.
Division of Environmental Remediation
New York State Department of Environmental Conservation
February 7, 2005

Page 3

### **Groundwater Quality Data**

Samples were collected by EP&S from groundwater monitoring wells ASM-1 and ASM-2 at a frequency of once per month during the routine operating period. Each sample was analyzed for VOCs by USEPA Method 8260, as well as iron and manganese by USEPA Method 200.7. The locations of the wells are shown on Figure 2.

The results of the monitoring well sampling are shown in Table 2. As can be seen on the table, the concentrations of PCE detected in both wells ASM-1 and ASM-2 were less than 5 ug/l during each of the three sampling events performed during the period. Refer to the attached trend line graphs (Graphs 2 and 3), which present PCE concentrations detected in samples collected from ASM-1 and ASM-2 since startup.

During the period, concentrations of iron and manganese detected in groundwater samples collected from ASM-1 and ASM-2 were greater than detected during previous sampling events.

Iron concentrations detected in well ASM-1 ranged from 3,020 ug/l to 21,700 ug/l. The maximum concentration of iron previously detected in ASM-1 was 838 ug/l. Manganese concentrations detected in well ASM-1 ranged from 116 ug/l to 885 ug/l. The maximum concentration of manganese previously detected in ASM-2 was 34.3 ug/l.

Iron concentrations detected in well ASM-2 ranged from 2,770 ug/l to 11,500 ug/l. The maximum concentration of iron previously detected in ASM-2 was 2,170 ug/l. Manganese concentrations detected in well ASM-2 ranged from 110 ug/l to 607 ug/l. The maximum concentration of iron previously detected in ASM-2 was 189 ug/l.

### **Conclusions**

Based on the data presented above, the following can be concluded:

- Vapor phase sample results show that mass removal rates for extraction wells SVE-1 and SVE-2 have decreased to non-detectable levels, while based on vacuum measurements in the vapor monitoring probes, influence is being exerted on the targeted area.
- Groundwater sample results show that concentrations of PCE in wells ASM-1 and ASM-2 were consistently below the NYSDEC Class GA Groundwater Standard during the period.

**CONSULTING ENGINEERS** 

Jeffrey E. Trad, P.E. Division of Environmental Remediation New York State Department of Environmental Conservation February 7, 2005 Page 4

 Groundwater sample results show that concentrations of iron and manganese detected during the period in ASM-1 and ASM-2 were greater than detected during previous sampling events.

### Recommendations

Given the sustained decline of PCE concentrations to below 5 ug/l groundwater monitoring wells ASM-1 and ASM-2, as well as nondetectable levels of PCE concentrations in soil vapor extracted from wells SVE-1 and SVE-2, consideration should be given to shutting down the air sparging and soil vapor extraction systems based on the proposed sequence provided below:

- 1. Shutdown air sparging system and monitor for a "bounce back" of PCE concentrations within on-site groundwater monitoring wells ASM-1 and ASM-2 for a period of 6 months. Continue operation of the soil vapor extraction system during this period.
- 2. If groundwater concentrations remain below the groundwater remediation objective of 5 ug/l throughout the 6-month period, collect groundwater samples from off-site monitoring wells FC-1 and FC-2 to determine water quality upgradient and downgradient of the site. Shut down the soil vapor extraction system for a period of 2 weeks.
- 3. If no spikes in VOC concentrations are observed in the soil vapor extracted from wells SVE-1 and SVE-2 upon startup of the soil vapor extraction system, conduct confirmatory soil sampling to determine if site-specific soil remediation objectives have been achieved. Site-specific soil remediation objectives are as follows:

| Contaminant                                   | Contract Performance Standard (mg/kg) |
|-----------------------------------------------|---------------------------------------|
| 1,2-Dichloroethene (total) 1,1-Dichloroethene | 0.3                                   |
| Trichloroethene                               | 0.7                                   |
| Tetrachloroethene                             | 1.4                                   |

4. If site-specific soil re mediation objectives have been achieved, based upon review of the data collected during the confirmatory sampling event, shut down the soil vapor extraction system for a period of one month.

**CONSULTING ENGINEERS** 

Jeffrey E. Trad, P.E. Division of Environmental Remediation New York State Department of Environmental Conservation February 7, 2005 Page 5

- 5. After 1 month, conduct post-remediation ambient air sampling to determine ambient levels of PCE.
- Review results of post-remediation ambient air sampling event for conformance with NYSDOH Residential and Commercial Guidance Values and assess the potential for permanent shutdown of the SVE system.

Please do not hesitate to contact me at (516) 364-9890 if you have any questions.

Very truly yours,

Frank DeVita Project Manager

FDt/jmy Enclosure

cc: D. Glass, D&B

J. Neri, H2M

♦ 1851\FD02075-JET.DOC

## **FIGURES**

: \1851\On Site - Quarterly reports\2nd Quarter\F\GURE 1-1 SITE LOCATION MAP dwg, 05/21/04 04:42:44 PM, FDeVita

Dvirka and Bartilucci CONSULTING ENGINEERS A CONSULTING ENGINEERS CONSULTING ENGINEERS CONSULTING ENGINEERS CONSULTING ENGINEERS

FRANKLIN CLEANERS SITE VILLAGE OF HEMPSTEAD, NEW YORK

SITE LOCATION MAP

FIGURE 1

Dvirka and Bartilucci CONSULTING ENGINEERS

351/SVE System As-Built/Figure 1-2 sile plan.dwg, 06/21/04 02:28:04 PM, FDeVita

FRANKLIN CLEANERS SITE VILLAGE OF HEMPSTEAD, NEW YORK

## **TABLES**

Table 1

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVE-1

| Volatile Organic Compounds |                |                | itial SVE O    |                |                |                |
|----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Method T0-1                |                | (42)           | Days: 9/9/6    | )3 thru 10/2   | 20/03)         |                |
| Matrix: Vapor              | 9/18/03        | 9/24/03        | 10/2/03        | 10/8/03        | 10/15/03       | 10/23/03       |
|                            | μ <b>g/10L</b> | μ <b>g/10L</b> | μ <b>g/10L</b> | μ <b>g/10L</b> | μ <b>g/10L</b> | μg/10 <b>L</b> |
| 1,1,1-Trichloroethane      | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1,2,2-Tetrachloroethane  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1,2-Trichloroethane      | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1-Dichloroethane         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1-Dichloroethene         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichlorobenzene        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloroethane         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloropropane        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,3-Dichlorobenzene        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,4-Dichlorobenzene        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Acetone                    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Benzene                    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromodichloromethane       | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromoform                  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromomethane               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Carbon Tetrachloride       | ´<5.00         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chlorobenzene              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chlorodibromomethane       | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chloroethane               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chloroform                 | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chloromethane              | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| cis-1.3-Dichloropropene    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Ethylbenzene               | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Methyl Ethyl Ketone (MEK)  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Methylene Chloride         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| MTBE                       | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Tetrachloroethene          | 20.0           | 6.94           | 13.1           | 9.06           | 5.27           | 13.7           |
| Toluene                    | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| trans-1,2-Dichloroethene   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| trans-1,3-Dichloropropene  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Trichloroethene            | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Trichlorofluoromethane     | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Vinyl Chloride             | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Xylene, m+p                | -<5.00         | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Xylene, o                  | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

**Summary of Vapor Analytical Results: SVE-1** 

| Volatile Organic Compounds |                 |              |                | tine SVE O      |              |                      |                      | -                                     |
|----------------------------|-----------------|--------------|----------------|-----------------|--------------|----------------------|----------------------|---------------------------------------|
| Method T0-1                |                 |              | T .            |                 |              | <u> </u>             |                      | · · · · · · · · · · · · · · · · · · · |
| Matrix: Vapor              | 3/11/04         | 3/24/04*     | 4/7/04         | 4/21/04         | 5/6/04*      | 5/24/04              | 6/10/04              | 6/23/04                               |
| 1,1,1-Trichloroethane      | μg/L<br><0.0005 | µg/L<br><0.5 | μg/L<br>0.0011 | μg/L<br><0.0005 | μg/L<br><0.5 | μ <b>g/L</b><br><0.5 | μg/ <b>L</b><br><0.5 | μg/L<br><0.5                          |
| 1,1,2,2-Tetrachloroethane  | <0.0005         | <0.5         | <0.0005        | <0.0005         | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| 1,1,2-Trichloroethane      | <0.0005         | <0.5         | <0.0005        | <0.0005         | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| 1,1-Dichloroethane         | <0.0005         | <0.5         | <0.0005        | <0.0005         | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| 1,1-Dichloroethene         | <0.0005         | <0.5         | < 0.0005       | <0.0005         | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| 1,2-Dichlorobenzene        | <0.0005         | <0.5         | <0.0005        | <0.0005         | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| 1,2-Dichloroethane         | <0.0005         | <0.5         | <0.0005        | <0.0005         | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| 1,2-Dichloropropane        | <0.0005         | <0.5         | <0.0005        | <0.0005         | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| 1,3-Dichlorobenzene        | <0.0005         | <0.5         | <0.0005        | <0.0005         | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| 1,4-Dichlorobenzene        | <0.0005         | <0.5         | < 0.0005       | <0.0005         | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| Acetone                    | 0.0010          | <0.5         | 0.0199E        | 0.040E          | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| Benzene                    | 0.0005          | <0.5         | 0.0358         | 0.041E          | <0.5         | <0.5                 | <0.5                 | . <0.5                                |
| Bromodichloromethane       | <0.0005         | <0.5         | <0.0005        | < 0.0005        | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| Bromoform                  | < 0.0005        | <0.5         | < 0.0005       | < 0.0005        | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| Bromomethane               | <0.0005         | <0.5         | < 0.0005       | < 0.0005        | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| Carbon Tetrachloride       | < 0.0005        | <0.5         | < 0.0005       | < 0.0005        | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| Chlorobenzene              | <0.0005         | <0.5         | < 0.0005       | <0.0005         | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| Chlorodibromomethane       | < 0.0005        | <0.5         | < 0.0005       | <0.0005         | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| Chloroethane               | < 0.0005        | <0.5         | < 0.0005       | < 0.0005        | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| Chloroform                 | <0.0005         | <0.5         | 0.0013         | <0.0005         | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| Chloromethane              | 0.0017          | <0.5         | <0.0005        | <0.0005         | <0.5         | < 0.5                | <0.5                 | <0.5                                  |
| cis-1,3-Dichloropropene    | < 0.0005        | <0.5         | < 0.0005       | <0.0005         | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| Ethylbenzene               | <0.0005         | <0.5         | < 0.0005       | 0.0005          | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| MEK (2-Butanone)           | 0.0030          | <0.5         | 0.0017         | 0.009           | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| Methylene Chloride         | <0.0005         | <0.5         | 0.0082         | 0.006           | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| MTBE                       | <0.0005         | <0.5         | < 0.0005       | <0.0005         | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| Tetrachloroethene          | 0.1175E         | <0.5         | 0.3596E        | 0.001           | <0.5         | 0.87                 | <0.5                 | <0.5                                  |
| Toluene                    | <0.0005         | <0.5         | 0.0019         | 0.01            | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| trans-1,2-Dichloroethene   | < 0.0005        | <0.5         | <0.0005        | <0.0005         | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| trans-1,3-Dichloropropene  | < 0.0005        | <0.5         | <0.0005        | <0.0005         | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| Trichloroethene            | < 0.0005        | <0.5         | 0.0005         | <0.0005         | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| Trichlorofluoromethane     | < 0.0007        | <0.5         | < 0.0007       | < 0.0007        | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| Vinyl Chloride             | < 0.0005        | <0.5         | < 0.0005       | <0.0005         | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| Xylene, m+p                | < 0.0005        | <0.5         | 0.0009         | 0.001           | <0.5         | <0.5                 | <0.5                 | <0.5                                  |
| Xylene, o                  | < 0.0005        | <0.5         | < 0.0005       | 0.000           | <0.5         | <0.5                 | <0.5                 | <0.5                                  |

As of 1/14/04, vapor samples analyzed by Chemtech

E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVE-2

| Volatile Organic Compounds |         | Ini     | tial SVE O     | perating Pe    | riod           |                |
|----------------------------|---------|---------|----------------|----------------|----------------|----------------|
| Method T0-1                |         | (42     | days: 9/9/0    | 3 thru 10/2    | 20/03)         |                |
| Matrix: Vapor              | 9/18/03 | 9/24/03 | 10/2/03        | 10/8/03        | 10/15/03       | 10/23/03       |
|                            | μg/10L  | μg/10L  | μ <b>g/10L</b> | μ <b>g/10L</b> | μ <b>g/10L</b> | μ <b>g/10L</b> |
| 1,1,1-Trichloroethane      | <5.00   | <5.00   | <5.00          | <5.00          | <5.0 <b>0</b>  | <5.00          |
| 1,1,2,2-Tetrachloroethane  | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1,2-Trichloroethane      | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1-Dichloroethane         | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1-Dichloroethene         | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichlorobenzene        | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloroethane         | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloropropane        | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,3-Dichlorobenzene        | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,4-Dichlorobenzene        | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Acetone                    | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Benzene                    | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromodichloromethane       | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromoform                  | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromomethane               | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Carbon Tetrachloride       | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Chlorobenzene              | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Chlorodibromomethane       | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Chloroethane               | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Chloroform                 | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Chloromethane              | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| cis-1,3-Dichloropropene    | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Ethylbenzene               | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Methyl Ethyl Ketone (MEK)  | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Methylene Chloride         | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | 6.58           |
| MTBE                       | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Tetrachloroethene          | 19.2    | 13.5    | 18.5           | 9.74           | <5.00          | 15.6           |
| Toluene                    | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| trans-1,2-Dichloroethene   | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| trans-1,3-Dichloropropene  | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Trichloroethene            | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Trichlorofluoromethane     | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Vinyl Chloride             | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Xylene, m+p                | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |
| Xylene, o                  | <5.00   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: SVE-2

| Volatile Organic Compounds<br>Method T0-1 |              |              |              | onths: 10/2  |              |              |              |              |
|-------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Matrix: Vapor                             | 3/11/04      | 3/24/04*     | 4/7/04       | 4/21/04      | 5/6/04*      | 5/24/04      | 6/10/04      | 6/23/04      |
|                                           | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μg/ <b>L</b> | μ <b>g/L</b> |
| 1,1,1-Trichloroethane                     | <0.0005      | <0.5         | 0.0018       | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1,2,2-Tetrachloroethane                 | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1,2-Trichloroethane                     | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1-Dichloroethane                        | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1-Dichloroethene                        | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | < 0.5        |
| 1,2-Dichlorobenzene                       | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,2-Dichloroethane                        | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,2-Dichloropropane                       | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,3-Dichlorobenzene                       | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,4-Dichlorobenzene                       | <0.0005      | <0.5         | 0.0006       | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Acetone                                   | 0.010E       | <0.5         | 0.0290E      | 0.008        | <0.5         | <0.5         | <0.5         | <0.5         |
| Benzene                                   | 0.006        | <0.5         | 0.0240E      | 0.010E       | <0.5         | <0.5         | < 0.5        | <0.5         |
| Bromodichloromethane                      | < 0.0005     | <0.5         | < 0.0005     | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Bromoform                                 | < 0.0005     | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | < 0.5        | <0.5         |
| Bromomethane                              | < 0.0005     | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Carbon Tetrachloride                      | < 0.0005     | <0.5         | <0.0005      | < 0.0005     | <0.5         | <0.5         | <0.5         | < 0.5        |
| Chlorobenzene                             | < 0.0005     | <0.5         | < 0.0005     | <0.0005      | < 0.5        | <0.5         | <0.5         | <0.5         |
| Chlorodibromomethane                      | < 0.0005     | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | < 0.5        |
| Chloroethane                              | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Chloroform                                | <0.0005      | <0.5         | 0.0025       | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Chloromethane                             | < 0.0005     | <0.5         | <0.0005      | 0.009        | 3.27         | <0.5         | <0.5         | <0.5         |
| cis-1,3-Dichloropropene                   | <0.0005      | <0.5         | < 0.0005     | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Ethylbenzene                              | < 0.0005     | <0.5         | 0.0006       | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| MEK (2-Butanone)                          | 0.009        | <0.5         | 0.0092       | 0.004        | < 0.5        | <0.5         | <0.5         | <0.5         |
| Methylene Chloride                        | <0.0005      | <0.5         | 0.0131E      | 0.006        | <0.5         | <0.5         | <0.5         | <0.5         |
| MTBE                                      | < 0.0005     | <0.5         | <0.0005      | <0.0005      | <0.5         | < 0.5        | <0.5         | <0.5         |
| Tetrachioroethene                         | 0.040E       | <0.5         | 0.3816E      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Toluene                                   | < 0.0005     | <0.5         | 0.0064       | 0.006        | <0.5         | <0.5         | <0.5         | <0.5         |
| trans-1,2-Dichloroethene                  | < 0.0005     | <0.5         | < 0.0005     | <0.0005      | <0.5         | <0.5         | < 0.5        | <0.5         |
| trans-1,3-Dichloropropene                 | < 0.0005     | <0.5         | < 0.0005     | <0.0005.     | <0.5         | <0.5         | <0.5         | <0.5         |
| Trichloroethene                           | < 0.0005     | <0.5         | 0.0008       | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Trichlorofluoromethane                    | < 0.0007     | <0.5         | < 0.0007     | < 0.0007     | <0.5         | <0.5         | <0.5         | <0.5         |
| Vinyl Chloride                            | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Xylene, m+p                               | < 0.0005     | <0.5         | 0.0017       | 0.0005       | <0.5         | <0.5         | <0.5         | <0.5         |
| Xylene, o                                 | < 0.0005     | <0.5         | 0.0006       | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |

As of 1/14/04, vapor samples analyzed by Chemtech

E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: Carbon Vessel 1 (CV-1) Inlet

| Volatile Organic Compounds | t       | In             | itial SVE O    | perating Pe    | eriod          |                |
|----------------------------|---------|----------------|----------------|----------------|----------------|----------------|
| Method T0-1                |         | (42)           | Days: 9/9/0    | 03 thru 10/2   | 20/03)         |                |
| Matrix: Vapor              | 9/18/03 | 9/24/03        | 10/2/03        | 10/8/03        | 10/15/03       | 10/23/03       |
|                            | μg/10L  | μ <b>g/10L</b> | μ <b>g/10L</b> | μ <b>g/10L</b> | μ <b>g/10L</b> | μ <b>g/10L</b> |
| 1,1,1-Trichloroethane      | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1,2,2-Tetrachloroethane  | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1,2-Trichloroethane      | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,1-Dichloroethane         | <5.00   | <5.00          | <5.00          | <5.0 <b>0</b>  | <5.00          | <5.00          |
| 1,1-Dichloroethene         | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichlorobenzene        | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloroethane         | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloropropane        | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,3-Dichlorobenzene        | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| 1,4-Dichlorobenzene        | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Acetone                    | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Benzene                    | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromodichloromethane       | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromoform                  | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Bromomethane               | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Carbon Tetrachloride       | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chlorobenzene              | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chlorodibromomethane       | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chloroethane               | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chloroform                 | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Chloromethane              | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| cis-1.3-Dichloropropene    | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Ethylbenzene               | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Methyl Ethyl Ketone (MEK)  | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Methylene Chloride         | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| МТВЕ                       | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Tetrachloroethene          | 16.2 .  | 13.4           | 19.9           | 11.7           | 23.2           | 52.8           |
| Toluene                    | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| trans-1,2-Dichloroethene   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| trans-1,3-Dichloropropene  | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Trichloroethene            | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Trichlorofluoromethane     | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Vinyl Chloride             | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Xylene, m+p                | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |
| Xylene, o                  | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          | <5.00          |

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: Carbon Vessel 1 (CV-1) Inlet

| Volatile Organic Compounds<br>Method TO-1 |              |              |              | nine SVE Op<br>onths: 10/21/ | •            |              |              |              |
|-------------------------------------------|--------------|--------------|--------------|------------------------------|--------------|--------------|--------------|--------------|
| Matrix: Vapor                             | 11/12/03     | 11/26/03     | 12/10/03     | 12/22/03                     | 1/14/04      | 1/30/04      | 2/11/04      | 2/25/04      |
|                                           | μ <b>g/L</b> | μ <b>g/L</b> | µ <b>g/L</b> | μ <b>g/L</b> .               | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> |
| 1,1,1-Trichloroethane                     | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | 0.0015       | 0.001        | <0.0005      |
| 1,1.2,2-Tetrachloroethane                 | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,1,2-Trichloroethane                     | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,1-Dichloroethane                        | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,1-Dichloroethene                        | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,2-Dichlorobenzene                       | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | < 0.0005     |
| 1,2-Dichloroethane                        | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,2-Dichloropropane                       | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,3-Dichlorobenzene                       | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,4-Dichlorobenzene                       | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | 0.001        | <0.0005      |
| Acetone                                   | <0.5         | <0.5         | <0.5         | n/a                          | 0.004        | 0.0475E      | <0.0005      | 0.003        |
| Benzene                                   | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | 0.0342E      | 0.007        | 0.004        |
| Bromodichloromethane                      | < 0.5        | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Bromoform                                 | < 0.5        | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Bromomethane                              | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Carbon Tetrachloride                      | < 0.5        | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Chlorobenzene                             | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | 0.0003       | <0.0005      | <0.0005      |
| Chlorodibromomethane                      | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Chloroethane                              | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | 0.001        |
| Chloroform                                | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | 0.0011       | < 0.0005     | <0.0005      |
| Chloromethane                             | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | < 0.0005     | < 0.0005     |
| cis-1.3-Dichloropropene                   | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | < 0.0005     | <0.0005      | < 0.0005     |
| Ethylbenzene                              | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | 0.0010       | <0.0005      | < 0.0005     |
| MEK (2-Butanone)                          | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | 0.0097       | < 0.0005     | < 0.0005     |
| Methylene Chloride                        | <0.5         | <0.5         | <0.5         | n/a                          | 0.003        | 0.0161E      | 0.001        | <0.0005      |
| MTBE                                      | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | 0.0050       | < 0.0005     | <0.0005      |
| Tetrachloroethene                         | 1.05         | 1.09         | 866          | n/a                          | 0.042E       | 0.2364E      | 0.425E       | 0.030E       |
| Toluene                                   | <0.5         | <0.5         | <0.5         | n/a                          | 0.0006       | 0.0163E      | 0.001        | <0.0005      |
| trans-1.2-Dichloroethene                  | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| trans-1,3-Dichloropropene                 | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Trichloroethene                           | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | 0.0016       | 0.001        | < 0.0005     |
| Trichlorofluoromethane                    | <0.5         | <0.5         | <0.5         | n/a                          | <0.0007      | <0.0007      | < 0.0007     | < 0.0007     |
| Vinyl Chloride                            | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Xylene, m+p                               | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | 0.0026       | 0.001        | <0.0005      |
| Xylene, o                                 | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | 0.0009       | < 0.0005     | <0.0005      |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

## Summary of Vapor Analytical Results: Carbon Vessel 1 (CV-1) Inlet

| Volatile Organic Compounds<br>Method T0-1 | Routine SVE Operating Period (34 Months: 10/21/03 thru 8/25/06) |              |         |              |              |         |         |         |
|-------------------------------------------|-----------------------------------------------------------------|--------------|---------|--------------|--------------|---------|---------|---------|
| Matrix: Vapor                             | 3/11/04                                                         | 3/24/04*     | 4/7/04  | 4/21/04      | 5/6/04*      | 5/24/04 | 6/10/04 | 6/23/04 |
|                                           | μ <b>g/L</b>                                                    | μ <b>g/L</b> | μg/L    | μ <b>g/L</b> | μ <b>g/L</b> | μg/L    | μg/L    | μg/L    |
| 1,1,1-Trichloroethane                     | <0.0005                                                         | <0.5         | <0.0005 | 0.0011       | <0.5         | <0.5    | <0.5    | <0.5    |
| 1,1,2,2-Tetrachloroethane                 | <0.0005                                                         | <0.5         | <0.0005 | <0.0005      | <0.5         | <0.5    | <0.5    | <0.5    |
| 1,1,2-Trichloroethane                     | <0.0005                                                         | <0.5         | <0.0005 | <0.0005      | <0.5         | <0.5    | <0.5    | <0.5    |
| 1,1-Dichloroethane                        | <0.0005                                                         | <0.5         | <0.0005 | <0.0005      | <0.5         | <0.5    | <0.5    | <0.5    |
| 1,1-Dichloroethene                        | <0.0005                                                         | <0.5         | <0.0005 | <0.0005      | <0.5         | <0.5    | <0.5    | <0.5    |
| 1,2-Dichlorobenzene                       | <0.0005                                                         | <0.5         | <0.0005 | <0.0005      | <0.5         | <0.5    | <0.5    | <0.5    |
| 1,2-Dichloroethane                        | <0.0005                                                         | <0.5         | <0.0005 | <0.0005      | <0.5         | <0.5    | <0.5    | <0.5    |
| 1,2-Dichloropropane                       | <0.0005                                                         | <0.5         | <0.0005 | <0.0005      | <0.5         | <0.5    | <0.5    | <0.5    |
| 1,3-Dichlorobenzene                       | <0.0005                                                         | <0.5         | <0.0005 | <0.0005      | <0.5         | <0.5    | <0.5    | <0.5    |
| 1,4-Dichlorobenzene                       | <0.0005                                                         | <0.5         | 0.0008  | 0.0010       | <0.5         | <0.5    | < 0.5   | <0.5    |
| Acetone                                   | <0.0005                                                         | <0.5         | 0.0279E | 0.0151E      | <0.5         | <0.5    | < 0.5   | . <0.5  |
| Benzene                                   | <0.0005                                                         | <0.5         | 0.0312E | 0.0194E      | <0.5         | <0.5    | <0.5    | <0.5    |
| Bromodichloromethane                      | <0.0005                                                         | <0.5         | <0.0005 | <0.0005      | <0.5         | <0.5    | <0.5    | <0.5    |
| Bromoform                                 | <0.0005                                                         | <0.5         | <0.0005 | <0.0005      | <0.5         | <0.5    | <0.5    | <0.5    |
| Bromomethane                              | <0.0005                                                         | < 0.5        | <0.0005 | < 0.0005     | <0.5         | <0.5    | < 0.5   | <0.5    |
| Carbon Tetrachloride                      | <0.0005                                                         | <0.5         | <0.0005 | <0.0005      | <0.5         | <0.5    | <0.5    | <0.5    |
| Chlorobenzene                             | <0.0005                                                         | <0.5         | <0.0005 | <0.0005      | <0.5         | <0.5    | <0.5    | <0.5    |
| Chlorodibromomethane                      | <0.0005                                                         | <0.5         | <0.0005 | <0.0005      | <0.5         | <0.5    | <0.5    | <0.5    |
| Chloroethane                              | <0.0005                                                         | <0.5         | <0.0005 | <0.0005      | <0.5         | <0.5    | <0.5    | < 0.5   |
| Chloroform                                | <0.0005                                                         | <0.5         | 0.0008  | 0.0013       | <0.5         | <0.5    | <0.5    | <0.5    |
| Chloromethane                             | <0.0005                                                         | <0.5         | 0.0008  | 0.0865E      | <0.5         | <0.5    | <0.5    | <0.5    |
| cis-1,3-Dichloropropene                   | <0.0005                                                         | <0.5         | <0.0005 | <0.0005      | <0.5         | <0.5    | <0.5    | <0.5    |
| Ethylbenzene                              | <0.0005                                                         | <0.5         | 0.0007  | 0.0005       | <0.5         | <0.5    | <0.5    | < 0.5   |
| MEK (2-Butanone)                          | <0.0005                                                         | <0.5         | 0.0078  | 0.0034       | <0.5         | <0.5    | <0.5    | < 0.5   |
| Methylene Chloride                        | <0.0005                                                         | <0.5         | 0.0214E | 0.0030       | <0.5         | <0.5    | <0.5    | <0.5    |
| МТВЕ                                      | <0.0005                                                         | <0.5         | <0.0005 | <0.0005      | <0.5         | <0.5    | <0.5    | <0.5    |
| Tetrachloroethene                         | 0.0960E                                                         | <0.5         | 0.2238E | 0.9127E      | 0.78         | 1.28    | 0.69    | 28.6    |
| Toluene                                   | <0.0005                                                         | <0.5         | 0.0083  | 0.0022       | <0.5         | <0.5    | <0.5    | <0.5    |
| trans-1,2-Dichloroethene                  | <0.0005                                                         | <0.5         | <0.0005 | <0.0005      | <0.5         | <0.5    | <0.5    | <0.5    |
| trans-1,3-Dichloropropene                 | <0.0005                                                         | <0.5         | <0.0005 | <0.0005      | <0.5         | <0.5    | <0.5    | <0.5    |
| Trichloroethene                           | <0.0005                                                         | <0.5         | <0.0005 | 0.0045       | <0.5         | <0.5    | <0.5    | <0.5    |
| Trichlorofluoromethane                    | < 0.0007                                                        | <0.5         | <0.0007 | <0.0007      | <0.5         | <0.5    | <0.5    | <0.5    |
| Vinyl Chloride                            | <0.0005                                                         | <0.5         | <0.0005 | 0.0005       | <0.5         | <0.5    | <0.5    | <0.5    |
| Xylene, m+p                               | <0.0005                                                         | <0.5         | 0.0019  | 0.0015       | <0.5         | <0.5    | <0.5    | <0.5    |
| Xylene, o                                 | <0.0005                                                         | <0.5         | <0.0005 | 0.0008       | <0.5         | <0.5    | <0.5    | <0.5    |

As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

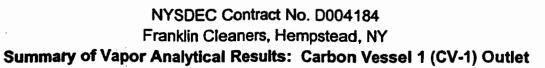

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: Carbon Vessel 1 (CV-1) Outlet

| Volatile Organic Compounds | Initial SVE Operating Period    |         |                |                |                |                |  |  |
|----------------------------|---------------------------------|---------|----------------|----------------|----------------|----------------|--|--|
| Method T0-1                | (42 Days: 9/9/03 thru 10/20/03) |         |                |                |                |                |  |  |
| Matrix: Vapor              | 9/18/03                         | 9/24/03 | 10/2/03        | 10/8/03        | 10/15/03       | 10/23/03       |  |  |
|                            | μg/10L                          | μg/10L  | μ <b>g/10L</b> | μ <b>g/10L</b> | μ <b>g/10L</b> | μ <b>g/10L</b> |  |  |
| 1,1,1-Trichloroethane      | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| 1,1,2,2-Tetrachloroethane  | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| 1,1,2-Trichloroethane      | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| 1,1-Dichloroethane         | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| 1,1-Dichloroethene         | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| 1,2-Dichlorobenzene        | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| 1,2-Dichloroethane         | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| 1,2-Dichloropropane        | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| 1,3-Dichlorobenzene        | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| 1,4-Dichlorobenzene        | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Acetone                    | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Benzene                    | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Bromodichloromethane       | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Bromoform                  | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Bromomethane               | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Carbon Tetrachloride       | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Chlorobenzene              | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Chlorodibromomethane       | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Chloroethane               | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Chloroform                 | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Chloromethane              | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| cis-1,3-Dichloropropene    | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Ethylbenzene               | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Methyl Ethyl Ketone (MEK)  | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Methylene Chloride         | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | 14.2           |  |  |
| МТВЕ                       | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Tetrachloroethene          | 15.4                            | 12.9    | 13.6           | 14.4           | 24.2           | 63.0           |  |  |
| Toluene                    | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| trans-1,2-Dichloroethene   | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| trans-1,3-Dichloropropene  | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Trichloroethene            | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Trichlorofluoromethane     | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Vinyl Chloride             | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Xylene, m+p                | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |
| Xylene, o                  | <5.00                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00          |  |  |

Table 1



| Matrix: Vapor             | 11/12/03             | 11/26/03             | 12/10/03             | 12/22/03            | 1/14/04               | 1/30/04                | 2/11/04                 | 2/25/04         |
|---------------------------|----------------------|----------------------|----------------------|---------------------|-----------------------|------------------------|-------------------------|-----------------|
|                           |                      |                      |                      |                     |                       |                        |                         |                 |
| 1.1.1-Trichloroethane     | μ <b>g/L</b><br><0.5 | μ <b>g/L</b><br><0.5 | μ <b>g/L</b><br><0.5 | µ <b>g/L</b><br>п/а | μ <b>g/L</b><br>0.009 | μ <b>g/L</b><br>0.0016 | μ <b>g/L</b><br><0.0005 | μg/L<br><0.0005 |
| 1,1,2,2-Tetrachloroethane | <0.5                 | <0.5                 | <0.5                 | n/a .               | <0.005                | <0.0015                | <0.0005                 | <0.0005         |
| 1,1,2-Trichloroethane     | <0.5                 | <0.5                 | <0.5                 | n/a                 | <0.0005               | <0.0005                | <0.0005                 | <0.0005         |
| 1,1-Dichloroethane        | <0.5                 | <0.5                 | <0.5                 | n/a                 | <0.0005               | <0.0005                | <0.0005                 | <0.0005         |
| 1,1-Dichloroethene        | <0.5                 | <0.5                 | <0.5                 | n/a                 | 0.0003                | <0.0005                | <0.0005                 | <0.0005         |
| 1,2-Dichlorobenzene       | <0.5                 | <0.5                 | <0.5                 |                     | <0.0018               | <0.0005                |                         |                 |
| 1,2-Dichloroethane        | <0.5                 | <0.5                 | <0.5                 | n/a                 |                       |                        | <0.0005                 | <0.0005         |
|                           |                      |                      |                      | n/a                 | <0.0005               | <0.0005                | <0.0005                 | <0.0005         |
| 1,2-Dichloropropane       | <0.5                 | <0.5                 | <0.5                 | n/a                 | <0.0005               | <0.0005                | <0.0005                 | <0.0005         |
| 1,3-Dichlorobenzene       | <0.5                 | <0.5                 | <0.5                 | n/a                 | <0.0005               | <0.0005                | <0.0005                 | <0.0005         |
| 1.4-Dichlorobenzene       | <0.5                 | <0.5                 | <0.5                 | n/a                 | 0.025E                | <0.0005                | <0.0005                 | <0.0005         |
| Acetone                   | <0.5                 | <0.5                 | <0.5                 | n/a                 | 0.165E                | 0.0027                 | <0.0005                 | 0.005           |
| Benzene                   | <0.5                 | <0.5                 | <0.5                 | n/a                 | 0.092E                | 0.0133E                | 0.001                   | 0.006           |
| Bromodichloromethane      | <0.5                 | <0.5                 | <0.5                 | n/a                 | <0.0005               | <0.0005                | <0.0005                 | <0.0005         |
| Bromoform                 | <0.5                 | <0.5                 | <0.5                 | n/a                 | <0.0005               | <0.0005                | <0.0005                 | <0.0005         |
| Bromomethane              | <0.5                 | <0.5                 | <0.5                 | n/a                 | 0.005                 | <0.0005                | <0.0005                 | <0.0005         |
| Carbon Tetrachloride      | <0.5                 | <0.5                 | <0.5                 | n/a                 | 0.009                 | <0.0005                | <0.0005                 | <0.0005         |
| Chlorobenzene             | <0.5                 | <0.5                 | <0.5                 | n/a                 | <0.0005               | <0.0005                | <0.0005                 | <0.0005         |
| Chlorodibromomethane      | <0.5                 | <0.5                 | <0.5                 | n/a                 | <0.0005               | <0.0005                | <0.0005                 | <0.0005         |
| Chloroethane              | <0.5                 | <0.5                 | <0.5                 | n/a                 | 0.026E                | <0.0005                | <0.0005                 | <0.0005         |
| Chloroform                | <0.5                 | <0.5                 | <0.5                 | n/a                 | 0.020E                | <0.0005                | <0.0005                 | <0.0005         |
| Chloromethane             | <0.5                 | <0.5                 | <0.5                 | n/a                 | 0.362E                | 0.0190E                | <0.0005                 | <0.0005         |
| cis-1,3-Dichloropropene   | <0.5                 | <0.5                 | <0.5                 | n/a                 | <0.0005               | <0.0005                | <0.0005                 | <0.0005         |
| Ethylbenzene              | <0.5                 | <0.5                 | <0.5                 | n/a                 | 0.010E                | <0.0005                | <0.0005                 | <0.0005         |
| MEK (2-Butanone)          | <0.5                 | <0.5                 | <0.5                 | n/a                 | <0.0005               | 0.0037                 | <0.0005                 | <0.0005         |
| Methylene Chloride        | <0.5                 | <0.5                 | <0.5                 | n/a                 | 0.667E                | 0.0092                 | <0.0005                 | 0.001           |
| мтве                      | <0.5                 | <0.5                 | <0.5                 | n/a                 | 0.042E                | 0.0030                 | <0.0005                 | <0.0005         |
| Tetrachloroethene         | .809                 | 1.17                 | .934                 | n/a                 | 0.755E                | 0.0392E                | 0.204E                  | 0.062E          |
| Toluene                   | <0.5                 | <0.5                 | <0.5                 | n/a                 | 0.058E                | 0.0065                 | <0.0005                 | 0.001           |
| trans-1.2-Dichloroethene  | <0.5                 | <0.5                 | <0.5                 | n/a                 | <0.0005               | <0.0005                | <0.0005                 | <0.0005         |
| trans-1,3-Dichloropropene | <0.5                 | <0.5                 | <0.5                 | n/a                 | <0.0005               | <0.0005                | <0.0005                 | <0.0005         |
| Trichloroethene           | <0.5                 | <0.5                 | <0.5                 | n/a                 | 0.033E                | 0.0006                 | <0.0005                 | <0.0005         |
| Trichlorofluoromethane    | <0.5                 | <0.5                 | <0.5                 | n/a                 | 0.028E                | <0.0007                | <0.0007                 | <0.0007         |
| Vinyl Chloride            | <0.5                 | <0.5                 | <0.5                 | n/a                 | 0.004                 | <0.0005                | <0.0005                 | <0.0005         |
| Xylene, m+p               | <0.5                 | <0.5                 | <0.5                 | n/a                 | 0.053E                | 0.0009                 | <0.0005                 | 0.001           |
| Xylene, o                 | <0.5                 | <0.5                 | <0.5                 | n/a                 | 0.023E                | <0.0005                | <0.0005                 | <0.0005         |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: Carbon Vessel 1 (CV-1) Outlet

| Matrix: Vapor             | 3/11/04      | 3/24/04*     | 4/7/04       | 4/21/04      | 5/6/04*      | 5/24/04      | 6/10/04      | 6/23/04      |
|---------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                           | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> |
| 1,1,1-Trichloroethane     | <0.0005      | <0.5         | 0.0005       | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1,2,2-Tetrachloroethane | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1,2-Trichloroethane     | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1-Dichloroethane        | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1-Dichloroethene        | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,2-Dichlorobenzene       | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,2-Dichloroethane        | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,2-Dichloropropane       | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,3-Dichlorobenzene       | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,4-Dichlorobenzene       | <0.0005      | <0.5         | 0.0006       | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Acetone                   | 0.006        | <0.5         | 0.0370E      | 0.0208E      | <0.5         | <0.5         | <0.5         | 15.9         |
| Benzene                   | 0.005        | <0.5         | 0.0330E      | 0.0218E      | <0.5         | <0.5         | <0.5         | <0.5         |
| Bromodichloromethane      | <0.0005      | <0.5         | < 0.0005     | <0.0005      | <0.5         | <0.5         | <0.5         | · <0.5       |
| Bromoform                 | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | .<0.5        |
| Bromomethane              | <0.0005      | <0.5         | < 0.0005     | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Carbon Tetrachloride      | <0.0005      | <0.5         | < 0.0005     | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Chlorobenzene             | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | < 0.5        |
| Chlorodibromomethane      | <0.0005      | <0.5         | < 0.0005     | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Chloroethane              | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Chloroform                | <0.0005      | <0.5         | 0.0016       | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Chloromethane             | <0.0005      | <0.5         | < 0.0005     | <0.0005      | <0.5         | <0.5         | 3.57         | <0.5         |
| cis-1,3-Dichloropropene   | <0.0005      | <0.5         | < 0.0005     | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Ethylbenzene              | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| MEK (2-Butanone)          | < 0.0005     | <0.5         | 0.0017       | 0.0019       | <0.5         | <0.5         | <0.5         | <0.5         |
| Methylene Chloride        | <0.0005      | <0.5         | 0.0657E      | 0.0025       | <0.5         | <0.5         | 1,21         | <0.5         |
| MTBE                      | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Tetrachloroethene         | 0.531E       | 0.51         | 0.6870E      | 0.0024       | <0.5         | <0.5         | 4.47         | 15.8         |
| Toluene                   | < 0.0005     | <0.5         | 0.0019       | 0.0025       | <0.5         | <0.5         | <0.5         | <0.5         |
| trans-1,2-Dichloroethene  | < 0.0005     | <0.5         | <0.0005      | < 0.0005     | <0.5         | <0.5         | <0.5         | < 0.5        |
| trans-1,3-Dichloropropene | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Trichloroethene           | <0.0005      | <0.5         | 0.0014       | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Trichlorofluoromethane    | < 0.0007     | <0.5         | <0.0007      | < 0.0007     | <0.5         | <0.5         | <0.5         | <0.5         |
| Vinyl Chloride            | <0.0005      | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Xylene, m+p               | <0.0005      | <0.5         | 0.0010       | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Xylene, o                 | < 0.0005     | <0.5         | 0.0005       | < 0.0005     | <0.5         | <0.5         | <0.5         | <0.5         |

As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: Carbon Vessel 2 (CV-2) Outlet

| Volatile Organic Compounds<br>Method T0-1 | Initial SVE Operating Period<br>(42 Days: 9/9/03 thru 10/20/03) |                |                |            |                |                |  |  |  |  |  |  |
|-------------------------------------------|-----------------------------------------------------------------|----------------|----------------|------------|----------------|----------------|--|--|--|--|--|--|
| Matrix: Vapor                             | 09/18/2003                                                      | 09/24/2003     | 10/02/2003     | 10/08/2003 | 10/15/2003     | 10/23/2003     |  |  |  |  |  |  |
|                                           | μ <b>g/10L</b>                                                  | μ <b>g/10L</b> | μ <b>g/10L</b> | μg/10L     | μ <b>g/10L</b> | μ <b>g/10L</b> |  |  |  |  |  |  |
| 1,1,1-Trichloroethane                     | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| 1,1,2-Trichloroethane                     | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| 1,1-Dichloroethane                        | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| 1,1-Dichloroethene                        | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| 1,2-Dichlorobenzene                       | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| 1,2-Dichloroethane                        | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| 1.2-Dichloropropane                       | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| 1,3-Dichlorobenzene                       | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| 1.4-Dichlorobenzene                       | <5.00 <5.00 <5.00 <5.00 <5.00                                   |                |                |            |                |                |  |  |  |  |  |  |
| Acetone                                   | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| Benzene                                   | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| Bromodichloromethane                      | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| Bromoform                                 | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| Bromomethane                              | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| Carbon Tetrachloride                      | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| Chlorobenzene                             | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| Chlorodibromomethane                      | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| Chloroethane                              | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| Chloroform                                | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| Chloromethane                             | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| cis-1,3-Dichloropropene                   | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| Ethylbenzene                              | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| Methyl Ethyl Ketone (MEK)                 | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| Methylene Chloride                        | <5.00                                                           | <5.00          | <5.00          | < 5.00     | <5.00          | 34.1           |  |  |  |  |  |  |
| МТВЕ                                      | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| Tetrachloroethene                         | 19.4                                                            | 12.0           | 18.4           | <5.00      | 36.3           | 37.5           |  |  |  |  |  |  |
| Toluene                                   | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| trans-1,2-Dichloroethene                  | < 5.00                                                          | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| trans-1,3-Dichloropropene                 | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| Trichloroethene                           | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| Trichlorofluoromethane                    | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | 13.1           |  |  |  |  |  |  |
| Vinyl Chloride                            | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| Xylene, m-p                               | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |
| Xylene, o                                 | <5.00                                                           | <5.00          | <5.00          | <5.00      | <5.00          | <5.00          |  |  |  |  |  |  |

Note: Results are reported per 10L (Tenax tube volume).

Table 1

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: Carbon Vessel 2 (CV-2) Outlet

| Volatile Organic Compounds<br>Method T0-1 |              | Routine SVE Operating Period (34 Months: 10/21/03 thru 8/25/06) |              |              |              |              |              |              |  |  |
|-------------------------------------------|--------------|-----------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--|--|
| Matrix: Vapor                             | 11/12/03     | 11/26/03                                                        | 12/10/03     | 12/22/03     | 1/14/04      | 1/30/04      | 2/11/04      | 2/25/04      |  |  |
|                                           | μ <b>g/L</b> | μg/L                                                            | μ <b>g/Ĺ</b> | μ <b>g/L</b> |  |  |
| 1,1,1-Trichloroethane                     | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.0024       | 0.0007       | <0.0005      | <0.0005      |  |  |
| 1,1,2,2-Tetrachloroethane                 | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |
| 1,1,2-Trichloroethane                     | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |
| 1,1-Dichloroethane                        | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |
| 1,1-Dichloroethene                        | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |
| 1,2-Dichlorobenzene                       | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | < 0.0005     | <0.0005      |  |  |
| 1,2-Dichloroethane                        | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |
| 1,2-Dichloropropane                       | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |
| 1,3-Dichlorobenzene                       | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |
| 1,4-Dichlorobenzene                       | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.0006       | <0.0005      | <0.0005      | <0.0005      |  |  |
| Acetone                                   | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.029        | 0.0164E      | 0.001        | <0.0005      |  |  |
| Benzene                                   | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.058E       | 0.0358E      | 0.002        | <0.0005      |  |  |
| Bromodichloromethane                      | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |
| Bromoform                                 | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |
| Bromomethane                              | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | < 0.0005     | <0.0005      |  |  |
| Carbon Tetrachloride                      | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |
| Chlorobenzene                             | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.0007       | <0.0005      | <0.0005      | <0.0005      |  |  |
| Chlorodibromomethane                      | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |
| Chloroethane                              | <0.5         | <0.5                                                            | <0.5         | n/a          | < 0.0005     | <0.0005      | <0.0005      | <0.0005      |  |  |
| Chloroform                                | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.010        | 0.0016       | <0.0005      | <0.0005      |  |  |
| Chloromethane                             | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |
| cis-1,3-Dichloropropene                   | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |
| Ethylbenzene                              | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.0008       | <0.0005      | <0.0005      | <0.0005      |  |  |
| MEK (2-Butanone)                          | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.009        | 0.0014       | <0.0005      | < 0.0005     |  |  |
| Methylene Chloride                        | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.011E       | 0.0043       | <0.0005      | <0.0005      |  |  |
| MTBE .                                    | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.006        | 0.0009       | <0.0005      | <0.0005      |  |  |
| Tetrachloroethene,                        | .912         | 1.06                                                            | .653         | n/a          | 0.866E       | 0.3208E      | 0.345E       | 0.204E       |  |  |
| Toluene                                   | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.012E       | 0.0024       | <0.0005      | <0.0005      |  |  |
| trans-1.2-Dichloroethene                  | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |
| trans-1,3-Dichloropropene                 | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |
| Trichloroethene                           | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.051E       | 0.0009       | <0.0005      | <0.0005      |  |  |
| Trichlorofluoromethane                    | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0007      | <0.0007      | <0.0007      | <0.0007      |  |  |
| Vinyl Chloride                            | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | < 0.0005     |  |  |
| Xylene, m+p                               | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.004        | <0.0005      | <0.0005      | < 0.0005     |  |  |
| Xylene, o                                 | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.0016       | <0.0005      | <0.0005      | <0.0005      |  |  |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech.  $\Xi$ =resuit exceeds calibration range, estimated value.

Table 1

### Summary of Vapor Analytical Results: Carbon Vessel 2 (CV-2) Outlet

| Volatile Organic Compounds<br>Method T0-1 |               |              |              | nine SVE Oponths: 10/21 |              |              |              |         |
|-------------------------------------------|---------------|--------------|--------------|-------------------------|--------------|--------------|--------------|---------|
| Matrix: Vapor                             | 3/11/04       | 3/24/04*     | 4/7/04       | 4/21/04                 | 5/6/04*      | 5/24/04      | 6/10/04      | 6/23/04 |
|                                           | μ <b>g/</b> Ľ | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b>            | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μg/L    |
| 1,1,1-Trichloroethane                     | <0.0005       | <0.5         | 0.0005       | 0.0008                  | <0.5         | <0.5         | <0.5         | <0.5    |
| 1,1,2,2-Tetrachloroethane                 | <0.0005       | <0.5         | <0.0005      | <0.0005                 | <0.5         | <0.5         | <0.5         | <0.5    |
| 1,1,2-Trichloroethane                     | <0.0005       | <0.5         | <0.0005      | <0.0005                 | <0.5         | <0.5         | <0.5         | <0.5    |
| 1,1-Dichloroethane                        | <0.0005       | <0.5         | <0.0005      | <0.0005                 | <0.5         | <0.5         | <0.5         | <0.5    |
| 1,1-Dichloroethene                        | <0.0005       | <0.5         | <0.0005      | <0.0005                 | <0.5         | <0.5         | <0.5         | <0.5    |
| 1,2-Dichlorobenzene                       | < 0.0005      | <0.5         | <0.0005      | <0.0005                 | <0.5         | <0.5         | <0.5         | <0.5    |
| 1,2-Dichloroethane                        | <0.0005       | <0.5         | <0.0005      | <0.0005                 | <0.5         | <0.5         | <0.5         | <0.5    |
| 1,2-Dichloropropane                       | < 0.0005      | <0.5         | <0.0005      | <0.0005                 | <0.5         | <0.5         | <0.5         | <0.5    |
| 1,3-Dichlorobenzene                       | <0.0005       | <0.5         | <0.0005      | <0.0005                 | <0.5         | <0.5         | <0.5         | <0.5    |
| 1,4-Dichlorobenzene                       | < 0.0005      | <0.5         | <0.0005      | <0.0005                 | <0.5         | <0.5         | <0.5         | <0.5    |
| Acetone                                   | 0.0009        | <0.5         | 0.0505E      | 0.0113E                 | <0.5         | <0.5         | <0.5         | <0.5    |
| Benzene                                   | 0.0005        | <0.5         | 0.0169E      | 0.0326E                 | <0.5         | <0.5         | <0.5         | · <0.5  |
| Bromodichloromethane                      | <0.0005       | <0.5         | <0.0005      | <0.0005                 | <0.5         | <0.5         | <0.5         | <0.5    |
| Bromoform                                 | < 0.0005      | <0.5         | <0.0005      | <0.0005                 | <0.5         | <0.5         | <0.5         | <0.5    |
| Bromomethane                              | <0.0005       | <0.5         | < 0.0005     | <0.0005                 | <0.5         | <0.5         | <0.5         | < 0.5   |
| Carbon Tetrachloride                      | < 0.0005      | <0.5         | < 0.0005     | <0.0005                 | <0.5         | <0.5         | <0.5         | < 0.5   |
| Chlorobenzene                             | < 0.0005      | <0.5         | <0.0005      | <0.0005                 | < 0.5        | <0.5         | <0.5         | <0.5    |
| Chlorodibromomethane                      | < 0.0005      | <0.5         | <0.0005      | <0.0005                 | <0.5         | <0.5         | <0.5         | <0.5    |
| Chloroethane                              | <0.0005       | <0.5         | <0.0005      | <0.0005                 | <0.5         | <0.5         | < 0.5        | < 0.5   |
| Chloroform                                | <0.0005       | <0.5         | 0.0005       | 0.0021                  | <0.5         | <0.5         | <0.5         | <0.5    |
| Chloromethane                             | 0.0163E       | <0.5         | 0.0137E      | <0.0005                 | <0.5         | <0.5         | <0.5         | <0.5    |
| cis-1,3-Dichloropropene                   | <0.0005       | <0.5         | <0.0005      | <0.0005                 | <0.5         | <0.5         | <0.5         | <0.5    |
| Ethylbenzene                              | <0.0005       | <0.5         | 0.0017       | <0.0005                 | <0.5         | <0.5         | <0.5         | <0.5    |
| MEK (2-Butanone)                          | <0.0005       | <0.5         | 0.0089       | 0.0023                  | <0.5         | <0.5         | <0.5         | <0.5    |
| Methylene Chloride                        | <0.0005       | <0.5         | 0.0633E      | 0.0010                  | <0.5         | <0.5         | <0.5         | <0.5    |
| мтве                                      | <0.0005       | <0.5         | 0.0010       | <0.0005                 | <0.5         | <0.5         | <0.5         | <0.5    |
| Tetrachloroethene                         | 1.4169E       | <0.5         | 0.6470E      | 0.9261E                 | <0.5         | 0.67         | 4.8          | 41.6    |
| Toluene                                   | <0.0005       | <0.5         | 0.0713E      | 0.0035                  | <0.5         | <0.5         | <0.5         | <0.5    |
| trans-1,2-Dichloroethene                  | < 0.0005      | <0.5         | < 0.0005     | < 0.0005                | <0.5         | <0.5         | <0.5         | <0.5    |
| trans-1,3-Dichloropropene                 | < 0.0005      | <0.5         | <0.0005      | <0.0005                 | <0.5         | <0.5         | <0.5         | <0.5    |
| Trichloroethene                           | <0.0005       | <0.5         | 0.0016       | 0.0023                  | <0.5         | <0.5         | <0.5         | <0.5    |
| Trichlorofluoromethane                    | < 0.0007      | <0.5         | <0.0007      | <0.0007                 | <0.5         | <0.5         | <0.5         | <0.5    |
| Vinyl Chloride                            | <0.0005       | . <0.5       | <0.0005      | <0.0005                 | <0.5         | <0.5         | <0.5         | <0.5    |
| Xylene, m+p                               | <0.0005       | <0.5         | 0.0046       | 0.0005                  | <0.5         | <0.5         | <0.5         | <0.5    |
| Xylene, o                                 | < 0.0005      | <0.5         | 0.0016       | <0.0005                 | <0.5         | <0.5         | < 0.5        | <0.5    |

As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Table 1

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVM-1

| Volatile Organic Compounds |          |                | itial SVE O    | •            |                |                |
|----------------------------|----------|----------------|----------------|--------------|----------------|----------------|
| Method T0-1                |          | (42            | Days: 9/9/0    | 3 thru 10/20 | 0/03)          |                |
| Matrix: Vapor              | 09/18/03 | 09/24/03       | 10/02/03       | 10/08/03     | 10/15/03       | 10/23/03       |
|                            | μg/10L   | μ <b>g/10L</b> | μ <b>g/10L</b> | μg/10L       | μ <b>g/10L</b> | μ <b>g/10L</b> |
| 1,1,1-Trichloroethane      | <5.00    | <5.00          | · <5.00        | <5.00        | <5.00          | <5.00          |
| 1,1,2,2-Tetrachloroethane  | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| 1,1,2-Trichloroethane      | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| 1,1-Dichloroethane         | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| 1,1-Dichloroethene         | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| 1,2-Dichlorobenzene        | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| 1,2-Dichloroethane         | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| 1,2-Dichloropropane        | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| 1,3-Dichlorobenzene        | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| 1,4-Dichlorobenzene        | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Acetone                    | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Benzene                    | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Bromodichloromethane       | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Bromoform                  | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Bromomethane               | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Carbon Tetrachloride       | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Chlorobenzene              | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Chlorodibromomethane       | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Chloroethane               | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Chloroform                 | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Chloromethane              | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| cis-1,3-Dichloropropene    | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Ethylbenzene               | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Methyl Ethyl Ketone (MEK)  | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Methylene Chloride         | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| мтве                       | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Tetrachloroethene          | 6.15     | <5.00          | 7.57           | <5.00        | <5.00          | <5.00          |
| Toluene                    | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| trans-1,2-Dichloroethene   | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| trans-1,3-Dichloropropene  | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Trichloroethene            | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Trichlorofluoromethane     | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Vinyl Chloride             | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Xylene, m+p                | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |
| Xylene, o                  | <5.00    | <5.00          | <5.00          | <5.00        | <5.00          | <5.00          |

Note: Results are reported per 10L (Tenax tube volume).

Table 1

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: SVM-1

| Volatile Organic Compounds<br>Method T0-1 |              | Routine SVE Operating Period (34 Months: 10/21/03 thru 8/25/06) |              |              |              |              |               |          |  |  |  |
|-------------------------------------------|--------------|-----------------------------------------------------------------|--------------|--------------|--------------|--------------|---------------|----------|--|--|--|
| Matrix: Vapor                             | 11/12/03     | 11/26/03                                                        | 12/10/03     | 12/22/03     | 01/14/04     | 01/30/04     | 02/11/04      | 02/25/04 |  |  |  |
|                                           | μ <b>g/L</b> | μg/L                                                            | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/</b> L | μg/L     |  |  |  |
| 1,1,1-Trichloroethane                     | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | 0.0007       | <0.0005       | <0.0005  |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005       | <0.0005  |  |  |  |
| 1,1,2-Trichloroethane                     | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005       | <0.0005  |  |  |  |
| 1,1-Dichloroethane                        | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005       | <0.0005  |  |  |  |
| 1,1-Dichloroethene                        | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005       | <0.0005  |  |  |  |
| 1,2-Dichlorobenzene                       | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005       | <0.0005  |  |  |  |
| 1,2-Dichloroethane                        | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005       | <0.0005  |  |  |  |
| 1,2-Dichloropropane                       | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005       | <0.0005  |  |  |  |
| 1,3-Dichlorobenzene                       | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005       | <0.0005  |  |  |  |
| 1,4-Dichlorobenzene                       | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | 0.001         | <0.0005  |  |  |  |
| Acetone                                   | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.003        | <0.0005      | 0.005 -       | 0.005    |  |  |  |
| Benzene                                   | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | 0.0238       | 0.005         | 0.003    |  |  |  |
| Bromodichloromethane                      | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005       | <0.0005  |  |  |  |
| Bromoform                                 | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005       | < 0.0005 |  |  |  |
| Bromomethane                              | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005       | < 0.0005 |  |  |  |
| Carbon Tetrachloride                      | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | < 0.0005      | < 0.0005 |  |  |  |
| Chlorobenzene                             | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | < 0.0005      | < 0.0005 |  |  |  |
| Chlorodibromomethane                      | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005       | < 0.0005 |  |  |  |
| Chloroethane                              | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | < 0.0005      | < 0.0005 |  |  |  |
| Chloroform                                | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | 0.0006       | <0.0005       | < 0.0005 |  |  |  |
| Chloromethane                             | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | 0.0625E      | <0.0005       | 0.002    |  |  |  |
| cis-1.3-Dichloropropene                   | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005       | < 0.0005 |  |  |  |
| Ethy!benzene                              | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | 0.0007       | <0.0005       | < 0.0005 |  |  |  |
| MEK (2-Butanone)                          | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | 0.023E        | 0.002    |  |  |  |
| Methylene Chloride                        | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.0013       | 0.0075       | <0.0005       | 0.003    |  |  |  |
| MTBE                                      | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | 0.0023       | <0.0005       | < 0.0005 |  |  |  |
| Tetrachloroethene.                        | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.004        | 0.2874E      | 0.009         | 0.335E   |  |  |  |
| Toluene                                   | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | 0.0126E      | <0.0005       | 0.001    |  |  |  |
| trans-1,2-Dichloroethene                  | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005       | <0.0005  |  |  |  |
| trans-1,3-Dichloropropene                 | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005       | <0.0005  |  |  |  |
| Trichloroethene                           | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | 0.0010       | <0.0005       | <0.0005  |  |  |  |
| Trichlorofluoromethane                    | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0007      | <0.0007      | < 0.0007      | <0.0007  |  |  |  |
| Vinyl Chloride                            | <0.5         | <0.5                                                            | - <0.5       | n/a          | <0.0005      | <0.0005      | <0.0005       | <0.0005  |  |  |  |
| Xylene, m+p                               | <0.5         | <0.5                                                            | . <0.5       | n/a          | <0.0005      | 0.0018       | <0.0005       | 0.001    |  |  |  |
| Xylene, o                                 | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | 0.0005       | <0.0005       | < 0.0005 |  |  |  |

n/a = not available: ELS laboratory instrument failure As of 1/14.04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

Table 1

Summary of Vapor Analytical Results: SVM-1

| Volatile Organic Compounds<br>Method T0-1 |              |              |          | nine SVE Op<br>onths: 10/21 | •       |              |              |              |
|-------------------------------------------|--------------|--------------|----------|-----------------------------|---------|--------------|--------------|--------------|
| Matrix: Vapor                             | 3/11/04      | 3/24/04*     | 04/07/04 | 04/21/04                    | 5/6/04* | 5/24/04      | 6/10/04      | 6/23/04      |
|                                           | μ <b>g/L</b> | μ <b>g/L</b> | μg/L     | μ <b>g/L</b>                | μg/L    | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> |
| 1,1,1-Trichloroethane                     | <0.0005      | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5         |
| 1,1,2,2-Tetrachloroethane                 | < 0.0005     | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5         |
| 1,1,2-Trichloroethane                     | <0.0005      | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5         |
| 1,1-Dichloroethane                        | <0.0005      | <0.5         | <0.0005  | < 0.0005                    | <0.5    | <0.5         | <0.5         | < 0.5        |
| 1,1-Dichloroethene                        | <0.0005      | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5         |
| 1,2-Dichlorobenzene                       | <0.0005      | < 0.5        | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5         |
| 1,2-Dichloroethane                        | <0.0005      | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5         |
| 1,2-Dichloropropane                       | <0.0005      | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5         |
| 1,3-Dichlorobenzene                       | <0.0005      | < 0.5        | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5         |
| 1,4-Dichlorobenzene                       | <0.0005      | <0.5         | 0.0010   | < 0.0005                    | <0.5    | <0.5         | <0.5         | <0.5         |
| Acetone                                   | 0.0143E      | <0.5         | 0.0017E  | 0.0089                      | <0.5    | <0.5         | <0.5         | <0.5         |
| Benzene                                   | 0.0199E      | <0.5         | 0.0160E  | 0.0415E                     | <0.5    | < 0.5        | <0.5         | . <0.5       |
| Bromodichloromethane                      | <0.0005      | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5         |
| Bromoform                                 | <0.0005      | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | < 0.5        |
| Bromomethane                              | <0.0005      | <0.5         | <0.0005  | < 0.0005                    | <0.5    | <0.5         | <0.5         | <0.5         |
| Carbon Tetrachloride                      | <0.0005      | <0.5         | <0.0005  | <0.0005                     | <0.5    | < 0.5        | <0.5         | <0.5         |
| Chlorobenzene                             | <0.0005      | <0.5         | <0.0005  | < 0.0005                    | <0.5    | <0.5         | < 0.5        | <0.5         |
| Chlorodibromomethane                      | <0.0005      | <0.5         | <0.0005  | < 0.0005                    | <0.5    | < 0.5        | <0.5         | < 0.5        |
| Chloroethane                              | <0.0005      | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | < 0.5        |
| Chloroform                                | <0.0005      | <0.5         | 0.0005   | < 0.0005                    | <0.5    | <0.5         | <0.5         | <0.5         |
| Chloromethane                             | <0.0005      | <0.5         | 0.0058   | < 0.0005                    | < 0.5   | <0.5         | <0.5         | < 0.5        |
| cis-1,3-Dichloropropene                   | <0.0005      | <0.5         | <0.0005  | < 0.0005                    | <0.5    | < 0.5        | <0.5         | <0.5         |
| Ethylbenzene                              | <0.0005      | <0.5         | 0.0006   | < 0.0005                    | <0.5    | <0.5         | .<0.5        | <0.5         |
| MEK (2-Butanone)                          | 0.1711E      | <0.5         | 0.0019   | 0.0011                      | <0.5    | <0.5         | <0.5         | < 0.5        |
| Methylene Chloride                        | 0.0006       | <0.5         | 0.0030   | 0.0019                      | <0.5    | <0.5         | <0.5         | <0.5         |
| MTBE                                      | <0.0005      | <0.5         | < 0.0005 | < 0.0005                    | <0.5    | < 0.5        | <0.5         | <0.5         |
| Tetrachloroethene                         | 0.1746E      | <0.5         | 0.1895E  | <0.0005                     | <0.5    | 0.60         | <0.5         | <0.5         |
| Toluene                                   | 0.0012       | <0.5         | 0.0041   | 0.0017                      | < 0.5   | < 0.5        | <0.5         | <0.5         |
| trans-1,2-Dichloroethene                  | < 0.0005     | <0.5         | <0.0005  | < 0.0005                    | <0.5    | <0.5         | <0.5         | <0.5         |
| trans-1,3-Dichloropropene                 | <0.0005      | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5         |
| Trichloroethene                           | <0.0005      | <0.5         | <0.0005  | < 0.0005                    | <0.5    | <0.5         | <0.5         | < 0.5        |
| Trichlorofluoromethane                    | < 0.0007     | <0.5         | <0.0007  | <0.0007                     | <0.5    | <0.5         | <0.5         | <0.5         |
| Vinyl Chloride                            | < 0.0005     | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5         |
| Xylene, m+p                               | <0.0005      | <0.5         | 0.0019   | < 0.0005                    | <0.5    | <0.5         | <0.5         | <0.5         |
| Xylene, o                                 | <0.0005      | <0.5         | 0.0008   | < 0.0005                    | <0.5    | <0.5         | < 0.5        | <0.5         |

As of 1/14/04, vapor samples analyzed by Chemtech.

E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Table 1

Summary of Analytical Results: SVM-2

| Volatile Organic Compounds | Initial SVE Operating Period (42 Days: 9/9/03 thru 10/20/03) |                |                |                |                |                 |  |  |  |  |  |
|----------------------------|--------------------------------------------------------------|----------------|----------------|----------------|----------------|-----------------|--|--|--|--|--|
| Method T0-1                | _                                                            | (42)           | Days: 9/9/0    | 03 thru 10/2   | 20/03)         |                 |  |  |  |  |  |
| Matrix: Vapor              | 9/18/03                                                      | 9/24/03        | 10/2/03        | 10/8/03        | 10/15/03       | 10/23/03        |  |  |  |  |  |
|                            | μg/10L                                                       | μ <b>g/10L</b> | μ <b>g/10L</b> | μg/10 <b>L</b> | μ <b>g/10L</b> | μ <b>g/10</b> L |  |  |  |  |  |
| 1,1,1-Trichloroethane      | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane  | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| 1,1,2-Trichloroethane      | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| 1,1-Dichloroethane         | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| 1,1-Dichloroethene         | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| 1,2-Dichlorobenzene        | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| 1,2-Dichloroethane         | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| 1,2-Dichloropropane        | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| 1,3-Dichlorobenzene        | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| 1,4-Dichlorobenzene        | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Acetone                    | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Benzene                    | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Bromodichloromethane       | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Bromoform                  | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Bromomethane               | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Carbon Tetrachloride       | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Chlorobenzene              | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Chlorodibromomethane       | <5.00                                                        | <5.0 <b>0</b>  | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Chloroethane               | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Chloroform                 | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Chloromethane              | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| cis-1,3-Dichloropropene    | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Ethylbenzene               | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Methyl Ethyl Ketone (MEK)  | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Methylene Chloride         | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| МТВЕ                       | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Tetrachioroethene          | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Toluene                    | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| trans-1,2-Dichloroethene   | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| trans-1,3-Dichloropropene  | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Trichloroethene            | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Trichlorofluoromethane     | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Vinyl Chloride             | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Xylene, m+p                | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |
| Xylene, o                  | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00           |  |  |  |  |  |

Note: Results are reported per 10L (Tenax tube volume).

Table 1

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: SVM-2

| Volatile Organic Compounds<br>Method T0-1 |              |          |          | onths: 10/21 |              |              | ,        |              |
|-------------------------------------------|--------------|----------|----------|--------------|--------------|--------------|----------|--------------|
| Matrix: Vapor                             | 11/12/03     | 11/26/03 | 12/10/03 | 12/22/03     | 01/14/04     | 01/30/04     | 02/11/04 | 02/25/04     |
|                                           | μ <b>g/L</b> | μg/L     | μg/L     | μg/L         | μ <b>g/L</b> | μ <b>g/L</b> | μg/L     | μ <b>g/L</b> |
| 1,1,1-Trichloroethane                     | <0.5         | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| 1,1,2,2-Tetrachloroethane                 | <0.5         | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| 1,1,2-Trichloroethane                     | <0.5         | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| 1,1-Dichloroethane                        | <0.5         | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| 1,1-Dichloroethene                        | <0.5         | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| 1,2-Dichlorobenzene                       | <0.5         | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005      | < 0.0005 | <0.0005      |
| 1,2-Dichloroethane                        | <0.5         | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| 1,2-Dichloropropane                       | <0.5         | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| 1,3-Dichlorobenzene                       | <0.5         | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| 1,4-Dichlorobenzene                       | <0.5         | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005      | < 0.0005 | <0.0005      |
| Acetone                                   | . <0.5       | <0.5     | <0.5     | n/a          | 0.0018       | 0.0226E      | 0.002    | 0.017E       |
| Benzene                                   | < 0.5        | <0.5     | <0.5     | n/a          | <0.0005      | 0.0032       | 0.003    | 0.019E       |
| Bromodichloromethane                      | <0.5         | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005      | <0.0005  | <0.0005      |
| Bromoform                                 | <0.5         | <0.5     | <0.5     | n/a          | <0.0005      | < 0.0005     | < 0.0005 | <0.0005      |
| Bromomethane                              | <0.5         | <0.5     | <0.5     | n/a          | < 0.0005     | <0.0005      | < 0.0005 | < 0.0005     |
| Carbon Tetrachloride                      | <0.5         | <0.5     | < 0.5    | n/a          | < 0.0005     | <0.0005      | <0.0005  | <0.0005      |
| Chlorobenzene                             | <0.5         | <0.5     | <0.5     | n/a          | <0.0005      | 0.0010       | <0.0005  | <0.0005      |
| Chlorodibromomethane                      | <0.5         | <0.5     | <0.5     | n/a          | < 0.0005     | < 0.0005     | < 0.0005 | <0.0005      |
| Chloroethane                              | <0.5         | <0.5     | <0.5     | n/a          | < 0.0005     | < 0.0005     | < 0.0005 | < 0.0005     |
| Chloroform                                | <0.5         | <0.5     | <0.5     | n/a          | <0.0005      | < 0.0005     | <0.0005  | < 0.0005     |
| Chloromethane                             | <0.5         | <0.5     | <0.5     | n/a          | < 0.0005     | < 0.0005     | <0.0005  | < 0.0005     |
| cis-1.3-Dichloropropene                   | <0.5         | <0.5     | <0.5     | n/a          | < 0.0005     | <0.0005      | <0.0005  | <0.0005      |
| Ethylbenzene                              | <0.5         | <0.5     | <0.5     | n/a          | < 0.0005     | 0.0016       | < 0.0005 | 0.001        |
| MEK (2-Butanone)                          | <0.5         | <0.5     | <0.5     | n/a          | 0.0131       | 0.0883E      | 0.003    | 0.009        |
| Methylene Chloride                        | <0.5         | <0.5     | < 0.5    | n/a          | 0.0008       | < 0.0005     | <0.0005  | 0.007        |
| МТВЕ                                      | <0.5         | <0.5     | <0.5     | n/a          | <0.0005      | < 0.0005     | < 0.0005 | 0.000        |
| Tetrachloroethene .                       | <0.5         | <0.5     | <0.5     | n/a          | < 0.0005     | 0.2395E      | 0.006    | 0.108E       |
| Toluene                                   | <0.5         | <0.5     | < 0.5    | n/a          | <0.0005      | 0.0069       | <0.0005  | 0.002        |
| trans-1.2-Dichloroethene                  | <0.5         | <0.5     | <0.5     | n/a          | < 0.0005     | <0.0005      | <0.0005  | <0.0005      |
| trans-1.3-Dichloropropene                 | <0.5         | <0.5     | <0.5     | n/a          | <0.0005      | < 0.0005     | <0.0005  | <0.0005      |
| Trichloroethene                           | <0.5         | <0.5     | <0.5     | n/a          | <0.0005      | < 0.0005     | <0.0005  | <0.0005      |
| Trichlorofluoromethane                    | <0.5         | <0.5     | <0.5     | n/a          | <0.0007      | <0.0007      | < 0.0007 | < 0.0007     |
| Vinyl Chloride                            | <0.5         | <0.5     | <0.5     | n/a          | <0.0005      | < 0.0005     | < 0.0005 | <0.0005      |
| Xylene, m+p                               | <0.5         | <0.5     | <0.5     | n/a          | < 0.0005     | 0.0041       | < 0.0005 | 0.002        |
| Xylene, o                                 | <0.5         | <0.5     | <0.5     | n/a          | < 0.0005     | 0.0013       | < 0.0005 | 0.001        |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech E=result exceeds calibration range, estimated value.

Table 1

**Summary of Vapor Analytical Results: SVM-2** 

| Volatile Organic Compounds<br>Method T0-1 |              |              |                 | tine SVE Op<br>onths: 10/10 | •            |              |              |              |
|-------------------------------------------|--------------|--------------|-----------------|-----------------------------|--------------|--------------|--------------|--------------|
| Matrix: Vapor                             | 3/11/04      | 3/24/04*     | 04/07/04        | 04/21/04                    | 5/6/04*      | 5/24/04      | 6/10/04      | 6/23/04      |
|                                           | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b>    | μ <b>g/L</b>                | μ <b>g/Ľ</b> | μ <b>g/Ľ</b> | μ <b>g/L</b> | μ <b>g/L</b> |
| 1,1,1-Trichloroethane                     | <0.0005      | <0.5         | <0.0005         | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1,2,2-Tetrachloroethane                 | <0.0005      | <0.5         | <0.0005         | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1,2-Trichloroethane                     | <0.0005      | <0.5         | <0.0005         | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1-Dichloroethane                        | <0.0005      | <0.5         | <0.0005         | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1-Dichloroethene                        | <0.0005      | <0.5         | < 0.0005        | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,2-Dichlorobenzene                       | <0.0005      | <0.5         | <0.0005         | < 0.0005                    | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,2-Dichloroethane                        | <0.0005      | <0.5         | <0.0005         | <0.0005                     | <0.5         | < 0.5        | <0.5         | <0.5         |
| 1,2-Dichloropropane                       | <0.0005      | <0.5         | <0.0005         | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,3-Dichlorobenzene                       | <0.0005      | <0.5         | <0.0005         | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,4-Dichlorobenzene                       | <0.0005      | <0.5         | 0.0006          | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Acetone                                   | 0.0646E      | <0.5         | 0.02 <b>09E</b> | 0.0071                      | <0.5         | <0.5         | <0.5         | <0.5         |
| Benzene                                   | 0.0095       | <0.5         | 0.0386E         | 0.0144E                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Bromodichloromethane                      | <0.0005      | <0.5         | <0.0005         | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Bromoform                                 | <0.0005      | <0.5         | <0.0005         | <0.0005                     | <0.5         | <0.5         | < 0.5        | < 0.5        |
| Bromomethane                              | <0.0005      | <0.5         | <0.0005         | <0.0005                     | <0.5         | <0.5         | <0.5         | < 0.5        |
| Carbon Tetrachloride                      | <0.0005      | <0.5         | <0.0005         | <0.0005                     | <0.5         | <0.5         | < 0.5        | <0.5         |
| Chlorobenzene                             | <0.0005      | <0.5         | <0.0005         | <0.0005                     | <0.5         | <0.5         | <0.5         | < 0.5        |
| Chlorodibromomethane                      | <0.0005      | <0.5         | <0.0005         | <0.0005                     | <0.5         | <0.5         | < 0.5        | <0.5         |
| Chloroethane                              | <0.0005      | <0.5         | <0.0005         | <0.0005                     | <0.5         | <0.5         | <0.5         | < 0.5        |
| Chloroform                                | <0.0005      | <0.5         | <0.0005         | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Chloromethane                             | <0.0005      | <0.5         | <0.0005         | 0.0026                      | <0.5         | <0.5         | <0.5         | 0.78         |
| cis-1,3-Dichloropropene                   | <0.0005      | <0.5         | <0.0005         | < 0.0005                    | <0.5         | <0.5         | <0.5         | <0.5         |
| Ethylbenzene                              | <0.0005      | <0.5         | 0.0005          | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| MEK (2-Butanone)                          | 0.4832E      | <0.5         | 0.0039          | 0.0022                      | <0.5         | <0.5         | <0.5         | <0.5         |
| Methylene Chloride                        | <0.0005      | <0.5         | 0.0034          | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| MTBE                                      | <0.0005      | <0.5         | <0.0005         | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Tetrachloroethene                         | 0.0250E      | <0.5         | 0.0488E         | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Toluene                                   | 0.0014       | <0.5         | 0.0087          | 0.0020                      | <0.5         | <0.5         | <0.5         | <0.5         |
| trans-1,2-Dichloroethene                  | < 0.0005     | <0.5         | <0.0005         | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| trans-1,3-Dichloropropene                 | <0.0005      | <0.5         | <0.0005         | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Trichloroethene                           | <0.0005      | <0.5         | 0.0006          | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Trichlorofluoromethane                    | < 0.0007     | <0.5         | <0.0007         | <0.0007                     | <0.5         | <0.5         | <0.5         | < 0.5        |
| Vinyl Chloride                            | <0.0005      | <0.5         | <0.0005         | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Xylene, m+p                               | < 0.0005     | <0.5         | 0.0013          | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Xylene, o                                 | < 0.0005     | <0.5         | 0.0005          | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |

As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Table 1

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVM-3

| Volatile Organic Compounds<br>Method TO-1 | Initial SVE Operating Period (42 Days: 9/9/03 thru 10/20/03) |                |                |         |                |                |  |  |  |  |  |
|-------------------------------------------|--------------------------------------------------------------|----------------|----------------|---------|----------------|----------------|--|--|--|--|--|
| Matrix: Vapor                             | 9/18/03                                                      | 9/24/03        | 10/2/03        | 10/8/03 | 10/15/03       | 10/23/03       |  |  |  |  |  |
| -                                         | μ <b>g/10L</b>                                               | μ <b>g/10L</b> | μ <b>g/10L</b> | μg/10L  | μ <b>g/10L</b> | μ <b>g/10L</b> |  |  |  |  |  |
| 1,1,1-Trichloroethane                     | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| 1,1,2-Trichloroethane                     | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| 1,1-Dichloroethane                        | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| 1,1-Dichloroethene                        | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| 1,2-Dichlorobenzene                       | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| 1,2-Dichloroethane                        | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| 1,2-Dichloropropane                       | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| 1,3-Dichlorobenzene                       | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| 1,4-Dichlorobenzene                       | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Acetone                                   | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Benzene                                   | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Bromodichloromethane                      | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Bromoform                                 | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Bromomethane                              | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Carbon Tetrachloride                      | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Chlorobenzene                             | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Chlorodibromomethane                      | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Chloroethane                              | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Chloroform                                | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Chloromethane                             | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| cis-1,3-Dichloropropene                   | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Ethylbenzene                              | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Methyl Ethyl Ketone (MEK)                 | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Methylene Chloride                        | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| MTBE                                      | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Tetrachlorpethene                         | 6.95                                                         | <5.00          | <5.00          | 16.1    | <5.00          | <5.00          |  |  |  |  |  |
| Toluene                                   | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| trans-1,2-Dichloroethene                  | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| trans-1,3-Dichloropropene                 | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Trichloroethene                           | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Trichlorofluoromethane                    | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Vinyl Chloride                            | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Xylene, m+p                               | -<5.00                                                       | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Xylene, o                                 | <5.00                                                        | <5.00          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |

Note: Results are reported per 10L (Tenax tube volume).

Table 1

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: SVM-3

| Volatile Organic Compounds<br>Method T0-1 |              | Routine SVE Operating Period (34 Months: 10/21/03 thru 8/25/06) |          |              |              |              |          |          |  |  |
|-------------------------------------------|--------------|-----------------------------------------------------------------|----------|--------------|--------------|--------------|----------|----------|--|--|
| Matrix: Vapor                             | 11/12/03     | 11/26/03                                                        | 12/10/03 | 12/22/03     | 01/14/04     | 01/30/04     | 02/11/04 | 02/25/04 |  |  |
|                                           | μ <b>g/L</b> | μ <b>g/L</b>                                                    | μg/L     | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μg/L     | μg/L     |  |  |
| 1,1,1-Trichloroethane                     | <0.5         | <0.5                                                            | <0.5     | n/a          | <0.0005      | <0.0005      | <0.0005  | <0.0005  |  |  |
| 1,1,2,2-Tetrachloroethane                 | <0.5         | <0.5                                                            | <0.5     | n/a          | <0.0005      | <0.0005      | <0.0005  | <0.0005  |  |  |
| 1,1,2-Trichloroethane                     | <0.5         | <0.5                                                            | <0.5     | n/a          | <0.0005      | <0.0005      | < 0.0005 | <0.0005  |  |  |
| 1,1-Dichloroethane                        | <0.5         | <0.5                                                            | <0.5     | n/a          | < 0.0005     | <0.0005      | < 0.0005 | <0.0005  |  |  |
| 1,1-Dichloroethene                        | <0.5         | <0.5                                                            | <0.5     | n/a          | < 0.0005     | <0.0005      | < 0.0005 | < 0.0005 |  |  |
| 1,2-Dichlorobenzene                       | <0.5         | <0.5                                                            | <0.5     | n/a          | <0.0005      | <0.0005      | <0.0005  | <0.0005  |  |  |
| 1,2-Dichloroethane                        | <0.5         | <0.5                                                            | <0.5     | n/a          | < 0.0005     | <0.0005      | <0.0005  | < 0.0005 |  |  |
| 1,2-Dichloropropane                       | <0.5         | <0.5                                                            | <0.5     | n/a          | < 0.0005     | <0.0005      | < 0.0005 | <0.0005  |  |  |
| 1,3-Dichlorobenzene                       | <0.5         | <0.5                                                            | <0.5     | n/a          | <0.0005      | <0.0005      | < 0.0005 | <0.0005  |  |  |
| 1,4-Dichlorobenzene                       | <0.5         | <0.5                                                            | <0.5     | n/a          | 0.093E       | <0.0005      | <0.0005  | < 0.0005 |  |  |
| Acetone                                   | <0.5         | <0.5                                                            | <0.5     | n/a          | 0.055E       | 0.0640E      | 0.002    | 0.017E   |  |  |
| Benzene                                   | <0.5         | <0.5                                                            | <0.5     | n/a          | 0.046E       | 0.0521E      | 0.005    | 0.022E   |  |  |
| Bromodichloromethane                      | <0.5         | ≤0.5                                                            | <0.5     | n/a          | < 0.0005     | <0.0005      | <0.0005  | <0.0005  |  |  |
| Bromoform                                 | <0.5         | <0.5                                                            | <0.5     | n/a          | <0.0005      | < 0.0005     | < 0.0005 | < 0.0005 |  |  |
| Bromomethane                              | <0.5         | <0.5                                                            | <0.5     | n/a          | < 0.0005     | < 0.0005     | < 0.0005 | < 0.0005 |  |  |
| Carbon Tetrachloride                      | <0.5         | <0.5                                                            | <0.5     | n/a          | 0.004        | < 0.0005     | <0.0005  | < 0.0005 |  |  |
| Chlorobenzene                             | <0.5         | <0.5                                                            | <0.5     | n/a          | <0.0005      | 0.0006       | < 0.0005 | < 0.0005 |  |  |
| Chlorodibromomethane                      | <0.5         | <0.5                                                            | <0.5     | n/a          | <0.0005      | < 0.0005     | <0.0005  | < 0.0005 |  |  |
| Chloroethane                              | <0.5         | <0.5                                                            | <0.5     | n/a          | <0.0005      | < 0.0005     | < 0.0005 | < 0.0005 |  |  |
| Chloroform                                | <0.5         | <0.5                                                            | <0.5     | n/a          | 0.0012       | 0.0007       | < 0.0005 | < 0.0005 |  |  |
| Chloromethane                             | <0.5         | <0.5                                                            | <0.5     | n/a          | <0.0005      | 0.0006       | < 0.0005 | 0.002    |  |  |
| cis-1,3-Dichloropropene                   | <0.5         | <0.5                                                            | <0.5     | n/a          | < 0.0005     | <0.0005      | < 0.0005 | < 0.0005 |  |  |
| Ethylbenzene                              | <0.5         | <0.5                                                            | <0.5     | n/a          | 0.050E       | 0.0008       | <0.0005  | 0.001    |  |  |
| MEK (2-Butanone)                          | <0.5         | <0.5                                                            | <0.5     | n/a          | .0.022       | 0.1115E      | 0.003    | 0.002    |  |  |
| Methylene Chloride                        | <0.5         | <0.5                                                            | <0.5     | n/a          | 0.011E       | 0.0174E      | <0.0005  | 0.004    |  |  |
| мтве                                      | <0.5         | <0.5                                                            | <0.5     | n/a          | 0.012E       | 0.0055       | <0.0005  | <0.0005  |  |  |
| Tetrachloroethene ·                       | <0.5         | <0.5                                                            | <0.5     | n/a          | 0.031E       | 0.3028E      | 0.018E   | 0.075E   |  |  |
| Toluene                                   | <0.5         | <0.5                                                            | <0.5     | n/a          | 0.090E       | 0.0128E      | 0.001    | 0.002    |  |  |
| trans-1.2-Dichloroethene                  | <0.5         | <0.5                                                            | <0.5     | n/a          | <0.0005      | < 0.0005     | <0.0005  | < 0.0005 |  |  |
| trans-1,3-Dichloropropene                 | <0.5         | <0.5                                                            | <0.5     | n/a          | <0.0005      | < 0.0005     | < 0.0005 | <0.0005  |  |  |
| Trichloroethene                           | <0.5         | <0.5                                                            | <0.5     | n/a          | 0.009        | 0.0010       | <0.0005  | < 0.0005 |  |  |
| Trichlorofluoromethane                    | <0.5         | <0.5                                                            | <0.5     | n/a          | 0.0010       | < 0.0007     | <0.0007  | < 0.0007 |  |  |
| Vinyl Chloride                            | <0.5         | <0.5                                                            | <0.5     | n/a          | <0.0005      | <0.0005      | <0.0005  | < 0.0005 |  |  |
| Xylene, m+p                               | <0.5         | <0.5                                                            | <0.5     | n/a          | 0.210E       | 0.0021       | <0.0005  | 0.002    |  |  |
| Xylene, o                                 | <0.5         | <0.5                                                            | <0.5     | n/a          | 0.102E       | 0.007        | <0.0005  | 0.001    |  |  |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

Table 1

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: SVM-3

| Volatile Organic Compounds<br>Method T0-1 | Routine SVE Operating Period (34 Months: 10/21/03 thru 8/25/06) |          |              |              |              |         |              |              |  |  |  |
|-------------------------------------------|-----------------------------------------------------------------|----------|--------------|--------------|--------------|---------|--------------|--------------|--|--|--|
| Matrix: Vapor                             | 3/11/04                                                         | 3/24/04* | 04/07/04     | 04/21/04     | 5/6/04*      | 5/24/04 | 6/10/04      | 6/23/04      |  |  |  |
|                                           | μ <b>g/L</b>                                                    | μg/L     | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μg/L    | μ <b>g/L</b> | μ <b>g/L</b> |  |  |  |
| 1,1,1-Trichloroethane                     | < 0.0005                                                        | <0.5     | <0.0005      | <0.0005      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | <0.0005                                                         | <0.5     | <0.0005      | <0.0005      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| 1,1,2-Trichloroethane                     | < 0.0005                                                        | <0.5     | <0.0005      | <0.0005      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| 1,1-Dichloroethane                        | < 0.0005                                                        | <0.5     | <0.0005      | <0.0005      | <0.5         | < 0.5   | <0.5         | <0.5         |  |  |  |
| 1,1-Dichloroethene                        | <0.0005                                                         | <0.5     | <0.0005      | <0.0005      | <0.5         | < 0.5   | <0.5         | <0.5         |  |  |  |
| 1,2-Dichlorobenzene                       | < 0.0005                                                        | <0.5     | <0.0005      | <0.0005      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| 1,2-Dichloroethane                        | < 0.0005                                                        | <0.5     | <0.0005      | <0.0005      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| 1,2-Dichloropropane                       | < 0.0005                                                        | <0.5     | <0.0005      | <0.0005      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| 1,3-Dichlorobenzene                       | < 0.0005                                                        | <0.5     | < 0.0005     | <0.0005      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| 1,4-Dichlorobenzene                       | <0.0005                                                         | <0.5     | < 0.0005     | <0.0005      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| Acetone                                   | 0.0105E                                                         | <0.5     | 0.0214E      | 0.0233E      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| Benzene                                   | 0.0162E                                                         | <0.5     | 0.0358E      | . 0.0395E    | <0.5         | <0.5    | <0.5         | < 0.5        |  |  |  |
| Bromodichloromethane                      | <0.0005                                                         | <0.5     | < 0.0005     | < 0.0005     | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| Bromoform                                 | < 0.0005                                                        | <0.5     | < 0.0005     | <0.0005      | <0.5         | <0.5    | < 0.5        | < 0.5        |  |  |  |
| Bromomethane                              | < 0.0005                                                        | <0.5     | < 0.0005     | <0.0005      | <0.5         | <0.5    | < 0.5        | <0.5         |  |  |  |
| Carbon Tetrachloride                      | < 0.0005                                                        | <0.5     | < 0.0005     | <0.0005      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| Chlorobenzene                             | <0.0005                                                         | <0.5     | < 0.0005     | <0.0005      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| Chlorodibromomethane                      | <0.0005                                                         | <0.5     | < 0.0005     | <0.0005      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| Chloroethane                              | < 0.0005                                                        | <0.5     | < 0.0005     | <0.0005      | <0.5         | <0.5    | < 0.5        | <0.5         |  |  |  |
| Chloroform                                | < 0.0005                                                        | <0.5     | <0.0005      | <0.0005      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| Chloromethane                             | < 0.0005                                                        | <0.5     | < 0.0005     | < 0.0005     | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| cis-1,3-Dichloropropene                   | <0.0005                                                         | <0.5     | < 0.0005     | < 0.0005     | <0.5         | <0.5    | < 0.5        | <0.5         |  |  |  |
| Ethylbenzene                              | < 0.0005                                                        | <0.5     | < 0.0005     | < 0.0005     | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| MEK (2-Butanone)                          | 0.0125E                                                         | <0.5     | 0.0053       | 0.0040       | <0.5         | <0.5    | < 0.5        | <0.5         |  |  |  |
| Methylene Chloride                        | < 0.0005                                                        | <0.5     | 0.0064       | 0.0054       | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| МТВЕ                                      | < 0.0005                                                        | <0.5     | < 0.0005     | <0.0005      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| Tetrachloroethene                         | 0.0394E                                                         | <0.5     | 0.1863E      | < 0.0005     | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| Toluene                                   | 0.0009                                                          | <0.5     | 0.0041       | 0.0056       | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| trans-1,2-Dichloroethene                  | < 0.0005                                                        | <0.5     | < 0.0005     | <0.0005      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| trans-1,3-Dichloropropene                 | <0.0005                                                         | <0.5     | < 0.0005     | <0.0005      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| Trichloroethene                           | < 0.0005                                                        | <0.5     | < 0.0005     | <0.0005      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| Trichlorofluoromethane                    | < 0.0007                                                        | <0.5     | < 0.0007     | <0.0007      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| Vinyl Chloride                            | < 0.0005                                                        | <0.5     | < 0.0005     | <0.0005      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| Xylene, m+p                               | < 0.0005                                                        | <0.5     | - 0.0010     | <0.0005      | <0.5         | <0.5    | <0.5         | <0.5         |  |  |  |
| Xylene, o                                 | < 0.0005                                                        | <0.5     | < 0.0005     | < 0.0005     | <0.5         | <0.5    | <0.5         | < 0.5        |  |  |  |

As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Table 1

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVM-4

| Volatile Organic Compounds<br>Method T0-1 |         |                |                | perating Pe    |          |                |
|-------------------------------------------|---------|----------------|----------------|----------------|----------|----------------|
| Matrix: Vapor                             | 9/18/03 | 9/24/03        | 10/2/03        | 10/8/03        | 10/15/03 | 10/23/03       |
|                                           | μg/10L  | μ <b>g/10L</b> | μ <b>g/10L</b> | μ <b>g/10L</b> | μg/10L   | μ <b>g/10L</b> |
| 1,1,1-Trichloroethane                     | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| 1,1,2,2-Tetrachloroethane                 | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| 1,1,2-Trichloroethane                     | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| 1,1-Dichloroethane                        | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| 1,1-Dichloroethene                        | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| 1,2-Dichlorobenzene                       | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| 1,2-Dichloroethane                        | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| 1,2-Dichloropropane                       | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| 1,3-Dichlorobenzene                       | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| 1,4-Dichlorobenzene                       | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| Acetone                                   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | 9.20           |
| Benzene                                   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| Bromodichloromethane                      | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| Bromoform                                 | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| Bromomethane                              | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| Carbon Tetrachloride                      | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| Chlorobenzene                             | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| Chlorodibromomethane                      | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| Chloroethane                              | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| Chloroform                                | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| Chloromethane                             | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| cis-1.3-Dichloropropene                   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| Ethylbenzene                              | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| Methyl Ethyl Ketone (MEK)                 | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| Methylene Chloride                        | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| MTBE                                      | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | 9.68           |
| Tetrachloroethene                         | 13.8    | 5.36           | 5.48           | 5.22           | <5.00    | <5.00          |
| Toluene                                   | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| trans-1,2-Dichloroethene                  | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| trans-1,3-Dichloropropene                 | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| Trichloroethene                           | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| Trichlorofluoromethane                    | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| Vinyl Chloride                            | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| Xylene, m+p                               | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |
| Xylene, o                                 | <5.00   | <5.00          | <5.00          | <5.00          | <5.00    | <5.00          |

Note: Results are reported per 10L (Tenax tube volume).

Table 1

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: SVM-4

| Volatile Organic Compounds |                |                |              |              | perating Per  |              |              |              |
|----------------------------|----------------|----------------|--------------|--------------|---------------|--------------|--------------|--------------|
| Method T0-1                |                |                | (34 M        | onths: 10/2  | 1/03 thru 8/2 | 25/06)       |              |              |
| Matrix: Vapor              | 11/12/03       | 11/26/03       | 12/10/03     | 12/22/03     | 01/14/04      | 01/30/04     | 02/11/04     | 02/25/04     |
|                            | μ <b>g/t</b> . | μ <b>g/t</b> _ | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b>  | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> |
| 1,1,1-Trichloroethane      | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | <0.0005      | <0.0005      |
| 1,1,2,2-Tetrachloroethane  | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | <0.0005      | <0.0005      |
| 1,1,2-Trichloroethane      | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | <0.0005      | <0.0005      |
| 1,1-Dichloroethane         | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | <0.0005      | <0.0005      |
| 1,1-Dichloroethene         | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | <0.0005      | <0.0005      |
| 1,2-Dichlorobenzene        | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | <0.0005      | < 0.0005     |
| 1,2-Dichloroethane         | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | <0.0005      | < 0.0005     |
| 1,2-Dichloropropane        | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | <0.0005      | <0.0005      |
| 1,3-Dichlorobenzene        | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | < 0.0005     | <0.0005      |
| 1,4-Dichlorobenzene        | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | < 0.0005     | < 0.0005     |
| Acetone                    | <0.5           | <0.5           | <0.5         | n/a          | 0.010         | < 0.0005     | 0.003        | 0.008        |
| Benzene                    | <0.5           | <0.5           | <0.5         | n/a          | < 0.0005      | 0.0216E      | 0.008        | 0.005        |
| Bromodichloromethane       | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | <0.0005      | <0.0005      |
| Bromoform                  | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | <0.0005      | < 0.0005     |
| Bromomethane               | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | < 0.0005     | < 0.0005     |
| Carbon Tetrachloride       | <0.5           | <0.5           | <0.5         | n/a          | < 0.0005      | < 0.0005     | < 0.0005     | < 0.0005     |
| Chlorobenzene              | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | <0.0005      | < 0.0005     |
| Chlorodibromomethane       | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | <0.0005      | < 0.0005     |
| Chloroethane               | <0.5           | <0.5           | <0.5         | n/a          | < 0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Chloroform                 | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | <0.0005      | < 0.0005     |
| Chloromethane              | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | 0.0064       | < 0.0005     | < 0.0005     |
| cis-1,3-Dichloropropene    | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | <0.0005      | < 0.0005     |
| Ethylbenzene               | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | <0.0005      | < 0.0005     |
| MEK (2-Butanone)           | <0.5           | <0.5           | <0.5         | n/a          | 0.002         | 0.2117E      | 0.010        | 0.003        |
| Methylene Chloride         | <0.5           | <0.5           | <0.5         | n/a          | 0.005         | 0.0047       | 0.002        | <0.0005      |
| MTBE                       | <0.5           | <0.5           | <0.5         | n/a          | 0.0006        | 0.0014       | < 0.0005     | <0.0005      |
| Tetrachloroethene *        | 1.13           | <0.5           | <0.5         | n/a          | . 0.005       | 0.2774E      | 0.085E       | -0.043E      |
| Toluene                    | <0.5           | <0.5           | <0.5         | n/a          | 0.0018        | 0.0030       | 0.002        | < 0.0005     |
| trans-1.2-Dichloroethene   | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | < 0.0005     | < 0.0005     |
| trans-1,3-Dichloropropene  | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | <0.0005      | <0.0005      |
| Trichloroethene            | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | <0.0005      | <0.0005      |
| Trichlorofluoromethane     | <0.5           | <0.5           | <0.5         | n/a          | <0.0007       | <0.0007      | <0.0007      | < 0.0007     |
| Vinyl Chloride             | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | <0.0005      | < 0.0005     |
| Xylene, m+p                | <0.5           | <0.5           | <0.5         | n/a          | 0.0007        | 0.0008       | 0.001        | < 0.0005     |
| Xylene, o                  | <0.5           | <0.5           | <0.5         | n/a          | <0.0005       | <0.0005      | <0.0005      | < 0.0005     |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

Summary of Vapor Analytical Results: SVM-4

| Volatile Organic Compounds<br>Method T0-1 |          |              |              | tine SVE Op  | -            |              |              |              |
|-------------------------------------------|----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Matrix: Vapor                             | 3/11/04  | 3/24/04*     | 04/07/04     | 04/21/04     | 5/6/04*      | 5/24/04      | 6/10/04      | 6/23/04      |
|                                           | μg/L     | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> |
| 1,1,1-Trichloroethane                     | <0.0005  | <0.5         | < 0.0005     | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1,2,2-Tetrachloroethane                 | < 0.0005 | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1,2-Trichloroethane                     | < 0.0005 | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1-Dichloroethane                        | <0.0005  | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1-Dichloroethene                        | <0.0005  | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,2-Dichlorobenzene                       | < 0.0005 | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,2-Dichloroethane                        | < 0.0005 | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,2-Dichloropropane                       | <0.0005  | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,3-Dichlorobenzene                       | < 0.0005 | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,4-Dichlorobenzene                       | <0.0005  | <0.5         | 0.0006       | < 0.0005     | <0.5         | <0.5         | <0.5         | <0.5         |
| Acetone                                   | 0.0274E  | <0.5         | 0.0137E      | 0.0188E      | <0.5         | <0.5         | <0.5         | <0.5         |
| Benzene                                   | 0.0033   | <0.5         | 0.0139E      | 0.0451E      | <0.5         | <0.5         | <0.5         | . <0.5       |
| Bromodichloromethane                      | < 0.0005 | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Bromoform                                 | <0.0005  | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Bromomethane                              | <0.0005  | <0.5         | < 0.0005     | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Carbon Tetrachloride                      | <0.0005  | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Chlorobenzene                             | <0.0005  | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Chlorodibromomethane                      | < 0.0005 | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Chloroethane                              | <0.0005  | <0.5         | <0.0005      | 0.0007       | <0.5         | <0.5         | <0.5         | <0.5         |
| Chloroform                                | <0.0005  | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Chloromethane                             | 0.0027   | <0.5         | 0.0150E      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| cis-1,3-Dichloropropene                   | <0.0005  | <0.5         | < 0.0005     | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Ethylbenzene                              | <0.0005  | <0.5         | 0.0005       | < 0.0005     | <0.5         | <0.5         | <0.5         | <0.5         |
| MEK (2-Butanone)                          | 0.6183E  | <0.5         | 0.0019       | 0.0029       | <0.5         | <0.5         | <0.5         | <0.5         |
| Methylene Chloride                        | <0.0005  | <0.5         | 0.0055       | 0.0021       | <0.5         | <0.5         | <0.5         | <0.5         |
| MTBE                                      | <0.0005  | <0.5         | < 0.0005     | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Tetrachloroethene                         | 0.3146E  | <0.5         | 0.0785E      | <0.0005      | 0.5          | <0.5         | <0.5         | <0.5         |
| Toluene                                   | <0.0005  | <0.5         | 0.0103E      | 0.0030       | <0.5         | <0.5         | <0.5         | <0.5         |
| trans-1,2-Dichloroethene                  | < 0.0005 | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| trans-1,3-Dichloropropene                 | <0.0005  | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Trichloroethene                           | < 0.0005 | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Trichlorofluoromethane                    | < 0.0007 | <0.5         | < 0.0007     | <0.0007      | <0.5         | <0.5         | <0.5         | <0.5         |
| Vinyl Chloride                            | < 0.0005 | <0.5         | <0.0005      | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Xylene, m+p                               | < 0.0005 | <0.5         | 0.0014       | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |
| Xylene, o                                 | < 0.0005 | <0.5         | 0.0006       | <0.0005      | <0.5         | <0.5         | <0.5         | <0.5         |

As of 1/14/04, vapor samples analyzed by Chemtech.

E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

## NYSDEC Contract No. D004184

Franklin Cleaners, Hempstead, NY
Summary of Groundwater Analytical Results: ASM-1

| Matrix: Groundwater                       |              |              | (       |         | AS Operation: 10/21/03 t | ng Period<br>hru 8/2506 | <br>)   |              |  |
|-------------------------------------------|--------------|--------------|---------|---------|--------------------------|-------------------------|---------|--------------|--|
|                                           | 11/25/03     | 12/23/03     | 1/29/04 | 2/26/04 | 3/25/04                  | 4/22/04                 | 5/25/04 | 6/25/04      |  |
| Volatile Organic Compounds Method OLM04-2 | μ <b>g/L</b> | μ <b>g/L</b> | μg/L    | μg/L    | μ <b>g/L</b>             | μ <b>g/L</b>            | μg/L    | μ <b>g/L</b> |  |
| Dichlorodifluromethane                    | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| Chloromethane                             | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| Vinyl Chloride                            | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| Bromomethane                              | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| Chloroethane                              | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| Trichlorofluoromethane                    | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| 1,1,2-Trichlorotrifluoroethane            | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| 1,1-Dichloroethene                        | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| Acetone                                   | <25          | <25          | <25     | <25     | 5.7 <b>JB</b>            | <25                     | <25     | <25          |  |
| Carbon Disulfide                          | <5.0         | <5.0         | <5.0    | . <5.0  | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| Methyl tert-butyl Ether                   | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5:0                    | <5.0    | <5.0         |  |
| Methyl Acetate                            | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0.        |  |
| Methylene Chloride                        | <5.0         | <5.0.        | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| trans-1,2-Dichloroethene                  | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| 1,1-Dichloroethane                        | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| Cyclohexane                               | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| 2-Butanone                                | <25          | <25          | <25     | <25     | <25                      | <25                     | <25     | <25          |  |
| Carbon Tetrachloride                      | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| cis-1,2-Dichloroethene                    | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| Chloroform                                | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| 1,1,1-Trichloroethane                     | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| Methylcyclohexane                         | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| Benzene                                   | <5.0         | . <5.0       | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| 1,2-Dichloroethane                        | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| Trichloroethene                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| 1,2-Dichloropropane                       | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| Bromodichloromethane                      | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| 4-Methyl-2-Pentanone                      | <25          | <25          | <25     | <25     | <25                      | <25                     | <25     | <25          |  |
| Toluene                                   | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| t-1,3-Dichloropropene                     | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| cis-1,3-Dichloropropene                   | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| 1,1,2-Trichloroethane                     | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| 2-Hexanone                                | <25          | <25          | <25     | <25     | <25                      | <25                     | <25     | <25          |  |
| Dibromochloromethane                      | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| 1,2-Dibromoethane                         | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| Tetrachloroethene                         | 2.5J         | 1.0 <b>J</b> | <5.0    | 0.59J   | 1.0J                     | <5.0                    | <5.0    | <5.0         |  |
| Chlorobenzene                             | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| Ethylbenzene                              | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |
| M/P-Xylenes                               | <5.0         | <5.0         | <5.0    | <5.0    | <5.0                     | <5.0                    | <5.0    | <5.0         |  |

Table 2

### **Summary of Groundwater Analytical Results: ASM-1**

| Matrix: Groundwater                          |          | Routine AS Operating Period (34 Months: 10/21/03 thru 8/2506) |              |              |              |              |              |              |      |
|----------------------------------------------|----------|---------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|------|
| <b>!</b>                                     | 11/25/03 | 12/23/03                                                      | 1/29/04      | 2/26/04      | 3/25/04      | 4/22/04      | 5/25/04      | 6/25/04      |      |
| Volatile Organic Compounds<br>Method OLM04-2 | μg/L     | μ <b>g/L</b>                                                  | μ <b>g/L</b> | μ <b>g/L</b> | μg/L         | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> |      |
| O-Xylene                                     | <5.0     | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |      |
| Styrene                                      | <5.0     | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |      |
| Bromoform                                    | <5.0     | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |      |
| Isopropylbenzene                             | <5.0     | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |      |
| 1,1,2,2-Tetrachloroethane                    | <5.0     | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |      |
| 1,3-Dichlorobenzene                          | <5.0     | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |      |
| 1,4-Dichlorobenzene                          | <5.0     | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |      |
| 1,2-Dichalorobenzene                         | <5.0     | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |      |
| 1,2-Dibromo-3-Chloropropane                  | <5.0     | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |      |
| 1,2,4-Trichlorobenzene                       | <5.0     | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |      |
| Metals Analyses<br>Method 200.7              | μg/L     | μ <b>g/L</b>                                                  | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μg/L         | μ <b>g/L</b> | μg/L |
| Iron                                         | 838      | 96.4                                                          | 550          | 520          | 342          | 21700        | 3020         | 3850         |      |
| Manganese                                    | 34.3     | 6.0                                                           | 22.5         | 27.4         | 18.2         | 885          | 116          | 805          |      |

NA = Not Analyzed

NA = Not Analyzed

J =estimated detection above specified detection J =estimated detection above specified detection limit

<sup>\*</sup>samples collected on October 24, 2003

B = analyte found in trip blank

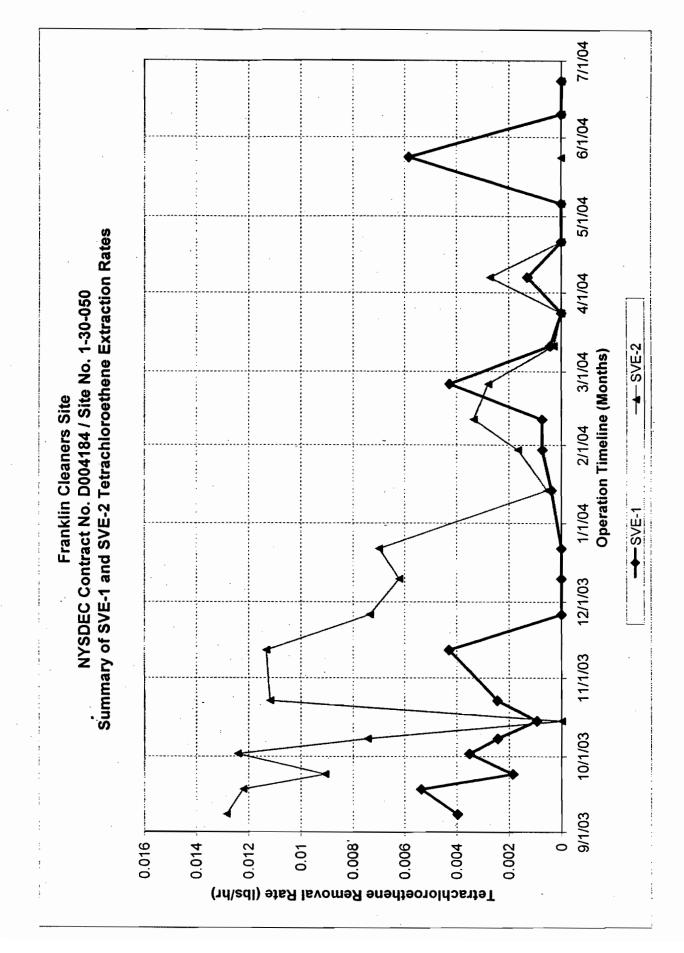
Table 2

Summary of Groundwater Analytical Results: ASM-2

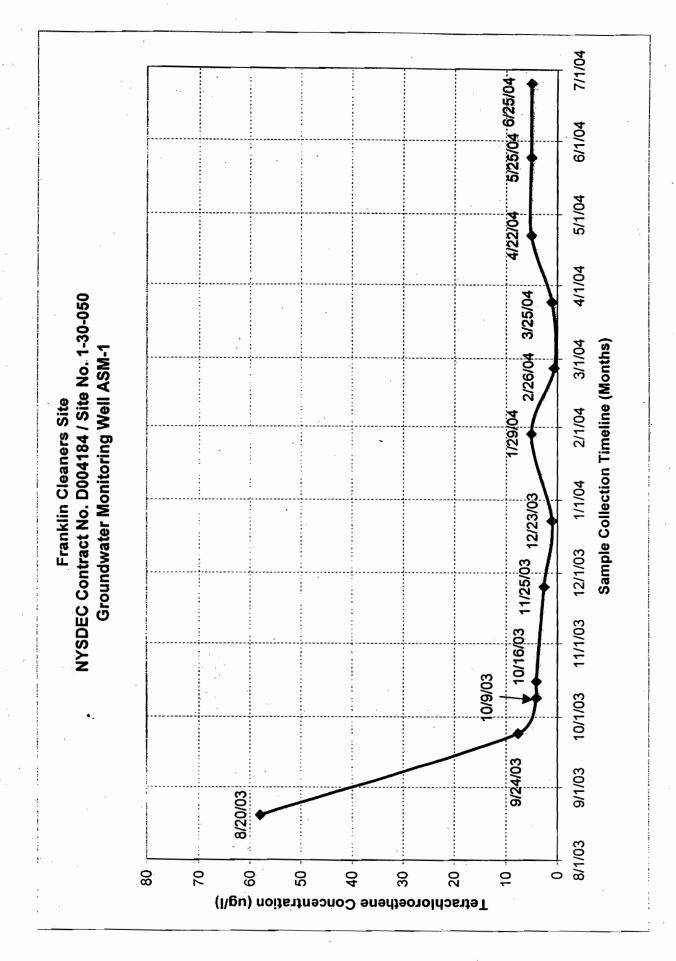
|                                            | Routine AS Operating Period (34 Months: 10/21/03 thru 8/2506) |          |          |         |              |         |              |              |              |
|--------------------------------------------|---------------------------------------------------------------|----------|----------|---------|--------------|---------|--------------|--------------|--------------|
| Matrix: Groundwater                        |                                                               |          | <u>_</u> |         |              |         |              |              |              |
|                                            | 11/25/03                                                      | 12/23/03 | 1/29/04  | 2/26/04 | 3/25/04      | 4/22/04 | 5/25/04      | 6/25/04      |              |
| Volatile Organic Compounds  Method OLM04-2 | μ <b>g/L</b>                                                  | μg/L     | μg/L     | μg/L    | μ <b>g/L</b> | μg/L    | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> |
| Dichlorodifluromethane                     | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| Chloromethane                              | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| Vinyl Chloride                             | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | · <5.0       |              |
| Bromomethane                               | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| Chloroethane                               | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| Trichlorofluoromethane                     | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| 1,1,2-Trichlorotrifluoroethane             | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| 1,1-Dichloroethene                         | <5.0 <sup>\(\)</sup>                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| Acetone                                    | <25                                                           | <25      | <25      | <25     | 6.3JB        | <25     | <25          | <25          |              |
| Carbon Disulfide                           | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| Methyl tert-butyl Ether                    | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5:0         |              |
| Methyl Acetate                             | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| Methylene Chloride                         | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| trans-1,2-Dichloroethene                   | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| 1,1-Dichloroethane                         | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| Cyclohexane                                | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| 2-Butanone                                 | <25                                                           | <25      | <25      | <25     | <25          | <25     | <25          | <25          |              |
| Carbon Tetrachloride                       | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| cis-1,2-Dichloroethene                     | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| Chloroform                                 | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| 1,1,1-Trichloroethane                      | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         | _            |
| Methylcyclohexane                          | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| Benzene                                    | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| 1,2-Dichloroethane                         | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| Trichloroethene                            | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| 1,2-Dichloropropane                        | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| Bromodichloromethane                       | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| 4-Methyl-2-Pentanone                       | <25                                                           | <25      | <25      | <25     | <25          | <25     | <25          | <25          |              |
| Toluene                                    | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| t-1,3-Dichloropropene                      | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| cis-1,3-Dichloropropene                    | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| 1,1,2-Trichloroethane                      | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| 2-Hexanone                                 | <25                                                           | <25      | <25      | <25     | <25          | <25     | <25          | <25          |              |
| Dibromochloromethane                       | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| 1,2-Dibromoethane                          | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| Tetrachloroethene                          | 2.8 <b>J</b>                                                  | 4.2J     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| Chlorobenzene                              | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| Ethylbenzene                               | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |
| M/P-Xylenes                                | <5.0                                                          | <5.0     | <5.0     | <5.0    | <5.0         | <5.0    | <5.0         | <5.0         |              |

Table 2

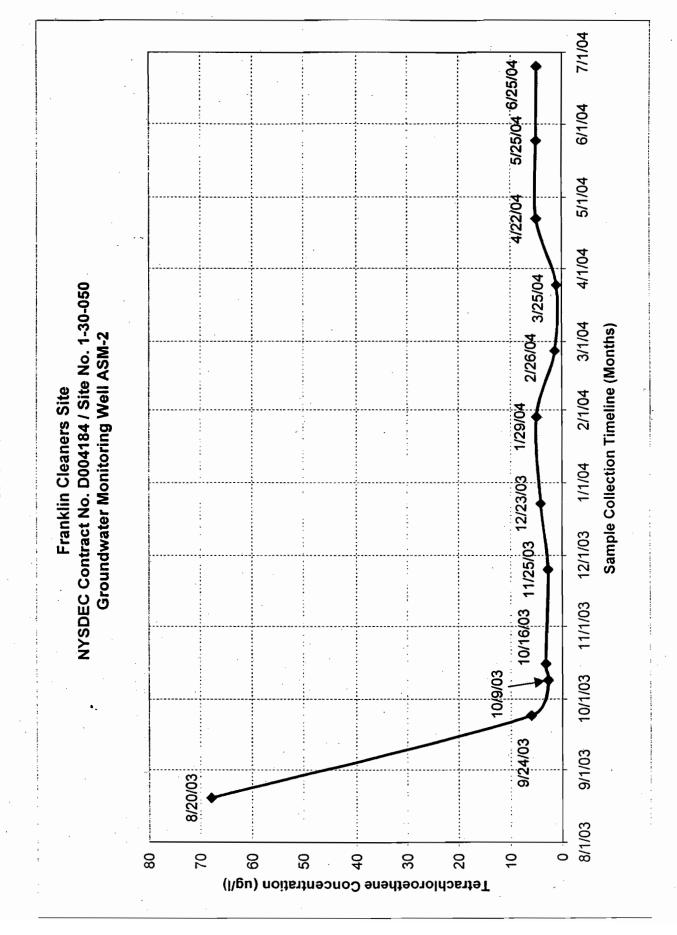
### **Summary of Groundwater Analytical Results: ASM-2**


| Matrix: Groundwater                          |              | Routine AS Operating Period (34 Months: 10/21/03 thru 8/2506) |              |              |              |              |              |              |              |
|----------------------------------------------|--------------|---------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                                              | 11/25/03     | 12/23/03                                                      | 1/29/04      | 2/26/04      | 3/25/04      | 4/22/04      | 5/25/04      | 6/25/04      |              |
| Volatile Organic Compounds<br>Method OLM04-2 | μ <b>g/L</b> | μ <b>g/L</b>                                                  | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μg/L         | μg/L         | μ <b>g/L</b> |
| O-Xylene                                     | <5.0         | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |              |
| Styrene                                      | <5.0         | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |              |
| Bromoform                                    | <5.0         | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |              |
| Isopropylbenzene                             | <5.0         | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |              |
| 1,1,2,2-Tetrachloroethane                    | <5.0         | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |              |
| 1,3-Dichlorobenzene                          | <5.0         | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |              |
| 1,4-Dichlorobenzene                          | <5.0         | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |              |
| 1,2-Dichalorobenzene                         | <5.0         | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |              |
| 1,2-Dibromo-3-Chloropropane                  | <5.0         | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |              |
| 1,2,4-Trichlorobenzene                       | <5.0         | <5.0                                                          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         |              |
| Metals Analyses<br>Method 200.7              | μ <b>g/L</b> | μg/L                                                          | μ <b>g/L</b> | μ <b>g/Ĺ</b> | μ <b>g/L</b> |
| Iron                                         | 2170         | 285                                                           | 179          | 158          | 115          | 11500        | 3820         | 2770         |              |
| Manganese                                    | 77.0         | 189                                                           | 5.3          | 12.6         | 3.8J         | 587          | 110          | 607          |              |

NA = Not Analyzed


J = estimated detection above specified detection

<sup>\*</sup>samples collected on October 24, 2003


#### GRAPHS



G/FDevita/Projects/Franklin\_Cleaners/NYSDEC Contract No. D004184 - SVE\_SPARGE System/Quarterly Reports/Second Quarter/GRAPH 1 - PCE REMOVAL TRENDLINE Chart 1



G/FDevita/Projects/Franklin\_Cleaners/NYSDEC Contract No. D004264 - GW Treatment System/Quarterly Reports/Second Quarter/GRAPH 2 & 3 - PCE TREND GRAPHS Chart 1



G./FDevita/Projects/Franklin\_Cleaners/NYSDEC Contract No. D004264 - GW Treatment System/Quarterly Reports/Second Quarter/GRAPH 2 & 3 - PCE TREND GRAPHS Chart 3

### **ATTACHMENT A**

# SOIL VAPOR EXTRACTION SYSTEM DOWNTIME FORMS

# Soil Vapor Extraction (SVE) System Down-Time Form

| System Phase / Operating Period (circle one):                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Technician: Swed Gronemer(1) Performance Test (2) Initial (3) Routine                                                                             |
| Company: Sinvirospect                                                                                                                             |
| System down on arrival? No Yes: Date 6/22/04 Time 11:00                                                                                           |
| SVE Blower Run Time (hours): at (EXTREMELY IMPORTANT!!!)  Current Reading (Cumulative) time                                                       |
| Down-time Begins: Date: 6/18/04 Time: 18:52 (pager                                                                                                |
| Description of Cause(s):  Whown - investigated cause appears to be  Power outages caused by weather and/or  breaker trops at substation caused by |
| Over loading (LIPA said heavy rain + a number of                                                                                                  |
| (Moisture segarator not full)  note: Estenant is doing renovations to  building; site is a mess.                                                  |
| Corrective Action(s) Taken:  Chek Systems + restart.                                                                                              |
|                                                                                                                                                   |
| System down on departure? No Yes: DateTime                                                                                                        |
| Down-time Ends: Date: 6/22/04 Time: 11',20                                                                                                        |
| SVE Blower Run Time (hours): 470. 3 at 11:20 (EXTREMELY IMPORTANT!!!)  Current Reading (Cumulative)                                               |
| Total Down-Time for this period:                                                                                                                  |

# Soil Vapor Extraction (SVE) System Down-Time Form

|                              | Sys                   | tem Phase / Operating Pe | riod (circle one): |                                       |
|------------------------------|-----------------------|--------------------------|--------------------|---------------------------------------|
| Technician: Jaced e          | Syoneman(1)           | Performance Test         | (2) Initial        | (3) Routine                           |
| Company: Enviros             |                       |                          |                    |                                       |
|                              |                       | 6/23/04                  | Time <u>10:(5</u>  | <u>.</u>                              |
| SVE Blower Run Time (hours): |                       | at                       | (EXTREMELY         | IMPORTANT!!!)                         |
|                              | Current Reading (Cum  | ulative) time            |                    |                                       |
| Down-time Begins: Date       | e: 6/22/04            |                          | Time: // / 3       | 32                                    |
| Description of Cause(s):     | Suspect               | Nerwadi                  | ng (d)             | LipA                                  |
| Substation                   |                       |                          |                    |                                       |
|                              |                       |                          |                    |                                       |
|                              |                       |                          |                    |                                       |
|                              |                       |                          |                    |                                       |
|                              |                       |                          |                    |                                       |
|                              |                       |                          |                    |                                       |
| Corrective Action(s) Taken   | :<br>Stem + 1         | restart                  |                    |                                       |
|                              |                       |                          |                    | · · · · · · · · · · · · · · · · · · · |
|                              |                       |                          |                    |                                       |
|                              |                       |                          |                    |                                       |
|                              |                       |                          | <del> </del>       |                                       |
|                              |                       |                          |                    |                                       |
| System down on departure?    | No Yes: Da            | te                       | Time               |                                       |
| Down-time Ends: Dat          | e:1/23/04             |                          | Time: [,O',        | 9                                     |
| SVE Blower Run Time (hours): | Current Reading (Cumu | 4 at 10:19 ative) time   | (EXTREMELY         | IMPORTANT!!!)                         |
| Total Down-Time for this     | period:               | 22.                      | 79                 |                                       |

### AIR SPARGING SYSTEM DOWNTIME FORMS

# NYSDEC - Franklin Cleaners Air Sparging (AS) System Down-Time Form

| •                                |                                       | System Phase / Operating | Period (circle one):       |
|----------------------------------|---------------------------------------|--------------------------|----------------------------|
| Technician:                      | Juicel Grosen                         | (1) Performance Test     | (2) Initial (3) Routine    |
| Company:                         | Envil 05 pect                         | <u> </u>                 | (,,                        |
|                                  | 1 Jour ospear                         | <del></del>              |                            |
| System down on ar                | rrival? (No) Y                        | 'es: Date                | Time                       |
|                                  | •                                     | •                        | · ·                        |
| Hour Meter Reading               |                                       | at1:55                   | (EXTREMELY IMPORTANT!!!!)  |
| (AS blower)                      | Current Reading (Curru                | lative) time             | _                          |
|                                  | •                                     |                          |                            |
| Down-time Beg                    | gins: Date: 4/2                       | 1/04                     | Time: 1:55                 |
|                                  | mined by office if not known on site) |                          | 7.33                       |
|                                  |                                       |                          |                            |
| Description of C                 | ause(s)                               | _                        |                            |
| Sche                             | duled Shutdoi                         | in for sampling          |                            |
|                                  |                                       |                          |                            |
|                                  |                                       |                          |                            |
|                                  |                                       |                          |                            |
|                                  |                                       | <del></del>              |                            |
| ·                                | · · ·                                 |                          |                            |
|                                  |                                       |                          |                            |
| Corrective Actio                 | n(s) Taken:                           |                          |                            |
|                                  |                                       |                          |                            |
|                                  |                                       |                          |                            |
|                                  |                                       |                          |                            |
| -                                |                                       |                          |                            |
|                                  |                                       |                          | <del></del>                |
| ·                                | <u> </u>                              |                          |                            |
| <del></del>                      | _ <del></del>                         |                          |                            |
| System down on de                | eparture? No                          | Yes: Date 4/21/04        | Time 1:55                  |
| Down-time End                    | ds: Date: 4   22                      | 2/04                     | Time: 2.58 ,               |
| Hour Meter Readii<br>(AS blower) | ng: 43414<br>Current Reading (Cumu    | at 2:58 time             | _(EXTREMELY IMPORTANT!!!!) |
| Total Down-Tir                   | ne for this period:                   | 25:<br>(hours            | <del></del>                |

## Air Sparging (AS) System Down-Time Form

|                               |                                    | System      | n Phase / Operating l | Period (circle one) | :                |
|-------------------------------|------------------------------------|-------------|-----------------------|---------------------|------------------|
| Technician:                   | L. VETTER                          | (1) Pe      | erformance Test       | (2) Initial         | (3) Routine      |
| Company:                      | ENVINUSPECT                        |             |                       |                     |                  |
|                               |                                    | ·           |                       |                     | •                |
| System down on                | arrival? (No)                      | Yes: Date _ | 5-24-01               | Time 200            | <del>_</del> .   |
| Hour Meter Read               | ding: 4968.4                       | at          | 1400                  | (EXTREMELY          | MPORTANT!!!!)    |
| (AS blower)                   | Current Reading (C                 | umulative)  | time                  | <b>-</b> '          | •                |
|                               |                                    |             |                       |                     |                  |
| Down-time B                   |                                    | -24-04      |                       | Time: 14            | دں               |
| (this may have to be de       | termined by office if not known on | site)       |                       |                     |                  |
| Description of                | Cause(s)                           | _           | •                     |                     |                  |
| Sche                          | dulid ?                            | shut a      | down o                | 1. 545+             | en for           |
|                               |                                    |             | (                     | ) ,                 |                  |
| ariou                         | -durates                           | Samp        | ung sire              | A 51                | 25/04            |
| 0                             |                                    |             | <u> </u>              |                     | <u> </u>         |
|                               |                                    |             |                       |                     |                  |
|                               |                                    |             |                       | (14 h)              | 5 run            |
|                               |                                    |             |                       | <u> </u>            |                  |
| Corrective Act                | ion(s) Taken:                      |             |                       | o his               | down             |
| <u> </u>                      | 7.1.5                              | 1171        | alter                 |                     | 1. 7.0           |
| 1 -001                        | arces s                            | JAC.        | 6.01                  | 0                   | - Sular M        |
| Surpl                         | es jolder                          | ted.        |                       |                     |                  |
|                               |                                    |             |                       |                     |                  |
|                               |                                    |             | <u> </u>              | 19-50               | us run           |
|                               |                                    |             |                       | <u> 4, 5 A</u>      | <u>.VC 44975</u> |
|                               |                                    |             |                       |                     | -                |
| System down on                | departure? No                      | Yes: Date   | <del>3-25-4</del>     | Time <del>0_f</del> | <u>51</u>        |
| Down-time E                   | nds: Date:                         | 5-25-04     |                       | Time:               | 9 <b>93</b> 0    |
| Hour Meter Rea<br>(AS blower) | ding: 4968. 4  Current Reading (C  | at          | 0 9 3 \) time         | _(EXTREMELY         | IMPORTANT!!!!)   |
| Total Down-1                  | Time for this period:              |             | 19.                   | < /                 |                  |
| . Otal Domin                  | roi tilla periou.                  |             | (hours)               |                     | ·                |

# Air Sparging (AS) System Down-Time Form

| System Phase / Operating Period (circle one):                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Technician: Javed Groneman (1) Performance Test (2) Initial (3) Routine                                                                             |
| Company: Environment                                                                                                                                |
| System down on arrival? No Yes: Date June 22,200 Time 11:00                                                                                         |
| Hour Meter Reading: 5557-0 at 11:20 (EXTREMELY IMPORTANT!!!!)  (AS blower) Current Reading (Cumulative) time                                        |
| Down-time Begins: Date: 6 1804 Time: 18:52 (page)                                                                                                   |
| (this may have to be determined by office if not known on site)                                                                                     |
| Description of Cause(s)  Unknown - Investigated Cause (appears to be  power outages Caused by weather a  and/or breaker trips Dishotation caused by |
| Sold for ding!                                                                                                                                      |
| (moisture separator not full)                                                                                                                       |
| note: Building is being renovated (Site is a mess                                                                                                   |
| Corrective Action(s) Taken:  Check Systems & restart.                                                                                               |
|                                                                                                                                                     |
|                                                                                                                                                     |
|                                                                                                                                                     |
|                                                                                                                                                     |
| System down on departure? No Yes: DateTime                                                                                                          |
| Down-time Ends: Date: 6/22/04 Time: 11'. 20                                                                                                         |
| Hour Meter Reading: 5557.0 at 11.20 (EXTREMELY IMPORTANT!!!!)  (AS blower) Current Reading (Cumulative) time                                        |
| Total Down-Time for this period:                                                                                                                    |

## Air Sparging (AS) System Down-Time Form

|                                                                 | System Phase / Operating Period (circle one): |              |               |  |  |  |  |
|-----------------------------------------------------------------|-----------------------------------------------|--------------|---------------|--|--|--|--|
| Technician: Jarad Groneman                                      | (1) Performance Test                          | (2) Initial  | (3) Routine   |  |  |  |  |
| Company: Envirospect                                            | -                                             |              |               |  |  |  |  |
| '                                                               | -                                             | 45.          |               |  |  |  |  |
| System down on arrival? No (Yes:)                               | Date 6/23/84                                  | Time (0'.16  | 2             |  |  |  |  |
| Hour Meter Reading:                                             | at                                            | (EXTREMELY I | MPORTANT!!!!) |  |  |  |  |
| (AS blower) Current Reading (Cumulative                         | ) time                                        |              |               |  |  |  |  |
|                                                                 |                                               |              |               |  |  |  |  |
| Down-time Begins: Date: 6 22                                    | 04                                            | Time: // '   | 32            |  |  |  |  |
| (this may have to be determined by office if not known on site) |                                               |              |               |  |  |  |  |
| Description of Cause(s)                                         |                                               | ٣            |               |  |  |  |  |
| Unknown - Susa                                                  | sect overla                                   | oding        | $\bigcirc$    |  |  |  |  |
| LIPA Substation.                                                |                                               |              |               |  |  |  |  |
|                                                                 |                                               |              |               |  |  |  |  |
|                                                                 |                                               |              |               |  |  |  |  |
|                                                                 |                                               |              |               |  |  |  |  |
|                                                                 |                                               |              |               |  |  |  |  |
|                                                                 |                                               |              |               |  |  |  |  |
| Corrective Action(s) Taken:                                     | restart.                                      |              |               |  |  |  |  |
|                                                                 |                                               |              |               |  |  |  |  |
|                                                                 |                                               |              |               |  |  |  |  |
| ·                                                               |                                               |              |               |  |  |  |  |
|                                                                 |                                               |              |               |  |  |  |  |
| System down on departure? No Ye                                 | s: Date                                       | Time         |               |  |  |  |  |
| Down-time Ends: Date: 62                                        | 3/04                                          | Time: 10     | :19           |  |  |  |  |
| Hour Meter Reading:  (AS blower)  Current Reading (Cumulative   | at time                                       | (EXTREMELY I | MPORTANT!!!!) |  |  |  |  |
| Total Down-Time for this period:                                | - DD - Thours                                 | 79           |               |  |  |  |  |

### Air Sparging (AS) System Down-Time Form

|                               |                      |                         |              | System Pr                 | iase / Operatin           | g Perioa (cir           | cle one): |                       |                           |                       |
|-------------------------------|----------------------|-------------------------|--------------|---------------------------|---------------------------|-------------------------|-----------|-----------------------|---------------------------|-----------------------|
| Technician:                   | Jared                | Gronen                  | nan          | (1) Perfo                 | rmance Test               | (2) In                  | itial (   | (3) R                 | outine                    |                       |
| Company:                      |                      | spert                   |              | -                         |                           |                         |           | -                     |                           |                       |
| System down or                | arrival?             | No 3                    | Yes: [       | )ate                      | · · ·                     | Time                    |           | -                     |                           |                       |
| Hour Meter Rea<br>(AS blower) | ading:               | urrent Reading (        | (Cumulative) | at                        | time                      | (EXTRE                  | MELY IN   | MPORTA                | NT!!!!)                   |                       |
| (AS blower)                   | O.                   |                         | , Cumolauve) | ,                         | e                         |                         | ر ف       | Timat                 | elte                      | معا                   |
| Down-time E                   |                      | Date: 6                 | 123/0        | 04                        |                           | Time:                   | 12        | 1,00                  | )                         |                       |
| (this may have to be d        | letermined by off    | ice if not known (      | on site)     |                           |                           |                         |           |                       |                           |                       |
| Description o                 | f Cause(s            | 95 S                    | yste         | m                         | 200 !!                    | n pre                   | pas       | atro                  | <u>~</u>                  |                       |
| 10:19 to                      | -12:00<br>63 hc      | 8 hr.                   | . 41 m       |                           |                           |                         |           |                       |                           |                       |
| Corrective Ac                 | ction(s) Ta          | ken:                    |              |                           |                           |                         |           |                       |                           |                       |
| pote (<br>Sé                  | gron<br>261<br>Noved | rdwat<br>24/04<br>mtais | er e<br>rers | vent<br>sel<br>as<br>b/24 | could<br>helple.<br>instr | not<br>e, o.s<br>ucted. | e<br>lal  | perf<br>b di<br>ooler | orm of the second         | -<br>2<br>2<br>-<br>- |
| System down or                | n departure?         | No                      | Yes          | : Date                    |                           | Time                    |           |                       |                           |                       |
| Down-time E                   | Ends:                | Date:                   | 25/          | 04                        |                           | Time:                   | 14'.      | 55                    |                           |                       |
| Hour Meter Re<br>(AS blower)  |                      | 557 a<br>urrent Reading | Cumulative   | _at _[4'.                 | time                      | (EXTRE                  | MELY IN   |                       | NT!!!!)<br>24.00<br>14.92 |                       |
| Total Down-                   | Time for             | this period             | l:           |                           | Do.                       | 92                      |           | _                     | 9.08                      | 100                   |



330 Crossways Park Drive, Woodbury, New York, 11797-2015 516-364-9890 • 718-460-3634 • Fax: 516-364-9045 e-mail: findingsolutions@db-eng.com

February 7, 2005

#### Principals

Nicholas J. Bartilucci, P.E. President

Henry J. Chlupsa, P.E. Executive Vice President

Steven A. Fangmann, P.E. Senior Vice President

Richard M. Walka Senior Vice President

John A. Mirando, P.E. Vice President

Anthony O. Conetta, P.E.

Dennis F. Koehler, P.E.

Vice President
Joseph H. Marturano

Kenneth J. Pritchard, P.E.

Theodore S. Pytlar, Jr. Vice President

Brian M. Veith, P.E

#### Senior Associates

Garrett M. Byrnes, P.E.

David S. Glass, P.E.

Gerald Gould, C.P.G.

William D. Merklin, P.E.

Michael Neuberger, P.E.

Kenneth P. Wenz, Jr., C.P.G.

#### Associates

Joseph F. Baader

Steven M. Cabrera

Rudolph F. Cannavale

Christopher M. Clement

Stefanos J. Eapen, R.A.

Joseph A. Fioraliso, P.E. Thomas P. Fox, P.G.

Christopher W. Francis

Robert L. Haynie, P.E.

Michael R. Hofgren

Andrew T. Lehman

Edward J. Reilly

Daniel Shabat, P.E.

Charles J. Wachsmuth, P.E.

Jeffrey E. Trad, P.E.
Division of Environmental Remediation
New York State Department of Environmental Conservation
625 Broadway, 12th Floor
Albany, NY 12233-7013

Re: Franklin Cleaners Site (Site No. 1-30-050)

NYSDEC Contract No. D004184 Quarterly Report – 4th Quarter

Reporting Period - July 1, 2004 through September 30, 2004

D&B No. 1851-05

Dear Mr. Trad:

The purpose of this letter is to summarize the results of progress monitoring and the progress of remediation at the Franklin Cleaners Site (see Figures 1 and 2) for the period of July 1, 2004, through September 30, 2004. The information contained in this report is a compilation of the progress monitoring reports submitted by Environmental Products and Services (EP&S), the remedial construction, and operation and maintenance contractor.

#### Soil Vapor Extraction System Operation

According to EP&S reports, soil vapor extraction wells SVE-1 and SVE-2 operated at average extraction rates of 35.0 standard cubic feet per minute (scfm) and 76.7 scfm, respectively, during the period. Vacuum at the well heads averaged 4.2 inches of water gauge (in. w.c.) and 11.4 in. w.c. for SVE-1 and SVE-2, respectively. Approximately 56,000,000 cubic feet of soil vapor has been extracted, treated and discharged to the atmosphere since system startup. During the period, vacuum at each of the four vapor monitoring probes averaged 0.9 in. w.c., 0.7 in. w.c., 0.7 in. w.c. and 0.6 in. w.c. for SVM-1, SVM-2, SVM-3 and SVM-4, respectively.

### **Dvirka and Bartilucci**

CONSULTING ENGINEERS

Jeffrey E. Trad, P.E.
Division of Environmental Remediation
New York State Department of Environmental Conservation
February 7, 2005

Page 2

The soil vapor extraction system was inoperative for approximately 50 hours during the period due to a power outage and system alarm conditions. A detailed description of the system shutdown events is presented in the downtime forms prepared by EP&S (see Attachment A).

#### **Air Sparging System Operation**

According to EP&S reports, air sparging wells AS-1, AS-2 and AS-3 operated at average air injection rates of 5.0 scfm, 5.3 scfm and 3.5 scfm, respectively, when the system was operational. Air injection pressures at the well heads averaged 1.6 pounds per square inch (psi), 1.7 psi and 1.7 psi for AS-1, AS-2 and AS-3, respectively. The air sparging system was inoperative for approximately 47 hours due to shutdown for groundwater sampling and a power outage. A detailed description of system shutdown events is presented in the downtime forms (see Attachment A).

Due to the sustained decline of tetrachloroethene (PCE) concentrations to below 5 ug/l in groundwater monitoring wells ASMW-1 and ASMW-2, EP&S was directed to shut down the air sparging system for a period of 6 months beginning on August 30, 2004.

#### Soil Vapor Extraction System Sampling

Vapor phase samples were collected by EP&S from each of the two soil vapor extraction wells, at each of the four soil vapor monitoring probes and at the inlet and outlet of each carbon adsorption vessel at a frequency of twice per month during the routine operating period. Each sample was analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method TO-1.

Sample results are shown in Table 1. As can be seen on the table, PCE was not detected in the soil vapor samples collected from both SVE-1 and SVE-2 during each of the six sampling events performed during the period. Trace amounts of other VOCs, including acetone and methylene chloride, were detected in extraction well SVE-2 during the period.

Based on the above sampling results, during the period, no PCE was removed by SVE-1 and SVE-2. Refer to the attached trend line graph (Graph 1) showing PCE removal rates for SVE-1 and SVE-2 since start up.

#### **Groundwater Quality Data**

Samples were collected by EP&S from groundwater monitoring wells ASM-1 and ASM-2 at a frequency of once per month during the routine operating period. Each sample was analyzed for

### **Dvirka and Bartiluccì**

CONSULTING ENGINEERS

Jeffrey E. Trad, P.E.
Division of Environmental Remediation
New York State Department of Environmental Conservation
February 7, 2005

Page 3

VOCs by USEPA Method 8260, as well as iron and manganese by USEPA Method 200.7. The locations of the wells are shown on Figure 2.

The results of the monitoring well sampling are shown in Table 2. As can be seen on the table, PCE was not detected in wells ASM-1 and ASM-2 during each of the three sampling events performed during the period. Refer to the attached trend line graphs (Graphs 2 and 3) which present PCE concentrations detected in samples collected from ASM-1 and ASM-2 since startup.

During the period, iron concentrations detected in well ASM-1 ranged from 1,850 ug/l to 24,300 ug/l. Manganese concentrations detected in well ASM-1 ranged from 175 ug/l to 901 ug/l. Iron concentrations detected in well ASM-2 ranged from 2,310 ug/l to 19,000 ug/l. Manganese concentrations detected in well ASM-2 ranged from 110 ug/l to 607 ug/l.

### **Conclusions**

Based on the data presented above, the following can be concluded:

- Vapor phase sample results show that mass removal rates for extraction wells SVE-1 and SVE-2 have decreased to nondetectable levels while, based on vacuum measurements in the vapor monitoring probes, influence is being exerted on the targeted area.
- Groundwater sample results show that concentrations of PCE in wells ASM-1 and ASM-2 have consistently been below the NYSDEC Class GA Groundwater Standard for 11 months.

#### Recommendations

In consideration of the sustained decline of PCE concentrations to below 5 ug/l in groundwater monitoring wells ASM-1 and ASM-2, as well as nondetectable levels of PCE in soil vapor extracted from wells SVE-1 and SVE-2, a sequence to shut down the air sparging and soil vapor extraction systems was initiated on August 30, 2004. Presented below is the timeline for the planned shutdown:

August 2004 - The air sparging system was shut down for a 6-month period beginning on August 30, 2004. PCE concentration within groundwater monitoring wells ASM-1 and ASM-2 shall be monitored monthly for "bounce back" through February 29, 2005.

#### **Dvirka and Bartiluccì**

CONSULTING ENGINEERS

Jeffrey E. Trad, P.E. Division of Environmental Remediation New York State Department of Environmental Conservation February 7, 2005 Page 4

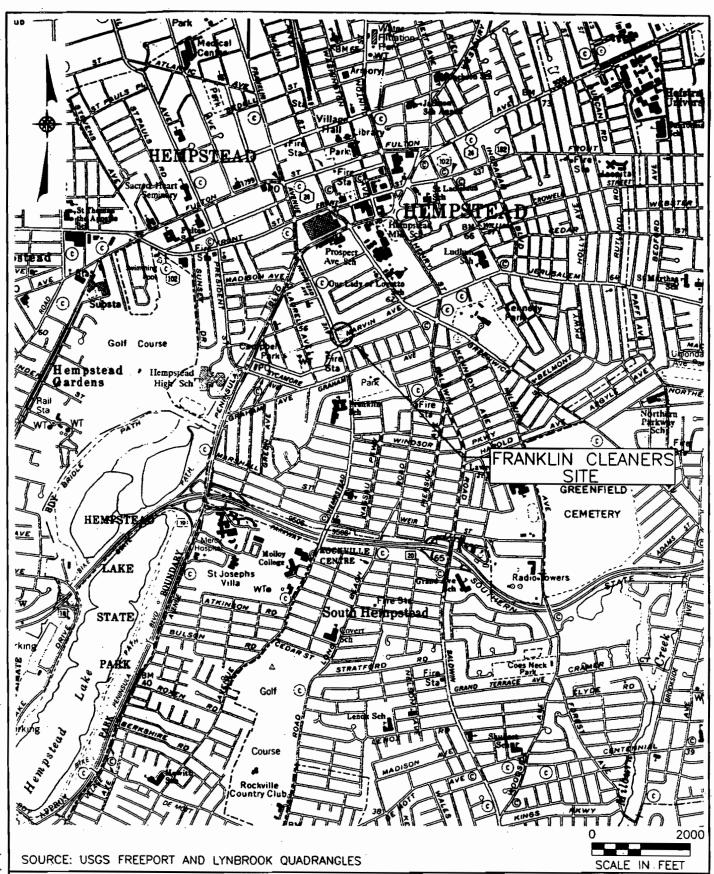
- March 2005 If groundwater concentrations remain below the groundwater remediation objective of 5 ug/l throughout the 6-month period, groundwater samples will be collected from off-site monitoring wells FC-1 and FC-2 to determine water quality upgradient and downgradient of the site and the soil vapor extraction system will be shut down for a period of 2 weeks.
- April 2005 If no spikes in VOC concentrations are observed in the soil vapor extracted from wells SVE-1 and SVE-2 upon start up of the soil vapor extraction system (after the 2-week shutdown), confirmatory soil sampling, to determine if site-specific soil remediation objectives have been achieved, will be performed.
- May 2005 If site-specific soil remediation objectives have been achieved, based upon review of the data collected during the confirmatory sampling event, the soil vapor extraction system will be shut down for a period of 1-month.
- June 2005 After 1 month, post-remediation indoor air sampling will be performed and permanent shutdown of the SVE system will be evaluated.

Please do not hesitate to contact me at (516) 364-9890 if you have any questions.

Very truly yours,

Frank DeVita
Project Manager

FDt/jmy Enclosure


Enclosure

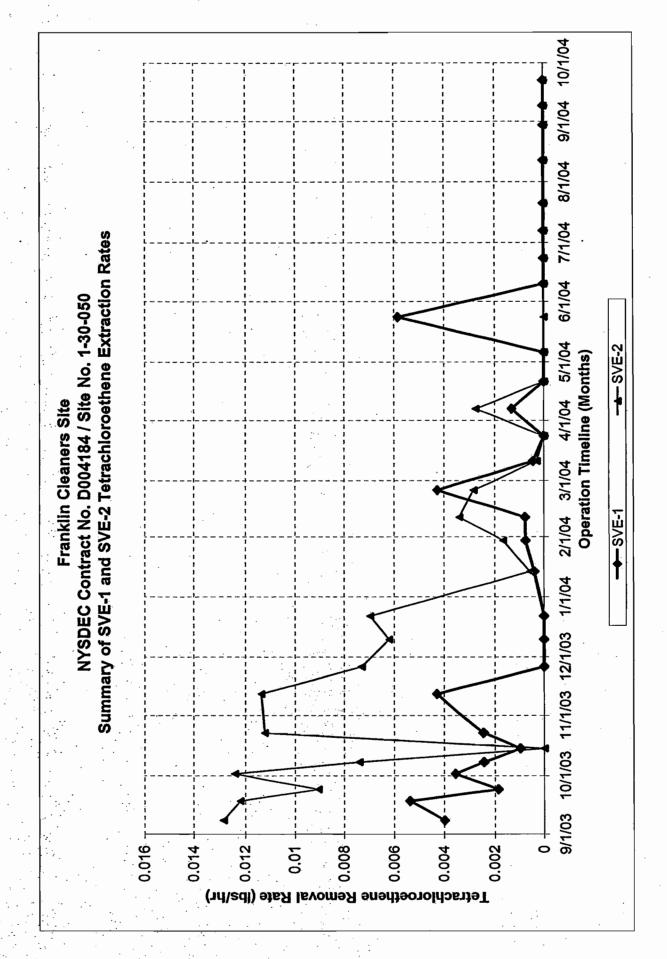
D. Glass (D&B)

J. Neri (H2M)

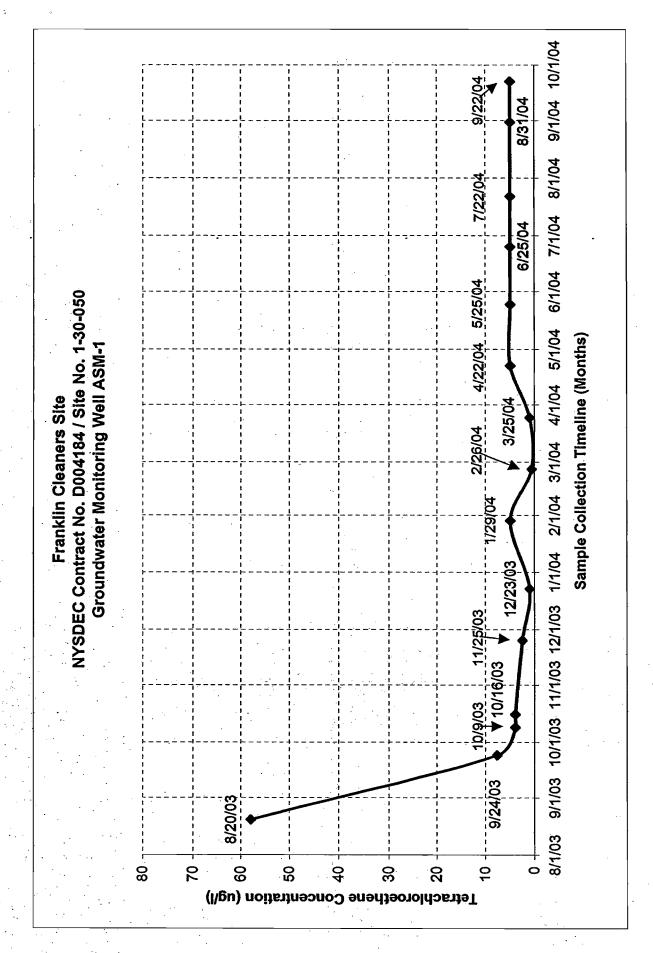
♦1851\FD02075JET-A.DOC

#### **FIGURES**

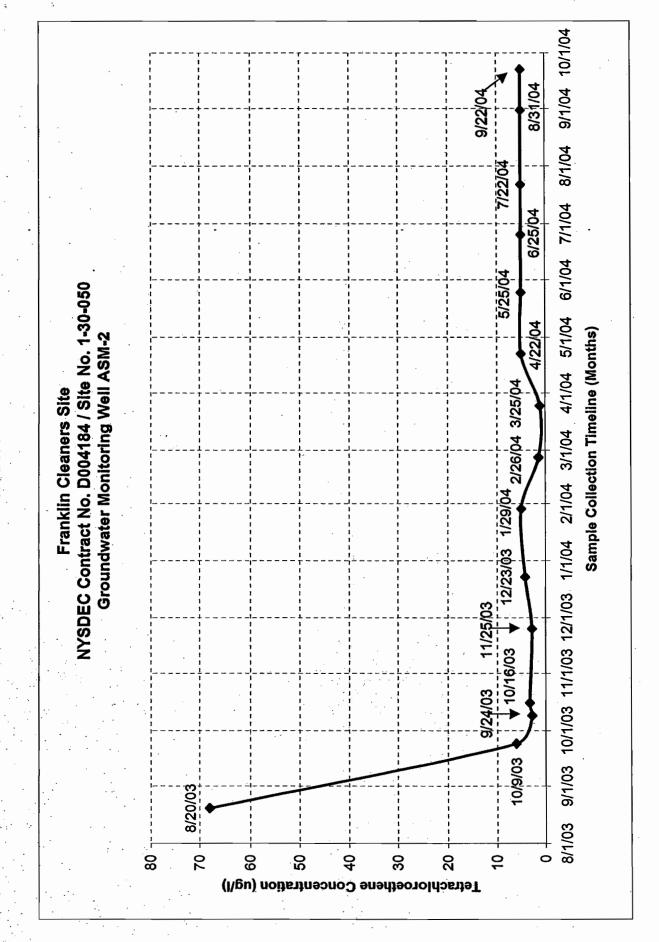








F:\1851\On Site - Quarterly reports\2nd Quarter\Figure 2.dwg, 10/26/04 03:13:57 PM, FDeVita

Bartilucci CONSULTING ENGINEERS
WILLIAM F. COSULICH ASSOCIATES, P.C.


#### **GRAPHS**



G:/FDevita/Projects/Franklin\_Cleaners/NYSDEC Contract No. D004184 - SVE\_SPARGE System/Quarterly Reports/Second Quarter/GRAPH 1 - PCE REMOVAL TRENDLINE Chart 1



G:/FDevita/Projects/Franklin\_Cleaners/NYSDEC Contract No. D004264 - GW Treatment System/Quarterly Reports/Second Quarter/GRAPH 2 & 3 - PCE TREND GRAPHS Chart 1



G:/FDevita/Projects/Franklin\_Cleaners/NYSDEC Contract No. D004264 - GW Treatment System/Quarterly Reports/Second Quarter/GRAPH 2 & 3 - PCE TREND GRAPHS Chart 3

#### **TABLES**

#### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVE-1

| Volatile Organic Compounds<br>Method T0-1 | Initial SVE Operating Period (42 Days: 9/9/03 thru 10/20/03) |                |                |                |                  |                |  |  |  |  |
|-------------------------------------------|--------------------------------------------------------------|----------------|----------------|----------------|------------------|----------------|--|--|--|--|
| Metrou 10-1                               |                                                              |                |                |                |                  |                |  |  |  |  |
| Matrix: Vapor                             | 9/18/03                                                      |                | <u> </u>       |                |                  | 10/23/03       |  |  |  |  |
| ·                                         | μg/10 <b>L</b>                                               | μ <b>g/10L</b> | μ <b>g/10L</b> | μg/10 <b>L</b> | μg/10 <b>L</b>   | μ <b>g/10L</b> |  |  |  |  |
| 1,1,1-Trichloroethane                     | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| 1,1,2-Trichloroethane                     | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| 1,1-Dichloroethane                        | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| 1,1-Dichloroethene                        | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| 1,2-Dichlorobenzene                       | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| 1,2-Dichloroethane                        | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| 1,2-Dichloropropane                       | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| 1,3-Dichlorobenzene                       | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| 1,4-Dichlorobenzene                       | <5.00                                                        | <5.00          | <5.00          | <5.0 <b>0</b>  | <5.00            | <5.00          |  |  |  |  |
| Acetone                                   | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| Benzene                                   | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| Bromodichloromethane                      | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| Bromoform                                 | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| Bromomethane                              | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| Carbon Tetrachloride                      | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| Chlorobenzene                             | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| Chlorodibromomethane                      | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| Chloroethane                              | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| Chloroform                                | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| Chloromethane                             | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| cis-1.3-Dichloropropene                   | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| Ethylbenzene                              | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| Methyl Ethyl Ketone (MEK)                 | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| Methylene Chloride                        | <5.00                                                        | <5.00          | <5.00          | <5.00          | <b>&lt;</b> 5.00 | <5.00          |  |  |  |  |
| МТВЕ                                      | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| Tetrachloroethene                         | 20.0                                                         | 6.94           | 13.1           | 9.06           | 5.27             | 13.7           |  |  |  |  |
| Toluene                                   | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| trans-1,2-Dichloroethene                  | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| trans-1,3-Dichloropropene                 | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| Trichloroethene                           | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| Trichlorofluoromethane                    | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| Vinyl Chloride                            | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| Xylene, m+p                               | -<5.00                                                       | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |
| Xylene, o                                 | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00            | <5.00          |  |  |  |  |

Note: Results are reported per 10L (Tenax tube volume).

**Summary of Vapor Analytical Results: SVE-1** 

| 77.70                                     | Routine SVE Operating Period |          |          |              |          |          |              |          |  |  |
|-------------------------------------------|------------------------------|----------|----------|--------------|----------|----------|--------------|----------|--|--|
| Volatile Organic Compounds<br>Method T0-1 |                              |          |          | onths: 10/21 |          |          |              |          |  |  |
| Meinou 10-1                               |                              |          | <u> </u> |              |          |          |              |          |  |  |
| Matrix: Vapor                             | 11/12/03                     | 11/26/03 | 12/10/03 | 12/22/03     | 1/14/04  | 1/30/04  | 2/11/04      | 2/25/04  |  |  |
|                                           | μg/L                         | μg/L     | μg/L     | μg/L         | μg/L     | μg/L     | μ <b>g/L</b> | μg/L     |  |  |
| 1,1,1-Trichloroethane                     | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | <0.0005  | 0.006        | 0.004    |  |  |
| 1,1,2,2-Tetrachloroethane                 | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | <0.0005  | <0.0005      | <0.0005  |  |  |
| 1,1,2-Trichloroethane                     | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | <0.0005  | <0.0005      | <0.0005  |  |  |
| 1,1-Dichloroethane                        | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | <0.0005  | <0.0005      | <0.0005  |  |  |
| 1,1-Dichloroethene                        | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | < 0.0005 | <0.0005      | <0.0005  |  |  |
| 1,2-Dichlorobenzene                       | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | <0.0005  | <0.0005      | <0.0005  |  |  |
| 1,2-Dichloroethane                        | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | <0.0005  | <0.0005      | <0.0005  |  |  |
| 1,2-Dichloropropane                       | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | <0.0005  | < 0.0005     | <0.0005  |  |  |
| 1,3-Dichlorobenzene                       | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | <0.0005  | <0.0005      | <0.0005  |  |  |
| 1,4-Dichlorobenzene                       | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | <0.0005  | <0.0005      | <0.0005  |  |  |
| Acetone                                   | <0.5                         | <0.5     | <0.5     | n/a          | 0.002    | 0.039E   | 0.018E       | 0.025E   |  |  |
| Benzene                                   | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | 0.050    | 0.048E       | .0.063E  |  |  |
| Bromodichloromethane                      | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | < 0.0005 | < 0.0005     | <0.0005  |  |  |
| Bromoform                                 | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | <0.0005  | < 0.0005     | <0.0005  |  |  |
| Bromomethane                              | 2.72                         | <0.5     | <0.5     | n/a          | <0.0005  | <0.0005  | < 0.0005     | <0.0005  |  |  |
| Carbon Tetrachloride                      | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | 0.001    | 0.001        | <0.0005  |  |  |
| Chlorobenzene                             | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | 0.001    | <0.0005      | <0.0005  |  |  |
| Chlorodibromomethane                      | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | <0.0005  | <0.0005      | < 0.0005 |  |  |
| Chloroethane                              | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | <0.0005  | 0.002        | < 0.0005 |  |  |
| Chloroform                                | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | 0.001    | 0.001        | <0.0005  |  |  |
| Chloromethane                             | .71                          | <0.5     | <0.5     | n/a          | <0.0005  | 0.001    | < 0.0005     | 0.001    |  |  |
| cis-1,3-Dichloropropene                   | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | <0.0005  | <0.0005      | <0.0005  |  |  |
| Ethylbenzene                              | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | 0.001    | 0.001        | 0.003    |  |  |
| MEK (2-Butanone)                          | <0.5                         | <0.5     | <0.5     | n/a          | 0.002    | 0.089E   | 0.004        | 0.004    |  |  |
| Methylene Chloride                        | <0.5                         | <0.5     | <0.5     | n/a          | 0.020E   | 0.146    | 0.008        | 0.019E   |  |  |
| МТВЕ                                      | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | 0.006    | 0.001        | 0.001    |  |  |
| Tetrachloroethene                         | 1.20                         | <0.5     | <0.5     | n/a          | 0.105E   | 0.163E   | 0.329E       | 1.191E   |  |  |
| Toluene                                   | <0.5                         | <0.5     | <0.5     | n/a          | 0.0010   | 0.016E   | 0.005        | 0.008    |  |  |
| trans-1,2-Dichloroethene                  | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | <0.0005  | < 0.0005     | <0.0005  |  |  |
| trans-1,3-Dichloropropene                 | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | <0.0005  | <0.0005      | <0.0005  |  |  |
| Trichloroethene                           | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | 0.001    | 0.001        | 0.001    |  |  |
| Trichlorofluoromethane                    | <0.5                         | <0.5     | <0.5     | n/a          | <0.0007  | 0.001    | 0.001        | 0.001    |  |  |
| Vinyl Chloride                            | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | <0.0005  | <0.0005      | <0.0005  |  |  |
| Xylene, m+p                               | <0.5                         | <0.5     | <0.5     | n/a          | < 0.0005 | 0.003    | 0.002        | 0.010E   |  |  |
| Xylene, o                                 | <0.5                         | <0.5     | <0.5     | n/a          | <0.0005  | 0.001    | 0.001        | 0.003    |  |  |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech E=result exceeds calibration range, estimated value.

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: SVE-1

| Volatile Organic Compounds<br>Method T0-1 |              | Routine SVE Operating Period (34 Months: 10/21/03 thru 8/25/06) |              |                |         |              |              |              |  |  |  |  |
|-------------------------------------------|--------------|-----------------------------------------------------------------|--------------|----------------|---------|--------------|--------------|--------------|--|--|--|--|
| Matrix: Vapor                             | 3/11/04      | 3/24/04*                                                        | 4/7/04       | 4/21/04        | 5/6/04* | 5/24/04      | 6/10/04      | 6/23/04      |  |  |  |  |
|                                           | μ <b>g/L</b> | μ <b>g/L</b>                                                    | μ <b>g/L</b> | μ <b>g/L</b>   | μg/L    | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> |  |  |  |  |
| 1,1,1-Trichloroethane                     | <0.0005      | <0.5                                                            | 0.0011       | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | < 0.0005     | <0.5                                                            | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| 1,1,2-Trichloroethane                     | <0.0005      | <0.5                                                            | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| 1,1-Dichloroethane                        | <0.0005      | <0.5                                                            | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| 1,1-Dichloroethene                        | <0.0005      | <0.5                                                            | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| 1,2-Dichlorobenzene                       | <0.0005      | <0.5                                                            | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| 1,2-Dichloroethane                        | <0.0005      | <0.5                                                            | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| 1,2-Dichloropropane                       | <0.0005      | <0.5                                                            | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| 1,3-Dichlorobenzene                       | <0.0005      | <0.5                                                            | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| 1,4-Dichlorobenzene                       | < 0.0005     | <0.5                                                            | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| Acetone                                   | 0.0010       | <0.5                                                            | 0.0199E      | 0.04 <b>0E</b> | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| Benzene                                   | 0.0005       | <0.5                                                            | 0.0358       | 0.041E         | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| Bromodichloromethane                      | < 0.0005     | <0.5                                                            | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| Bromoform                                 | <0.0005      | <0.5                                                            | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| Bromomethane                              | <0.0005      | <0.5                                                            | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| Carbon Tetrachloride                      | <0.0005      | <0.5                                                            | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| Chlorobenzene                             | <0.0005      | <0.5                                                            | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| Chlorodibromomethane                      | <0.0005      | <0.5                                                            | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| Chloroethane                              | <0.0005      | <0.5                                                            | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| Chloroform                                | <0.0005      | <0.5                                                            | 0.0013       | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| Chloromethane                             | 0.0017       | <0.5                                                            | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| cis-1,3-Dichloropropene                   | <0.0005      | <0.5                                                            | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| Ethylbenzene                              | <0.0005      | <0.5                                                            | <0.0005      | 0.0005         | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| MEK (2-Butanone)                          | 0.0030       | <0.5                                                            | 0.0017       | 0.009          | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| Methylene Chloride                        | <0.0005      | <0.5                                                            | 0.0082       | 0.006          | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| MTBE                                      | <0.0005      | <0.5                                                            | < 0.0005     | <0.0005        | <0.5    | <0.5         | <0.5         | . <0.5       |  |  |  |  |
| Tetrachloroethene                         | 0.1175E      | <0.5                                                            | 0.3596E      | 0.001          | <0.5    | 0.87         | <0.5         | <0.5         |  |  |  |  |
| Toluene                                   | <0.0005      | <0.5                                                            | 0.0019       | 0.01           | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| trans-1,2-Dichloroethene                  | <0.0005      | <0.5                                                            | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| trans-1,3-Dichloropropene                 | <0.0005      | <0.5                                                            | < 0.0005     | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| Trichloroethene                           | <0.0005      | <0.5                                                            | 0.0005       | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| Trichlorofluoromethane                    | <0.0007      | <0.5                                                            | <0.0007      | <0.0007        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| Vinyl Chloride                            | <0.0005      | . <0.5                                                          | <0.0005      | <0.0005        | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| Xylene, m+p                               | <0.0005      | <0.5                                                            | 0.0009       | 0.001          | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |
| Xylene, o                                 | <0.0005      | <0.5                                                            | <0.0005      | 0.000          | <0.5    | <0.5         | <0.5         | <0.5         |  |  |  |  |

As of 1/14/04, vapor samples analyzed by Chemtech

E = result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Summary of Vapor Analytical Results: SVE-1

| Volatile Organic Compounds |         |          |          | tine SVE O   |              |          | · · · · · · · · · · · · · · · · · · · |          |
|----------------------------|---------|----------|----------|--------------|--------------|----------|---------------------------------------|----------|
| Method T0-1                |         |          | (34 M    | onths: 10/21 | /03 thru 8/2 | 25/06)   |                                       |          |
| Marses Kappis.             | 7/7/04* | 7/21/04* | 8/12/04* | 8/30/04*     | 9/9/04*      | 9/22/04* |                                       |          |
|                            | μg/L    | μg/L     | μg/L     | μg/L         | μ <b>g/L</b> | μg/L     | μg/L                                  | μg/L     |
| 1,1,1-Trichloroethane      | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| 1,1,2,2-Tetrachloroethane  | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| 1,1,2-Trichloroethane      | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| 1,1-Dichloroethane         | <0.5    | <0.5     | <0.5     | <0.5         | <0.5_        | <0.5     |                                       |          |
| 1,1-Dichloroethene         | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       | <u> </u> |
| 1,2-Dichlorobenzene        | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       | <u> </u> |
| 1,2-Dichloroethane         | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| 1,2-Dichloropropane        | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| 1,3-Dichlorobenzene        | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       | <u> </u> |
| 1,4-Dichlorobenzene        | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| Acetone                    | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| Benzene                    | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| Bromodichloromethane       | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| Bromoform                  | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| Bromomethane               | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| Carbon Tetrachloride       | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| Chlorobenzene              | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| Chlorodibromomethane       | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| Chloroethane               | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| Chloroform                 | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| Chloromethane              | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| cis-1,3-Dichloropropene    | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| Ethylbenzene               | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| MEK (2-Butanone)           | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| Methylene Chloride         | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     | · ·                                   |          |
| MTBE                       | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| Tetrachloroethene          | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       | ,        |
| Toluene -                  | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| trans-1,2-Dichloroethene   | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| trans-1,3-Dichloropropene  | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| Trichloroethene            | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     | ·.                                    |          |
| Trichlorofluoromethane     | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     | ,                                     |          |
| Vinyl Chloride             | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| Xylene, m+p                | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |
| Xylene, o                  | <0.5    | <0.5     | <0.5     | <0.5         | <0.5         | <0.5     |                                       |          |

As of 1/14/04, vapor samples analyzed by Cherntech

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

#### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVE-2

| Volatile Organic Compounds | Initial SVE Operating Period |                                 |                |         |                |                |  |  |  |  |  |
|----------------------------|------------------------------|---------------------------------|----------------|---------|----------------|----------------|--|--|--|--|--|
| Method T0-1                |                              | (42 days: 9/9/03 thru 10/20/03) |                |         |                |                |  |  |  |  |  |
| Matrix: Vapor              | 9/18/03                      | 9/24/03                         | 10/2/03        | 10/8/03 | 10/15/03       | 10/23/03       |  |  |  |  |  |
|                            | μg/10L                       | μ <b>g/10L</b>                  | μ <b>g/10L</b> | μg/10L  | μ <b>g/10L</b> | μ <b>g/10L</b> |  |  |  |  |  |
| 1,1,1-Trichloroethane      | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane  | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| 1,1,2-Trichloroethane      | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| 1,1-Dichloroethane         | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| 1,1-Dichloroethene         | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| 1,2-Dichlorobenzene        | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| 1,2-Dichloroethane         | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| 1,2-Dichloropropane        | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| 1,3-Dichlorobenzene        | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| 1,4-Dichlorobenzene        | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Acetone                    | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Benzene                    | <5.00                        | <5.00.                          | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Bromodichloromethane       | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Bromoform                  | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Bromomethane               | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Carbon Tetrachloride       | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Chlorobenzene              | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Chlorodibromomethane       | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Chloroethane               | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Chloroform                 | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Chloromethane              | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| cis-1,3-Dichloropropene    | <5.00                        | <5.00                           | <5.00          | <5.00   | ·<5.00         | <5.00          |  |  |  |  |  |
| Ethylbenzene               | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Methyl Ethyl Ketone (MEK)  | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Methylene Chloride         | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | 6.58           |  |  |  |  |  |
| MTBE                       | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Tetrachloroethene          | 19.2                         | 13.5                            | 18.5           | 9.74    | <5.00          | 15.6           |  |  |  |  |  |
| Toluene                    | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| trans-1,2-Dichloroethene   | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| trans-1,3-Dichloropropene  | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Trichloroethene            | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Trichlorofluoromethane     | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Vinyl Chloride             | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Xylene, m+p                | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |
| Xylene, o                  | <5.00                        | <5.00                           | <5.00          | <5.00   | <5.00          | <5.00          |  |  |  |  |  |

Note: Results are reported per 10L (Tenax tube volume).

**Summary of Vapor Analytical Results: SVE-2** 

| Volatile Organic Compounds |          |          |          | ne SVE Op    | _            |          |          |          |
|----------------------------|----------|----------|----------|--------------|--------------|----------|----------|----------|
| Method T0-1                | :        | ·<br>    | (34 Mo   | nths: 10/21/ | 03 thru 8/2: | 5/06)    |          |          |
| Matrix: Vapor              | 11/12/03 | 11/26/03 | 12/10/03 | 12/22/03     | 1/14/04      | 1/30/04  | 2/11/04  | 2/25/04  |
|                            | μg/L     | μg/L     | μg/L     | μg/L         | μg/L         | μg/L     | μg/L     | μg/L     |
| 1,1,1-Trichloroethane      | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | <0.0005  | <0.0005  |
| 1,1,2,2-Tetrachloroethane  | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | <0.0005  | <0.0005  |
| 1,1,2-Trichloroethane      | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | < 0.0005 | <0.0005  |
| 1,1-Dichloroethane         | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | <0.0005  | <0.0005  |
| 1,1-Dichloroethene         | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | < 0.0005 | <0.0005  |
| 1,2-Dichlorobenzene        | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | < 0.0005 | <0.0005  |
| 1,2-Dichloroethane         | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | < 0.0005 | <0.0005  |
| 1,2-Dichloropropane        | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | < 0.0005 | <0.0005  |
| 1,3-Dichlorobenzene        | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | < 0.0005 | <0.0005  | <0.0005  |
| 1,4-Dichlorobenzene        | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | 0.001    | <0.0005  |
| Acetone                    | <0.5     | <0.5     | <0.5     | n/a          | 0.001        | 0.040E   | < 0.0005 | 0.008    |
| Benzene                    | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | 0.037E   | 0.013E   | 0.028E   |
| Bromodichloromethane       | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | <0.0005  | <0.0005  |
| Bromoform                  | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | <0.0005  | <0.0005  |
| Bromomethane               | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | <0.0005  | <0.0005  |
| Carbon Tetrachloride       | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | 0.001    | <0.0005  | <0.0005  |
| Chlorobenzene              | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | < 0.0005 | <0.0005  |
| Chlorodibromomethane       | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | < 0.0005 | <0.0005  |
| Chloroethane               | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | < 0.0005 | <0.0005  |
| Chloroform                 | <0.5     | <0.5     | <0.5     | n/a          | 0.0005       | 0.001    | 0.001    | <0.0005  |
| Chloromethane              | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | <0.0005  | <0.0005  |
| cis-1,3-Dichloropropene    | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | < 0.0005 | <0.0005  |
| Ethylbenzene               | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | 0.001    | <0.0005  | <0.0005  |
| MEK (2-Butanone)           | <0.5     | <0.5     | <0.5     | n/a          | 0.0014       | 0.088E   | < 0.0005 | 0.001    |
| Methylene Chloride         | <0.5     | <0.5     | <0.5     | n/a          | 0.002        | 0.122E   | <0.0005  | 0.002    |
| MTBE                       | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | 0.006    | <0.0005  | <0.0005  |
| Tetrachloroethene          | 1.58     | .963     | <0.5     | n/a          | 0.076E       | 0.232E   | 0.441E   | 0.392E   |
| Toluene                    | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | 0.017    | 0.001    | 0.001    |
| trans-1,2-Dichloroethene   | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | <0.0005  | <0.0005  |
| trans-1,3-Dichloropropene  | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | < 0.0005 | < 0.0005 |
| Trichloroethene            | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | 0.001    | 0.002    | <0.0005  |
| Trichlorofluoromethane     | <0.5     | <0.5     | <0.5     | n/a          | <0.0007      | 0.001    | 0.001    | <0.0007  |
| Vinyl Chloride             | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | <0.0005  | <0.0005  | <0.0005  |
| Xylene, m+p                | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | 0.003    | <0.0005  | <0.0005  |
| Xylene, o                  | <0.5     | <0.5     | <0.5     | n/a          | <0.0005      | 0.001    | <0.0005  | <0.0005  |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech E=result exceeds calibration range, estimated value.

Summary of Vapor Analytical Results: SVE-2

| Volatile Organic Compounds<br>Method T0-1 |               |          |          |              | perating Pe<br>1/03 thru 8/ |              |              |              |
|-------------------------------------------|---------------|----------|----------|--------------|-----------------------------|--------------|--------------|--------------|
| Matrix: Vapor                             | 3/11/04       | 3/24/04* | 4/7/04   | 4/21/04      | 5/6/04*                     | 5/24/04      | 6/10/04      | 6/23/04      |
|                                           | μ <b>g/t.</b> | μg/L     | μg/L     | μ <b>g/L</b> | μ <b>g/L</b>                | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> |
| 1,1,1-Trichloroethane                     | <0.0005       | <0.5     | 0.0018   | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| 1,1,2,2-Tetrachloroethane                 | <0.0005       | <0.5     | <0.0005  | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| 1,1,2-Trichloroethane                     | <0.0005       | <0.5     | <0.0005  | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| 1,1-Dichloroethane                        | <0.0005       | <0.5     | <0.0005  | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| 1,1-Dichloroethene                        | <0.0005       | <0.5     | <0.0005  | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| 1,2-Dichlorobenzene                       | <0.0005       | <0.5     | <0.0005  | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| 1,2-Dichloroethane                        | <0.0005       | <0.5     | <0.0005  | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| 1,2-Dichloropropane                       | <0.0005       | <0.5     | <0.0005  | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| 1,3-Dichlorobenzene                       | <0.0005       | <0.5     | <0.0005  | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| 1,4-Dichlorobenzene                       | <0.0005       | <0.5     | 0.0006   | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| Acetone                                   | 0.010E        | <0.5     | 0.0290E  | 0.008        | <0.5                        | <0.5         | <0.5         | <0.5         |
| Benzene                                   | 0.006         | <0.5     | 0.0240E  | 0.010E       | <0.5                        | <0.5         | <0.5         | <0.5         |
| Bromodichloromethane                      | < 0.0005      | <0.5     | <0.0005  | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| Bromoform                                 | < 0.0005      | <0.5     | <0.0005  | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| Bromomethane                              | <0.0005       | <0.5     | <0.0005  | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| Carbon Tetrachloride                      | <0.0005       | <0.5     | <0.0005  | <0.0005      | <0.5                        | <0.5         | < 0.5        | <0.5         |
| Chlorobenzene                             | < 0.0005      | <0.5     | <0.0005  | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| Chlorodibromomethane                      | <0.0005       | <0.5     | <0.0005  | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| Chloroethane                              | < 0.0005      | <0.5     | <0.0005  | <0.0005      | <0.5                        | <0.5         | < 0.5        | <0.5         |
| Chloroform                                | <0.0005       | <0.5     | 0.0025   | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| Chloromethane                             | < 0.0005      | <0.5     | <0.0005  | 0.009        | 3.27                        | <0.5         | <0.5         | <0.5         |
| cis-1,3-Dichloropropene                   | < 0.0005      | <0.5     | <0.0005  | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| Ethylbenzene                              | <0.0005       | <0.5     | 0.0006   | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| MEK (2-Butanone)                          | 0.009         | <0.5     | 0.0092   | 0.004        | <0.5                        | <0.5         | <0.5         | < 0.5        |
| Methylene Chloride                        | <0.0005       | <0.5     | 0.0131E  | 0.006        | <0.5                        | <0.5         | <0.5         | <0.5         |
| MTBE                                      | <0.0005       | <0.5     | <0.0005  | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| Tetrachloroethene                         | 0.040E        | <0.5     | 0.3816E  | < 0.0005     | <0.5                        | <0.5         | <0.5         | <0.5         |
| Toluene                                   | <0.0005       | <0.5     | 0.0064   | 0.006        | <0.5                        | <0.5         | <0.5         | <0.5         |
| trans-1,2-Dichloroethene                  | <0.0005       | < 0.5    | <0.0005  | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| trans-1,3-Dichloropropene                 | < 0.0005      | <0.5     | <0.0005  | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| Trichloroethene                           | < 0.0005      | <0.5     | 0.0008   | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| Trichlorofluoromethane                    | < 0.0007      | <0.5     | < 0.0007 | < 0.0007     | <0.5                        | <0.5         | <0.5         | <0.5         |
| Vinyl Chloride                            | < 0.0005      | <0.5     | <0.0005  | <0.0005      | <0.5                        | <0.5         | <0.5         | <0.5         |
| Xylene, m+p                               | < 0.0005      | <0.5     | 0.0017   | 0.0005       | <0.5                        | <0.5         | <0.5         | <0.5         |
| Xylene, o                                 | < 0.0005      | <0.5     | 0.0006   | <0.0005      | <0.5                        | <0.5         | <0.5         | < 0.5        |

As of 1/14/04, vapor samples analyzed by Chemtech E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

**Summary of Vapor Analytical Results: SVE-2** 

| Volatile Organic Compounds<br>Method T0-1 | Routine SVE Operating Period (34 Months: 10/21/03 thru 8/25/06) |          |          |          |         |              |      |          |  |
|-------------------------------------------|-----------------------------------------------------------------|----------|----------|----------|---------|--------------|------|----------|--|
| Matrix: Vapor                             | 7/7/04*                                                         | 7/21/04* | 8/12/04* | 8/30/04* | 9/9/04* | 9/22/04*     |      |          |  |
|                                           | μg/L                                                            | μg/L     | μg/L     | μg/L     | μg/L    | μ <b>g/L</b> | μg/L | μg/L     |  |
| 1,1,1-Trichloroethane                     | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| 1,1,2,2-Tetrachloroethane                 | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| 1,1,2-Trichloroethane                     | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| 1,1-Dichloroethane                        | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| 1,1-Dichloroethene                        | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| 1,2-Dichlorobenzene                       | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| 1,2-Dichloroethane                        | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| 1,2-Dichloropropane                       | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| 1,3-Dichlorobenzene                       | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| 1,4-Dichlorobenzene                       | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      | ٠,       |  |
| Acetone                                   | <0.5                                                            | <0.5     | 1.15     | <0.5     | <0.5    | <0.5         |      |          |  |
| Benzene                                   | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5.   | <0.5         |      |          |  |
| Bromodichloromethane                      | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| Bromoform                                 | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         | l.   |          |  |
| Bromomethane                              | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| Carbon Tetrachloride                      | <0.5                                                            | <0.5     | <0.5     | <0.5     | √0.5    | <0.5         |      |          |  |
| Chlorobenzene                             | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| Chlorodibromomethane                      | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| Chloroethane                              | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| Chloroform                                | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| Chloromethane                             | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| cis-1,3-Dichloropropene                   | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         | -    | <u> </u> |  |
| Ethylbenzene                              | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| MEK (2-Butanone)                          | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| Methylene Chloride                        | <0.5                                                            | <0.5     | 0.86     | <0.5     | <0.5    | <0.5         | _    |          |  |
| MTBE                                      | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| Tetrachloroethene                         | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      | ,        |  |
| Toluene                                   | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| trans-1,2-Dichloroethene                  | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| trans-1,3-Dichloropropene                 | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| Trichloroethene                           | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| Trichlorofluoromethane                    | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         | ,    |          |  |
| Vinyl Chloride                            | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| Xylene, m+p                               | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |
| Xylene, o                                 | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5         |      |          |  |

As of 1/14/04, vapor samples analyzed by Chemtech

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: Carbon Vessel 1 (CV-1) Inlet

| Volatile Organic Compounds | Initial SVE Operating Period                                                       |                                          |                |                    |                  |                |  |  |  |  |
|----------------------------|------------------------------------------------------------------------------------|------------------------------------------|----------------|--------------------|------------------|----------------|--|--|--|--|
| Method T0-1                | (42 Days: 9/9/03 thru 10/20/03)  9/18/03 9/24/03 10/2/03 10/8/03 10/15/03 10/23/03 |                                          |                |                    |                  |                |  |  |  |  |
| Matrix: Vapor              | 9/18/03                                                                            | 9/18/03 9/24/03 10/2/03 10/8/03 10/15/03 |                |                    |                  |                |  |  |  |  |
|                            | μ <b>g/10L</b>                                                                     | μg/10L                                   | μ <b>g/10L</b> | μg/10L             | μg/10L           | μ <b>g/10L</b> |  |  |  |  |
| 1,1,1-Trichloroethane      | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| 1,1,2,2-Tetrachloroethane  | <5.00                                                                              | <5.00                                    | <5.00          | <5.00·             | <5.00            | <5.00          |  |  |  |  |
| 1,1,2-Trichloroethane      | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| 1,1-Dichloroethane         | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| 1,1-Dichloroethene         | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| 1,2-Dichlorobenzene        | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| 1,2-Dichloroethane         | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| 1,2-Dichloropropane        | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| 1,3-Dichlorobenzene        | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| 1,4-Dichlorobenzene        | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| Acetone                    | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| Benzene                    | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| Bromodichloromethane       | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| Bromoform                  | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| Bromomethane               | <5.00                                                                              | <5.00                                    | <5.00          | <5.00 <sup>-</sup> | <5.00            | <5.00          |  |  |  |  |
| Carbon Tetrachloride       | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| Chlorobenzene              | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| Chlorodibromomethane       | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| Chloroethane               | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| Chloroform                 | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| Chloromethane              | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| cis-1,3-Dichloropropene    | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| Ethylbenzene               | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| Methyl Ethyl Ketone (MEK)  | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| Methylene Chloride         | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <b>&lt;</b> 5.00 | <5.00          |  |  |  |  |
| MTBE                       | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| Tetrachloroethene          | 16.2 .                                                                             | 13.4                                     | 19.9           | 11.7               | 23.2             | 52.8           |  |  |  |  |
| Toluene                    | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| trans-1,2-Dichloroethene   | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| trans-1,3-Dichloropropene  | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| Trichloroethene            | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| Trichlorofluoromethane     | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| Vinyl Chloride             | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| Xylene, m+p                | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |
| Xylene, o                  | <5.00                                                                              | <5.00                                    | <5.00          | <5.00              | <5.00            | <5.00          |  |  |  |  |

Note: Results are reported per 10L (Tenax tube volume).

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: Carbon Vessel 1 (CV-1) Inlet

| Volatile Organic Compounds<br>Method T0-1 |              |              |              | nine SVE Op<br>onths: 10/21/ | _            |              |              |              |
|-------------------------------------------|--------------|--------------|--------------|------------------------------|--------------|--------------|--------------|--------------|
| Matrix: Vapor                             | 11/12/03     | 11/26/03     | 12/10/03     | 12/22/03                     | 1/14/04      | 1/30/04      | 2/11/04      | 2/25/04      |
|                                           | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> 、               | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> |
| 1,1,1-Trichloroethane                     | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | 0.0015       | 0.001        | <0.0005      |
| 1,1,2,2-Tetrachloroethane                 | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,1,2-Trichloroethane                     | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,1-Dichloroethane                        | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,1-Dichloroethene                        | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,2-Dichlorobenzene                       | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,2-Dichloroethane                        | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | . <0.0005    |
| 1,2-Dichloropropane                       | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,3-Dichlorobenzene                       | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,4-Dichlorobenzene                       | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | 0.001        | <0.0005      |
| Acetone                                   | <0.5         | <0.5         | <0.5         | n/a                          | 0.004        | 0.0475E      | <0.0005      | 0.003        |
| Benzene                                   | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | 0.0342E      | 0.007        | 0.004        |
| Bromodichloromethane                      | <0.5         | <0.5         | <0.5.        | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Bromoform                                 | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Bromomethane                              | <0.5         | <0.5         | <0.5         | n/a                          | < 0.0005     | <0.0005      | <0.0005      | <0.0005      |
| Carbon Tetrachloride                      | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Chlorobenzene                             | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | 0.0003       | <0.0005      | <0.0005      |
| Chlorodibromomethane                      | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Chloroethane                              | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | 0.001        |
| Chloroform                                | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | 0.0011       | < 0.0005     | <0.0005      |
| Chloromethane                             | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| cis-1.3-Dichloropropene                   | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Ethylbenzene                              | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | 0.0010       | <0.0005      | <0.0005      |
| MEK (2-Butanone)                          | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | 0.0097       | <0.0005      | <0.0005      |
| Methylene Chloride                        | <0.5         | <0.5         | <0.5         | n/a                          | 0.003        | 0.0161E      | 0.001        | < 0.0005     |
| МТВЕ                                      | <0.5         | <0.5         | <0.5         | . n/a                        | <0.0005      | 0.0050       | <0.0005      | <0.0005      |
| Tetrachloroethene                         | 1.05         | 1.09         | .866         | n/a                          | 0.042E       | 0.2364E      | 0.425E       | 0.030E       |
| Toluene                                   | <0.5         | <0.5         | <0.5         | n/a                          | 0.0006       | 0.0163E      | 0.001        | <0.0005      |
| trans-1.2-Dichloroethene                  | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| trans-1,3-Dichloropropene                 | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Trichloroethene                           | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | 0.0016       | 0.001        | <0.0005      |
| Trichlorofluoromethane                    | <0.5         | <0.5         | <0.5         | n/a                          | <0.0007      | <0.0007      | <0.0007      | <0.0007      |
| Vinyl Chloride                            | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Xylene, m+p                               | <0.5         | <0.5         | <b>≤0.5</b>  | n/a                          | <0.0005      | 0.0026       | 0.001        | <0.0005      |
| Xylene, o                                 | <0.5         | <0.5         | <0.5         | n/a                          | <0.0005      | 0.0009       | <0.0005      | <0.0005      |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

#### Summary of Vapor Analytical Results: Carbon Vessel 1 (CV-1) Inlet

| Volatile Organic Compounds<br>Method T0-1 |              |              |              | utine SVE C<br>lonths: 10/2 | -            |          |              |              |
|-------------------------------------------|--------------|--------------|--------------|-----------------------------|--------------|----------|--------------|--------------|
| Marite (I) por                            | 3/11/04      | 3/24/04*     | 4/7/04       | 4/21/04                     | 5/6/04*      | 5/24/04* | 6/10/04*     | 6/23/04*     |
|                                           | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μg/L                        | μ <b>g/L</b> | μg/L     | μ <b>g/L</b> | μ <b>g/L</b> |
| 1,1,1-Trichloroethane                     | <0.0005      | <0.5         | <0.0005      | 0.0011                      | <0.5         | <0.5     | <0.5         | <0.5         |
| 1,1,2,2-Tetrachloroethane                 | <0.0005      | <0.5         | <0.0005      | <0.0005                     | <0.5         | <0.5     | <0.5         | <0.5         |
| 1,1,2-Trichloroethane                     | <0.0005      | <0.5         | <0.0005      | <0.0005                     | <0.5         | <0.5     | <0.5         | <0.5         |
| 1,1-Dichloroethane                        | <0.0005      | <0.5         | <0.0005      | <0.0005                     | <0.5         | <0.5     | <0.5         | <0.5         |
| 1,1-Dichloroethene                        | <0.0005      | <0.5         | <0.0005      | <0.0005                     | <0.5         | <0.5     | <0.5         | <0.5         |
| 1,2-Dichlorobenzene                       | <0.0005      | <0.5         | <0.0005      | <0.0005                     | <0.5         | <0.5     | <0.5         | <0.5         |
| 1,2-Dichloroethane                        | <0.0005      | <0.5         | <0.0005      | <0.0005                     | <0.5         | <0.5     | <0.5         | <0.5         |
| 1,2-Dichloropropane                       | <0.0005      | <0.5         | <0.0005      | <0.0005                     | <0.5         | <0.5     | <0.5         | <0.5         |
| 1,3-Dichlorobenzene                       | <0.0005      | <0.5         | <0.0005      | <0.0005                     | <0.5         | <0.5     | <0.5         | <0.5         |
| 1,4-Dichlorobenzene                       | <0.0005      | <0.5         | 0.0008       | 0.0010                      | <0.5         | <0.5     | <0.5         | <0.5         |
| Acetone                                   | <0.0005      | <0.5         | 0.0279E      | 0.0151E                     | <0.5         | <0.5     | <0.5         | <0.5         |
| Benzene                                   | <0.0005      | <0.5         | 0.0312E      | 0.0194E                     | <0.5         | <0.5     | <0.5         | <0.5         |
| Bromodichloromethane                      | <0.0005      | <0.5         | <0.0005      | <0.0005                     | <0.5         | <0.5     | <0.5         | <0.5         |
| Bromoform                                 | <0.0005      | <0.5         | <0.0005      | <0.0005                     | <0.5         | <0.5     | <0.5         | <0.5         |
| Bromomethane                              | <0.0005      | <0.5         | <0.0005      | <0.0005                     | <0.5         | <0.5     | <0.5         | <0.5         |
| Carbon Tetrachloride                      | <0.0005      | <0.5         | <0.0005      | <0.0005                     | <0.5         | <0.5     | <0.5         | <0.5         |
| Chlorobenzene                             | <0.0005      | <0.5         | <0.0005      | <0.0005                     | <0.5         | <0.5     | <0.5         | <0.5         |
| Chlorodibromomethane                      | <0.0005      | <0.5         | <0.0005      | <0.0005                     | <0.5         | <0.5     | <0.5         | <0.5         |
| Chloroethane                              | <0.0005      | <0.5         | <0.0005      | <0.0005                     | <0.5         | <0.5     | <0.5         | <0.5         |
| Chloroform                                | <0.0005      | <0.5         | 0.0008       | 0.0013                      | <0.5         | <0.5     | <0.5         | <0.5         |
| Chloromethane                             | <0.0005      | <0.5         | 0.0008       | 0.0865E                     | <0.5         | <0.5     | <0.5         | <0.5         |
| cis-1,3-Dichloropropene                   | <0.0005      | <0.5         | <0.0005      | <0.0005                     | <0.5         | <0.5     | <0.5         | <0.5         |
| Ethylbenzene                              | <0.0005      | <0.5         | 0.0007       | 0.0005                      | <0.5         | · <0.5   | <0.5         | <0.5         |
| MEK (2-Butanone)                          | <0.0005      | <0.5         | 0.0078       | 0.0034                      | <0.5         | <0.5     | <0.5         | <0.5         |
| Methylene Chloride                        | <0.0005      | <0.5         | 0.0214E      | 0.0030                      | <0.5         | <0.5     | <0.5         | <0.5         |
| MTBE                                      | <0.0005      | <0.5         | <0.0005      | <0.0005                     | <0.5         | <0.5     | <0.5         | <0.5         |
| Tetrachloroethene                         | 0.0960E      | <0.5         | 0.2238E      | 0.9127E                     | 0.78         | 1.28     | 0.69         | 28.6         |
| Toluene                                   | <0.0005      | <0.5         | 0.0083       | 0.0022                      | <0.5         | <0.5     | <0.5         | <0.5         |
| trans-1,2-Dichloroethene                  | <0.0005      | <0.5         | <0.0005      | <0.0005                     | <0.5         | <0.5     | <0.5         | <0.5         |
| trans-1,3-Dichloropropene                 | <0.0005      | <0.5         | <0.0005      | <0.0005                     | <0.5         | <0.5     | <0.5         | <0.5         |
| Trichloroethene                           | <0.0005      | <0.5         | <0.0005      | 0.0045                      | <0.5         | <0.5     | <0.5         | <0.5         |
| Trichlorofluoromethane                    | <0.0007      | <0.5         | <0.0007      | <0.0007                     | <0.5         | <0.5     | <0.5         | <0.5         |
| Vinyl Chloride                            | <0.0005      | <0.5         | <0.0005      | 0.0005                      | <0.5         | <0.5     | <0.5         | <0.5         |
| Xylene, m+p                               | <0.0005      | <0.5         | 0.0019       | 0.0015                      | <0.5         | <0.5     | <0.5         | <0.5         |
| Xylene, o                                 | <0.0005      | <0.5         | <0.0005      | 0.0008                      | <0.5         | <0.5     | <0.5         | <0.5         |

As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

#### Summary of Vapor Analytical Results: Carbon Vessel 1 (CV-1) Inlet

| Volatile Organic Compounds<br>Method T0-1 |         | Routine SVE Operating Period (34 Months: 10/21/03 thru 8/25/06) |              |                |         |          |      |              |  |  |  |
|-------------------------------------------|---------|-----------------------------------------------------------------|--------------|----------------|---------|----------|------|--------------|--|--|--|
| Matris: Kajjar                            | 7/7/04* | 7/21/04*                                                        | 8/12/04*     | 8/30/04*       | 9/9/04* | 9/22/04* |      |              |  |  |  |
|                                           | μg/L    | μg/L                                                            | μ <b>g/L</b> | μg/L           | μg/L    | μg/L     | μg/L | μ <b>g/L</b> |  |  |  |
| 1,1,1-Trichloroethane                     | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      | • •          |  |  |  |
| 1,1,2-Trichloroethane                     | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| 1,1-Dichloroethane                        | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| 1,1-Dichloroethene                        | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| 1,2-Dichlorobenzene                       | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| 1,2-Dichloroethane                        | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| 1,2-Dichloropropane                       | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| 1,3-Dichlorobenzene                       | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| 1,4-Dichlorobenzene                       | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| Acetone                                   | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      | ,            |  |  |  |
| Benzene                                   | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| Bromodichloromethane                      | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| Bromoform                                 | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| Bromomethane                              | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| Carbon Tetrachloride                      | <0.5    | √ <0.5                                                          | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| Chlorobenzene                             | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| Chlorodibromomethane                      | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| Chloroethane                              | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| Chloroform                                | <0.5    | <0.5                                                            | <0.5         | . <0.5         | <0.5    | <0.5     |      |              |  |  |  |
| Chloromethane                             | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| cis-1,3-Dichloropropene                   | <0.5    | <0.5                                                            | <0.5         | <b>⊲0.5</b>    | <0.5    | <0.5     |      |              |  |  |  |
| Ethylbenzene                              | <0.5    | <0.5                                                            | <0.5         | <b>⋖</b> 0.5   | <0.5    | <0.5     |      |              |  |  |  |
| MEK (2-Butanone)                          | <0.5    | <0.5                                                            | <0.5         | <b>&lt;0.5</b> | <0.5    | <0.5     |      |              |  |  |  |
| Methylene Chloride                        | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| мтве                                      | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| Tetrachloroethene                         | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| Toluene                                   | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| trans-1,2-Dichloroethene                  | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| trans-1,3-Dichloropropene                 | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| Trichloroethene                           | <0.5    | . <0.5                                                          | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| Trichlorofluoromethane                    | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| Vinyl Chloride                            | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| Xylene, m+p                               | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |
| Xylene, o                                 | <0.5    | <0.5                                                            | <0.5         | <0.5           | <0.5    | <0.5     |      |              |  |  |  |

As of 1/14/04, vapor samples analyzed by Chemtech.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: Carbon Vessel 1 (CV-1) Outlet

| Volatile Organic Compounds            | 1               |                |            | perating Pe    |                |                |
|---------------------------------------|-----------------|----------------|------------|----------------|----------------|----------------|
| Method T0-1                           |                 | (42            | Days: 9/9/ | 03 thru 10/2   | 20/03)         |                |
| Matrix: Vapor                         | 9/18/03         | 9/24/03        | 10/2/03    | 10/8/03        | 10/15/03       | 10/23/03       |
| • • • • • • • • • • • • • • • • • • • | μ <b>g</b> /10L | μ <b>g/10L</b> | μg/10L     | μ <b>g/10L</b> | μ <b>g/10L</b> | μ <b>g/10L</b> |
| 1,1,1-Trichloroethane                 | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| 1,1,2,2-Tetrachloroethane             | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| 1,1,2-Trichloroethane                 | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| 1,1-Dichloroethane                    | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| 1,1-Dichloroethene                    | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| 1,2-Dichlorobenzene                   | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloroethane                    | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| 1,2-Dichloropropane                   | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| 1,3-Dichlorobenzene                   | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| 1,4-Dichlorobenzene                   | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Acetone                               | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Benzene                               | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Bromodichloromethane                  | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Bromoform                             | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Bromomethane                          | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Carbon Tetrachloride                  | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Chlorobenzene                         | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Chlorodibromomethane                  | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Chloroethane                          | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Chloroform                            | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Chloromethane                         | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| cis-1,3-Dichloropropene               | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Ethylbenzene                          | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Methyl Ethyl Ketone (MEK)             | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Methylene Chloride                    | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | 14.2           |
| мтве                                  | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Tetrachloroethene                     | 15.4            | 12.9           | 13.6       | 14.4           | 24.2           | 63.0           |
| Toluene                               | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| trans-1,2-Dichloroethene              | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| trans-1,3-Dichloropropene             | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Trichloroethene                       | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Trichlorofluoromethane                | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Vinyl Chloride                        | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Xylene, m+p                           | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |
| Xylene, o                             | <5.00           | <5.00          | <5.00      | <5.00          | <5.00          | <5.00          |

Note: Results are reported per 10L (Tenax tube volume).

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: Carbon Vessel 1 (CV-1) Outlet

| Matrix: Vaper             | 11/12/03     | 11/26/03     | 12/10/03     | 12/22/03     | 1/14/04        | 1/30/04      | 2/11/04  | 2/25/04      |
|---------------------------|--------------|--------------|--------------|--------------|----------------|--------------|----------|--------------|
|                           | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b>   | μ <b>g/L</b> | μg/L     | μ <b>g/L</b> |
| 1,1,1-Trichloroethane     | <0.5         | <0.5         | <0.5         | n/a          | 0.009          | 0.0016       | <0.0005  | <0.0005      |
| 1,1,2,2-Tetrachloroethane | <0.5         | <0.5         | <0.5         | n/a          | <0.0005        | <0.0005      | < 0.0005 | <0.0005      |
| 1,1,2-Trichloroethane     | <0.5         | <0.5         | <0.5         | n/a          | <0.0005        | <0.0005      | < 0.0005 | <0.0005      |
| 1,1-Dichloroethane        | <0.5         | <0.5         | <0.5         | n/a          | <0.0005        | <0.0005      | <0.0005  | <0.0005      |
| 1.1-Dichloroethene        | <0.5         | <0.5         | <0.5         | n/a          | 0.0018         | <0.0005      | <0.0005  | <0.0005      |
| 1,2-Dichlorobenzene       | <0.5         | <0.5         | <0.5         | n/a          | <0.0005        | <0.0005      | <0.0005  | <0.0005      |
| 1,2-Dichloroethane        | <0.5         | <0.5         | <0.5         | n/a          | <0.0005        | <0.0005      | <0.0005  | <0.0005      |
| 1,2-Dichloropropane       | <0.5         | <0.5         | <0.5         | n/a          | <0.0005        | <0.0005      | < 0.0005 | <0.0005      |
| 1,3-Dichlorobenzene       | <0.5         | <0.5         | <0.5         | n/a          | <0.0005        | <0.0005      | <0.0005  | <0.0005      |
| 1.4-Dichlorobenzene       | <0.5         | <0.5         | <0.5         | n/a          | 0.025E         | <0.0005      | <0.0005  | <0.0005      |
| Acetone                   | <0.5         | <0.5         | <0.5         | n/a          | 0.165E         | 0.0027       | <0.0005  | 0.005        |
| Benzene                   | <0.5         | <0.5         | <0.5         | n/a          | 0.092E         | 0.0133E      | 0.001    | 0.006        |
| Bromodichloromethane      | <0.5         | <0.5         | <0.5         | n/a          | <0.0005        | <0.0005      | <0.0005  | <0.0005      |
| Bromoform                 | <0.5         | <0.5         | <0.5         | n/a          | <0.0005        | < 0.0005     | <0.0005  | <0.0005      |
| Bromomethane              | <0.5         | <0.5         | <0.5-        | n/a          | 0.005          | <0.0005      | <0.0005  | <0.0005      |
| Carbon Tetrachloride      | <0.5         | <0.5         | <0.5         | n/a          | 0.009          | <0.0005      | < 0.0005 | <0.0005      |
| Chlorobenzene             | <0.5         | <0.5         | <0.5         | n/a          | <0.0005        | <0.0005      | < 0.0005 | <0.0005      |
| Chlorodibromomethane      | <0.5         | <0.5         | <0.5         | n/a          | <0.0005        | <0.0005      | < 0.0005 | <0.0005      |
| Chloroethane              | <0.5         | <0.5         | <0.5         | n/a          | 0.026 <b>E</b> | <0.0005      | < 0.0005 | <0.0005      |
| Chloroform                | <0.5         | <0.5         | <0.5         | n/a          | 0.020 <b>E</b> | <0.0005      | <0.0005  | <0.0005      |
| Chloromethane             | <0.5         | <0.5         | <0.5         | n/a          | 0.362E         | 0.0190E      | < 0.0005 | <0.0005      |
| cis-1,3-Dichloropropene   | <0.5         | <0.5         | <0.5         | n/a          | <0.0005        | <0.0005      | <0.0005  | <0.0005      |
| Ethylbenzene              | <0.5         | <0.5         | <0.5         | n/a          | 0.010 <b>E</b> | <0.0005      | < 0.0005 | <0.0005      |
| MEK (2-Butanone)          | <0.5         | <0.5         | <0.5         | n/a          | <0.0005        | 0.0037       | <0.0005  | <0.0005      |
| Methylene Chloride        | <0.5         | <0.5         | <0.5         | n/a          | 0.667E         | 0.0092       | <0.0005  | 0.001        |
| МТВЕ                      | <0.5         | <0.5         | <0.5         | n/a          | 0.042E         | 0.0030       | <0.0005  | <0.0005      |
| Tetrachloroethene         | .809         | 1.17         | .934         | n/a          | 0.755E         | 0.0392E      | 0.204E   | 0.062E       |
| Toluene                   | <0.5         | <0.5         | <0.5         | n/a          | 0.058E         | 0.0065       | < 0.0005 | 0.001        |
| trans-1,2-Dichloroethene  | <0.5         | <0.5         | <0.5         | n/a          | <0.0005        | <0.0005      | <0.0005  | <0.0005      |
| trans-1,3-Dichloropropene | <0.5         | <0.5         | <0.5         | n/a          | <0.0005        | <0.0005      | <0.0005  | <0.0005      |
| Trichloroethene           | <0.5         | <0.5         | <0.5         | n/a          | 0.033E         | 0.0006       | <0.0005  | <0.0005      |
| Trichlorofluoromethane    | <0.5         | <0.5         | <0.5         | n/a          | 0.028E         | <0.0007      | < 0.0007 | <0.0007      |
| Vinyl Chloride            | <0.5         | <0.5         | <0.5         | . n/a        | 0.004          | <0.0005      | <0.0005  | <0.0005      |
| Xylene, m+p               | <0.5         | <0.5         | <0.5         | n/a          | 0.053E         | 0.0009       | <0.0005  | 0.001        |
| Xylene, o                 | <0.5         | <0.5         | <0.5         | n/a          | 0.023E         | <0.0005      | <0.0005  | <0.0005      |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: Carbon Vessel 1 (CV-1) Outlet

| Volatile Organic Compounds |         | Routine SVE Operating Period (34 Months: 10/21/03 thru 8/25/06) |         |             |             |              |          |              |  |  |
|----------------------------|---------|-----------------------------------------------------------------|---------|-------------|-------------|--------------|----------|--------------|--|--|
| Method T0-1                |         |                                                                 | (34 M   | onths: 10/2 | 1/03 thru 8 | /25/06)      |          |              |  |  |
| Marios Kapas               | 3/11/04 | 3/24/04*                                                        | 4/7/04  | 4/21/04     | 5/6/04*     | 5/24/04*     | 6/10/04* | 6/23/04*     |  |  |
|                            | μg/L    | μg/L                                                            | μg/L    | μg/L        | μg/L        | μ <b>g/L</b> | μg/L     | μ <b>g/L</b> |  |  |
| 1,1,1-Trichloroethane      | <0.0005 | <0.5                                                            | 0.0005  | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| 1,1,2,2-Tetrachloroethane  | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| 1,1,2-Trichloroethane      | <0.0005 | <0.5                                                            | <0.0005 | <0,0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| 1,1-Dichloroethane         | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| 1,1-Dichloroethene         | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| 1,2-Dichlorobenzene        | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| 1,2-Dichloroethane         | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| 1,2-Dichloropropane        | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| 1,3-Dichlorobenzene        | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| 1,4-Dichlorobenzene        | <0.0005 | <0.5                                                            | 0.0006  | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| Acetone                    | 0.006   | <0.5                                                            | 0.0370E | 0.0208E     | <0.5        | <0.5         | <0.5     | 15.9         |  |  |
| Benzene                    | 0.005   | <0.5                                                            | 0.0330E | 0.0218E     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| Bromodichloromethane ::    | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | ₹ <0.5       |  |  |
| Bromoform                  | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| Bromomethane               | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| Carbon Tetrachloride       | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| Chlorobenzene              | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| Chlorodibromomethane       | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| Chloroethane               | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| Chloroform                 | <0.0005 | <0.5                                                            | 0.0016  | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| Chloromethane              | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | 3.57     | <0.5         |  |  |
| cis-1,3-Dichloropropene    | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| Ethylbenzene               | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| MEK (2-Butanone)           | <0.0005 | <0.5                                                            | 0.0017  | 0.0019      | <0.5        | <0.5         | <0.5     | · <0.5       |  |  |
| Methylene Chloride         | <0.0005 | <0.5                                                            | 0.0657E | 0.0025      | <0.5        | <0.5         | . 1.21   | <0.5         |  |  |
| MTBE                       | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| Tetrachloroethene          | 0.531E  | 0.51                                                            | 0.6870E | 0.0024      | <0.5        | <0.5         | 4.47     | 15.8         |  |  |
| Toluene                    | <0.0005 | <0.5                                                            | 0.0019  | 0.0025      | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| trans-1,2-Dichloroethene   | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| trans-1,3-Dichloropropene  | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| Trichloroethene            | <0.0005 | <0.5                                                            | 0.0014  | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| Trichlorofluoromethane     | <0.0007 | <0.5                                                            | <0.0007 | <0.0007     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| Vinyl Chloride             | <0.0005 | <0.5                                                            | <0.0005 | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| Xylene, m+p                | <0.0005 | <0.5                                                            | 0.0010  | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |
| Xylene, o                  | <0.0005 | <0.5                                                            | 0.0005  | <0.0005     | <0.5        | <0.5         | <0.5     | <0.5         |  |  |

As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

#### Summary of Vapor Analytical Results: Carbon Vessel 1 (CV-1) Outlet

| Volatile Organic Compounds<br>Method T0-1 |         | Routine SVE Operating Period (34 Months: 10/21/03 thru 8/25/06) |              |          |         |              |      |      |  |  |
|-------------------------------------------|---------|-----------------------------------------------------------------|--------------|----------|---------|--------------|------|------|--|--|
| Marces Vipos                              | 7/7/04* | 7/21/04*                                                        | 8/12/04*     | 8/30/04* | 9/9/04* | 9/22/04*     |      |      |  |  |
|                                           | μg/L    | μg/L                                                            | μ <b>g/L</b> | μg/L     | μg/L    | μ <b>g/L</b> | μg/L | μg/L |  |  |
| 1,1,1-Trichloroethane                     | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| 1,1,2,2-Tetrachloroethane                 | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| 1,1,2-Trichloroethane                     | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| 1,1-Dichloroethane                        | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| 1,1-Dichloroethene                        | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| 1,2-Dichlorobenzene                       | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| 1,2-Dichloroethane                        | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| 1,2-Dichloropropane                       | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| 1,3-Dichlorobenzene                       | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| 1,4-Dichlorobenzene                       | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| Acetone                                   | <0.5    | <0.5                                                            | <0.5         | <0.5     | ⊲0.5    | <0.5         |      | ,    |  |  |
| Benzene                                   | <0.5    | <0.5                                                            | <0.5         | <0.5     | ⊲0.5    | <0.5         | .:   |      |  |  |
| Bromodichloromethane                      | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| Bromoform                                 | <0.5    | <0.5                                                            | <0.5         | <0.5     | ⊲0.5    | <0.5         | · .  |      |  |  |
| Bromomethane                              | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| Carbon Tetrachloride                      | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| Chlorobenzene                             | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| Chlorodibromomethane                      | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| Chloroethane                              | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| Chloroform                                | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| Chloromethane                             | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| cis-1,3-Dichloropropene                   | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| Ethylbenzene                              | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| MEK (2-Butanone)                          | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      | ·    |  |  |
| Methylene Chloride                        | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| MTBE                                      | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| Tetrachloroethene                         | <0.5    | <0.5                                                            | <0.5         | <0.5     | 7.61    | <0.5         |      |      |  |  |
| Toluene                                   | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| trans-1,2-Dichloroethene                  | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| trans-1,3-Dichloropropene                 | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| Trichloroethene                           | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| Trichlorofluoromethane                    | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| Vinyl Chloride                            | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| Xylene, m+p                               | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |
| Xylene, o                                 | <0.5    | <0.5                                                            | <0.5         | <0.5     | <0.5    | <0.5         |      |      |  |  |

As of 1/14/04, vapor samples analyzed by Chemtech.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: Carbon Vessel 2 (CV-2) Outlet

| Volatile Organic Compounds<br>Method T0-1 | Initial SVE Operating Period<br>(42 Days: 9/9/03 thru 10/20/03) |                |                  |                |        |                 |  |  |  |  |  |
|-------------------------------------------|-----------------------------------------------------------------|----------------|------------------|----------------|--------|-----------------|--|--|--|--|--|
| Matrix: Vapor                             | 09/18/2003 09/24/2003 10/02/2003 10/08/2003 10/15/2003 10/2     |                |                  |                |        |                 |  |  |  |  |  |
|                                           | μ <b>g/10L</b>                                                  | μ <b>g/10L</b> | μ <b>g/10L</b> - | μ <b>g/10L</b> | μg/10L | μ <b>g</b> /10L |  |  |  |  |  |
| 1,1,1-Trichloroethane                     | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| 1,1,2-Trichloroethane                     | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| 1,1-Dichloroethane                        | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| 1,1-Dichloroethene                        | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| 1,2-Dichlorobenzene                       | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| 1,2-Dichloroethane                        | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| 1,2-Dichloropropane                       | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| 1,3-Dichlorobenzene                       | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| 1,4-Dichlorobenzene                       | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| Acetone                                   | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| Benzene                                   | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| Bromodichloromethane                      | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| Bromoform                                 | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| Bromomethane                              | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| Carbon Tetrachloride                      | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| Chlorobenzene                             | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| Chlorodibromomethane                      | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| Chloroethane                              | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| Chloroform                                | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| Chloromethane                             | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| cis-1,3-Dichloropropene                   | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| Ethylbenzene                              | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| Methyl Ethyl Ketone (MEK)                 | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| Methylene Chloride                        | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | 34.1            |  |  |  |  |  |
| MTBE                                      | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| Tetrachloroethene                         | 19.4                                                            | 12.0           | 18.4             | <5.00          | 36.3   | 37.5            |  |  |  |  |  |
| Toluene                                   | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| trans-1,2-Dichloroethene                  | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| trans-1,3-Dichloropropene                 | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| Trichloroethene                           | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| Trichlorofluoromethane                    | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | 13.1            |  |  |  |  |  |
| Vinyl Chloride                            | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| Xylene, m+p                               | <5.00                                                           | <5.00          | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |
| Xylene, o                                 | <5.00                                                           | < 5.00         | <5.00            | <5.00          | <5.00  | <5.00           |  |  |  |  |  |

Note: Results are reported per 10L (Tenax tube volume).

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: Carbon Vessel 2 (CV-2) Outlet

| Volatile Organic Compounds<br>Method T0-1 |              | Routine SVE Operating Period (34 Months: 10/21/03 thru 8/25/06) |              |              |              |              |              |              |  |  |  |
|-------------------------------------------|--------------|-----------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--|--|--|
| Matrix: Vapor                             | 11/12/03     | 11/26/03                                                        | 12/10/03     | 12/22/03     | 1/14/04      | 1/30/04      | 2/11/04      | 2/25/04      |  |  |  |
|                                           | μ <b>g/Ĺ</b> | μ <b>g/L</b>                                                    | μ <b>g/L</b> | μ <b>ġ/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> |  |  |  |
| 1,1,1-Trichloroethane                     | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.0024       | 0.0007       | <0.0005      | <0.0005      |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |  |
| 1,1,2-Trichloroethane                     | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |  |
| 1,1-Dichloroethane                        | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |  |
| 1,1-Dichloroethene                        | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | < 0.0005     |  |  |  |
| 1,2-Dichlorobenzene                       | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |  |
| 1,2-Dichloroethane                        | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | < 0.0005     |  |  |  |
| 1,2-Dichloropropane                       | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |  |
| 1.3-Dichlorobenzene                       | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |  |
| 1,4-Dichlorobenzene                       | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.0006       | <0.0005      | <0.0005      | <0.0005      |  |  |  |
| Acetone                                   | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.029        | 0.0164E      | 0.001        | <0.0005      |  |  |  |
| Benzene                                   | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.058E       | 0.0358E      | 0.002        | <0.0005      |  |  |  |
| Bromodichloromethane                      | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |  |
| Bromoform                                 | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |  |
| Bromomethane                              | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | < 0.0005     | <0.0005      |  |  |  |
| Carbon Tetrachloride                      | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |  |
| Chlorobenzene                             | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.0007       | <0.0005      | <0.0005      | <0.0005      |  |  |  |
| Chlorodibromomethane                      | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |  |
| Chloroethane                              | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | < 0.0005     |  |  |  |
| Chloroform                                | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.010        | 0.0016       | <0.0005      | <0.0005      |  |  |  |
| Chloromethane                             | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |  |
| cis-1,3-Dichloropropene                   | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |  |
| Ethylbenzene -                            | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.0008       | <0.0005      | <0.0005      | <0.0005      |  |  |  |
| MEK (2-Butanone)                          | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.009        | 0.0014       | <0.0005      | <0.0005      |  |  |  |
| Methylene Chloride                        | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.011E       | 0.0043       | <0.0005      | < 0.0005     |  |  |  |
| МТВЕ                                      | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.006        | 0.0009       | <0.0005      | < 0.0005     |  |  |  |
| Tetrachloroethene                         | .912         | 1.06                                                            | .653         | n/a          | 0.866E       | 0.3208E      | 0.345E       | 0.204E       |  |  |  |
| Toluene                                   | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.012E       | 0.0024       | <0.0005      | <0.0005      |  |  |  |
| trans-1,2-Dichloroethene                  | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |  |
| trans-1,3-Dichloropropene                 | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |  |
| Trichloroethene                           | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.051E       | 0.0009       | <0.0005      | <0.0005      |  |  |  |
| Trichlorofluoromethane                    | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0007      | <0.0007      | <0.0007      | <0.0007      |  |  |  |
| Vinyl Chloride                            | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |  |  |  |
| Xylene, m+p                               | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.004        | <0.0005      | <0.0005      | <0.0005      |  |  |  |
| Xylene, o                                 | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.0016       | <0.0005      | <0.0005      | <0.0005      |  |  |  |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: Carbon Vessel 2 (CV-2) Outlet

| Volatile Organic Compounds<br>Method T0-1 | Routine SVE Operating Period (34 Months: 10/21/03 thru 8/25/06) |              |              |              |         |              |              |                |  |  |  |
|-------------------------------------------|-----------------------------------------------------------------|--------------|--------------|--------------|---------|--------------|--------------|----------------|--|--|--|
| Matrix: Vapor                             | 3/11/04                                                         | 3/24/04*     | 4/7/04       | 4/21/04      | 5/6/04* | 5/24/04*     | 6/10/04*     | 6/23/04*       |  |  |  |
|                                           | μg/L                                                            | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μg/L    | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b>   |  |  |  |
| 1,1,1-Trichloroethane                     | <0.0005                                                         | <0.5         | 0.0005       | 0.0008       | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | <0.0005                                                         | <0.5         | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| 1,1,2-Trichloroethane                     | <0.0005                                                         | <0.5         | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| 1,1-Dichloroethane                        | <0.0005                                                         | <0.5         | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| 1,1-Dichloroethene                        | <0.0005                                                         | <0.5         | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| 1,2-Dichlorobenzene                       | <0.0005                                                         | · <0.5       | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| 1,2-Dichloroethane                        | <0.0005                                                         | <0.5         | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| 1,2-Dichloropropane                       | <0.0005                                                         | <0.5         | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| 1,3-Dichlorobenzene                       | <0.0005                                                         | <0.5         | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| 1,4-Dichlorobenzene                       | <0.0005                                                         | <0.5         | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| Acetone                                   | 0.0009                                                          | <0.5         | 0.0505E      | 0.0113E      | <0.5    | <0.5         | <0.5         | <b>&lt;0.5</b> |  |  |  |
| Benzene                                   | 0.0005                                                          | <0.5         | 0.0169E      | 0.0326E      | <0.5    | <0.5         | <0.5         | ₹ <0.5         |  |  |  |
| Bromodichloromethane                      | <0.0005                                                         | <0.5         | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| Bromoform                                 | <0.0005                                                         | <0.5         | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| Bromomethane                              | <0.0005                                                         | <0.5         | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| Carbon Tetrachloride                      | <0.0005                                                         | <0.5         | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| Chlorobenzene                             | <0.0005                                                         | <0.5         | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| Chlorodibromomethane                      | <0.0005                                                         | <0.5         | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| Chloroethane                              | <0.0005                                                         | <b>≤0.5</b>  | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| Chloroform                                | <0.0005                                                         | <0.5         | 0.0005       | 0.0021       | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| Chloromethane                             | 0.0163E                                                         | <0.5         | 0.0137E      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| cis-1,3-Dichloropropene                   | <0.0005                                                         | <0.5         | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| Ethylbenzene                              | <0.0005                                                         | <0.5         | 0.0017       | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| MEK (2-Butanone)                          | <0.0005                                                         | <0.5         | 0.0089       | 0.0023       | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| Methylene Chloride                        | <0.0005                                                         | <0.5         | 0.0633E      | 0.0010       | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| MTBE                                      | <0.0005                                                         | <0.5         | 0.0010       | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| Tetrachloroethene                         | 1.4169E                                                         | <0.5         | 0.6470E      | 0.9261E      | <0.5    | 0.67         | 4.8          | 41.6           |  |  |  |
| Toluene                                   | <0.0005                                                         | <0.5         | 0.0713E      | 0.0035       | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| trans-1,2-Dichloroethene                  | <0.0005                                                         | <0.5         | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| trans-1,3-Dichloropropene                 | <0.0005                                                         | <0.5         | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| Trichloroethene                           | <0.0005                                                         | <0.5         | 0.0016       | 0.0023       | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| Trichlorofluoromethane                    | <0.0007                                                         | <0.5         | <0.0007      | <0.0007      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| Vinyl Chloride                            | <0.0005                                                         | <0.5         | <0.0005      | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| Xylene, m+p                               | <0.0005                                                         | <0.5         | 0.0046       | 0.0005       | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |
| Xylene, o                                 | <0.0005                                                         | <0.5         | 0.0016       | <0.0005      | <0.5    | <0.5         | <0.5         | <0.5           |  |  |  |

As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: Carbon Vessel 2 (CV-2) Outlet

| Volatile Organic Compounds<br>Method T0-1 |         | Routine SVE Operating Period (34 Months: 10/21/03 thru 8/25/06) |          |              |         |              |              |              |  |  |  |
|-------------------------------------------|---------|-----------------------------------------------------------------|----------|--------------|---------|--------------|--------------|--------------|--|--|--|
| Naries Vajor 🛷                            | 7/7/04* | 7/21/04*                                                        | 8/12/04* | 8/30/04*     | 9/9/04* | 9/22/04*     |              |              |  |  |  |
|                                           | μg/L    | μg/L                                                            | μg/L     | μ <b>g/L</b> | μg/L    | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> |  |  |  |
| 1,1,1-Trichloroethane                     | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| 1,1,2-Trichloroethane                     | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         | -            |              |  |  |  |
| 1,1-Dichloroethane                        | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| 1,1-Dichloroethene                        | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| 1,2-Dichlorobenzene                       | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| 1,2-Dichloroethane                        | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| 1,2-Dichloropropane                       | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| 1,3-Dichlorobenzene                       | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| 1,4-Dichlorobenzene                       | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              | ė:           |  |  |  |
| Acetone                                   | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              | L.           |  |  |  |
| Benzene                                   | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              | i ka         |  |  |  |
| Bromodichloromethane                      | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| Bromoform                                 | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| Bromomethane '                            | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              | ĺ            |  |  |  |
| Carbon Tetrachloride                      | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| Chlorobenzene                             | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| Chlorodibromomethane                      | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| Chloroethane                              | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| Chloroform                                | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| Chloromethane                             | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| cis-1,3-Dichloropropene                   | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              | <u> </u>     |  |  |  |
| Ethylbenzene                              | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| MEK (2-Butanone)                          | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| Methylene Chloride                        | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| МТВЕ                                      | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| Tetrachloroethene                         | <0.5    | <0.5                                                            | <0.5     | <0.5         | 2.18    | <0.5         |              |              |  |  |  |
| Toluene                                   | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| trans-1,2-Dichloroethene                  | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| trans-1,3-Dichloropropene                 | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| Trichloroethene                           | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              | · .          |  |  |  |
| Trichlorofluoromethane                    | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| Vinyl Chloride                            | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |
| Xylene, m+p                               | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         | ·            |              |  |  |  |
| Xylene, o                                 | <0.5    | <0.5                                                            | <0.5     | <0.5         | <0.5    | <0.5         |              |              |  |  |  |

As of 1/14/04, vapor samples analyzed by Chemtech.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVM-1

| Volatile Organic Compounds | Initial SVE Operating Period (42 Days: 9/9/03 thru 10/20/03) |                |                |                  |                |                    |  |  |  |  |  |
|----------------------------|--------------------------------------------------------------|----------------|----------------|------------------|----------------|--------------------|--|--|--|--|--|
| Method T0-1                | (42 Days: 9/9/03 thru 10/20/03)                              |                |                |                  |                |                    |  |  |  |  |  |
| Matrix: Vapor              | 09/1 <b>8/0</b> 3                                            | 09/24/03       | 10/02/03       | 10/ <b>08/03</b> | 10/15/03       | 10/23/03           |  |  |  |  |  |
|                            | μ <b>g/10L</b>                                               | μ <b>g/10L</b> | μ <b>g/10L</b> | μ <b>g/10L</b>   | μ <b>g/10L</b> | μ <b>g/10L</b>     |  |  |  |  |  |
| 1,1,1-Trichloroethane      | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane  | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| 1,1,2-Trichloroethane      | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| 1,1-Dichloroethane         | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| 1,1-Dichloroethene         | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| 1,2-Dichlorobenzene        | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| 1,2-Dichloroethane         | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| 1,2-Dichloropropane        | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00 ·        | <5.00              |  |  |  |  |  |
| 1,3-Dichlorobenzene        | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| 1,4-Dichlorobenzene        | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Acetone                    | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Benzene                    | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00 <sup>2</sup> |  |  |  |  |  |
| Bromodichloromethane       | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Bromoform                  | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Bromomethane               | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Carbon Tetrachloride       | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Chlorobenzene              | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Chlorodibromomethane       | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Chloroethane               | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Chloroform \$              | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Chloromethane              | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| cis-1,3-Dichloropropene    | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Ethylbenzene               | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Methyl Ethyl Ketone (MEK)  | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Methylene Chloride         | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| MTBE                       | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Tetrachloroethene          | 6.15                                                         | <5.00          | 7.57           | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Toluene                    | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| trans-1,2-Dichloroethene   | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| trans-1,3-Dichloropropene  | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Trichloroethene            | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Trichlorofluoromethane     | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Vinyl Chloride             | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Xylene, m+p                | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |
| Xylene, o                  | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00              |  |  |  |  |  |

Note: Results are reported per 10L. (Tenax tube volume).

Table 1

### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: SVM-1

| Volatile Organic Compounds<br>Method T0-1 |              | Routine SVE Operating Period (34 Months: 10/21/03 thru 8/25/06) |              |              |              |              |              |          |  |  |  |
|-------------------------------------------|--------------|-----------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|----------|--|--|--|
| Matrix: Vapor                             | 11/12/03     | 11/26/03                                                        | 12/10/03     | 12/22/03     | 01/14/04     | 01/30/04     | 02/11/04     | 02/25/04 |  |  |  |
|                                           | μ <b>g/L</b> | μg/L                                                            | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μg/L     |  |  |  |
| 1,1,1-Trichloroethane                     | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | 0.0007       | <0.0005      | <0.0005  |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| 1,1,2-Trichloroethane                     | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| 1,1-Dichloroethane                        | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| 1,1-Dichloroethene                        | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| 1,2-Dichlorobenzene                       | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| 1,2-Dichloroethane                        | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| 1,2-Dichloropropane                       | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| 1,3-Dichlorobenzene                       | <0.5         | <0.5                                                            | <0.5         | n/a          | < 0.0005     | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| 1,4-Dichlorobenzene                       | <0.5         | <0.5                                                            | <0.5         | n/a          | < 0.0005     | <0.0005      | 0.001        | <0.0005  |  |  |  |
| Acetone                                   | <0.5         | <0.5                                                            | <0.5         | · n/a        | 0.003        | <0.0005      | 0.005-       | 0.005    |  |  |  |
| Benzene                                   | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | 0.0238       | 0.005        | 0.003    |  |  |  |
| Bromodichloromethane                      | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| Bromoform                                 | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | < 0.0005     | <0.0005  |  |  |  |
| Bromomethane                              | <0.5         | <0.5                                                            | <0.5         | n/a          | < 0.0005     | < 0.0005     | <0.0005      | < 0.0005 |  |  |  |
| Carbon Tetrachloride                      | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | < 0.0005     | < 0.0005     | <0.0005  |  |  |  |
| Chlorobenzene                             | <0.5         | <0.5                                                            | <0.5         | n/a          | < 0.0005     | <0.0005      | < 0.0005     | <0.0005  |  |  |  |
| Chlorodibromomethane                      | <0.5         | <0.5                                                            | <0.5         | n/a          | < 0.0005     | <0.0005      | < 0.0005     | <0.0005  |  |  |  |
| Chloroethane                              | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| Chloroform                                | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | 0.0006       | <0.0005      | <0.0005  |  |  |  |
| Chloromethane                             | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | 0.0625E      | <0.0005      | 0.002    |  |  |  |
| cis-1,3-Dichloropropene                   | <0.5         | <0.5                                                            | <0.5         | n/a          | < 0.0005     | < 0.0005     | <0.0005      | .<0.0005 |  |  |  |
| Ethylbenzene Ethylbenzene                 | <0.5         | <0.5                                                            | <0.5         | · n/a        | <0.0005      | 0.0007       | <0.0005      | <0.0005  |  |  |  |
| MEK (2-Butanone)                          | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | 0.023E       | 0.002    |  |  |  |
| Methylene Chloride                        | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.0013       | 0.0075       | <0.0005      | 0.003    |  |  |  |
| мтве                                      | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | 0.0023       | <0.0005      | <0.0005  |  |  |  |
| Tetrachloroethene                         | <0.5         | <0.5                                                            | <0.5         | n/a          | 0.004        | 0.2874E      | 0.009        | 0.335E   |  |  |  |
| Toluene                                   | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | 0.0126E      | < 0.0005     | 0.001    |  |  |  |
| trans-1,2-Dichloroethene                  | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| trans-1,3-Dichloropropene                 | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005  |  |  |  |
| Trichloroethene                           | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | 0.0010       | <0.0005      | <0.0005  |  |  |  |
| Trichlorofluoromethane                    | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0007      | <0.0007      | < 0.0007     | < 0.0007 |  |  |  |
| Vinyl Chloride                            | <0.5         | <0.5                                                            | <0.5         | n/a          | <0.0005      | <0.0005      | < 0.0005     | <0.0005  |  |  |  |
| Xylene, m+p                               | <0.5         | <0.5                                                            | - <0.5       | n/a          | <0.0005      | 0.0018       | <0.0005      | 0.001    |  |  |  |
| Xylene, o                                 | <0.5         | <0.5                                                            | <0.5         | n/a          | < 0.0005     | 0.0005       | <0.0005      | < 0.0005 |  |  |  |

n/a = not available: ELS laboratory instrument failure As of 1/14.04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

Summary of Vapor Analytical Results: SVM-1

| Volatile Organic Compounds<br>Method T0-1 |                 |              |          | tine SVE Op<br>onths: 10/21 | -       |              |              |         |
|-------------------------------------------|-----------------|--------------|----------|-----------------------------|---------|--------------|--------------|---------|
| Matrix: Vapor                             | 3/11/04         | 3/24/04*     | 04/07/04 | 04/21/04                    | 5/6/04* | 5/24/04      | 6/10/04      | 6/23/04 |
|                                           | μg/L            | μ <b>g/L</b> | μg/L     | μ <b>g/L</b>                | μg/L    | μ <b>g/L</b> | μ <b>g/L</b> | μg/L    |
| 1,1,1-Trichloroethane                     | <0.0005         | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| 1,1,2,2-Tetrachloroethane                 | <0.0005         | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| 1,1,2-Trichloroethane                     | <0.0005         | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| 1,1-Dichloroethane                        | <0.0005         | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| 1,1-Dichloroethene                        | <0.0005         | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| 1,2-Dichlorobenzene                       | <0.0005         | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| 1,2-Dichloroethane                        | <0.0005         | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| 1,2-Dichloropropane                       | <0.0005         | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| 1,3-Dichlorobenzene                       | <0.0005         | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| 1,4-Dichlorobenzene                       | <0.0005         | <0.5         | 0.0010   | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| Acetone                                   | 0.0143E         | <0.5         | 0.0017E  | 0.0089                      | <0.5    | <0.5         | <0.5         | <0.5    |
| Benzene                                   | 0.0199 <b>E</b> | <0.5         | 0.0160E  | 0.0415E                     | <0.5    | <0.5         | <0.5         | <0.5    |
| Bromodichloromethane                      | <0.0005         | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| Bromoform                                 | <0.0005         | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| Bromomethane                              | <0.0005         | <0.5         | < 0.0005 | <0.0005                     | <0.5    | <0.5         | <0.5         | < 0.5   |
| Carbon Tetrachloride                      | <0.0005         | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| Chlorobenzene                             | <0.0005         | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| Chlorodibromomethane                      | <0.0005         | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| Chloroethane                              | <0.0005         | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| Chloroform                                | <0.0005         | <0.5         | 0.0005   | <0.0005                     | <0.5    | <0.5         | < 0.5        | <0.5    |
| Chloromethane                             | <0.0005         | <0.5         | 0.0058   | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| cis-1,3-Dichloropropene                   | <0.0005         | <0.5         | < 0.0005 | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| Ethylbenzene                              | <0.0005         | <0.5         | 0.0006   | <0.0005                     | <0.5    | <0.5         | .<0.5        | <0.5    |
| MEK (2-Butanone)                          | 0.1711E         | <0.5         | 0.0019   | 0.0011                      | <0.5    | <0.5         | <0.5         | <0.5    |
| Methylene Chloride                        | 0.0006          | <0.5         | 0.0030   | 0.0019                      | <0.5    | <0.5         | <0.5         | <0.5    |
| MTBE                                      | <0.0005         | <0.5         | <0.0005  | <0.0005                     | . <0.5  | <0.5         | <0.5         | <0.5    |
| Tetrachloroethene                         | 0.1746E         | <0.5         | 0.1895E  | <0.0005                     | <0.5    | 0.60         | <0.5         | <0.5    |
| Toluene                                   | 0.0012          | <0.5         | 0.0041   | 0.0017                      | <0.5    | <0.5         | <0.5         | < 0.5   |
| trans-1,2-Dichloroethene                  | <0.0005         | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| trans-1,3-Dichloropropene                 | <0.0005         | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| Trichloroethene                           | <0.0005         | <0.5         | <0.0005  | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| Trichlorofluoromethane                    | < 0.0007        | <0.5         | <0.0007  | < 0.0007                    | <0.5    | <0.5         | <0.5         | <0.5    |
| Vinyl Chloride                            | <0.0005         | <0.5         | <0.0005  | < 0.0005                    | <0.5    | <0.5         | <0.5         | <0.5    |
| Xylene, m+p                               | < 0.0005        | <0.5         | 0.0019   | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |
| Xylene, o                                 | <0.0005         | <0.5         | 0.0008   | <0.0005                     | <0.5    | <0.5         | <0.5         | <0.5    |

As of 1/14/04, vapor samples analyzed by Chemtech.

E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: SVM-1

| Volatile Organic Compounds<br>Method TO-1 | Routine SVE Operating Period (34 Months: 10/21/03 thru 8/25/06) |          |              |              |                  |          |          |      |
|-------------------------------------------|-----------------------------------------------------------------|----------|--------------|--------------|------------------|----------|----------|------|
| Matrix: Vapor                             | 7/7/04*                                                         | 7/21/04* | 8/12/04*     | 8/30/04*     | 9/9 <b>/04</b> * | 9/22/04* |          |      |
|                                           | μg/L                                                            | μg/L     | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b>     | μg/L     | μg/L     | μg/L |
| 1,1,1-Trichloroethane                     | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| 1,1,2,2-Tetrachloroethane                 | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| 1,1,2-Trichloroethane                     | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| 1,1-Dichloroethane                        | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| 1,1-Dichloroethene                        | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| 1,2-Dichlorobenzene                       | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| 1,2-Dichloroethane                        | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| 1,2-Dichloropropane                       | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| 1,3-Dichlorobenzene                       | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     | <u> </u> |      |
| 1,4-Dichlorobenzene                       | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| Acetone                                   | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| Benzene                                   | <0.5                                                            | <0.5     | <0.5 €       | <0.5         | <0.5             | <0.5     | -        | -1   |
| Bromodichloromethane                      | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          | - 1  |
| Bromoform                                 | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| Bromomethane                              | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| Carbon Tetrachloride                      | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| Chlorobenzene                             | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| Chlorodibromomethane                      | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| Chloroethane                              | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| Chloroform                                | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| Chloromethane                             | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| cis-1,3-Dichloropropene                   | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| Ethylbenzene                              | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| MEK (2-Butanone)                          | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| Methylene Chloride                        | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| MTBE                                      | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| Tetrachloroethene                         | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     | *        |      |
| Toluene                                   | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| trans-1,2-Dichloroethene                  | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| trans-1,3-Dichloropropene                 | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| Trichloroethene                           | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| Trichlorofluoromethane                    | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| Vinyl Chloride                            | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| Xylene, m+p                               | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |
| Xylene, o                                 | <0.5                                                            | <0.5     | <0.5         | <0.5         | <0.5             | <0.5     |          |      |

As of 1/14/04, vapor samples analyzed by Chemtech.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Table 1

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVM-2

| Volatile Organic Compounds<br>Method T0-1 | Initial SVE Operating Period (42 Days: 9/9/03 thru 10/20/03) |                 |                |                |                |                |  |  |  |
|-------------------------------------------|--------------------------------------------------------------|-----------------|----------------|----------------|----------------|----------------|--|--|--|
| Memor 10-1                                | <del>-</del>                                                 |                 |                |                |                |                |  |  |  |
| Matrix: Vapor                             | 9/18/03                                                      | 9/24/03         | 10/2/03        | 10/8/03        | 10/15/03       | 10/23/03       |  |  |  |
|                                           | μg/10L                                                       | μ <b>g/10</b> L | μ <b>g/10L</b> | μg/10 <b>L</b> | μ <b>g/10L</b> | μ <b>g/10L</b> |  |  |  |
| 1,1,1-Trichloroethane                     | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| 1,1,2-Trichloroethane                     | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| 1,1-Dichloroethane                        | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| 1,1-Dichloroethene                        | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| 1,2-Dichlorobenzene                       | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| 1,2-Dichloroethane                        | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| 1,2-Dichloropropane                       | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| 1,3-Dichlorobenzene                       | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| 1,4-Dichlorobenzene                       | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| Acetone                                   | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| Benzene                                   | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| Bromodichloromethane                      | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| Bromoform                                 | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| Bromomethane                              | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| Carbon Tetrachloride                      | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| Chlorobenzene                             | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| Chlorodibromomethane                      | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| Chloroethane                              | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| Chloroform                                | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| Chloromethane                             | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| cis-1.3-Dichloropropene                   | <5.00                                                        | <5.00           | <5.00          | <5.00          | < 5.00         | <5.00          |  |  |  |
| Ethylbenzene                              | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| Methyl Ethyl Ketone (MEK)                 | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| Methylene Chloride                        | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| MTBE                                      | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| Tetrachloroethene                         | <5.00                                                        | <5.00           | <5.00          | <5.00          | · <5.00        | <5.00          |  |  |  |
| Toluene                                   | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| trans-1,2-Dichloroethene                  | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| trans-1,3-Dichloropropene                 | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| Trichloroethene                           | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| Trichlorofluoromethane                    | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| Vinyl Chloride                            | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| Xylene, m+p                               | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |
| Xylene, o                                 | <5.00                                                        | <5.00           | <5.00          | <5.00          | <5.00          | <5.00          |  |  |  |

Note: Results are reported per 10L (Tenax tube volume).

Table 1

### NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: SVM-2

| Volatile Organic Compounds | Routine SVE Operating Period       |          |              |              |              |              |              |              |
|----------------------------|------------------------------------|----------|--------------|--------------|--------------|--------------|--------------|--------------|
| Method T0-1                | (34 Months: 10/21/03 thru 8/25/06) |          |              |              |              |              |              |              |
| Matrix: Vapor              | 11/12/03                           | 11/26/03 | 12/10/03     | 12/22/03     | 01/14/04     | 01/30/04     | 02/11/04     | 02/25/04     |
|                            | μ <b>g/L</b>                       | μg/L     | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> |
| 1,1,1-Trichloroethane      | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,1,2,2-Tetrachloroethane  | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,1,2-Trichloroethane      | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,1-Dichloroethane         | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,1-Dichloroethene         | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,2-Dichlorobenzene        | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,2-Dichloroethane         | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,2-Dichloropropane        | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,3-Dichlorobenzene        | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,4-Dichlorobenzene        | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Acetone                    | <0.5                               | <0.5     | <0.5         | n/a          | 0.0018       | 0.0226E      | 0.002        | 0.017E       |
| Benzene                    | <0.5                               | <0.5     | <0.5         | n/a          | < 0.0005     | 0.0032       | 0.003        | 0.019E       |
| Bromodichloromethane       | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Bromoform                  | <0.5                               | <0.5     | <0.5         | n/a          | < 0.0005     | <0.0005      | <0.0005      | <0.0005      |
| Bromomethane               | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Carbon Tetrachloride       | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Chlorobenzene              | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | 0.0010       | < 0.0005     | <0.0005      |
| Chlorodibromomethane       | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Chloroethane               | <0.5                               | <0.5     | <0.5         | n/a          | < 0.0005     | <0.0005      | <0.0005      | < 0.0005     |
| Chloroform                 | <0.5                               | <0.5     | <0.5         | n/a          | < 0.0005     | <0.0005      | <0.0005      | <0.0005      |
| Chloromethane              | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | < 0.0005     |
| cis-1.3-Dichloropropene    | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Ethylbenzene               | <0.5                               | <0.5     | <0.5         | n/a          | < 0.0005     | 0.0016       | <0.0005      | 0.001        |
| MEK (2-Butanone)           | <0.5                               | <0.5     | <0.5         | n/a          | 0.0131       | 0.0883E      | 0.003        | 0.009        |
| Methylene Chloride         | <0.5                               | <0.5     | <0.5         | n/a          | 0.0008       | <0.0005      | <0.0005      | 0.007        |
| МТВЕ                       | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | < 0.0005     | <0.0005      | 0.000        |
| Tetrachloroethene          | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | 0.2395E      | 0.006        | 0.108E       |
| Toluene                    | <0.5                               | <0.5     | <0.5         | n/a          | < 0.0005     | 0.0069       | < 0.0005     | 0.002        |
| trans-1.2-Dichloroethene   | <0.5                               | <0.5     | <0.5         | n/a          | < 0.0005     | <0.0005      | <0.0005      | <0.0005      |
| trans-1,3-Dichloropropene  | <0.5                               | <0.5     | <0.5         | n/a          | < 0.0005     | <0.0005      | <0.0005      | <0.0005      |
| Trichloroethene            | < 0.5                              | <0.5     | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| Trichlorofluoromethane     | <0.5                               | <0.5     | <0.5         | n/a          | < 0.0007     | < 0.0007     | <0.0007      | < 0.0007     |
| Vinyl Chloride             | <0.5                               | <0.5     | <0.5         | n/a          | < 0.0005     | <0.0005      | <0.0005      | <0.0005      |
| Xylene, m+p                | <0.5                               | <0.5     | <0.5         | n/a          | < 0.0005     | 0.0041       | <0.0005      | 0.002        |
| Xylene, o                  | <0.5                               | <0.5     | <0.5         | n/a          | <0.0005      | 0.0013       | <0.0005      | 0.001        |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech E=result exceeds calibration range, estimated value.

**Summary of Vapor Analytical Results: SVM-2** 

| Volatile Organic Compounds<br>Method T0-1 | Routine SVE Operating Period (34 Months: 10/21/03 thru 8/25/06) |          |          |          |         |          |      |      |
|-------------------------------------------|-----------------------------------------------------------------|----------|----------|----------|---------|----------|------|------|
| Matrix: Vapor                             | 7/7/04*                                                         | 7/21/04* | 8/12/04* | 8/30/04* | 9/9/04* | 9/22/04* |      |      |
|                                           | μg/L                                                            | μg/L     | μg/L     | μg/L     | μg/L    | μg/L     | μg/L | μg/L |
| 1,1,1-Trichloroethane                     | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| 1,1,2,2-Tetrachloroethane                 | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| 1,1,2-Trichloroethane                     | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| 1,1-Dichloroethane                        | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| 1,1-Dichloroethene                        | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      | ,    |
| 1,2-Dichlorobenzene                       | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| 1,2-Dichloroethane                        | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| 1,2-Dichloropropane                       | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| 1,3-Dichlorobenzene                       | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| 1,4-Dichlorobenzene                       | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| Acetone                                   | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| Benzene                                   | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      | -    |
| Bromodichloromethane                      | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      | ·    |
| Bromoform                                 | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| Bromomethane                              | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| Carbon Tetrachloride                      | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| Chlorobenzene                             | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     | _    |      |
| Chlorodibromomethane                      | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| Chloroethane                              | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| Chloroform                                | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| Chloromethane                             | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| cis-1,3-Dichloropropene                   | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| Ethylbenzene                              | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| MEK (2-Butanone)                          | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| Methylene Chloride                        | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| МТВЕ                                      | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| Tetrachloroethene                         | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| Toluene                                   | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| trans-1,2-Dichloroethene                  | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| trans-1,3-Dichloropropene                 | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| Trichloroethene                           | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| Trichlorofluoromethane                    | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| Vinyl Chloride                            | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| Xylene, m+p                               | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |
| Xylene, o                                 | <0.5                                                            | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     |      |      |

As of 1/14/04, vapor samples analyzed by Chemtech.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Summary of Vapor Analytical Results: SVM-2

| Volatile Organic Compounds<br>Method T0-1 |              |          |              | tine SVE Or<br>onths: 10/10 |              |              |              |              |
|-------------------------------------------|--------------|----------|--------------|-----------------------------|--------------|--------------|--------------|--------------|
| Matrix: Vapor                             | 3/11/04      | 3/24/04* | 04/07/04     | 04/21/04                    | 5/6/04*      | 5/24/04      | 6/10/04      | 6/23/04      |
|                                           | μ <b>g/L</b> | μg/L     | μ <b>g/L</b> | μ <b>g/L</b>                | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> |
| 1,1,1-Trichloroethane                     | <0.0005      | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1,2,2-Tetrachloroethane                 | <0.0005      | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1,2-Trichloroethane                     | <0.0005      | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1-Dichloroethane                        | <0.0005      | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,1-Dichloroethene                        | <0.0005      | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,2-Dichlorobenzene                       | <0.0005      | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,2-Dichloroethane                        | < 0.0005     | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,2-Dichloropropane                       | < 0.0005     | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,3-Dichlorobenzene                       | <0.0005      | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| 1,4-Dichlorobenzene                       | <0.0005      | <0.5     | 0.0006       | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Acetone                                   | 0.0646E      | <0.5     | 0.0209E      | 0.0071                      | <0.5         | <0.5         | <0.5         | <0.5         |
| Benzene                                   | 0.0095       | <0.5     | 0.0386E      | 0.0144E                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Bromodichloromethane                      | <0.0005      | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Bromoform                                 | < 0.0005     | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | < 0.5        |
| Bromomethane                              | <0.0005      | <0.5     | <0.0005      | < 0.0005                    | <0.5         | <0.5         | <0.5         | <0.5         |
| Carbon Tetrachloride                      | <0.0005      | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Chlorobenzene                             | <0.0005      | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Chlorodibromomethane                      | <0.0005      | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Chloroethane                              | <0.0005      | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Chloroform                                | < 0.0005     | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Chloromethane                             | <0.0005      | <0.5     | <0.0005      | 0.0026                      | <0.5         | <0.5         | <0.5         | 0.78         |
| cis-1,3-Dichloropropene                   | <0.0005      | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Ethylbenzene                              | <0.0005      | <0.5     | 0.0005       | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| MEK (2-Butanone)                          | 0.4832E      | <0.5     | 0.0039       | 0.0022                      | <0.5         | <0.5         | <0.5         | <0.5         |
| Methylene Chloride                        | <0.0005      | <0.5     | 0.0034       | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| МТВЕ                                      | <0.0005      | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Tetrachloroethene                         | 0.0250E      | <0.5     | 0.0488E      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Toluene                                   | 0.0014       | <0.5     | 0.0087       | 0.0020                      | <0.5         | <0.5         | <0.5         | <0.5         |
| trans-1,2-Dichloroethene                  | < 0.0005     | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| trans-1,3-Dichloropropene                 | <0.0005      | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Trichloroethene                           | < 0.0005     | <0.5     | 0.0006       | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Trichlorofluoromethane                    | < 0.0007     | <0.5     | <0.0007      | <0.0007                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Vinyl Chloride                            | <0.0005      | <0.5     | <0.0005      | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Xylene, m+p                               | <0.0005      | <0.5     | 0.0013       | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |
| Xylene, o                                 | < 0.0005     | <0.5     | 0.0005       | <0.0005                     | <0.5         | <0.5         | <0.5         | <0.5         |

As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVM-3

| Volatile Organic Compounds | Initial SVE Operating Period (42 Days: 9/9/03 thru 10/20/03) |                |                |                |                |                  |  |  |  |  |
|----------------------------|--------------------------------------------------------------|----------------|----------------|----------------|----------------|------------------|--|--|--|--|
| Method T0-1                |                                                              | (42            | Days: 9/9/     | 03 thru 10/    | 20/03)         |                  |  |  |  |  |
| Matrix: Vapor              | 9/18/03                                                      | 9/24/03        | 10/2/03        | 10/8/03        | 10/15/03       | 10/23/03         |  |  |  |  |
|                            | μg/10L                                                       | μ <b>g/10L</b> | μ <b>g/10L</b> | μ <b>g/10Ĺ</b> | μ <b>g/10L</b> | μ <b>g/10L</b> . |  |  |  |  |
| 1,1,1-Trichloroethane      | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| 1,1,2,2-Tetrachloroethane  | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| 1,1,2-Trichloroethane      | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| 1,1-Dichloroethane         | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| 1,1-Dichloroethene         | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| 1,2-Dichlorobenzene        | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| 1,2-Dichloroethane         | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| 1,2-Dichloropropane        | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| 1,3-Dichlorobenzene        | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| 1,4-Dichlorobenzene        | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Acetone                    | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Benzene                    | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Bromodichloromethane       | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Bromoform                  | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Bromomethane               | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Carbon Tetrachloride       | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Chlorobenzene              | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Chlorodibromomethane       | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Chloroethane               | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Chloroform                 | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Chloromethane              | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| cis-1,3-Dichloropropene    | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Ethylbenzene               | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Methyl Ethyl Ketone (MEK)  | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Methylene Chloride         | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| MTBE                       | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Tetrachloroethene          | 6.95                                                         | <5.00          | <5.00          | 16.1           | <5.00          | <5.00            |  |  |  |  |
| Toluene                    | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| trans-1,2-Dichloroethene   | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| trans-1,3-Dichloropropene  | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Trichloroethene            | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Trichlorofluoromethane     | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Vinyl Chloride             | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Xylene, m+p                | -<5.00                                                       | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |
| Xylene, o                  | <5.00                                                        | <5.00          | <5.00          | <5.00          | <5.00          | <5.00            |  |  |  |  |

Note: Results are reported per 10L (Tenax tube volume).

Table 1

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: SVM-3

| Volatile Organic Compounds<br>Method T0-1 | Routine SVE Operating Period (34 Months: 10/21/03 thru 8/25/06) |              |          |                |              |              |          |          |  |
|-------------------------------------------|-----------------------------------------------------------------|--------------|----------|----------------|--------------|--------------|----------|----------|--|
| Matrix: Vapor                             | 11/12/03                                                        | 11/26/03     | 12/10/03 | 12/22/03       | 01/14/04     | 01/30/04     | 02/11/04 | 02/25/04 |  |
|                                           | μ <b>g/L</b>                                                    | μ <b>g/L</b> | μg/L     | . μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μg/L     | . μg/L   |  |
| 1,1,1-Trichloroethane                     | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | <0.0005      | <0.0005  | <0.0005  |  |
| 1,1,2,2-Tetrachloroethane                 | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | <0.0005      | <0.0005  | <0.0005  |  |
| 1,1,2-Trichloroethane                     | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | <0.0005      | <0.0005  | <0.0005  |  |
| 1,1-Dichloroethane                        | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | <0.0005      | <0.0005  | <0.0005  |  |
| 1,1-Dichloroethene                        | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | <0.0005      | < 0.0005 | < 0.0005 |  |
| 1,2-Dichlorobenzene                       | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | <0.0005      | <0.0005  | <0.0005  |  |
| 1,2-Dichloroethane                        | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | <0.0005      | < 0.0005 | <0.0005  |  |
| 1,2-Dichloropropane                       | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | <0.0005      | <0.0005  | <0.0005  |  |
| 1,3-Dichlorobenzene                       | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | <0.0005      | <0.0005  | <0.0005  |  |
| 1,4-Dichlorobenzene                       | <0.5                                                            | <0.5         | <0.5     | · n/a          | 0.093E       | <0.0005      | <0.0005  | <0.0005  |  |
| Acetone                                   | <0.5                                                            | <0.5         | <0.5     | n/a            | 0.055E       | 0.0640E      | 0.002    | 0.017E   |  |
| Benzene                                   | <0.5                                                            | <0.5         | <0.5     | n/a            | 0.046E       | 0.0521E      | 0.005    | 0.022E   |  |
| Bromodichloromethane                      | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | <0.0005      | < 0.0005 | < 0.0005 |  |
| Bromoform                                 | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | <0.0005      | <0.0005  | <0.0005  |  |
| Bromomethane                              | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | <0.0005      | < 0.0005 | < 0.0005 |  |
| Carbon Tetrachloride                      | <0.5                                                            | <0.5         | <0.5     | n/a            | 0.004        | <0.0005      | < 0.0005 | < 0.0005 |  |
| Chlorobenzene                             | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | 0.0006       | < 0.0005 | <0.0005  |  |
| Chlorodibromomethane                      | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | <0.0005      | <0.0005  | <0.0005  |  |
| Chloroethane                              | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | < 0.0005     | < 0.0005 | <0:0005  |  |
| Chloroform                                | <0.5                                                            | <0.5         | <0.5     | . n/a          | 0.0012       | 0.0007       | < 0.0005 | < 0.0005 |  |
| Chloromethane                             | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | 0.0006       | < 0.0005 | 0.002    |  |
| cis-1,3-Dichloropropene                   | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | <0.0005      | < 0.0005 | < 0.0005 |  |
| Ethylbenzene                              | <0.5                                                            | <0.5         | <0.5     | n/a            | 0.050E       | 0.0008       | <0.0005  | 0.001    |  |
| MEK (2-Butanone)                          | <0.5                                                            | <0.5         | <0.5     | n/a            | 0.022        | 0.1115E      | 0.003    | 0.002    |  |
| Methylene Chloride                        | <0.5                                                            | <0.5         | <0.5     | n/a            | 0.011E       | 0.0174E      | <0.0005  | 0.004    |  |
| MTBE                                      | <0.5                                                            | <0.5         | <0.5     | n/a            | 0.012E       | 0.0055       | <0.0005  | < 0.0005 |  |
| Tetrachloroet <b>hene</b>                 | <0.5                                                            | <0.5         | <0.5     | n/a            | 0.031E       | 0.3028E      | 0.018E   | 0.075E   |  |
| Toluene                                   | <0.5                                                            | <0.5         | <0.5     | n/a            | 0.090E       | 0.0128E      | 0.001    | 0.002    |  |
| trans-1.2-Dichloroethene                  | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | < 0.0005     | < 0.0005 | < 0.0005 |  |
| trans-1,3-Dichloropropene                 | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | <0.0005      | < 0.0005 | < 0.0005 |  |
| Trichloroethene                           | <0.5                                                            | <0.5         | <0.5     | n/a            | 0.009        | 0.0010       | <0.0005  | <0.0005  |  |
| Trichlorofluoromethane                    | <0.5                                                            | <0.5         | <0.5     | n/a            | 0.0010       | <0.0007      | < 0.0007 | < 0.0007 |  |
| Vinyl Chloride                            | <0.5                                                            | <0.5         | <0.5     | n/a            | <0.0005      | <0.0005      | <0.0005  | < 0.0005 |  |
| Xylene, m+p                               | <0.5                                                            | <0.5         | <0.5     | n/a            | 0.210E       | 0.0021       | <0.0005  | 0.002    |  |
| Xylene, o                                 | <0.5                                                            | <0.5         | <0.5     | n/a            | 0.102E       | 0.007        | < 0.0005 | 0.001    |  |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

Summary of Vapor Analytical Results: SVM-3

| Volatile Organic Compounds<br>Method T0-1 |              |          |          | nne SVE Op<br>onths: 10/21 | _       |         |              |              |
|-------------------------------------------|--------------|----------|----------|----------------------------|---------|---------|--------------|--------------|
| Matrix: Vapor                             | 3/11/04      | 3/24/04* | 04/07/04 | 04/21/04                   | 5/6/04* | 5/24/04 | 6/10/04      | 6/23/04      |
|                                           | μ <b>g/L</b> | μg/L     | μg/L     | μ <b>g/L</b>               | μg/Ļ    | μg/L    | μ <b>g/L</b> | μ <b>g/L</b> |
| 1,1,1-Trichloroethane                     | <0.0005      | <0.5     | <0.0005  | <0.0005                    | <0.5    | <0.5    | <0.5         | <0.5         |
| 1,1,2,2-Tetrachloroethane                 | <0.0005      | <0.5     | <0.0005  | <0.0005                    | <0.5    | <0.5    | <0.5         | <0.5         |
| 1,1,2-Trichloroethane                     | <0.0005      | <0.5     | <0.0005  | <0.0005                    | <0.5    | <0.5    | <0.5         | <0.5         |
| 1,1-Dichloroethane                        | < 0.0005     | <0.5     | <0.0005  | <0.0005                    | <0.5    | <0.5    | <0.5         | <0.5         |
| 1,1-Dichloroethene                        | <0.0005      | <0.5     | <0.0005  | <0.0005                    | <0.5    | <0.5    | <0.5         | <0.5         |
| 1,2-Dichlorobenzene                       | < 0.0005     | <0.5     | <0.0005  | <0.0005                    | <0.5    | <0.5    | <0.5         | <0.5         |
| 1,2-Dichloroethane                        | <0.0005      | <0.5     | <0.0005  | < 0.0005                   | <0.5    | <0.5    | <0.5         | <0.5         |
| 1,2-Dichloropropane                       | <0.0005      | <0.5     | <0.0005  | <0.0005                    | <0.5    | <0.5    | <0.5         | <0.5         |
| 1,3-Dichlorobenzene                       | <0.0005      | <0.5     | <0.0005  | <0.0005                    | <0.5    | <0.5    | <0.5         | <0.5         |
| 1,4-Dichlorobenzene                       | <0.0005      | < 0.5    | <0.0005  | <0.0005                    | <0.5    | <0.5    | <0.5         | <0.5         |
| Acetone                                   | 0.0105E      | <0.5     | 0.0214E  | 0.0233E                    | <0.5    | <0.5    | <0.5         | <0.5         |
| Benzene                                   | 0.0162E      | <0.5     | 0.0358E  | 0.0395E                    | <0.5    | <0.5    | <0.5         | <0.5         |
| Bromodichloromethane                      | < 0.0005     | <0.5     | <0.0005  | <0.0005                    | <0.5    | <0.5    | < 0.5        | <0.5         |
| Bromoform                                 | <0.0005      | <0.5     | < 0.0005 | < 0.0005                   | <0.5    | < 0.5   | <0.5         | · <0.5       |
| Bromomethane                              | <0.0005      | <0.5     | < 0.0005 | < 0.0005                   | <0.5    | <0.5    | <0.5         | <0.5         |
| Carbon Tetrachloride                      | <0.0005      | <0.5     | <0.0005  | <0.0005                    | <0.5    | < 0.5   | <0.5         | < 0.5        |
| Chlorobenzene                             | <0.0005      | <0.5     | <0.0005  | <0.0005                    | <0.5    | <0.5    | < 0.5        | < 0.5        |
| Chlorodibromomethane                      | <0.0005      | <0.5     | <0.0005  | < 0.0005                   | <0.5    | < 0.5   | <0.5         | <0.5         |
| Chloroethane                              | <0.0005      | <0.5     | <0.0005  | <0.0005                    | <0.5    | < 0.5   | <0.5         | <0.5         |
| Chloroform                                | <0.0005      | <0.5     | <0.0005  | < 0.0005                   | <0.5    | <0.5    | <0.5         | <0.5         |
| Chloromethane                             | < 0.0005     | <0.5     | < 0.0005 | <0.0005                    | <0.5    | <0.5    | < 0.5        | <0.5         |
| cis-1,3-Dichloropropene                   | <0.0005      | <0.5     | < 0.0005 | < 0.0005                   | <0.5 ·  | <0.5    | <0.5         | <0.5         |
| Ethylbenzene                              | <0.0005      | <0.5     | < 0.0005 | <0.0005                    | <0.5    | <0.5    | <0.5         | <0.5         |
| MEK (2-Butanone)                          | 0.0125E      | <0.5     | 0.0053   | 0.0040                     | <0.5    | <0.5    | <0.5         | <0.5         |
| Methylene Chloride                        | <0.0005      | <0.5     | 0.0064   | 0.0054                     | <0.5    | <0.5    | <0.5         | <0.5         |
| MTBE                                      | <0.0005      | <0.5     | < 0.0005 | <0.0005                    | <0.5    | <0.5    | <0.5         | <0.5         |
| Tetrachloroethene                         | 0.0394E      | <0.5     | 0.1863E  | <0.0005                    | <0.5    | <0.5    | <0.5         | <0.5         |
| Toluene                                   | 0.0009       | <0.5     | 0.0041   | 0.0056                     | <0.5    | <0.5    | <0.5         | <0.5         |
| trans-1,2-Dichloroethene                  | <0.0005      | <0.5     | <0.0005  | <0.0005                    | <0.5    | <0.5    | <0.5         | <0.5         |
| trans-1,3-Dichloropropene                 | <0.0005      | <0.5     | <0.0005  | <0.0005                    | <0.5    | <0.5    | <0.5         | <0.5         |
| Trichloroethene                           | <0.0005      | <0.5     | < 0.0005 | <0.0005                    | <0.5    | <0.5    | <0.5         | <0.5         |
| Trichlorofluoromethane                    | < 0.0007     | <0.5     | < 0.0007 | <0.0007                    | <0.5    | <0.5    | <0.5         | <0.5         |
| Vinyl Chloride                            | <0.0005      | <0.5     | < 0.0005 | <0.0005                    | <0.5    | <0.5    | <0.5         | <0.5         |
| Xylene, m+p                               | <0.0005      | <0.5     | - 0.0010 | <0.0005                    | <0.5    | <0.5    | <0.5         | <0.5         |
| Xylene, o                                 | <0.0005      | <0.5     | <0.0005  | <0.0005                    | <0.5    | <0.5    | <0.5         | <0.5         |

As of 1/14/04, vapor samples analyzed by Chemtech.

E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

**Summary of Vapor Analytical Results: SVM-3** 

| Volatile Organic Compounds<br>Method T0-1 |         |          |          | tine SVE O |         |          |      |              |
|-------------------------------------------|---------|----------|----------|------------|---------|----------|------|--------------|
| Matrix: Vapor                             | 7/7/04* | 7/21/04* | 8/12/04* | 8/30/04*   | 9/9/04* | 9/22/04* |      |              |
|                                           | μg/L    | μg/L     | μg/L     | μg/L       | μg/L    | μg/L     | μg/L | μg/L         |
| 1,1,1-Trichloroethane                     | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      | <del>↓</del> |
| 1,1,2,2-Tetrachloroethane                 | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      | <u> </u>     |
| 1,1,2-Trichloroethane                     | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      | ļ            |
| 1,1-Dichloroethane                        | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      | ļ            |
| 1,1-Dichloroethene                        | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| 1,2-Dichlorobenzene                       | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| 1,2-Dichloroethane                        | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      | ŀ .          |
| 1,2-Dichloropropane                       | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| 1,3-Dichlorobenzene                       | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| 1,4-Dichlorobenzene                       | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| Acetone                                   | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| Benzene                                   | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | < 0.5    |      | •            |
| Bromodichloromethane                      | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      | ·            |
| Bromoform                                 | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| Bromomethane                              | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| Carbon Tetrachloride                      | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| Chlorobenzene                             | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| Chlorodibromomethane                      | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| Chloroethane                              | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| Chloroform                                | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| Chloromethane                             | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| cis-1,3-Dichloropropene                   | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| Ethylbenzene                              | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| MEK (2-Butanone)                          | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| Methylene Chloride                        | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| МТВЕ                                      | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| Tetrachloroethene                         | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| Toluene                                   | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| trans-1,2-Dichloroethene                  | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| trans-1,3-Dichloropropene                 | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| Trichloroethene                           | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| Trichlorofluoromethane                    | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| Vinyl Chloride                            | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| Xylene, m+p                               | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |
| Xylene, o                                 | <0.5    | <0.5     | <0.5     | <0.5       | <0.5    | <0.5     |      |              |

As of 1/14/04, vapor samples analyzed by Chemtech.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Table 1

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Analytical Results: SVM-4

| Volatile Organic Compounds | Initial SVE Operating Period (42 Days: 9/9/03 thru 10/20/03) |                |                |                  |                |                |  |  |  |  |
|----------------------------|--------------------------------------------------------------|----------------|----------------|------------------|----------------|----------------|--|--|--|--|
| Method T0-1                |                                                              | (42            | Days: 9/9/9    | 03 thru 10/2     | 20/03) ·       |                |  |  |  |  |
| Matric: Vapor              | 9/18/03                                                      | 9/24/03        | 10/2/03        | 10/8/03          | 10/15/03       | 10/23/03       |  |  |  |  |
|                            | μg/10L                                                       | μ <b>g/10L</b> | μ <b>g/10L</b> | μ <b>g/10ί</b> . | μ <b>g/10L</b> | μ <b>g/10L</b> |  |  |  |  |
| 1,1,1-Trichloroethane      | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| 1,1,2,2-Tetrachloroethane  | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| 1,1,2-Trichloroethane      | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| 1,1-Dichloroethane         | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| 1,1-Dichloroethene         | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| 1,2-Dichlorobenzene        | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| 1,2-Dichloroethane         | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| 1,2-Dichloropropane        | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| 1,3-Dichlorobenzene        | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| 1,4-Dichlorobenzene        | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| Acetone                    | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | 9.20           |  |  |  |  |
| Benzene                    | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| Bromodichloromethane       | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| Bromoform                  | <5.00                                                        | <5.00°         | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| Bromomethane               | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| Carbon Tetrachloride       | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| Chlorobenzene              | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| Chlorodibromomethane       | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| Chloroethane               | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| Chloroform                 | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| Chloromethane              | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| cis-1,3-Dichloropropene    | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| Ethylbenzene               | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| Methyl Ethyl Ketone (MEK)  | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| Methylene Chloride         | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| МТВЕ                       | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | 9.68           |  |  |  |  |
| Tetrachloroethene          | 13.8                                                         | 5. <b>36</b>   | 5.48           | 5.22             | <5.00          | <5.00          |  |  |  |  |
| Toluene                    | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| trans-1,2-Dichloroethene   | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| trans-1,3-Dichloropropene  | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| Trichloroethene            | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| Trichlorofluoromethane     | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| Vinyl Chloride             | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| Xylene, m+p                | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |
| Xylene, o                  | <5.00                                                        | <5.00          | <5.00          | <5.00            | <5.00          | <5.00          |  |  |  |  |

Note: Results are reported per iOL (Tenax tube volume).

Table 1

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: SVM-4

| Volatile Organic Compounds |              |              | Rou          | itine SVE O  | perating Pe  | riod         |              |              |
|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Method T0-1                |              |              | (34 M        | onths: 10/2  | 1/03 thru 8/ | 25/06)       |              |              |
| Matrix: Vapor              | 11/12/03     | 11/26/03     | 12/10/03     | 12/22/03     | 01/14/04     | 01/30/04     | 02/11/04     | 02/25/04     |
|                            | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> |
| 1,1,1-Trichloroethane      | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,1,2,2-Tetrachloroethane  | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,1,2-Trichloroethane      | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,1-Dichloroethane         | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | < 0.0005     | <0.0005      | <0.0005      |
| 1,1-Dichloroethene         | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,2-Dichlorobenzene        | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,2-Dichloroethane         | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,2-Dichloropropane        | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | <0.0005      |
| 1,3-Dichlorobenzene        | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | < 0.0005     |
| 1,4-Dichlorobenzene        | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | < 0.0005     |
| Acetone                    | <0.5         | <0.5         | <0.5         | n/a          | 0.010        | <0.0005      | 0.003        | 0.008        |
| Benzene                    | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | 0.0216E      | 0.008        | 0.005        |
| Bromodichloromethane       | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | < 0.0005     |
| Bromoform                  | <0.5         | <0.5         | <0.5         | n/a          | < 0.0005     | < 0.0005     | < 0.0005     | < 0.0005     |
| Bromomethane               | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | <0.0005      | < 0.0005     | < 0.0005     |
| Carbon Tetrachloride       | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | < 0.0005     | < 0.0005     | < 0.0005     |
| Chlorobenzene              | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | <0.0005      | < 0.0005     | < 0.0005     |
| Chlorodibromomethane       | <0.5         | <0.5         | <0.5         | n/a          | < 0.0005     | < 0.0005     | <0.0005      | < 0.0005     |
| Chloroethane               | <0.5         | <0.5         | <0.5         | n/a          | < 0.0005     | < 0.0005     | < 0.0005     | < 0.0005     |
| Chloroform                 | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | < 0.0005     | <0.0005      | < 0.0005     |
| Chloromethanė              | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | 0.0064       | < 0.0005     | < 0.0005     |
| cis-1.3-Dichloropropene    | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | < 0.0005     |
| Ethylbenzene               | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | <0.0005      | < 0.0005     | < 0.0005     |
| MEK (2-Butanone)           | <0.5         | <0.5         | <0.5         | n/a          | 0.002        | 0.2117E      | 0.010        | 0.003        |
| Methylene Chloride         | <0.5         | <0.5         | <0.5         | n/a          | 0.005        | 0.0047       | 0.002        | < 0.0005     |
| мтве                       | <0.5         | <0.5         | <0.5         | n/a          | 0.0006       | 0.0014       | < 0.0005     | < 0.0005     |
| Tetrachloroethene          | 1.13         | <0.5         | <0.5         | n/a          | 0.005        | 0.2774E      | 0.085E       | 0.043E       |
| Toluene                    | <0.5         | <0.5         | <0.5         | n/a          | 0.0018       | 0.0030       | 0.002        | < 0.0005     |
| trans-1.2-Dichloroethene   | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | <0.0005      | <0.0005      | < 0.0005     |
| trans-1,3-Dichloropropene  | <0.5         | <0.5         | <0.5         | n/a          | < 0.0005     | <0.0005      | < 0.0005     | < 0.0005     |
| Trichloroethene            | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | < 0.0005     | <0.0005      | < 0.0005     |
| Trichlorofluoromethane     | <0.5         | <0.5         | <0.5         | n/a          | <0.0007      | < 0.0007     | < 0.0007     | < 0.0007     |
| Vinyl Chloride             | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | < 0.0005     | <0.0005      | <0.0005      |
| Xylene, m+p                | <0.5         | <0.5         | <0.5         | n/a          | 0.0007       | 0.0008       | 0.001        | < 0.0005     |
| Xylene, o                  | <0.5         | <0.5         | <0.5         | n/a          | <0.0005      | < 0.0005     | <0.0005      | <0.0005      |

n/a = not available; ELS laboratory instrument failure As of 1/14/04, vapor samples analyzed by Chemtech. E=result exceeds calibration range, estimated value.

Table 1

# NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY Summary of Vapor Analytical Results: SVM-4

| Volatile Organic Compounds<br>Method T0-1 |              |              |              | tine SVE Op<br>onths: 10/21/ | •       |              |              |              |
|-------------------------------------------|--------------|--------------|--------------|------------------------------|---------|--------------|--------------|--------------|
| Matrix: Vapor                             | 3/11/04      | 3/24/04*     | 04/07/04     | 04/21/04                     | 5/6/04* | 5/24/04      | 6/10/04      | 6/23/04      |
| · ·                                       | μ <b>g/L</b> | µ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b>                 | μg/L    | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> |
| 1,1,1-Trichloroethane                     | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| 1,1,2,2-Tetrachloroethane                 | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| 1,1,2-Trichloroethane                     | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| 1,1-Dichloroethane                        | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| 1,1-Dichloroethene                        | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| 1,2-Dichlorobenzene                       | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| 1,2-Dichloroethane                        | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| 1,2-Dichloropropane                       | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| 1,3-Dichlorobenzene                       | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| 1,4-Dichlorobenzene                       | <0.0005      | <0.5         | 0.0006       | <0.0005                      | <0.5    | < 0.5        | <0.5         | <0.5         |
| Acetone                                   | 0.0274E      | <0.5         | 0.0137E      | 0.0188E                      | <0:5    | <0.5         | <0.5         | <0.5         |
| Benzene                                   | 0.0033       | <0.5         | 0.0139E      | 0.0451E                      | <0.5    | <0.5         | <0.5         | <0.5         |
| Bromodichloromethane                      | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| Bromoform                                 | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| Bromomethane                              | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | < 0.5        | <0.5         | <0.5         |
| Carbon Tetrachloride                      | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| Chlorobenzene                             | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | < 0.5        |
| Chlorodibromomethane                      | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| Chloroethane                              | <0.0005      | <0.5         | <0.0005      | 0.0007                       | <0.5    | < 0.5        | <0.5         | < 0.5        |
| Chloroform                                | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| Chloromethane                             | 0.0027       | <0.5         | 0.0150E      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| cis-1,3-Dichloropropene                   | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| Ethylbenzene                              | <0.0005      | <0.5         | 0.0005       | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| MEK (2-Butanone)                          | 0.6183E      | <0.5         | 0.0019       | 0.0029                       | <0.5    | <0.5         | <0.5         | <0.5         |
| Methylene Chloride                        | <0.0005      | <0.5         | 0.0055       | 0.0021                       | . <0.5  | <0.5         | <0.5         | <0.5         |
| MTBE                                      | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| Tetrachloroethene                         | 0.3146E      | <0.5         | 0.0785E      | <0.0005                      | 0.5     | <0.5         | < 0.5        | <0.5         |
| Toluene                                   | <0.0005      | <0.5         | 0.0103E      | 0.0030                       | <0.5    | <0.5         | <0.5         | <0.5         |
| trans-1,2-Dichloroethene                  | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| trans-1,3-Dichloropropene                 | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| Trichloroethene                           | <0.0005      | <0.5         | <0.0005      | <0.0005                      | <0.5    | · <0.5       | <0.5         | <0.5         |
| Trichlorofluoromethane                    | <0.0007      | <0.5         | <0.0007      | < 0.0007                     | <0.5    | <0.5         | <0.5         | <0.5         |
| Vinyl Chloride                            | < 0.0005     | <0.5         | <0.0005      | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| Xylene, m+p                               | < 0.0005     | <0.5         | 0.0014       | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |
| Xylene, o                                 | < 0.0005     | <0.5         | 0.0006       | <0.0005                      | <0.5    | <0.5         | <0.5         | <0.5         |

As of 1/14/04, vapor samples analyzed by Chemtech.

E=result exceeds calibration range, estimated value.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

Summary of Vapor Analytical Results: SVM-4

| Volatile Organic Compounds<br>Method T0-1 |              |              |          | tine SVE Op<br>onths: 10/21 |                  |          |      |      |
|-------------------------------------------|--------------|--------------|----------|-----------------------------|------------------|----------|------|------|
| Matrix: Varos:                            | 7/7/04*      | 7/21/04*     | 8/12/04* | 8/30/04*                    | 9/9/04*          | 9/22/04* |      |      |
|                                           | μ <b>g/L</b> | μ <b>g/L</b> | μg/L     | μg/L                        | μg/L             | μg/L     | μg/L | μg/L |
| 1,1,1-Trichloroethane                     | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| 1,1,2,2-Tetrachloroethane                 | <0.5         | <0.5         | <0.5     | <0.5                        | ; <b>&lt;0.5</b> | <0.5     |      |      |
| 1,1,2-Trichloroethane                     | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| 1,1-Dichloroethane                        | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| 1,1-Dichloroethene                        | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| 1,2-Dichlorobenzene                       | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| 1,2-Dichloroethane                        | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| 1,2-Dichloropropane                       | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| 1,3-Dichlorobenzene                       | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| 1,4-Dichlorobenzene                       | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| Acetone                                   | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| Benzene                                   | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| Bromodichloromethane                      | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     | -    |      |
| Bromoform                                 | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     | ,    |      |
| Bromomethane                              | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| Carbon Tetrachloride                      | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| Chlorobenzene                             | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| Chlorodibromomethane                      | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| Chloroethane                              | <0.5         | <0.5         | <0.5     | <0.5                        | . <0.5           | <0.5     |      |      |
| Chloroform                                | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     | _    |      |
| Chloromethane                             | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| cis-1,3-Dichloropropene                   | <0.5         | <0.5         | <0.5     | √<0.5                       | <0.5             | <0.5     |      |      |
| Ethylbenzene                              | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| MEK (2-Butanone)                          | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| Methylene Chloride                        | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     | :    |      |
| МТВЕ                                      | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| Tetrachloroethene                         | <Ö.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| Toluene                                   | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| trans-1,2-Dichloroethene                  | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| trans-1,3-Dichloropropene                 | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| Trichloroethene                           | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| Trichlorofluoromethane                    | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| Vinyl Chloride                            | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| Xylene, m+p                               | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |
| Xylene, o                                 | <0.5         | <0.5         | <0.5     | <0.5                        | <0.5             | <0.5     |      |      |

As of 1/14/04, vapor samples analyzed by Chemtech.

<sup>\*</sup>Analysis performed by Con-Test due to equipment failure at Chemtech

#### Table 2

## NYSDEC Contract No. D004184 Franklin Cleaners, Hempstead, NY

**Summary of Groundwater Analytical Results: ASM-1** 

| Matrix: Groundwald                        |          |              | (:           |               | AS Operatin<br>10/21/03 tl | ng Period<br>nru 8/25/06 | )            |              |              |
|-------------------------------------------|----------|--------------|--------------|---------------|----------------------------|--------------------------|--------------|--------------|--------------|
|                                           | 11/25/03 | 12/23/03     | 1/29/04      | 2/26/04       | 3/25/04                    | 4/22/04                  | 5/25/04      | 6/25/04      | 7/22/04      |
| Volatile Organic Compounds Method OLM04-2 | μg/L     | μ <b>g/L</b> | μ <b>g/L</b> | μg/L          | μg/L                       | μg/L                     | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> |
| Dichlorodifluromethane                    | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| Chloromethane                             | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| /inyl Chloride                            | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| Bromomethane                              | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| Chloroethane                              | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| richlorofluoromethane                     | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| ,1,2-Trichlorotrifluoroethane             | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| ,1-Dichloroethene                         | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| Acetone                                   | <25      | <25          | <25          | <25           | 5.7JB                      | <25                      | <25          | <25          | <25          |
| Carbon Disulfide                          | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| Aethyl tert-butyl Ether                   | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| ſethyl Acetate                            | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| 1ethylene Chloride                        | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| ans-1,2-Dichloroethene                    | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| ,1-Dichloroethane                         | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| cyclohexane                               | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| -Butanone                                 | <25      | <25          | <25          | <25           | <25                        | <25                      | <25          | <25          | <25          |
| arbon Tetrachloride                       | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| is-1,2-Dichloroethene                     | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| hloroform                                 | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| ,1,1-Trichloroethane                      | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| /lethylcyclohexane                        | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| Benzene                                   | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| ,2-Dichloroethane                         | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| richloroethene                            | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| ,2-Dichloropropane                        | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| romodichloromethane                       | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| -Methyl-2-Pentanone                       | <25 .    | <25          | <25          | <25           | <25                        | <25                      | <25          | <25          | <25          |
| oluene                                    | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| 1,3-Dichloropropene                       | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| s-1,3-Dichloropropene                     | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| 1,2-Trichloroethane                       | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| Hexanone                                  | <25      | <25          | <25          | <25           | <25                        | <25                      | <25          | <25          | <25          |
| ibromochloromethane                       | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| 2-Dibromoethane                           | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| etrachloroethene                          | 2.5J     | 1.0J         | <5.0         | 0.59 <b>J</b> | 1.0Ј                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| hlorobenzene                              | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| hylbenzene                                | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |
| /P-Xylenes                                | <5.0     | <5.0         | <5.0         | <5.0          | <5.0                       | <5.0                     | <5.0         | <5.0         | <5.0         |

Summary of Groundwater Analytical Results: ASM-1

| Matrice Groundwater                        |              | Routine AS Operating Period (34 Months: 10/21/03 thru 8/25/06) |              |         |              |               |         |              |         |  |
|--------------------------------------------|--------------|----------------------------------------------------------------|--------------|---------|--------------|---------------|---------|--------------|---------|--|
|                                            | 11/25/03     | 12/23/03                                                       | 1/29/04      | 2/26/04 | 3/25/04      | 4/22/04       | 5/25/04 | 6/25/04      | 7/22/04 |  |
| Volatile Organic Compounds  Method OLM04-2 | μ <b>g/L</b> | μ <b>g/L</b>                                                   | μg/L         | μg/L    | μ <b>g/L</b> | μg/L          | μg/L    | μg/L         | μg/L    |  |
| O-Xylene                                   | <5.0         | <5.0                                                           | <5.0         | <5.0    | <5.0         | <5.0          | <5.0    | <5.0         | <5.0    |  |
| Styrene                                    | <5.0         | <5.0                                                           | <5.0         | <5.0    | <5.0         | <5.0          | <5.0    | <5.0         | <5.0    |  |
| Bromoform                                  | <5.0         | <5.0                                                           | <5.0         | <5.0    | <5.0         | <5.0          | <5.0    | <5.0         | <5.0    |  |
| Isopropylbenzene                           | <5.0         | <5.0                                                           | <5.0         | <5.0    | <5.0         | <5.0          | <5.0    | <5.0         | <5.0    |  |
| 1,1,2,2-Tetrachloroethane                  | <5.0         | <5.0                                                           | <5.0         | <5.0    | <5.0         | <5.0          | <5.0    | <5.0         | <5.0    |  |
| 1,3-Dichlorobenzene                        | <5.0         | <5.0                                                           | <5.0         | <5.0    | <5.0         | <5.0          | <5.0    | <5.0         | <5.0    |  |
| 1,4-Dichlorobenzene                        | <5.0         | <5.0                                                           | <5.0         | <5.0    | <5.0         | <5.0          | <5.0    | <5.0         | <5.0    |  |
| 1,2-Dichalorobenzene                       | <5.0         | <5.0                                                           | <5.0         | <5.0    | <5.0         | <5.0          | <5.0    | <5.0         | <5.0    |  |
| 1,2-Dibromo-3-Chloropropane                | <5.0         | <5.0                                                           | <5.0         | <5.0    | <5.0         | <5.0          | <5.0    | <5.0         | <5.0    |  |
| 1,2,4-Trichlorobenzene                     | <5.0         | <5.0                                                           | .<5.0        | <5.0    | <5.0         | <5.0          | <5.0    | <5.0         | <5.0    |  |
| Metals Analyses:<br>Method 2007            | μ <b>g/L</b> | μ <b>g/L</b>                                                   | μ <b>g/L</b> | μg/L    | μ <b>g/L</b> | μ <b>g/</b> L | μg/L    | μ <b>g/L</b> | μg/L    |  |
| fron                                       | 838          | 96.4                                                           | 550          | 520     | 342          | 21700         | 3020    | 3850         | 2450    |  |
| Manganese                                  | 34.3         | 6.0                                                            | 22.5         | 27.4    | 18.2         | 885           | 116     | 805          | 327     |  |

NA = Not Analyzed

NA = Not Analyzed

J = estimated detection above specified detection J = estimated detection above specified detection limit

\*samples collected on October 24, 2003

B = analyte found in trip blank

## **Summary of Groundwater Analytical Results: ASM-1**

| Matrix: Groundwater                        |                 |                 |          |                                                  | AS Operati                                       | -            |                                                  |                                       |                                                |
|--------------------------------------------|-----------------|-----------------|----------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|---------------------------------------|------------------------------------------------|
|                                            |                 | <u> </u>        |          | (34 Months                                       | : 10/21/03                                       | thru 8/25/0  | 6)                                               | ·                                     |                                                |
| Volatile Organic Compounds  Method OLM04-2 | 8/31/04<br>μg/L | 9/22/04<br>μg/L | μg/L     | μ <b>g/L</b>                                     | μg/L                                             | μg/L         | μg/L                                             | μg/L                                  | μ <b>g/L</b>                                   |
| Dichlorodifluromethane                     | <5.0            | <5.0            |          |                                                  |                                                  | <del>-</del> |                                                  |                                       |                                                |
| Chloromethane                              | <5.0            | <5.0            |          | ·                                                |                                                  |              |                                                  |                                       |                                                |
| Vinyl Chloride                             | <5.0            | <5.0            |          |                                                  |                                                  |              |                                                  |                                       | 1                                              |
| Bromomethane                               | <5.0            | <5.0            |          |                                                  |                                                  |              |                                                  |                                       |                                                |
| Chloroethane                               | <5.0            | <5.0            |          |                                                  |                                                  |              |                                                  |                                       |                                                |
| Trichlorofluoromethane                     | <5.0            | <5.0            |          |                                                  | 1                                                |              |                                                  |                                       |                                                |
| 1,1,2-Trichlorotrifluoroethane             | <5.0            | <5.0            |          |                                                  |                                                  |              |                                                  |                                       |                                                |
| 1,1-Dichloroethene                         | <5.0            | <5.0            |          |                                                  |                                                  |              |                                                  |                                       |                                                |
| Acetone                                    | <25             | <25             |          |                                                  |                                                  |              |                                                  |                                       |                                                |
| Carbon Disulfide                           | <5.0            | <5.0            |          | · .                                              |                                                  |              | †                                                |                                       |                                                |
| Methyl tert-butyl Ether                    | <5.0            | <5.0            |          | ·                                                |                                                  |              |                                                  |                                       | <u>†                                      </u> |
| Methyl Acetate                             | <5.0            | <5.0            |          |                                                  |                                                  |              | <del>                                     </del> |                                       |                                                |
| Methylene Chloride                         | <5.0            | <5.0            |          |                                                  |                                                  |              | <del> </del>                                     | · · · · · · ·                         |                                                |
| trans-1,2-Dichloroethene                   | <5.0            | <5.0            | ,        | -                                                |                                                  |              |                                                  | · · · · · · · · · · · · · · · · · · · |                                                |
| 1,1-Dichloroethane                         | <5.0            | <5.0            |          | <b>-</b>                                         |                                                  |              |                                                  |                                       |                                                |
| Cyclohexane                                | <5.0            | <5.0            |          |                                                  |                                                  |              |                                                  |                                       |                                                |
| 2-Butanone                                 | <25             | <25             |          | <del> </del>                                     | <del>                                     </del> |              |                                                  |                                       |                                                |
| Carbon Tetrachloride                       | <5.0            | <5.0            |          | 1                                                | <u> </u>                                         |              |                                                  |                                       |                                                |
| cis-1,2-Dichloroethene                     | <5.0            | <5.0            |          |                                                  |                                                  |              |                                                  |                                       |                                                |
| Chloroform                                 | <5.0            | <5.0            |          |                                                  |                                                  |              |                                                  |                                       | -                                              |
| 1,1,1-Trichloroethane                      | <5.0            | <5.0            |          |                                                  |                                                  |              |                                                  |                                       |                                                |
| Methylcyclohexane                          | <5.0            | <5.0            |          |                                                  | <u> </u>                                         |              |                                                  |                                       |                                                |
| Benzene                                    | <5.0            | <5.0            |          |                                                  |                                                  |              | <del></del>                                      |                                       |                                                |
| 1,2-Dichloroethane                         | <5.0            | <5.0            | -        |                                                  |                                                  |              |                                                  |                                       |                                                |
| Trichloroethene                            | <5.0            | <5.0            | <u> </u> |                                                  |                                                  |              | <del>'</del>                                     |                                       |                                                |
| 1,2-Dichloropropane                        | <5.0            | <5.0            |          |                                                  |                                                  |              | _                                                |                                       | <u> </u>                                       |
| Bromodichloromethane                       | <5.0            | <5.0            |          |                                                  |                                                  |              |                                                  | <del>-</del>                          | <u> </u>                                       |
| 4-Methyl-2-Pentanone                       | <25             | <25             |          | <del>                                     </del> |                                                  |              |                                                  | · ·                                   |                                                |
| Toluene                                    | <5.0            | <5.0            |          |                                                  |                                                  |              |                                                  |                                       |                                                |
| t-1,3-Dichloropropene                      | <5.0            | <5.0            |          |                                                  |                                                  | · ·          |                                                  | -                                     |                                                |
| cis-1,3-Dichloropropene                    | <5.0            | <5.0            |          |                                                  |                                                  |              |                                                  |                                       |                                                |
| 1,1,2-Trichloroethane                      | <5.0            | <5.0            |          | ř                                                |                                                  | •            |                                                  | _                                     |                                                |
| 2-Hexanone                                 | <25             | <25             |          |                                                  |                                                  |              | <u> </u>                                         |                                       |                                                |
| Dibromochloromethane                       | <5.0            | <5.0            |          |                                                  |                                                  |              |                                                  |                                       |                                                |
| 1,2-Dibromoethane                          | <5.0            | <5.0            |          |                                                  | -                                                | ,            |                                                  |                                       |                                                |
| Tetrachloroethene                          | <5.0            | <5.0            |          |                                                  |                                                  |              | _                                                |                                       |                                                |
| Chlorobenzene                              | <5.0            | <5.0            |          |                                                  |                                                  |              |                                                  | <del>-</del>                          |                                                |
| Ethylbenzene                               | <5.0            | <5.0            |          |                                                  |                                                  |              |                                                  |                                       |                                                |
| M/P-Xylenes                                | <5.0            | <5.0            |          |                                                  |                                                  |              | <u> </u>                                         |                                       |                                                |

#### **Summary of Groundwater Analytical Results: ASM-1**

| Matrix: Groundvale                           | Routine AS Operating Period (34 Months: 10/21/03 thru 8/25/06) |              |              |              |              |                                         |              |                  |              |
|----------------------------------------------|----------------------------------------------------------------|--------------|--------------|--------------|--------------|-----------------------------------------|--------------|------------------|--------------|
|                                              | 8/31/04                                                        | 9/22/04      |              |              |              |                                         |              |                  |              |
| Volatile Organic Compounds<br>Method OLM04-2 | μ <b>g/L</b>                                                   | μg/L         | μg/L         | μg/L         | μg/L         | μg/L                                    | μg/L         | μg/L             | μg/L         |
| O-Xylene                                     | <5.0.                                                          | <5.0         |              |              |              |                                         |              |                  |              |
| Styrene                                      | <5.0                                                           | <5.0         |              |              |              |                                         |              |                  |              |
| Bromoform                                    | <5.0                                                           | <5.0         | ٠.           |              |              |                                         |              |                  |              |
| Isopropylbenzene                             | <5.0                                                           | <5.0         |              |              |              |                                         |              |                  |              |
| 1,1,2,2-Tetrachloroethane                    | <5.0                                                           | <5.0         | i.           |              |              |                                         |              |                  |              |
| 1,3-Dichlorobenzene                          | <5.0                                                           | <5.0         |              |              |              |                                         |              |                  |              |
| 1,4-Dichlorobenzene                          | <5.0                                                           | <5.0         |              |              |              |                                         |              |                  |              |
| 1,2-Dichalorobenzene                         | <5.0                                                           | <5.0         |              |              |              |                                         |              |                  |              |
| 1,2-Dibromo-3-Chloropropane                  | <5.0                                                           | <5.0         |              |              |              | _                                       |              |                  |              |
| 1,2,4-Trichlorobenzene                       | <5.0                                                           | <5.0         |              |              |              |                                         |              |                  |              |
| Metals Analyses<br>Method 2007               | μ <b>g/L</b>                                                   | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b>                            | μ <b>g/L</b> | μ <b>g/L</b><br> | μ <b>g/L</b> |
| Iron                                         | 24300                                                          | 1850         |              |              |              | , , , , , , , , , , , , , , , , , , , , |              |                  |              |
| Manganese                                    | 901                                                            | 175          | ,            |              |              |                                         | ·            |                  |              |

NA = Not Analyzed

NA = Not Analyzed

I = estimated detection above specified detection I = estimated detection above specified detection limit

<sup>\*</sup>samples collected on October 24, 2003

B = analyte found in trip blank

## Summary of Groundwater Analytical Results: ASM-2

| Matrix: Groundwales                          |              | Routine AS Operating Period (34 Months: 10/21/03 thru 8/25/06) |              |              |         |         |         |                   |         |
|----------------------------------------------|--------------|----------------------------------------------------------------|--------------|--------------|---------|---------|---------|-------------------|---------|
|                                              | 11/25/03     | 12/23/03                                                       | 1/29/04      | 2/26/04      | 3/25/04 | 4/22/04 | 5/25/04 | 6/25/04           | 7/22/04 |
| Volatile Organic Compounds<br>Method OLM04-2 | μ <b>g/L</b> | μ <b>g/L</b>                                                   | μ <b>g/L</b> | μ <b>g/L</b> | μg/L    | μg/L    | μg/L    | μ <b>g/L</b>      | μg/L    |
| Dichlorodifluromethane                       | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| Chloromethane                                | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| Vinyl Chloride                               | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| Bromomethane                                 | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| Chloroethane                                 | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| Γrichlorofluoromethane                       | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| 1,1,2-Trichlorotrifluoroethane               | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| 1,1-Dichloroethene                           | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| Acetone                                      | <25          | <25                                                            | <25          | <25          | 6.3JB   | <25     | <25     | <25               | <25     |
| Carbon Disulfide                             | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| Methyl tert-butyl Ether                      | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| Methyl Acetate                               | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0 <sub>±</sub> | <5.0    |
| Methylene Chloride                           | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| rans-1,2-Dichloroethene                      | <5.0         | <5.0                                                           | - <5.0       | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| 1,1-Dichloroethane                           | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| Cyclohexane                                  | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| 2-Butanone                                   | <25          | <25                                                            | <25          | <25          | <25     | <25     | <25     | <25               | <25     |
| Carbon Tetrachloride                         | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| sis-1,2-Dichloroethene                       | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| Chloroform                                   | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| 1,1,1-Trichloroethane                        | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| Methylcyclohexane                            | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| Benzene                                      | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| 1,2-Dichloroethane                           | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| Trichloroethene                              | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| 1,2-Dichloropropane                          | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| 3romodichloromethane                         | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| 1-Methyl-2-Pentanone                         | <25          | <25                                                            | <25          | <25          | <25     | <25     | <25     | <25               | <25     |
| Гoluene                                      | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| -1,3-Dichloropropene                         | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| is-1,3-Dichloropropene                       | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| 1,1,2-Trichloroethane                        | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| 2-Hexanone                                   | <25          | <25                                                            | <25          | <25          | <25     | <25     | <25     | <25               | <25     |
| Dibromochloromethane                         | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| ,2-Dibromoethane                             | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| letrachloroethene                            | 2.8J         | 4.2J                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| Chlorobenzene                                | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| Ethylbenzene                                 | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |
| M/P-Xylenes                                  | <5.0         | <5.0                                                           | <5.0         | <5.0         | <5.0    | <5.0    | <5.0    | <5.0              | <5.0    |

**Summary of Groundwater Analytical Results: ASM-2** 

| Matrix: Groundwaler.                         | ·<br>!   | Routine AS Operating Period (34 Months: 10/21/03 thru 8/25/06) |              |              |              |              |              |                |         |
|----------------------------------------------|----------|----------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|----------------|---------|
|                                              | 11/25/03 | 12/23/03                                                       | 1/29/04      | 2/26/04      | 3/25/04      | 4/22/04      | 5/25/04      | 6/25/04        | 7/22/04 |
| Volatile Organic Compounds<br>Method OLM04-2 | μg/L     | μg/L                                                           | μg/L         | μg/L         | μg/L         | μg/L         | μ <b>g/L</b> | μ <b>g/L</b>   | μg/L    |
| O-Xylene                                     | <5.0     | <5.0                                                           | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0           | <5.0    |
| Styrene                                      | <5.0     | <5.0                                                           | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0           | <5.0    |
| 3romoform                                    | <5.0     | <5.0                                                           | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0           | <5.0    |
| sopropylbenzene                              | <5.0     | <5.0                                                           | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0           | <5.0    |
| 1,1,2,2-Tetrachloroethane                    | <5.0     | <5.0                                                           | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0           | <5.0    |
| ,3-Dichlorobenzene                           | <5.0     | <5.0                                                           | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0           | <5.0    |
| ,4-Dichlorobenzene                           | <5.0     | <5.0                                                           | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0           | <5.0    |
| ,2-Dichalorobenzene                          | <5.0     | <5.0                                                           | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0           | <5.0    |
| ,2-Dibromo-3-Chloropropane                   | <5.0     | <5.0                                                           | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0           | <5.0    |
| ,2,4-Trichlorobenzene                        | <5.0     | <5.0                                                           | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0           | <5.0    |
| Metals Analyses:<br>Method:2007              | μg/L     | μg/L                                                           | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> | μ <b>g/L</b> _ | μg/L    |
| ron                                          | 2170     | 285                                                            | 179          | 158          | 115          | 11500        | 3820         | 2770           | 3920    |
| Manganese                                    | 77.0     | 189                                                            | 5.3          | 12.6         | 3.8J         | 587          | 110          | 607            | 1340    |

JA = Not Analyzed

samples collected on October 24, 2003

<sup>=</sup> estimated detection above specified detection

## **Summary of Groundwater Analytical Results: ASM-2**

| Matrix: Groundwater                        | Routine AS Operating Period (34 Months: 10/21/03 thru 8/25/06) |              |                                       |              |      |      |       |      |              |
|--------------------------------------------|----------------------------------------------------------------|--------------|---------------------------------------|--------------|------|------|-------|------|--------------|
|                                            | 8/31/04                                                        | 9/22/04      | <u> </u>                              |              | T    |      | ŕ – – | Γ    | · .          |
| Volatile Organic Compounds  Method OLM04-2 | μ <b>g/L</b>                                                   | μ <b>g/L</b> | μg/L                                  | μ <b>g/L</b> | μg/L | μg/L | μg/L  | μg/L | μ <b>g/L</b> |
| Dichlorodifluromethane                     | <5.0                                                           | <5.0         |                                       |              |      |      |       |      |              |
| Chloromethane                              | <5.0                                                           | <5.0         |                                       |              |      | ,    |       |      |              |
| Vinyl Chloride                             | <5.0                                                           | <5.0         |                                       |              |      |      |       |      |              |
| Bromomethane                               | <5.0                                                           | <5.0         |                                       |              |      | _    |       |      |              |
| Chloroethane                               | < <b>5.0</b> ·                                                 | <5.0         |                                       |              |      |      |       |      |              |
| Trichlorofluoromethane                     | <5.0                                                           | <5.0         |                                       |              |      |      |       |      |              |
| 1,1,2-Trichlorotrifluoroethane             | <5.0                                                           | <5.0         |                                       | _            |      |      |       |      |              |
| 1,1-Dichloroethene                         | <5.0                                                           | <5.0         |                                       |              |      |      |       |      |              |
| Acetone                                    | <25                                                            | <25          |                                       |              |      |      |       |      |              |
| Carbon Disulfide                           | <5.0                                                           | <5.0         |                                       |              |      |      |       |      |              |
| Methyl tert-butyl Ether                    | <5.0                                                           | <5.0         |                                       |              |      |      |       |      |              |
| Methyl Acetate                             | <5.0                                                           | <5.0         |                                       |              |      | _    |       | . 4. |              |
| Methylene Chloride                         | <5.0                                                           | <5.0         |                                       |              | _    |      |       |      |              |
| trans-1,2-Dichloroethene                   | <5.0                                                           | <5.0         | ~                                     |              |      |      |       | ;    |              |
| 1,1-Dichloroethane                         | <5.0                                                           | <5.0         |                                       | -            |      |      |       |      |              |
| Cyclohexane                                | <5.0                                                           | <5.0         |                                       |              |      |      | _     |      |              |
| 2-Butanone                                 | <25                                                            | <25          |                                       |              |      |      |       |      |              |
| Carbon Tetrachloride                       | <5.0                                                           | <5.0         |                                       |              |      |      |       |      |              |
| cis-1,2-Dichloroethene                     | <5.0                                                           | <5.0         |                                       |              |      | _    |       |      |              |
| Chloroform                                 | <5.0                                                           | <5.0         |                                       |              |      |      |       |      |              |
| 1,1,1-Trichloroethane                      | <5.0                                                           | <5.0         |                                       |              |      |      | -     |      |              |
| Methylcyclohexane                          | <5.0                                                           | <5.0         |                                       |              |      |      |       |      |              |
| Benzene                                    | <5.0                                                           | <5.0         |                                       |              |      |      |       |      |              |
| 1,2-Dichloroethane                         | <5.0                                                           | <5.0         |                                       |              |      |      |       | _    |              |
| Trichloroethene                            | <5.0                                                           | <5.0         |                                       |              |      |      |       |      |              |
| 1,2-Dichloropropane                        | <5.0                                                           | <5.0         |                                       |              |      |      |       |      |              |
| Bromodichloromethane                       | <5.0                                                           | <5.0         |                                       | ;            |      |      |       |      |              |
| 4-Methyl-2-Pentanone                       | <25                                                            | <25          |                                       |              |      |      |       |      |              |
| Toluene                                    | <5.0                                                           | <5.0         |                                       |              |      |      |       |      |              |
| t-1,3-Dichloropropene                      | <5.0                                                           | <5.0         | · · · · · · · · · · · · · · · · · · · |              |      |      |       |      |              |
| cis-1,3-Dichloropropene                    | <5.0                                                           | <5.0         |                                       |              |      |      |       |      | •            |
| 1,1,2-Trichloroethane                      | <5.0                                                           | <5.0         |                                       | <u> </u>     |      |      |       | ,    |              |
| 2-Hexanone                                 | <25                                                            | <25          |                                       |              |      | -    |       |      |              |
| Dibromochloromethane                       | <5.0                                                           | <5.0         |                                       |              |      | _    |       |      | _            |
| 1,2-Dibromoethane                          | <5.0                                                           | <5.0         |                                       | <u> </u>     |      |      |       |      |              |
| Tetrachloroethene                          | <5.0                                                           | <5.0         |                                       |              |      |      |       |      |              |
| Chlorobenzene                              | <5.0                                                           | <5.0         |                                       |              |      |      |       |      |              |
| Ethylbenzene                               | <5.0                                                           | <5.0         |                                       |              |      |      |       |      |              |
| M/P-Xylenes                                | <5.0                                                           | <5.0         |                                       |              |      |      |       |      |              |

**Summary of Groundwater Analytical Results: ASM-2** 

| Matrix: Groundvalez-                         | ,       | Routine AS Operating Period (34 Months: 10/21/03 thru 8/25/06) |              |      |              |              |      | ٠.             |              |
|----------------------------------------------|---------|----------------------------------------------------------------|--------------|------|--------------|--------------|------|----------------|--------------|
|                                              | 8/31/04 | 31/04 9/22/04                                                  |              |      |              |              |      |                | •            |
| Volatile Organic Compounds<br>Method OLM04-2 | μg/L    | μ <b>g/L</b>                                                   | μ <b>g/L</b> | μg/L | μ <b>g/L</b> | μg/L         | μg/L | μg/L           | μ <b>g/L</b> |
| O-Xylene                                     | <5.0    | <5.0                                                           | l            |      |              |              |      |                | •            |
| Styrene                                      | <5.0    | <5.0                                                           |              |      |              |              |      | ,              |              |
| Bromoform                                    | <5.0    | <5.0                                                           |              |      |              |              |      |                |              |
| Isopropylbenzene                             | <5.0    | <5.0                                                           |              |      |              |              |      | ]              |              |
| 1,1,2,2-Tetrachloroethane                    | <5.0    | <5.0                                                           |              |      |              |              |      |                |              |
| 1,3-Dichlorobenzene                          | <5.0    | <5.0                                                           |              |      |              |              |      |                |              |
| 1,4-Dichlorobenzene                          | <5.0    | <5.0                                                           |              |      |              |              |      |                |              |
| 1,2-Dichalorobenzene                         | <5.0    | <5.0                                                           |              |      |              |              | ·    |                |              |
| 1,2-Dibromo-3-Chloropropane                  | <5.0    | <5.0                                                           |              |      |              |              |      |                |              |
| 1,2,4-Trichlorobenzene                       | <5.0    | <5.0                                                           |              |      |              |              |      |                |              |
| Metals Analyses<br>Method 2007               | μg/L    | μ <b>g/L</b>                                                   | μ <b>g/L</b> | μg/L | μ <b>g/L</b> | μ <b>g/L</b> | μg/L | μ <b>g/L</b> , | μ <b>g/L</b> |
| Iron                                         | 19000   | 2310-                                                          | ,            |      |              |              |      |                |              |
| Manganese                                    | 598     | 198                                                            |              | -    |              |              | •    |                |              |

NA = Not Analyzed

J = estimated detection above specified detection

<sup>\*</sup>samples collected on October 24, 2003

## ATTACHMENT A

## SOIL VAPOR EXTRACTION SYSTEM DOWNTIME FORMS

## Soil Vapor Extraction (SVE) System Down-Time Form

| System Phase / Operating Period (circle one):                                                    |
|--------------------------------------------------------------------------------------------------|
| Technician: Laple (1) Performance Test (2) Initial (3) Routine                                   |
| Company: Thuraspect                                                                              |
| System down on arrival? No Yes Date 8/16/04 Time 14:55                                           |
| SVE Blower Run Time (hours):at(EXTREMELY IMPORTANT!!!)                                           |
| Current Reading (Cumulative) time                                                                |
| Down-time Begins: Date: 8/15/04 Time: /3/34                                                      |
| Down-time Begins: Date: 8/15/04 Time: /3:34                                                      |
| Description of Cause(s):                                                                         |
|                                                                                                  |
|                                                                                                  |
| Power outage due to weather. (Hurican Charlie residual refects.)                                 |
| 34 min (0.0166)=0.56 hrs. 24.00                                                                  |
| -13.56 hrs run time                                                                              |
| 10 Hthrs down time                                                                               |
| Corrective Action(s) Taken:  Kay reset the systems & Chucked site/wells,  Jand monitored system: |
| <del></del>                                                                                      |
| 15,23 hrs. down time 15,23                                                                       |
| 8.77 hrs runtime 8/16/04 25.67 total                                                             |
| down time                                                                                        |
| System down on departure? No Yes: DateTime                                                       |
| Down-time Ends: Date: 8/16/04 Time: 15:14                                                        |
| SVE Blower Run Time (hours):    at   (EXTREMELY IMPORTANT!!!)                                    |
| Total Down-Time for this period: $\frac{25.67}{(hours)} \frac{8/15/84}{5} + \frac{8/16/8}{5}$    |

# NYSDEC - Franklin Cleaners Soil Vapor Extraction (SVE) System Down-Time Form

| System Phase / Operating Period (circle one):                                                               |
|-------------------------------------------------------------------------------------------------------------|
| Technician: (1) Performance Test (2) Initial (3) Routine                                                    |
| Company: Envirospect                                                                                        |
| 1 .                                                                                                         |
| System down on arrival? No Yes: Date 9/27/04 Time                                                           |
| SVE Blower Run Time (hours): 08739. (at 12'. 57 (EXTREMELY IMPORTANT!!!)  Current Reading (Cumulative) time |
| Down-time Begins: Date: 9/26/04 Time: 12:18*                                                                |
| Description of Cause(s):<br>Low voltage message from System.                                                |
|                                                                                                             |
| <u> </u>                                                                                                    |
| (* estimated date + time of shut down - will be                                                             |
| Confirmed when system autodiater phone bill                                                                 |
| becomes available to view page-out date and                                                                 |
| time.)                                                                                                      |
|                                                                                                             |
|                                                                                                             |
| Corrective Action(s) Taken:                                                                                 |
| Shut off main power switch to system.                                                                       |
| Writed 10 seconds + restarted SVE system                                                                    |
| only. (As System is to remain off!)                                                                         |
| - Waited one hour + system remained running.                                                                |
| area (transformer out of Service, overload.)                                                                |
| anea (transformer sul of Service, over load.)                                                               |
| Will asparch to service and to dear to day.                                                                 |
|                                                                                                             |
| System down on departure? No Yes: DateTime                                                                  |
| Down-time Ends: Date: 9/27/04 Time: 12.51                                                                   |
| SVE Blower Run Time (hours): (EXTREMELY IMPORTANT!!!)  Current Reading (Cumulative) time                    |
| Total Down-Time for this period:  24.55  (hours)                                                            |

#### AIR SPARGING SYSTEM DOWNTIME FORMS

## Air Sparging (AS) System Down-Time Form

| Contain Plans (Orangina Project (citizens)                                                                  |
|-------------------------------------------------------------------------------------------------------------|
| Technician: Ion Guman (1) Performance Test (2) Initial (3) Routine                                          |
|                                                                                                             |
| Company: ENVINOSPECT                                                                                        |
| System down on arrival?    Yes: DateTime                                                                    |
| Hour Meter Reading: 6235-2 at 1342 (EXTREMELY IMPORTANT!!!!)  (AS blower) Current Reading (Cumulative) time |
| Down-time Begins: Date: 07/21/04 Time: /342                                                                 |
| (this may have to be determined by office if not known on site)                                             |
| Description of Cause(s)                                                                                     |
| RUSTINE SHUT DOWN FOR GROWNWATER EVENT.                                                                     |
| TOUTINE SHOT HOW NOW TON GROUPIWATEN EVENT.                                                                 |
| 42 min (0-01EE) = 0.70 hrs                                                                                  |
| 24.00                                                                                                       |
| -13-70 runting                                                                                              |
|                                                                                                             |
| 10.30 hrs down time 7/21/04                                                                                 |
| Corrective Action(s) Taken:                                                                                 |
|                                                                                                             |
| <del></del>                                                                                                 |
| 1)/1                                                                                                        |
|                                                                                                             |
|                                                                                                             |
| (lestarted system after gw event on                                                                         |
|                                                                                                             |
| System down on departure? No Ves: Date 67/34/04 Time 1342                                                   |
| Down-time Ends: Date: 07/22/04 Time: 1/2/                                                                   |
| Hour Meter Reading: 6235,3 at 1121 (EXTREMELY IMPORTANT!!!!)  (AS blower) Current Reading (Cumulative) time |
|                                                                                                             |
| Total Down-Time for this period: 21.65                                                                      |
|                                                                                                             |
| Total Down-Time for this period:                                                                            |
| Total Down-Time for this period:  (hours)                                                                   |

Completed form must be included in each Air Sparging Report (when applicable).

21 min (0.0166) = 0.35 hrs

## Air Sparging (AS) System Down-Time Form

| O .                                                             | System Phase / Operating Period (circle one):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technician: Kay Lopez                                           | (1) Performance Test (2) Initial (3) Routine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Company: Gnvirospect                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | Date 8/16/64 Time 14:55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Hour Meter Reading:                                             | at (EXTREMELY IMPORTANT!!!!)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (AS blower) Current Reading (Cumulative                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Down-time Begins: Date: \$/15                                   | /04 Time: 13:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (this may have to be determined by office if not known on site) | (page-out)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Description of Cause(s)                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MANNEY OUTOAL.                                                  | due to weather Storms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TOWER SECTION                                                   | MAC TO WEST TO THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34 min (0.0162) = 0.56 L                                        | 5 24.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1/3.56 hrs runtime                                              | -13.56<br>12.44 hrs down time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8/15/04                                                         | 8/15/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Corrective Action(s) Taken:                                     | ens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 24,00                                                           | 10.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| - 15,23 down time                                               | 15.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8,77 run time                                                   | 8/14/04 25.67 total down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                 | time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <u> </u>                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| System down on departure? No Yes                                | s: Date Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Down-time Ends: Date:                                           | 0/04 Time: 15:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Hour Meter Reading: (AS blower)  Current Reading (Cumulative    | at (EXTREMELY IMPORTANT!!!!)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Total Down-Time for this period:                                | 25.67 (8/15 to 8/16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 | (hours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Completed form must be included in each Air Sparging Report (when applicable).

## Air Sparging (AS) System Down-Time Form

| System Phase / Operating Period (circle one):                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Technician: Tropas Garagi (1) Performance Test (2) Initial (3) Routine                                                                        |
| Company: Envirosfect                                                                                                                          |
| System down on arrival? Yes: DateTime                                                                                                         |
| Hour Meter Reading: 1156. 4 at 1733 (EXTREMELY IMPORTANT!!!!)  (AS blower) time                                                               |
| Down-time Begins: Date: 08/30/04 Time: 1733                                                                                                   |
| (this may have to be determined by office if not known on site)                                                                               |
| Description of Cause(s)  ROUTINE SHUT DOWN FOR GROUND  WATER EVENT OCCURRING OF /31/64.                                                       |
| WATER EVENT OCCURRING 08/31/64.                                                                                                               |
| AS SYSTEM SHAW PEMAIN OFF AS PER<br>MICHELLE I SWIDOWSKI.                                                                                     |
| Corrective Action(s) Taken:                                                                                                                   |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
| System down on departure? No es: Date 08/31/04 Time 1130                                                                                      |
| Down-time Ends: Date: NA Time:                                                                                                                |
| Hour Meter Reading: 7/56. 4 at 08/31/04 (EXTREMELY IMPORTANT!!!!)  (AS blower) Current Reading (Cumulative) time 1200  Hrs. Avg 30/31 = 30.50 |
| Total Down-Time for this period:  30.50 (hours)  56.17                                                                                        |
| Completed form must be included in each Air Sparging Report (when applicable).                                                                |

## Air Sparging (AS) System Down-Time Form

| System Phase / Operating Period (circle one):                                                             |
|-----------------------------------------------------------------------------------------------------------|
| Technician: Joh Sommo (1) Performance Test (2) Initial (3) Routine                                        |
| Company: Envirospect                                                                                      |
| System down on arrival? No Yes: Date 9/22/24 Time 11:00                                                   |
| Hour Meter Reading: 7156.4 at 11:10 (EXTREMELY IMPORTANT!!!!)  (AS blower) Current Reading (Cumulative)   |
| Down-time Begin Date: 30, 204 Time: 17:33  (this may have to be determined by office if not known on ste) |
| Description of Cause(s) AS System turned off Aug 30, 2004 per Nysbec + Engineer's instructions.           |
| AS system to remain off until further                                                                     |
|                                                                                                           |
|                                                                                                           |
| Corrective Action(s) Taken:                                                                               |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
| System down on departure? No Yes: Date 9 22 04 Time 4:50                                                  |
| own-time Ends: Date: ha Time: ha                                                                          |
| our Meter Reading: 7156-4 at 14:00 (EXTREMELY IMPORTANT!!!!) S blower) Current Reading (Cumulative) time  |
| ept. 1 to 30,2004 (hours)                                                                                 |
|                                                                                                           |

1#K0122



330 Crossways Park Drive, Woodbury, New York 11797-2015 516-364-9890 • 718-460-3634 • Fax: 516-364-9045

e-mail: findingsolutions@db-eng.com

April 16, 2007

#### Principals

Nicholas J. Bartilucci, P.E. President

Henry J. Chlupsa, P.E. Executive Vice President

Steven A. Fangmann, P.E. Senior Vice President

Richard M. Walka Senior Vice President

John A. Mirando, P.E. Vice President

Garrett M. Byrnes, P.E.

Anthony O. Conetta, P.E.

Dennis F. Koehler, P.E. Vice President

Joseph H. Marturano

Kenneth J. Pritchard, P.E. Vice President

Theodore S. Pytlar, Jr. Vice President

Brian M. Veith, P.E. Vice President

#### Senior Associates

Thomas P. Fox, P.G.

Robert L. Haynie, P.E.

William D. Merklin, P.E.

Michael Neuberger, P.E.

Kenneth P. Wenz, Jr., C.P.G.

#### **Associates**

Joseph F Baader Steven M. Cabrera

Rudoiph F. Cannavale

Christopher M. Clement

Ellen R. DeOrsay

Stefanos J. Eapen, R.A.

Joseph A. Fioraliso, P.E.

Christopher W. Francis

Michael R. Hofgren

Sean Pepling, P.G.

Edward J. Reilly

Daniel Shabat, P.E.

Charles J. Wachsmuth, P.E.

Jeffery E. Trad, P.E. Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway, 12th Floor Albany, NY 12233-7013

Franklin Cleaners Site (Site No. 1-30-050) Re: D&B Work Assignment No. D004446-01

Source Area Active Sub-Slab Depressurization System

Construction Inspection Report

D&B No. 2603

Dear Mr. Trad:

The purpose of this letter is to summarize activities completed in support of the installation of the active sub-slab depressurization (SSD) system at the Franklin Cleaners Site Source Area Property, located at 206-208 South Franklin Street in the Incorporated Village of Hempstead, Nassau County, New York. As per the direction of the NYSDEC, the active sub-slab depressurization system was installed to address concentrations of volatile organic compounds (VOCs) that were detected in the soil vapor immediately beneath the basement building floor slab following the decommissioning of the soil vapor extraction system at the site. Presented below is a summary of all activities conducted during the installation of the active SSD system, including installation, start-up and performance testing of the system.

#### **Construction Oversight**

Installation of the active sub-slab depressurization system was performed under subcontract to EnviroTrac, Ltd. during the period of January 9, 2007 through January 19, 2007. Dvirka and Bartilucci Consulting Engineers (D&B) was onsite for the entire duration of the installation to ensure all construction was performed in compliance with the design specifications and the subcontractor's approved System Implementation Plan. Daily construction reports were prepared by D&B throughout duration of the work documenting daily construction activities, on-site visitors and important conversations, Contractor's on-site

CONSULTING ENGINEERS

Jeffery E. Trad
Division of Environmental Remediation
New York State Department of Environmental Conservation
April 16, 2007

Page 2

personnel, material and equipment utilized to perform the Work, and any unusual circumstances encountered such as weather conditions, differing site conditions and environmental issues. Copies of the daily construction reports are provided in Attachment A. Construction photographs taken throughout the installation process to document existing site condition, work progression and work completion are provided in Attachment B.

#### **Suction Point Installation**

A total of four sub-slab depressurization suction points (SDP-1 through SDP-4) were installed through the existing concrete floor slab. The location of each sub-slab depressurization point was pre-determined based on data collected during a pre-installation pilot test, conducted October 9, 2006, defining radius of influence given the respective air flow and vacuum at each well head. Refer to Figure 1 in Attachment C for approximate locations of each suction point.

All the points were installed by core drilling a 6-inch diameter hole through the concrete to the sub-slab soil beneath the basement floor slab. The soil beneath each point was then excavated to a total depth of approximately 18-inches from the top of the basement floor slab. Each installed suction point includes the following: Schedule (SCH) 40 polyvinyl chloride (PVC) dome cap; 3-inch diameter, 0.02 slot SCH 40 PVC screen; 3-inch diameter SCH 40 PVC pipe and fitting; a 3-inch diameter SCH 40 PVC ball valve; and a liquid filled manometer. The space around the below grade piping was filled with No. 2 well gravel to the bottom of the basement floor slab and the annular space between the suction point piping and the floor slab was sealed with 5,000 pounds per square inch (psi), fast-setting, Sakrete concrete. Refer to Figure 2 in Attachment C for an as-built suction point well head detail.

#### Discharge Piping and Equipment Installation

Each of the suction points were connected to common discharge headers installed horizontally along the bottom of the basement ceiling joists. Each common header (total of two) was routed to the building exterior through a penetration on the eastern foundation wall, directly above the basement stairwell. Each header was equipped with a centrifugal fan (Model No. HP190 as manufactured by Fantech) mounted on the exterior building wall. Each fan was equipped with flexible connections to allow for easy access if maintenance is required and condensate bypass fittings to prevent condensate from entering into the fan. All horizontal and vertical discharge pipe runs were secured with uni-strut channel and straps every 6-feet and 8-feet, respectively, and routed such that it would not interfere with normal operations in the basement. Additionally, horizontal pipe runs were sloped in a manner to ensure that condensate drains downward into the ground beneath the slab.

CONSULTING ENGINEERS

Jeffery E. Trad
Division of Environmental Remediation
New York State Department of Environmental Conservation
April 16, 2007

Page 3

Each common header was joined together after the fans into a 4-inch diameter SCH 40 PVC discharge pipe. The discharge pipe was routed along the exterior of the building and terminated approximately 1-foot above the highest extent of the roof. A 4-inch diameter rain cap was installed at the discharge point. The location for the discharge stack was installed in accordance with all requirements stated in the design specifications.

#### **Electrical Work**

The electrical work was completed to provide power to the fans mounted on the exterior side of the basement wall. Flexible electrical conduit and wire was routed from the building owner's electric distribution panel, located in the northwest corner of the basement, to the two blowers located on the exterior basement wall. A disconnect switch with locking cover was then installed on the interior side of the rear basement wall, as a means for disconnecting the fans in the event of an emergency or maintenance event.

#### **Concrete Restoration**

Upon completion of the system installation the entire extent of the existing concrete floor slab was inspected to identify all holes and cracks. All holes and cracks identified were filled with 5000 psi, fast-setting, Sakrete concrete to ensure an adequate seal throughout the basement floor slab, therefore minimizing the potential for short-circuiting of the active SSD system.

#### System Start-Up and Testing

Prior to starting up the active sub-slab depressurization system, all components of the system were inspected to verify the integrity of the installation and ensure that all parts of the system would operate as expected. After the system was inspected, both fans were turned on and operated for a minimum period of two hours. A total of ten temporary vacuum monitoring points were then installed through the basement concrete floor slab, to monitor and ensure that the SSD system was achieving a minimum required vacuum of 0.004 inches of water column (1 pascal). Each temporary monitoring point was constructed of 3/8-inch diameter PVC tubing and sealed at the surface of the floor slab with urethane based caulking.

Each point was monitored using a hand held digital manometer. Based on the results of the post-installation monitoring, each point successfully sustained a minimum negative pressure of 0.004 inches of water. Refer to Figure 3 in Attachment C for results of post-installation monitoring documenting negative pressures recorded at each monitoring point.

CONSULTING ENGINEERS

Jeffery E. Trad
Division of Environmental Remediation
New York State Department of Environmental Conservation
April 16, 2007

Page 4

#### Out of Scope Work

#### • Condensate Trap

Approximately 7 days after successfully starting up the system, a build-up of condensate was observed within the installed discharge piping, ultimately hindering the performance of the system. As a result, per the approval of the NYSDEC, a condensate trap was installed at the low point of the discharge piping to allow condensate to drain downward into the ground beneath the slab. The condensate trap was constructed with ½-inch SCH 80 PVC pipe in an S-type configuration secured to the existing foundation wall with a uni-strut channel, uni-strut straps and concrete wedge anchors. The space between the pipe and the concrete floor slab was sealed with a silicone based sealant.

#### • Electric Work

After successfully wiring the fans to the electric panel originally designated for the installation of the active SSD system, the building owner requested that the wiring be relocated to an alternate electric panel located in the northwest corner of the building basement. As a result, per the approval of the NYSDEC, new flexible electrical conduit and wire was run from the fan disconnect switches to the alternate electric panel.

#### **Performance Monitoring**

After approximately one-month of operation, a visual inspection of the complete system was conducted on February 28, 2007 to identify any leaks in the system, as well as to verify that no air intakes were installed within the vicinity of the system discharge point. Results of the inspection did not identify any leaks in the complete system, nor where there any air intakes located in the vicinity of the system discharge point. At the time of this inspection, indoor air quality was also measured using passive air sampling devices in select locations throughout the existing building. A letter report documenting the results of the indoor air sampling will be submitted under separate cover.

Attached for your records, please find enclosed a copy of the Operations and Maintenance (O&M) Manual, as prepared by EnviroTrac, Ltd. in accordance with the design specifications, documenting the general system description, system operating procedures, emergency shut down procedures, deviations from the original design, as well as warrantees for both the system construction and the system fans.

CONSULTING ENGINEERS

Jeffery E. Trad Division of Environmental Remediation New York State Department of Environmental Conservation April 16, 2007 Page 5

Please do not hesitate to call me at (516) 364-9890 if you have any questions.

Very truly yours,

Frank DeVita Project Manager

FD/PSM(t)/tp Attachments

cc: P. Martorano (D&B)

♦2603\FD03307JT-LTR(R02)

#### ATTACHMENT A

#### DAILY CONSTRUCTION REPORTS



#### **DAILY CONSTRUCTION REPORT**

TITLE Engineer

DATE January 09, 2007 W TH S DAY Χ PROJECT\_Franklin Cleaners Site (on-site) Brite Clear Overcast Rain Snow NYSDEC SITE NO. 1-30-050 WEATHER 50-70 70-85 32-50 85+up NYSDEC CONTRACT NO. D004446 TEMP. To 32 Still Moder High Report **WIND** CONTRACTOR EnviroTrac, Ltd. 1 Dry Humid PROJECT MANAGER Frank DeVita HUMIDITY AVERAGE FIELD FORCE Name of Contractor Function Remarks EnviroTrac, Ltd. SSD System Installer; Decommissioning SVE/AS System Dvirka and Bartilucci Engineer **VISITORS** Time Name Representing Remarks D&B Engineers (Project Manager) 08:30 Frank DeVita EQUIPMENT AT THE SITE: 6" diameter core drill MATERIALS: 4" and 3" SCH 40 PVC Charlotte Pipe NE TrueFit System, 7300, Type 1, ASTM D-2665 (3" PVC cap, 3" PVC coupling) 3" SCH40 PVC, 0.02 slot, well screen U.S. Silica Company Filpro Superior Quartz Filtration Sand Proj. Mgr. PAGE 1 OF 2 PAGES DISTRIBUTION Field Office 2 File

BY Paul Martorano

## **DAILY CONSTRUCTION REPORT**



| PROJECT Franklin Cleaners Site (on-site)                                                                | REPORT NO. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NYSDEC # _1-30-050                                                                                      | DATE <u>1/09/2007</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CONSTRUCTION ACTIVITIES:                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 08:30 - Lock on building door will not open. Building owne                                              | r came down to open.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| - Was told by owner that someone would come @ 9:30 to                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - EnviroTrac decommissioning 2" PVC exhaust for tempora                                                 | ary blower in basement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - Decided to route effluent piping up chimney, then along r                                             | oof 10' West, then up at least                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12-inches above roof.                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - Got access to basement; scope out work to be completed                                                | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| - Marked all holes to be sealed throughout basement.                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10:30 - Core drilled SDP-2 (~4.5" concrete to subsoil), 6" of                                           | diameter hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - First hole seemed to have additional concrete below four                                              | ndation. Moving SDP-2 NW of initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| hole.                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - Core drilled through concrete at second hole. Concrete                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11:30 - Removed ~ 14" soil (18" total depth from top of sla                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - Installed point w/3" cap, 1 foot 3" screen, 3" coupling, and                                          | d 3" PVC to ceiling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11:45 – Drilled SDP-1 (typical to SDP-2)                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12:00 – Drilled SDP-4 (typical to SDP-2)                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12:30 – Drilled SDP-3 (typical to SDP-2)                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12:40 – Resetting SDP-2 (not level)                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12:45 – Excavating soil for SDP-1. Remove ~14" (18" tota                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Point w/3" cap, 1 foot 3" screen, 3" coupling, 3" PVC to cei                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13:10 – Excavated soil for SDP-3. Installed point similar to 13:30 – Installed SDP-4 similar to others. | others.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14:30 – EnviroTrac scope out piping runs from extraction p                                              | oointe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| - Going to install part of 4" PVC exhaust piping on the roof.                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - Attached 4" PVC exhaust pipe to roof, chimney and uppe                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ~12 feet from the adjacent house. Exhaust stack 3.5' from                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - P.Martorano offsite @ 15:30                                                                           | 1 top of foot.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 INTERCOLUTIO OTTORIO (G. 10.00                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                         | And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |
|                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DISTRIBUTION 1 Proj. Mgr.                                                                               | PAGE 2 OF 2 PAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2 Field Office                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 File<br>BY <u>Paul Martorano</u>                                                                      | TITLE Engineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



3 File

#### **DAILY CONSTRUCTION REPORT**

DATE January 10, 2007 W TH S DAY Χ PROJECT\_Franklin Cleaners Site (on-site) Brite NYSDEC SITE NO. 1-30-050 WEATHER Clear Overcast Rain Snow To 32 32-50 50-70 70-85 85+up NYSDEC CONTRACT NO. D004446 TEMP. CONTRACTOR EnviroTrac, Ltd. WIND Still Moder. High Report 2 PROJECT MANAGER Frank DeVita HUMIDITY Dry Moder. Humid AVERAGE FIELD FORCE Name of Contractor Function Remarks EnviroTrac, Ltd. SSD System installer; Decommissioning SVE/AS System Dvirka and Bartilucci Engineer **VISITORS** Time Name Representing Remarks EQUIPMENT AT THE SITE: MATERIALS: (4) 3" PVC IPS 150 PSI Water ball valve - Buna. DISTRIBUTION Proj. Mgr. PAGE 1 OF 2 PAGES Field Office

BY Paul Martorano

TITLE Engineer

#### **DAILY CONSTRUCTION REPORT**

TITLE Engineer

| PROJECT Franklin Cleaners Site (on-site)                                                          | REPORT NO. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NYSDEC # <u>1-30-050</u>                                                                          | DATE <u>1/10/2007</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CONSTRUCTION ACTIVITIES:                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 09:00 - Talked to Steve Gregoretti (building owner) about old exhaust duct in rear of basement.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| He said it was OK to remove so EnviroTrac can install piping.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 09:30 – EnviroTrac prepping to install piping. Plan to run 3" piping from each point.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <del></del>                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| - Installing vertical pipe supports every 6' to floor joist using Kindorf.                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 11:30 – Installed 3" PVC piping from SDP-1 and SDP-2. Running common pipe from SDP-1 "T"          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| to exterior of the building.                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12:30 – Started to run 3" PVC piping from SDP-3 and SDP-4.                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 15:00 – Cut and removed old exhaust duct. Also cut and removed old exhaust tubing from            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| temporary blower. Started to measure and route piping                                             | to the outside, above rear basement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Door.  16:00 Finished running 3" PVC from SDR 3 and SDR                                           | 4 to overior. Plan to finish nining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 16:00 – Finished running 3" PVC from SDP-3 and SDP-4 to exterior. Plan to finish piping tomorrow. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 16:40 – P.Martorano offsite                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TO. TO T INVALIDATION OTHERS                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                   | - Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ·                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office 3 File                                                   | PAGE 2 OF 2 PAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

BY Paul Martorano



2 Field Office

3 File

#### **DAILY CONSTRUCTION REPORT**

TITLE Engineer

CONSULTING ENGINEERS DATE January 11, 2007 W М TH Ŝ DAY Χ PROJECT Franklin Cleaners Site (on-site) NYSDEC SITE NO. 1-30-050 WEATHER **Brite** Overcast Rain Snow 70-85 NYSDEC CONTRACT NO. D004446 TEMP. 85+up Still CONTRACTOR EnviroTrac, Ltd. WIND Moder. High Report 3 No. PROJECT MANAGER Frank DeVita **HUMIDITY** Dry Moder. Humid **AVERAGE FIELD FORCE** Name of Contractor Function Remarks EnviroTrac, Ltd. SSD System Installer: Decommissioning SVE/AS System Dvirka and Bartilucci Engineer VISITORS Time Name Representing Remarks **EQUIPMENT AT THE SITE:** MATERIALS: MINE RALLAC 7 3" Rigid clamps POWER STRUT 3" STD. wall support clamps (2) Fantech HP190 Radon Fans (6) VM2 Manometers DISTRIBUTION Proj. Mgr. PAGE 1 OF 2 PAGES

BY Paul Martorano \_\_\_\_\_\_



| PROJECT <u>Franklin Cleaners Site (on-</u>                                                          | site)                        | REPORT NO. 3                          |  |
|-----------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------|--|
| NYSDEC # <u>1-30-050</u>                                                                            |                              | DATE _1/11/2007                       |  |
| CONSTRUCTION ACTIVITIES:                                                                            | -                            |                                       |  |
| 08:30 - Talked to Steve Gregoretti to have him send someone to unlock basement door.                |                              |                                       |  |
| 09:00 - EnviroTrac called; runnir                                                                   |                              |                                       |  |
| - Plan is to finish piping today and install fans. Electric and concrete work should be tomorrow.   |                              |                                       |  |
| Also will be starting fence removal for SVE/AS system removal.                                      |                              |                                       |  |
| 11:15 - Finished routing interior 3" PVC piping. Going to run piping up side, install fans and then |                              |                                       |  |
| "T" into 4" piping to the exhaust stack.                                                            |                              |                                       |  |
|                                                                                                     |                              | ble couplings. Installed 3" to 4" "T" |  |
| After both fans to connect with 4                                                                   |                              |                                       |  |
| 14:30 - Installing manometers at                                                                    | t each vapor point and at ea | ach fan.                              |  |
| - Plan to run electric and patch c                                                                  | oncrete tomorrow.            |                                       |  |
| - Also will install test points. Mos                                                                |                              |                                       |  |
| 14:45 – P. Martorano offsite; Env                                                                   | /iroTrac finishing manomet   | ers and will lock up when done.       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
|                                                                                                     |                              |                                       |  |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office                                                            |                              | PAGE 2 OF 2 PAGES                     |  |
| 3 File                                                                                              | BY Paul Martorano            | TITLE Engineer                        |  |



TITLE Engineer

DATE January 12, 2007 W TH S DAY Χ PROJECT\_Franklin Cleaners Site (on-site) **WEATHER** Brite NYSDEC SITE NO. 1-30-050 Clear Overcast Rain Snow 32-50 70-85 85+up NYSDEC CONTRACT NO. D004446 TEMP. Still CONTRACTOR EnviroTrac, Ltd. WIND Moder High Report 4 Dry PROJECT MANAGER Frank DeVita HUMIDITY Moder. Humid AVERAGE FIELD FORCE Name of Contractor Function Remarks EnviroTrac, Ltd. SSD System Installer; Decommissioning SVE/AS System Dvirka and Bartilucci Engineer **VISITORS** Time Representing Name Remarks Steven Gregoretti 09:30 **Building** owner On-site to deliver detergents to laundromat. EQUIPMENT AT THE SITE: MATERIALS: Flexible electric conduit. Electric junction boxes Disconnect switches w/locking cover DISTRIBUTION Proj. Mgr. PAGE 1 OF 2 PAGES 2 Field Office 3 File



| PROJECT Franklin Cleaners Site (on-site)                                   | REPORT NO. 4                             |
|----------------------------------------------------------------------------|------------------------------------------|
| NYSDEC # <u>1-30-050</u>                                                   | DATE <u>1/12/2007</u>                    |
| CONSTRUCTION ACTIVITIES:                                                   |                                          |
| 09:00 - EnviroTrac is going to install electric wiring from                | electric nanel near grease tran to each  |
| Fan. They will also install a locked disconnect switch to                  |                                          |
| 09:30 – Steven Gregoretti onsite with worker to unlock b                   |                                          |
| Concrete near basement toilet. He said he would be Ok                      |                                          |
|                                                                            |                                          |
| - Scoped out location for sub-slab vapor test points with                  | Dale. Will install nine points, as such: |
|                                                                            |                                          |
|                                                                            |                                          |
|                                                                            |                                          |
|                                                                            |                                          |
|                                                                            |                                          |
|                                                                            |                                          |
|                                                                            |                                          |
|                                                                            |                                          |
|                                                                            |                                          |
| Concrete notehing may be this afternoon, though most                       | likely Manday                            |
| - Concrete patching may be this afternoon, though most                     |                                          |
| - P. Martorano offsite to D&B. EnviroTrac will call this af                |                                          |
| - Talked to F. DeVita in office about vapor points. Will re                | emove once testing is complete.          |
|                                                                            |                                          |
| 14:00 – EnviroTrac called; ran all electric conduits and in                | nstalled the 9 test points. Installed a  |
| 10 <sup>th</sup> point due to difficulties installing one. Will be on-site |                                          |
| System/testing. Dale also mentioned that system was si                     | tarted and is currently running.         |
|                                                                            |                                          |
|                                                                            |                                          |
|                                                                            |                                          |
|                                                                            |                                          |
|                                                                            |                                          |
|                                                                            |                                          |
|                                                                            |                                          |
|                                                                            |                                          |
|                                                                            |                                          |
|                                                                            |                                          |
|                                                                            |                                          |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office                                   | PAGE 2 OF 2 PAGES                        |
| 3 File                                                                     |                                          |
| BY Paul Martorano                                                          | TITLE Engineer                           |



TITLE Engineer\_

DATE January 16, 2007 W TH S М DAY Χ PROJECT Franklin Cleaners Site (on-site) Brite Clear Overcast Rain Snow NYSDEC SITE NO. 1-30-050 WEATHER To 32 32-50 50-70 70-85 85+up NYSDEC CONTRACT NO. D004446 TEMP. WIND Still Moder High Report CONTRACTOR EnviroTrac, Ltd. 5 No. Dry Moder. Humid PROJECT MANAGER Frank DeVita **HUMIDITY** AVERAGE FIELD FORCE Name of Contractor Function Remarks EnviroTrac, Ltd. SSD System Installer; Decommissioning SVE/AS System Dvirka and Bartilucci Engineer **VISITORS** Representing Remarks Time Name EQUIPMENT AT THE SITE: MATERIALS: Sakrete Concrete; Fast-Setting, Ultra-High Strength Concrete Mix; Exceeds 5000 psi after 28 days. PAGE 1 OF 2 PAGES DISTRIBUTION Proj. Mgr. 2 Field Office 3 File

## Dvirka and Bartilucci CONSULTING ENGINEERS

## **DAILY CONSTRUCTION REPORT**

TITLE Engineer

| PROJECT Franklin Cleaners Site (on-site)                                                        | REPORT NO. <u>5</u>                      |  |  |
|-------------------------------------------------------------------------------------------------|------------------------------------------|--|--|
| NYSDEC # 1-30-050                                                                               | DATE <u>1/16/2007</u>                    |  |  |
| CONSTRUCTION ACTIVITIES:                                                                        |                                          |  |  |
| 08:10 - P. Martorano onsite; Will inspect system piping a                                       | and electric installation w/ F. DeVita   |  |  |
| - EnviroTrac will patch concrete today and start removing rear fence for SVE/AS system removal. |                                          |  |  |
| 08:25 - Talk with Steve Gregoretti to open basement. H                                          |                                          |  |  |
| system can't be hooked up to deli electric panel and nee                                        | ds to be hooked up instead to the meter  |  |  |
| in the NW corner of the laundromat basement. Will disc                                          | uss with F. DeVita                       |  |  |
| 08:30 - EnviroTrac onsite; tell Dale Konas about electric                                       | and he will be able to re-route. Show    |  |  |
| him the electric panels and he says there is room in one                                        | to install the required breakers.        |  |  |
| 08:45 - F. DeVita onsite; looks over system installation v                                      | vith EnviroTrac. F. DeVita thinks piping |  |  |
| in Southern portion of basement is too low. Also informed                                       | ed F. DeVita about electric re-route.    |  |  |
| 09:00 - EnviroTrac Concrete workers on-site; showed th                                          | em the location of all concrete patches  |  |  |
| and wells.                                                                                      |                                          |  |  |
| 10:00 - F. DeVita talked with NYSDEC about additional                                           |                                          |  |  |
| with the additional costs. Dale will try to schedule the wo                                     | ork ASAP.                                |  |  |
| 10:30 - Dale Konas talked with Steve Gregoretti on the p                                        | phone to confirm the location of the     |  |  |
| electric breaker box to wire the SSD system into.                                               |                                          |  |  |
| <ul> <li>F. DeVita talks with EnviroTrac about piping installation</li> </ul>                   |                                          |  |  |
| routed through ceiling joists. EnviroTrac is OK with chan                                       | ging the piping to run through the       |  |  |
| joists                                                                                          |                                          |  |  |
| 10:50 - Crew off-site to purchase supplies at Home Dep                                          |                                          |  |  |
| 11:30 – Reviewed again the locations of the concrete pa                                         |                                          |  |  |
| - P. Martorano off-site to D&B. Dale Konas will call at the end of the day regarding tomorrow.  |                                          |  |  |
| 15:00 – Talked with Dale Konas. He will be on-site tomorrow at 7:30 to do system testing and    |                                          |  |  |
| will also re-route electric and fix system piping under deli                                    |                                          |  |  |
|                                                                                                 |                                          |  |  |
|                                                                                                 |                                          |  |  |
|                                                                                                 |                                          |  |  |
|                                                                                                 |                                          |  |  |
|                                                                                                 |                                          |  |  |
|                                                                                                 |                                          |  |  |
|                                                                                                 |                                          |  |  |
|                                                                                                 |                                          |  |  |
|                                                                                                 |                                          |  |  |
|                                                                                                 |                                          |  |  |
|                                                                                                 |                                          |  |  |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office                                                        | PAGE 2 OF 2 PAGES                        |  |  |



3 File

#### DAILY CONSTRUCTION REPORT

TITLE Engineer

DATE January 17, 2007 M W TH S DAY Х PROJECT Franklin Cleaners Site (on-site) WEATHER Overcast Snow NYSDEC SITE NO. 1-30-050 To 32 32-50 50-70 70-85 85+up NYSDEC CONTRACT NO. D004446 TEMP. High Moder. Report CONTRACTOR EnviroTrac, Ltd. WIND 6 Dry X Moder. Humid PROJECT MANAGER Frank DeVita HUMIDITY AVERAGE FIELD FORCE Name of Contractor Function Remarks EnviroTrac, Ltd. SSD System Installer; Decommissioning SVE/AS System Dvirka and Bartilucci Engineer **VISITORS** Time Name Representing Remarks 08:55 Frank DeVita D&B Engineer's Project Manager **EQUIPMENT AT THE SITE:** DAEWOO 450 Bobcat; Forklift; Flatbed Truck MATERIALS: Dwyer 465 Mark III Manometer DISTRIBUTION PAGE 1 OF 2 PAGES 1 Proj. Mgr. 2 Field Office



| PROJECT Franklin Cleaners Site (on-site)                             | REPORT NO. 6                       |
|----------------------------------------------------------------------|------------------------------------|
| NYSDEC # _1-30-050                                                   | DATE <u>1/17/2007</u>              |
| CONSTRUCTION ACTIVITIES:                                             |                                    |
| 07:45 - Paul Martorano onsite; EnviroTrac already on-site. Plan      | to test performance of SSD         |
| System, inspect concrete work, re-route electric, re-do piping un-   |                                    |
| SVE/AS system.                                                       |                                    |
| 08:00 - Called Steve Gregoretti to unlock basement door.             |                                    |
| 08:10 - Inspect all concrete patches. All look good. However, it     | looks like a spot was missed in    |
| middle portion of basement. Informed EnviroTrac and they will p      |                                    |
| 8:30 - Start testing sub-slab vacuum pressure with handheld dig      | ital manometer (Dwyer 465          |
| Mark III). All test points registered a vaccuum pressure less than   | n the required -0.004 inches of    |
| water. All sub-slab depressurization vapor points reading a vacu     |                                    |
| inches of water (all less than the calculated -0.75 inches of water  | r to achieve the required ROI).    |
| 8:40 – Asked EnviroTrac about drain in NW corner of basement.        |                                    |
| inches deep. Will cut out drain and install Grainger unit on Frida   | ıy                                 |
| 08:55 - F. DeVita onsite; Discussed testing and labeling. Mentic     |                                    |
| from the northern corner. When we looked at the area (near boil      | ler), a hole was found under       |
| boiler. EnviroTrac was informed, and they will patch with concre     | te on Friday.                      |
| 09:45 - F. DeVita offsite; EnviroTrac has all fencing in the back of |                                    |
| facilitate removal of the SVE/AS system. EnviroTrac plans to re-     | move system today.                 |
| 10:10 - EnviroTrac setting supports for new piping run in southe     | rn portion of the basement and     |
| installing pipe above floor joists.                                  |                                    |
| 11:00 - EnviroTrac finished moving pipe; also starting to move S     |                                    |
| Toward Marvin Avenue with a bobcat; rolled system on metal pip       | oing behind pharmacy/Chinese       |
| restaurant.                                                          |                                    |
| 13:00 – EnviroTrac successfully loaded SVE/AS system onto pa         | yloader flatbed truck and will     |
| secure it for transfer.                                              |                                    |
| 13:30 - Took another round of sub-slab vacuum readings with E        | nviroTrac to ensure system         |
| still operating sufficiently. All readings are approximately the sar | me as this morning, and still less |
| than -0.004 inches of water.                                         |                                    |
| 14:00 – P. Martorano and EnviroTrac offsite.                         |                                    |
| ·                                                                    |                                    |
|                                                                      |                                    |
|                                                                      |                                    |
|                                                                      |                                    |
|                                                                      |                                    |
| DISTRIBUTION 1 Proj. Mgr.                                            | PAGE 2 OF 2 PAGES                  |
| 2 Field Office                                                       |                                    |
| 3 File BY <u>Paul Martorano</u>                                      | TITLE <u>Engineer</u>              |



TITLE Engineer

DATE January 19, 2007

М W TH S DAY Χ PROJECT\_Franklin Cleaners Site (on-site) Brite Clear Overcast Rain Snow NYSDEC SITE NO. 1-30-050 WEATHER To 32 32-50 50-70 70-85 85+up TEMP. NYSDEC CONTRACT NO. D004446 Still Moder Report WIND High CONTRACTOR EnviroTrac, Ltd. 7 Dry Moder. Humid HUMIDITY PROJECT MANAGER Frank DeVita AVERAGE FIELD FORCE Name of Contractor Function Remarks EnviroTrac, Ltd. Decommissioning SVE/AS System Dvirka and Bartilucci Engineer **VISITORS** Time Name Representing Remarks **EQUIPMENT AT THE SITE:** MATERIALS: PAGE 1 OF 2 PAGES DISTRIBUTION 1 Proj. Mgr. 2 Field Office 3 File



| PROJECT Franklin Cleaners Site (on-site)                                                                                                                              | REPORT NO7                       |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|--|--|
| NYSDEC # _1-30-050                                                                                                                                                    | DATE _1/19/2007                  |  |  |  |
| CONSTRUCTION ACTIVITIES:                                                                                                                                              |                                  |  |  |  |
| 0800 - Paul Martorano onsite; EnviroTrac already onsite.                                                                                                              |                                  |  |  |  |
| - Called Steve Gregoretti on the way to the site to have him                                                                                                          | open basement door.              |  |  |  |
| - EnviroTrac dug up piping where SVE/AS system was and patched with asphalt.                                                                                          |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
| - EnviroTrac decommissioned the two air sparge wells and three SVE wells. Also decommissioned SVM wells in basement and outside.                                      |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
| <ul> <li>Indoor piping was cut at floor and inside well. All openings in wells were capped.</li> <li>Removed indoor piping up to exterior wall and capped.</li> </ul> |                                  |  |  |  |
| - Outside wells were cut inside the well head and all openin                                                                                                          | as were capped.                  |  |  |  |
| - EnviroTrac also patched two additional holes in concrete f                                                                                                          |                                  |  |  |  |
| vacuum test points.                                                                                                                                                   |                                  |  |  |  |
| 10:45 - Restoring rear fence to previous conditions.                                                                                                                  |                                  |  |  |  |
| - Waiting till 11:00 to get access to pharmacy basement.                                                                                                              |                                  |  |  |  |
| 11:10 - Pharmacy still not open. EnviroTrac will come back                                                                                                            | k to remove SVM well in pharmacy |  |  |  |
| Basement at another time.                                                                                                                                             |                                  |  |  |  |
| - P.M. and EnviroTrac offsite.                                                                                                                                        |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
|                                                                                                                                                                       |                                  |  |  |  |
| DISTRIBUTION 1 Proj. Mgr. 2 Field Office                                                                                                                              | PAGE 2 OF 2 PAGES                |  |  |  |
| 3 File                                                                                                                                                                | TITLE Code                       |  |  |  |
| BY Paul Martorano                                                                                                                                                     | TITLE Engineer                   |  |  |  |



File

#### DAILY CONSTRUCTION REPORT

TITLE Engineer

DATE February 23, 2007 S Μ W TH F S DAY Х PROJECT\_Franklin\_Cleaners Site (on-site) Brite Clear Overcast Rain NYSDEC SITE NO. <u>1-30-050</u> WEATHER Snow 32-50 50-70 70-85 NYSDEC CONTRACT NO. D004446 85+up TEMP. Still CONTRACTOR EnviroTrac, Ltd. WIND Moder High Report 8 PROJECT MANAGER Frank DeVita **HUMIDITY** Dry Moder. Humid AVERAGE FIELD FORCE Name of Contractor Function Remarks EnviroTrac, Ltd. Modifying SSD System Dvirka and Bartilucci Engineer **VISITORS** Time Name Representing Remarks EQUIPMENT AT THE SITE: Hammer drill, misc. tools MATERIALS: 1/2" schedule 80 PVC pipe, steel strut channel, 1/2" strut channel pipe clamps Fanguard by-pass (2) DISTRIBUTION PAGE 1 OF 2 PAGES Proj. Mgr. 2 Field Office

# Dvirka and Bartilucci CONSULTING ENGINEERS

## **DAILY CONSTRUCTION REPORT**

| PROJECT Franklin Cleaners Site (on-site)                                                                    | REPORT NO. <u>8</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NYSDEC # <u>1-30-050</u>                                                                                    | DATE <u>2/23/2007</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| CONSTRUCTION ACTIVITIES:                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 9:50 - Paul Martorano on-site; Dale Konas with Er                                                           | viroTrac already on-site and working in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Basement.                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| - EnviroTrac will be installing condensate drain and                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| - Inspected SSD system on deli side of basement. Fan is still running OK (~ 2.2" H2O), SDP-4                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| reading ~2.2 "H2O and SDP-3 reading ~ 2.0" H2O. Both point still operating at initial starting              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| pressures on January 19, 2007.  - Inspected signs installed. EnviroTrac sign installed.                     | ad poor electrical panel and poor disconnect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                                             | ed near electrical paner and near disconnect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| switch.                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 11:30 – EnviroTrac having trouble drilling through                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| From the wall. Decide to move point more to the number - EnviroTrac successfully drills through concrete to |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 12:00 – Went over scope of installation for Fangua                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| below fan in order to fit Fanguard above the fan.                                                           | rus with Environae. They will be cutting pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 12:15 – PM offsite to D&B. Will inspect installation                                                        | of drain and Fanguard when on-site for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| PCE passive indoor air sampling event.                                                                      | or area, area right guara internet on one for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                             | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |  |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| DISTRIBUTION 1 Proj. Mgr.                                                                                   | PAGE 2 OF 2 PAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 2 Field Office<br>3 File                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| BY Paul Martorano                                                                                           | TITLE Engineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |

#### ATTACHMENT B

#### **CONSTRUCTION PHOTOGRAPHS**



Site No.: 1-30-050

Description of View: Installation of discharge piping on roof of laundromat.

Photograph No.: 1



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Existing conditions, View of laundromat basement prior to system installation Photograph No.: 2



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Existing conditions, Hole in laundromat basement near

basement stairs Photograph No.: 3



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Existing conditions, Sump pit in laundromat basement



Site No.: 1-30-050

Description of View: Installation of suction point SDP-2

Photograph No.: 5



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Installation of suction point SDP-2

Photograph No.: 6



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Drilled hole for suction point SDP-2. Approximately 4.5" concrete (typical for all points).

Photograph No.: 7



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Existing conditions, Hole in concrete for future installation of

toilet. Photograph No.: 8



Site No.: 1-30-050

Description of View: Existing conditions, Holes in concrete in deli basement.

Photograph No.: 9



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Existing conditions, Hole in concrete near rear basement door.

Photograph No.: 10



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Existing conditions, Hole in concrete in deli basement.

Photograph No.: 11



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Existing conditions, Holes in concrete of deli basement.



Site No.: 1-30-050

Description of View: Installation of suction point SDP-1.

Photograph No.: 13



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Installation of second suction point for SDP-2. First suction point unsuccessful due to refusal beneath concrete.

Photograph No.: 14



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Screened PVC pipe for suction points (typical for all suction points).

Photograph No.: 15



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Gravel used to backfill around suction point screens.



Site Name: Franklin Cleaners Site (on-site)

Description of View: Suction point SDP-2 and associated suction point piping.

Photograph No.: 17



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Installation of suction point SDP-4.

Photograph No.: 18



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Installation of suction point SDP-3..

Photograph No.: 19



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Suction point SDP-1 and associated piping.



Site No.: 1-30-050

Description of View: Suction point SDP-3 and associated piping.

Photograph No.: 21



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Suction point SDP-4 and associated piping.

Photograph No.: 22



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Installation of discharge piping to roof.

Photograph No.: 23



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Installation of pipe supports on chimney for discharge piping.



Site No.: 1-30-050

Description of View: Installation of discharge piping to roof.

Photograph No.: 25



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Suction point SDP-2 and with PVC ball valve.

Photograph No.: 26



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Installing pipe support for horizontal discharge pipe.

Photograph No.: 27



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Installation of discharge pipe from SDP-1.



Site No.: 1-30-050

Description of View: Discharge piping from SDP-1.

Photograph No.: 29



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Suction point SDP-2 and associated piping.

Photograph No.: 30



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Discharge piping from SDP-2.

Photograph No.: 31



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Discharge piping from SDP-2 and junction with discharge

piping from SDP-1. Photograph No.: 32



Site Name: Franklin Cleaners Site (on-site)

Description of View: Discharge piping from SDP-1 and SDP-2 installed in floor joists.

Photograph No.: 33



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Discharge piping from SDP-1 and SDP-2 installed in floor joists and above rear concrete block wall and door.

Photograph No.: 34



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Suction point SDP-4 and associated piping and ball valve.

Photograph No.: 35



Site Name: Franklin Cleaners Site (on-site) Site No.: 1-30-050

Description of View: Discharge piping from SDP-3 and SDP-4 installed along concrete block wall in dell basement.



Site No.: 1-30-050

Description of View: Suction point SDP-3 and junction with discharge piping.

Photograph No.: 37

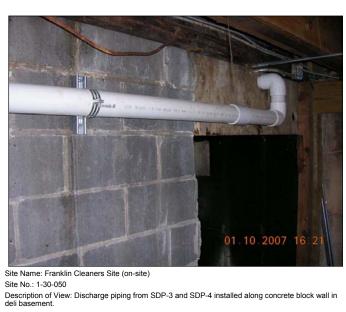


Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Discharge piping penetration through rear basement wall.

Photograph No.: 38




Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Discharge piping penetration through rear basement wall.

Photograph No.: 39





Site Name: Franklin Cleaners Site (on-site)

Description of View: Discharge piping from SDP-3 and SDP-4 near rear of

basement. Photograph No.: 41



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Discharge piping from SDP-3 and SDP-4 and penetration through rear basement wall.

Photograph No.: 42



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Hanging pipe support for horizontal discharge pipe (typical throughout basement).

Photograph No.: 43



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Wall pipe support for horizontal discharge pipe installed on walls (typical throughout basement).



Site Name: Franklin Cleaners Site (on-site)

Description of View: Pipe support for horizontal discharge pipe in floor joists (typical throughout basement).

Photograph No.: 45



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Discharge piping from SDP-1 and SDP-2 near rear of

basement. Photograph No.: 46



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Discharge piping from SDP-1 and SDP-2 and penetration through rear basement wall.

Photograph No.: 47



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Installation of discharge piping on exterior rear wall.



Site Name: Franklin Cleaners Site (on-site)

Description of View: Installation of discharge piping, flexible couplings and fans on exterior rear wall.

Photograph No.: 49



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Installation of discharge piping, flexible couplings and fans on exterior rear wall. Piping tees into common 4" PVC piping.

Photograph No.: 50



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: 4" PVC discharge pipe penetration through awning.

Photograph No.: 51



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Patched concrete in laundromat basement, near SDP-2.



Site No.: 1-30-050

Description of View: Patched concrete in laundromat basement, near SDP-2.

Photograph No.: 53



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Patched concrete around sump pit in laundromat basement, near SDP-1.

Photograph No.: 54



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Patched concrete in rear of basement.

Photograph No.: 55



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Patched concrete in rear of basement.



Site No.: 1-30-050

Description of View: Patched concrete in deli basement.

Photograph No.: 57



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Patched concrete in deli basement.

Photograph No.: 58



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Patched concrete in deli basement.

Photograph No.: 59



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

 $\label{thm:prop:prop:state} \mbox{Description of View: Electric disconnect switch for SSD fans installed near rear basement door.}$ 



Site Name: Franklin Cleaners Site (on-site)

Description of View: Electric disconnect switch, with locking cover, for SSD fans installed near rear basement door.

Photograph No.: 61



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Patched concrete in deli basement.

Photograph No.: 62



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Suction point SDP-4 and associated ball valve and discharge piping.

Photograph No.: 63



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Discharge piping from SDP-4 installed through floor joists.



Site Name: Franklin Cleaners Site (on-site)

Description of View: Discharge piping from SDP-4 installed through floor joists.

Photograph No.: 65



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Discharge piping from SDP-4 installed through floor joists.

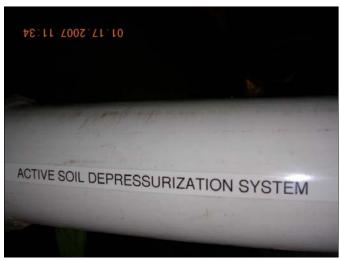
Photograph No.: 66



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Discharge piping from SDP-4 installed through floor joists.


Photograph No.: 67



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Suction point SDP-3 and associated discharge piping.



Site No.: 1-30-050

Description of View: Labeling for system piping (typical for all labels).

Photograph No.: 69



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Labeling in electric panel.

Photograph No.: 70



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Manometer installed on suction point (typical for all suction points).

Photograph No.: 71



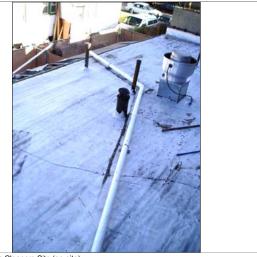
Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Test point installed through concrete floor (typical for all test points).



Site No.: 1-30-050


Description of View: Manometer installed on suction point and starting vacuum label (typical for all suction points).

Photograph No.: 73



Site Name: Franklin Cleaners Site (on-site)
Site No.: 1-30-050
Description of View: 4" PVC discharge piping installed on roof and effluent stack with rain cap.
Date Taken: 01/11/07

Photograph No.: 74



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: 4" PVC discharge piping installed on roof. Date Taken: 01/11/07

Photograph No.: 75



Site Name: Franklin Cleaners Site (on-site)

Description of View: 4" PVC discharge piping installed on roof and along chimney. Date Taken: 01/11/07



Site Name: Franklin Cleaners Site (on-site)
Site No.: 1-30-050
Description of View: 4" PVC discharge piping installed on roof through awning.
Date Taken: 01/11/07

Photograph No.: 77



Site Name: Franklin Cleaners Site (on-site)
Site No.: 1-30-050
Description of View: Discharge piping from SDP-3 and SDP-4 and manometer installed to monitor fan vacuum.
Date Taken: 01/17/07

Photograph No.: 78



Site Name: Franklin Cleaners Site (on-site)
Site No.: 1-30-050
Description of View: Discharge piping from SDP-3 and SDP-4 and manometer installed to monitor fan vacuum.
Date Taken: 01/17/07

Photograph No.: 79



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Patched concrete near boiler.



Site Name: Franklin Cleaners Site (on-site) Site No.: 1-30-050

Description of View: Emergency contact sign installed near electric panel.

Date Taken: 02/23/07

Photograph No.: 81



Site Name: Franklin Cleaners Site (on-site) Site No.: 1-30-050

Description of View: Emergency contact sign.

Date Taken: 02/23/07

Photograph No.: 82



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050

Description of View: Emergency contact sign installed near disconnect switches.

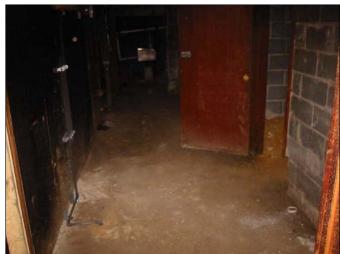
Date Taken: 02/23/07

Photograph No.: 83



Site Name: Franklin Cleaners Site (on-site)

Site No.: 1-30-050


Description of View: Fans installed on rear of building with condensate bypass.

Date Taken: 03/01/07



Site Name: Franklin Cleaners Site (on-site)
Site No.: 1-30-050
Description of View: Condensate trap installed at discharge piping low point in rear of basement.
Date Taken: 03/01/07

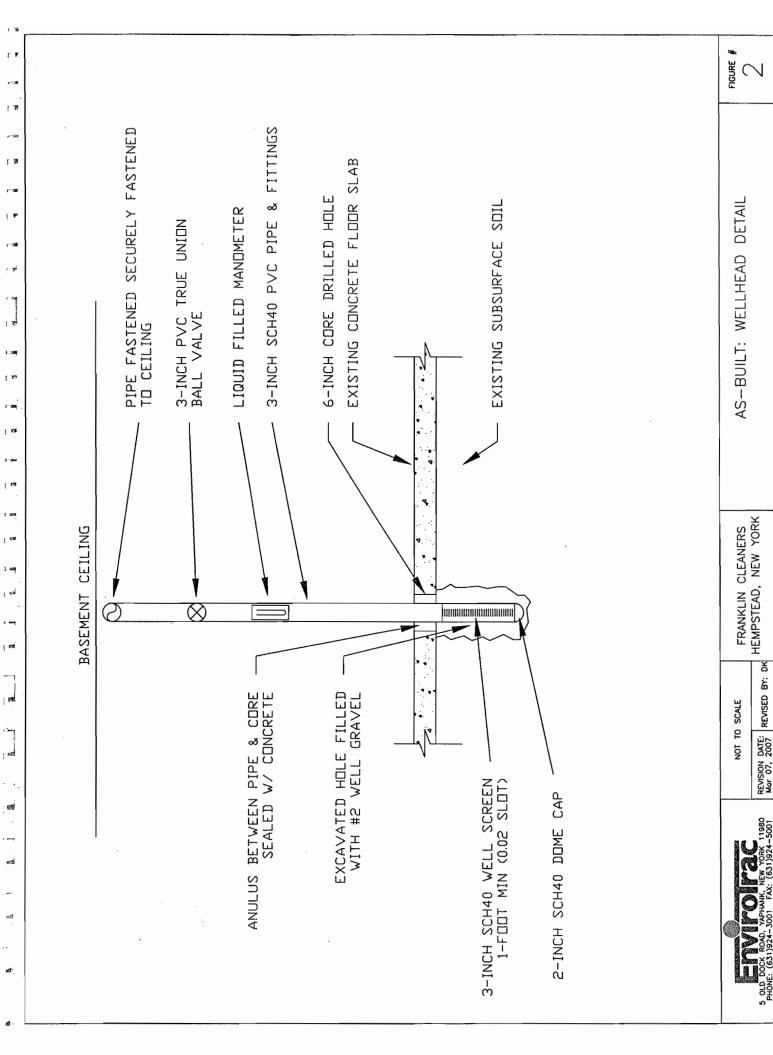
Photograph No.: 85

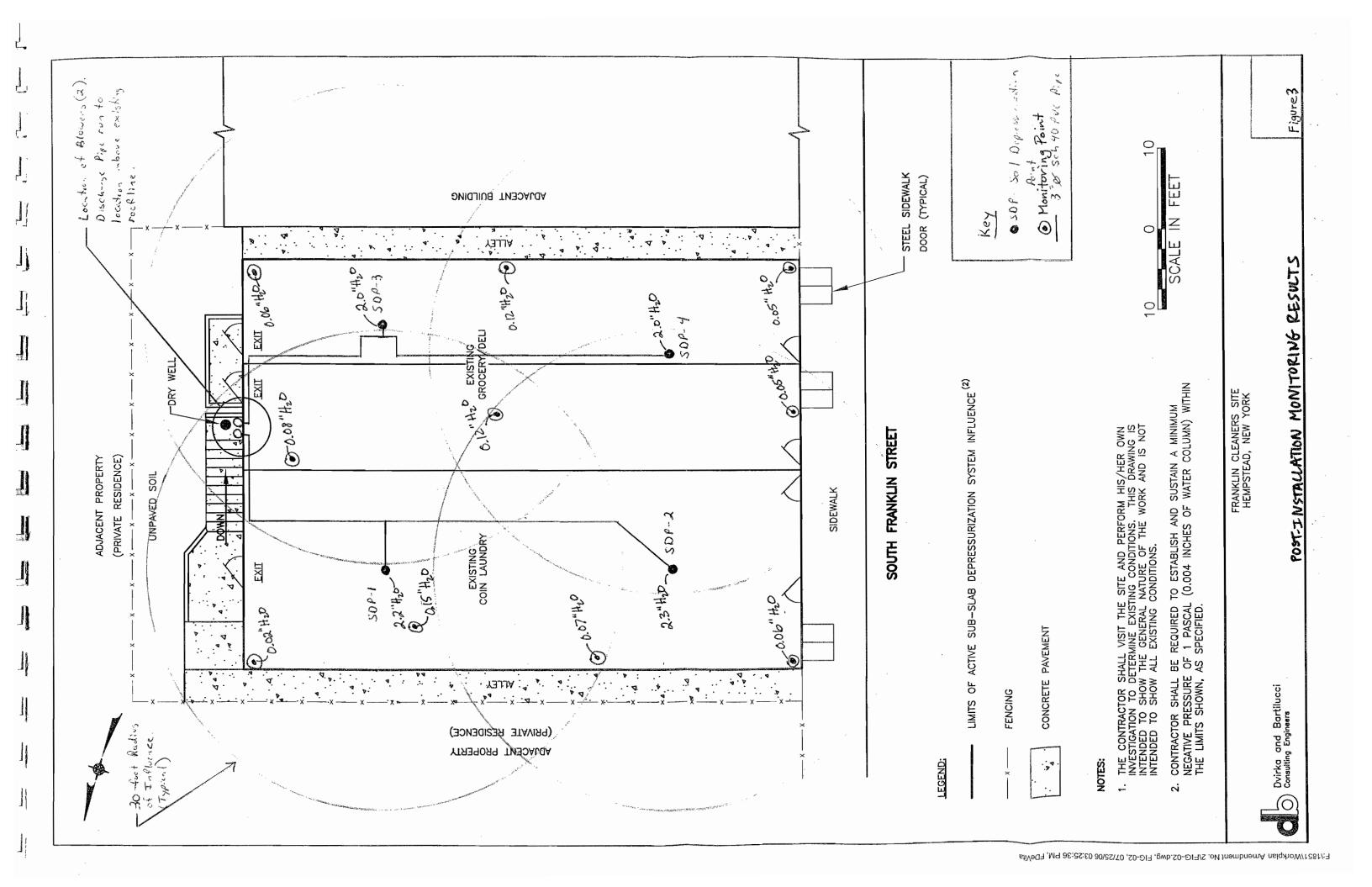


Site Name: Franklin Cleaners Site (on-site)
Site No:: 1-30-050
Description of View: Condensate trap installed at discharge piping low point in rear of basement.
Date Taken: 03/01/07

Photograph No.: 86




Site Name: Franklin Cleaners Site (on-site) Site No.: 1-30-050


Description of View: Condensate trap penetration through concrete floor. Date Taken: 03/01/07

## ATTACHMENT C

AS-BUILT RECORD DRAWINGS





