REVISED

REMEDIAL INVESTIGATION WORK PLAN

Operable Unit No. 2 (OU-2)

Off-Site Areas

Former Columbia Cement Company, Inc. Facility

159 Hanse Avenue Freeport, New York

SITE # 1-30-052

Hazardous Waste Remerciation

Atlantic Richfield Company 1 West Pennsylvania Avenue

Prepared for:

Suite 440 Towson, Maryland 21204-0527

Prepared by:

URS Corporation 201 Willowbrook Boulevard Wayne, New Jersey 07470

OCTOBER 2008

TABLE OF CONTENTS

Page

1.0	INTR	ODUCTION1
	1.1	Background Information1
	1.2	Site Geology / Hydrogeology
	1.3	Site Conceptual Model
2.0	SCOP	PE OF WORK
	2.1	Objectives
	2.2	Groundwater Screening Sampling5
	2.3	Monitoring Wells
		2.3.1 Monitoring Well Installation
		2.3.2 Well Development
		2.3.3 Well Surveying
	2.4	Tidal Monitoring
	2.5	Groundwater Sampling
	2.6	Surface Water and Sediment Sampling
	2.7	Vapor Intrusion Sampling 10
	2.8	Investigation Derived Waste
		2.8.1 Soil
		2.8.2 Ground Water
		2.8.3 Decontamination Fluids
		2.8.4 PPE and Associated Debris
	2.9	Health and Safety
		2.9.1 Worker Health and Safety
		2.9.2 Community Health and Safety
	2.10	Data Evaluation and Reporting
3.0	REFE	RENCES14

URS Corporation G:/BP/Projects/Freeport/OU-2

.

Former Columbia Cement Company Remedial Investigation Work Plan – Operable Unit No. 2

LIST OF TABLES

Table 1Summary of Sampling Plan

LIST OF FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 Proposed Groundwater Screening Sampling Locations
- Figure 4 Proposed Surface Water and Sediment Sampling Locations

LIST OF APPENDICES

Appendix	A	Health	&	Safety	v Plan

Appendix B Community Air Monitoring Plan

URS Corporation G:/BP/Projects/Freeport/OU-2

1.0 INTRODUCTION

This Remedial Investigation Workplan ("RIW") presents a proposed scope of work to further characterize conditions at Operable Unit No. 2 (OU-2) of the former Columbia Cement Company (CCC) site located at 159 Hanse Avenue in Freeport, New York ("Site"). URS Corporation (URS) has prepared this RIW on behalf of the Atlantic Richfield Company, a BP affiliatc (BP) and in response to requests from the New York State Department of Environmental Conservation (NYSDEC) as partial fulfillment of requirements of the New York State Inactive Hazardous Waste Disposal Remedial (Superfund) Program.

1.1 BACKGROUND INFORMATION

CCC, which was owned by Burmah Castrol, produced adhesives for a variety of applications. In 1988, while CCC operated the facility, approximately 1,760 gallons of 1,1,1-trichloroethane (1,1,1-TCA) was released to an unlined storm drain during filling of an underground storage tank (UST) due to a failure of a contractor's tanker truck. The spill was reported and response measures were performed under regulatory oversight. In 1996, the property was sold to Illinois Tool Works (ITW). In 1998, Burmah Castrol entered into a Consent Agreement (Index WI #W2-02-0813-98-05) with the NYSDEC regarding the 1,1,1-TCA spill. In 2001, British Petroleum (BP) purchased all Burmah Castrol holdings and assumed liability for the 1,1,1-TCA spill.

Numerous phases of a Remedial Investigation were conducted by Delaware Engineering (1997 through 2003) and URS (2003 through 2006). In December 2006, URS submitted a Supplemental Remedial Investigation Report, summarizing all data obtained to date. In January 2007, URS submitted a Feasibility Study Report ("FSR") that evaluated remedial alternatives to address subsurface impacts. In the FSR, groundwater fate and transport modeling was performed to assess whether Monitored Natural Attenuation (MNA), in conjunction with source control measures, would prevent the groundwater contaminant plume from migrating to Freeport Creek, approximately 500 feet west of the Site. A Site Location Map is presented as Figure 1. The modeling, when calibrated to the existing groundwater monitoring data, suggested that the plume would not reach Freeport Creek. In its March 8, 2007 letter, NYSDEC provided comments on the FSR. One comment stated that all modeling should be validated with empirical data.

To validate the modeling results, BP installed two monitoring wells (MW-07-16S and MW-07-17D) downgradient from adjacent to Freeport Creek. Sampling results indicated that chloroethane was present in well MW-07-16S at a concentration exceeding the NYSDEC Ambient Groundwater Quality Standard. Based on these results, NYSDEC divided the site into two Operable Units. Operable Unit No. 1 consists of the former Columbia Cement Company property located at 159 Hanse Avenue. Operable Unit No. 2 (OU-2) consists of the properties immediately adjacent to and downgradient (west) of OU-1. The OU-2 RIW presents a scope of work to evaluate subsurface impacts in OU-2 resulting from the 1988 1,1,1-TCA spill in OU-1.

1.2 SITE GEOLOGY /HYDROGEOLOGY

Soil borings advanced during investigation activities at OU-1 and OU-2 encountered five stratigraphic units beneath the site. In order of increasing depth, these units are: fill material; tidal marsh deposits; gravelly sand; gray clay and silt; and gray sand. Each of these units is discussed below.

- The fill material is encountered across the entire site and consists of reworked native soil and various debris related to previous Site use as a municipal landfill. The fill material ranges in thickness from 3.1 feet (ft) to 22.9 ft, with an average thickness of about 11 ft.
- The tidal marsh deposits are encountered beneath the fill material over most of the site, but are absent in some areas, including the UST/spill area. The tidal marsh deposits consist of brown, dark gray and black organic clayey silt with some fine to medium sand and varying amounts of roots, wood and peat. Where present, the tidal marsh material is encountered at an average depth of 9.5 ft and has an average thickness of 4 ft.
- The gravelly sand is a relatively thick and flat-lying unit encountered beneath the tidal marsh deposits, and beneath the fill material where the tidal marsh deposits are absent. The unit consists of medium dense, brown to light gray, coarse to fine sand, with little medium to fine subrounded gravel. Minor amounts of silt and clay were found in isolated samples. The gravelly sand thickness ranges from 15 to 30 ft and is thickest in the western portion of the site. The base of the gravelly sand is relatively flat and is encountered at about 35 ft below grade.
- The gray clay and silt underlies the gravelly sand. It consists of a medium gray clayey silt to silt and clay with little to trace sand and becomes clayier with depth. In the two borings on Site that penetrated the entire clay unit, the thickness ranged from 14 ft to 15.3 ft. The gray clay and silt unit likely acts as a lower confining unit beneath the site.

• An undifferentiated light gray fine sand underlies the gray clay and silt. It is described as a gray to light gray medium to fine sand with little silt. Based on literature review, this unit ranges in thickness from 20 to 30 ft beneath the Site.

The shallow water-bearing units beneath the Site are not utilized as a drinking water source. Deeper confined units include the Jameco, Magothy and Lloyd aquifers, which are used for drinking water in some areas of Long Island. Due to saltwater encroachment near the southern shore of Long Island, these units are not a source of drinking water near the Site. Groundwater beneath the site is classified as Class GA.

Shallow groundwater at the Site is encountered in the fill material at depths ranging from 5.5 to 8.0 feet below grade (ft bgs). In various areas of the site, the water table is encountered in the fill material, the tidal marsh deposits, or the gravelly sand. Due to this fact and extensive connectivity between these units, particularly where the tidal marsh unit is thin or absent, these units have been treated collectively as a single unconfined aquifer. Some shallow monitoring wells are screened across all three units. Deep monitoring wells screened at the base of the gravelly sand have nearly identical groundwater elevations as adjacent shallow wells. The shallow unconfined groundwater discharges to Freeport Creek. The gray clay and silt unit acts as a lower confining layer or aquitard, separating the water table aquifer from the underlying gray sand. The gray sand is a separate confined water-bearing unit.

Groundwater flows primarily to the west, however, due to the Site's location, groundwater levels exhibit tidal influences, as described below. As is typical in coastal areas, shallow groundwater at the site is influenced by two tidal cycles per day. During tidal monitoring, groundwater level changes of 1 ft or less were recorded on Site. The tidal range is greatest to the west, suggesting a greater hydraulic connection to Freeport Creek than to Stadium Park Canal. The timing and degree of tidal response between the shallow and deep wells suggests that in some areas of the Site, the tidal marsh unit may restrict flow between the fill material and the gravelly sand.

As part of the RI, Delaware Engineering performed tidal monitoring of Site monitoring wells. During high tide, flow was generally to the west with a very shallow hydraulic gradient of 0.00095 ft/ft. During low tide, a groundwater divide forms in the north-central portion of the site. Groundwater east of this divide flows to the east and groundwater west of the divide flows to the west. Based on this observation, the gradient in the spill area alternates from east to west with a very minimal gradient in both directions. This alternating flow direction should serve to minimize contaminant transport from the site. The mean tide flow direction is east to west, with a hydraulic gradient of 0.0002 ft/ft net flow to the west.

1.3 SITE CONCEPTUAL MODEL

As described in Section 1.1, a 1988 spill of 1,1,1-TCA resulted in soil and groundwater contamination on OU-1. Numerous rounds of investigation were performed from 1997 through 2007. Results of the investigations suggest that:

- Spill-related soil contamination is restricted to the area immediately around the spill and former USTs;
- Due to natural attenuation, 1,1,1-TCA appears to biodegrade fairly rapidly to 1,1-DCA, and then to chloroethane;
- At the downgradient OU-1 boundary, chloroethane is the only spill-related compound present at levels exceeding the GWCS (chlorobenzene is also present, but is not related to the 1,1,1-TCA spill);
- The groundwater chloroethane impacts are restricted to the gray sand water-bearing unit. The gray clay at approximately 35 to 38 feet below grade acts as a lower confining layer.

The anaerobic conditions present at the Site promote rapid biodegradation of 1,1,1-TCA and 1,1-DCA. However, studies have shown that the daughter product of 1,1-DCA, chloroethane, only degrades aerobically. Therefore, chloroethane migrating from OU-1 to OU-2 is not attenuated significantly by any natural process. To date, the only spill-related compound detected in OU-2 groundwater is chloroethane. No potable wells are located in the vicinity of OU-1 or OU-2 (Delaware Engineering, 2003). Freeport Creek, approximately 500 feet from the spill location, represents a potential groundwater discharge point and ecological receptor.

Former Columbia Cement Company Remedial Investigation Work Plan – Operable Unit No. 2

2.0 SCOPE OF WORK

2.1 <u>OBJECTIVES</u>

The objectives of the OU-2 RI are to assess environmental impacts from the 1988 1,1,1-TCA spill on human and ecological receptors located in areas off site and downgradient from OU-1. Specifically, the RI objectives are:

- Delineate the lateral and vertical extent of the groundwater chloroethane plume migrating from OU-1;
- Assess potential for natural attenuation of the chloroethane plume;
- Evaluate the affects of tidal fluctuations in Freeport Creek on contaminant transport;
- Assess impacts for the groundwater chloroethane plume on Freeport Creek surface water and sediment;
- Evaluate the vapor intrusion pathway in adjacent buildings and buildings overlying the chloroethane plume downgradient from the Site.

To accomplish these objectives, BP will conduct the scope of work described below.

2.2 GROUNDWATER SCREENING SAMPLING

Groundwater samples collected from well couplet MW-05-14S / MW-05-15D, located in Hanse Avenue, and from well couplet MW-07-16S / MW-07-17D, adjacent to Freeport Creek, suggest that a groundwater plume of chloroethane extends from OU-1 westward, toward Freeport Creek. However, the northern and southern extent of the chloroethane plume is not known. BP will collect groundwater screening samples from temporary monitoring points to access the width of the plume. Samples will be collected on the west side of Hanse Avenue, at approximately 50-foot intervals north and south of MW-05-14S and MW-05-15D. Samples will be collected from two points north of the MW-05-14S / MW-05-15D well couplet, and from three points south of the MW-05-14S / MW-05-15D well couplet. Groundwater screening samples will also be collected on the east side of Hanse Avenue, at approximately 50-foot intervals north and south of MW-97-15D well couplet. Groundwater screening samples will also be collected on the east side of Hanse Avenue, at approximately 50-foot intervals north and south of MW-97-15D well couplet. Groundwater screening samples will also be collected on the east side of Hanse Avenue, at approximately 50-foot intervals north and south of MW-97-1S and MW-98-9D. Samples will be collected from two points north of the MW-05-15D well couplet. Proposed sample locations are shown on Figure 3. Sample locations are subject to

URS Corporation G:/BP/Projects/Freeport/OU-2 change based on accessibility and subsurface utilities. At each location, groundwater samples will be collected every five feet from 10 feet below grade (fbg) to 30 fbg.

At each location, the boring will be cleared using either a hand auger or an air knife to a depth of 5 feet. Borings will be advanced using direct push methods to a depth of 32 fbg with an expendable point. The drill rods will be pulled up two feet to expose a stainless steel retractable screen from 30 fbg to 32 fbg. Dedicated tubing will be inserted into the screen and attached to a peristaltic pump. Samples will be collected using low-flow methods. The sample point will be purged at 0.2 liters per minute (lpm) to 0.5 lpm. Field parameters, including temperature, pH, conductivity, dissolved oxygen and redox potential will also be measured. When the field parameters have stabilized, the sample will be collected through the sample tubing. Groundwater samples will be collected in laboratory-supplied pre-preserved glassware. for analysis for the contaminants of concern (COCs), which includes chloroethane, chlorobenzene, 1,1,1-trichloroethane, 1,1-dichloroethane and methylene chloride. After the sample is collected, the rods and retractable screen will be raised five feet to collect a sample from 25 to 27 feet below grade, and the sampling procedure described will be repeated. This procedure will be repeated every five feet to the 10 fbg to 12 fbg interval.

Groundwater samples will be analyzed for the contaminants of concern, which include the VOCs:

- Chloroethane (CA);
- Chlorobenzene;
- 1,1,1-Trichloroethane (TCA);
- 1,1-Dichloroethane (DCA); and
- Methylene chloride.

The COCs represent spill related compounds (TCA, DCA, CA) and other compounds detected in wells at the downgradient (western) boundary of OU-1 (chlorobenzene and methylene chloride).

Samples will be submitted under chain of custody documentation to a NYSDOH-certified laboratory and will be analyzed using CLP methods with ASP Category B deliverables.

L

2.3 MONITORING WELLS

2.3.1 MONITORING WELL INSTALLATION

To enable future monitoring of the offsite VOC plume, BP will install up to four additional offsite monitoring wells. Wells will be installed as shallow and deep well couplets, similar to MW-05-14S and MW-05-15D. The exact locations and depths of the wells will depend on the results of the groundwater screening sampling. If conditions allow, the wells will be installed near the outer (north and south) edges of the groundwater chloroethane plume. Prior to installation, BP will present the groundwater screening sampling results and proposed well locations to NYSDEC.

Each well location will be cleared using either a hand auger or an air knife to a depth of 5 feet. The wells will be advanced using 4 1/4 –inch hollow stem augers. Continuous split spoon samples will be collected from 5 feet below grade to the end of the boring. Soils will be screened with a calibrated photoionization detector (PID) and logged by a URS geologist. Soil cuttings will be contained in 55-gallon drums and stored in the former CCC building pending subsequent off-site disposal.

The wells will be constructed of 2-inch ID, Schedule 40 PVC screen and riser pipe with a threaded bottom cap. The screens will be 10 feet in length with No. 10 slot (0.010 inch). In each well a sand pack will be placed in the annular space from the bottom of the well to 1 foot above the top of the well screen. A bentonite seal will be placed above the sand pack. The seal will be at least 2 feet thick. A cement-bentonite grout will be placed from the top of the bentonite seal to approximately 3 feet below grade. Each well will be finished with a flush-mount steel cover set in concrete, and a water-tight locking cap.

2.3.2 WELL DEVELOPMENT

After installation, the wells will be developed to remove residual materials from the well, increase hydraulic conductivity around the well and reduce turbidity of samples. Wells will be developed using a submersible pump. In-situ parameters (pH, conductivity, dissolved oxygen, redox potential and turbidity) will be monitored during well development. Development will continue until in-situ parameters stabilize and the turbidity reaches 50 Nephelometric Turbidity Units (NTU) or less. If this goal can not be reached, well development will continue until a volume equal to at least 10 well volumes has been evacuated. Development water will be

URS Corporation G:/BP/Projects/Freeport/OU-2 contained in 55-gallon drums and stored in the former CCC building pending subsequent off-site disposal.

2.3.3 WELL SURVEYING

After installation, monitoring wells will be surveyed by a licensed land surveyor. The location and elevation of the wells will be surveyed for inclusion on Site maps. In addition, the location and elevation of a selected point on the Freeport Creek bulkhead near the new wells will be surveyed. This point will be utilized during tidal monitoring, as described below. Soil boring logs and monitoring well construction diagrams will be prepared from field observations.

2.4 TIDAL MONITORING

To evaluate effects of tidal fluctuations in Freeport Creek on groundwater levels and flow directions, BP will perform tidal monitoring. The tidal monitoring will include monitoring water levels in Freeport Creek and 8 monitoring wells in OU-1 and OU-2 over a 48-hour period. Measurements will be made in four well couplets:

- MW-97-1S and MW-98-9D
- MW-07-16S and MW-07-17D
- The two well couplets installed as described in Section 2.3.1.

Measurements will also be made at a surveyed point on the Freeport Creek bulkhead. The measurements will be made using electronic pressure transducers/data loggers secured in the wells and in Freeport Creek. The instruments will be secured in place and programmed to record water levels every 15 minutes for the 48-hour monitoring period. At the end of the tidal monitoring, the loggers will be removed from the wells and the data will be downloaded to a computer. If possible, the tidal monitoring will be scheduled so that it is not conducted within two days following a rain event.

The tidal monitoring data will be tabulated and hydrographs for each point will be prepared. Maps and cross-sections will be prepared showing groundwater elevations at high, low and mean tides. Also, hydraulic gradients at each of these points will be calculated.

2.5 GROUNDWATER SAMPLING

To assess current groundwater conditions at OU-2, groundwater samples will be collected from monitoring wells MW-97-1S, MW-98-9D, MW-05-14S, MW-15D, MW-07-16S and MW-07-17D, and any other wells installed as described in Section 2.3.1.

Prior to sampling, a synoptic round of water level measurements will be made. At each well, the steel cover and locking cap will be removed. The headspace in the casing will immediately be screened with a PID. The depth to water and total depth of the well will be sounded using an electronic interface probe.

Wells will be purged and sampled using low-flow methods (Puls and Barcelona, 1996). A Grundfos Rediflow® submersible pump with a flow controller and dedicated polyethylene tubing will be suspended in the well approximately 1 foot above the well bottom. Wells will be pumped at 0.2 to 0.5 liters per minute (lpm). Water will be pumped through a Horiba U22 water quality meter flow cell. The U22 contains probes that measure pH, specific conductance, temperature, turbidity, dissolved oxygen (DO) and oxidation-reduction potential (ORP). Measurements of these in-situ field parameters will be recorded every 3 to 5 minutes until they stabilize. A well will be considered stabilized when the in-situ parameters changed less than 10% over 3 consecutive readings. After, stabilization, the discharge will be disconnected from the flow cell and the sample will be collected from the discharge. Samples will be submitted under chain of custody documentation to a NYSDOH-certified laboratory and will be analyzed using CLP methods with ASP Category B deliverables. Samples will be analyzed for the volatile organic COCs listed in Section 2.2, dissolved gasses (methane, ethane and ethane), total iron, dissolved iron, alkalinity, chloride, sulfate and total organic carbon.

2.6 SURFACE WATER AND SEDIMENT SAMPLING

Surface water and sediment samples were collected in April 2000 at the stormwater outfall to Freeport, as well as upstream and downstream of the outfall. The sample results suggested that releases from the 1988 1,1,1-TCA spill through the storm sewer system to Freeport Creek did not result in significant impacts to creek surface water or sediment.

Groundwater sample results from monitoring wells MW-07-16S and MW-07-17D suggest that chloroethane has migrated from OU-1 in the direction of Freeport Creek. To evaluate whether the chloroethane has impacted Freeport Creek, BP will collect surface water and sediment

samples from Freeport Creek. Surface water and sediment samples will be collected from 3 locations:

- Directly west (downgradient) of OU-1, near wells MW-07-16S and MW-07-17D.
- Approximately 100 feet upstream well couplet MW-07-16S / MW-07-17D.
- Approximately 100 feet downstream well couplet MW-07-16S / MW-07-17D.

Sampling locations will be reviewed with NYSDEC and are subject to change based on access restrictions.

At each location, one surface water sample and one sediment sample will be collected from Freeport Creek. Sampling will be conducted within approximately one hour of low tide, to increase the likelihood of observing any impacts from groundwater contributions. At each location, the water column thickness in Freeport Creek will be measured using an electronic water level indicator. The location and elevation of each sampling location will be surveyed so that the groundwater-surface water relationship can be evaluated. Surface water samples will be collected first, since sediment sampling may result in increased suspended solids in the water column. Surface water samples will be collected from the mid-point of the water column using a horizontal discrete sampler. Surface water samples will be transferred to laboratory-supplied prepreserved glassware for analysis for volatile organic COCs listed in Section 2.2.

Following surface water sampling, sediment samples will be collected at each location. Sediment samples will be collected from the upper six inches of Freeport Creek sediment using a stainless steel sediment sampler. Sediment samples will be be transferred to laboratory-supplied prepreserved glassware for analysis for chloroethane and TOC. Samples will be submitted under chain of custody documentation to a NYSDOH-certified laboratory and will be analyzed using CLP methods with ASP Category B deliverables.

2.7 VAPOR INTRUSION SAMPLING

After the well installation and sampling described in Sections 2.3 and 2.5 are completed, BP will plot the results and evaluate the extent of the chloroethane plume in OU-2. BP will identify OU-2 buildings overlying the chloroethane plume. BP will present groundwater sampling results to NYSDEC and NYSDOH for review. If sampling results indicate that vapor intrusion sampling is warranted, BP will present a workplan to NYSDEC and NYSDOH to assess the vapor intrusion pathway in buildings overlying the chloroethane plume. A description of the sampling program,

including the sample locations and number of samples, will be presented in the workplan. A desription of the sampling procedures is presented below:

To obtain the samples when the potential for vapor intrusion is greatest, sampling will be conducted during the heating season (November 1 through March 31). Sampling will be conducted during Sub-slab vapor samples will be collected by drilling a ¹/₂-inch diameter through the slab using an electric hammer drill. A six-inch long stainless steel sampling screen will be inserted into the sub-slab aggregate. The screen will be attached to Teflon tubing. Samples will be obtained using laboratory supplied pre-cleaned 6-liter SUMMA ® canisters with flow controllers set to collect the samples over a 24-hour period. To evaluate the potential for "short circuit" of ambient air into soil vapor samples, a small polyethylene bucket, equipped with purge and vent ports as well as a grommet equipped with a ¹/₄-inch diameter hole for the sampling tube will be placed upside down over the hole, with the sampling tube passing through the bottom of the bucket. A foam rubber gasket will be will be placed around the bucket edge, which will act as a seal between the bucket and the slab surface around the sampling point. The purge and vent ports on the bucket will be opened and helium will be introduced into the bucket space until 90 to 100 percent concentration is measured at the vent port. Both ports will then be closed.

The sampling line will be purged at 200 cc/min and checked for helium intrusion and, if, 10 percent helium or less is measured, sampling for sub-slab vapors will be initiated. The soil vapor sampling line will be attached to the SUMMA Canister after the pre-sampling vacuum has been recorded and the valve will be opened to begin sample collection. During the sampling period, the sampling line will be monitored periodically for the presence of helium by means of a tee port on the sampling line. Sampling will be interrupted and corrective action will be taken should helium be present at a concentration of greater than 10 percent. During the sampling period, the vacuum reading will be monitored.

An indoor air sample will be collected concurrently with each sub-slab sample. A 6-liter SUMMA canister will be placed at breathing level (3 to 5 feet above the floor). Sub-slab vapor and indoor air samples will be analyzed for the same set of VOCs that the sub-slab and indoor air samples at OU-1 were analyzed for. After the completion of sampling, the SUMMA canisters will be submitted under chain of custody documentation to a NYSDOH-certified laboratory and will be analyzed using CLP methods with ASP Category B deliverables. Samples will be analyzed for the volatile organic COCs listed above.

URS Corporation G:/BP/Projects/Freeport/OU-2

2.8 INVESTIGATION-DERIVED WASTE

During the OU-2 Remedial Investigation, waste materials will be generated. This investigationderived waste (IDW) will include the following:

- Soil generated from drilling activities (drill cuttings);
- Groundwater from the development and purging of temporary groundwater sampling points and monitoring wells;
- Decontamination fluids (water and detergents used to clean drilling/field equipment) and solids that may settle out of these fluids;
- Personnel protection equipment (PPE) and associated debris produced during field activities.

These materials will be managed as described below:

2.8.1 SOIL

Soil Cuttings generated during the drilling program monitoring well installation will be contained in 55-gallon drums and staged in the former Columbia Cement Company building. Pending review of laboratory data, the soil will be disposed of properly.

2.8.2 GROUNDWATER

Groundwater generated from purging of groundwater screening points and existing monitoring wells and development of newly installed monitoring wells will be contained in 55-gallon drums and staged in the former Columbia Cement Company building. Pending review of laboratory data, the water will be transported off-site for treatment and/or disposal at a permitted facility.

2.8.3 DECONTAMINATION FLUIDS

Decontamination fluids will be contained in 55-gallon drums and staged in the former Columbia Cement Company building. Pending review of laboratory data, the water will be transported off-site for treatment and/or disposal at a permitted facility.

2.8.4 PPE AND ASSOCIATED DEBRIS

Used PPE and other associated debris (e.g., disposable sampling equipment) will be containerized and stored temporarily on-site. These materials will be characterized at the conclusion of field activities, and transported off-site for disposal at an appropriate facility.

2.9 HEALTH AND SAFETY

2.9.1 WORKER HEALTH AND SAFETY

All field activities will be conducted under an approved site-specific Health and Safety Plan (HASP). The HASP will document procedures to be followed during field activities, including use of PPE, traffic control, emergency response, and air monitoring. The project HASP is presented as Appendix A.

2.9.2 COMMUNITY HEALTH AND SAFETY

Drilling activities in OU-2 present the potential for community exposure to COCs. To prevent community exposures, all field work will be conducted in accordance with a NYSDOH approved Community Air Monitoring Plan (CAMP). During all ground-intrusive activities (drilling), the CAMP requires continuous monitoring for particulates and VOCs at the downwind perimeter of the work area. If any action levels are exceeded at the perimeter of the work area, the work will be stopped and corrective measures employed. The site-specific CAMP is presented as Appendix B.

2.10 DATA EVALUATION AND REPORTING

Upon receipt of laboratory data, BP will prepare a Remedial Investigation Report for OU-2. The RIR will include the following:

- Site maps include all sampling locations;
- Boring logs and monitoring well construction diagrams will be included;
- Hydrographs from the tidal monitoring;
- Water level elevation contour maps for the high tide, low tide and mean tide from the tidal monitoring;
- A discussion of the tidal monitoring results with respect to hydraulic gradients and flow

toward Freeport Creek;

- Maps and tables presenting groundwater, surface water, sediment and vapor intrusion data.
- A discussion of the extent of the chloroethane plume;
- A discussion of the groundwater geochemistry with respect to natural attenuation of the chloroethane plume;
- A discussion of the potential affects of OU-1 remedial measures on observed OU-2 impacts.

Former Columbia Cement Company Remedial Investigation Work Plan – Operable Unit No. 2

3.0 <u>REFERENCES</u>

Puls, R.W., and Barcelona, M.J., 1996, *Low-flow (minimal drawdown) Ground-water Sampling Procedures:* EPA/540/S-95/504.

Tables

TABLE 1 SUMMARY OF SAMPLING PLAN REMEDIAL INVESTIGATION OPERABLE UNIT NO. 2 FORMER COLUMBIA CEMENT COMPANY SITE FREEPORT, NEW YORK

L

ł

£

I

ł

ŧ

÷

ł

ł

.

1

SAMPLE	SAMPLE ID	SAMPLE MATRIX	SAMPLE DEPTH	SAMPLE METHOD	ANALYTICAL PARAMETERS
LOCATION			(ft below grade)		
GW-01	GW-01A	Groundwater	10 - 12	Hydropunch	COCs ⁽¹⁾
	GW-01B	Groundwater	15 - 17	Hydropunch	COCs
	GW-01C	Groundwater	20 - 22	Hydropunch	COCs
	GW-01D	Groundwater	25 - 27	Hydropunch	COCs
	GW-01E	Groundwater	30 - 32	Hydropunch	COCs
GW-02	GW-02A	Groundwater	10 - 12	Hydropunch	COCs
	GW-02B	Groundwater	15 - 17	Hydropunch	COCs
	GW-02C	Groundwater	20 - 22	Hydropunch	COCs ,
	GW-02D	Groundwater	25 - 27	Hydropunch	COCs
	GW-02E	Groundwater	30 - 32	Hydropunch	COCs
GW-03	GW-03A	Groundwater	10 - 12	Hydropunch	COCs
	GW-03B	Groundwater	15 - 17	Hydropunch	COCs
	GW-03C	Groundwater	20 - 22	Hydropunch	COCs
	GW-03D	Groundwater	25 - 27	Hydropunch	COCs
	GW-03E	Groundwater	30 - 32	Hydropunch	COCs
GW-04	GW-04A	Groundwater	10 - 12	Hydropunch	COCs
	GW-04B	Groundwater	15 - 17	Hydropunch	COCs
	GW-04C	Groundwater	20 - 22	Hydropunch	COCs
	GW-04D	Groundwater	25 - 27	Hydropunch	COCs
	GW-04E	Groundwater	30 - 32	Hydropunch	COCs
GW-05	GW-05A	Groundwater	10 - 12	Hydropunch	COCs
	GW-05B	Groundwater	15 - 17	Hydropunch	COCs
	GW-05C	Groundwater	20 - 22	Hydropunch	COCs
	GW-05D	Groundwater	25 - 27	Hydropunch	COCs
	GW-05E	Groundwater	30 - 32	Hydropunch	COCs
GW-06	GW-06A	Groundwater	10 - 12	Hydropunch	COCs
	GW-06B	Groundwater	15 - 17	Hydropunch	COCs
	GW-06C	Groundwater	20 - 22	Hydropunch	COCs
	GW-06D	Groundwater	25 - 27	Hydropunch	COCs
	GW-06E	Groundwater	30 - 32	Hydropunch	COCs

TABLE 1 SUMMARY OF SAMPLING PLAN REMEDIAL INVESTIGATION OPERABLE UNIT NO. 2 FORMER COLUMBIA CEMENT COMPANY SITE FREEPORT, NEW YORK

ł

E

B

B.

ŧ

ł

.

ł

Ł

Ē

8

.

SAMPLE	SAMPLE ID	SAMPLE MATRIX	SAMPLE DEPTH	SAMPLE METHOD	ANALYTICAL PARAMETERS
OCATION			(ft below grade)		
GW-07	GW-07A	Groundwater	10 - 12	Hydropunch	COCs
	GW-07B	Groundwater	15 - 17	Hydropunch	COCs
	GW-07C	Groundwater	20 - 22	 Hydropunch 	COCs
	GW-07D	Groundwater	25 - 27	Hydropunch	COCs
	GW-07E	Groundwater	30 - 32	Hydropunch	COCs
GW-08	GW-08A	Groundwater	10 - 12	Hydropunch	COCs
	GW-08B	Groundwater	15 - 17	Hydropunch	COCs
	GW-08C	Groundwater	20 - 22	Hydropunch	COCs
	GW-08D	Groundwater	25 - 27	Hydropunch	COCs
	GW-08E	Groundwater	30 - 32	Hydropunch	COCs
GW-09	GW-09A	Groundwater	10 - 12	Hydropunch	COCs
	GW-09B	Groundwater	15 - 17	Hydropunch	COCs
	GW-09C	Groundwater	20 - 22	Hydropunch	COCs
	GW-09D	Groundwater	25 - 27	Hydropunch	COCs
	GW-09E	Groundwater	30 - 32	Hydropunch	COCs

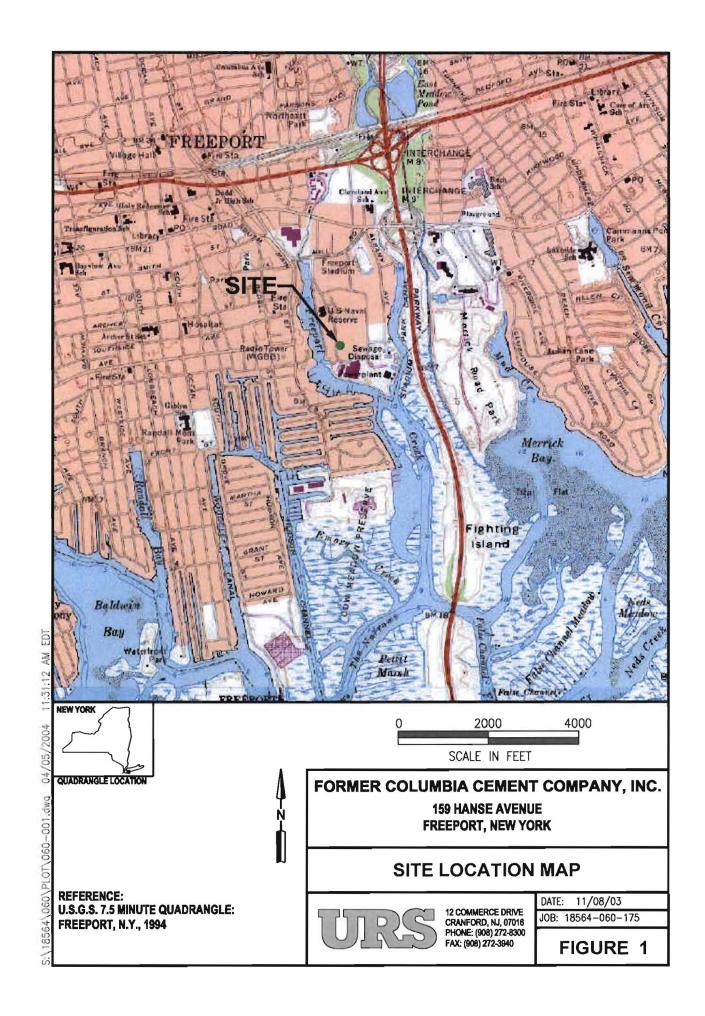
SAMPLE	SAMPLE ID	SAMPLE MATRIX	SAMPLE DEPTH	SAMPLE METHOD	ANALYTICAL PARAMETERS
LOCATION			(ft below grade)		
MW-08-18S	MW-08-18S	Groundwater	15 to 25 ⁽⁴⁾	Low-Flow	COCs, Bio Parameters ⁽²⁾ , Field Parameters ⁽³⁾
MW-08-19D	MW-08-19D	Groundwater	27 to 37 ⁽⁴⁾	Low-Flow	COCs, Bio Parameters, Field Parameters
MW-08-20S	MW-08-20S	Groundwater	15 to 25 ⁽⁴⁾	Low-Flow	COCs, Bio Parameters, Field Parameters
MW-08-21S	MW-08-21S	Groundwater	27 to 37 ⁽⁴⁾	Low-Flow	COCs, Bio Parameters, Field Parameters
MW-97-1S	MW-97-1S	Groundwater	14 to 24	Low-Flow	COCs, Bio Parameters, Field Parameters
MW-98-9D	MW-98-9D	Groundwater	27 to 37	Low-Flow	COCs, Bio Parameters, Field Parameters
MW-05-14S	MW-05-14S	Groundwater	15 to 25	Low-Flow	COCs, Bio Parameters, Field Parameters
MW-05-15D	MW-05-15D	Groundwater	28 to 38	Low-Flow	COCs, Bio Parameters, Field Parameters
MW-07-16S	MW-07-16S	Groundwater	15 to 25	Low-Flow	COCs, Bio Parameters, Field Parameters
MW-07-17D	MW-07-17D	Groundwater	27 to 37	Low-Flow	COCs, Bio Parameters, Field Parameters

TABLE 1 SUMMARY OF SAMPLING PLAN REMEDIAL INVESTIGATION OPERABLE UNIT NO. 2 FORMER COLUMBIA CEMENT COMPANY SITE FREEPORT, NEW YORK

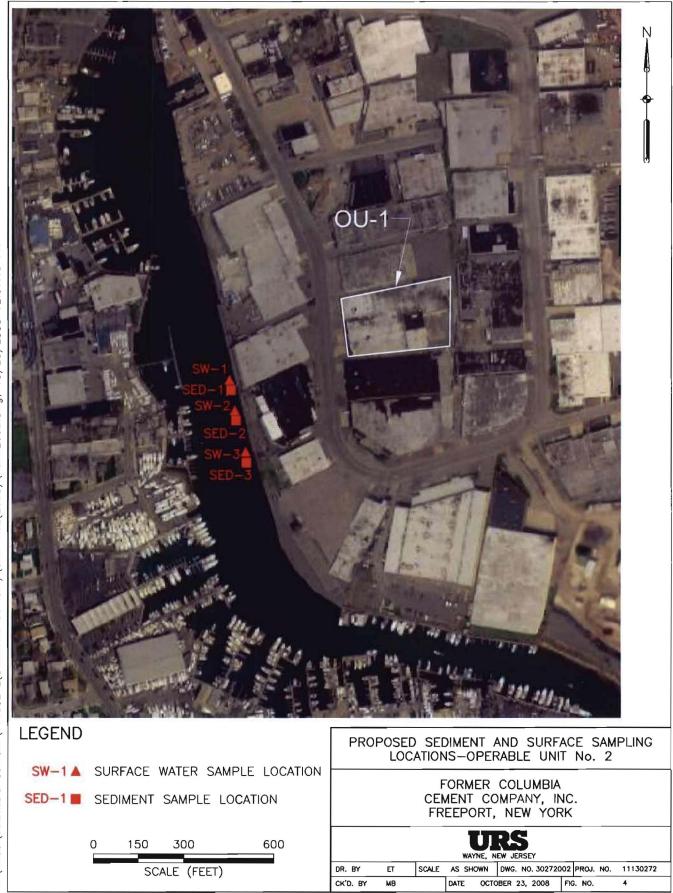
SURFACE WATER SAMPLES								
SAMPLE	SAMPLE ID	SAMPLE MATRIX	SAMPLE DEPTH	SAMPLE METHOD	ANALYTICAL PARAMETERS			
LOCATION			(ft below creek surface)					
SW-1	SW-1	Surface Water	Dependant on water depth ⁽⁵⁾	Horizontal Discrete Sampler	COCs			
SW-1	SW-1	Surface Water	Dependant on water depth ⁽⁵⁾	Horizontal Discrete Sampler	COCs			
SW-1	SW-1	Surface Water	Dependant on water depth ⁽⁵⁾	Horizontal Discrete Sampler	COCs			

SEDIMENT SAMPLES									
SAMPLE	SAMPLE ID	SAMPLE MATRIX	SAMPLE DEPTH	SAMPLE METHOD	ANALYTICAL PARAMETERS				
LOCATION			(ft below creek bottom)						
SED-1	SED-1	Sediment	0 - 0.5	Sediment Sampler	COCs				
SED-2	SED-2	Sediment	0 - 0.5	Sediment Sampler	COCs				
SED-3	SED-3	Sediment	0 - 0.5	Sediment Sampler	COCs				

1 : COCs include chloroethane, chlorobenzene, 1,1,1-TCA, 1,1-TCA and methylene chloride.


2 : Field Paramameters include temperature, pH, conductivity, dissolved oxygen and redox potential

3 : Bio Parameters include dissolved gasses (methane, ethane, ethene), total organic carbon, total, iron, dissolved iron, chloride and alkalinity.


4 : Anticipated depth based on obeservation at other locations.

5 : Sample will be collected from midpoint of water column.

Figures

For Figures 2 & 3, see Project Manager.

PA Cement/11130272(Columbia Cement)/UNIT No2(2008)\30272002.dwg, 10/23/2008 12:07:19 K:\Cadd\Columbia

Former Columbia Cement Company Remedial Investigation Work Plan – Operable Unit No. 2

APPENDIX A

HEALTH AND SAFETY PLAN

URS Corporation G:/BP/Projects/Freeport/OU-2

•

SITE-SPECIFIC HEALTH AND SAFETY PLAN

FORMER COLUMBIA CEMENT COMPANY, INC. FACILITY 159 HANSE AVENUE FREEPORT, NEW YORK

SITE # 1-30-052

URS PROJECT NO. 11130272

Prepared for

Atlantic Richfield Company (ARCO) a BP affiliated company

August 2008

URS Corporation 201 Willowbrook Boulevard Wayne, New Jersey 07470

Project Name: Columbia Cement Revision no. 4 August 5, 2008

Table of Contents

1.0	Sectior	n 1 ONE Disclaimer	1-1
2.0	Sectior	1 2 TWO Tasks and Responsibilities	2-1
	2.1	Identifications	
	2.2	HASP Critical Tasks Summary	
	2.3	HASP Approvals	
	2.4	HASP Acknowledgement / Compliance Acceptance	
	2.5	Kick-off Meeting Content	
3.0	Sectior	n 3 THREE Introduction	3-1
	3.1	Project Description	
	3.2	Site Map	
	3.3	Site History/ Special Hazards	
	3.4	Responsible Personnel	
	3.5	Training Requirements	
4.0	Sectio	n 4 FOUR Site Specific Scope of Work	4-1
	4.1	Groundwater Gauging and Sampling	
	4.2	Baseline Sampling	
	4.3	Radius of Influence Testing	
	4.4	EHC-O Injections.	
	4.5	ISCO Injection	
	4.6	Investigation Derived Waste	
	4.7	Physical Hazards	
	4.7.1	Drilling Operation	
	4.7.2	Heavy Equipment Operation	
	4.7.3	Noise	
	4.7.4	Slip-Trip-Fall Hazards	
	4.7.5	Lifting Hazards	
	4.7.6	Weather	
	4.7.7	Traffic	
	4.7.8	Fire/Explosion	
	4.7.9	Work Area Protection/ Site Control	
	4.7.10	Dust	
		Hands	
		Underground Utilities	
		Overhead Hazards	
	4.8	Chemical Hazards	
	4.9	Biological Hazards	
5.0	Sectio	n 5 FIVE Site Specific Safety Requirements	5-1
	5.1	Hazard Communication	

Table of Contents

HASP A

	5.2	PPE, Air Monitoring Equipment, Calibration Confirmation and Action Levels	5-1
	5.3	Decontamination Procedure	
	5.5 5.4	Traffic Control Plan	
6.0	Section	on 6 SIX Incident Management	6-1
	6.1	Emergency Response Plan	
	6.2	Map and Directions to Occupational Clinic & Hospital Emergency Room	
	6.3	URS Incident/Injury Notification Call Chain	
	6.4	BP Incident Notification and Reporting Matrix	6-5
7.0	Secti	on 7 SEVEN Control of Work Documents	7-1
	7.1	Job Safety Analysis (JSA)	
	7.2	Authorization to Work (ATW)	
	7.3	Required Permits and Forms	7-1
Emergency	Cont	act Information	
		Contact Numbers	
		Hospital Map and Directions	
		Site Map	
Appendix A	L .	JSAs	
Appendix B	6	Authorizations to Work (ATWs)	
1- 1		Site Security Checklists, and	
		Safety Conversation Forms	
Appendix C	;	Safety Reporting Forms	
••		Incident Report	
		Near Miss	
		Safety Observation	
Appendix D)	Field Forms	
		Well Inventory Worksheet	
		Sampling Worksheet	
		Calibration Check Sheet	
Appendix E	i	Permits to Work	
		Hot Work	
		Ground Disturbance	
		Working At Heights	
Appendix F		Package D (if applicable)	
Appendix G	;	Traffic Control Plan (if applicable)	

Table of Contents

HASP A

Appendix H MSDSs Relevant to Site

Appendix I Safety Management Standards (SMSs)

Project Name: Columbia Cement Revision no. 4 August 5, 2008

URS

For Use On The Former Columbia Cement Company Site

Foreword: This Project Health and Safety Plan is a summary of specific site hazards and supporting documentation required for field events.

Disclaimer:

This Health and Safety Plan, and each of its provisions, is applicable only to, and for use only by, URS Corporation, its affiliates, and its subcontractors. Any use of this Plan by other parties, including, without limitation, third party contractors on projects where URS is providing engineering, construction management or similar services, without the express written permission of URS, will be at that party's sole risk, and URS Corporation shall have no responsibility therefore. The existence and use of this Plan by URS shall not be deemed an admission or evidence of any acceptance of any safety responsibility by URS for other parties unless such responsibility is expressly assumed in writing by URS in a specific project contract.

Please contact your Health and Safety Representative or Regional Health and Safety Manager if you have any questions.

Project Name: Columbia Cement Revision no. 4 August 5, 2008

THIS HASP IS TO BE USED FOR THE SPECIFIC PROJECT DESCRIBED HEREIN. IT IS NOT TO BE USED FOR ANY OTHER PROJECT, NOR IS IT TO BE USED FOR PROJECTS IN WHICH SIGNIFICANT CONTAMINANT REMOVAL IS REQUIRED.

2.1 Identifications

Project Number:	38546433
Plan Preparer:	Angela Ledgerwood
BP Environmental Business Manager (EBM):	Kevin Endriss
BP Regional HSE Manager (RHM):	Dan Hardisty
Project Manager (PM):	Mark Becker
Site Safety Officer(s) (SSO):	Angela Ledgerwood
Preparation Date:	June 20, 2008
Expiration Date:	June 20, 2009

2.2 HASP Critical Tasks Summary

			PH	RE-APP	ROVA	L
DESCRIPTION	LOCATION	FREQUENCY	EBM	RHM	PM	SSO
Scope of Work	Section 4	Inception	no	YES	YES	no
Emergency Response Notification	Section 6.3	Inception	no	YES	YES	no
Chemical Hazards	Table 4-1	Inception	no	YES	YES	no
Hazard Communication (MSDSs)	Appendix H	Inception	no	YES	YES	no
Health and Safety Equipment	Section 5.2	Inception	no	YES	YES	no
Monitoring Equipment	Section 5.2	Inception	no	YES	YES	no
Action Levels	Table 4-2	Inception	no	YES	YES	no
Medical Emergency / Contingency Information	Emergency Contact Info	Inception	no	YES	YES	YES
Hospital Directions	Emergency Contact Info	Inception	no	YES	YES	YES
Hospital/Occupational Clinic Map	Emergency Contact Info	Inception	no	no	YES	YES
Site Map	Emergency Contact Info	Inception	no	no	YES	YES

			PRE-APPROVAL			
DESCRIPTION	LOCATION	FREQUENCY	EBM	RHM	PM	SSO
Emergency Response Plan	Section 6.1	Inception	no	YES	YES	YES
URS Safety Management Checklist	Section 5.5	Inception	no	YES	YES	YES
Project/Job Safety Analysis	Appendix A	Inception	no	YES	YES	YES
Remediation Management – Authorization to Work Form	Appendix B	Daily	no	no	no	no
Air Monitoring Log	Appendix D	Daily	no	no	no	no
RM Marketing Pre-Drilling / Subsurface Checklist	Appendix D if applicable	Inception	YES	no	YES	YES
Remediation Management – Permits to Work	Appendix E if applicable	Event	YES	no	YES	YES
Pre-Work Plan	Included in Scope of Work, Section 4	Event	Yes	Yes	Yes	Yes
Post Field Work Safety Evaluation	Project Manager	Conclusion	no	no	YES	YES
URS Safety Management Standards (SMSs)	Appendix I	Inception	no	YES	YES	no
Decontamination Procedures	Section 5.3	Inception	no	no	no	no

2.3 HASP Approvals

ALL SIGNATURES REQUESTED IN THIS SECTION MUST BE PRESENT PRIOR TO BEGINNING FIELDWORK.

Regional Health, Safety and Environment Manager Approval:

Signature	Date
Project Manager Approval:	
Signature	Date
Site Safety Officer Approval:	
Signature	Date

SECTIONTWO

2.4 HASP Acknowledgement / Compliance Acceptance

I have reviewed the URS Project HASP. I am familiar with the contents of the HASP and understand the URS and BP safety protocols for this site.

Name	Affiliation	Signature	Date
	L		

SECTIONTWO

2.5 Kick-off Meeting Content

A kick-off meeting shall occur at the beginning of every work day or after an agreed change in the scope of work. Everyone having business, activities or interest in the project shall attend. At a minimum the following items should be discussed:

- Introductions of all persons present and identification of their roles and responsibilities, verification of API Safety Keys, Safety Moment, all participants will sign the authorization to work (ATW) form;
- Control of work/authorization to work process, including necessary permits;
- Job Safety Analyses for the tasks, MSDS review;
- Management of Change, conditions that may have changed overnight or since the last time the task was performed at the site and remembering to continually "Take 5" as appropriate (eg. After lunch break, weather change events, new staff on site, etc.);
- Appropriate PPE;
- Golden Rules of Safety;
- Discussion of the emergency response plan including the clinic/hospital routes, proper incident management, and evacuation plan;
- HSSE policy issues, including driving safety, Core Values Statement, Weapons Free Workplace;
- Specific issues relating to the site and location, (e.g. heat stress, biological hazards, coordination of multiple activities);
- Confirmation of everyone understands that all persons could stop work if an unsafe or questionable condition was noted and examples of relevant stop work triggers; and
- The importance of positive safety observations, near miss reporting, and incident reporting.

At the conclusion of the Tailgate/Kick-Off Safety Meeting, all parties will sign the ATW form.

URS

3.1 **Project Description**

Project Name:	Former Columbia Cement Company (CCC)
Field Dates:	July 2008 through December 31, 2009
Site Address:	159 Hanse Avenue in Freeport, New York

Activities covered under this Health & Safety Plan (HSP) include water sample collection, soil vapor sampling, soil sampling, the installation of a sub-slab vapor collection system, injection of various *in-situ* chemical oxidation reagents, and other activities. This plan has been developed for URS personnel, but is also intended for subcontractor and/or client use.

URS personnel on this project must meet the training requirements of 29 CFR 1910.120(e) and be participating in a medical surveillance program as per 29 CFR 1910.120(f). Eating, drinking and smoking will only be allowed in designated areas of the site.

This plan is valid only for the specific project identified in the following project description. The Project Manager and Site Safety Officer are responsible for implementation of this plan that includes the site safety briefing. Field activities are limited to providing general oversight in accordance with the workplan, and obtaining soil and/or groundwater samples for laboratory analysis. URS Safety Management Standards (SMSs) referenced herein are included as Appendix I.

3.2 Site Map

A recent copy of a site map is located in the **Emergency Contact Information**.

3.3 Site History/ Special Hazards

CCC, which was owned by Burmah Castrol, produced adhesives for a variety of applications. In 1988, while CCC operated the facility, approximately 1,760 gallons of 1,1,1-trichloroethane (1,1,1-TCA) was released to a storm drain during filling of an underground storage tank (UST) due to a failure of a contractor's tanker truck. The soil and groundwater at the site are presently impacted with 1,1,1-TCA and breakdown products, including 1,1-dichloroethane and chloroethane. Tetrachloroethene, trichloroethene, cis-1,2-dichloroethene and vinyl chloride also have been detected on site. The on-site facility is currently inactive and vacant.

Freeport Creek is located 500 feet west of the site and Stadium Park Canal is 1,000 feet east of the site. Stadium Park Canal merges with Freeport Creek approximately 1,500 feet southeast of the site. From this point, surface water flows south through tidal marshes to the Atlantic Ocean, approximately 5 miles south of the site.

BP EBM	Kevin Endriss	410-825-7853 (office)
		410-790-6016 (cell)
Project Manager	Mark Becker	973-812-6835 (office)
		908-347-7234 (cell)
Site Manager	Mark Becker	973-812-6835 (office)
-		908-347-7234 (cell)
Site Safety Officer	Angela Ledgerwood	(office) 212-609-6061
-		(cell) 415-246-1787

3.4 Responsible Personnel

3.5 Training Requirements

Field personnel must be enrolled and current in a medical monitoring program. Additionally, the field personnel must be current in Hazardous Waste Course Training in accordance with OSHA 29 CFR 1910.120(e)(8). Medical monitoring and training certificates are on file.

Field personnel and all subcontractors must be current with the API WorkSafe training and carry a valid API Safety Key while working at the site.

All field staff will be trained in RM Authorization to Work, Permit to Work, and Hazard Recognition.

4.1 Groundwater Gauging and Sampling

URS will collect groundwater samples from monitoring wells located both on-site and off-site. URS will the monitor well headspace and the breathing zone with a calibrated photo-ionization meter. URS will gauge the wells with a water level indicator. URS will collect the sample in laboratory-supplied glassware, then seal the well.

Initially, the depth to water and the total depth of the well are to be observed using an electronic water level indicator. Data collected during well purging will be recorded on a well sampling form. Each well will be purged using a submersible pump. Wells will be purged and sampled using low-flow techniques.

Between sampling each monitoring well, flow through cells and instruments will be decontaminated using Alconox and distilled water rinse, with a final rinse of distilled water. If this process does not fully decontaminate, hexane may be used as an intermediate rinse, followed by thorough distilled water rinse.

4.2 Baseline Sampling

URS will direct contractors to advance three direct-push soil borings to approximately 24 feet below grade. Continuous soil samples will be collected from 12 feet to 24 feet. URS will collect one grab groundwater sample from each boring using Hydropunch methods. After completion of sampling, URS will direct the contractor to backfill the borings with grout and finish the top of each boring with a concrete patch.

4.3 Radius of Influence Testing

URS will conduct radius of influence (ROI) testing at four locations in the site building. Each ROI test will consist of drilling six holes in the building slab. One hole will be used to extract sub-slab vapors using a portable shop vacuum. Pressure gages will be inserted into the other five holes to monitor the pressure created by the vacuum. The extracted vapors will be piped through flexible hose to the building exterior. At the completion of the testing, the holes will be sealed with concrete patch.

4.4 EHC-O Injections

URS will direct contractors to advance three direct-push soil borings to a depth of approximately 36 feet. In each boring, the contractor will inject EHC-O, a controlled oxygen release compound, in a slurry preparation. The contractor will mix the slurry in accordance with the manufacturer's instructions. The slurry will be injected at 2-foot intervals in a bottom-up fashion from approximately 36 feet to 10 feet below grade. After completion of injections, URS will direct the contractor to backfill the borings with grout and finish the top of each boring with a concrete patch.

4.5 ISCO Injection

URS will direct contractors to advance three direct-push soil borings to a depth of approximately 22 feet. In each boring, the contractor will inject a mixture of sodium persulfate and hydrogen

peroxide. Because of varying contaminant levels, the mixture will vary with depth. The contractor will combine sodium persulfate, hydrogen peroxide and water in desired mixtures in accordance with the manufacturer's directions. After completion of injections, URS will direct the contractor to backfill the borings with grout and finish the top of each boring with a concrete patch.

4.6 Investigation Derived Waste

The used sample tubing and acetate core liners will be collected in a trash bag along with PPE used on site for waste disposal.

Additionally, purge water/product and any decontamination fluids will be contained onsite in a 55-gallon steel drum. The drum will be staged onsite until a timely proper disposal of the purge water can be arranged.

4.7 Physical Hazards

Physical hazards are inherently present during site soil boring, remediation and groundwater monitoring well installation activities. Common physical hazards include electrical shock, flying particulates, objects striking head, and inhalation and contact of organic vapors, mechanical hazards; noise exposure associated with the operation of heavy equipment; slip-trip-fall hazards associated with the field environment; hazards associated with weather conditions; musculoskeletal injury resulting from lifting tasks; nuisance dust associated with drilling; and explosion hazards from underground pipes or lines that may be encountered during the drill process.

Drilling equipment will be operated, inspected, and maintained according to manufacturers' operating manuals. URS will subcontract the drilling and installation of all wells at this site. URS field personnel will be present during these activities to supervise and monitor the health and safety of field personnel. Prior to the start of any drilling activities, a survey of the site will be completed. This survey will include all overhead hazards and any underground utilities or hazards. The survey results and maps will be used to determine any previously unknown hazards; this information will be discussed in the Tailgate Meeting and will determine the location of extraction and injection wells.

The typical physical hazards anticipated being present on the site and the methods for preventing injury due to these hazards are described below.

4.7.1 Drilling Operation

Operation of drilling equipment presents potential physical hazards to personnel. All personnel working the vicinity of drilling equipment will follow the safety guidelines outlined in URS SMS 056, Drilling Operations, as provided in Appendix I.

The following precautions must be observed whenever heavy equipment is in use:

- Personal protective equipment (PPE) such as steel-toed shoes, safety glasses or goggles, hard hats, and protective gloves must be worn whenever such equipment is present.
- The Long Island One Call center shall be contacted at least 72 hours in advance.

- Traffic safety vests are required at all times for all personnel and subcontractors working on BP sites. Keep all non-essential personnel out of the work area.
- Any heavy equipment that is used in the exclusion zone should remain in that zone until its task is completed. The equipment subcontractor should completely decontaminate such equipment in the designated equipment decontamination area as required prior to moving the equipment outside of the EZ/CRC. See URS SMS 19 in Appendix I and the Environmental Remediation Drilling Safety Guidelines for additional information

4.7.2 Heavy Equipment Operation

Operation of heavy equipment during subsurface and investigation activities presents a potential "run over" or collision hazard to personnel. The hazards associated with heavy equipment can be effectively eliminated if personnel maintain a constant visual or verbal contact with the equipment operator. Never assume that the equipment operator sees you; make eye contact and use hand signals to inform the operator of your intent. Never walk directly in back of, or to the side of, heavy equipment without the operator's knowledge. See URS SMS 019 in Appendix I for additional information.

4.7.3 Noise

Whenever feasible, noise levels, identified as exceeding 85 decibels, will be reduced by means of personal protective equipment. Ear plugs and/or muffs will be worn at all times when URS personnel are within 25 feet of operating equipment. Hearing protection will also be worn in the vicinity of generators, concrete cutters, and any other high noise emitting equipment. See URS SMS 026 in Appendix I for additional information.

4.7.4 Slip-Trip-Fall Hazards

Slip-trip fall hazards are common at investigation and underground storage tank sites due to open trenches, pits, and holes; muddy, slippery or unstable surfaces; and equipment on the ground. While it is difficult to eliminate all slip-trip-fall hazards, risk of injury will be minimized by implementing safe work practices, utilizing proper footwear, and keeping the excavation area free of obstructions. See **URS SMS 021 and SMS 040** in Appendix I for additional information.

4.7.5 Lifting Hazards

Field operations often require the performance of laborious tasks. All employees must implement proper lifting procedures, such as keeping the load close to the body, and using leg muscles instead of back muscles to perform lifting tasks. Additionally, employees will not attempt to lift large, heavy, or awkwardly shaped objects without assistance. See URS SMS 069 in Appendix I for additional information.

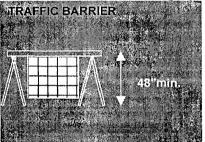
4.7.6 Weather

Weather conditions are an important consideration in planning and conducting site operations. Extremely hot or cold weather can cause physical discomfort, loss of efficiency and personal injury. Of particular importance is heat stress, often resulting from the use of impermeable protective clothing, which decreases the body's natural cooling processes.

During storms, rain may cause slippery surfaces and also weaken the excavation walls making the walls more susceptible to collapse. Lightning may also accompany storms, creating an

electrocution hazard during outdoor operations. To eliminate this hazard, weather conditions will be monitored and work suspended during electrical storms.

The following potential weather hazard exists at the site:


<u>X</u> Heat Stress (See Appendix I for URS SMS 018 for additional information)

X Cold Stress (See Appendix 1 for URS SMS 059 for additional information)

4.7.7 Traffic

This work will begin at BP Traffic Protection (TPL) Level. If necessary, the TPL of 2 will be utilized. If work requires field activities on or near highways or roads, URS SMS 032 in Appendix I will be implemented.

A Traffic Control Plan will be prepared as warranted on a site/task specific basis. In the event the scope of work or the use of heavy equipment effects the site's regular traffic flow or business operation, a pre-work site evaluation will determine traffic flow, high volume time frame, location of exclusion zone, foot traffic pattern, emergency evacuation plan, location of protective barriers and equipment, parking, vehicle turn around point, and any other site protection issues that need to be addressed in the site specific Traffic Control Plan. For such occurrences, a Traffic Control Plan will be prepared and included in Appendix I.

The traffic control plan and equipment will be discussed during the tailgate safety meeting. The appropriate level of job site protection, based on BP's Traffic Control Guidance Document and API Guidance, will be maintained at all times.

4.7.8 Fire/Explosion

URS personnel will protect against the hazard by implementing the following safety procedures (SMS 014 and SMS 015 in Appendix I):

- URS SMS 033 in Appendix I (Underground Storage Tank Removal) will be followed, including American Petroleum Institute recommended practices;
- All potential ignition sources will be kept away from an explosive or flammable environment;
- Non-sparking, explosion-proof equipment will be used when necessary;
- A Hot work permit will be issued before hot work is performed within the hazardous zone; and
- Fire extinguisher(s) will be provided at appropriate locations (URS SMS 014 in Appendix I).

In the event fire or explosion becomes a threat, all personnel will be evacuated to a predetermined evacuation area until the hazardous situation is properly controlled or eliminated. See URS SMS 014 for in the Appendix I for additional information.

4.7.9 Work Area Protection/ Site Control

As the project operation may be undertaken in a roadway or parking lot, motor vehicles may be a hazard. Guidance on properly coning and flagging the work area is located in the Attachments. See URS - SMS 032 in Appendix I for additional information.

4.7.10 Dust

Drilling activities can result in airborne hazards. The mixing of amendments can also generate dust. In the event drilling or injection operations generate sustained visible dust, the drilling contractor should apply a water mist to the site to reduce dust generation. If the dust mitigation is not feasible, field personnel should wear dust masks. See URS SMS-042 in Appendix I for additional information. Safety equipment is summarized on Table 4.

4.7.11 Hands

Injury to hands during field activities can be avoided by employing preventative procedures (See Appendix I for **URS SMS 016 and SMS 064** for additional information):

- Identify possible sources of hazard and procedures to mitigate them;
- Reevaluate hazards when arrive on site and make necessary adjustments to procedures to diminish the risk;
- Knowledge of proper use of tools and equipment and relay information during tailgate meetings;
- Discuss safety precautions when a subcontractor has equipment on site;
- Appropriate PPE for activities to control hazard, i.e., leather gloves, work gloves, nitrile gloves;
- Keep hand tools and portable equipment in good repair;
- FIXED OPEN BLADE KNIVES (E.G. UTILITY KNIVES, LEATHERMAN, MULTI-TOOLS, ETC.) ARE PROHIBITED FROM USE;
- Use tools and equipment appropriately; and
- Evaluate the proper method to move drums to prevent injury to hands.

4.7.12 Underground Utilities

All proximal underground utility locations must be located by either utility locating service, URS, or the excavation contractor prior to the commencement of excavating activities. URS field personnel shall note the location(s) of above and below ground utilities on a map and in the field notebook. The deactivation of utilities should be certified by the proper utility company personnel. See URS SMS 034 in Appendix I for additional information.

4.7.13 Overhead Hazards

Overhead power lines pose a danger of shock or electrocution if the power line is contacted or severed during site operations. Prior to conducting work in areas where overhead lines could be impacted, the appropriate utility company will be notified and information will be obtained regarding the line voltage and the minimum separation distance required for work in this area. See URS SMS 034 in Appendix I for additional information.

4.8 Chemical Hazards

The chemical hazards previously identified at the Site through soils and/or groundwater sampling consist of petroleum compounds and chlorinated volatile organic compounds. These chemical contaminants are listed on Table 4-1. Table 4-1 also presents chemical information, common and identifying characteristics. Action levels to be adhered during site work are presented in Table 4-2. During all Site activities, air monitoring will be performed. If any action levels are exceeded in the work area, work will be stopped and re-evaluated. Action levels are listed in Table 4-2. If possible engineering controls will be employed to prevent worker exposure. If levels persist, workers in the work area will upgrade PPE as necessary before continuing work.

4.9 Biological Hazards

There is a risk of injury from biological hazards at the Site at or near areas of the building where exposure to insects, birds, feral cats and dogs and other dangerous vertebrates is possible. Protective boots, clothing, repellents and other appropriate equipment are recommended (See Appendix I for URS SMS 047).

Appropriate clothing should be worn if poison ivy, oak, and/or sumac are present. Exposed skin should be washed with a strong soap (e.g., Liqui-Nox) as soon as possible after suspected exposure. If mosquitoes are present, repellent should be used according to label directions to prevent possible transmission of encephalitis or other transmitted diseases. The use of repellents must be addressed to ensure sample integrity when there is a potential for sample medium exposure. See "Biological Hazards" (Appendix I – for URS SMS 047).

Ticks are another concern in grassy areas. Ticks do not jump, crawl, or fall onto a person. They are picked up when clothing or hair brushes a leaf or other object that a tick is on. Precautionary measures include tucking pant legs into socks or otherwise taping pant legs closed, wearing repellant with DEET, etc. In case of a tick bite, do not remove the tick with your bare hands. See additional information "Biological Hazards" (-URS SMS 047 in Appendix I).

5.1 Hazard Communication

Copies of all MSDS are included in Appendix H of this HASP, General HASP Requirements and Supporting Documentation. Project managers will use this checklist to indicate which MSDS are applicable to this site. Any additional MSDS will be attached here and added to the checklist.

	Acetone
--	---------

Active Carbon

Alconox/Liquinox

Bentonite

Calibration Solutions (ORP, pH, Conductivity, etc)

Chloroform

Fire Extinguisher

1,1,1-Trichlorothane

1,1-Dichlorothane

 \square 1,2-Dichlorothene

Chlorothane

Hydrochloric Acid (33-40%)

Methylene Chloride

 $\boxed{\qquad} \text{ Nitric Acid (50-70\%)}$

Trichloroethylene

1,1,2- Trichloroethene

Tetrachloroethene

 \square 1,1,2,2-Tetrachloroethene

Vinyl Chloride

Other: EHC-O

Other: Sodium Permanganate

Other: Hydrogen Peroxide

Other: Activated Carbon

Other:

5.2 PPE, Air Monitoring Equipment, Calibration Confirmation and Action Levels

<u> PPE</u>

м	inimum PPE <u>required</u> on any BP sites	Additional PPE to be added as required by the site or task
Ø	Hard Hat	☑ Hearing Protection
Ø	Steel-toed Boots	Fire Retardant Clothing
Ŋ	High-Visibility Safety Vest	Tyvek Coveralls
Ø	Eye Protection (Type) Safety Glasses	 Chemical-resistant steel-toed Boots
	Gloves (Type) <u>Nitrile</u> gloves when handling contaminated materials and <u>Leather</u> gloves during all other activities	Respirator (Type) Full-face APR
Ø	First Aid Kit	 Cartridges (Type) Organic Vapor
Ø	Long-sleeve shirts	 Chemical Resistant Safety-Toed Boots
	Eye Wash Kit	Form Fitting Goggles
	Fire Extinguisher	☑ Dust Masks
		Poly-coated Tyvek
		Other
		 Face shield and safety glasses fo workers handling hydrogen peroxide

Notes:

- The HSP Preparer has conducted a Hazard Assessment for this project based upon information provided by the Project Manager, in accordance with 29 CFR 1910.132 (d).
- * Safety clothing should be evaluated for its "high-visibility" aspects.
- ** Effective September 1, 2007, it is a requirement that when working at a BP US Pipelines and Logistics managed site you must wear fire retardant clothing (FRC).

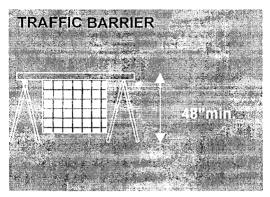
Monitoring Equipment

The following monitoring equipment or equivalent will be used during site investigation and remediation activities involving soil, groundwater and/or soil vapor:

	Organic Vapor Analyzer			
\boxtimes	Methane Meter (1)			
	Explosimeter			
\boxtimes	Dust Monitor (1)			
	Organic Vapor Monitor w/la	amp		•
\boxtimes		11.7 eV		
	Colormetric Tubes (Type)		, ¹ k	
\boxtimes	Draeger Tube (Vinyl Chlori	de)		

(1) Required as part of the site-specific Community Air Monitoring Program.

The monitoring equipment must be calibrated in accordance with the manufacturer's instructions. In addition, the results of daily instrument calibrations shall be logged in the field logbook, or on the Daily Instrument Calibration Check Sheet, **Appendix D**. Monitoring will be performed continuously in the work area.


5.3 Decontamination Procedure

Wash hands thoroughly before eating; clean-up and wash hands and face when work activities are completed. Formal decontamination procedures are required if the analyzer reading exceeds 15 ppm in the OBZ.

5.4 Traffic Control Plan

A Traffic Control Plan will be prepared as warranted on a site/task specific basis. In the event the scope of work or the use of heavy equipment effects the site's regular traffic flow or business operation, a pre-work site evaluation will determine traffic flow, high volume time frame, location of exclusion zone, foot traffic pattern, emergency evacuation plan, location of protective barriers and equipment, parking, vehicle turn around point, and any other site protection issues that need to be addressed in the site specific Traffic Control Plan. For such occurrences, a Traffic Control Plan will be prepared and included in **Appendix G** of this HASP.

Site Specific Safety Requirements

The traffic control plan and equipment will be discussed during the tailgate safety meeting. The appropriate level of job site protection, based on BP's Traffic Control Guidance Document and API Guidance, will be maintained at all times.

URS SMS Checklist

Copies of all the below listed SMSs are found in Appendix I.

The SMSs in the first section are required for all sites, the Project Manager is required to indicate the additional SMSs that are specific to this site or task (second section).

\boxtimes	SMS 1	Regulatory Inspections
\bowtie	SMS 2	Worker Right to Know
\boxtimes	SMS 3	Emergency Action Plan
\boxtimes	SMS 9	Corrosive and Reactive Materials
\boxtimes	SMS 12	Electrical Safety
\boxtimes	SMS 14	Fire Prevention
\boxtimes	SMS 15	Flammable and Combustible Liquids and Gases
\boxtimes	SMS 16	Hand and Portable Equipment
\boxtimes	SMS 17	Hazardous Waste Operations
\boxtimes	SMS 18	Heat Stress
\boxtimes	SMS 21	Housekeeping
\boxtimes	SMS 24	Medical Screening & Surveillance
\boxtimes	SMS 25	New Employee Safety Orientation
\boxtimes	SMS 29	Personal Protective Equipment
\boxtimes	SMS 32	Traffic Control
\boxtimes	SMS 43	Personal Monitoring (Industrial Hygiene)
\boxtimes	SMS 46	Subcontractor Health and Safety Requirements
\boxtimes	SMS 47	Outdoor Environments
\boxtimes	SMS 49	Incident Reporting
\boxtimes	SMS 50	Specific Chemical Hazards

Site Specific Safety Requirements

\boxtimes	SMS 51	Bloodborne Pathogens
\boxtimes	SMS 57	Vehicle Safety Program
\boxtimes	SMS 59	Cold Stress
\boxtimes	SMS 64	Hand Safety
\boxtimes	SMS 65	Injury Management
\boxtimes	SMS 66	Incident Investigation
\boxtimes	SMS 69	Manual Material Handling
\boxtimes	SMS 72	Behavior Based Safety
\boxtimes	SMS 78	Short Service Employees
\boxtimes	SMS 84	Lone Worker Safety
\boxtimes	SMS 85	Drive Safely
	SMS 4	Accessing Industrial Sites
	SMS 8	Asbestos Operations
	SMS 10	Confined Space Entry
	SMS 13	Excavation Safety
	SMS 19	Heavy Equipment Operations
	SMS 20	Hot Work
	SMS 23	Lockout and Tagout Safety
\boxtimes	SMS 26	Noise and Hearing Conservation
\boxtimes	SMS 28	Portable Ladders
	SMS 30	Sanitation
	SMS 33	Underground Storage Tank Removal
\boxtimes	SMS 34	Utility Clearances
	SMS 40	Fall Protection
	SMS 41	Rigging
\boxtimes	SMS 42	Respiratory Protection
\bowtie	SMS 48	Hazardous Materials/Dangerous Goods Shipping
\bowtie	SMS 56	Drilling Safety Guidelines

SECTIONSIX

Occupational Clinic/Emergency Room

The Site supervisor should always contact the URS Occupational Health Advisor (Jeanette Schrimsher) to determine the proper incident management plan. Jeanette and her team will talk you through first aid procedures and proper treatment if you need it.

Jeanette Schrimsher's contact information is:

Direct:	512.419.6440
Cell:	512.656.0203
Toll Free:	1-866-326-7321

A detailed injury reporting flow chart is found in Section 6.3.

6.1 Emergency Response Plan

L Purpose & Scope of Plan

The Site Emergency Response Plan provides the on-site user with critical information to be used in the event of an emergency for a RETAIL SITE Type situation. For operating facilities, including active BP retail and terminal facilities, also refer to the Facility Response Plan. IN AN EMERGENCY (e.g., fire, major injury, crime, major release) CALL 911 FIRST (if Available) and NOTIFY the ON SITE OPERATOR.

II. Notification Guidelines

The BP\URS Notification Guidelines are found in Sections 6.3 and 6.4 of this document.

Emergency Contacts – Call Contacts in the order listed below until you speak to someone LIVE:

<u>URS</u>	Name or Description	<u>Work</u>	24-hr. Contact
Portfolio Manager	Mark Becker	973-812-6835	908-347-7234
Project Manager	Mark Becker	973-812-6835	908-347-7234
Site Manager	Mark Becker	973-812-6835	908-347-7234
Program Manager	Van Ekambaram	973-812-6827	201-303-1393
Portfolio HSSE Coordinator	Rebecca Carew	301-258-5849	443-799-5390
URS HSSE Managers	Bob Gabrois	973-812-6836	973-997-2079
Alternate:	Steve Sherman	716-923-1363	716-445-4219
RM Supplier Performance Manager	Jennifer Biland	334-348-2285	919-395-1889

$\textbf{SECTION}{SIX}$

Incident Management

BP	<u>Name or</u> Description	<u>Work</u>	24-hr. Contact
Environmental Business Manager	Kevin Endriss	410-8257853	410-790-6016
Regional Manager	Patricia Gallery	630-836-7109	630-333-6388
Regional HSSE Manager	Dan Hardisty	630-836-7614	630-337-9368
BP Notification Center	EMERGENCIES ONLY**	(800) 321-8642	(800) 321-8642

**Only to be used if you are not able to speak to one of the above URS or BP contacts:

Other Contacts	<u>Name or</u> Description	<u>Work</u>	24-hr. Contact
Site Owner	Bob Hank, ITW	847-657-4949	
Applicable Regulatory Agency	Girish Desai, NYSDEC	631-444-0243	

III. Maps

Occupational Health Facilities: Map and Directions with route to nearest facilities are provided behind the Emergency Contact Information.

Hospital Route\Area Map: Map and Directions with route to the nearest facility are provided behind the Emergency Contact Information.

<u>Traffic Guide\Site Map</u>: Refer to the PM approved Site Specific Traffic Control Plan and attached Site Map located in this HASP.

IV. External/Emergency Contact Information See Emergency Response Section

V. Local Emergency Response Resources **Oil Spill Contractor** AB Environmental Vac Truck (Vapor & AB Environmental 1599 Ocean Ave. Liquid) 1599 Ocean Ave. Bohemia, NY 11716 Bohemia, NY (631) 567-6545 11716 (631) 567-6545 **Drilling Contractor** Zebra Environmental Waste Disposal AB Environmental 1599 Ocean Ave. 30 No. Prospect Avenue Lynbrook, New York 11563 Bohemia, NY Tel (516) 596-6300 11716 (631) 567-6545 Best Western Mill River Manor X-Ray Locating Hotel for Operations Utility Clearance Center: 173 Sunrise Hwy Services, Inc. Rockville Centre, NY 173 Terry Road (516) 678-1300 Smithtown, NY 4.5 miles / 11 minutes from Site 11787 (631) 979-2891 1.5 miles / 6 minutes from Hospital

VI. Evacuation Procedures

Emergency Meeting Site:	To be determined and disseminated to all workers during the daily tailgate safety meeting. Considerations in determining meeting site shall include conditions such as wind direction, egress hazards, etc.
Evacuation Route/Procedures:	To be determined and disseminated to all workers during the daily tailgate safety meeting. Considerations in determining route/procedures shall include conditions such as egress hazards, notification, etc.

SECTIONSIX

Incident Management

VII.	Incident Management Team & Organization Chart
	BP EBM or URS Portfolio Manger/HSSE Lead will have a copy of the BP America's Respon Guide.
VIII.	Incident Management Team Descriptions (and how to activate the team)
	M or URS Portfolio Manger/HSSE Lead will have a copy of the BP America's Response Guide.
IX.	Emergency Operations Center
	Locate at local Hotel See V. Local Resources
Х.	Linked Plans: BP Business Support Plan (BSP) – RM website.
	http://rm.bpweb.bp.com/?wmsID=b6d939e6-e659-4b8a-8ee8-2c5a21cb4811
	For active BP facilities also refer to the site specific Facility Response Plan:
	Contact Name: Title:
	Contact Number: (office) (cell)
	Location of Plan:
XI.	Plan Maintenance
	Schedule Updated annually or more frequently as information changes.
	Contact name Project Manager is responsible for the update of this plan.
XII.	Training & Exercising
	New employees MUST review and become familiar with this Plan before arriving at site.
XIII.	Non-regulatory Reporting Guidelines
	See BP RM Incident & Near-Miss Notification and Reporting Guidance Manual
XIV.	Distribution List

6.2 Map and Directions to Occupational Clinic & Hospital Emergency Room

All Maps and Directions are located in the Emergency Contact Information Section.

6.3 URS Incident/Injury Notification Call Chain

This call chain will be used when any incident occurs (OSHA recordable or first aid), any near miss, or any vehicle incidents (including no vehicle damage). This chain will be used regardless of the day of the week or hour of the day.

Injured Employee MUST call:

Other URS field personnel with the injured employee may also make the required contacts.

URS Project Manager (PM)	Mark Becker	Office: 973-812-6835 Cell: 908-347-7234
Alternate URS Project Manager	Fayaz Lakhwala	Office: 973-812-6887 Cell: 908-230-9567
URS Occupational Nurse	Jeanette Schrimsher	Office: 866-326-7321 Cell: 512-656-0203

SECTIONSIX

If the URS PM (or PM Alternate) is not available, the injured employee must proceed to contact the individuals below.

URS PM MUST notify all of the following individuals:

Emergency Contacts – Call Contacts in the order listed below until you speak to someone LIVE. If an individual is not available in the office, leave a voicemail and attempt to contact them on their cell phone.

BP Contacts

<u></u>		
BP EBM	Kevin Endriss	Office: 410-825-7853
		Cell: 410-790-6016
BP EBM Alternate	Greg Miller	Office: 410-825-7965
		Cell: 443-921-7906
BP Deputy Regional	Gary Umberhagen	Office: 410-825-8060
Manager		Cell: 410-948-5961
BP Regional Manager	Patricia Gallery	Office: 630-836-7109
		Cell: 630-333-6388
BP Notification Center	EMERGENCIES ONLY**	800-321-8642

URS Contacts

URS Contacts		
URS Portfolio Manager	Mark Becker	Office: 973-812-6835 Cell: 908-347-7234
URS HSSE Manager	Bob Gaibrois	Office: 973-812-6836
		Cell: 973-997-2079
URS HSSE Manager	Steve Sherman	Office: 716-923-1363
Alternate		Cell: 716-445-4219
URS Portfolio HSSE	Rebecca Carew	Office: 301-258-5849
Coordinator		Cell: 443-799-5390
URS Global HSSE	Jennifer Biland	Office: 334-348-2285
Coordinator		Cell: 919-395-1889
URS Corporate HSSE	Cece Weldon	Office: 248-994-7466
Liaison		Cell: 248-752-3405
URS Client Account	Dennis Kasner	Office: 312-697-7215
Manager – Americas		Cell: 312-961-9869
URS Global Account	Jim Garrett	Office: 757-271-9784
Manager		Cell: 757-295-1226

Section 6

ł

ł

6.4 BP Incident Notification and Reporting Matrix

INCIDENT NOTIFICATION AND REPORTING PROCESS TABLE

	NOTIFICATION			INITIAL REPORTING			INVESTIGATION				CORRECTIVE ACTION		
inenon Selenty	Notification required	Accountability By **	When	Forms / Reports	Accountability By **	When	Forms / Reports	Accountability By **	When	Distribution To	Forms / Reports	Accountability By **	Distribution To
MAJOR/ HIGH POTENTIAL Refer to BP Group Major Incident and High Potential Incident Reporting Guideline	Head of Function Chief Operating Officer/VP Operations HSSE Manager Regional Manager EBM/HSSE Coordinator Operating Facility Contact (if applicable) BP Notification Center (as needed)	RM Employee or PM	Immediately (within 1 hour)	Major incident Announcement Forms OSHA 300 Log (as applicable) Tr@ction Report (See Appendix E)	Regional Manager	Within 24 Hours	MIA/HIPO Report Tr@ction Incident Report updated with investigation results RCA based on the Comprehensive List of Causes (CLC) Methodology	Regional Manager Investigation Team Leader from RM LT as agreed with the Head of Function See Section 4	10 Days (Preliminary) 30 Days (Final)	Refer to Appendix B & C	Incident Report in Tr@ction Lessons Learned document	Regional Manager	Refer to Appendix B & C
<u>NON-MAJOR</u> (excluding Recordables)	Head of Function • Chief Operating Officer/VP Operations HSSE Manager Regional Manager EB//HSSE Coordinator Operating Facility Contact (if applicable) BP Notification Center (as needed)	RM Employee or PM	Immediately (within 1 hour)	Incident Report in Tr@ction	Regional Manager	Within 24 Hours	Tr@ction Incident Report RCA based on the Comprehensive List of Causes (CLC) Methodology	EBM or Regional Manager (as appropriate) Investigation Team Leader as agreed with the Head of Function	10 Days (Preliminary) 30 Days (Final)	LT XLT PMs HSSE Manager	Incident Report in Tr@cton Lessons Learned document	Regional Manager	LT XLT PMs HSSE Manager

Section 6

Incident Management

INCIDENT NOTIFICATION AND REPORTING PROCESS TABLE

	N	OTIFICATION		INITI/	L REPORTING			INVESTIC	GATION		00	RRECTIVE ACTI	ON ON
	Notification required	Accountability By **	When	Forms / Reports	Accountability By **	When	Forms / Reports	Accountability By **	When	Distribution To	Forms / Reports	Accountability By **	Distribution To
<u>DAFW CASE</u>	Head of Function Chief Operating Officer/VP Operations HSSE Manager Regional Manager EBM/HSSE Coordinator Operating Facility Contact (if applicable) BP Notification Center (as needed)	RM Employee or PM	Immediately (within 1 hour)	Incident Report in Tr@ction OSHA 300 Log – as applicable	Regional Manager	Within 24 Hours	Tr@ction Incident Report RCA based on the Comprehensive List of Causes (CLC) Methodology	EBM or Regional Manager (as appropriate) Investigation Team Leader from RM LT as agreed with the Head of Function RCA Investigations for DAFWCs with be led by member of RMLT	10 Days (Preliminary) 30 Days (Final)	LT XLT PMs HSSE Manager	Incident Report In Tr@ction Lessons Learned document	Regional Manager	LT XLT PMs HSSE Manager
<u>INJURY</u> (Recordables)	See notification list above for Non-Major	RM Employee or PM	Immediately (within 1 hour)	Incident Report in Tr@ction OSHA 300 Log – as applicable	Regional Manager	Within 24 Hours	Tr@ction Incident Report RCA using CLC for all recordable injuries	EBM or Regional Manager as appropriate Maybe led by RM LT member if serious injury	10 Days (Preliminary) 30 Days (Final)	LT XLT PMs HSSE Manager	Incident Report in Tr@ction Lessons Learned document.	Regional Manager	LT XLT PMs HSSE Manager
FIRST AID	EBM/HSSE Coordinator Operating Facility Contact (if applicable)	RM Employee or PM	Immediately (within 1 hour)	Incident Report in Tr@ction	Regional Manager	Within 72 Hours	Incident Report in Tr@ction	EBM/HSSE Coordinator	Within 72 Hours	Via Tr@ction	Incident Report in Tr@ction	As appropriate	As appropriate
NEAR MISS/HSSE OPPORTUNITY	EBM/HSSE Coordinator Operating Facility Contact (if applicable)	RM Employee or PM	Report	Incident Report in Tr@ction	Regional Manager	Within 72 Hours	Incident Report in Tr@ction (Incident Type: Near Miss/HSSE Opportunity)	EBM/Regional Manager or next level of authority (as appropriate) or HSSE Coordinator	At the discretion of the EBM, PM or HSSE Coordinator	Via Tr@ction	Incident Report In Tr@ction	Regional Manager	Via Tr@ction

NOTE: If EBM or PM is not available, Contractor is responsible for notifying the next applicable level.

* For OSHA Recordables, DAFW Cases, or otherwise determined.

** Accountable for circulating to distribution list and ensuring details are entered into Tr@ction. (A) At Discretion of Regional Manager / HSSE Coordinator

(B) Contractor's Employer regardless of work being done for RM/BP fills out OSHA 300 Logs.

Section 6

.

1

Incident Management

Incident Notification and Reporting Table Definitions

Incident Severity	Vehicle Incidents	Spill / Release / Vapor Disc	Agency Action	Unplanned Business Interruption	Fire / Explosion	Security	Personal Injury / Illness	^{3rd} Party Complaint Media Issues	Property Damage
MAJOR/ HIGH POTENTIAL Refer to BP Group Major Incident and High Potential Incident Reporting Guideline	Any incident resulting in a fatality or multiple serious injuries	Any spill or release > 100 barrels or less in a sensitive area, RQ, off site impact, any spill on navigable water, release of 10 tonnes of classified material, or any spill > 1 barrel and has a High Potential	SIGNIFICANT Adverse reaction from authorities	Any accidental damage having a cost exceeding US\$500,000	Any fire or explosion with offsite or significant onsite impact / any use of fire fighting equipment – High Potential	Any serious threats to security, bomb threats, or kidnapping threats – High Potential See Attachment	Any injuries or illnesses resulting in fatalities, 3 or multiple serious injuries	SIGNIFICANT Adverse reaction from media, NGO's or the general public	Any property damage > \$500,000
NON-MAJOR INCIDENTS	Any incident involving a BP Amoco vehicle including under the influence of D&A (\$0 Cost Threshold)	Any spill < 100 barrel	Any notice of fine, NOV, consent order, citations, penalties, or regulatory audits	Any unplanned business interruption including hitting underground utilities, product lines, or claim, impact on operating facility business.	Any other fire / explosion not categorized as a Major Incident	Any non-serious, threat to security including vandalism.	Any injury or illness resulting in a DAFWC, BP Amoco exposure, or OSHA Recordable	Any incident that causes adverse reaction from the public, or received significant media attention	Any property damage of \$500 to \$499,999
NEAR MISS / UNSAFE CONDITION or Behavior and/or doesn't meet the definitions of a Major or Non- Major Incident	Any contractor vehicle incident without injury or property damage	Any potential for spill or release	Any adverse reaction from authorities	Any complaint filed by an Operating Facility Business	Any risk of fire or explosion (i.e. working in LEL conditions, etc.)	N/A	All other injuries or illness including First Aid which does not result in medical treatment.	N/A	Any property damage less than \$500

SECTIONSEVEN

7.1 Job Safety Analysis (JSA)

The JSA will be completed prior to starting work and will be updated as conditions change throughout the day. The JSAs are located in **Appendix A**. This is your Management of Change documentation.

7.2 Authorization to Work (ATW)

The ATW must be completed daily prior to starting work. Both sides must be completed. Verify the subcontractors are listed in **Appendix B**.

7.3 Required Permits and Forms

NOTE:	If there	is a ch	eck next	to the	permit/form,	that	permit/form	is required
-------	----------	---------	----------	--------	--------------	------	-------------	-------------

	Hot Work Permit
	Ground Disturbance Permit
	Confined Space Permit
	Work at Heights Permit
	Trenching and Excavation
\boxtimes	Predrilling/Subsurface Checklist
\boxtimes	Required Agency Permits
\boxtimes	Subcontractor Pre-Work Appendix D Package
\boxtimes	Incident Reporting Form
\square	Near Miss Form
	Field Work Checklist
\boxtimes	Drilling Checklist
	Field Data Sheets
	Work Request Forms
\boxtimes	Calibration Sheets
\boxtimes	Site Specific Traffic Control Plan
\boxtimes	URS-BP RM Daily Safety Observation Form
\boxtimes	URS-BP RM Safety Conversation Form
	Other:

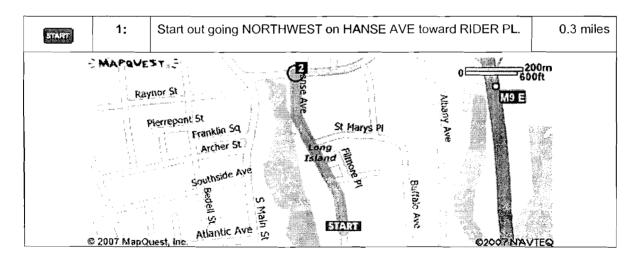
EMERGENCY CONTACT INFORMATION

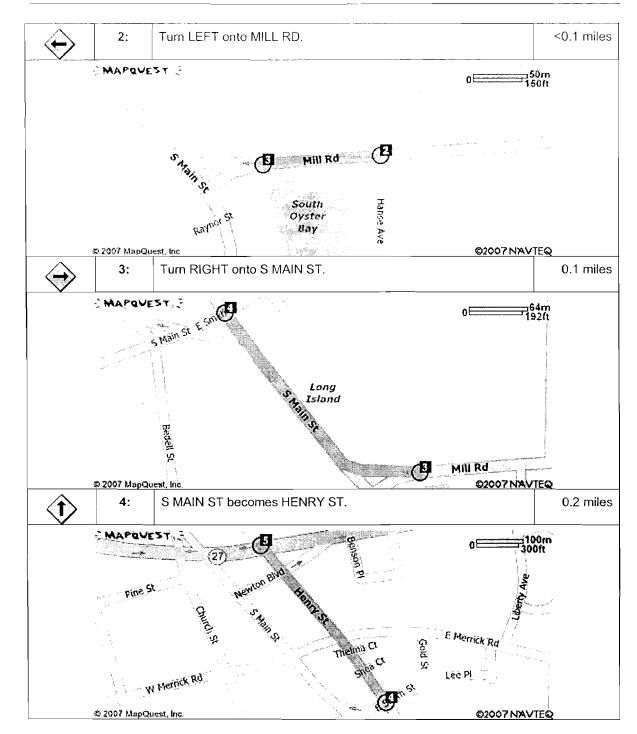
Contact Numbers Urgent Care Map and Directions Hospital Map and Directions Site Map

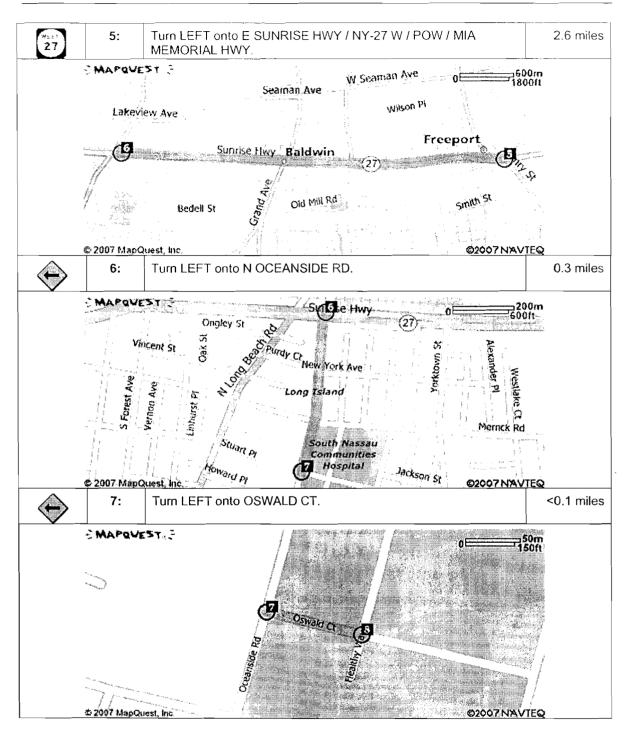
LOCAL EMERGENCY TELEPHONE NUMBERS (provide area code): Call 911 FIRST if needed!!

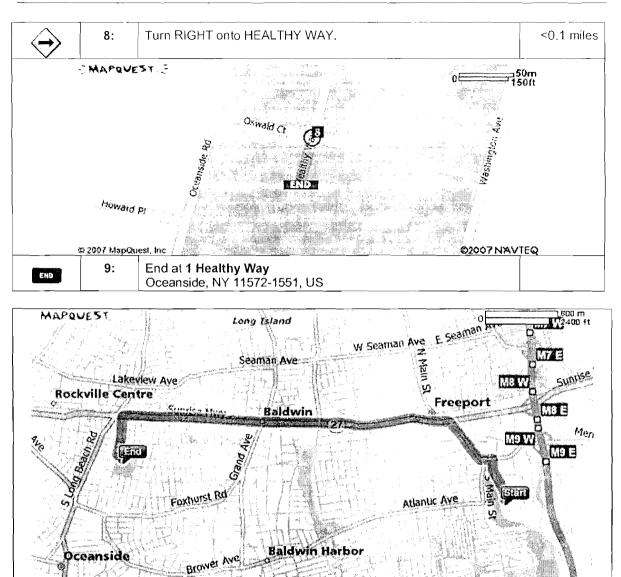
Can 911 be used at this site?	? Yes x No	If yes, be certain it is activated and enhanced			
Cellular telephones may r information:	not reach a local 91	l operator; therefore,	supply the following		
Ambulance	(516) 378-2332	Fire Department	(516) 378-0400		
Hospital Emergency Room	(516) 632-3900	Police Department	(516) 573-6100		
Poison Control Center	(800) 848-6946	HazMat Response Unit	(800) 881-1098		

Emergency Routes:


Occupational Health Facility:


The nearest Occupational Health Facility listed is approximately 30 miles away, which in this area is unreasonable. Go to Hospital.


Hospital:


South Nas	Phone number:	516-632-3000		
Hospital Address:	1 Healthy Way, Oceansi	de, NY		
Directions to Hospital:	See following Map			
Estimated driving distance:	3.95 miles Estimat		ed driving time:	11 minutes
Does hospital accept chemic	cally contaminated patients?	Yes	x	No
URS (live contact) should	be <u>notifie</u> d immediately if a	n injury o	ccurs which rec	uires medical

attention.

é.

© 2007 MapOuest Inc.

URS

Map Data @ 2007 NAVTEQ or TeleAtlas

APPENDIX A

JSAs

APPENDIX B

Authorization to Work

Site Security Checklist

APPENDIX C

Safety Reporting Forms

APPENDIX D

Field Forms

Project Name: URS-BP Part A – HASP template Revision no. 4 July 30, 2008

APPENDIX E

Permits to Work

Project Name: URS-BP Part A – HASP template Revision no. 4 July 30, 2008

APPENDIX F

Package

APPENDIX G

Traffic Control Plan

Traffic Control Plan usually contained in this appendix of URS' Health and Safety Plans for BP sites is not required for the scheduled scope of work.

APPENDIX H

MSDSs Relevant To Site

APPENDIX I

Safety Management Standards (SMSs)

Former Columbia Cement Company Remedial Investigation Work Plan – Operable Unit No. 2

APPENDIX B

COMMUNITY AIR MONITORING PLAN

URS Corporation G:/BP/Projects/Freeport/OU-2

COMMUNITY AIR MONITORING PLAN

OPERABLE UNIT NO. 2

FORMER COLUMBIA CEMENT COMPANY SITE

FREEPORT, NEW YORK

SITE NUMBER 1-30-052

Prepared for: Atlantic Richfield Company 1 West Pennsylvania Avenue Suite 440 Towson, Maryland 21204

Prepared by: URS Corporation 201 Willowbrook Boulevard Wayne, New Jersey 07470

1.0 INTRODUCTION

The Former Columbia Cement Company (CCC) Site located at 159 Hanse Avenue (Site) has undergone extensive environmental investigation in response to a 1988 release of 1,1,1trichloroethane (TCA). A supplementary Remedial Investigation Report was submitted to NYSDEC in December 2006 and a Feasibilty Study Report was submitted in February 2008. A Record of Decision was prepared by NYSDEC in March 2008, indicating selected remediation/mitigation measures for impacted soil, groundwater and soil vapor. The remediation/mitigation measures will commence in 2008. This Community Air Monitoring Plan (CAMP) was prepared to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air. Protection of Site workers will be addressed through a site-specific Health and Safety Plan (HASP).

2.0 BACKGROUND

CCC, which was owned by Burmah Castrol, produced adhesives for a variety of applications. In 1988, while CCC operated the facility, approximately 1,760 gallons of 1,1,1-trichloroethane (1,1,1-TCA) was released to an unlined storm drain during filling of an underground storage tank (UST) due to a failure of a contractor's tanker truck. The spill was reported and response measures were performed under regulatory oversight. In 1996, the property was sold to Illinois Tool Works (ITW). In 1998, Burmah Castrol entered into a Consent Agreement (Index WI #W2-02-0813-98-05) with the NYSDEC regarding the 1,1,1-TCA spill. In 2001, British Petroleum (BP) purchased all Burmah Castrol holdings and assumed liability for the 1,1,1-TCA spill.

Numerous phases of a Remedial Investigation were conducted by Delaware Engineering (1997 through 2003) and URS (2003 through 2006). In December 2006, URS submitted a Supplemental Remedial Investigation Report, summarizing all data obtained to date. In January 2007, URS submitted a Feasibility Study Report ("FSR") that evaluated remedial alternatives to address subsurface impacts. In the FSR, groundwater fate and transport modeling was performed to assess whether Monitored Natural Attenuation (MNA), in conjunction with source control measures, would prevent the groundwater contaminant plume from migrating to Freeport Creek, approximately 500 feet west of the Site. A Site Location Map is presented as Figure 1. The modeling, when calibrated to the existing groundwater monitoring data, suggested that the plume would not reach Freeport Creek. In its March 8, 2007 letter, NYSDEC provided comments on the FSR. One comment stated that all modeling should be validated with empirical data.

To validate the modeling results, BP installed two monitoring wells (MW-07-16S and MW-07-17D) downgradient from adjacent to Freeport Creek. Sampling results indicated that chloroethane was present in well MW-07-16S at a concentration exceeding the NYSDEC Ambient Groundwater Quality Standard. Based on these results, NYSDEC divided the site into

URS CORPORATION Columbia Cement OU-1 CAMP two Operable Units. Operable Unit No. 1 consists of the former Columbia Cement Company property located at 159 Hanse Avenue. Operable Unit No. 2 (OU-2) consists of the properties immediately adjacent to and downgradient (west) of OU-1. The OU-2 RIW presents a scope of work to evaluate subsurface impacts in OU-2 resulting from the 1988 1,1,1-TCA spill in OU-1.

3.0 COMMUNITY AIR MONITORING PLAN

3.1 GROUND INTRUSIVE ACTIVITIES

During ground intrusive activities, real-time air monitoring for volatile organic compounds (VOCs) and particulate levels at the perimeter of the exclusion zone or work area will be necessary. Continuous monitoring will be required for all ground intrusive activities. Ground intrusive activities include, but are not limited to, the installation of soil borings or monitoring wells, advancement of soil borings for the purpose of injection of amendments and drilling or cutting the building slab to install sub-slab vapor testing or extraction points. Specifically, anticipated situations where continuous monitoring will be required are described below:

- Drilling activities will take place on the east and west sides of Hanse Avenue. The drilling activities during the OU-2 RI will include soil sampling, groundwater screening sampling and monitoring well installation. During these activities, the work area/exclusion zone will be delineated by barricades, traffic cones and caution tape. Continuous monitoring for VOCs and methane will be performed in the work area near the drill rig and injection equipment. In addition, continuous VOC and particulate monitoring will be performed at the downwind perimeter of the work area, as described in Sections 3.3 and 3.4. Readings will be recorded in a CAMP Log Book.
- The sub-slab vapor testing work will take place inside the OU-2 buildings. During ground intrusive work, continuous monitoring for VOCs will be performed in the work area near the drilling equipment. In addition, periodic VOC and particulate monitoring will be performed at the nearest open exterior doorway. Readings will be recorded in a CAMP Log Book.

3.2 NON-INTRUSIVE WORK

Periodic monitoring for VOCs will be required during <u>non-intrusive</u> activities such as the collection of groundwater samples from existing monitoring wells or management of drums of waste. "Periodic" monitoring during sample collection will consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or drum, monitoring during well bailing/purging, and taking a reading prior to leaving a sample location.

3.3 VOC MONITORING, RESPONSE LEVELS, AND ACTIONS

Volatile organic compounds (VOCs) will be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a **continuous** basis or as otherwise specified. Wind direction will be determined by observing the windsock in the rear of the adjacent Rohm & Haas facility. Upwind concentrations will be measured at the start of each workday and periodically thereafter to establish background conditions, and/or if the work location changes. The monitoring work will be performed using equipment appropriate to measure the contaminants known or suspected to be present (a PID with an 11.7 eV lamp). The equipment will be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below. Calibration information will be recorded in a CAMP Log Book.

- If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities will be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities will resume with continued monitoring.
- If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities will be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities will resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- If the organic vapor level is above 25 ppm at the perimeter of the work area, activities will be shutdown.

All 15-minute readings will be recorded in a CAMP Log Book and be available for State (DEC and DOH) personnel and local (county or municipal) health departments to review. Instantaneous readings, if any, used for decision purposes will also be recorded.

3.4 PARTICULATE MONITORING, RESPONSE LEVELS, AND ACTIONS

Particulate concentrations will be monitored at the start of the day and periodically at the upwind perimeter of the exclusion zone. Particulate concentrations will be monitored continuously at the downwind perimeters of the exclusion zone at a temporary particulate monitoring station. The particulate monitoring will be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The

equipment will be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration will be visually assessed during all work activities.

- If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m³) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques will be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.
- If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work will be stopped and a re-evaluation of activities initiated. Work will resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.

All readings will be recorded in a CAMP Log Book and be available for State (DEC and DOH) personnel and local (county or municipal) health departments to review.

3.5 METHANE AND OXYGEN MONITORING, RESPONSE LEVELS, AND ACTIONS

Methane concentrations will be monitored **continuously** near the drill rig and injection equipment. The monitoring work will be performed using a landfill gas meter, or other appropriate equipment. The equipment will be calibrated at least daily following the manufacturer's instructions. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below. Calibration information will be recorded in a CAMP Log Book.

• If the methane concentration in the work area breathing zone exceeds 5%, work will be stopped and a re-evaluation of activities initiated. Work may continue only after the methane concentration falls below 5%.

All readings will be recorded in a CAMP Log Book and be available for State (DEC and DOH) personnel and local (county or municipal) health departments to review.

3.6 NUISANCE ODOR MONITORING, RESPONSE LEVELS, AND ACTIONS

Periodic monitoring of nuisance odors will be conducted at the downwind perimeter of the exclusion zone by smelling the ambient air. If nuisance odors are detected the work area will be checked to evaluate whether the odors are emanating from the source area. Other businesses in the area may produce nuisance odors. If the origin of the nuisance odors is determined to be the work area, work will be stopped and a re-evaluation of activities initiated.