

The experience to listen. The power to SOIVC.

June 5, 2002

Mr. Joseph Jones Bureau of Eastern Remedial Action Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233

Re: Site Numbers 1-30-009 and 1-30-053A Third Quarter 2001 Progress Report

File: 643.001

Dear Mr. Jones:

Enclosed please find three copies of the First Quarter 2002 Progress Report for the subject sites.

Should you have any questions regarding the enclosed, please feel free to contact Charlie Nehrig at 516-609-1052. Thank you.

Very truly yours,

BARTON & LOGUIDICE P. C.

Andrew J. Bayber Senior Managing Environmental Scientist

AJB/mfg

cc: G. Anders Carlson, Ph.D., NYSDOH, Albany, NY (2 copies) Robert Becherer, NYSDEC, Region 1, Stony Brook, NY (1 copy) John F. Byrne, Esq., NYSDEC-DEE, Tarrytown, NY (1 copy) James Harrington, NYSDEC, Albany, NY (1 copy) Charlie Nehrig, Photocircuits (1 copy) Louis Stans, Photocircuits (1 copy) Mark Pennington, Esq., Morgan, Lewis & Bockius (1 copy)





Telephone: 518-218-1801 • Facsimile: 518-218-1805 • B&L@BartonandLoguidice.com • www.BartonandLoguidice.com





# FIRST QUARTER 2002 PROGRESS REPORT

-

# PHOTOCIRCUITS AND FORMER PASS & SEYMOUR SITES 31 & 45 SEA CLIFF AVENUE

# SITE NUMBERS 1-30-009 AND 1-30-053A

Prepared for: Photocircuits Corporation 31 Sea Cliff Avenue Glen Cove, New York 11542

Prepared by: Barton and Loguidice, P.C. 2 Corporate Plaza 264 Washington Avenue Extension Albany, New York 12203

٤.

April, 2002

۰*۲*,

#### 1.0 Introduction

This First Quarter 2002 Progress Report (1Q02) is being submitted pursuant to the 1997 Order on Consent between Photocircuits Corporation and the New York State Department of Environmental Conservation (NYSDEC).

During the First Quarter of 2002, the following was accomplished:

- Groundwater samples were collected from monitoring wells located on both the 31 and 45A Sea Cliff Avenue sites during the period of January 8-10.
- A second injection of edible oil substrate was performed at the 31 Sea Cliff Avenue site during the period of February 25 to March 3.
- Based on results from the January sampling event, Photocircuits proposed extending the Soil Vapor Extraction (SVE) and Air Sparging (AS) system at the 45A Sea Cliff Avenue site; SVE wells and AS points were installed on the east side of Building 7 in preparation for extension of the system.

### 2.0 Discussion of Results

# 2.1 SVE System at 31 Sea Cliff Avenue

The SVE system at the 31 Sea Cliff Avenue site was installed as an Interim Remedial Measure (IRM), and started operation in April 2000. The SVE system, equipped with the CatOx/scrubber for extracted vapor treatment, was restarted on July 21, 2000 and was operated continuously until August 2001; system operation was interrupted only for a few brief periods for maintenance activities and in March to mid-May, 2001 because of high water-table conditions.

As discussed in the 2Q01 report, the results of vapor sample analyses and the photoionization detector (PID) readings demonstrate that contaminant mass removal versus time has clearly become asymptotic. We conclude that we have demonstrated that there is little or no residual contamination in the unsaturated zone, and that further contaminant removal from the unsaturated zone is infeasible. The SVE system will be decommissioned in the near future.

#### 2.2 Bioremediation Pilot Test

The bioremediation pilot test was started during the week of August 28, 2000 when Terra Systems conducted the injection of a nutrient solution (substrate) into the subsurface at the 31 Sea Cliff Avenue site. Following the injection, groundwater samples were collected from the following monitoring wells/points: MW-7, MW-14, SMP-1, DMP-1, SMP-3, DMP-3, SMP-4 and DMP-4. These wells/points were sampled again on October 18-19, December 20, 2000, March 27-28, 2001 and July 11-12, 2001; the March and July sampling events included several wells located along Sea Cliff Avenue (MW-8, MW-9, MW-12 and MW-13) along with the wells sampled during the previous events. Another sampling event was conducted January 8-10, 2002; the results of this sampling event are attached to this report.

A status report on the pilot test (including the data from the samples collected in January 2002) was prepared by Terra Systems and is included as Appendix A to this report. The main conclusion of the report are as follows

- The addition of the edible oil substrate has enhanced the extent and rate of chlorinated solvent biodegradation at the site; degradation rates as high as 394 ug/L of total volatile organic compounds (VOCs) have been observed in areas of higher concentration.
- A first order degradation half life of 301 days was calculated for the average total VOC concentration within the pilot cell area; this degradation rate suggests that 90% of the total VOC mass within the pilot test cell will be removed within 30 months.
- The edible oil substrate was adequately distributed during the August 2000 injection, and monitoring data suggests that the substrate has been consumed as a result of biological utilization.
- Bioremediation will be the primary treatment technology for contaminant destruction at the site.

By letter dated October 25, 2001, NYSDEC authorized an additional injection of substrate that had been recommended by Photocircuits; this work was conducted during the period of February 25 to March 3, 2002. The injection system consisted of 7 one-inch diameter wells installed to 60 feet below land surface (bls), and 5 one-inch wells installed to 55 feet bls. Eight of the wells were spaced 7.5 feet apart in a line. Two additional wells were placed on either side of the line (see attached figure). Each of the wells had 20 feet of PVC blank riser and either 35 or 40 feet of PVC screen (0.02 slot). The wells were installed using the Geoprobe<sup>TM</sup> direct-push method.

Injection well installation began on February 25, 2002 using a Geoprobe<sup>™</sup> Model 5400 mounted on a small track vehicle. After the installation of well IW-15, the driller was unable to advance the 2-1/2 inch drill rod beyond 15 feet bls in two additional borings.

A heavier truck mounted Geoprobe<sup>TM</sup> Model 5400 was brought on site on February 26, 2002. Four attempts were made on February 26<sup>th</sup> to install additional wells with the 2-1/2 inch drill rods. Refusal was encountered at 15 feet bls on two holes and 24 feet bls on two holes. A large truck mounted Geoprobe<sup>TM</sup> Model 6600 was brought in on February 27, 2002. Refusal was encountered at 35 feet bls in the first borehole using the 2-1/2 inch drill rod. A pilot hole was then advanced with a 1-1/2 inch drill rod; the pilot hole was then enlarged with the 2-1/2 inch drill rod. The remaining 10 wells were installed using this technique.

The substrate package for this injection event was designed for an estimated 5 year supply of substrate. The actual and design volumes are summarized in the following table. The emulsion was prepared by passing the slow release substrate package, quick release substrate package, and bromide tracer through a high shear mixer. Four 550-gallon stainless steel tanks were used to store the emulsion prior to injection.

|                         | ACTUAL    | DESIGN      |
|-------------------------|-----------|-------------|
| Slow release substrate  | 8545 Ibs. | 15,704 lbs. |
| package                 |           |             |
| Quick release substrate | 42 lbs.   | 78 lbs.     |
| package                 |           |             |
| Bromide tracer          | 4.2 lbs.  | 7.7 lbs.    |

Due to the heterogeneity of the site, only about 54% of the intended amount of slow release substrate package could be injected. The following table summarizes the quantity (in gallons) of fluid injected into each of the wells on a daily basis.

| Well # | 2/26/02 | 2/27/02 | 2/28/02 | 3/1/02 | 3/2/02 | 3/3/02 | Total |
|--------|---------|---------|---------|--------|--------|--------|-------|
| IW-8   |         |         |         |        | 58     | 65     | 123   |
| IW-9   |         |         | 278     |        | 13     | 42     | 333   |
| IW-10  |         |         |         |        | 103    | 34     | 137   |
| IW-11  | -       |         |         | 155    |        | 32     | 187   |
| IW-12  |         |         |         |        | 13     | 52     | 65    |
| IW-13  |         |         |         | 615    | 57     | 17     | 689   |
| TW-14  |         |         | 473     | 182    | 83     | 102    | 840   |
| IW-15  | 504     | 20      |         | 47     | 73     | 29     | 673   |
| IW-16  |         |         | 465     | 501    | 67     | 27     | 1060  |
| IW-17  |         |         |         | 205    | 29     | 35     | 269   |
| IW-18  |         |         |         | 129    | 126    | 28     | 283   |
| IW-19  | •       |         | 45      | 264    | 61     | 29     | 399   |
| Total  | 504     | 20      | 1261    | 2098   | 683    | 492    | 5058  |

As indicated in the above table, the injection rates decreased dramatically on March 2<sup>nd</sup> and 3<sup>rd</sup>. Although difficult to confirm, it appears that the emulsion was spread throughout the pilot area based on the following observations:

- Appearance of emulsion in monitoring wells MW-7 and MW-14.
- A standpipe was placed on well MW-14; emulsion was allowed to rise approximately 2 feet above ground surface in the standpipe before stopping the injection in injection well IW-15.
- Emulsion began leaking around cracks in the concrete pads throughout virtually the entire pilot area.
- After a period of time, emulsion came out of injection well I-16 as it was being injected into injection well I-10.
- Emulsion began leaking around the SVE wells between injection wells I-12 and I-17.

In addition to the observations just described, the following observations and conclusions are a result of the reinjection activities:

- The heterogeneity of the formation makes it difficult to predict which areas will accept large quantities of fluids.
- The low pressure injection technique did not require chase water to be injected into the formation to push the emulsion away from the injection point at this site.
- The hydraulic conductivity of the area is lower than anticipated which directly affects the total amount of fluid that can be injected.
- The viscosity of the emulsion is within an acceptable range.

An attempt will be made in April to inject the remainder of the substrate that could not be injected during the event just described.

# 2.3 IRM at 45 Sea Cliff Avenue

As discussed in the 4Q 2000 report, SVE/AS equipment was procured and delivered to the site. The SVE/AS system consists of a 10 horsepower (hp) regenerative blower and 5 hp compressor, along with electrical controls, filters, moisture separators, and valves; the system is contained within an insulated trailer, which has been located just outside of Building 7. Following delivery, the system components were connected to the piping networks for the AS and SVE wells. Two 1200 lb activated carbon adsorbers were attached in series to the blower outlet to treat recovered vapors. The SVE system was started on November 1, 2000; because the initial contaminant concentrations were relatively high, the AS portion of the system was not started. The AS component of this system was started on March 28, 2001. The system was down from April 20-24 due to an electrical problem. The system was down most of June and July due to equipment overheating; the system was re-started on July 30 and shut down on September 20.

Monitoring data was presented in the 2Q01 report, including data from sampling of individual SVE wells (March 2001) and sampling of total SVE system effluent over time. Prior to the start of the AS component, the relationship of total contaminant mass removal versus time was clearly becoming asymptotic. The start of the AS component increased contaminant mass recovery somewhat (see the April 2001 sample results).

However, the results of the May vapor sample indicate that mass removal versus time relationship became asymptotic. We concluded at that time that we demonstrated that there is little or no residual contamination at that location, and that further contaminant removal is infeasible.

Monitoring wells located on the 45A Sea Cliff Avenue site (MW-1S, MW-2S, MW-3S and MW-4S) and near the 45A Sea Cliff Avenue site (MW-9, MW-10 and MW-11) were sampled in January 2002, and the results are attached. Based on results from the January sampling event, Photocircuits proposed extending the SVE/AS system at the 45A Sea Cliff Avenue site from the west side to the east side of Building 7. The basis for the extension of the system and the proposed piping and equipment layout were provided in the February 13 letter to NYSDEC. The SVE wells and AS points were installed at the proposed locations on the east side of Building 7 in late February, in preparation for the extension of the system. After field evaluation, it was decided that it would be more efficient to move the aboveground portions of the system (equipment trailer, carbon vessels) to the east side of Building 7, as originally proposed. Electrical service has been provided to the new location and the aboveground portions of the system will be moved in April for reconnection and startup.

#### 2.4 Hydraulic Control along Sea Cliff Avenue

A meeting was held with NYSDEC on October 11, 2001 to discuss the progress of the bioremediation pilot test. Although there was substantial disagreement between Photocircuits and the NYSDEC over the progress of the bioremediation pilot test and the need for groundwater remediation, Photocircuits agreed to review available options for containment of groundwater along the northern boundary of the Photocircuits site (31 Sea Cliff Avenue). Photocircuits conducted the review of remedial options, and by letter dated October 26, 2001, Photocircuits presented the results of the review. The recommended approach for the conditions at the Photocircuits site is the use of hydraulic control. Photocircuits submitted a work plan for the performance of pumping tests necessary for the design of a hydraulic control system on November 13, 2001; following receipt of verbal comments from NYSDEC, Photocircuits submitted a revised work plan on December 7, 2001. Approval for implementation of the work plan was received from NYSDEC by letter dated December 19, 2001. The pumping tests were performed in January and the remedial design report was submitted to NYSDEC on April 11, 2002.

#### 3.0 Schedule

The planned schedule of activities for the next few months is attached.



# Photocircuits - Updated Schedule of Remedial Activities 31 & 45 Sea Cliff Avenue Sites

| Page 1 of 1                     | . <u></u> . |       |             |        | <u> </u> |       |   |          |          |       |              |        |         |          |     | _        |              | _ | = |   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 6                                       | /5/0     | 2         |
|---------------------------------|-------------|-------|-------------|--------|----------|-------|---|----------|----------|-------|--------------|--------|---------|----------|-----|----------|--------------|---|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------|----------|-----------|
| (                               |             | 2     | 200         | 0      |          |       |   |          |          | 2     | 20           | 01     |         |          | -   |          | -            |   |   |   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02        |                                         |          |           |
|                                 | A           | S     | 0           | Ν      | D        | J     | F | м        | A        | M     | J            | J      | Α       | S        | 0   | N        | D            | J | F | Μ | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | М         | J                                       | J        | A         |
| 31 Site - IRM & Bio. Pilot Test |             |       |             |        |          |       |   |          |          |       |              |        |         |          |     |          |              |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | <br> <br>                               |          |           |
| Injection of Substrate          | B           |       |             |        |          |       |   |          |          |       |              |        |         |          |     |          |              |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | <br> <br> <br>                          |          |           |
| Previous Monitoring Events      |             | V     | ▼           | /<br>/ | ▼        |       |   | V        | 7        |       |              | ▼      |         |          |     |          | ,<br>,       | V |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                                         | f        |           |
| Groundwater Monitoring Events   |             |       |             |        |          |       |   |          |          |       |              |        |         |          |     | +        |              |   |   |   | T in the second se |           |                                         | <b>V</b> |           |
| Closure of SVE System           |             |       |             | +      |          | ····  |   |          | •··· ·-  |       | -            |        |         |          |     | +        |              | 1 |   |   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | • · · · · · · · · · · · · · · · · · · · |          |           |
| Additional Substrate Injection  |             |       |             |        |          | + - · |   |          |          |       | · · · · ·    |        |         |          |     |          | +<br>+-      |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> <br> |                                         |          |           |
| 45A Site IRM                    |             |       |             |        |          |       |   |          | <b>.</b> |       | 2 ·          |        |         | - · ···· |     |          |              |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 1<br>1<br>1<br>1<br>1                   |          |           |
| SVE System Startup              |             |       |             | V      |          |       |   |          |          | +     |              |        |         |          | £   | L        |              |   |   | ÷ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 1                                       | <br>     | f         |
| AS System Startup               |             |       |             |        |          |       |   | ۷        | 7        |       |              | •      | † ····  |          |     |          |              | 1 |   | - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • • ••    |                                         | ••••     | <br> <br> |
| Groundwater Monitoring Events   | 1           |       |             |        |          |       | 1 |          |          |       |              |        |         |          |     |          | +            |   |   |   | The second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | ; 1                                     | <b>T</b> |           |
| Movement of SVE/AS System       |             |       | - · · · · · |        |          |       |   |          |          | · · · |              |        | <br>    | +        |     | <br>     |              |   |   | > |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •         |                                         | +        |           |
| 31 Site - Hydraulic Control     |             |       |             |        |          |       | - |          | <br>     |       |              |        | · · · - |          |     |          | <del>,</del> |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                                         |          |           |
| Pumping Tests                   |             |       |             |        |          | 1     |   | -        |          | +     | <b>*</b> ··· | - · ·  | ••••    |          | ··· |          |              |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · …       | · • · · · · · · · · · · · · · · · · · · |          |           |
| Remedial Design                 | 1           | - · · |             |        |          |       |   |          |          | +     | +            |        | -       | +        | ŧ   | <b> </b> | +            |   |   |   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | F<br>F<br>F                             | •        | +         |
| NYSDEC Review                   |             |       | +           |        | 1        |       | - |          | +        | -     |              |        | h       | +        | +   |          | <br>         | + |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                                         | +        |           |
| System Installation             |             |       |             |        | 1        |       |   | <b> </b> |          | 1     | +···         |        |         | +        |     |          | f            |   |   |   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +         | 1<br>1<br>1                             |          |           |
|                                 |             | 1     |             |        |          |       |   |          |          |       | +            | + ···· | +       |          |     |          | + · · ·      | 1 | + | + | † .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + ·       | 1<br>1<br>1                             | †<br>    |           |



April 12, 2002

Charlie Nehrig Photocircuits Corporation 31 Sea Cliff Avenue Glen Cove, NY 11542

RE: Light Hydrocarbon Gases Analyses for Photocircuits Samples from 4/2-3/2002

Dear Charlie:

Attached are the analytical results for the light hydrocarbon gases - methane, acetylene, ethene, and ethane from the latest round of samples from the Photocircuits anaerobic bioremediation pilot. The samples were collected on April 2-3, 2002. Samples were not received from wells MW-7, MW-14, and SMP-4. Light hydrocarbon gases analyses were conducted in Terra Systems, Inc.'s laboratory according to a modification of US EPA SW 846 Method 8021B protocols. Acetylene was also detected in two samples at low concentrations. Acetylene can be produced from the reaction of TCE with ferrous sulfide.

Sincerely, TERRA SYSTEMS, INC. Michael Dee Phil

Michael D. Lee, Ph.D. Vice-President

cc: Andy Barber



Date: April 12, 2002

Light Hydrocarbon Gases Analyses

Client: Photocircuits Corporation 31 Sea Cliff Avenue Glen Cove, NY 11542

| Well:      | SMP-1                  |               |       |            |
|------------|------------------------|---------------|-------|------------|
| Date Sampl | ed: 4/2/02             |               |       |            |
| Matrix:    | Liquid                 |               |       |            |
| Analyte    | Method Detection Limit | Concentration | Units | Qualifiers |
| Methane    | 0.7                    | 2110          | µg/L  |            |
| Acetylene  | 1.2                    | 7.4           | µg/L  |            |
| Ethene     | 1.3                    | 800           | μg/L  |            |
| Ethane     | 1.3                    | <1.3          | µg/L  | U          |

| Well:      | DMP-1                  |               |       |            |
|------------|------------------------|---------------|-------|------------|
| Date Sampl | ed: 4/2/02             |               |       |            |
| Matrix:    | Liquid                 |               |       |            |
| Analyte    | Method Detection Limit | Concentration | Units | Qualifiers |
| Methane    | 0.7                    | 160           | µg/L  |            |
| Acetylene  | 1.2                    | <1.2          | µg/L  | U          |
| Ethene     | 1.3                    | 160           | µg/L  |            |
| Ethane     | 1.3                    | <1.3          | µg/L  |            |

| Well:      | SMP-3                  |               |       |            |
|------------|------------------------|---------------|-------|------------|
| Date Sampl | ed: 4/2/02             |               |       |            |
| Matrix:    | Liquid                 |               |       |            |
| Analyte    | Method Detection Limit | Concentration | Units | Qualifiers |
| Methane    | 0.7                    | 2000          | μg/L  |            |
| Acetylene  | 1.2                    | 5.4           | µg/L  |            |
| Ethene     | 1.3                    | 220           | μg/L  |            |
| Ethane     | 1.3                    | 36            | μg/L  |            |

| Well:      | DMP-3                  |               |       |            |
|------------|------------------------|---------------|-------|------------|
| Date Sampl | ed: 4/2/02             |               |       |            |
| Matrix:    | Liquid                 |               | _     |            |
| Analyte    | Method Detection Limit | Concentration | Units | Qualifiers |
| Methane    | 0.7                    | 3850          | µg/L  |            |
| Acetylene  | 1.2                    | <1.2          | μg/L  | U          |
| Ethene     | 1.3                    | 220           | µg/L  |            |
| Ethane     | 1.3                    | 16            | μg/L  |            |

| Well:      | DMP-4                  |               |       |            |
|------------|------------------------|---------------|-------|------------|
| Date Sampl | ed: 4/2/02             |               |       |            |
| Matrix:    | Liquid                 |               |       |            |
| Analyte    | Method Detection Limit | Concentration | Units | Qualifiers |
| Methane    | 0.7                    | 240           | μg/L  |            |
| Acetylene  | 1.2                    | <1.2          | µg/L  | U          |
| Ethene     | 1.3                    | 150           | µg/L  |            |
| Ethane     | 1.3                    | <1.3          | μg/L  | U          |

÷

٠

| Well:       | <b>MW-8</b>            |               |       |            |
|-------------|------------------------|---------------|-------|------------|
| Date Sample | ed: 4/3/02             |               |       |            |
| Matrix:     | Liquid                 |               |       |            |
| Analyte     | Method Detection Limit | Concentration | Units | Qualifiers |
| Methane     | 0.7                    | <0.7          | µg/L  | U          |
| Acetylene   | 1.2                    | <1.2          | µg/L  | U          |
| Ethene      | 1.3                    | <1.2          | μg/L  | U          |
| Ethane      | 1.3                    | <1.2          | μg/L  | U          |

| Well:       | <b>MW-12</b>           |               |       |            |
|-------------|------------------------|---------------|-------|------------|
| Date Sample | ed: 4/3/02             |               |       |            |
| Matrix:     | Liquid                 |               |       |            |
| Analyte     | Method Detection Limit | Concentration | Units | Qualifiers |
| Methane     | 0.7                    | 1670          | μg/L  |            |
| Acetylene   | 1.2                    | <1.3          | µg/L  | U          |
| Ethene      | 1.3                    | 130           | μg/L  |            |
| Ethane      | 1.3                    | 11            | μg/L  |            |

| Well:       | MW-13                  |               |       |            |
|-------------|------------------------|---------------|-------|------------|
| Date Sample | ed: 4/3/02             |               |       |            |
| Matrix:     | Liquid                 |               |       |            |
| Analyte     | Method Detection Limit | Concentration | Units | Qualifiers |
| Methane     | 0.7                    | 110           | μg/L  |            |
| Acetylene   | 1.2                    | <1.2          | μg/L  | U          |
| Ethene      | 1.3                    | <1.3          | μg/L  | U          |
| Ethane      | 1.3                    | 8.7           | μg/L  |            |



| Well:      | Trip Blank             |               |       |            |
|------------|------------------------|---------------|-------|------------|
| Date Sampl | ed: 4/3/02             |               |       |            |
| Matrix:    | Liquid                 |               |       |            |
| Analyte    | Method Detection Limit | Concentration | Units | Qualifiers |
| Methane    | 0.7                    | <0.7          | μg/L  | U          |
| Acetylene  | 1.2                    | <1.2          | μg/L  | U          |
| Ethene     | 1.3                    | <1.3          | μg/L  | U          |
| Ethane     | 1.3                    | <1.3          | µg/L  | U          |

Qualifiers:

U Compound not detected

J Compound detected, but below method detection limits

Analyses were conducted according to a modification of EPA SW 846 Method 8021B by heating the samples in a Tekmar 7000/7050 Headspace autosampler for ten minutes and transferring a portion of the headspace to a Hewlett Packard 5890 Series II gas chromatograph equipped with a splitter going into two columns; a 30 m Supelco VOCOL 0.32  $\mu$ M capillary column to separate and quantify the chlorinated compounds using an Electrolytic Conductivity Detector; and a 30 m Supelco PLOT 1006 0.32  $\mu$ m capillary column to separate and quantify the light hydrocarbon gases (methane, acetylene, ethene, and ethane) using a flame ionization detector.

TERRA SYSTEMS, INC. Michael D Cee, Phil

Michael D. Lee, Ph.D. Laboratory Manager



# JANUARY 2002 STATUS REPORT PHOTOCIRCUITS ACCELERATED ANAEROBIC BIOREMEDIATION PILOT

### **PREPARED FOR:**

PHOTOCIRCUITS CORPORATION 31 SEA CLIFF AVENUE GLEN COVE, NY 11542

**PREPARED BY:** 

TERRA SYSTEMS, INC. 1035 PHILADELPHIA PIKE SUITE E WILMINGTON DE 19809

**APRIL 12, 2002** 



# TABLE OF CONTENTS

| TABLE OF CONTENTS                            | I  |
|----------------------------------------------|----|
| 1.0 EXECUTIVE SUMMARY                        | 1  |
| 3.0 BACKGROUND                               | 3  |
| 3.1 SITE GEOLOGY/HYDROLOGY                   | 3  |
| 3.2 NATURE AND EXTENT OF CONTAMINATION       | 3  |
| 3.3 RATIONALE FOR USE OF TECHNOLOGY          | 3  |
| 3.4 TECHNOLOGY DESCRIPTION                   | 5  |
| 4.0 MATERIALS AND METHODS                    | 7  |
| 4.1 Study Area                               | 7  |
| 4.2 TECHNICAL CHALLENGES                     | 7  |
| 4.3 Key Design Criteria                      | 7  |
| 4.4 TREATMENT SYSTEM SCHEMATIC AND OPERATION | 7  |
| 4.6 MATERIALS                                | 8  |
| 5.0 RESULTS                                  | 9  |
| 5.1 DEMONSTRATION OBJECTIVES AND APPROACH    | 9  |
| 5.2 Performance Evaluation Criteria          | .9 |
| 5.3 ORGANIZATION OF DATA                     | .9 |
| 5.4 PROJECT TO DATE RESULTS                  | 10 |
| 5.4.1 Chlorinated Ethene Results             | 10 |
| 5.4.2 Chlorinated Ethane Results             | 11 |
| 5.4.3 Other Organic Compounds Results        | 12 |
| 5.4.4 Sum of VOAs                            | 13 |
| 5.4.5 Substrate Distribution                 | 13 |
| 5.4.6 Electron Acceptor Results              | 14 |
| 6.0 DISCUSSION                               | 15 |
| 7.0 CONCLUSIONS1                             | 16 |
| 8.0 REFERENCES                               | 18 |

#### FIGURES

Figure 1. Site Map Showing Monitoring Wells

ſ,

Figure 2. Site Map Showing Injection Points and Monitoring Wells Within Cell

#### TABLES

- Table 1. Photocircuits Anaerobic Pilot Analytical Summary
- Table 2. Photocircuits Anaerobic Pilot Chlorinated Solvents in Micromolar Concentrations
- Table 3. Photocircuits Anaerobic Pilot Percent Change Between 9/1/00 and 1/8/02
- Table 4. Photocircuits Downgradient Wells Percent Change Between 3/28/00 and 1/8/02
- Table 5. Summary of Changes in Concentrations of Chloroethenes, Chloroethanes, Electron Acceptors, and Electron Donor by Well



#### **1.0 EXECUTIVE SUMMARY**

In August 2000, Photocircuits Corporation initiated a pilot study at its 31 Sea Cliff Ave. property to treat chlorinated volatile organic compounds (VOC) using in situ anaerobic bioremediation. The site is characterized by VOC contamination of a sandy, silt, and gravel aquifer. Monitoring data indicate that some biodegradation of these contaminants was occurring at the site prior to the start of the pilot study. The two primary objectives of this pilot study are to 1) evaluate the use of substrate injection to enhance in situ anaerobic biological degradation of chlorinated VOCs in the study area and 2) obtain operating and performance data to optimize the design and operation of a full-scale system. During the operational period of this pilot study, there is no emphasis on reducing any contaminants to a specific regulatory level.

The study area, which encompasses a triangular area roughly 92 feet wide, 157 feet long, and 60 feet deep, underlies the former drum storage area of the Photocircuits Corporation facility. Prior to the start of the pilot test, total chlorinated contaminant concentrations in wells within the pilot area ranged from 457 to 539,000  $\mu$ g/L. The bioremediation system consisted of six injection points in a line spaced about 15 to 20 feet apart. An edible oil substrate (EOS) package was designed to provide a slow release food grade carbon source over a period in excess of twelve months. The substrate concentrations were selected based on previous experience. VOC and substrate concentrations have been monitored six times over a 16 month period at eight wells spaced throughout the treatment area. VOC and substrate concentrations have also been monitored at four wells downgradient of the treatment area to determine if the substrate has migrated outside of the area and if the substrate amendment has affected these wells.

The system has been operating since August 31, 2000. Substrate monitoring data indicated that substrate was delivered throughout the treatment area with the highest substrate levels found in well MW-14. The emulsion moved into this well from several of the injection points and displaced much of the contaminated groundwater within this well. Contaminant levels have increased in MW-14 and MW-7. Desorption of contaminants adsorbed to the soil due to enhanced biological activity may be contributing to the increased contaminant concentrations in MW-14 and MW-7. Contaminants that partitioned into the injected oil may also be released. Where substrate levels were above 50 mg/L, significant declines in total VOC concentrations (13-95%) were generally observed. Degradation rates for the total VOCs (9/1/01 concentration minus 1/8/02 divided by 495 days) were as high as 394  $\mu$ g/L-day (well SMP-3) in higher concentrations, total VOC degradation rates were lower, in the range of 2.8 (DMP-4) to 24  $\mu$ g/L-day (DMP-1). There was no evidence of significant degradation product build-up in any other monitoring wells. Total contaminant concentrations within the pilot cell have fallen by 66% since September 2000.

A second injection of EOS is recommended to increase the availability of substrate throughout the contaminated zone.

# Terra Systems

# 2.0 INTRODUCTION

The enclosed report describes the field pilot study of *in situ* anaerobic bioremediation of a chlorinated solvent plume at the Photocircuits Corporation's 31 Sea Cliff Avenue, Glen Cove, NY facility. The study, which was initiated on August 31, 2000, has the following objectives:

- Determine if the addition of a food grade carbon source will enhance the extent and rate of chlorinated solvent biodegradation at the site.
- Determine the rate of chlorinated solvent biodegradation to estimate the time frame required for contaminant removal.
- Determine if the food grade carbon source can be adequately distributed in the formation such that the microorganisms can utilize it.
- Determine what role bioremediation technology has in the overall remediation strategy for the site.

There have been six groundwater sampling events during the course of the study. As of January 2002, the average total volatile contaminant concentrations within the pilot have decreased by 66%.

During the treatment period of 16 months, we have successfully demonstrated that the addition of a food grade carbon source will enhance the extent and rate of chlorinated solvent biodegradation at this site as indicated by the following observations:

- Total contaminant concentrations have decreased by an average 66%.
- The parent compound 1,1,1-trichloroethane has decreased by an average of 81%
- Two monitoring wells (MW-7 and MW-14) have increased in total volatile concentrations since September 1, 2000 by 652 to 4,529%. However, when viewed over the last 13 years, the total VOC concentrations in MW-7 have decreased 95%. Since 11/1/99, total VOC concentrations have decreased by 44% in MW-14.

It is difficult to determine the total contaminant mass present at this site because of the limited number of soil samples and limited definition of the vertical distribution of this contamination. The total contaminant mass was estimated to be approximately 1,195 pounds based upon the average soil concentrations found in the 1996 or earlier soil borings and a contaminated volume of 361,100 ft<sup>3</sup> (a triangular area 92 feet by 157 feet with a contaminated interval below the water table from 10 to 60 feet below ground surface).

Please note that the goal of this study has been to gather sufficient data to determine the rate and extent of chlorinated solvent biodegradation. If the study area could be isolated such that the contaminant mass did not receive any additional contaminants, Terra Systems, Inc. estimates that based upon the current degradation rates that approximately 90% of the total contaminant mass can be removed in 30 months. Although an acceptable remediation end point has not been defined for this site, the data suggests that this reduction will be environmentally acceptable since it significantly reduces the probability that chlorinated solvents will migrate off-site.

#### 3.0 BACKGROUND

The Photocircuits Corporation's 31 Sea Cliff Avenue facility, Glen Cove, New York is located on the north shore of Long Island. The plant site is bordered on the north by a light industrial area, to the south and east are arterial roads, and to the west by railroad tracks. The site is generally flat and is covered by manufacturing buildings and parking lots.

#### 3.1 Site Geology/Hydrology

Based on analysis of soil borings and details of well construction at the Photocircuits site, the surficial deposit below the facility is primarily composed of interbedded sand, silt, gravel, and clay layers.

#### 3.2 Nature and Extent of Contamination

The groundwater at the facility has been impacted by chlorinated ethene and chlorinated ethane compounds from various sources. Prior to the start of the pilot test, total volatile organic contaminant concentrations (TVOC) in groundwater ranged from 457 to 539,000  $\mu$ g/L. Generally, the contamination extends to approximately 90 below ground surface (bgs) with the highest concentrations in the 20 to 50 ft. bgs zone.

#### 3.3 Rationale for Use of Technology

Photocircuits Corporation has been conducting a technology review to determine which remediation technology or technology treatment train will be most appropriate for this facility. Conventional pump-and-treat technologies have been excluded from this review since these technologies have limited applications for aquifer and groundwater restoration (Beeman et al 1993). Other technologies considered have been discussed in other reports submitted to the NYDEC.

Many of the currently utilized cleanup methods for chlorinated solvents employ physical processes that tend to transfer the compounds to another medium. Biological decomposition is one approach that has the potential for destroying hazardous chemicals so that they are rendered harmless for all time.

Semprini et al (1992) outlined the processes affecting movement and fate of halogenated aliphatics as:

- 1. Advection, the miscible transport in aqueous solution under the influence of the hydraulic potential gradient;
- 2. Dispersion, the mixing and spreading of concentration fronts, that arises largely from differential rates of movement along the myriad individual flow paths through the porous medium;
- 3. Sorption, the partitioning of a compound between the moving solution and the stationary solid phase;



- 4. Immiscible transport, the migration of slightly soluble chemicals as a separate liquid phase, often driven downward by density difference in the case of halogenated aliphatics; and
- 5. Diffusional transport, the slow migration of solute molecules into the matrix rock or dead-end pores under the influence of a concentration driving force.

Given the heterogeneity of the site and the lack of definitive knowledge of the amount of chlorinated solvents in the impacted area, a technology that can remove a significant amount of the solvents and continue to treat the remaining material is required. While physical technologies such as "pump-and-treat" systems can generally contain a contaminant plume and remove a limited amount of material, it has not been conclusively demonstrated that these technologies can remove a significant amount of the solvents. The USEPA (1996) has stated that

"The general failure of the pump-and-treat approach was identified as its inability to achieve restoration (i.e., reduction of contaminants to levels required by healthbased standards) in 5 to 10 years, as anticipated in the design phase of projects. Although a variety of factors contributed to this shortcoming, tailing and rebound (Section 4) represented the major barrier to achieving remediation goals."

Chemical technologies such as chemical oxidation have promise for removal of a significant portion of the contamination but have not been demonstrated to provide treatment for all of the solvents. For example, 1,1,1-Trichloroethane is resistant to potassium permanganate treatment (ITRC 2000). The chemical oxidants react rapidly with the contaminants and reduced minerals in the soil and do not provide a continuing impact on the contaminants.

As part of the technology review program, Photocircuits Corporation engaged Terra Systems, Inc. (TSI) to conduct an anaerobic bioremediation field pilot study at the facility. The study, which encompasses a triangular area roughly 92 feet wide and 157 long that had been used for drum storage, commenced in August-September, 2000. Eight monitoring points (MW-14, MW-7, SMP-1, DMP-1, SMP-3, DMP-3, SMP-4, and DMP-4) are being utilized to track the progress of the pilot study. Beginning in March 2001, groundwater samples were also collected from 4 additional wells (MW-8, MW-9, MW-12, and MW-13) to determine if any of the injected substrate had migrated away from the study area. It should be noted that these wells are not expected to be impacted by the bioremediation study. The locations of these wells are shown in Figure 1 with the exception of MW-9 that is further to the west.

Historical data indicates that anaerobic biodegradation is occurring at the site as evidenced by the presence of daughter products from the breakdown of tetrachloroethene (PCE) and trichloroethene (TCE) including cis-1,2-dichloroethene (cDCE), vinyl chloride (VC), and ethene. Acetylene can be produced by the abiotic reaction of PCE or TCE with ferrous sulfide (Butler and Hayes 2000). 1,1,1-Trichloroethane (1TCA) breaks down to 1,1-dichloroethene (1DCE), trans-1,2-dichloroethene (tDCE), 1,1-dichloroethane (1DCA), chloroethane (CA), and ethane. However, VC and ethene can also be generated from the breakdown of the 1TCA, 1DCA, and 1DCE. Based on a review of the site historical data, it appears that the biological degradation process is limited by the availability of organic carbon.



#### 3.4 Technology Description

Anaerobic bioremediation, also referred to as reductive dechlorination, of chlorinated solvents is a well documented process that converts chlorinated ethenes and ethanes to innocuous gases.

The following technology description is from a report entitled "Cost and Performance Report – In Situ Anaerobic Bioremediation Pinellas Northeast Site Largo, Florida" prepared for the U.S. Department of Energy by Sandia National Laboratories and Hazardous Waste Remedial Actions Program.

Bacteria metabolize soluble organic and inorganic compounds to provide energy for the growth and maintenance of bacterial cells. The complex organic molecules that bacteria consume are converted to new cells and various simpler compounds, such as carbon dioxide, that are released back into the environment. This process is referred to as biodegradation. Biodegradation has been used very cost effectively for more than a century in public and industrial wastewater treatment systems. Since bacteria occur naturally in both soil and ground water environments, bioremediation technologies attempt to stimulate the activity of these naturally occurring (or introduced bacteria) to degrade contaminants in a cost-effective manner. Bioremediation is being considered more often as the processes that control the biological degradation of contaminants in soil and ground water become better understood.

In order to produce new bacterial cells, bacteria require carbon, nitrogen, phosphorus, and energy sources, as well as a number of trace minerals. Electrons are released by the biochemical reactions that metabolize complex organic compounds for energy. Biological systems capture this biochemical energy through a series of electron transfer (redox) reactions. The bacteria that are most commonly used in bioremediation systems use organic compounds as their source of carbon and energy; these carbon compounds are referred to as electron donors. Bacterial respiration requires that some chemical compound is available to act as a terminal electron acceptor. Common electron acceptors used by bacteria include oxygen, nitrate, sulfate, Fe<sup>3+</sup>, and carbon dioxide.

Recently, a class of anaerobic bacteria has been identified that uses halogenated organic compounds as their electron acceptors. The chlorinated VOCs present in the soil and ground water at the Northeast site are among the halogenated organic compounds that can be used in this manner. Halogenated compounds have a high oxidation state; and when a halogen (e.g. chlorine) is chemically replaced by hydrogen, the oxidation state of the chemical is reduced. This process is referred to as reductive dehalogenation, and it forms the basis of the anaerobic process used by the in situ bacteria at the Northeast site. Under anaerobic conditions, chlorinated compounds can be degraded via reductive dehalogenation reactions to successively lower chlorinated degradation products, and finally to compounds of significantly lower toxicity. This process is illustrated for TCE below.

```
TCE \rightarrow DCE \rightarrow VC \rightarrow thene, ethane
step 1 step 2 step 3
```

Biological activity is frequently limited by the availability of a single growth factor (e.g. electron acceptor, electron donor, nitrogen, etc.) and supplying the proper growth factor can often

stimulate bacterial growth and biodegradation rates. For in situ bioremediation applications, nutrients or electron acceptors are often injected into the contaminated area to enhance the existing microbial degradation processes. Effectively delivering nutrients requires that factors such as site permeability and geochemistry be considered. Each class of contaminant varies in its susceptibility to biodegradation and factors such as aquifer oxidation-reduction potential, microbial ecology, and contaminant toxicity will affect the success of bioremediation at a site. The effective application of in situ bioremediation therefore depends upon careful consideration of the geologic and hydrologic properties at the site and on the type and concentration of contaminants to be treated.

Evaluations of the monitoring data from the Northeast Site suggested that microbial dechlorination is occurring naturally. DCE and vinyl chloride (VC) are degradation products of TCE that were measured in high concentrations but were not contaminants originally disposed of at the site, which suggests that a population of dechlorinating microorganisms is relatively active at Pinellas.

The report continues on to outline the technology advantages and disadvantages which are listed below:

Technology Advantages

- Contaminants are treated in situ with little waste generation
- Contaminant degradation can be relatively fast
- Bioremediation is capable of reducing contaminants to very low levels
- The process stimulates a microbial population that can continue to feed off the dissolved phase of a continuing source after nutrient injection ceases, and
- Often provides a low overall remediation cost relative to other technologies.

Technology Disadvantages

- Contaminant degradation enhancement is dependent on adequate nutrient delivery to all areas of contamination before the nutrients are directly metabolized, which often is primarily a function of site hydrogeology and the appropriate mixing of nutrients, contaminants, and active microbes,
- Site conditions (e.g. soil and ground water chemistry, reductive processes, etc.) must be conducive to the stimulation of biological activity to be effective,
- Bioremediation will not directly degrade contaminants occurring in an immiscible phase,
- High concentrations of contaminants often are toxic to microorganisms,
- Bioremediation may be difficult to optimize at sites with multiple contaminants of concern,
- Incomplete biodegradation of contaminants can lead to the generation of degradation products that are just as toxic or even more so than the parent contaminants, and
- Regulatory concerns over chemical injections into aquifers.

### 4.0 MATERIALS AND METHODS

#### 4.1 Study Area

The study area encompasses a triangular area roughly 92 feet by 157 feet with a contaminated interval of 50 feet (from the water table at 10 feet to 60 feet) underlies the former drum storage area of the Photocircuits Corporation 31 Sea Cliff Ave, Glen Cove, NY facility. Eight monitoring points (MW-14, MW-7, SMP-1, DMP-1, SMP-3, DMP-3, SMP-4, and DMP-4) are being utilized to track the progress of the pilot study. Beginning in March 2001 groundwater samples were also collected from 4 additional wells (MW-8, MW-9, MW-12, and MW-13) to determine if the injected substrate had migrated away from the study area. It should be noted that these wells are not expected to be impacted by the bioremediation study.

#### 4.2 Technical Challenges

The key technical challenges for this study are:

- a. ability to move a carbon source throughout the contaminated area;
- b. estimation of quantity of chlorinated compounds
- c. determination of minimum level of TOC required to optimize reductive dechlorination

#### 4.3 Key Design Criteria

The in situ anaerobic bioremediation pilot system was designed for two main objectives;

- develop a nutrient delivery system capable of providing a mixture of nutrients to the subsurface within the heterogeneous aquifer, such that the nutrients will be delivered to all levels in the treatment area within an approximately 24 month operating period, and
- deliver a sufficient quantity of substrate to the treatment area to last for approximately 24 months.

#### 4.4 Treatment System Schematic and Operation

Figure 2 is a schematic of the pilot anaerobic biotreatment system showing the injection locations and the monitoring wells. In this system, the nutrients were distributed throughout the vertical extent of the treatment area by a Geoprobe® rig at the beginning of the pilot. The Geoprobe® pushed a drivepoint to about 50 feet bgs. The drill rod was pulled back two feet to inject the fluids under pressure with a Rupe pump. The rod was then withdrawn four feet and additional fluid was injected. This process continued until about 22 ft bgs. Approximately 3,500 gallons of soybean oil emulsion containing soybean oil, soybean lecithin, and tap water treated to remove chlorine was injected into five points. Forty gallons of soybean oil was injected at an additional point. In addition to pressure injection of the emulsion followed by injection of chase water to disperse the nutrients, natural groundwater flow has dispersed the substrate.

### 4.5 **Operating Parameters**

The major operating parameters needed to assess the performance and cost of the bioremediation system were considered to be substrate concentrations and substrate longevity.

#### 4.6 Materials

The test area was injected with emulsified soybean oil in August 29 to September 1, 2000. The key objective of the pilot study is to determine if the addition of a food grade carbon source will enhance the extent and rate of chlorinated solvent biodegradation at the site. TSI formulated an emulsion containing soybean oil, lecithin (a soybean derivative that acts as an emulsifier), and water to provide required organic carbon. The soybean oil is broken down into smaller organic molecules and hydrogen that are then used by the dechlorinating bacteria.



#### 5.0 RESULTS

The bioremediation pilot study at the Photocircuits Corporation site is being conducted to assess the applicability of substrate injection to accelerate the degradation of the chlorinated contaminants of concern and to identify optimal operating parameters. These data will be used to determine the expected costs and performance of a full-scale system at the site.

#### 5.1 Demonstration Objectives and Approach

The objectives of the pilot in situ bioremediation project are as follows:

- Determine if the addition of a food grade carbon source will enhance the extent and rate of chlorinated solvent biodegradation at the site.
- Determine the rate of chlorinated solvent biodegradation to estimate the time frame required for contaminant removal.
- Determine if the food grade carbon source can be adequately distributed in the formation such that the microorganisms can utilize it.
- Determine what role bioremediation technology has in the overall cleanup strategy for the site.

#### 5.2 Performance Evaluation Criteria

The performance criteria considered in evaluating this in situ anaerobic bioremediation system included:

- Substrate transport and utilization in the remediation study area,
- Contaminant degradation rates and the reduction in mass of the contaminants,
- Fate of chlorinated solvent degradation compounds, and
- Levels to which contaminants can be reduced.

The evaluation data were collected by a monitoring program of six field sampling events over a 16 month period.

#### 5.3 Organization of Data

The analytical data from the pilot collected from each of the six sampling events are summarized in the following five tables.

- Table 1 presents the volatile organic data (VOCs), final biodegradation byproducts (ethene and ethane), important electron acceptors (total iron, sulfate, nitrate, and methane), and electron donor as represented by total organic carbon (TOC).
- Table 2 converts the concentrations of the chlorinated ethenes and chlorinated ethanes to micromolar units so that one unit of PCE is equivalent to one unit of TCE, cDCE, VC, and ethene. Similarly one unit of 1TCA is equivalent to one unit of 1DCE, tDCE, 1DCA, CA, or ethane.



- Table 3 summarizes the changes between the samples collected immediately after the oil emulsion injection and the samples collected sixteen months later for wells MW-14, MW-7, SMP-1, DMP-1, SMP-3, DMP-3, SMP-4, and DMP-4. Positive changes indicate that the concentrations of the analyte have decreased. A negative change indicates that the concentrations have increased. In a number of cases, the contaminants were not detected in the initial samples collected after emulsion injection or in the samples collected after sixteen months. In these cases, the percent change was calculated using the analyte detection limit and the percent changes are designated as greater than (>) or less than (<) the calculated change.
- Table 4 summarizes the changes between the samples collected on 3/28/01 and the samples collected on 1/9-12/02 for wells MW-8, MW-9, MW-12, and MW-13. As noted previously, it is not anticipated that these wells will be impacted during the study period.
- Table 5 summarizes the changes in the chloroethenes, chloroethanes, electron acceptors, and electron donor for all wells from the beginning of the pilot in August-September 2000 to January 2002.

# 5.4 Project To Date Results

The following table summarizes the status of the key performance measures for this project as of January, 2002. Details are described in subsequent sections..

| Performance Measures                               | Values/Results                                         |
|----------------------------------------------------|--------------------------------------------------------|
| Treatment Volume:                                  |                                                        |
| Soil                                               | Approximately 70' X 90' X 60', 378,000 ft <sup>3</sup> |
| Ground Water Treated:                              | Approximately 706,565 gallons                          |
| System substrate transport effectiveness:          | Demonstrated distribution throughout pilot area        |
| Substrate effectiveness:                           | Enhanced dechlorination                                |
| Substrate viability                                | Lasted for more than one year                          |
| Total volatile contaminant degradation rates;      |                                                        |
| > 100 mg/L concentration levels                    | 394 μg/L-day                                           |
| 1 - 100 mg/L concentration levels                  | <u>2.8 to 24 μg/L-day</u>                              |
| Reduction of total contaminants of concern:        | Achieved reductions of 13% to 95% except in MW-        |
|                                                    | 14 and MW-7                                            |
| Chlorinated solvent degradation product production | General decline in all contaminants with some          |
|                                                    | temporary increases in degradation products,           |
|                                                    | followed by reduction of the degradation products      |
|                                                    | themselves by biological degradation                   |
| Waste generated                                    | None                                                   |
| Achievable contaminant reduction levels:           | Estimated 90% within 30 months                         |

#### 5.4.1 Chlorinated Ethene Results

In the original group of monitoring wells, cis-1,2-DCE and VC were the predominant chlorinated ethenes with little of the parent compounds, PCE or TCE, being detected except for TCE in

SMP-1 in December 2000 through January 2002. Concentrations greater than 1,000 ug/L of chlorinated ethenes were initially only detected in SMP-1 and DMP-3. TCE concentrations have increased in SMP-1 and to a lesser extent in MW-7. The increases may be a result of dissolution of PCE or TCE from a source zone and subsequent biodegradation or an inadequate supply of substrate. There were increases in cDCE and/or VC concentrations in MW-14, MW-7, SMP-1, DMP-1, and SMP-3 from 3/28/01 to 1/8/02. cDCE and VC concentrations have declined between 7/11/01 and 1/8/02 in wells MW-7, DMP-1, SMP-3, and DMP-3. We expect that the VC will decrease as it is converted to ethene. Because cDCE was not detected in SMP-1 in March 2001, but was found in July 2001, we suspect an analytical error in the sample from March 2001. Low levels of acetylene, an abiotic degradation product from the reaction of PCE or TCE with ferrous sulfide, were detected in wells MW-14 and SMP-3.

As previously discussed, the goal of the process is to convert PCE into ethene because the ethene is considered to be environmentally acceptable. Ethene has not been associated with long-term toxicological problems and is a natural occurring plant hormone (Sims et al 1991). Unfortunately, given the field conditions, it is difficult to conduct a material balance. Ethene may be converted to carbon dioxide, ethane, or another product. Ethene may also be transported away with the groundwater, or production of ethene may have slowed due to some limitation on the microbial population including lack of substrate, insufficient nutrients, or lower concentrations of the parent compounds.

Ethene concentrations in January 2002 increased in wells MW-14, MW-7, SMP-3, and SMP-4 from the initial levels observed on 8/31/00-9/1/00. Ethene concentrations for the other four wells of the original group were lower than measured initially. The continued presence of ethene in all of the wells in the pilot area shows that complete dechlorination of the chlorinated ethenes is occurring. Ethene increased in MW-12 and has not been detected in the other supplemental wells.

The addition of soybean oil emulsion has resulted in an increase in intermediate and final daughter products from the chlorinated ethenes in pilot area wells MW-14, MW-7, SMP-3, SMP-4, and MW-12. Wells DMP-1 and SMP-4 showed decreases in the parent or daughter products. Well SMP-1 has recently shown an increase in TCE and cDCE presumably as substrate has become limiting. Both VC and ethene concentrations are down in DMP-3. Well DMP-4 has ethene only.

In the supplemental group of monitoring wells sampled in March 2001, July 2001, and January 2002, three of the four wells had parent compounds PCE and/or TCE (MW-8, MW-12, and MW-13). Concentrations greater than 1,000 ug/L of chlorinated ethenes were detected in MW-12 only. Increases in the cDCE, VC, and ethene concentrations were noted in MW-12 concurrent with the reduction in the TCE concentrations. The very low levels of TCE in MW-8 have fallen by 46%. PCE, TCE, cDCE, and VC concentrations have increased in MW-13.

# 5.4.2 Chlorinated Ethane Results

The analytical data for the pilot test to date provides evidence for biodegradation of the chlorinated ethanes. Wells DMP-1, SMP-3, DMP-3, and SMP-4 had the highest initial

concentrations of total chlorinated ethanes with greater than 1,000  $\mu$ g/L. 1TCA was the primary chlorinated ethane contaminant in wells SMP-3 and DMP-3. Reduced products such as 1,1-dichloroethane, chloroethane, and ethane predominated in wells MW-14, MW-7, SMP-1, DMP-1, SMP-4, and DMP-4.

Well SMP-3 has shown a 92% (178,000  $\mu$ g/L to 14,500  $\mu$ g/L) reduction in the 1TCA concentrations. Between 77% reduction (38,200 to 8,860  $\mu$ g/L) and 57% (5,230 to 2,260  $\mu$ g/L) reductions in the 1DCA concentrations were observed in SMP-3 and DMP-3 respectively. CA concentrations have declined by 97% in DMP-1 (3,290 to 97  $\mu$ g/L). Based upon these results and laboratory studies currently underway with an anaerobic culture derived from the Photocircuits groundwater, we believe that direct utilization of 1TCA and 1DCA may be occurring rather than a reductive dechlorination reaction where daughter products are produced and degraded. Acetic acid has been reported as a byproduct of 1TCA degradation (Lee and Davis 2001). Alternatively, sulfides generated from the reduction of sulfate may be reacting abiotically with the 1TCA and 1DCA (Gander et al. 2001).

Well SMP-4 has shown decreases in the 1TCA, 1DCA, 1DCE, CA, and ethane concentrations over the sixteen months following injection of the oil emulsion. However, there was a rebound in concentrations of these compounds between December 2000 and January 2002. Higher concentrations of 1TCA and some daughter products were also observed in January 2002 for wells MW-14, MW-7, SMP-1, and DMP-1 than had been observed in September 2000. The release of VOCs adsorbed into the oil may be one explanation for these increases. A second potential explanation is the establishment of a concentration gradient that facilitates desorption from contaminated surfaces as a result of microbial stimulation.

Relatively low levels of 1TCA and daughter products were found in MW-12 and MW-13, which were first monitored for this program in March 2001. No chlorinated ethanes were found in MW-8 or MW-9. 1DCA, CA, and ethane concentrations have increased in MW-12, but tDCE, 2DCA, and 1DCE concentrations have fallen slightly. In MW-13, 1TCA concentrations have decreased slightly, but 1DCA, tDCE, and 1DCE concentrations have increased. The substrate injections have had little impact on the downgradient wells.

# 5.4.3 Other Organic Compounds Results

Several other organic compounds were detected in the groundwater including 1,2dichloroethane, acetone, methylene chloride, 2-butanone, toluene, benzene, p-ethyltoluene, 1,3,5-trimethylbenzene, 2-chlorotoluene, 4-chlorotoluene 1,2,4-trimethylbenzene, naphthalene, o-xylene, n-propylbenzene, and methyl tert butyl ether (MTBE). Over the sixteen months of the pilot operation to date, acetone concentrations decreased by >99% in DMP-1, but increased in MW-14. Methylene chloride decreased in many wells with declines by as much as >96 percent in SMP-1, >97% in DMP-1, 96% in SMP-3, and >96% in DMP-3. Methylene chloride can also be anaerobically degraded. Toluene concentrations have declined in six wells, but increased in two wells (MW-14 and SMP-1). Toluene can be also degraded anaerobically. The addition of soybean oil may have little effect on its biodegradation of toluene as dechlorinators are probably not involved in the biotransformation of toluene. 2-Chlorotoluene concentrations declined in wells SMP-4 and DMP-4, but increased in MW-7 and DMP-1. 2-Chlorotoluene may be biodegraded to toluene and potentially further under anaerobic conditions. MTBE was first detected at 9.0  $\mu$ g/L in SMP-3 in July 2001. MTBE was found at levels up to 125  $\mu$ g/L in DMP-3, SMP-1, SMP-3, and DMP-4 in January 2002. MTBE has not reached any of the downgradient wells. A plume of MTBE appears to be moving onto the Photocircuits site from somewhere upgradient as MTBE was not detected in analyses from September 2000 until July 2001.

Few of the other contaminants were found in the downgradient wells. 2-Chlorotoluene and 4chlorotoluene have increased in MW-12 by 584% and 471% between 3/28/01 and 1/9/02. A low level of o-xylene was found in MW-12 in January 2002. Acetone, benzene, and 2-chlorotoluene were detected in MW-13 and have increased slightly.

# 5.4.4 Sum of VOAs

The sum of the concentrations of all of the contaminants in each well was calculated excluding the final degradation endproduct gases, ethene and ethane. The sum of the VOAs has declined by up to 95% in DMP-1 with large decreases in SMP-3 (89%) and DMP-4 (51%). More moderate declines were observed in SMP-4 (23%), SMP-1 (13%), DMP-3 (22%), and SMP-4 (28%). The sum of VOAs has increased by 4529% in MW-14 as the contaminated groundwater displaced during injection came back into the well and potentially as VOCs adsorbed into the oil were released. Increases in the sum of VOAs were also observed to a lesser degree in MW-7 (-33). The overall average of the sum of the volatiles has declined by 66% over the course of the pilot.

A first order degradation half-life of 301 days was calculated for the average total volatile contaminants within the pilot cell. Based upon this degradation rate, 90 percent of the total contaminants should be removed within 30 months.

The total volatiles in the downgradient wells outside of the influence of the substrate injection have fallen in MW-8, but increased in MW-12 and MW-13.

# 5.4.5 Substrate Distribution

The total organic carbon concentrations in January 2002 ranged from 1.67 mg/L in MW-7 to 2,630 mg/L in MW-14. Well MW-14 has had free-floating soybean oil in previous sampling events, but none was noted in the January 2002 sampling event. TOC levels were below 50 mg/L in January 2002 in the remaining wells. A substrate level of 50 mg/L TOC should provide sufficient carbon to support dechlorination and other electron accepting processes such as methanogenesis and sulfate-reduction. TOC levels have declined from the beginning of the pilot in wells MW-14 (89%), MW-7 (96%), SMP-1 (74%), DMP-1 (97%), SMP-3 (88%), DMP-3 (70%), SMP-4 (90%), and DMP-4 (58%). Additional substrate injection in the pilot area is warranted.

No detectable levels of TOC were found in the downgradient wells analyzed for this parameter in January 2002.



#### 5.4.6 Electron Acceptor Results

As the microbes breakdown the emulsion, sulfate would be depleted and the concentrations of iron and methane would increase. Nitrate-nitrogen was present in January 2002 at low concentrations of <0.13 to 0.085 mg/L. and is a minor electron acceptor. The predominant electron acceptor in the groundwater in January 2002 was sulfate with concentrations that ranged from 146 mg/L in DMP-4 to 1,640 mg/L in SMP-3. Sulfate concentrations have declined from the initial concentrations in September 2000 in wells MW-14 (92%), DMP-1 (96% from 23,500 to 1,200 mg/L) as would be expected with consumption of the oil emulsion. However, sulfate levels have increased in MW-7, SMP-1, SMP-3, DMP-3, SMP-4, and DMP-4 over the course of the pilot. There does not appear to be sufficient substrate available to remove the sulfate. Total iron concentrations within the pilot in January 2002 ranged from 5.39 mg/L in SMP-3 to 279 mg/L in MW-14, which indicated that iron is also an important electron acceptor. Total iron concentrations have increased in two of the eight wells in the pilot area. The drop in dissolved iron concentrations in the other wells may be due to precipitation of the ferrous iron with sulfide produced from the utilization of sulfate. During the most recent sampling event in January 2002, methane was detected in all wells with methanogenic conditions (>1,000 µg/L) in MW-14, MW-7, SMP-1, SMP-3, DMP-3, and SMP-4. Methane concentrations have increased in six wells in the pilot area between September 2000 to January 2001.

Well MW-8 appears to be under aerobic conditions based upon the presence of nitrate and sulfate, and the low levels of iron and methane. This well is largely uncontaminated. While MW-9 has little organic contamination, it appears to have been impacted by the biodegradation processes upgradient as it has elevated iron and methane levels. Well MW-12 is under methanogenic conditions based upon the elevated methane levels. Iron and sulfate are also high in MW-12. Methane concentrations are lower in MW-13 and there is little iron. Nitrate and sulfate are present suggesting that this well is under nitrate-reducing conditions.



#### 6.0 DISCUSSION

Previous studies have demonstrated the anaerobic dechlorination of PCE using aquifer solids and water in the laboratory (Parsons et al. 1985, Scholz-Muramatsu et al. 1995, and DiStefano et al. 1991). Previous field studies have also demonstrated the anaerobic dechlorination of PCE (Beeman et al. 1994, Ellis et al. 2000). Therefore, microbial reductive dehalogenation is a potential remedial mechanism for halogenated compounds in groundwater aquifers.

The objective of the technology is to convert PCE into ethene. The produced ethene is considered to be environmentally acceptable, because ethene has not been associated with long-term toxicological problems and is a natural occurring plant hormone (Sims et al. 1991). Furthermore, ethene is known to further biodegrade to carbon dioxide under aerobic environmental conditions (Beeman et al 1994).

VC has been thought to persist in anaerobic environments and to be more toxic to bacteria than the parent compounds (Barrio-Lage et al. 1991). However, subsequent work has clearly established that VC is biodegraded to ethene and ethane. The pattern of increase and disappearance of DCE and VC is suggestive of microbial succession.

Conditions continue to be favorable for accelerated anaerobic biodegradation of the chlorinated solvents at the Photocircuits site based upon the following positive results from the pilot to date including:

- decreases in the parent compound concentrations observed in many wells, particularly the large drops in the 1TCA and 1DCA concentrations in wells SMP-3 and DMP-3
- increases in the daughter products including final products ethene and ethane in many of the wells.
- good distribution of substrate and its consumption
- prevalence of reducing conditions based upon the removal of sulfate and the production of dissolved iron and methane

As a result of the high utilization of the substrate in the area of wells SMP-3, DMP-3, SMP-4, and DMP-4, we recommend that additional emulsified oil be injected into the pilot area. We also recommend that the monitoring program be modified to include one sampling event immediately after substrate injection and one sampling event three months later. Based upon the positive results we have seen in the zone from 10 to 50 feet below ground surface, we believe that this technology should also be applicable to the intermediate and deeper zones.



# 7.0 CONCLUSIONS

Although the pilot study is an on-going program, there is now sufficient data to facilitate a comparison of the project to date results with the project's objectives. The following summary presents the project objectives in bold with the results.

# Determine if the addition of a food grade carbon source will enhance the extent and rate of chlorinated solvent biodegradation at the site.

The overall average of the sum of the volatiles has declined by 66% over the course of 16 months. Increases in intermediate and final daughter products from the chlorinated ethenes and ethanes have been observed in all of the primary monitoring wells.

Degradation rates for the total VOCs are as high as 394 ug/L per day in higher concentration areas. In areas with lower total volatile concentrations, degradation rates range from 2.8 to 24 ug/L per day.

# Determine the rate of chlorinated solvent biodegradation to estimate the time frame required for contaminant removal.

A first order degradation half-life of 301 days was calculated for the average total volatile contaminants within the pilot cell. Based upon this degradation rate, 90% of the total contaminants should be removed within 30 months.

# Determine if the food grade carbon source can be adequately distributed in the formation such that the microorganisms can utilize it.

Total organic carbon (TOC) levels in excess of 50 mg/L were established in all eight of the primary monitoring wells in the study area. The TOC levels after system start up ranged from 39 mg/L to 23,500 mg/L. TOC levels have declined from the beginning of the pilot in wells MW-14 (89%), MW-7 (96%), SMP-1 (74%), DMP-1 (97%), SMP-3 (88%), DMP-3 (70%), SMP-4 (90%), and DMP-4 (58%). Although it is not possible to do a mass balance because of site conditions, evidence of primary contaminant reduction combined with increases in intermediate and final daughter products strongly suggests that the TOC decreases are a result of biological utilization.

#### Determine what role bioremediation has in the overall remediation strategy for the site.

Based on the results to date, it appears that bioremediation can cost effectively destroy the contaminants in an acceptable time frame. As a consequence, it appears that bioremediation will be the primary treatment technology for contaminant destruction at this site.

The one unexplained observation is the increase in contaminant concentrations in MW-14 and MW-7. There are several potential reasons for the increased concentrations: 1) desorption of contaminants adsorbed to the soil due to enhanced biological activity may be contributing to the



increase; or 2) contaminated groundwater displaced during the injection process could be moving back into the well. We are working to understand this phenomenon.

A second injection of EOS is recommended to increase the availability of substrate throughout the contaminated zone.

.

#### **8.0 REFERENCES**

Barrio-Lage, G. A., F. Z. Parsons, R. M. Narbaitz, P. A. Lorenzo, and H. E. Archer. 1990. Enhanced anaerobic biodegradation of vinyl chloride in ground water. *Environ. Toxicol. Chem.* 9:403-415.

Beeman, R. E., S. H. Shoemaker, J. E. Howell, E. A. Salazar, and J. R. Buttram. 1994. A field evaluation of in situ microbial reductive dehalogenation by the biotransformation of chlorinated ethenes. In R. E. Hinchee, A. Leeson, L. Semprini, and S. K. Ong, ed., *Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds*, Lewis Publishers, Boca Raton, FL. pp. 14-27.

Butler, E. C. and K. F. Hayes. 2000. Kinetics of the transformation of halogenated aliphatic compounds by iron sulfide. *Environ. Sci. Technol.* 34(3):422-429.

DiStefano, T. D., J. M. Gossett, and S. H. Zinder. 1991. Reductive dehalogenation of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. *Appl. Environ. Microbiol.* 57(8):2287-2292.

Ellis, D. E., E. J. Lutz, J. M. Odom, R. J. Buchanan, M. D. Lee, C. L. Bartlett, M. R. Harkness, K. A. DeWeerd. 2000. Bioaugmentation for accelerated in situ anaerobic bioremediation. *Environmental Science and Technology* 34(11):2254-2260.

Gander, J. W. G. F. Parkin, and M. M. Scherer. 2001. Geomicrobiological interactions among iron sulfide minerals and methanogenic consortia. In Situ and On-Site Bioremediation Poster Abstracts. Sixth International Symposium, June 4-7, 2001. San Diego, CA. Section C8.

Interstate Technology and Regulatory Cooperation Work Group (ITRC). 2001. Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater. Prepared by the In Situ Chemical Oxidation Work Group, June.

Lee, M. D. and J. W. Davis. 2000. Natural remediation of chlorinated organic compounds. In Swindoll, M., R. G. Stahl, Jr. and S. J. Ells, editors. *Natural Remediation of Environmental Contaminants: Its Role in Ecological Risk Assessment and Risk Management*. SETAC Press, Pensacola FL. p. 199-245.

Parsons, F., G. B. Lage, and R. Rice. 1985. Biotransformation of chlorinated organic solvents in static microcosms. *Environ. Toxicol. Chem.* 4:739-742.

Scholz-Muramatsu, A. Neumann, M. Meβmer, E. Moore, and G. Diekert. 1995. Isolation and characterization of *Dehalospirillum multivorans* gen., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. *Arch. Microbiol.* 163:48-56.

Semprini, L., Grbic-Galic, D., McCarty, P.L, and Roberts, P.V., 1992. Methodologies for Evaluating In-situ Bioremediation of Chlorinated Solvents. EPA/600/R-92/042.



Sims, J. L., J. M. Suflita, and H. R. Russell. 1991. *Reductive Dehalogenation of Organic Contaminants in Soils and Ground Water*. EPA/540/4-90/054. Superfund Technology Support Center for Ground Water, U. S. EPA, Ada, OK.

U.S. Department of Energy. 1998. Cost and Performance Report - In Situ Anaerobic Bioremediation, Pinellas Northeast Site, Largo, Florida. Innovative Treatment Remediation Demonstration. April 1998. Sandia National Laboratories, Albuquerque, NW and Hazardous Waste Remedial Actions Program, Oak Ridge, TN. 33 p.

United States Environmental Protection Agency. 1996. "Pump-and-Treat Ground-Water Remediation, A Guide for Decision Makers and Practitioners", EPA/625/R-95/005, July, 1996, p.2.



FIGURES

.






Figure 2. Site Map Showing Injection Points and Monitoring Wells Within Cell



TABLES

# Table 1. Photocircuits Anaerobic Pilot Analytical Summary

| Well                  |           | MW-14   |          |          |         |          |        | MW-7    |          |          |         |         | 1      | SMP-1   |          |          |         |         |        |
|-----------------------|-----------|---------|----------|----------|---------|----------|--------|---------|----------|----------|---------|---------|--------|---------|----------|----------|---------|---------|--------|
| Date                  |           | 8/31/00 | 10/19/00 | 12/20/00 | 3/28/01 | 7/11/01  | 1/8/02 | 8/31/00 | 10/19/00 | 12/20/00 | 3/27/01 | 7/11/01 | 1/8/02 | 8/31/00 | 10/18/00 | 12/20/00 | 3/27/01 | 7/11/01 | 1/3/02 |
| Days                  |           | 0       | 49       | 111      | 209     | 314      | 495    | 0       | 49       | 111      | 208     | 314     | 495    | 0       | 48       | 111      | 208     | 314     | 495    |
| Tetrachloroethene     | μg/L      |         | <1.4     | <0.40    | <5.5    | <4.0     | <2.4   | <0.40   | <0.56    | <0.40    | <2.2    | <0.20   | < 0.12 | <16     | <0.40    | <22      | <5.5    | <2.0    | <6.0   |
| Trichloroethene       | μg/L      | < 0.85  | <1.35    | <0.85    | <10     | <3.4     | <3.4   | < 0.85  | 19.3     | < 0.85   | <4      | 16      | 2.7    | <34     | 79       | 860      | 1530    | 25.3    | 4410   |
| cis-1,2-              | ug/L      | < 0.95  | <1.7     | <0.95    | <15     | <2.8     | <3.6   | 47.3    | 283      | 355      | 149     | 187     | 8.3    | 24900   | 37500    | 30100    | <0.27   | 12300   | 13000  |
| Dichloroethene        |           |         |          |          |         |          |        |         |          |          |         |         |        |         |          |          |         |         |        |
| Vinyl Chloride        | μg/L      | <1.75   | 10.6     | <1.75    | 114     | 145      | 173    | 39.3    | 67.1     | 139      | 60      | 63.9    | 10.5   | 4710    | 5990     | 5090     | 4770    | 4230    | 3490   |
| Ethene                | µg/L      | 43      | 47       | 60       | 65      | 130      | 90     | 63      | 170      | 110      | 33      | 94      | 110    | 930     | 2400     | 1140     | 900     | 1890    | 650    |
| Acetylene             | µg/L      |         |          |          |         |          | 5.7    |         |          |          |         |         | <1.2   |         |          |          |         |         | <11    |
| 1,1,1-Trichloroethane | ug/L      | 14.4    | <1.7     | 8.9      | 994     | 2040     | 1520   | < 0.55  | < 0.62   | <0.55    | <4      | <0.16   | < 0.14 | <22     | < 0.55   | <34      | 356     | 158     | <7.0   |
| 1,1-Dichloroethane    | ug/L      | 126     | 216      | 293      | 9230    | 18800    | 14100  | 122     | 214      | 268      | 135     | 207     | 193    | 506     | 486      | 628      | 708     | 536     | 456    |
| trans-1,2-            | ug/L      | <1.35   | <1.40    | <1.35    | <11     | <2.8     | <5.8   | <1.35   | <0.56    | <1.35    | <4.4    | 2.6     | 2.1    | <54     | 69.9     | <40      | 132     | 34.5    | 58.5   |
| Dichloroethene        |           |         |          |          |         |          |        |         |          |          |         |         |        |         |          |          |         |         |        |
| 1,2-Dichloroethane    | μg/L      | < 0.80  | <0.95    | <0.80    | <10     | 34.2     | <3.2   | <0.80   | <0.38    | <0.80    | <4      | <0.13   | 3.7    | <32     | < 0.80   | <17      | <10     | <1.3    | <8.0   |
| 1,1-Dichloroethene    | μg/L      | <1.05   | 6.3      | <1.05    | 443     | 751      | 542    | <1.05   | <0.96    | <1.05    | <3.6    | 1.9     | <0.22  | <42     | 64.3     | <27      | 184     | 55.1    | 143    |
| Chloroethane          | μg/L      | 15.6    | <1.25    | <1.65    | 132     | 298      | 501    | 258     | 181      | 201      | 160     | 269     | 390    | <72     | 71.6     | <53      | <15     | <1.8    | <33.5  |
| Ethane                | µg/L      | 52      | 69       | 48       | 34      | 66       | 49     | <6      | 130      | 81       | 34      | 71      | 68     | <6      | <6       | <25      | <25     | <25     | <12    |
| Acetone               | µg/L      | 97.8    | 170      | 126      | <74     | 551      | 986    | <9.45   | 52.2     | <9.45    | <29.6   | 18.5    | <2.3   | <378    | <9.45    | <166     | <74     | <14.4   | <115   |
| Methylene Chloride    | $\mu g/L$ | 15.1    | <1.50    | <1.0     | 220     | 156      | 134    | 12.8    | 6.0      | <1       | 51.6    | 3.9     | 8.0    | 482     | 43.1     | <56      | <20.5   | 11.9    | < 18.5 |
| 2-Butanone            | μg/L      | 124     | 75.3     | <5.1     | <125    | 863      | 344    | <5.1    | <1.64    | <5.1     | <50     | <6.25   | 17.2   | <204    | <5.1     | <68      | <125    | <62.5   | <860   |
| Toluene               | µg/L      | 3.0     | <0.80    | < 0.80   | <7.5    | 32.4     | 25     | 6.2     | 8.4      | 8.3      | <3      | 8.6     | 0.95   | <32     | 61.1     | <19      | 126     | 51.4    | 55     |
| Benzene               | ug/L      | <0.70   | <0.70    | <0.70    | <5      | <2.6     | <3.4   | 4.0     | 3.5      | <0.7     | <2      | 2.8     | 6.5    | <28     | 4.40     | <34      | <5      | <1.3    | <8.5   |
| p-Ethyltoluene        | ug/L      | <1.2    | <1.05    | <1.2     | <8      | <4.4     | <4.8   | <1.2    | <0.68    | <1.2     | <3.2    | <0.22   | < 0.24 | <48     | <1.2     | <20      | <8      | 11.3    | <12    |
| 1,3,5-                | μg/L      | <0.60   | <1.50    | <060     | <17     | <2.2     | <2.4   | <0.60   | <0.60    | <0.6     | <6.8    | <0.11   | < 0.12 | <24     | <0.60    | <20      | <17     | <1.1    | <6.0   |
| Trimethylbenzene      | . 0       |         |          |          |         |          |        |         |          |          |         |         |        |         |          |          |         |         |        |
| 2-Chlorotoluene       | μg/L      | <0.85   | <1.35    | < 0.85   | <10.5   | <3.2     | <4.2   | <0.85   | 5.2      | <0.85    | <4.2    | 6.3     | 8.4    | <34     | 16.3     | <25      | <10.5   | 47.3    | <16.5  |
| 1,2,4-                | μg/L      | <0.65   | <1.25    | <0.65    | <11     | <4.4     | <2.6   | <0.65   | <0.50    | <0.65    | <4.4    | 1.2     | 0.93   | <26     | <0.65    | <0.65    | <11     | 15.7    | ~6.5   |
| Trimethylbenzene      |           |         |          |          |         |          |        |         |          |          |         |         |        |         |          |          |         |         |        |
| Naphthalene           | μg/L      | <1.35   | <0.90    | <1.35    | <9.5    | <8.2     | <5.4   | <1.35   | <0.36    | <1.35    | <3.8    | 1.2     | <0.27  | <54     | <1.35    | <16      | <9.5    | 21.2    | <:3.5  |
| o-Xylene              | μg/L      | <0.40   | <1.35    | <0.40    | <8      | <3.2     | <3.2   | <0.40   | <0.54    | <0.4     | <3.2    | 1.1     | <0.16  | <16     | <0.40    | <18      | <8      | 11.4    | <8.0   |
| n-Propylbenzene       | µg/L      | <0.70   | <1.40    | <0.70    | <10.5   | <6.2     | <2.8   | <0.70   | <0.56    | <0.7     | <4.2    | <0.31   | <0.14  | <28     | <0.70    | <17      | <10.5   | <3.1    | -<7.0  |
| Methyl T-Butyl Ether  | r μg/L    | <1.25   | <1.15    | <1.25    | <14     | <1.6     | <3.6   | <1.25   | <0.46    | <1.25    | <5.6    | <0.080  | <0.18  | <50     | <1.25    | <25      | <14     | <0.80   | 117    |
| Sum VOAs (w/o         | μg/L      | 396     | 478      | 428      | 11133   | 23671    | 18325  | 490     | 840      | 971      | 556     | 791     | 652    | 30598   | 44386    | 36678    | 7806    | 17509   | 26740  |
| Gases)                |           |         |          |          |         |          |        |         |          |          |         |         |        |         |          |          |         |         |        |
| Methane               | µg/L      | 44      | 58       | 380      | 1800    | 6400     | 8050   | 660     | 1900     | 760      | 1050    | 5930    | 5050   | 3400    | 6200     | 2500     | 2060    | 3400    | 1100   |
| lron, Total           | mg/L      | , 55.2  | 13.2     | 69       | 197     | 188      | 279    | 2.22    | 1.84     | 3.93     | 6.72    | 8.78    | 13.1   | 19.8    | 11.6     | 15.1     | 1.1.1   | 29.9    | 16.4   |
| Sulfate               | mg/L      | , 5470  | 779      | 32.6     | 307     | 1270     | 441    | 104     | 117      | 264      | 203     | 68.9    | 949    | 236     | 360      | 443      | 813     | 905     | 732    |
| Nitrate-Nitrogen      | mg/L      | ,       | 0.15     | 0.17     | <0.025  | < 0.0015 | <0.13  |         | <0.015   | 0.023    | 0.029   | 0.017   | 0.085  |         | 0.054    | 0.071    | 12.3    | 0.016   | < 0.13 |
| Total Organic Carbor  | 1 mg/L    | . 23500 | ` 868    | 1990     | 2590    | 3530     | 2630   | 38.8    | 53.1     | 60       | 72.9    | 58.5    | 1.67   | 91.7    | 83.4     | 88       | 59.7    | 45.9    | 23.8   |

# Table 1 continued. Photocircuits Anaerobic Pilot Analytical Summary

| Date                  |                       | 8/31/00 | 10/18/00 | 12/20/00 | 3/27/01 | 7/11/01 | 1/8/02                                                                                                                                    | 9/1/00 | 10/19/00 | 12/20/00 | 3/27/01 | 7/11/01 | 1/8/02 | 9/1/00 | 10/19/00 | 12/20/00 | 3/27/01 | 7/11/01 | 1/8/02        |
|-----------------------|-----------------------|---------|----------|----------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|----------|---------|---------|--------|--------|----------|----------|---------|---------|---------------|
| Days                  |                       | 0       | 48       | 111      | 208     | 314     | 495                                                                                                                                       | 0      | 49       | 111      | 208     | 314     | 495    | 0      | 49       | 111      | 208     | 314     | 495           |
| Tetrachloroethene     |                       | <0.40   | <0.080   | <0.40    | <5.5    | <1.0    | <0.60                                                                                                                                     | <80    | <80      | <8       | 13.7    | 12.2    | <6.0   | <16    | 60.5     | <4.0     | <1.1    | 72.3    | 34            |
| Trichloroethene       | µg/L                  | <0.85   | < 0.17   | <0.85    | <10     | 4.5     | <0.85                                                                                                                                     | <170   | <170     | <17      | <0.2    | <1.7    | <8.5   | <34    | <13.5    | <8.5     | <2      | 8.6     | <8.5          |
| cis-1,2-              | μg/L                  | 50.4    | 1.70     | 17.4     | 73.5    | 38.4    | <0.90                                                                                                                                     | <190   | <190     | <19      | 2.3     | 16.4    | <9.0   | <38    | <17      | <9.5     | <3      | 14.9    | <9.0          |
| Dichloroethene        |                       |         |          |          |         |         |                                                                                                                                           |        |          |          |         |         |        |        |          |          |         |         |               |
| Vinyi Chloride        | µg/L                  | 188     | 3.5      | 40       | 125     | 42.7    | <4.25                                                                                                                                     | <350   | <350     | <35      | 38.8    | 98.8    | <42.5  | 1040   | 928      | 818      | 145     | 785     | 654           |
| Ethene                | µg/L                  | 560     | 1080     | 920      | 690     | 110     | 93                                                                                                                                        | 84     | 98       | 39       | 18      | 110     | 180    | 430    | 450      | 310      | 290     | 490     | 360           |
| Acetylene             | µg/L                  |         |          |          |         |         | <i.2< td=""><td></td><td></td><td></td><td></td><td></td><td>2.1</td><td></td><td></td><td></td><td></td><td></td><td>&lt;1.2</td></i.2<> |        |          |          |         |         | 2.1    |        |          |          |         |         | <1.2          |
| 1,1,1-Trichloroethane | μg/L                  | < 0.55  | <0.11    | < 0.55   | 193     | 28.1    | <0.70                                                                                                                                     | 178000 | 235000   | 32600    | 33700   | 13100   | 14500  | 19700  | 14300    | 23400    | 793     | 24000   | 19500         |
| 1,3-Dichloroethane    | ug/L                  | 91.8    | 17.6     | 357      | 1130    | 1320    | 423                                                                                                                                       | 38200  | 47800    | 4770     | <0.5    | 17600   | 8860   | 5230   | 4860     | 4200     | 764     | 3250    | 2260          |
| trans-1,2-            | ug/L                  | <1.35   | < 0.27   | <1.35    | <11     | <0.70   | <1.4                                                                                                                                      | <270   | <270     | <27      | < 0.22  | <1.4    | <14    | <54    | <14      | <13.5    | <2.2    | <1.4    | <14           |
| Dichloroethene        | 1.0                   |         |          |          |         |         |                                                                                                                                           |        |          |          |         |         |        |        |          |          |         |         |               |
| 1,2-Dichloroethane    | μg/L                  | < 0.80  | < 0.16   | <0.80    | <10     | 14.9    | <0.80                                                                                                                                     | <160   | <160     | <16      | 6       | 20.6    | <8.0   | <32    | <9.5     | <8.0     | <2      | 25.4    | <8.0          |
| 1,1-Dichloroethene    | μg/L                  | <1.05   | < 0.21   | <1.05    | <9      | <0.70   | <1.10                                                                                                                                     | <210   | <210     | <21      | <0.27   | 164     | 146    | 156    | <24      | <10.5    | <1.8    | 168     | <11           |
| Chloroethane          | ug/L                  | 3290    | 43.4     | 232      | 159     | 193     | 97                                                                                                                                        | <330   | <330     | <33      | 76.6    | 411     | 346    | 5370   | 6970     | 3760     | 729     | 6630    | 2 <b>2</b> 60 |
| Ethane                | ug/L                  | <6      | <6       | <50      | <100    | <50     | 0.8                                                                                                                                       | 39     | 45       | 41       | 23      | 29      | 17     | 5.7    | 9.4      | 44       | 12      | 8.2     | 8.6           |
| Acetone               | ue/L                  | 8670    | 139      | 557      | <74     | 1150    | <11.5                                                                                                                                     | <1890  | <1890    | <189     | 3690    | 536     | <115   | <378   | <65      | <94.5    | <14.8   | <14.4   | <115          |
| Methylene Chloride    | ug/L                  | 68.3    | 1.40     | 22.4     | 191     | 32.8    | <01.85                                                                                                                                    | 2400   | <200     | <20      | 14.6    | 122     | 89     | 436    | 149      | <10      | 31.8    | 58.7    | <18.5         |
| 2-Butanone            | 110/L                 | <5.1    | <1.02    | 5.1      | <125    | <31.3   | <86                                                                                                                                       | <1020  | <1020    | <102     | <2.5    | <62.5   | <860   | <204   | <41      | <51      | <25     | <62.5   | <860          |
| Toluene               | uø/L                  | 36.5    | 2.80     | 24.1     | 40.5    | 9.1     | <0.70                                                                                                                                     | <160   | <160     | <16      | 31.7    | 96.5    | 54.5   | 232    | 134      | 103      | 15.7    | 140     | 108           |
| Benzene               | ne/L                  | <0.70   | <0.14    | 5.5      | <5      | <0.65   | < 0.85                                                                                                                                    | <140   | <140     | <14      | <0.1    | 20.6    | <8.5   | <28    | <7.0     | <7.0     | <1      | <1.3    | < 8.5         |
| n-Ethyltoluene        | ug/L                  | 2.9     | <0.24    | <1.2     | <8      | <1.1    | <1.2                                                                                                                                      | <240   | <240     | <24      | <0.16   | <2.2    | <12    | <48    | <17      | <12      | <16     | 9.0     | <12           |
| 135.                  | ug/I                  | 2.8     | <0.12    | <0.60    | <17     | <0.55   | <0.60                                                                                                                                     | <120   | <120     | <12      | 0.63    | <11     | <6.0   | <24    | <15      | <6       | <34     | <11     | <6.0          |
| Trimethylbenzene      | μg/L                  | 2.0     | ·0,12    | -0.00    | -17     | -0155   | -0.00                                                                                                                                     | 120    | 120      | 1.2      | 0.00    |         | -0.0   |        | -15      | -0       | -5.4    | -1.1    | -0.0          |
| 2-Chlorotoluene       | ug/L                  | 23.7    | < 0.17   | 18.2     | <10.5   | 33.7    | 79.7                                                                                                                                      | <170   | <170     | <17      | 5.1     | <1.6    | <10.5  | <34    | <13.5    | <8.5     | <2.1    | 51.5    | <10.5         |
| 1.2.4-                | 110/L                 | 8.4     | 0.77     | 8.4      | <11     | 4.8     | 4.7                                                                                                                                       | <130   | <130     | <13      | < 0.22  | <2.2    | <6.5   | <26    | <12.5    | <6.5     | <2.2    | 17      | < 6 5         |
| Trimethylbenzene      | н <u>е</u> 2          |         |          |          | •••     |         |                                                                                                                                           |        |          |          |         |         |        |        |          | 0,0      |         | • •     | 0.0           |
| Naphthalene           | ug/L                  | 3.1     | < 0.27   | <1.35    | <9.5    | <2.05   | <1.35                                                                                                                                     | <270   | <270     | <27      | < 0.19  | <4.1    | <13.5  | <54    | <9.0     | <13.5    | <1.9    | <4.1    | <13.5         |
| o-Xylene              | ug/L                  | < 0.40  | < 0.080  | <0.40    | <8      | <0.80   | <0.80                                                                                                                                     | <80    | <80      | <8       | <0.     | <1.4    | <8.0   | <16    | <13.5    | <4.0     | <1.6    | <1.6    | <8.0          |
| n-Propylbenzene       | 10/1                  | <0.70   | <0.14    | 16.9     | <10.5   | <1.55   | <0.70                                                                                                                                     | <140   | <140     | <14      | <0.21   | <3.1    | <7.0   | <28    | <14.0    | <7.0     | <2.1    | <3.1    | <7.0          |
| Methyl T-Butyl Ether  | ц <u>а</u> р.<br>По/L | <1.25   | < 0.25   | <1.25    | <14     | < 0.40  | <0.90                                                                                                                                     | <250   | <250     | <25      | <0.28   | 9.0     | 117    | <50    | <115     | <12.5    | <2.8    | <0.80   | 125           |
| Sum VOAs (w/o         | 110/L                 | 12436   | 210      | 1304     | 1912    | 2872    | 604                                                                                                                                       | 218600 | 282800   | 37370    | 37579   | 32207   | 24113  | 32164  | 27402    | 32281    | 2479    | 35231   | 74941         |
| Gases)                | μ <u>6</u> υ          |         |          | 1501     |         | 2012    |                                                                                                                                           | 270000 | 202000   | 0.570    |         |         |        | 5210.  | 27.02    | 52201    | 2,      | 55251   | 2001          |
| Methane               | ue/L                  | 8200    | 23000    | 10300    | 4660    | 730     | 330                                                                                                                                       | 100    | 140      | 44       | 36      | 500     | 1020   | 390    | 890      | 800      | 930     | 870     | 1400          |
| Iron Total            | 110/1                 | 88 5    | 4.45     | 31       | 217     | 8.65    | 15.9                                                                                                                                      | 50.6   | 5.91     | 69.6     | 3.92    | 32.5    | 5.39   | 60.4   | 66.8     | 74 3     | 20.8    | 77 5    | 39.0          |
| Sulfate               | mp/L                  | 29600   | 377      | 179      | 715     | 1420    | 1200                                                                                                                                      | 286    | 392      | 154      | 53.7    | 1050    | 1640   | 124    | 186      | 137      | 94.6    | 173     | 188           |
| Nitrate-Nitrogen      | mg/L                  | 27000   | 0.20     | 0.024    | 0.05    | 0.019   | < 0.13                                                                                                                                    | 200    | < 0.015  | 0.53     | 0.037   | <0.015  | <0.13  |        | 0.93     | 0.35     | 0.073   | 0.0030  | <0.13         |
| Total Organic Carbor  | n mg/L                | 299     | 224      | 137      | 132     | 54.5    | 8.14                                                                                                                                      | 294    | 432      | 22.7     | 48.1    | 176     | 34,4   | 98.2   | 88.6     | 104      | 27.8    | 51.8    | 29.6          |
|                       |                       | _,,,    |          |          |         |         |                                                                                                                                           |        |          |          |         |         |        |        | 2010     |          |         | - 1.0   | 0             |

# Table 1 continued. Photocircuits Anaerobic Pilot Analytical Summary

| Well                  |        | SMP-4  |          |          |         |         | Ĩ      | DMP-4  |          |          |         |         |        | MW-8    |         | 1      | MW-9    |         |         |
|-----------------------|--------|--------|----------|----------|---------|---------|--------|--------|----------|----------|---------|---------|--------|---------|---------|--------|---------|---------|---------|
| Date                  |        | 9/1/00 | 10/19/00 | 12/20/00 | 3/27/01 | 7/11/01 | 1/8/02 | 9/1/00 | 10/19/00 | 12/20/00 | 3/27/01 | 7/11/01 | 1/8/02 | 3/28/01 | 7/12/01 | 1/8/02 | 3/28/01 | 7/12/01 | 1/8/02  |
| Days                  |        | 0      | 48       | 110      | 207     | 313     | 494    | 0      | 48       | 110      | 207     | 313     | 494    | 0       | 314     | 494    | 0       | 314     | 494     |
| Tetrachloroethene     | µg/L   | 13.2   | <5.6     | < 0.80   | <5.5    | 9.3     | 32     | <0.40  | <0.080   | <0.080   | <0.11   | <2.0    | <1.2   | <0.11   | <0.20   | < 0.12 | < 0.11  | <0.20   | <:).24  |
| Trichloroethene       | ug/L   | < 0.85 | <5.4     | <1.7     | <10     | <1.7    | <3,4   | < 0.85 | <1.70    | <0.17    | <0.20   | <1.7    | <1.7   | 1.8     | 1.7     | 0.97   | <0.20   | <0.17   | < 0.16  |
| cis-1,2-              | ug/L   | 143    | <6.8     | <1.9     | <15     | 10.8    | <3.6   | < 0.95 | <1.90    | < 0.19   | < 0.30  | <1.4    | <1.8   | < 0.30  | 1.2     | <0.18  | < 0.30  | < 0.14  | < 0.21  |
| Dichloroethene        | 1.0 -  |        |          |          |         |         |        |        |          |          |         |         |        |         |         |        |         |         |         |
| Vinyl Chloride        | μg/L   | 175    | 34.6     | 37.6     | 72.5    | E11     | 126    | <1.75  | <3.50    | < 0.35   | 2.9     | <0.70   | <8.5   | < 0.25  | < 0.070 | < 0.85 | < 0.25  | < 0.070 | <:').10 |
| Ethene                | μg/L   | 220    | 190      | 220      | 170     | 160     | 340    | 250    | 260      | 220      | 160     | <6      | 230    | <6      | <6      | <1.3   | <6      | <6      |         |
| Acetylene             | μg/L   |        |          |          |         |         | <1.2   |        |          |          |         |         | <1.2   |         |         | <1.2   |         |         |         |
| 1,1,1-Trichloroethane | ug/L   | 3150   | 246      | 997      | 3100    | 2610    | 2700   | 56.3   | 130      | <0.11    | 15.3    | 18.4    | <1.4   | < 0.20  | <0.16   | < 0.14 | <0.20   | <0.16   | <0.22   |
| 1,1-Dichloroethane    | ug/L   | 4070   | 1740     | 1180     | 2230    | 3270    | 2890   | 29.7   | 20.1     | <0.14    | 50.1    | 30.0    | 16.3   | <0.14   | < 0.12  | <0.25  | <0.14   | < 0.12  | < 0.22  |
| trans-1,2-            | ue/L   | <1.35  | <5.6     | <2.7     | <11     | <1.4    | <5.6   | <1.35  | <2.70    | < 0.27   | 3.4     | <1.4    | <2.8   | < 0.22  | < 0.14  | <0.28  | < 0.22  | <0.14   | <0.20   |
| Dichloroethene        |        |        |          |          |         |         |        |        |          |          |         |         |        |         |         |        |         |         |         |
| 1,2-Dichloroethane    | μg/L   | 26.2   | <3.8     | <1.6     | <10     | 19.7    | <3.2   | < 0.80 | <1.60    | <0.16    | 8.7     | <1.3    | <1.6   | <0.20   | <0.13   | <0.16  | <0.20   | <0.13   | <).23   |
| 1,1-Dichloroethene    | μg/L   | 105    | <9.6     | <2.1     | <9      | 48.2    | 130    | <1.05  | <2.10    | <0.21    | < 0.18  | <1.4    | <2.2   | <0.18   | < 0.14  | < 0.22 | <0.18   | <0.14   | < 0.30  |
| Chloroethane          | μg/L   | 1220   | 827      | 3000     | 1590    | 945     | 776    | 2420   | 2580     | 3300     | 3680    | 2680    | 1210   | < 0.30  | <0.18   | <0.67  | <0.3    | < 0.18  | <0.61   |
| Ethane                | μe/L   | <6     | <6       | 39       | <10     | <10     | 2.4    | <6     | <6       | 37       | <6      | <6      | 2.4    | <6      | <6      | <1.3   | <6      | <6      |         |
| Acetone               | μg/L   | <9.4   | <26      | <18.9    | <74     | <14.4   | <46    | <9.45  | <18.9    | <1.89    | 58.4    | <14.4   | <23    | <1.48   | <1.44   | <2.3   | <1.48   | <1,44   | < 3.12  |
| Methylene Chloride    | ue/L   | 295    | 123      | <2       | 278     | 127     | 66.8   | 22.8   | 16.6     | 3.9      | 19.8    | 20.8    | 8.4    | <0.41   | < 0.15  | < 0.37 | <0.41   | < 0.15  | <0.54   |
| 2-Butanone            | ug/L   | <5.1   | <16.4    | <10.2    | <125    | <62.5   | <344   | <5.1   | <10.2    | <1.02    | <2.5    | <62.5   | <172   | <2.5    | <6.25   | <17.2  | <2.5    | <6.25   | <5.0    |
| Toluene               | ug/L   | 116    | 37.6     | 25.5     | <7.5    | 48.2    | 69.6   | 11     | 7.5      | 3.1      | 6.1     | <1.4    | 6.9    | <0.15   | < 0.14  | <0.14  | <0.15   | < 0.14  | < 0.14  |
| Benzene               | ug/L   | <0.70  | <2.8     | <1.4     | <5      | <1.3    | <3.4   | <0.70  | <1.40    | <0.14    | < 0.10  | <1.3    | <1.7   | <0.10   | < 0.13  | <0.17  | <0.10   | < 0.13  | < 0.16  |
| p-Ethyltolueae        | ug/L   | 4.8    | <6.8     | <2.4     | <8      | <2.2    | <4.8   | 3.7    | <2.40    | <0.24    | 1.2     | <2.2    | <2.4   | < 0.16  | < 0.22  | <0.24  | <0.16   | <0.22   | <0.24   |
| 1.3.5-                | ug/L   | 3.2    | <6.0     | <1.2     | <17     | <1.1    | <2.4   | 9.2    | <1.20    | 2.5      | 3.4     | <1.1    | <1.2   | < 0.34  | <0.11   | < 0.12 | < 0.34  | < 0.11  | <).20   |
| Trimethylbenzene      | - 67   |        |          |          |         |         |        |        |          |          |         |         |        |         |         |        |         |         |         |
| 2-Chlorotoluene       | μg/L   | 45.5   | <5.4     | <1.7     | <10.5   | 21.4    | <4.2   | 64.5   | 44.5     | 17.1     | 31.6    | 31.9    | 34.2   | <0.21   | <0.16   | <0.21  | <0.21   | <0.16   | <0.27   |
| 1,2,4-                | μg/L   | 8.6    | <5.0     | <1.3     | <11     | <2.2    | <2.6   | 18.3   | 15.9     | 5.3      | <0.22   | 9.2     | 9.0    | < 0.22  | < 0.22  | < 0.13 | <0.22   | <0.22   | < 0.17  |
| Trimethylbenzene      |        |        |          |          |         |         |        |        |          |          |         |         |        |         |         |        |         |         |         |
| Naphthalene           | μg/L   | <1.35  | <3.6     | <2.7     | <9.5    | <4.1    | <5.4   | 4.3    | <2.70    | <0.27    | 1.6     | <4.1    | <2.7   | < 0.19  | <0.41   | <0.27  | <0.19   | <0.41   | <).14   |
| o-Xylene              | µg/L   | <0.40  | <5.4     | <0.8     | <8      | <1.6    | <3.2   | 4.8    | <0.80    | <0.008   | 5.0     | <1.6    | <1.6   | <0.16   | <0.16   | <0.16  | <0.16   | <0.16   | < 3.20  |
| n-Propylbenzene       | μg/L   | < 0.70 | <5.6     | <1.4     | <10.5   | <3.1    | <2.8   | 44.3   | <1.40    | < 0.14   | < 0.21  | <3.1    | <1.4   | <0.21   | < 0.31  | <0.14  | < 0.21  | < 0.31  | < 0.21  |
| Methyl T-Butyl Ether  | ru⊈/L  | <1.25  | <4.6     | <2.5     | <14     | <0.80   | <3.6   | <1.25  | <2.4     | <0.25    | <0.28   | <0.80   | 21.9   | < 0.28  | < 0.080 | <0.18  | <0.28   | <0.080  | <).34   |
| Sum VOAs (w/o         | ug/L   | 9376   | 3008     | 5240     | 7271    | 7221    | 6790   | 2689   | 2815     | 3332     | 3888    | 2790    | 1307   | 1.8     | 2.9     | 1.0    | 0.0     | 0.0     | 0.0     |
| Gases)                | . 0    |        |          |          |         |         |        |        |          |          |         |         |        |         |         |        |         |         |         |
| Methane               | μg/L   | 450    | 470      | 1100     | 3650    | 1800    | 2600   | 180    | 210      | 190      | 300     | <6      | 250    | <6      | 61      | 9.1    | 300     | 940     |         |
| lron, Total           | mg/L   | . 76.2 | 38.9     | 47.1     | 54.5    | 41.2    | 17.8   | 48.2   | 39.2     | 42.5     | 85.4    | 116     | 31.6   | 0.023   | 0.088   | <0.096 | 10.4    | 21.9    |         |
| Sulfate               | mg/L   | . 933  | 470      | 435      | 1700    | 1910    | 1630   | 133    | 171      | 98.5     | 209     | 323     | 146    | 22.6    | 23.4    | 27.4   | 4.43    | 23.1    |         |
| Nitrate-Nitrogen      | mg/L   |        | < 0.015  | 0.31     | 0.19    | 0.037   | <0.13  |        | 0.22     | 0.31     | 0.17    | <0.015  | <0.13  | 6.1     | 5.63    | 6.93   | < 0.025 | <0.015  |         |
| Total Organic Carbor  | n mg/L | . 73.6 | 60.4     | <0.94    | 34.6    | 46.5    | 31.0   | 43.7   | 52.4     | 50.9     | 34.6    | 35.7    | 7.1    | 4.97    | <0.94   | <0.94  | 7.98    | 6.79    |         |

## Table 1 continued. Photocircuits Anaerobic Pilot Analytical Summary

| Well                     |           | MW-12   |         |        | MW-13   |         |         |
|--------------------------|-----------|---------|---------|--------|---------|---------|---------|
| Date                     |           | 3/28/01 | 7/12/01 | 1/9/02 | 3/28/01 | 7/12/01 | 1/10/02 |
| Days                     |           | 0       | 106     | 287    | 0       | 106     | 288     |
| Tetrachloroethene        | μg/L      | < 0.11  | < 0.20  | <0.24  | 82.8    | 120     | 216     |
| Trichloroethene          | µg/L      | 122     | 0.93    | 16.5   | 85.9    | 114     | 216     |
| cis-1,2-Dichloroethene   | μg/L      | 1280    | 18.2    | 430    | 784     | 897     | 1950    |
| Vinyl Chloride           | µg/L      | 244     | 5.7     | 298    | 38.6    | 58.6    | 112     |
| Ethene                   | μg/L      | 6.7     | 69      | 180    | <6      | <6      | 1.6     |
| Acetylene                | μg/L      |         |         |        |         |         | <1.2    |
| 1,1,1-Trichloroethane    | µg/L      | < 0.20  | <0.16   | < 0.22 | 40      | 36.7    | 32.2    |
| 1,1-Dichloroethane       | μg/L      | 72.2    | 3.7     | 329    | 323     | 351     | 476     |
| trans-1,2-Dichloroethene | μg/L      | 7.3     | < 0.14  | 5.6    | 3.6     | 4.7     | 11.9    |
| 1,2-Dichloroethane       | µg/L      | 2.9     | < 0.13  | 1.4    | 2.6     | 2.3     | 2.8     |
| 1,1-Dichloroethene       | μg/L      | 8.4     | < 0.14  | 2.3    | 60.6    | 60.4    | 75.5    |
| Chloroethane             | µg/L      | < 0.30  | < 0.18  | 6.1    | < 0.30  | <0.18   | <0.61   |
| Ethane                   | ug/L      | <6      | 13      | 22     | 5.8     | 6.7     | 23      |
| Acetone                  | ug/L      | <1.48   | <1.44   | <3.12  | <1.48   | <1.44   | 18.7    |
| Methylene Chloride       | ug/L      | < 0.41  | < 0.15  | <0.54  | <0.41   | < 0.15  | < 0.54  |
| 2-Butanone               | $\mu g/L$ | <2.5    | <6.25   | <5.0   | <2.5    | <6.25   | <5.0    |
| Toluene                  | μg/L      | 0.97    | <0.14   | 5.6    | < 0.15  | < 0.14  | < 0.14  |
| Benzene                  | $\mu g/L$ | 5.3     | < 0.13  | 5.4    | 7.1     | 7.1     | 8.0     |
| p-Ethyltoluene           | μg/L      | <0.16   | < 0.22  | <0.24  | <0.16   | < 0.22  | <0.24   |
| 1,3,5-Trimethylbenzene   | μg/L      | < 0.34  | <0.11   | <0.20  | < 0.34  | <0.11   | < 0.20  |
| 2-Chlorotoluene          | μg/L      | 393     | 26.9    | 2690   | 16.3    | 43.2    | 76.4    |
| 4-Chlorotoluene          | μg/L      | 14.5    | < 0.17  | 82.8   |         |         |         |
| 1,2,4-Trimethylbenzene   | μø/L      | < 0.22  | < 0.22  | <0.17  | <0.22   | <0.22   | <0.17   |
| Naphthalene              | μg/L      | <0.19   | <0.41   | <0.14  | <0.19   | <0.41   | <0.14   |
| 0-Xylene                 | μg/L      | <0.16   | <0.16   | 2.3    | <0.16   | <0.16   | < 0.20  |
| n-Propylbenzene          | µg/L      | <0.21   | <0.31   | <0.21  | < 0.21  | < 0.31  | < 0.21  |
| Methyl t-Butyl Ether     | ug/L      | < 0.28  | < 0.080 | < 0.34 | <0.28   | < 0.080 | < 0.34  |
| Sum VOAs (w/o Gases)     | μg/L      | 2151    | 55      | 3875   | 1445    | 1695    | 3196    |
| Methane                  | mg/L      | 420     | 1800    | 2170   | 12      | 21      | 250     |
| lron, Total              | mg/L      | 7.29    | 55.6    | 61.0   | 0.54    | 0.48    | 0.93    |
| Sulfate                  | mg/L      | 417     | 824     | 418    | 597     | 579     | 648     |
| Nitrate-Nitrogen         | mg/L      | < 0.025 | 0.070   | 0.005  | 3.95    | 4.68    | 3.54    |
| Total Organic Carbon     | mg/L      | 33.3    | 36.6    | <0.94  | 9.52    | 13.3    | <0.94   |

| Contaminant              | Well | MW-14    |          |          |          |         | Ν       | 1W-7     |          |          |         |          |          |
|--------------------------|------|----------|----------|----------|----------|---------|---------|----------|----------|----------|---------|----------|----------|
| Date                     |      | 8/31/00  | 10/19/00 | 12/20/00 | 3/28/01  | 7/11/01 | 1/8/02  | 8/31/00  | 10/19/00 | 12/20/00 | 3/27/01 | 7/11/01  | 1/8/02   |
| Tetrachloroethene        | μM   |          | < 0.0084 | < 0.0024 | < 0.033  | < 0.024 | < 0.014 | <0.0024  | < 0.0034 | <0.0024  | < 0.013 | <0.0012  | <0.00072 |
| Trichloroethene          | μM   | < 0.0065 | <0.010   | < 0.0065 | <0.076   | < 0.026 | < 0.026 | <0.0065  | 0.15     | <0.0065  | < 0.030 | 0.12     | 0.021    |
| cis-1,2-Dichloroethene   | μM   | < 0.0098 | < 0.018  | < 0.0098 | < 0.15   | < 0.029 | <0.037  | 0.49     | 2.9      | 3.7      | 1.5     | 1.9      | 0.086    |
| Vinyl Chloride           | μМ   | < 0.028  | 0.17     | < 0.028  | 1.8      | 2.3     | 2.8     | 0.63     | 1.1      | 2.2      | 1.0     | 1.0      | 0.17     |
| Ethene                   | μМ   | 1.5      | 1.7      | 2.1      | 2.3      | 4.6     | 3.2     | 2.3      | 6.1      | 3.9      | 1.2     | 3.4      | 3.9      |
| Acetylene                | μМ   |          |          |          |          |         | 0.22    |          |          |          |         |          | <0.046   |
| 1,1,1-Trichloroethane    | μМ   | 0.11     | <0.013   | 0.067    | 7.5      | 15.3    | 11.4    | < 0.0041 | < 0.046  | < 0.0041 | <0.030  | < 0.0012 | <0.0010  |
| 1,1-Dichloroethane       | μМ   | 1.3      | 2.2      | 3.0      | 93.2     | 189.9   | 142.4   | 1.2      | 2.2      | 2.7      | 1.4     | 2.1      | 1.9      |
| trans-1,2-Dichloroethene | μМ   | < 0.014  | <0.014   | < 0.014  | <0.11    | <0.021  | <0.060  | < 0.014  | <0.0058  | < 0.014  | <0.045  | 0.027    | 0.022    |
| 1,2-Dichloroethane       | μМ   | < 0.0081 | <0.0096  | <0.0081  | <0.10    | 0.35    | < 0.032 | < 0.0081 | <0.0038  | <0.0081  | <0.040  | < 0.0013 | 0.037    |
| 1,1-Dichloroethene       | μM   | <0.011   | 0.065    | < 0.011  | 4.6      | 7.8     | 5.6     | <0.011   | <0.0099  | < 0.011  | < 0.037 | 0.020    | < 0.0023 |
| Chloroethane             | μM   | 0.24     | <0.019   | < 0.026  | 2.0      | 4.6     | 7.8     | 4.0      | 2.8      | 3.1      | 2.5     | 4.2      | 6.0      |
| Ethane                   | μM   | 1.7      | 2.3      | 1.6      | 1.1      | 2.2     | 1.6     | <0.20    | 4.3      | 2.7      | 1.1     | 2.4      | 2.3      |
| Contaminant              | Well | SMP-1    |          |          |          |         | I       | DMP-1    |          |          |         |          |          |
| Date                     |      | 8/31/00  | 10/18/00 | 12/20/00 | 3/27/01  | 7/11/01 | 1/8/02  | 8/31/00  | 10/18/00 | 12/20/00 | 3/27/01 | 7/11/01  | 1/8/02   |
| Tetrachloroethene        | μM   | <0.096   | <0.0024  | <0.13    | < 0.033  | < 0.012 | < 0.036 | <0.0024  | <0.00048 | < 0.0024 | < 0.033 | <0.0060  | <0.0036  |
| Trichloroethene          | μM   | < 0.026  | 0.60     | 6.5      | 11.6     | 0.19    | 33.6    | <0.0065  | <0.0018  | < 0.0065 | <0.076  | 0.034    | <0.0065  |
| cis-1,2-Dichloroethene   | μM   | 257      | 387      | 310.63   | < 0.0028 | 127     | 186     | 0.52     | 0.018    | 0.179567 | 0.76    | 0.40     | < 0.0093 |
| Vinyl Chloride           | μM   | 75       | 96       | 81       | 76       | 68      | 56      | 3.0      | 0.056    | 0.640    | 2.0     | 0.68     | <0.068   |
| Ethene                   | μМ   | 33       | 86       | 41       | 32       | 68      | 23      | 20       | 39       | 33       | 25      | 3.9      | 3.3      |
| Acetylene                | μМ   |          |          |          |          |         | <0.42   |          |          |          |         |          | <0.046   |
| 1,1,1-Trichloroethane    | μМ   | <0.16    | < 0.0041 | < 0.25   | 2.7      | 1.2     | < 0.052 | < 0.0041 | <0.00082 | < 0.0041 | 1.4     | 0.21     | <0.0052  |
| 1,1-Dichloroethane       | μM   | 5.1      | 4.9      | 6.3      | 7.2      | 5.4     | 4.6     | 0.93     | 0.18     | 3.61     | 11      | 13       | 4.3      |
| trans-1,2-Dichloroethene | μM   | <0.56    | 0.72     | <0.41    | 1.4      | 0.36    | 0.71    | <0.014   | <0.0028  | <0.014   | <0.11   | <0.0072  | <0.014   |
| 1,2-Dichloroethane       | μM   | < 0.32   | <0.0081  | <0.17    | < 0.033  | < 0.033 | < 0.081 | < 0.0081 | <0.0016  | < 0.0081 | <0.10   | 0.15     | <0.0081  |
| 1,1-Dichloroethene       | μΜ   | <0.43    | 0.66     | <0.27    | 1.9      | 0.57    | 1.5     | <0.011   | < 0.0022 | <0.011   | <0.093  | <0.0071  | <0.011   |
| Chloroethane             | μM   | <1.1     | 1.1      | < 0.82   | <0.23    | < 0.23  | <0.52   | 51.0     | 0.67     | 3.60     | 2.5     | 3.0      | 1.5      |
| Ethane                   | μM   | <0.20    | <0.20    | <0.83    | < 0.83   | < 0.83  | <0.40   | <0.20    | <0.20    | <1.7     | <3.3    | <1.7     | 0.027    |

#### Table 2. Photocircuits Anaerobic Pilot Chlorinated Solvents in Micromolar Concentrations

| Contaminant              | Well | SMP-3   |                   |          |          |         | D       | MP-3    |          |          |          |         |         |
|--------------------------|------|---------|-------------------|----------|----------|---------|---------|---------|----------|----------|----------|---------|---------|
| Date                     |      | 9/1/00  | 10/19/00          | 12/20/00 | 3/27/01  | 7/11/01 | 1/8/02  | 9/1/00  | 10/19/00 | 12/20/00 | 3/27/01  | 7/11/01 | 1/8/02  |
| Tetrachloroethene        | μM   | <0.48   | <0.48             | <0.048   | 0.083    | 0.074   | < 0.036 | <0.097  | 0.36     | < 0.024  | <0.0066  | 0.44    | 0.21    |
| Trichloroethene          | μM   | <1.3    | <1.3              | < 0.13   | < 0.0015 | < 0.013 | < 0.065 | <0.26   | <0.10    | <0.065   | < 0.015  | 0.065   | <0.065  |
| cis-1,2-Dichloroethene   | μМ   | <2.0    | <2.0              | < 0.20   | 0.024    | 0.17    | <0.093  | <0.39   | <0.18    | <0.098   | < 0.031  | 0.15    | <0.093  |
| Vinyl Chloride           | μМ   | <5.6    | <5.6              | <0.56    | 0.62     | 1.6     | <0.68   | 17      | 15       | 13       | 2.3      | 12.6    | 10.5    |
| Ethene                   | μМ   | 3.0     | 3.5               | 1.4      | 0.64     | 3.9     | 6.4     | 15.4    | 16.1     | 11.1     | 10.4     | 17.5    | 12.9    |
| Acetylene                | μM   |         |                   |          |          |         | 0.081   |         |          |          |          |         | <0.046  |
| 1,1,1-Trichloroethane    | μΜ   | 1334    | 1762              | 244      | 253      | 98      | 109     | 148     | 107      | 175      | 5.9      | 180     | 146     |
| 1,1-Dichloroethane       | μM   | 386     | 483               | 48       | < 0.0051 | 178     | 89      | 53      | 49       | 42       | 7.7      | 32.8    | 22.8    |
| trans-1,2-Dichloroethene | μМ   | <2.8    | <2.8              | <0.28    | < 0.0023 | <0.014  | < 0.14  | <0.56   | <0.14    | < 0.14   | < 0.023  | <0.014  | <0.14   |
| 1,2-Dichloroethane       | μΜ   | <1.6    | <1.6              | <0.16    | 0.061    | 0.21    | <0.081  | < 0.32  | <0.096   | <0.081   | < 0.020  | 0.26    | < 0.081 |
| 1,1-Dichloroethene       | μΜ   | <2.2    | <2.2              | <0.22    | < 0.0028 | 1.7     | 1.5     | 1.6     | <0.25    | <0.11    | < 0.018  | 1.7     | < 0.11  |
| Chloroethane             | μΜ   | <5.1    | <5.1              | < 0.51   | 1.2      | 6.4     | 5.4     | 83      | 108      | 58       | 11       | 103     | 35      |
| Ethane                   | μM   | 1.3     | 1.5               | 1.4      | 0.77     | 0.97    | 0.57    | 0.19    | 0.31     | 1.5      | 0.40     | 0.27    | 0.29    |
| Contaminant              | Well | SMP-4   |                   |          |          |         | Г       | OMP-4   |          |          |          |         |         |
| Date                     |      | 9/1/00  | 10/1 <b>9</b> /00 | 12/20/00 | 3/27/01  | 7/11/01 | 1/8/02  | 9/1/00  | 10/19/00 | 12/20/00 | 3/27/01  | 7/11/01 | 1/8/02  |
| Tetrachloroethene        | μМ   | 0.080   | <0.0034           | <0.0048  | < 0.033  | 0.056   | 0.19    | <0.0024 | <0.00048 | <0.00048 | <0.00066 | < 0.012 | <0.0072 |
| Trichloroethene          | μМ   | <0.0065 | <0.041            | < 0.013  | <0.076   | <0.076  | <0.076  | <0.0065 | <0.013   | <0.013   | <0.0015  | < 0.013 | <0.013  |
| cis-1,2-Dichloroethene   | μΜ   | 1.5     | <0.070            | <0.0020  | < 0.15   | 0.11    | <0.026  | <0.0098 | < 0.020  | <0.0020  | < 0.0031 | <0.014  | <0.019  |
| Vinyl Chloride           | μΜ   | 2.8     | 0.55              | 0.60     | 1.2      | 1.8     | 2.0     | <0.028  | < 0.056  | <0.0056  | 0.046    | < 0.011 | <0.14   |
| Ethene                   | μΜ   | 7.9     | 6.8               | 7.9      | 6.1      | 5.7     | 12.1    | 8.9     | 9.3      | 7.9      | 5.7      | < 0.21  | 8.2     |
| Acetylene                | μМ   |         |                   |          |          |         | <0.046  |         |          |          |          |         | <0.046  |
| 1,1,1-Trichloroethane    | μМ   | 24      | 1.8               | 7.5      | 23       | 20      | 20      | 0.42    | 0.97     | <0.00082 | 0.11     | 0.14    | <0.010  |
| 1,1-Dichloroethane       | μМ   | 41      | 18                | 12       | 23       | 33      | 29      | 0.30    | 0.20     | < 0.0014 | 0.51     | 0.30    | 0.16    |
| trans-1,2-Dichloroethene | μΜ   | <0.014  | <0.058            | <0.0028  | < 0.11   | <0.014  | <0.058  | <0.014  | < 0.028  | <0.0028  | 0.035    | < 0.014 | <0.029  |
| 1,2-Dichloroethane       | μM   | 0.26    | < 0.038           | < 0.016  | <0.10    | 0.20    | < 0.032 | <0.0081 | <0.016   | <0.0016  | 0.088    | < 0.013 | <0.016  |
| 1,1-Dichloroethene       | μM   | 1.1     | <0.099            | < 0.022  | <0.093   | 0.50    | 1.3     | <0.011  | < 0.022  | <0.0022  | <0.0019  | <0.014  | <0.022  |
| Chloroethane             | μM   | 19      | 13                | 47       | 25       | 15      | 12      | 38      | 40       | 51       | 57       | 42      | 19      |
| Ethane                   | μM   | <0.20   | <0.20             | 1.3      | < 0.33   | < 0.33  | 0.080   | <0.20   | <0.20    | 1.2      | <0.20    | <0.20   | 0.080   |

## Table 2 continued. Photocircuits Anaerobic Pilot Chlorinated Solvents in Micromolar Concentrations

#### Table 2 continued. Photocircuits Anaerobic Pilot Chlorinated Solvents in Micromolar Concentrations

| Contaminant              | Well | MW-8     |          | 1        | 4W-9     |          | N        | 4W-12    |          | Ν       | 1W-13   |         |         |
|--------------------------|------|----------|----------|----------|----------|----------|----------|----------|----------|---------|---------|---------|---------|
| Date                     |      | 3/28/01  | 7/12/01  | 1/8/02   | 3/28/01  | 7/12/01  | 1/8/02   | 3/28/01  | 7/12/01  | 1/9/02  | 3/28/01 | 7/12/01 | 1/10/02 |
| Tetrachloroethene        | μМ   | <0.00066 | < 0.0012 | <0.00072 | <0.00066 | < 0.0012 | < 0.0014 | <0.00066 | <0.0012  | <0.0144 | 0.499   | 0.72    | 1.3     |
| Trichloroethene          | μM   | 0.014    | 0.013    | 0.0074   | < 0.0015 | <0.0013  | < 0.0012 | 0.93     | 0.0071   | 0.13    | 0.65    | 0.87    | 1.6     |
| cis-1,2-Dichloroethene   | μM   | < 0.0031 | 0.012    | <0.0019  | < 0.0031 | < 0.014  | <0.0022  | 13.2     | 0.19     | 4.4     | 8.1     | 9.3     | 20.1    |
| Vinyl Chloride           | μM   | < 0.0040 | <0.0011  | < 0.014  | < 0.0040 | <0.0011  | <0.0016  | 3.9      | 0.091    | 4.8     | 0.6     | 0.94    | 1.8     |
| Ethene                   | μМ   | < 0.21   | < 0.21   | <0.046   | < 0.21   | < 0.21   |          | 0.24     | 2.5      | 6.4     | <0.21   | <0.21   | <0.21   |
| Acetylene                | μM   |          |          | <0.046   |          |          |          |          |          | <0.046  |         |         | <0.046  |
| 1,1,1-Trichloroethane    | μM   | < 0.0015 | < 0.0012 | < 0.0010 | < 0.0015 | < 0.0012 | <0.0016  | < 0.0015 | < 0.0012 | <0.0016 | 0.30    | 0.28    | 0.24    |
| 1,1-Dichloroethane       | μМ   | < 0.0014 | <0.0012  | < 0.0025 | < 0.0014 | < 0.0012 | < 0.0023 | 0.73     | 0.037    | 3.3     | 3.26    | 3.5     | 4.8     |
| trans-1,2-Dichloroethene | μM   | < 0.0022 | <0.0014  | <0.0029  | < 0.0022 | < 0.0014 | < 0.0021 | 0.075    | < 0.0014 | 0.058   | 0.037   | 0.049   | 0.123   |
| 1,2-Dichloroethane       | μM   | <0.0020  | < 0.0013 | <0.0016  | < 0.0020 | < 0.0013 | < 0.0023 | 0.029    | < 0.0013 | 0.014   | 0.026   | 0.023   | 0.028   |
| 1,1-Dichloroethene       | μM   | < 0.0019 | <0.0014  | <0.0023  | < 0.0019 | < 0.0014 | < 0.0030 | 0.087    | < 0.0014 | 0.024   | 0.63    | 0.62    | 0.78    |
| Chloroethane             | μМ   | <0.0047  | <0.0028  | <0.010   | < 0.0047 | <0.0028  | < 0.0095 | <0.0047  | <0.0047  | 0.26    | <0.0047 | <0.0025 | <0.0095 |
| Ethane                   | μM   | <0.20    | <0.20    | <0.043   | <0.20    | < 0.20   |          | <0.20    | 0.43     | 0.73    | 0.19    | 0.22    | 0.77    |

Terra Systems

| % Change Between 9/1/0 | 0 and 1/8/02 | 2      |         |            |       |       |       |       |
|------------------------|--------------|--------|---------|------------|-------|-------|-------|-------|
| Compound               | MW-14        | MW-7   | SMP-1   | DMP-1      | SMP-3 | DMP-3 | SMP-4 | DMP-4 |
| Acetone                | -908         |        |         | >99        |       |       |       |       |
| Methylene Chloride     | -787         | 38     | >96     | >97        | 96    | >96   | 77    | 63    |
| Toluene                | -733         | 85     | >-72    | >98        | >66   | 53    | 40    | 39    |
| 2-Chlorotoluene        |              | >-888  |         | -236       |       |       | >91   | 47    |
| Sum VOAs (w/o gases)   | -4529        | -33    | 13      | 95         | 89    | 22    | 28    | 51    |
| Methane                | -18195       | -665   | 68      | 96         | -920  | -259  | -478  | -39   |
| Iron                   | -405         | -490   | 17      | 82         | 89    | 35    | 77    | 34    |
| Sulfate                | 92           | -813   | -210    | <b>9</b> 6 | -473  | -52   | -75   | -10   |
| TOC                    | 89           | 96     | 74      | 97         | 88    | 70    | 90    | 58    |
| PCE                    |              |        |         |            |       | <-113 | -142  |       |
| TCE                    |              | >-218  | >-12871 |            |       |       |       |       |
| cDCE                   |              | 82     | 28      | >98        |       |       | >97   |       |
| VC                     | >-9786       | 73     | 26      | >98        |       | 37    | 28    |       |
| Ethene                 | -109         | -75    | 30      | 83         | -114  | 16    | -55   | 8     |
| 1TCA                   | -10456       |        |         |            | 92    | 1     | 14    | >98   |
| 1DCA                   | -11090       | -58    | 10      | -361       | 77    | 57    | 29    | 45    |
| 1DCE                   | >-51529      | ,      | >-240   |            | >30   | >93   | -24   |       |
| CA                     | -3112        | -363   |         | 97         | <-5   | 58    | 36    | 50    |
| Ethane                 | 6            | >-1033 |         | >87        | 56    | -51   | >60   | >60   |

# Table 3. Photocircuits Anaerobic Pilot Percent Change Between 9/1/00 and 1/8/02

# Table 4. Photocircuits Downgradient Wells Percent Change Between 3/28/00 and 1/8/02

| % Change Between 3/28/0 | 00 and 1/8 | /02  |        |        |
|-------------------------|------------|------|--------|--------|
| Compound                | MW-8       | MW-9 | MW-12  | MW-13  |
| Acetone                 |            |      |        | >-1164 |
| Methylene Chloride      |            |      |        |        |
| Toluene                 |            |      | -477   |        |
| 2-Chlorotoluene         |            |      | -584   | -369   |
| Sum VOAs (w/o gases)    | 4          | 6    | -1809  | -121   |
| Methane                 | >-5        | 2    | -417   | -1983  |
| Iron                    | >-31       | 7    | -737   | -72    |
| Sulfate                 | -2         | 1    | 0      | -9     |
| TOC                     | >8         | 1    | >97    | >90    |
| PCE                     |            |      |        | -161   |
| TCE                     | 4          | 6    | 86     | -151   |
| cDCE                    |            |      | 66     | -149   |
| VC                      |            |      | -22    | -190   |
| Ethene                  |            |      | -2587  | >73    |
| ITCA                    |            |      |        | 20     |
| IDCA                    |            |      | -356   | -47    |
| 1DCE                    |            |      | 73     | -25    |
| CA                      |            |      | >-1933 |        |
| Ethane                  |            |      | >-267  | -297   |

# Table 5. Summary of Changes in Concentrations of Chloroethenes, Chloroethanes, Electron Acceptors, and Electron Donor by Well

| Well  | Chlorinated Ethene Dechlorination                                                                                              | Chlorinated Ethane Dechlorination                                                                                                                                       | Electron Acceptors                                                                                                           | Electron Donor<br>Availability                                |
|-------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| MW-14 | Ethene predominant, VC increasing since March 2001                                                                             | 1TCA, 1DCA, 1DCE, and CA,<br>increased between December 2000<br>and January 2002 as contaminated<br>displaced by emulsion moved back<br>into well, ethane fairly stable | Sulfate decreased by 92%, methane and iron up greatly                                                                        | TOC availability good                                         |
| MW-7  | Ethene generally predominant product,<br>cDCE and VC down by 82 and 73%<br>from start of pilot                                 | 1DCA and CA up, ethane produced                                                                                                                                         | Sulfate increased from 69 to 949 mg/L from 7/11/01 to 1/8/02, methane and iron up greatly                                    | TOC has fallen to 1.7 mg/L, below optimal levels              |
| SMP-1 | TCE up in January 2002, cDCE has<br>declined by 28%, VC and ethene down<br>from start of pilot as substrate became<br>limiting | No 1TCA detected 1/8/02, 1DCA<br>down, tDCE and 1DCE up, little CA<br>or ethane                                                                                         | Sulfate increasing, methane<br>down from start of test, and iron<br>relatively stable                                        | TOC decreasing, now below<br>25 mg/L, below optimal<br>levels |
| DMP-1 | cDCE and VC non-detect 1/8/02,<br>ethene generally predominant product,<br>but lower since December 2000                       | 1TCA non-detect 1/8/02, 1DCA up<br>361%, CA down by 97%, no ethane<br>detected                                                                                          | Sulfate down 96%, methane and iron also down                                                                                 | TOC decreasing, now below optimal levels                      |
| SMP-3 | PCE, cDCE, and VC non-detect in January 2002, ethene predominant product and increasing                                        | 1TCA down by 92%, 1DCA down 77%, increasing 1DCE and CA, and some ethane                                                                                                | Sulfate increased between March<br>2001 (54 mg/L) and January<br>2002 (1,640 mg/L), methane<br>increasing, and iron variable | TOC in January 2002 at 34 mg/L, below optimal levels          |
| DMP-3 | PCE detected 7/11/01 and 1/8/02, VC down 37%, ethene predominant                                                               | 1TCA,1DCA, and CA rebounded<br>between March and July 2001, ethane<br>up slightly                                                                                       | Sulfate and methane increasing, iron decreasing                                                                              | TOC decreasing, now below optimal levels                      |
| SMP-4 | PCE up, cDCE, and VC down, ethene increased                                                                                    | 1TCA, 1DCA, and CA down, 1DCE rebounded, little ethane                                                                                                                  | Sulfate and methane increasing, iron down                                                                                    | TOC decreasing, now lower than optimal                        |
| DMP-4 | No CE except ethene                                                                                                            | 1TCA, tDCE, and 1DCE non-detect<br>1/8/02, 1DCA decreasing, CA<br>predominant product, but decreasing,<br>little ethane                                                 | Sulfate up 10%, iron down,<br>methane increased                                                                              | TOC declining, now lower than optimal                         |

# Table 5 continued. Summary of Changes in Concentrations of Chloroethenes, Chloroethanes, Electron Acceptors, and Electron Donor by Well

| Well  | Chlorinated Ethene Dechlorination                                | Chlorinated Ethane Dechlorination                                                 | Electron Acceptors                         | Electron Donor<br>Availability |
|-------|------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|
| MW-8  | Low levels TCE and cDCE, no VC or ethene detected                | No chlorinated ethanes or ethane detected                                         | Little sulfate, iron, or methane           | Little TOC available           |
| MW-9  | No chlorinated ethenes or ethene detected                        | No chlorinated ethanes or ethane detected                                         | Low sulfate, some methane and iron         | Little TOC available           |
| MW-12 | TCE and cDCE decreasing, VC and ethene increasing                | 1DCA increasing, tDCE, 2DCA, and<br>1DCE decreasing, CA and ethane<br>detected    | Sulfate, iron, and methane increased       | TOC level below optimal level  |
| MW-13 | Increases in PCE, TCE, cDCE, and VC concentrations, trace ethene | Slight increases in 1TCA, 1DCA,<br>tDCE, 2DCA, 1DCE, and ethane<br>concentrations | Methane increased, iron and sulfate stable | Little TOC available           |

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

#### 01/18/2002

#### Custody Document: M6865

Received: 01/09/2002 16:16 Sampled by: David Hanny/Bryce Dingman

#### Client: Photo Circuits

31 Sea Cliff Avenue Glen Cove, NY 11542

#### Project: Photocircuits Corp.

31 Sea Cliff Avenue Glen Cove, NY

Manager: Andy Barber

Respectfully submitted, 3 an Laborator

NYS Lab ID # 10969 NJ Cert. # 73812 CT Cert. # PH0645 MA Cert. # NY061 PA Cert. # 68-535 VA Cert. # 108 NH Cert. # 252592-BA RI Cert. # 161



- M6865 -

Page 1 of 45

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

# Volatiles - EPA 8260B

01/18/2002

#### Sample: M6865-1

Client Sample ID: SMP-1 Matrix: Líquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

Collected: 01/08/2002 14:30

| Cas No     | Analyte                        | File ID     | MDL  | Concentration | Units | Q   |
|------------|--------------------------------|-------------|------|---------------|-------|-----|
| 75-71-8    | Dichlorodifluoromethane        | C 381-6452  | 12.0 | 12.0          | ppb   | U U |
| 75-45-6    | Chlorodifluoromethane          | C 381-6452  | 10.5 | 10.5          | ppb   | U   |
| 74-87-3    | Chloromethane                  | C 381 -6452 | 42.5 | 42.5          | ppb   | 10  |
| 75-01-4    | Vinyl Chloride                 | C 381 -6452 | 42.5 | 3490          | ррб   |     |
| 74-83-9    | Bromomethane                   | C 381-6452  | 32.5 | 32.5          | ppb   | U   |
| 75-00-3    | Chloroethane                   | C 381 -6452 | 33.5 | 33.5          | ppb   | U   |
| 75-69-4    | Trichlorofluoromethane         | C 381-6452  | 6.00 | 6.00          | ppb   | U   |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | C 381 -6452 | 9,50 | 9.50          | ppb   | U   |
| 75-35-4    | 1,1-Dichloroethene             | C 381 -6452 | 11.0 | 143           | ppb   |     |
| 67-64-1    | Acetone                        | C 381 -6452 | 115  | 115           | ppb   | Ū   |
| 75-15-0    | Carbon disulfide               | C 381 -6452 | 16.5 | 16.5          | ppb   | U   |
| 75-09-2    | Methylene Chloride             | C 381-6452  | 18.5 | 18.5          | ppb   | U   |
| 156-60-5   | t-1,2-Dichloroethene           | C 381-6452  | 14.0 | 68.5          | ppb   |     |
| 1634-04-4  | Methyl t-butyl ether           | C 381 -6452 | 9.00 | 117           | ppb   |     |
| 75-34-3    | 1,1-Dichloroethane             | C 381-6452  | 12.5 | 456           | ppb   |     |
| 590-20-7   | 2,2-Dichloropropane            | C 381-6452  | 15.0 | 15.0          | ppb   | U   |
| 156-59-2   | c-1,2-Dichloroethene           | C 386-6547  | 36.0 | 18000         | ppb   |     |
| 78-93-3    | 2-Butanone                     | C 381-6452  | 860  | 860           | ppb   | U   |
| 74-97-5    | Bromochloromethane             | C 381-6452  | 7.50 | 7.50          | ppb   | U   |
| 67-66-3    | Chloroform                     | C 381-6452  | 11.0 | 11.0          | ppb   | U   |
| 71-55-6    | 1,1,1-Trichloroethane          | C 381-6452  | 7.00 | 7,00          | ppb   | U   |
| 56-23-5    | Carbon Tetrachloride           | C 381 -6452 | 5.00 | 5.00          | ppb   | U   |
| 563-58-6   | 1,1-Dichloropropene            | C 381-6452  | 9.00 | 9.00          | ррр   | U   |
| 71-43-2    | Benzene                        | C 381-6452  | 8.50 | 8.50          | ppb   | U   |
| 107-06-2   | 1,2-Dichloroethane             | C 381-6452  | 8.00 | 8.00          | ррь   | U   |
| 79-01-6    | Trichloroethene                | C 381-6452  | 8.50 | 4410          | ррь   | В   |
| 78-87-5    | 1,2-Dichloropropane            | C 381 -6452 | 7.00 | 7.00          | ppb   | U   |
| 74-95-3    | Dibromomethane                 | C 381-6452  | 8.00 | 8.00          | ppb   | U   |
| 75-27-4    | Bromodichloromethane           | C 381 -6452 | 8.00 | 8.00          | ppb   | U   |
| 110-75-8   | 2-Chloroethylvinylether        | C 381-6452  | 14.5 | 14.5          | ррb   | υ   |
| 10061-01-5 | c-1,3-Dichloropropene          | C 381-6452  | 11.0 | 11.0          | ppb   | U   |
| 108-10-1   | 4-Methyl-2-pentanone           | C 381-6452  | 450  | 450           | ppb   | U   |
| 108-88-3   | Toluene                        | C 381-6452  | 7 00 | 55.0          | ppb   |     |
| 10061-02-6 | t-1,3-Dichloropropene          | C 381-6452  | 7.00 | 7.00          | ppb   | U   |
| 79-00-5    | 1,1,2-Trichloroethane          | C 381-6452  | 9.50 | 9.50          | ppb   | U   |
| 127-18-4   | Tetrachloroethene              | C 381 -6452 | 6.00 | 6.00          | ррб   | U   |



#### Page 2 of 45

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

#### 01/18/2002

# Volatiles - EPA 8260B

#### Sample: M6865-1...continue

Client Sample ID: SMP-1 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

#### Collected: 01/08/2002 14:30

| Analyzed Da      | ate: 01/11/2002             |             |      |               |       |     |
|------------------|-----------------------------|-------------|------|---------------|-------|-----|
| Cas No           | Analyte                     | File ID     | MDL  | Concentration | Units | Q   |
| 142-28-9         | 1,3-Dichloropropane         | C 381-6452  | 6.00 | 6.00          | ррь   | U   |
| 591-78-6         | 2-Hexanone                  | C 381-6452  | 250  | 250           | ppb   | U   |
| 124-48-1         | Dibromochloromethane        | C 381-6452  | 8.50 | 8.50          | ppb   | U   |
| 106-93-4         | 1,2-Dibromoethane           | C 381-6452  | 9.50 | 9.50          | ррб . | U   |
| 108-90-7         | Chlorobenzene               | C 381-6452  | 9.50 | 9.50          | ppb   | U   |
| 630-20-6         | 1,1,1,2-Tetrachloroethane   | C 381-6452  | 7.50 | 7.50          | ppb   | U   |
| 100-41-4         | Ethylbenzene                | C 381-6452  | 8.00 | 8.00          | ppb   | U   |
| 108-38-3         | m,p-xylene                  | C 381-6452  | 10.5 | 10.5          | ррЪ   | U   |
| 95-47 <b>-</b> 6 | o-xylene                    | C 381-6452  | 8.00 | 8.00          | ppb   | Ų   |
| 100-42-5         | Styrene                     | C 381-6452  | 6.50 | 6.50          | ppb   | U   |
| 75-25-2          | Bromoform                   | C 381-6452  | 13.5 | 13.5          | ppb   | Ū   |
| 98-82-8          | Isopropylbenzene            | C 381 -6452 | 5.00 | 5.00          | ppb   | U.  |
| 108-86-1         | Bromobenzene                | C 381-6452  | 10.5 | 10.5          | ppb   | U   |
| 79-34-5          | 1,1,2,2-Tetrachloroethane   | C 381-6452  | 7.50 | 7.50          | ppb   | U   |
| 103-65-1         | n-Propylbenzene             | C 381-6452  | 7.00 | 7.00          | ppb   | U   |
| 96-18-4          | 1,2,3-Trichloropropane      | C 381-6452  | 12.0 | 12.0          | ppb   | · U |
| 622-96-8         | p-Ethyltoluene              | C 381-6452  | 12.0 | 12.0          | ppb   | U   |
| 108-67-8         | 1,3,5-Trimethylbenzene      | C 381-6452  | 6.00 | 6.00          | ррр   | U   |
| 95-49-8          | 2-Chlorotoluene             | C 381 -6452 | 10.5 | 10.5          | ppb   | U - |
| 106-43-4         | 4-Chlorotoluene             | C 381 -6452 | 8.00 | 8.00          | ppb   | U   |
| 98-06-6          | tert-Butylbenzene           | C 381 -6452 | 6.50 | 6.50          | ppb   | U   |
| 95-63-6          | 1,2,4-Trimethylbenzene      | C 381-6452  | 6.50 | 6.50          | ppb   | U   |
| 135-98-8         | sec-Butylbenzene            | C 381 -6452 | 4.00 | 4.00          | ppb   | U   |
| 99-87-6          | 4-Isopropyltoluene          | C 381 -6452 | 5.00 | 5.00          | ppb   | U   |
| 541-73-1         | 1,3-Dichlorobenzene         | C 381 -6452 | 7.50 | 7.50          | ppb   | U   |
| 106-46-7         | 1,4-Dichlorobenzene         | C 381 -6452 | 7.50 | 7.50          | ppb   | υ   |
| 95-50-1          | 1,2-Dichlorobenzene         | C 381 -6452 | 7.00 | 7.00          | ppb   | U   |
| 105-05-5         | p-Diethylbenzene            | C 381 -6452 | 13.5 | 13.5          | ppb   | U   |
| 104-51-8         | n-Butylbenzene              | C 381-6452  | 7.00 | 7.00          | ppb   | U   |
| 95-93-2          | 1.2.4,5-Tetramethylbenzene  | C 381 -6452 | 13.5 | 13.5          | ppb   | U   |
| 96-12-8          | 1,2-Dibromo-3-chloropropane | C 381 -6452 | 25.0 | 25.0          | ppb   | U   |
| 120-82-1         | 1,2,4-Trichlorobenzene      | C 381 -6452 | 12.5 | 12.5          | ppb   | U   |
| 87-68-3          | Hexachlorobutadione         | C 381-6452  | 12.0 | .12.0         | ppb   | U   |
| 91-20-3          | Naphthalene                 | C 381-6452  | 13.5 | 13.5          | ppb   | U   |
| 87-61-6          | 1.2.3 Trichlorobenzene      | C 381-6452  | 19.0 | 19.0          | ppb   | U   |



PHOTOCIRCUITS EHS

#### Page 3 of 45

the TOH.

# Environmental Testing Laboratories, Inc. 208 Route 109, Farmingdale NY 11735

Phone - 631-249-1456 Fax - 631-249-8344

# Volatiles - EPA 8260B

#### Sample: M6865-1...continue

Client Sample ID: SMP-1 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

Collected: 01/08/2002 14:30

01/18/2002





- M6865 -

Page 4 of 45

PAGE 05

SHE STIUDAIDOTOHA

2921-609-919 97:91 2002/62/10

# Environmental Testing Laboratories, Inc. 208 Route 109, Farmingdale NY 11735

Phone - 631-249-1456 Fax - 631-249-8344

## Volatiles - EPA 8260B

#### 01/18/2002

#### Sample: M6865-2

Client Sample ID: DMP-1 Matrix: Liquid Remarks: See Case Narrative

Type: Grab

Collected: 01/08/2002 12:30

| Cas No     | Апаlyte                        | File ID     | MDL  | Concentration | Units | Q        |
|------------|--------------------------------|-------------|------|---------------|-------|----------|
| 75-71-8    | Dichlorodifluoromethane        | C 386-6548  | 1.20 | 1.20          | ppb   | U        |
| 75-45-6    | Chlorodifluoromethane          | C 386-6548  | 1.05 | 1.05          | ppb   | U        |
| 74-87-3    | Chloromethane                  | C 386-6548  | 4.25 | 4.25          | ppb   | U        |
| 75-01-4    | Vinyl Chloride                 | C 386-6548  | 4.25 | 4.25          | ppb   | U        |
| 74-83-9    | Bromomethane                   | C 386-6548  | 3.25 | 3.25          | ppb   | υ        |
| 75-00-3    | Chloroethane                   | C 386-6548  | 3.35 | 97.0          | ppb   |          |
| 75-69-4    | Trichlorofluoromethane         | C 386-6548  | 0,60 | 0.60          | ppb   | υ        |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | C 386-6548  | 0.95 | 0.95          | ppb   | Ŭ        |
| 75-35-4    | 1,1-Dichloroethene             | C 386-6548  | 1.10 | 1.10          | ppb   | Ų        |
| 67-64-1    | Acetone                        | C 386-6548  | 11.5 | 11.5          | ppb . | U        |
| 75-15-0    | Carbon disulfide               | C 386-6548  | 1.65 | 1.65          | ррь   | U        |
| 75-09-2    | Methylene Chloride             | C 386-6548  | 1.85 | 1.85          | ppb   | U        |
| 156-60-5   | t-1,2-Dichloroethene           | C 386-6548  | 1.40 | 1.40          | ррь   | U        |
| 1634-04-4  | Methyl t-butyl ether           | C 386-6548  | 0.90 | 0.90          | ррб   | U        |
| 75-34-3    | 1,1-Dichloroethane             | C 386-6548  | 1.25 | 423           | ppb   |          |
| 590-20-7   | 2,2-Dichloropropane            | C 386-6548  | 1.50 | 1.50          | ppb   | U        |
| 156-59-2   | c-1,2-Dichloroethene           | C 386-6548  | 0.90 | 0.90          | ppb   | U        |
| 78-93-3    | 2-Butanone                     | C 386 -6548 | 86.0 | 86.0          | ppb   | U        |
| 74-97-5    | Bromochloromethane             | C 386 -6548 | 0.75 | 0.75          | ppb   | Ū        |
| 67-66-3    | Chloroform                     | C-386-6548  | 1.10 | 1.10          | ррЬ   | U        |
| 71-55-6    | 1,1,1-Trichloroethane          | C 386 -6548 | 0.70 | 0.70          | ррь   | U        |
| 56-23-5    | Carbon Tetrachloride           | C 386-6548  | 0.50 | 0.50          | ppb   | U        |
| 563-58-6   | 1,1-Dichloropropene            | C 386-6548  | 0.90 | 0.90          | ppb   | U        |
| 71-43-2    | Benzene                        | C 386-6548  | 0.85 | 0.85          | ppb   | U        |
| 107-06-2   | 1,2-Dichloroethane             | C 386-6548  | 0.80 | 0.80          | ppp   | U        |
| 79-01-6    | Trichloroethene                | C 386-6548  | 0.85 | 0.85          | ppb   | U        |
| 78-87-5    | 1,2-Dichloropropane            | C 386-6548  | 0.70 | 0.70          | ppb   | U        |
| 74-95-3    | Dibromomethane                 | C 386 -6548 | 0.80 | 0.80          | ppb   | U        |
| 75-27-4    | Bromodichloromethane           | C 386 -6548 | 0.80 | 0.80          | ppb   | U        |
| 110-75-8   | 2-Chloroethylvinylether        | C 386 -6548 | 1.45 | 1.45          | ppb   | U        |
| 10061-01-5 | c-1,3-Dichloropropene          | C 386 -6548 | 1.10 | 1.10          | ppb   | U        |
| 108-10-1   | 4-Methyl-2-pentanone           | C 386-6548  | 45.0 | 45.0          | ppb   | U        |
| 108-88-3   | Toluene                        | C 386-6548  | 0.70 | 0.70          | ppb   |          |
| 10061-02-6 | t-1,3-Dichloropropene          | C 386 -6548 | 0.70 | 0.70          | ррь   | <u> </u> |
| 79-00-5    | 1,1,2-Trichloroethane          | C 386 -6548 | 0.95 | 0.95          | ppb   |          |
| 127-18-4   | Tetrachloroethene              | C 386 -6548 | 0.60 | 0.60          | ppb   | 0        |



SHELSTINGTRONTE FHE

#### Page 5 of 45

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

#### 01/18/2002

# Volatiles - EPA 8260B

#### Sample: M6865-2...continue

Client Sample ID: DMP-1 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/15/2002

Type: Grab

Collected: 01/08/2002 12:30

| Cas No            | Analyte                     | File ID     | MDL  | Concentration | Units | Q   |
|-------------------|-----------------------------|-------------|------|---------------|-------|-----|
| 142-28-9          | 1,3-Dichloropropane         | C 386-6548  | 0.60 | 0.60          | ppb   | U   |
| 591-78-6          | 2-Hexanone                  | C 386-6548  | 25.0 | 25.0          | ppb   | U   |
| 124-48-1          | Dibromochloromethane        | C 386-6548  | 0.85 | 0.85          | ppb   | U   |
| 106-93 <b>-</b> 4 | 1,2-Dibromoethane           | C 386-6548  | 0.95 | 0.95          | ppb   | U   |
| 108-90-7          | Chlorobenzene               | C 386-6548  | 0.95 | 0.95          | ppb   | U   |
| 630-20-6          | 1,1,1,2-Tetrachloroethane   | C 386-6548  | 0.75 | 0.75          | ppb   | Ų   |
| 100-41-4          | Ethylbenzene                | C 386-6548  | 0.80 | 0.80          | ppb   | U   |
| 108-38-3          | m,p-xylene                  | C 386 -6548 | 1.05 | 1.05          | ppb   | U   |
| 95-47-6           | o-xylene                    | C 386 -6548 | 0.80 | 0.80          | ppb   | U   |
| 100-42-5          | Styrene                     | C 386-6548  | 0.65 | 0.65          | ppb   | U   |
| 75-25-2           | Bromoform                   | C 386 -6548 | 1.35 | 1.35          | ppb   | Ŭ   |
| 98-82-8           | Isopropylbenzene            | C 386 -6548 | 0.50 | 0.50          | ppb   | U   |
| 108-86-1          | Bromobenzene                | C 386 -6548 | 1.05 | 1.05          | bbp   | U   |
| 79-34-5           | 1,1,2,2-Tetrachloroethane   | C 386-6548  | 0.75 | 0.75          | ppb   | U   |
| 103-65-1          | n-Propylbenzene             | C 386-6548  | 0.70 | 0.70          | ррь   | U   |
| 96-18-4           | 1,2,3-Trichloropropane      | C 386 -6548 | 1.20 | 1.20          | ppb   | U   |
| 622-96-8          | p-Ethyltoluene              | C 386-6548  | 1.20 | 1.20          | ppb   | υ   |
| 108-67-8          | 1,3,5-Trimethylbenzene      | C 386-6548  | 0.60 | 0.60          | ррb   | U   |
| 95-49-8           | 2-Chlorotoluene             | C 386-6548  | 1.05 | 79.7          | ppb · |     |
| 106-43-4          | 4-Chlorotoluene             | C 386-6548  | 0.80 | 0.80          | ppb   | ี ป |
| 98-06-6           | tert-Butylbenzene           | C 386-6548  | 0.65 | 0.65          | ppb   | U   |
| 95-63-6           | 1,2,4-Trimethylbenzene      | C 386-6548  | 0.65 | 4.70          | ррв   |     |
| 135-98-8          | sec-Butylbenzene            | C 386-6548  | 0.40 | 0.40          | ppb   | U   |
| 99-87-6           | 4-Isopropyltoluene          | C 386-6548  | 0.50 | 0.50          | ррь   | U   |
| 541-73-1          | 1,3-Dichlorobenzene         | C 386-6548  | 0.75 | 0.75          | bbp   | U   |
| 106-46-7          | 1,4-Dichlorobenzene         | C 386-6548  | 0.75 | 0.75          | ррь   | U   |
| 95-50-1           | 1,2-Dichlorobenzene         | C 386-6548  | 0.70 | 0.70          | ppb   | U   |
| 105-05-5          | p-Diethylbenzene            | C 386-6548  | 1.35 | 1.35          | ppb   | U   |
| 104-51-8          | n-Butylbenzene              | C 386-6548  | 0.70 | 0.70          | ppp   | U   |
| 95-93-2           | 1,2,4,5-Tetramethylbenzene  | C 386 -6548 | 1.35 | 1.35          | ppb   | U   |
| 96-12-8           | 1,2-Dibromo-3-chloropropane | C 386-6548  | 2.50 | 2.50          | ppb   | U   |
| 120-82-1          | 1,2,4-Trichlorobenzene      | C 386-6548  | 1.25 | 1.25          | ppp   | U   |
| 87-68-3           | Hexachlorobutadiene         | C 386 -6548 | 1.20 | 1.20          | dq    | U   |
| 91-20-3           | Naphthalene                 | C 386 -6548 | 1.35 | 1.35          | ppb   | U   |
| 87-61-6           | 1,2,3-Trichlorobenzene      | C 386 -6548 | 1.90 | 1.90          | ppb   | U   |



#### Page 6 of 45

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/18/2002

# Volatiles - EPA 8260B

#### Sample: M6865-2...continue

Client Sample ID: DMP-1 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/15/2002

Type: Grab

Collected: 01/08/2002 12:30



PHUTCLRCUITS EHS

<u>/97.I-609-919</u>

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

# Volatiles - EPA 8260B

#### 01/18/2002

#### Sample: M6865-3

Client Sample ID, SMP-3 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

Collected: 01/08/2002 14:55

| Cas No     | Analyte                        | File ID     | MDL  | Concentration | Units | Q  |
|------------|--------------------------------|-------------|------|---------------|-------|----|
| 75-71-8    | Dichlorodifluoromethane        | C 381-6454  | 12.0 | 12.0          | ppb   | U  |
| 75-45-6    | Chlorodifluoromethane          | C 381-6454  | 10.5 | 10.5          | ppb   | Ų  |
| 74-87-3    | Chloromethane                  | C 381 -6454 | 42.5 | 42.5          | ppb   | U. |
| 75-01-4    | Vinyl Chloride                 | C 381-6454  | 42.5 | 42.5          | ppb   | υ  |
| 74-83-9    | Bromomethane                   | C 381-6454  | 32.5 | 32.5          | ppb   | U  |
| 75-00-3    | Chloroethane                   | C 381-6454  | 33.5 | 346           | ppb   |    |
| 75-69-4    | Trichlorofluoromethane         | C 381-6454  | 6.00 | 6.00          | ppb   | υ  |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | C 381-6454  | 9.50 | 9.50          | ppb   | U  |
| 75-35-4    | 1,1-Dichloroethene             | C 381-6454  | 11.0 | 146           | ррб   |    |
| 67-64-1    | Acetone                        | C 381-6454  | 115  | , 115         | ppb   | U  |
| 75-15-0    | Carbon disulfide               | C 381 -6454 | 16.5 | 16.5          | ppb   | U  |
| 75-09-2    | Methylene Chloride             | C 381-6454  | 18.5 | 89.0          | ppb   |    |
| 156-60-5   | t-1,2-Dichloroethene           | C 381-6454  | 14.0 | 14.0          | ppb   | U  |
| 1634-04-4  | Methyl t-butyl ether           | C 381-6454  | 9.00 | 117           | ppb   |    |
| 75-34-3    | 1,1-Dichloroethane             | C 386-6549  | 25.0 | 8860          | ppb   |    |
| 590-20-7   | 2,2-Dichloropropane            | C 381-6454  | 15.0 | 15.0          | ppb . | U  |
| 156-59-2   | c-1,2-Dichloroethene           | C 381-6454  | 9.00 | 9.00          | ppb   | U  |
| 78-93-3    | 2-Butanone                     | C 381 -6454 | 860  | 860           | ррь   | U  |
| 74-97-5    | Bromochloromethane             | C 381 -6454 | 7.50 | 7.50          | ррь   | υ  |
| 67-66-3    | Chloroform                     | C 381-6454  | 11.0 | 11.0          | ppb   | Ų  |
| 71-55-6    | 1,1,1-Trichloroethane          | C 386-6549  | 14.0 | 14500         | ppb   |    |
| 56-23-5    | Carbon Tetrachloride           | C 381-6454  | 5.00 | 5.00          | рръ   | U  |
| 563-58-6   | 1,1-Dichloropropene            | C 381-6454  | 9.00 | 9.00          | ppb   | U  |
| 71-43-2    | Benzene                        | C 381-6454  | 8.50 | 8,50          | ppb   | U  |
| 107-06-2   | 1,2-Dichloroethane             | C 381-6454  | 8.00 | 8.00          | ррь   | U  |
| 79-01-6    | Trichloroethene                | C 381-6454  | 8,50 | 8.50          | ppb   | U  |
| 78-87-5    | 1,2-Dichloropropane            | C 381-6454  | 7.00 | 7.00          | ppb   | U  |
| 74-95-3    | Dibromomethane                 | C 381 -6454 | 8.00 | 8.00          | ppb   | U  |
| 75-27-4    | Bromodichloromethane           | C 381 -6454 | 8.00 | 8.00          | ppb   | U  |
| 110-75-8   | 2-Chloroethylvinylether        | C 381 -6454 | 14.5 | 14.5          | ppb   | U  |
| 10061-01-5 | c-1,3-Dichloropropene          | C 381-6454  | 11.0 | 11.0          | ppb   | υ  |
| 108-10-1   | 4-Methyl-2-pentanone           | C 381-6454  | 450  | 450           | ppb   | U  |
| 108-88-3   | Тоluеле                        | C 381-6454  | 7.00 | 54.5          | ppb   |    |
| 10061-02-6 | t-1,3-Dichloropropene          | C 381-6454  | 7.00 | 7.00          | ppb   | U  |
| 79-00-5    | 1,1,2-Trichloroethane          | C 381-6454  | 9.50 | 9.50          | ррь   | U  |
| 127-18-4   | Tetrachloroethene              | C 381-6454  | 6.00 | 6.00          | ррь   | U  |



PHOTOCIRCUITS EHS

#### Page 8 of 45

# Environmental Testing Laboratories, Inc. 208 Route 109, Farmingdale NY 11735

Phone - 631-249-1456 Fax - 631-249-8344

#### 01/18/2002

# Volatiles - EPA 8260B

#### Sample: M6865-3...continue

Client Sample ID: SMP-3 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

Collected: 01/08/2002 14:55

| Cas No   | Analyte                     | File ID     | MDL  | Concentration | Units | Q |
|----------|-----------------------------|-------------|------|---------------|-------|---|
| 142-28-9 | 1,3-Dichloropropane         | C 381-6454  | 6.00 | 6.00          | ppb   | U |
| 591-78-6 | 2-Hexanone                  | C 381-6454  | 250  | 250           | ppb   | U |
| 124-48-1 | Dibromochloromethane        | C 381-6454  | 8.50 | 8.50          | ppb   | U |
| 106-93-4 | 1,2-Dibromoethane           | C 381-6454  | 9.50 | 9.50          | ppb   | U |
| 108-90-7 | Chlorobenzene               | C 381-6454  | 9.50 | 9:50          | ppb   | U |
| 630-20-6 | 1,1,1,2-Tetrachloroethane   | C 381 -6454 | 7.50 | 7.50          | ppb   | U |
| 100-41-4 | Ethylbenzene                | C 381 -6454 | 8.00 | 8.00          | ppb   | U |
| 108-38-3 | m,p-xylene                  | C 381 -6454 | 10.5 | 10.5          | ppb   | U |
| 95-47-6  | o-xylene                    | C 381-6454  | 8.00 | 8.00          | ppb   | U |
| 100-42-5 | Styrene                     | C 381 -6454 | 6.50 | 6.50          | ppb   | U |
| 75-25-2  | Bromoform                   | C 381-6454  | 13.5 | 13.5          | ppb   | U |
| 98-82-8  | Isopropylbenzene            | C 381-6454  | 5.00 | 5.00          | ppb   | U |
| 108-86-1 | Bromobenzene                | C 381-6454  | 10.5 | 10.5          | ppb   | U |
| 79-34-5  | 1,1,2,2-Tetrachloroethane   | C 381 -6454 | 7.50 | 7.50          | ppb   | U |
| 103-65-1 | n-Propylbenzene             | C 381 -6454 | 7.00 | 7.00          | ррь   | U |
| 96-18-4  | 1,2,3-Trichloropropane      | C 381 -6454 | 12.0 | 12.0          | ppb   | U |
| 622-96-8 | p-Ethyltoluene              | C 381 -6454 | 12.0 | 12.0          | ppb   | U |
| 108-67-8 | 1,3,5-Trimethylbenzene      | C 381 -6454 | 6.00 | 6.00          | ppb   | U |
| 95-49-8  | 2-Chlorotoluene             | C 381 -6454 | 10.5 | 10.5          | ppb   | U |
| 106-43-4 | 4-Chlorotoluene             | C 381-6454  | 8.00 | 8.00          | ppb   | U |
| 98-06-6  | tert-Butylbonzene           | C 381-6454  | 6.50 | 6.50          | ррь   | U |
| 95-63-6  | 1,2,4-Trimethylbenzene      | C 381-6454  | 6.50 | 6.50          | ppb   | U |
| 135-98-8 | sec-Butylbenzene            | C 381-6454  | 4.00 | 4.00          | ppb   | U |
| 99-87-6  | 4-Isopropyltoluene          | C 381-6454  | 5.00 | 5.00          | ррь   | U |
| 541-73-1 | 1,3-Dichlorobenzene         | C 381 -6454 | 7.50 | 7.50          | ррь   | U |
| 106-46-7 | 1,4-Dichlorobenzene         | C 381 -6454 | 7.50 | 7.50          | ppb   | U |
| 95-50-1  | 1,2-Dichlorobenzene         | C 381-6454  | 7.00 | 7.00          | ppb   | Ű |
| 105-05-5 | p-Diethylbenzene            | C 381-6454  | 13.5 | 13.5          | ppb   | U |
| 104-51-8 | ∩-Butylbenzene              | C 381-6454  | 7.00 | 7.00          | ppb   | U |
| 95-93-2  | 1,2,4,5-Tetramethylbenzene  | C 381 -6454 | 13.5 | 13.5          | ppb   | U |
| 96-12-8  | 1,2-Dibromo-3-chloropropane | C 381-6454  | 25.0 | 25.0          | ppb   | Ŭ |
| 120-82-1 | 1,2,4-Trichlorobenzene      | C 381 -6454 | 12.5 | 12.5          | ppb   | U |
| 87-68-3  | Hexachlorobutadiene         | C 381-6454  | 12.0 | 12.0          | ppb   | U |
| 91-20-3  | Naphthalene                 | C 381-6454  | 13.5 | 13.5          | ppb   | U |
| 87-61-6  | 1,2,3-Trichlorobenzene      | C 381 -6454 | 19,0 | 19.0          | ppb   | U |



SHE STRONTOLINHA

#### Page 9 of 45

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

Volatiles - EPA 8260B

01/18/2002

#### Sample: M6865-3...continue

Client Sample ID: SMP-3 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

Collected: 01/08/2002 14:55





#### - M6865 -

#### Page 10 of 45

PHOTOCIRCUITS EHS

2921-609-919 97:91 2002/62/10

208 Route IO9, Farmingdale NY 11735

Phone - 631-249-1456 Fax - 631-249-8344

# Volatiles - EPA 8260B

01/18/2002

#### Sample: M6865-4

Client Sample ID; DMP-3 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

Collected: 01/08/2002 13:55

| Cas No     | Analyte                        | File ID     | MDL    | Concentration | Units | Q        |
|------------|--------------------------------|-------------|--------|---------------|-------|----------|
| 75-71-8    | Dichlorodifluoromethane        | C 381 -6455 | 12.0   | 12.0          | ррь   | U        |
| 75-45-6    | Chlorodifluoromethane          | C 381 -6455 | . 10.5 | 10.5          | ppb   | U        |
| 74-87-3    | Chloromethane                  | C 381 -6455 | 42.5   | 42.5          | ррь   | U        |
| 75-01-4    | Vinyl Chloride                 | C 381 -6455 | 42.5   | 654           | ррь   |          |
| 74-83-9    | Bromomethane                   | C 381-6455  | 32.5   | 32.5          | ррЬ   | υ        |
| 75-00-3    | Chloroethane                   | C 381-6455  | 33.5   | 2260          | ррь   |          |
| 75-69-4    | Trichlorofluoromethane         | C 381-6455  | 6.00   | 6.00          | ppb   | U        |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | C 381-6455  | 9.50   | 9.50          | ppb   | U        |
| 75-35-4    | 1,1-Dichloroethene             | C 381-6455  | 11.0   | 11.0          | ppb   | U        |
| 67-64-1    | Acetone                        | C 381 -6455 | 115    | 115           | ppb   | U        |
| 75-15-0    | Carbon disulfide               | C 381 -6455 | 16.5   | 16.5          | ppb   | υ        |
| 75-09-2    | Methylene Chloride             | C 381-6455  | 18.5   | 18.5          | ppb   | U        |
| 156-60-5   | t-1,2-Dichloroethene           | C 381 -6455 | 14.0   | 14.0          | ppb   | U        |
| 1634-04-4  | Methyl t-butyl ether           | C 381-6455  | 9.00   | 125           | ppb   |          |
| 75-34-3    | 1,1-Dichloroethane             | C 381 -6455 | 12.5   | 2260          | ррь   |          |
| 590-20-7   | 2,2-Dichloropropane            | C 381 -6455 | 15.0   | 15.0          | ppb   | U        |
| 156-59-2   | c-1,2-Dichloroethene           | C 381-6455  | 9.00   | 9.00          | ppb   | U        |
| 78-93-3    | 2-Butanone                     | C 381-6455  | 860    | 860           | ррь   | υ        |
| 74-97-5    | Bromochloromethane             | C 381 -6455 | 7.50   | 7.50          | ррь   | U        |
| 67-66-3    | Chloroform                     | C 381-6455  | 11.0   | 11.0          | ррб   | U        |
| 71-55-6    | 1,1,1-Trichloroethane          | C 386-6550  | 28.0   | 19500         | ppb   |          |
| 56-23-5    | Carbon Tetrachloride           | C 381-6455  | 5.00   | 5.00          | ppb   | U        |
| 563-58-6   | 1,1-Dichloropropene            | C 381 -6455 | 9.00   | 9.00          | ppb   | Ų        |
| 71-43-2    | Benzene                        | C 381 -6455 | 8.50   | 8.50          | ррь   | U        |
| 107-06-2   | 1,2-Dichloroethane             | C 381 -6455 | 8.00   | 8.00          | ppb   | U        |
| 79-01-6    | Trichloroethene                | C 381-6455  | 8.50   | 8.50          | ppb   | U        |
| 78-87-5    | 1,2-Dichloropropane            | C 381 -6455 | 7.00   | 7.00          | ррь   | U        |
| 74-95-3    | Dibromomethane                 | C 381 -6455 | 8.00   | 8.00          | ppb   | <u> </u> |
| 75-27-4    | Bromodichloromethane           | C 381-6455  | 8.00   | 8.00          | ррь   | U        |
| 110-75-8   | 2-Chloroethylvinylether        | C 381 -6455 | 14.5   | 14.5          | ppb   | U        |
| 10061-01-5 | c-1,3-Dichloropropene          | C 381 -6455 | 11.0   | 11.0          | ppp   |          |
| 108-10-1   | 4-Methyl-2-pentanone           | C 381 -6455 | 450    | 450           | ppb   | U        |
| 108-88-3   | Toluene                        | C 381-6455  | 7.00   | 108           | dad   | -        |
| 10061-02-6 | t-1,3-Dichloropropene          | C 381-6455  | 7.00   | 7.00          | ppb   |          |
| 79-00-5    | 1,1,2-Trichloroethane          | C 381-6455  | 9.50   | 9.50          | ррр   | <u> </u> |
| 127-18-4   | Tetrachloroethene              | C 381 -6455 | 6.00   | 34.0          | ppb   |          |



SHE STIDONIOHA

#### Page 11 of 45

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

# Volatiles - EPA 8260B

#### 01/18/2002

#### Sample: M6865-4...continue

Client Sample ID: DMP-3 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

#### Collected: 01/08/2002 13:55

| Allalyzeu D |                             |                     |      |               |       |    |
|-------------|-----------------------------|---------------------|------|---------------|-------|----|
| Ças No      | Analyte                     | File ID             | MDL  | Concentration | Units | Q  |
| 142-28-9    | 1,3-Dichloropropane         | C 381 <i>-</i> 6455 | 6.00 | ,6.00         | ррь   | U  |
| 591-78-6    | 2-Hexanone                  | C 381-6455          | 250  | 250           | ppb   | U  |
| 124-48-1    | Dibromochloromethane        | C 381-6455          | 8.50 | 8.50          | ppb   | U  |
| 106-93-4    | 1,2-Dibromoethane           | C 381-6455          | 9.50 | 9.50          | ppb   | U  |
| 108-90-7    | Chlorobenzene               | C 381-6455          | 9.50 | 9.50          | ppb   | U  |
| 630-20-6    | 1,1,1,2-Tetrachloroethane   | C 381-6455          | 7,50 | 7.50          | ppb   | U  |
| 100-41-4    | Ethylbenzene                | C 381-6455          | 8.00 | 8.00          | ррр   | U  |
| 108-38-3    | m,p-xylene                  | C 381-6455          | 10.5 | 10.5          | ppb   | U  |
| 95-47-6     | o-xylene                    | C 381-6455          | 8.00 | 8.00          | ppb   | U  |
| 100-42-5    | Styrene                     | C 381-6455          | 6.50 | 6.50          | ppb   | U  |
| 75-25-2     | Bromoform                   | C 381-6455          | 13.5 | 13.5          | ppb   | U  |
| 98-82-8     | Isopropylbenzene            | C 381-6455          | 5.00 | 5.00          | ррр   | U  |
| 108-86-1    | Bromobenzene                | C 381 -6455         | 10.5 | 10.5          | ррр   | U  |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | C 381-6455          | 7.50 | 7.50          | ppb   | V  |
| 103-65-1    | n-Propylbenzene             | C 381-6455          | 7.00 | 7.00          | ppb   | U  |
| 96-18-4     | 1,2,3-Trichloropropane      | C 381-6455          | 12.0 | 12.0          | ррb   | U  |
| 622-96-8    | p-Ethyltoluene              | C 381-6455          | 12.0 | 12.0          | ppb   | υ  |
| 108-67-8    | 1,3,5-Trimethylbenzene      | C 381-6455          | 6.00 | 6.00          | ppb   | U  |
| 95-49-8     | 2-Chlorotoluene             | C 381-6455          | 10.5 | 10.5          | ppþ   | TU |
| 106-43-4    | 4-Chlorotoluene             | C 381-6455          | 8.00 | 8.00          | ррb   | U  |
| 98-06-6     | tert-Butylbenzene           | C 381-6455          | 6.50 | 6.50          | ppb   | U  |
| 95-63-6     | 1,2,4-Trimethylbenzene      | C 381 -6455         | 6.50 | 6.50          | ppb   | U  |
| 135-98-8    | sec-Butylbenzene            | C 381-6455          | 4.00 | 4.00          | ррb   | Û  |
| 99-87-6     | 4-Isopropyltoluene          | C 381-6455          | 5.00 | 5.00          | ppb   | U  |
| 541-73-1    | 1,3-Dichlorobenzene         | C 381-6455          | 7.50 | 7.50          | ррЬ   | U  |
| 106-46-7    | 1,4-Dichlorobenzene         | C 381-6455          | 7.50 | 7.50          | ppb   | U  |
| 95-50-1     | 1,2-Dichlorobenzene         | C 381-6455          | 7.00 | 7.00          | ррр   | U  |
| 105-05-5    | p-Diethylbenzene            | C 381-6455          | 13.5 | 13.5          | ppb   | U  |
| 104-51-8    | n-Butylbenzene              | C 381-6455          | 7.00 | 7.00          | ppb   | U  |
| 95-93-2     | 1,2,4,5-Tetramethylbenzene  | C 381-6455          | 13.5 | 13.5          | bbp   | U  |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | C 381 -6455         | 25.0 | 25.0          | ррр   | U  |
| 120-82-1    | 1,2,4-Trichlorobenzene      | C 381-6455          | 12.5 | 12.5          | ppb   | U  |
| 87-68-3     | Hexachlorobutadiene         | C 381-6455          | 12.0 | 12.0          | ppb   | U  |
| 91-20-3     | Naphthalene                 | C 381-6455          | 13.5 | 13.5          | ppb   | U  |
| 87-61-6     | 1,2,3-Trichlorobenzene      | C 381-6455          | 19.0 | 19.0          | ppb   | U  |



SHOLOCIBCONILS EHS

#### Page 12 of 45

L∀CE I3

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/18/2002

# Volatiles - EPA 8260B

#### Sample: M6865-4...continue

Client Sample ID: DMP-3 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

Collected: 01/08/2002 13:55



SHE STRONTONIOHA

#### Page 13 of 45

/ CZT-609-9TC 96:9T Z00Z/6Z/T0

Environmental Testing Laboratories, Inc. 208 Route 109, Farmingdale NY 11735

Phone - 631-249-1456 Fax - 631-249-8344

# Volatiles - EPA 8260B

01/18/2002

#### Sample: M6865-5

Client Sample ID: SMP-4 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

Collected: 01/08/2002 16:05

| Cas No     | Analyte                        | File ID     | MDL  | Concentration | Units | Q        |
|------------|--------------------------------|-------------|------|---------------|-------|----------|
| 75-71-8    | Dichlorodifluoromethane        | C 386-6551  | 4.80 | 4.80          | ppb   | U        |
| 75-45-6    | Chlorodifluoromethane          | C 386-6551  | 4.20 | 4.20          | ppb   | U        |
| 74-87-3    | Chloromethane                  | C 386-6551  | 17.0 | 17.0          | ppb   | U        |
| 75-01-4    | Vinyl Chloride                 | C 386-6551  | 17.0 | 126           | ppb   | +        |
| 74-83-9    | Bromomethane                   | C 386-6551  | 13.0 | 13.0          | ppb   | U        |
| 75-00-3    | Chloroethane                   | C 386-6551  | 13.4 | 776           | ppb   |          |
| 75-69-4    | Trichlorofluoromethane         | C 386-6551  | 2.40 | 2.40          | ppb   | U        |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | C 386-6551  | 3:80 | 3.80          | ppb   | U        |
| 75-35-4    | 1,1-Dichloroethene             | C 386-6551  | 4.40 | 130           | ppb   | †        |
| 67-64-1    | Acetone                        | C 386-6551  | 46.0 | 46.0          | ррь   | υ        |
| 75-15-0    | Carbon disulfide               | C 386 -6551 | 6.60 | 6,60          | ppb   | U        |
| 75-09-2    | Methylene Chloride             | C 386-6551  | 7.40 | 66,8          | ррь   |          |
| 156-60-5   | t-1,2-Dichloroethene           | C 386-6551  | 5.60 | 5.60          | ррь   | U        |
| 1634-04-4  | Methyl t-butyl ether           | C 386-6551  | 3.60 | 3,60          | ppb   | U        |
| 75-34-3    | 1,1-Dichloroethane             | C 381-6456  | 25.0 | 2890          | ppb   |          |
| 590-20-7   | 2,2-Dichloropropane            | C 386-6551  | 6.00 | 6.00          | ppb   | U        |
| 156-59-2   | c-1,2-Dichloroethene           | C 386-6551  | 3.60 | 3.60          | рръ   | U        |
| 78-93-3    | 2-Butanone                     | C 386-6551  | 344  | 344           | ppb   | U        |
| 74-97-5    | Bromochloromethane             | C 386-6551  | 3.00 | 3.00          | ppb   | U        |
| 67-66-3    | Chloroform                     | C 386-6551  | 4.40 | 4.40          | ppb   | U        |
| 71-55-6    | 1,1,1-Trichloroethane          | C 386-6551  | 2.80 | 2700          | ррр   |          |
| 56-23-5    | Carbon Tetrachloride           | C 386-6551  | 2.00 | 2.00          | ppb   | U        |
| 563-58-6   | 1,1-Dichloropropene            | C 386-6551  | 3.60 | 3.60          | ррЪ   | U        |
| 71-43-2    | Benzene                        | C 386-6551  | 3.40 | 3.40          | ррЬ   | U        |
| 107-06-2   | 1,2-Dichloroethane             | C 386-6551  | 3.20 | 3.20          | ppb   | Ŭ        |
| 79-01-6    | Trichloroethone                | C 386-6551  | 3.40 | 3.40          | рръ   | U        |
| 78-87-5    | 1,2-Dichloropropane            | C 386 -6551 | 2.80 | 2.80          | ррр   | U        |
| 74-95-3    | Dibromomethane                 | C 386 -6551 | 3.20 | 3.20          | ppb   |          |
| 75-27-4    | Bromodichloromethane           | C 386-6551  | 3.20 | 3.20          | ppb   |          |
| 110-75-8   | 2-Chloroethylvinylether        | C 386-6551  | 5.80 | 5.80          | ррь   |          |
| 10061-01-5 | c-1,3-Dichloropropene          | C 386-6551  | 4.40 | 4.40          | ppb   |          |
| 108-10-1   | 4-Methyl-2-pentanone           | C 386-6551  | 180  | . 180         | ppb   |          |
| 108-88-3   | Toluene                        | C 386-6551  | 2.80 | 69.6          | ррь   | <u> </u> |
| 10061-02-6 | t-1,3-Dichloropropene          | C 386-6551  | 2.80 | 2.80          | ррь   |          |
| 79-00-5    | 1,1,2-Trichloroethane          | C 386-6551  | 3.80 | 3.80          | ddd   |          |
| 127-18-4   | Tetrachloroethene              | C 386-6551  | 2.40 | 32.0          | ppp   |          |



- M6865 -

Page 14 of 45

2971-609-919 97/2002 10:40

208 Route 109, Farmingdale NY 11735

Phone - 631-249-1456 Fax - 631-249-8344

# Volatiles - EPA 8260B

#### 01/18/2002

#### Sample: M6865-5...continue

Client Sample ID: SMP-4 Matrix: Liquid Remarks: See Case Narrative

#### Type: Grab

Collected: 01/08/2002 16:05

| Cas No            | Analyte                     | File ID     | MDL. | Concentration | Units | Q  |
|-------------------|-----------------------------|-------------|------|---------------|-------|----|
| 142-28-9          | 1,3-Dichloropropane         | C 386 -6551 | 2.40 | 2.40          | ppb   | U  |
| 591-78-6          | 2-Hexanone                  | C 386-6551  | 100  | 100           | ppb   | U  |
| 124-48-1          | Dibromochloromethane        | C 386-6551  | 3.40 | 3.40          | ppb   | .U |
| 106-93-4          | 1,2-Dibromoethane           | C 386-6551  | 3.80 | 3.80          | ppb   | U  |
| 108-90-7          | Chlorobenzene               | C 386 -6551 | 3.80 | 3.80          | ppb   | U. |
| 630-20 <b>-</b> 6 | 1,1,1,2-Tetrachloroethane   | C 386-6551  | 3.00 | 3.00          | ррб   | U  |
| 100-41-4          | Ethylbenzene                | C 386-6551  | 3.20 | 3.20          | ррб   | U  |
| 108-38-3          | m,p-xylene                  | C 386-6551  | 4.20 | 4.20          | ppb   | U  |
| 95-47-6           | o-xylene                    | C 386 -6551 | 3.20 | 3.20          | ppb   | U  |
| 100-42-5          | Styrene                     | C 386-6551  | 2.60 | 2.60          | ppb   | U  |
| 75-25-2           | Bromoform                   | C 386-6551  | 5.40 | 5.40          | ppb   | U  |
| 98-82-8           | Isopropylbenzene            | C 386-6551  | 2.00 | 2.00          | ррб   | U  |
| 108-86-1          | Bromobenzene                | C 386-6551  | 4:20 | 4.20          | ррь   | U  |
| 79-34-5           | 1,1,2,2-Tetrachloroethane   | C 386-6551  | 3.00 | 3.00          | ррь   | U  |
| 103-65-1          | n-Propylbenzene             | C 386-6551  | 2.80 | 2.80          | ррь   | U  |
| 96-18-4           | 1,2,3-Trichloropropane      | C 386-6551  | 4.80 | 4.80          | ppb   | U  |
| 622-96-8          | p-Ethyitoluene              | C 386-6551  | 4.80 | 4.80          | ррb   | U  |
| 108-67-8          | 1,3,5-Trimethylbenzene      | C 386-6551  | 2.40 | 2.40          | ppb   | Ū  |
| 95-49-8           | 2-Chlorotoluene             | C 386-6551  | 4.20 | 4.20          | ppb   | U  |
| 106-43-4          | 4-Chlorotoluene             | C 386-6551  | 3.20 | 3.20          | ppb   | U  |
| 98-06-6           | tert-Butylbenzene           | C 386-6551  | 2.60 | 2.60          | ррб   | U  |
| 95-63-6           | 1,2,4-Trimethylbenzene      | C 386-6551  | 2.60 | 2.60          | ppb   | Ų  |
| 135-98-8          | sec-Butylbenzene            | C 386-6551  | 1.60 | 1.60          | ppb   | Ü  |
| 99-87-6           | 4-Isopropyltoluene          | C 386 -6551 | 2.00 | 2.00          | ppb   | U  |
| 541-73-1          | 1,3-Dichlorobenzene         | C 386-6551  | 3.00 | 3.00          | ppb   | U  |
| 106-46-7          | 1,4-Dichlorobenzene         | C 386 -6551 | 3.00 | 3.00          | ppb   | U  |
| 95-50-1           | 1,2-Dichlorobenzene         | C 386 -6551 | 2.80 | 2.80          | ppb   | U  |
| 105-05-5          | p-Diethylbenzene            | C 386-6551  | 5.40 | 5.40          | ррб   | U  |
| 104-51-8          | n-Butylbenzene              | C 386-6551  | 2.80 | 2.80          | ррб   | U  |
| 95-93-2           | 1,2,4,5-Tetramethylbenzene  | C 386 -6551 | 5.40 | 5.40          | ррб   | U  |
| 96-12-8           | 1,2-Dibromo-3-chloropropane | C 386-6551  | 10.0 | 10.0          | ppb   |    |
| 120-82-1          | 1,2,4-Trichlorobenzene      | C 386-6551  | 5.00 | 5.00          | ppb   |    |
| 87-68-3           | Hexachlorobutadiene         | C 386 -6551 | 4.80 | 4.80          | bbp   |    |
| 91-20-3           | Naphthalene                 | C 386 -6551 | 5.40 | 5.40          | ррь   |    |
| 87-61-6           | 1,2,3-Trichlorobenzene      | C 386-6551  | 7.60 | 7.60          | ppb   | U  |



#### Page 15 of 45

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/18/2002

# Volatiles - EPA 8260B

#### Sample: M6865-5...continue

Client Sample ID: SMP-4 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

Collected: 01/08/2002 16:05



- M6865 -

Page 16 of 45

PHOTOCIRCUITS EHS

2921-609-919 90:91 Z00Z/6Z/I0

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

# Volatiles - EPA 8260B

#### 01/18/2002

#### Sample: M6865-6

Client Sample ID: DMP-4 Matrix: Liquid Remarks: See Case Narrative

Type: Grab

#### Collected: 01/08/2002 15:25

| Analyzed D       | ate: 01/11/2002                |             |      |               |              |   |
|------------------|--------------------------------|-------------|------|---------------|--------------|---|
| Cas No           | Analyte                        | File ID     | MDL  | Concentration | Units        | Q |
| 75-71-8          | Dichlorodifluoromethane        | C 381-6457  | 2.40 | 2,40          | ppb          | υ |
| 75-45-6          | Chlorodifluoromethane          | C 381-6457  | 2.10 | 2.10          | ppb          | U |
| 74-87-3          | Chloromethane                  | C 381-6457  | 8.50 | 8,50          | ppb          | υ |
| 75-01-4          | Vinyl Chloride                 | C 381-6457  | 8.50 | 8.50          | ppb          | U |
| 74-83-9          | Bromomethane                   | C 381-6457  | 6.50 | 6.50          | ppb          | U |
| 75-00-3          | Chloroethane                   | C 381-6457  | 6.70 | 1210          | ppb          |   |
| 75-69-4          | Trichlorofluoromethane         | C 381-6457  | 1.20 | 1.20          | ррb          | U |
| 76-13-1          | 1,1,2-Trichlorotrifluoroethane | C 381 -6457 | 1.90 | 1.90          | ppb          | U |
| 75-35-4          | 1,1-Dichloroethene             | C 381-6457  | 2.20 | 2.20          | ppb          | U |
| 67-64-1          | Acetone                        | C 381 -6457 | 23.0 | 23.0          | ppb          | U |
| 75-15-0          | Carbon disulfide               | C 381-6457  | 3.30 | 3.30          | ppb ·        | U |
| 75-09-2          | Methylene Chloride             | C 381-6457  | 3,70 | 8.40          | ppb          |   |
| 156-60-5         | t-1,2-Dichloroethene           | C 381-6457  | 2.80 | 2.80          | ppb          | U |
| 1634-04-4        | Methyl t-butyl ether           | C 381-6457  | 1.80 | 21.9          | ppb          |   |
| 75-34-3          | 1.1-Dichloroethane             | C 381-6457  | 2.50 | 16.3          | ppb          |   |
| 590-20-7         | 2,2-Dichloropropane            | C 381-6457  | 3.00 | 3.00          | ppb          | U |
| 156-59-2         | c-1,2-Dichloroethene           | C 381-6457  | 1.80 | 1.80          | ppb          | U |
| 78-93-3          | 2-Butanone                     | C 381-6457  | 172  | 172           | ppb          | U |
| 74-97-5          | Bromochloromethane             | C 381 -6457 | 1.50 | 1.50          | ppb          | U |
| 67-66-3          | Chloroform                     | C 381-6457  | 2.20 | 2.20          | ррь          | U |
| 71-55-6          | 1,1,1-Trichloroethane          | C 381-6457  | 1.40 | 1.40          | р <b>р</b> Ь | U |
| 56-23-5          | Carbon Tetrachloride           | C 381-6457  | 1.00 | 1.00          | ppb          | Ų |
| 563-58-6         | 1,1-Dichloropropene            | C 381-6457  | 1.80 | 1.80          | ppb          | U |
| 71-43-2          | Benzene                        | C 381-6457  | 1.70 | 1.70          | ppb          | Ų |
| 107-06-2         | 1,2-Dichloroethane             | C 381 -6457 | 1.60 | 1.60          | ppb          | U |
| 79-01-6          | Trichloroethene                | C 381 -6457 | 1.70 | 1.70          | ррь          | Ü |
| 78-87-5          | 1,2-Dichloropropane            | C 381 -6457 | 1.40 | 1.40          | рръ          | υ |
| 74-95-3          | Dibromomethane                 | C 381 -6457 | 1.60 | 1.60          | ppb          | U |
| 75-27-4          | Bromodichloromethane           | C 381-6457  | 1.60 | 1.60          | ppb          | U |
| 110-75-8         | 2-Chloroethylvinylether        | C 381-6457  | 2.90 | 2.90          | ррb          | U |
| 10061-01-5       | c-1,3-Dichloropropene          | C 381-6457  | 2.20 | 2.20          | ррЪ          | U |
| 108-10 <b>-1</b> | 4-Methyl-2-pentanone           | C 381-6457  | 90.0 | 90.0          | ррб          | U |
| 108-88-3         | Toluene                        | C 381-6457  | 1.40 | 6.90          | рръ          |   |
| 10061-02-6       | t-1,3-Dichloropropene          | C 381 -6457 | 1.40 | 1.40          | ppb          | U |
| 79-00-5          | 1,1,2-Trichloroethane          | C 381-6457  | 1.90 | 1.90          | ррь          | U |
| 127-18-4         | Tetrachloroethene              | C 381 -6457 | 1.20 | 1,20          | ppb          | U |



#### Page 17 of 45

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

# Volatiles - EPA 8260B

01/18/2002

#### Sample: M6865-6...continue

Client Sample ID: DMP-4 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

#### Collected: 01/08/2002 15:25

| Cas No   | Апаlyte                     | File ID             | MDL  | Concentration | Units | Q |
|----------|-----------------------------|---------------------|------|---------------|-------|---|
| 142-28-9 | 1,3-Dichloropropane         | C 381-6457          | 1.20 | 1.20          | ррб   | U |
| 591-78-6 | 2-Hexanone                  | C 381-6457          | 50.0 | 50.0          | ppb   | U |
| 124-48-1 | Dibromochloromethane        | C 381 -6457         | 1.70 | 1.70          | ppb   | U |
| 106-93-4 | 1,2-Dibromoethane           | C 381-6457          | 1.90 | 1.90          | ррb   | U |
| 108-90-7 | Chlorobenzene               | C 381-6457          | 1,90 | 1.90          | dad   | U |
| 630-20-6 | 1,1,1,2-Tetrachloroethane   | C 381-6457          | 1.50 | 1.50          | ppb   | U |
| 100-41-4 | Ethylbenzene                | C 381 -6457         | 1.60 | 1.60          | ppb   | U |
| 108-38-3 | m,p-xylene                  | C 381-6457          | 2.10 | 2.10          | ppb   | U |
| 95-47-6  | o-xylene                    | C 381 -6457         | 1.60 | 1.60          | ррб   | U |
| 100-42-5 | Styrene                     | C 381-6457          | 1.30 | 1.30          | ppb   | U |
| 75-25-2  | Bromoform                   | C 381 -6457         | 2.70 | 2.70          | ррб   | U |
| 98-82-8  | Isopropylbenzene            | C 381 -6457         | 1.00 | 1.00          | ppb   | U |
| 108-86-1 | Bromobenzene                | C 381 <i>-</i> 6457 | 2.10 | 2.10          | ppb   | U |
| 79-34-5  | 1,1,2,2-Tetrachloroethane   | C 381-6457          | 1.50 | 1.50          | ppb   | U |
| 103-65-1 | n-Propylbenzene             | C 381 -6457         | 1.40 | 1.40          | ррb   | U |
| 96-18-4  | 1,2,3-Trichloropropane      | C 381-6457          | 2.40 | 2.40          | ppb   | U |
| 622-96-8 | p-Ethyltoluene              | C 381-6457          | 2.40 | 2.40          | ppb   | U |
| 108-67-8 | 1,3,5-Trimethylbenzene      | C 381 -6457         | 1.20 | 1.20          | ppb   | U |
| 95-49-8  | 2-Chlorotoluene             | C 381 -6457         | 2.10 | 34.2          | ppb   |   |
| 106-43-4 | 4-Chlorotoluene             | C 381 -6457         | 1.60 | . 1.60        | ррb   | U |
| 98-06-6  | tert-Butylbenzene           | C 381-6457          | 1.30 | 1.30          | ррб   | U |
| 95-63-6  | 1,2,4-Trimethylbenzene      | C 381-6457          | 1.30 | 9.00          | ррb   |   |
| 135-98-8 | sec-Butylbenzene            | C 381 -6457         | 0.80 | 0.80          | ррЬ   | U |
| 99-87-6  | 4-Isopropyltoluene          | C 381-6457          | 1.00 | 1.00          | ррб   | U |
| 541-73-1 | 1 3-Dichlorobenzene         | C 381-6457          | 1.50 | 1,50          | ppb   | U |
| 106-46-7 | 1,4-Dichlorobenzene         | C 381 -6457         | 1.50 | 1.50          | ppb   | U |
| 95-50-1  | 1,2-Dichlorobenzene         | C 381 -6457         | 1.40 | 1.40          | ppb   | U |
| 105-05-5 | p-Diethylbenzene            | C 381-6457          | 2.70 | 2.70          | ррЬ   | Ū |
| 104-51-8 | n-Butylbenzene              | C 381 -6457         | 1.40 | 1.40          | ppp   | U |
| 95-93-2  | 1,2,4,5-Tetramethylbenzene  | C 381 -6457         | 2.70 | 2.70          | ddd   | U |
| 96-12-8  | 1,2-Dibromo-3-chloropropane | C 381 <i>-</i> 6457 | 5.00 | 5.00          | ppb   | U |
| 120-82-1 | 1,2,4-Trichlorobenzene      | C 381 -6457         | 2.50 | 2.50          | ppb   |   |
| 87-68-3  | Hexachlorobutadiene         | C 381-6457          | 2.40 | 2,40          | ррр   | U |
| 91-20-3  | Naphthalene                 | C 381 -6457         | 2.70 | 2,70          | ррь   | U |
| 87-61-6  | 1 2 3-Trichlorobenzene      | C 381-6457          | 3.80 | 3.80          | ррб   | U |



PHOTOCIRCUITS EHS

#### Page 18 of 45

01/53/5005 10:40 210-003/52/10

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/18/2002

# Volatiles - EPA 8260B

## Sample: M6865-6...continue

Client Sample ID: DMP-4 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

Collected: 01/08/2002 15:25

# 

**ETU** 

PAGE

82

- M6865 -

Page 19 of 45

PHOTOCIRCUITS EHS

/971-609-919 90:91 Z00Z/6Z/T0

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/18/2002

# Volatiles - EPA 8260B

#### Sample: M6865-7

Client Sample ID: MW-7 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

Collected: 01/08/2002 11:40

| Cas No          | Analyte                        | File ID     | MDL  | Concentration | Units | Q        |
|-----------------|--------------------------------|-------------|------|---------------|-------|----------|
| 75-71-8         | Dichlorodifluoromethane        | C 386-6553  | 0.24 | 0.24          | ppb   | U ·      |
| 75-45-6         | Chiorodifluoromethane          | C 386 -6553 | 0.21 | 0.21          | ррь   | U        |
| 74-87-3         | Chloromethane                  | C 386-6553  | 0.85 | 0.85          | ppb   | U        |
| 75-01-4         | Vinyl Chloride                 | C 386-6553  | 0.85 | 10.5          | ppb   |          |
| 74-83-9         | Bromomethane                   | C 386-6553  | 0.65 | 0.65          | ppb   | U.       |
| 75-00-3         | Chloroethane                   | C 381-6458  | 33.5 | 390           | ррЬ   |          |
| 75-69-4         | Trichlorofluoromethane         | C 386-6553  | 0.12 | 0.12          | ppb   | U .      |
| 76-13- <b>1</b> | 1,1,2-Trichlorotrifluoroethane | C 386-6553  | 0.19 | 0.19          | ppb   | U        |
| 75-35-4         | 1,1-Dichloroethene             | C 386-6553  | 0.22 | 0.22          | ppb   | U·       |
| 67-64-1         | Acetone                        | C 386-6553  | 2.30 | 2.30          | рръ   | U        |
| 75-15-0         | Carbon disulfide               | C 386-6553  | 0.33 | 1.20          | ррb   |          |
| 75-09-2         | Methylene Chloride             | C 386-6553  | 0.37 | 8.00          | ppb   |          |
| 156-60-5        | t-1,2-Dichloroethene           | C 386-6553  | 0.28 | 2.10          | ррр   |          |
| 1634-04-4       | Methyl t-butyl ether           | C 386-6553  | 0.18 | 0.18          | ррь   | U        |
| 75-34-3         | 1,1-Dichloroethane             | C 381-6458  | 12.5 | 193           | ррb   |          |
| 590-20-7        | 2,2-Dichloropropane            | C 386-6553  | 0.30 | 0.30          | ррb   | U        |
| 156-59-2        | c-1,2-Dichloroethene           | C 386-6553  | 0,18 | 8.30          | ppb   |          |
| 78-93-3         | 2-Butanone                     | C 386-6553  | 17.2 | 17.2          | ррb   | U        |
| 74-97-5         | Bromochloromethane             | C 386-6553  | 0.15 | 0.15          | ppb . | U        |
| 67-66-3         | Chloroform                     | C 386-6553  | 0.22 | 0.22          | ppb   | U        |
| 71-55-6         | 1,1,1-Trichloroethane          | C 386-6553  | 0.14 | 0.14          | ppb   | U        |
| 56-23-5         | Carbon Tetrachloride           | C 386-6553  | 0.10 | 0.10          | ppb   | U        |
| 563-58-6        | 1,1-Dichloropropene            | C 386-6553  | 0.18 | 0.18          | ppb   | U        |
| 71-43-2         | Benzene                        | C 386-6553  | 0.17 | 6.50          | ррб   |          |
| 107-06-2        | 1,2-Dichloroethane             | C 386-6553  | 0.16 | 3.70          | ррь   |          |
| 79-01-6         | Trichloroethene                | C 386-6553  | 0.17 | 2.70          | ppb   | В        |
| 78-87-5         | 1,2-Dichloropropane            | C 386-6553  | 0.14 | 0.14          | ррр   | U<br>U   |
| 74-95-3         | Dibromomethane                 | C 386-6553  | 0.16 | 0.16          | ррь   | U        |
| 75-27-4         | Bromodichloromethane           | C 386-6553  | 0.16 | 0.16          | ppb   | 0        |
| 110-75-8        | 2-Chloroethylvinylether        | C 386 -6553 | 0.29 | 0,29          | ррь   |          |
| 10061-01-5      | c-1,3-Dichloropropene          | C 386 -6553 | 0.22 | 0,22          | рръ   |          |
| 108-10-1        | 4-Methyl-2-pentanone           | C 386-6553  | 9.00 | 9.00          | ppb   | U.       |
| 108-88-3        | Toluene                        | C 386-6553  | 0.14 | 0.95          | ррь   | <u> </u> |
| 10061-02-6      | t-1,3-Dichloropropene          | C 386-6553  | 0.14 | 0.14          | ppb   | 10       |
| 79-00-5         | 1,1,2-Trichloroethane          | C 386-6553  | 0.19 | 0.19          | ppb   | 10       |
| 127-18-4        | Tetrachloroethene              | C 386-6553  | 0.12 | 0.12          | ppb   | U        |



- M6865 -

Page 20 of 45

PAGE 21

2921-609-919 97:91 2002/62/10

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

#### 01/18/2002

# Volatiles - EPA 8260B

#### Sample: M6865-7...continue

Client Sample ID: MW-7 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

#### Type: Grab

Collected: 01/08/2002 11:40

| Cas No            | Analyte                     | File ID     | MDL   | Concentration | Units | Q |
|-------------------|-----------------------------|-------------|-------|---------------|-------|---|
| 142-28-9          | 1,3-Dichloropropane         | C 386-6553  | 0.12  | 0.12          | ррь   | U |
| 591-78-6          | 2-Hexanone                  | C 386-6553  | 5.00  | 5.00          | ppb   | U |
| 124-48-1          | Dibromochloromethane        | C 386-6553  | 0.17  | 0.17          | ррб   | U |
| 106-93-4          | 1,2-Dibromoethane           | C 386-6553  | 0.19  | 0.19          | ppb   | U |
| 108-90-7          | Chlorobenzene               | C 386-6553  | 0.19  | 0.19          | ppb   | U |
| 630-20-6          | 1,1,1,2-Tetrachloroethane   | C 386-6553  | 0,15  | 0.15          | ppb   | U |
| 100-41-4          | Ethylbenzene                | C 386-6553  | 0.16  | 0.16          | ppb   | U |
| 108-38-3          | m,p-xylene                  | C 386-6553  | 0.21  | 1,00          | ppb   |   |
| 95-47-6           | o-xylene                    | C 386-6553  | 0.16  | 0.16          | ррb   | υ |
| 100-42-5          | Styrene                     | C 386-6553  | 0.13  | 0.13          | ppb   | υ |
| 75-25-2           | Bromoform                   | C 386-6553  | 0.27  | 0.27          | ррb   | U |
| 98-82-8           | Isopropylbenzene            | C 386-6553  | 0.10  | 0.10          | ppb   | U |
| 108-86-1          | Bromobenzene                | C 386-6553  | 0.21  | 0.21          | bbp   | U |
| 79-34-5           | 1,1,2,2-Tetrachloroethane   | C 386-6553  | 0.15  | 0.15          | ppb   | U |
| 103-65-1          | n-Propylbenzene             | C 386-6553  | 0.14  | 0.14          | ррь   | U |
| 96-18-4           | 1,2,3-Trichloropropane      | C 386-6553  | 0.24  | 0.24          | ppb   | U |
| 622-96-8          | p-Ethyltoluene              | C 386-6553  | 0.24  | 0.24          | ррр   | Ų |
| 108-67-8          | 1,3,5-Trimethylbenzene      | C 386-6553  | 0.12  | 0.12          | ppb   | U |
| 95-49-8           | 2-Chlorotoluene             | C 386-6553  | 0.21  | 8.40          | ppb   |   |
| 106-43-4          | 4-Chlorotoluene             | C 386-6553  | 0.16  | 0.16          | ppb   | υ |
| 98-06-6           | tert-Butylbenzene           | C 386-6553  | 0.13  | 0.13          | ppb   | U |
| 95-63-6           | 1,2,4-Trimethylbenzene      | C 386-6553  | 0.13  | 0.93          | ppb   |   |
| 135-98 <b>-</b> 8 | sec-Butylbenzene            | C 386-6553  | 0.080 | 0.080         | ppb   | U |
| 99-87 <b>-</b> 6  | 4-isopropyitoluene          | C 386-6553  | 0.10  | 0.10          | ppb   | U |
| 541-73-1          | 1,3-Dichlorobenzene         | C 386-6553  | 0.15  | 0.15          | ppb   | U |
| 106-46-7          | 1,4-Dichlorobenzene         | C 386-6553  | 0.15  | 0.15          | ррь   | U |
| 95-50-1           | 1,2-Dichlorobenzene         | C 386-6553  | 0.14  | 0.14          | ppb   | U |
| 105-05-5          | p-Diethylbenzene            | C 386 -6553 | 0.27  | 0.27          | ррь   | U |
| 104-51-8          | n-Butylbenzene              | C 386 -6553 | 0.14  | 0.14          | ppb   | U |
| 95-93-2           | 1,2,4,5-Tetramethylbenzene  | C 386-6553  | 0.27  | 0.27          | ppb   |   |
| 96-12-8           | 1,2-Dibromo-3-chloropropane | C 386 -6553 | 0.50  | 0.50          | ppb   |   |
| 120-82-1          | 1,2,4-Trichlorobenzene      | C 386-6553  | 0.25  | 0.25          | ppb   | 0 |
| 87^68-3           | Hexachlorobutadiene         | C 386-6553  | 0.24  | 0.24          | ppb   | 0 |
| 91-20-3           | Naphthalene                 | C 386 -6553 | 0.27  | 0.27          | ррь   |   |
| 87-61-6           | 1.2.3-Trichlorobenzene      | C 386 -6553 | 0.38  | 0.38          | ppb   | 0 |



SHA STROOMS FH2

#### Page 21 of 45

Environmental Testing Laboratories, Inc. 208 Route 109, Farmingdale NY 11735

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/18/2002

# Volatiles - EPA 8260B

## Sample: M6865-7...continue

Client Sample ID: MW-7 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

Collected: 01/08/2002 11:40



- M6865 -

Page 22 of 45

PHOTOCIRCUITS EHS

/971-609-919 90:91 Z00Z/6Z/I0

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

# Volatiles - EPA 8260B

01/18/2002

#### Sample: M6865-8

Client Sample ID: MW-8 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

Collected: 01/08/2002 09:30

| Cas No           | Analyte                        | File ID     | MDL         | Concentration | Units | Q        |
|------------------|--------------------------------|-------------|-------------|---------------|-------|----------|
| 75-71-8          | Dichlorodifluoromethane        | C 381 -6459 | 0.24        | 0.24          | ppb   | Ų        |
| 75-45 <b>-</b> 6 | Chlorodifluoromethane          | C 381-6459  | 0.21        | 0.21          | ppb   | U        |
| 74-87-3          | Chloromethane                  | C 381 -6459 | 0.85        | 0.85          | ppb   | U        |
| 75-01-4          | Vinyl Chloride                 | C 381-6459  | <b>0.85</b> | 0.85          | ppb   | U        |
| 74-83-9          | Bromomethane                   | C 381-6459  | 0.65        | 0.65          | ppb   | υ        |
| 75-00-3          | Chloroethane                   | C 381-6459  | 0.67        | 0.67          | ppb   | U        |
| 75-69-4          | Trichlorofluoromethane         | C 381-6459  | 0.12        | . 0.12        | ppb   | U        |
| 76-13-1          | 1,1.2-Trichlorotrifluoroethane | C 381-6459  | 0.19        | 0.19          | ppb   | U        |
| 75-35-4          | 1,1-Dichloroethene             | C 381-6459  | 0.22        | 0.22          | ppb   | U        |
| 67-64-1          | Acetone                        | C 381-6459  | 2.30        | 2.30          | ррb   | U        |
| 75-15-0          | Carbon disulfide               | C 381 -6459 | 0.33        | 0.33          | ppb   | U        |
| 75-09-2          | Methylene Chloride             | C 381-6459  | 0.37        | 0.37          | ррь   | Ų        |
| 156-60-5         | t-1,2-Dichloroethene           | C 381-6459  | 0.28        | . 0.28        | ppb   | U        |
| 1634-04-4        | Methyl t-butyl ether           | C 381-6459  | 0.18        | 0.18          | ppb   | U        |
| 75-34-3          | 1,1-Dichloroethane             | C 381-6459  | 0.25        | 0.25          | ррb   | U        |
| 590-20-7         | 2,2-Dichloropropane            | C 381 -6459 | 0.30        | 0.30          | ppb   | U        |
| 156-59-2         | c-1,2-Dichloroethene           | C 381-6459  | 0.18        | 0.18          | ppb   | U        |
| 78-93-3          | 2-Butanone                     | C 381-6459  | 17.2        | 17.2          | ppb   | U        |
| 74-97-5          | Bromochloromethane             | C 381-6459  | 0.15        | 0.15          | ppb   | 10       |
| 67-66-3          | Chloroform                     | C 381 -6459 | 0.22        | 0.22          | ppb   | U        |
| 71-55 <b>-</b> 6 | 1,1,1-Trichloroethane          | C 381-6459  | 0.14        | 0.14          | ррb   | U        |
| 56-23-5          | Carbon Tetrachloride           | C 381-6459  | 0.10        | 0.10          | ррb   | U        |
| 563-58-6         | 1,1-Dichloropropene            | C 381-6459  | 0.18        | 0.18          | ppb   | Ŭ        |
| 71-43-2          | Benzene                        | C 381-6459  | 0.17        | 0.17          | ppb _ | U        |
| 107-06-2         | 1,2-Dichloroethane             | C 381-6459  | 0.16        | 0.16          | ppb   | U        |
| 79-01-6          | Trichloroethene                | C 381-6459  | 0.17        | 0.97          | ppb   | В        |
| 78-87-5          | 1,2-Dichloropropane            | C 381-6459  | 0.14        | 0.14          | ррь   | U        |
| 74-95-3          | Dibromomethane                 | C 381-6459  | 0.16        | 0.16          | ppb   | U        |
| 75-27-4          | Bromodichloromethane           | C 381-6459  | 0.16        | 0.16          | ppb   | <u> </u> |
| 110-75-8         | 2-Chloroethylvinylether        | C 381-6459  | 0.29        | 0.29          | ppb   | U        |
| 10061-01-5       | c-1,3-Dichloropropene          | C 381-6459  | 0.22        | 0.22          | ppb   | <u> </u> |
| 108-10-1         | 4-Methyl-2-pentanone           | C 381-6459  | 9.00        | 9.00          | ddd   | U        |
| 108-88-3         | Toluene                        | C 381-6459  | 0.14        | 0.14          | ppb   | U        |
| 10061-02-6       | t-1,3-Dichloropropene          | C 381-6459  | 0.14        | 0.14          | ppb   | U        |
| 79-00-5          | 1,1,2-Trichloroethane          | C 381-6459  | 0.19        | 0.19          | ppb   | U        |
| 127-18-4         | Tetrachloroethene              | C 381-6459  | 0.12        | 0.12          | ррб   | U        |



האטניטכנאכטניא באא

#### Page 23 of 45

₽Z 79₩A
208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

### Volatiles - EPA 8260B

01/18/2002

#### Sample: M6865-8...continue

Client Sample ID: MW-8 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

#### Type: Grab

Collected: 01/08/2002 09:30

| Cas No   | Analyte                     | File ID     | MDL   | Concentration | Units | Q      |
|----------|-----------------------------|-------------|-------|---------------|-------|--------|
| 142-28-9 | 1,3-Dichloropropane         | C 381-6459  | 0.12  | 0.12          | ppb - | U      |
| 591-78-6 | 2-Hexanone                  | C 381-6459  | 5.00  | 5.00          | ppb   | U      |
| 124-48-1 | Dibromochloromethane        | C 381-6459  | 0,17  | 0.17          | ppb   | U      |
| 106-93-4 | 1,2-Dibromoethane           | C 381-6459  | 0.19  | 0.19          | ppb   | U      |
| 108-90-7 | Chlorobenzene               | C 381-6459  | 0.19  | 0.19          | ppb   | U      |
| 630-20-6 | 1,1,1,2-Tetrachloroethane   | C 381-6459  | 0.15  | 0.15          | ррb   | U      |
| 100-41-4 | Ethylbenzene                | C 381-6459  | 0.16  | 0.16          | ppb   | U      |
| 108-38-3 | m,p-xylene                  | C 381-6459  | 0.21  | 0,21          | ррь   | U      |
| 95-47-6  | o-xylene                    | C 381-6459  | 0.16  | 0.16          | ррб   | U      |
| 100-42-5 | Styrene                     | C 381-6459  | 0.13  | 0.13          | ppb   | υ      |
| 75-25-2  | Bromoform                   | C 381-6459  | 0.27  | 0.27          | ppb   | U      |
| 98-82-8  | Isopropylbenzene            | C 381-6459  | 0.10  | 0.10          | ppb   | U      |
| 108-86-1 | Bromobenzene                | C 381-6459  | 0.21  | 0.21          | ppb   | U      |
| 79-34-5  | 1,1,2,2-Tetrachloroethane   | C 381-6459  | 0.15  | 0.15          | ррб   | U      |
| 103-65-1 | n-Propylbenzene             | C 381-6459  | 0.14  | 0.14          | ppb   | U      |
| 96-18-4  | 1,2,3-Trichloropropane      | C 381-6459  | 0.24  | 0.24          | ppb   | U      |
| 622-96-8 | p-Ethyltoluene              | C 381-6459  | 0.24  | 0.24          | ppb   | U      |
| 108-67-8 | 1,3,5-Trimethylbenzene      | C 381-6459  | 0.12  | 0.12          | ppb   | U      |
| 95-49-8  | 2-Chlorotoluene             | C 381 -6459 | 0.21  | 0.21          | ррЬ   | Ũ      |
| 106-43-4 | 4-Chlorotoluene             | C 381-6459  | 0.16  | 0.16          | ppb   | U      |
| 98-06-6  | tert-Butylbenzene           | C 381-6459  | 0.13  | 0.13          | ppb   | U      |
| 95-63-6  | 1,2,4-Trimethylbenzene      | C 381-6459  | 0.13  | 0.13          | ppb   | U      |
| 135-98-8 | sec-Butylbenzene            | C 381-6459  | 0.080 | 0.080         | ppb   | U      |
| 99-87-6  | 4-Isopropyltoluene          | C 381-6459  | 0.10  | 0.10          | ррЪ   | U      |
| 541-73-1 | 1,3-Dichlorobenzene         | C 381-6459  | 0.15  | 0.15          | ррб   | U      |
| 106-46-7 | 1,4-Dichlorobenzene         | C 381-6459  | 0.15  | 0,15          | ppb   | U      |
| 95-50-1  | 1,2-Dichlorobenzene         | C 381-6459  | 0.14  | 0.14          | ppb   | U      |
| 105-05-5 | p-Diethylbenzene            | C 381 -6459 | 0.27  | 0.27          | ppb   | U      |
| 104-51-8 | n-Butylbenzene              | C 381 -6459 | 0.14  | 0.14          | ppb   | U      |
| 95-93-2  | 1,2,4,5-Tetramethylbenzene  | C 381-6459  | 0.27  | 0.27          | ppb   | U      |
| 96-12-8  | 1,2-Dibromo-3-chloropropane | C 381-6459  | 0.50  | 0.50          | ppb   | U      |
| 120-82-1 | 1,2,4-Trichlorobenzene      | C 381-6459  | 0.25  | 0.25          | ppb   | U      |
| 87-68-3  | Hexachlorobutadiene         | C 381-6459  | 0.24  | 0.24          | ppb   | U      |
| 91-20-3  | Naphthalene                 | C 381-6459  | 0.27  | 0.27          | ppb   | U<br>U |
| 87-61-6  | 1,2,3-Trichlorobenzene      | C 381-6459  | 0.38  | 0.38          | bbp   | U      |



PHOTOCIRCUITS EHS

Page 24 of 45

2921-609-919 97:97 Z00Z/6Z/T0

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/18/2002

# Volatiles - EPA 8260B

#### Sample: M6865-8...continue

Client Sample ID: MW-8 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

Collected: 01/08/2002 09:30





#### - M6865 -

### Page 25 of 45

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

# Volatiles - EPA 8260B

01/18/2002

#### Sample: M6865-9

Client Sample ID: MW-14 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

Collected: 01/08/2002 11:00

| Cas No     | Analyte                        | FileID      | MDL  | Concentration | Units | 0    |
|------------|--------------------------------|-------------|------|---------------|-------|------|
| 75-71-8    | Dichlorodifluoromethane        | C 381-6460  | 4.80 | 4.80          | DDD   | - U- |
| 75-45-6    | Chlorodifluoromethane          | C 381-6460  | 4.20 | 4.20          | dad   | U    |
| 74-87-3    | Chloromethane                  | C 381-5460  | 17.0 | 17.0          | ppb   | U    |
| 75-01-4    | Vinyl Chloride                 | C 381-6460  | 17.0 | 173           | ppb   |      |
| 74-83-9    | Bromomethane                   | C 381-6460  | 13.0 | 13.0          | ppb   | υ    |
| 75-00-3    | Chloroethane                   | C 381-6460  | 13.4 | 501           | ppb   |      |
| 75-69-4    | Trichlorofluoromethane         | C 381-6460  | 2.40 | 2.40          | ppb   | U    |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | C 381-6460  | 3.80 | 3.80          | ppb   | U    |
| 75-35-4    | 1,1-Dichloroethene             | C 381-6460  | 4.40 | 542           | ppb   |      |
| 67-64-1    | Acetone                        | C 381 -6460 | 46.0 | 986           | ppb   |      |
| 75-15-0    | Carbon disulfide               | C 381-6460  | 6.60 | 6.60          | ррь   | U    |
| 75-09-2    | Methylene Chloride             | C 381-6460  | 7.40 | 134           | ppb   |      |
| 156-60-5   | t-1,2-Dichloroethene           | C 381-6460  | 5.60 | 5.60          | ррь   | U    |
| 1634-04-4  | Methyl t-butyl ether           | C 381-6460  | 3.60 | 3.60          | ppb   | U    |
| 75-34-3    | 1,1-Dichloroethane             | C 386-6552  | 50.0 | 14100         | ррЬ   |      |
| 590-20-7   | 2,2-Dichloropropane            | C 381-6460  | 6.00 | 6,00          | ppb   | U    |
| 156-59-2   | c-1,2-Dichloroethene           | C 381-6460  | 3.60 | 3.60          | ppb   | U    |
| 78-93-3    | 2-Butanone                     | C 381 -6460 | 344  | 344           | ppb   | U    |
| 74-97-5    | Bromochloromethane             | C 381-6460  | 3.00 | 3.00          | ррб   | U    |
| 67-66-3    | Chloroform                     | C 381 -6460 | 4.40 | 4.40          | ppb   | U    |
| 71-55-6    | 1,1,1-Trichloroethane          | C 381 -6460 | 2.80 | 1520          | ррь   |      |
| 56-23-5    | Carbon Tetrachloride           | C 381 -6460 | 2.00 | 2.00          | ррЬ   | U    |
| 563-58-6   | 1,1-Dichloropropene            | C 381-6460  | 3.60 | 3.60          | ррь   | U    |
| 71-43-2    | Benzene                        | C 381-6460  | 3.40 | 3.40          | ppb   | U    |
| 107-06-2   | 1,2-Dichloroethane             | C 381-6460  | 3.20 | 3.20          | ppb   | U    |
| 79-01-6    | Trichloroethene                | C 381-6460  | 3.40 | 3.40          | ррб   | 0    |
| 78-87-5    | 1,2-Dichloropropane            | C 381-6460  | 2.80 | 2.80          | ppb   | 0    |
| 74-95-3    | Dibromomethane                 | C 381-6460  | 3.20 | 3.20          | ppb   |      |
| 75-27-4    | Bromodichloromethane           | C 381-6460  | 3.20 | 3.20          | ppb   |      |
| 110-75-8   | 2-Chloroethylvinylether        | C 381-6460  | 5.80 | 5.80          | ppb   |      |
| 10061-01-5 | c-1,3-Dichloropropene          | C 381-6460  | 4.40 | 4.40          | ppp   |      |
| 108-10-1   | 4-Methyl-2-pentanone           | C 381-6460  | 180  | 180           | ppp   |      |
| 108-88-3   | Toluene                        | C 381-6460  | 2.80 | 25.0          | ppo   |      |
| 10061-02-6 | t-1,3-Dichloropropene          | C 381-6460  | 2.80 | 2.80          | add   |      |
| 79-00-5    | 1,1,2-Trichloroethane          | C 381-6460  | 3.80 | 3.80          | ppp   | -    |
| 127-18-4   | Tetrachloroethene              | C 381-6460  | 2,40 | 2.40          | ddd   |      |



- M6865 -

Page 26 of 45

PAGE 27

PHOTOCIRCUITS EHS

/971-609-919 95:91 Z00Z/6Z/T0

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

# Volatiles - EPA 8260B

#### Sample: M6865-9...continue

Client Sample ID: MW-14 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

Collected: 01/08/2002 11:00

01/18/2002

| Cas No           | Analyte                     | File ID     | MDL  | Concentration | Units | Q         |
|------------------|-----------------------------|-------------|------|---------------|-------|-----------|
| 142-28-9         | 1,3-Dichloropropane         | C 381-6460  | 2.40 | 2.40          | ppb   | U         |
| 591-78-6         | 2-Hexanone                  | C 381 -6460 | 100  | 100           | ppb   | U         |
| 124-48-1         | Dibromochloromethane        | C 381 -6460 | 3.40 | 3.40          | ppb   | U         |
| 106-93-4         | 1,2-Dibromoethane           | C 381-6460  | 3.80 | 3.80          | ppb   | υ         |
| 108-90-7         | Chlorobenzene               | C 381-6460  | 3.80 | 3.80          | ppb   | U         |
| 630-20-6         | 1,1,1,2-Tetrachloroethane   | C 381-6460  | 3.00 | 3.00          | ppb   | U         |
| 100-41-4         | Ethylbenzene                | C 381 -6460 | 3.20 | 3.20          | ppb   | U         |
| 108-38-3         | m,p-xylene                  | C 381 -6460 | 4.20 | 4.20          | ppb   | U         |
| 95-47 <b>-</b> 6 | o-xylene                    | C 381-6460  | 3.20 | 3.20          | ppb   | U         |
| 100-42-5         | Styrene                     | C 381-6460  | 2.60 | 2.60          | ppb   | U         |
| 75-25-2          | Bromoform                   | C 381 -6460 | 5.40 | 5.40          | ррь   | U         |
| 98-82-8          | Isopropylbenzene            | C 381-6460  | 2.00 | 2.00          | ppb   | U         |
| 108-86-1         | Bromobenzene                | C 381 -6460 | 4.20 | • 4.20        | рры   | U         |
| 79-34-5          | 1,1,2,2-Tetrachloroethane   | C 381 -6460 | 3.00 | 3.00          | рръ   | U         |
| 103-65-1         | n-Propylbenzene             | C 381-6460  | 2.80 | 2.80          | ppb   | <u></u> ט |
| 96-18-4          | 1,2,3-Trichloropropane      | C 381 -6460 | 4.80 | 4.80          | ppb   | Ų         |
| 622-96-8         | p-Ethyltoluene              | C 381 -6460 | 4.80 | 4.80          | ppb   | U         |
| 108-67-8         | 1,3,5-Trimethylbenzene      | C 381-6460  | 2.40 | 2.40          | ppb   | U         |
| 95-49-8          | 2-Chlorotoluene             | C-381-6460  | 4.20 | 4.20          | ppb   | U         |
| 106-43-4         | 4-Chiorotoluene             | C 381 -6460 | 3.20 | 3.20          | ppb   | Ų         |
| 98-06-6          | tert-Butylbenzone           | C 381-6460  | 2.60 | 2.60          | ррь   | U         |
| 95-63-6          | 1,2,4-Trimethylbenzene      | C 381-6460  | 2.60 | 2,60          | ррь   | U         |
| 135-98-8         | sec-Butylbenzene            | C 381-6460  | 1.60 | 1.60          | ррь   | U         |
| 99-87-6          | 4-Isopropyltoluene          | C 381-6460  | 2.00 | 2.00          | ppb   | U         |
| 541-73- <b>1</b> | 1,3-Dichlorobenzene         | C 381-6460  | 3.00 | 3.00          | ppb   | U         |
| 106-46-7         | 1,4-Dichlorobenzene         | C 381-6460  | 3.00 | 3.00          | ppb   | U         |
| 95-50-1          | 1,2-Dichlorobenzene         | C 381-6460  | 2.80 | 2.80          | ppb   |           |
| 105-05-5         | p-Diethylbenzene            | C 381-6460  | 5.40 | 5.40          | ppb   |           |
| 104-51-8         | n-Butylbenzene              | C 381-6460  | 2.80 | 2.80          | ppb   |           |
| 95-93-2          | 1,2,4,5-Tetramethylbenzene  | C 381-6460  | 5.40 | 5.40          | ppb   |           |
| 96-12-8          | 1,2-Dibromo-3-chloropropane | C 381-6460  | 10.0 | 10.0          | ppb   |           |
| 120-82-1         | 1,2,4-Trichlorobenzene      | C 381-6460  | 5.00 | 5.00          | ppb   | 10        |
| 87-68-3          | Hexachlorobutadiene         | C 381-6460  | 4.80 | 4.80          | ppb   |           |
| 91-20-3          | Naphthalene                 | C 381-6460  | 5.40 | 5.40          | ррь   |           |
| 87-61-6          | 1,2,3-Trichlorobenzene      | C 381-6460  | 7.60 | 7.60          | ррь   | 0         |



SHE STRONTOLINHA

#### Page 27 of 45

PAGE 28

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/18/2002

# Volatiles - EPA 8260B

#### Sample: M6865-9...continue

Client Sample ID: MW-14 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Grab

Collected: 01/08/2002 11:00

ETU

PAGE

57

- M6865 -

Page 28 of 45

SHOLOCIBCOTLE EHR

01/53/5005 Je:9t 210-609-915

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

# Volatiles - EPA 8260B

01/18/2002

#### Sample: M6865-10

Client Sample ID: Trip Blank Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Blank

Collected: 01/08/2002

| Cas No     | Алајуте                        | File ID     | MDL    | Concentration | Units |                  |
|------------|--------------------------------|-------------|--------|---------------|-------|------------------|
| 75-71-8    | Dichlorodifluoromethane        | C 381-6451  | 0.24   | 0.24          | ppb   | - <del>0</del> - |
| 75-45-6    | Chlorodifluoromethane          | C 381-6451  | 0.21   | 0.21          | oph   |                  |
| 74-87-3    | Chloromethane                  | C 381-6451  | 0.85   | 0.85          | ppb   | - <del>1</del> - |
| 75-01-4    | Vinyl Chloride                 | C 381 -6451 | 0.85   | 0.85          | ppb   |                  |
| 74-83-9    | Bromomethane                   | C 381-6451  | 0.65   | 0.65          | Dop . | - <u>U</u>       |
| 75-00-3    | Chloroethane                   | C 381-6451  | 0.67   | 0.67          | daa   | 10               |
| 75-69-4    | Trichlorofluoromethane         | C 381-6451  | 0.12   | 0.12          | dad   | <u> </u>         |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | C 381 -6451 | 0.19   | 0.19          | dad   | U                |
| 75-35-4    | 1,1-Dichloroethene             | C 381-6451  | 0.22   | 0;22          | ppb   |                  |
| 67-64-1    | Acetone                        | C 381-6451  | 2.30   | 2.30          | ppb   | -U               |
| 75-15-0    | Carbon disulfide               | C 381-6451  | 0.33   | 0.33          | ppb   | U                |
| 75-09-2    | Methylene Chloride             | C 381 -6451 | 0.37   | 0.37          | ppb   | -U               |
| 156-60-5   | t-1,2-Dichloroethene           | C 381-6451  | 0.28   | 0.28          | ppb   | U                |
| 1634-04-4  | Methyl t-butyl ether           | C 381-6451  | 0.18   | 0.18          | ppb   | U                |
| 75-34-3    | 1,1-Dichloroethane             | C 381-6451  | 0.25   | 0.25          | ррь   | υ                |
| 590-20-7   | 2,2-Dichloropropane            | C 381-6451  | 0.30   | 0.30          | ppb   | U                |
| 156-59-2   | c-1,2-Dichloroethene           | C 381-6451  | 0.18   | 0,18          | ppb   | U                |
| 78-93-3    | 2-Butanone                     | C 381-6451  | 17.2   | 17.2          | ppb   | U                |
| 74-97-5    | Bromochloromethane             | C 381-6451  | 0.15   | 0.15          | рръ   | U                |
| 67-66-3    | Chloroform                     | C 381-6451  | 0.22   | 0.22          | ppb   | U                |
| 71-55-6    | 1,1,1-Trichloroethane          | C 381 -6451 | 0.14   | 0.14          | ррЬ   | U                |
| 56-23-5    | Carbon Tetrachloride           | C 381-6451  | 0.10   | 0.10          | ppb   | U                |
| 563-58-6   | 1,1-Dichloropropene            | C 381 -6451 | 0.18   | 0.18          | ppb   | υ                |
| 71-43-2    | Велгеле                        | C 381-6451  | 0.17   | 0.17          | ppb   | U                |
| 107-06-2   | 1,2-Dichloroethane             | C 381-6451  | 0.16   | 0.16          | ppb   | U                |
| 79-01-6    | Trichloroethene                | C 381-6451  | 0.17   | 0.17          | ppb   |                  |
| 78-87-5    | 1,2-Dichloropropane            | C 381-6451  | • 0.14 | 0,14          | ррб   |                  |
| 74-95-3    | Díbromomethane                 | C 381-6451  | 0,16   | 0.16          | ppb   |                  |
| 75-27-4    | Bromodichloromethane           | C 381-6451  | 0.16   | 0.16          | ppb   |                  |
| 110-75-8   | 2-Chloroethylvinylether        | C 381-6451  | 0.29   | 0.29          | ppb   |                  |
| 10061-01-5 | c-1,3-Dichloropropene          | C 381-6451  | 0.22   | 0.22          | ddd   |                  |
| 108-10-1   | 4-Methyl-2-pentanone           | C 381-6451  | 9.00   | 9.00          | ppb   |                  |
| 108-88-3   | Toluene                        | C 381-6451  | 0.14   | 0.14          | ppp   |                  |
| 10061-02-6 | t-1,3-Dichloropropene          | C 381-6451  | 0.14   | 0.14          |       |                  |
| 79-00-5    | 1,1,2-Trichloroethane          | C 381-6451  | 0.19   | 0.19          | add   |                  |
| 127-18-4   | Tetrachloroethene              | C 381-6451  | 0.12   | 0.12          | hbp   |                  |



#### Page 29 of 45

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

### Volatiles - EPA 8260B

01/18/2002

#### Sample: M6865-10...continue

Client Sample ID: Trip Blank Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Blank

Collected: 01/08/2002

Analyzed Date: 01/11/2002 Concentration MDL Units File ID Q Analyte Cas No C 381-6451 0.12 0.12 ppb Ū 142-28-9 1,3-Dichloropropane C 381-6451 5.00 5.00 ppb Ū 591-78-6 2-Hexanone 0.17 124-48-1 Dibromochloromethane C 381-6451 0.17 ppb U Ū 106-93-4 1,2-Dibromoethane C 381-6451 0.19 0.19 ppb 0.19 0.19 ppb Ũ C 381-6451 108-90-7 Chlorobenzene 0.15 0.15 ppb Ū 630-20-6 1,1,1,2-Tetrachloroethane C 381-6451 C 381-6451 0.16 0.16 ppb U 100-41-4 Ethylbenzene Ū 0.21 0.21 ppb C 381-6451 108-38-3 m,p-xylene Ū 0.16 0.16 ppb C 381-6451 95-47-6 o-xylene υ 0.13 ppb 0.13 C 381-6451 100-42-5 Styrene 0.27 0.27 ppb U C 381-6451 75-25-2 Bromoform υ 0.10 0.10 ppb 98-82-8 Isopropylbenzene C 381-6451 Ũ 0.21 0.21 ppb C 381-6451 108-86-1 Bromobenzene Ū 0.15 ppb 0.15 79-34-5 1.1.2.2-Tetrachloroethane C 381-6451 Ũ 0.14 0.14 ppb C 381-6451 103-65-1 n-Propylbenzene U 0.24 0.24 ppb 96-18-4 1,2,3-Trichloropropane C 381-6451 U 0.24 0.24 ppb C 381-6451 622-96-8 p-Ethyltoluene ับ 0.12 ppb 0.12 C 381-6451 108-67-8 1,3,5-Trimethylbenzene U 0.21 ppb 0.21 C 381-6451 95-49-8 2-Chlorotoluene Ũ 0.16 ppb 0.16 C 381-6451 4-Chlorotoluene 106-43-4 Ū 0.13 0.13 ppb C 381-6451 98-06-6 tert-Butylbenzene U 0.13 ppb 0.13 C 381-6451 95-63-6 1,2,4-Trimethylbenzene U 0.080 ppb C 381 -6451 0.080 135-98-8 sec-Butylbenzene Ū 0.10 ppb 0.10 C 381-6451 99-87-6 4-Isopropyltoluene υ 0.15 0,15 ppb C 381-6451 541-73-1 1,3-Dichlorobenzene ΰ 0.15 ppb C 381-6451 0.15 1,4-Dichlorobenzene 106-46-7 U 0.14 ppb 0.14 C 381-6451 1,2-Dichlorobenzene 95-50-1 U 0.27 ppb 0.27 C 381-6451 105-05-5 p-Diethylbenzene U 0.14 ppb 0.14 C 381-6451 104-51-8 n-Butylbenzene Ũ 0.27 ppb 0.27 C 381-6451 1,2,4,5-Tetramethylbenzene 95-93-2 Ū 0.50 ppb 0.50 96-12-8 1.2-Dibromo-3-chloropropane C 381-6451 U 0.25 0.25 ppb C 381-6451 1,2,4-Trichlorobenzene 120-82-1 Ū 0.24 ppb 0.24 C 381-6451 Hexachlorobutadiene 87-68-3 Ū 0.27 ppb 0.27 C 381-6451 91-20-3 Naphthalene υ 0.38 ppb 0.38 C 381-6451 1,2,3-Trichlorobenzene 87-61-6



- M6865 -

Page 30 of 45

L∀CE 3J

2921-609-919 95:91 ZANZ/62/10

208 Route 109, Farmingdale NY 11735

Phone - 631-249-1456 Fax - 631-249-8344

# Volatiles - EPA 8260B

#### Sample: M6865-10...continue

Client Sample ID: Trip Blank Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/11/2002

Type: Blank

Collected: 01/08/2002

01/18/2002



#### - M6865 -

### Page 31 of 45

SHE STROOTLE FHR

Phone - 631-249-1456 Fax - 631-249-8344

# Iron, Total

01/18/2002

| Sample: M                                                           | 68 <u>65-1</u>                                   |            |       |               |                          |          |
|---------------------------------------------------------------------|--------------------------------------------------|------------|-------|---------------|--------------------------|----------|
| Client Sam                                                          | ple ID: SMP-1                                    |            |       | Collected     | :01/08/2002              | 2 14·30  |
| Matrix: Liqu                                                        | id                                               | Type: Grab |       |               | · • // • •/ <b>=</b> • • |          |
| Remarks:                                                            |                                                  |            |       |               |                          |          |
| Analyzed D                                                          | ate: 01/14/2002                                  |            |       |               |                          |          |
| Cas No                                                              | Analyte                                          |            | MDL   | Concentration | Units                    | Q        |
| 7439-89-6                                                           | Iron                                             |            | 0,096 | 16.4          | ppm                      |          |
|                                                                     |                                                  |            |       |               |                          |          |
| Sample: M                                                           | <u>6865-2</u>                                    |            |       |               |                          |          |
| Client Samp                                                         | ole ID: DMP-1                                    |            |       | Collected     | 01/08/2002               | 12:30    |
| Matrix: Liqu                                                        | id                                               | Type: Grab |       |               |                          |          |
| Remarks:                                                            |                                                  |            |       |               |                          |          |
| Analyzed D                                                          | ate: 01/14/2002                                  |            |       |               | ,                        | <b>-</b> |
| Cas No                                                              | Analyte                                          |            | MDL   | Concentration | Units                    | Q        |
| 7439-89-6                                                           | Iron                                             |            | 0.096 | 15.9          | ррп                      |          |
| Sample: M<br>Client Samp<br>Matrix: Liqui<br>Remarks:<br>Analyzed D | 5865-3<br>ble ID: SMP-3<br>id<br>ate: 01/14/2002 | Type: Grab |       | Collected     | 01/08/2002               | 14:55    |
| Cas No                                                              | Analyte                                          |            | MDL   | Concentration | Units                    | Q        |
| 7439-89-6                                                           | Iron                                             |            | 0.096 | 5.39          | ppm                      |          |
| Sample: M<br>Client Samp<br>Matrix: Liqu<br>Remarks:                | 5865-4<br>ble ID: DMP-3<br>id                    | Type: Grab |       | Collected:    | 01/08/2002               | 13:55    |
| Analyzed D                                                          | Analyte                                          |            | MDL   | Concentration | Units                    | Q        |
| Cas NO                                                              | Analyte                                          |            | 0.096 | 39.0          | ppm                      |          |



7439-89-6 Iron

- M6865 -

Page 32 of 45

Phone - 631-249-1456 Fax - 631-249-8344

# Iron, Total

01/18/2002

| Sample: M      | <u>6865-</u> 5   |                                       |       |                  |             |          |
|----------------|------------------|---------------------------------------|-------|------------------|-------------|----------|
| Client Sam     | ole ID: SMP-4    |                                       |       | Collected        | ·01/08/2002 | 2 16:0   |
| Matrix: Liqu   | id               | Type: Grab                            |       |                  |             | 2 10,0   |
| Remarks:       |                  |                                       |       |                  |             |          |
| Analyzed D     | ate: 01/14/2002  |                                       |       |                  |             |          |
| Cas No         | Analyte          |                                       | MDL   | Concentration    | Units       | Q        |
| 7439-89-6      | Iron             | · · · · · · · · · · · · · · · · · · · | 0.096 | 17.8             | ppm         |          |
| <b>•</b> • • • |                  |                                       |       |                  |             |          |
| Sample: M      | <u>6865-6</u>    |                                       |       | <b>•</b> • • • • |             |          |
| Client Sam     | DIE ID: DMP-4    |                                       |       | Collected        | :01/08/2002 | 2 15:2   |
| Matrix: Liqu   | id               | Type: Grab                            |       |                  |             |          |
| Remarks:       | ato: 01/11/12002 |                                       |       |                  |             |          |
| Analyzeu D     | Analyta          |                                       | MDI   | Concentration    | Unito       |          |
|                | Analyte          |                                       |       | 21 0             | Units       |          |
|                |                  |                                       |       |                  | [ [ [ ] ]   |          |
| Sample: M      | 6865 <b>-7</b>   |                                       |       |                  |             |          |
| Client Same    | ale ID: MW/-7    |                                       |       | Collected        | 01/08/2002  | 2 11:40  |
| Matrix Liqu    | id               | Type: Grab                            |       | 001100104        |             |          |
| Remarks:       |                  |                                       |       |                  |             |          |
| Analyzed D     | ate: 01/14/2002  |                                       |       |                  |             |          |
| Cas No         | Analyte          |                                       | MDL.  | Concentration    | Units       | Q        |
| 7439-89-6      | Iron             |                                       | 0.096 | 13.1             | ppm         |          |
|                |                  |                                       |       |                  |             |          |
| Sample: M      | <u>6865-8</u>    |                                       |       |                  |             |          |
| Client Sam     | ole ID; MW-8     |                                       |       | Collected        | 01/08/2002  | 2 09:30  |
| Matrix: Liqu   | id               | Type: Grab                            |       |                  |             |          |
| Remarks:       |                  |                                       |       |                  |             |          |
| Analyzed D     | ate: 01/14/2002  |                                       | MDI   | Concentration    | Linite      |          |
| Cas No         | Analyte          |                                       | NIUL  |                  |             | <u> </u> |
| 7430.80 6      | 1100             | 1                                     | 0.096 | 1 0.096          | 1 PPm       | 10       |



7439-89-6 Iron

208 Route 109, Farmingdale NY 11735

Phone ~ 631-249-1456 Fax - 631-249-8344

#### 01/18/2002

# Iron, Total

#### Sample: M6865-9

Client Sample ID: MW-14 Matrix: Liquid Remarks:

Type: Grab

Collected: 01/08/2002 11:00

Analyzed Date: 01/14/2002

| Cas No    | Analyte | MDL   | Concentration | Units | Q |
|-----------|---------|-------|---------------|-------|---|
| 7439-89-6 | Iron    | 0.096 | 279           | ppm   |   |



#### - M6865 -

### Page 34 of 45

SH3 SIINOXIDOLOHA

95:91 ZAAZ/62/10 2921-609-919

Phone - 631-249-1456 Fax - 631-249-8344

# Nitrogen/Nitrate - EPA 353.2

01/18/2002

| <u>Sample:</u> <u>M</u><br>Client Sam<br>Matrix: Liqu<br>Remarks:<br>Analyzed D | <u>6865-1</u><br>ple ID: SMP-1<br>id<br>ate: 01/10/2002 | Type: Grab                                             | Collected: 01/08/2002 14: |                         |           | 2 14:30 |
|---------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|---------------------------|-------------------------|-----------|---------|
| Cas No                                                                          | Analyte                                                 |                                                        | MDL                       | Result                  | Units     | Q       |
| 14797-55-8                                                                      | Nitrate                                                 |                                                        | 0.13                      | 0.13                    | ppm       | U       |
|                                                                                 |                                                         |                                                        |                           |                         | •         |         |
| Sample: M                                                                       | <u>6865-2</u>                                           |                                                        |                           |                         |           |         |
| Client Sam                                                                      | ole ID: DMP-1                                           |                                                        |                           | Collected:              | 01/08/200 | 2 12:30 |
| Matrix: Liqu                                                                    | id                                                      | Type: Grab                                             | b                         |                         |           |         |
| Remarks:<br>Analyzed D                                                          | ate: 01/10/2002                                         |                                                        |                           |                         |           |         |
| Cas No                                                                          | Analyte                                                 |                                                        | MDL                       | Result                  | Units     | Q       |
| 14797-55-8                                                                      | Nitrate                                                 |                                                        | 0.13                      | 0.13                    | ppm       | Ū I     |
| <u>Sample: M</u><br>Client Sam<br>Matrix: Liqu<br>Remarks:<br>Analyzed D        | 6865-3<br>ole ID: SMP-3<br>id<br>ate: 01/10/2002        | Type: Grab                                             |                           | Collected:01/08/2002 14 |           |         |
| Cas No                                                                          | Analyte                                                 |                                                        | MDL                       | Result                  | Units     | Q       |
| 14797-55-8                                                                      | Nitrate                                                 |                                                        | 0.13                      | 0.13                    | ppm       | U       |
| Sample: Mi<br>Client Samp                                                       | 6865-4<br>ble ID: DMP-3                                 | <u>5-4</u><br>D: DMP-3 Collected:01/08/2<br>Type: Grab |                           | 01/08/200               | 2 13:55   |         |
| Matrix: Liqu<br>Remarks:<br>Analyzed D                                          | ate: 01/10/2002                                         | 1900, 5100                                             |                           |                         |           |         |
| Matrix: Liqu<br>Remarks:<br>Analyzed D<br>Cas No                                | ate: 01/10/2002                                         |                                                        | MDL                       | Result                  | Units     | Q       |



Phone - 631-249-1456 Fax - 631-249-8344

01/18/2002

# Nitrogen/Nitrate - EPA 353.2

| <u>Sample: M</u>                           | <u>6865-5</u>                             |            |       |                    |            |          |
|--------------------------------------------|-------------------------------------------|------------|-------|--------------------|------------|----------|
| Client Sam                                 | ole ID: SMP-4                             |            |       | Collected          | :01/08/200 | 02 16:05 |
| Matrix: Liqu                               | id                                        | Type: Grab |       |                    |            |          |
| Remarks:                                   |                                           | 21         |       |                    |            |          |
| Analyzed D                                 | ate: 01/10/2002                           |            |       | ·                  |            |          |
| Cas No                                     | Analyte                                   |            | MDL   | Result             | Units      | Q        |
| 14797-55-8                                 | Nitrate                                   |            | 0.13  | 0.13               | ppm        | U .      |
|                                            |                                           |            |       |                    |            |          |
| Sample: M                                  | 6865-6                                    |            |       |                    |            |          |
| Client Same                                | ble ID' DMP-4                             |            |       | Collected          | 01/08/200  | 2 15.25  |
| Matrix: Liqui                              | id                                        | Type: Grab |       | <b>V</b> VII VCIEU | .01/00/200 | 2 10.20  |
| Remarks:                                   |                                           | JF         |       |                    |            |          |
| Analyzed D                                 | ate: 01/10/2002                           |            |       |                    |            |          |
| Cas No                                     | Analyte                                   |            | MDL   | Result             | Units      | Q        |
| 14797-55-8                                 | Nitrate                                   |            | 0.13  | 0.13               | ppm        | U        |
| Sample: MC<br>Client Samp<br>Matrix: Liqui | 5 <mark>865-7</mark><br>ble ID: MW-7<br>d | Type: Grab |       | Collected          | 01/08/200  | 2 11:40  |
| Remarks:<br>Analyzed Da                    | ate: 01/10/2002                           |            |       |                    |            |          |
| Cas No                                     | Analyte                                   |            | MDL   | Result             | Units      | Q        |
| 14797-55-8                                 | Nitrate                                   |            | 0.13  | 0.085              | ppm        | J        |
|                                            |                                           |            |       |                    |            |          |
| Sample M                                   | 3865-8                                    |            |       |                    |            |          |
| Client Same                                | he ID' MW-8                               |            |       | Collected:         | 01/08/200  | 2 09:30  |
| Matrix Linui                               | d                                         | Type: Grab |       |                    |            |          |
| Remarks'                                   |                                           | · / F =    |       |                    |            |          |
| Analyzed D                                 | ate: 01/10/2002                           |            |       |                    |            |          |
| Cas No                                     | Analyte                                   |            | MDL   | Result             | Units      | Q        |
| 14797-55-8                                 | Nitrate                                   |            | 0.025 | 6.93               | ppm        |          |



- M6865 -

Page 36 of 45

208 Route 109, Farmingdale NY 11735

Phone - 631-249-1456 Fax - 631-249-8344

01/18/2002

# Nitrogen/Nitrate - EPA 353.2

#### Sample: M6865-9

Client Sample ID: MW-14 Matrix: Liquid Remarks: Analyzed Date: 01/10/2002

Type: Grab

Collected: 01/08/2002 11:00

| Cas No     | Analyte | MDL  | Result | Units | Q |  |  |
|------------|---------|------|--------|-------|---|--|--|
| 14797-55-8 | Nitrate | 0.13 | 0.13   | ppm   | U |  |  |



/971-609-919 96:91 Z007/67/T0

208 Route 109, Farmingdale NY 11735

Phone - 631-249-1456 Fax - 631-249-8344

# Sulfate - EPA 375.4

01/18/2002

| Sample: M686                                                                    | 5-1                                  |                    |      |               |                            |         |
|---------------------------------------------------------------------------------|--------------------------------------|--------------------|------|---------------|----------------------------|---------|
| Client Sample                                                                   | ID' SMP-1                            |                    |      | Collected     | ·01/08/2001                | 2 11.21 |
| Matrix: Liouid                                                                  |                                      | Type: Grab         |      | CONCOLED      | .01/00/2002                |         |
| Remarks.                                                                        |                                      | 19por <b>G</b> 142 |      |               |                            |         |
| Analyzed Date                                                                   | : 01/13/2002                         |                    |      |               |                            |         |
| Cas No                                                                          | Analyte                              |                    | MDL  | Result        | Units                      | Q       |
| 14808-79-8 Su                                                                   | lfate                                |                    | 0.78 | 732           | ppm                        |         |
| Sample <sup>,</sup> M686                                                        | 5-2                                  |                    |      |               |                            |         |
| Client Sample I                                                                 | Client Sample ID: DMP-1              |                    |      | Collected     | 01/08/2002                 | 2 12 30 |
| Matrix: Liguid                                                                  |                                      | Type: Grab         |      | o o no o to u | , <b>0 1, 0 0, 2 0 0 1</b> | - 14,01 |
| Remarks:                                                                        |                                      | 77                 |      |               |                            |         |
| Analyzed Date:                                                                  | 01/13/2002                           |                    |      | ·             |                            |         |
| Cas No                                                                          | Analyte                              |                    | MDL  | Result        | Units                      | Q       |
| 14808-79-8 Su                                                                   | lfate                                |                    | 0.78 | 1200          | ppm                        |         |
| Sample: M686<br>Client Sample I<br>Matrix: Liquid<br>Remarks:<br>Analyzed Date: | <u>5-3</u><br>D: SMP-3<br>01/13/2002 | Type: Grab         |      | Collected     | 01/08/2002                 | 2 14:55 |
| Cas No                                                                          | Analyte                              |                    | MDL  | Result        | Units                      | Q       |
| 14808-79-8 Su                                                                   | lfate                                |                    | 3.90 | 1640          | ppm                        |         |
|                                                                                 |                                      |                    |      |               |                            |         |
| Sample: M686                                                                    | <u>5-4</u>                           |                    |      | Collected     | 01/09/2002                 | 13.55   |
| Client Sample I                                                                 | D: DMP-3                             | Tuna: Orah         |      | Conected.     | 01/00/2002                 | . 10,00 |
| Matrix: Liquid                                                                  |                                      | Type. Grab         |      |               |                            |         |
| Remarks:<br>Analyzed Date:                                                      | 01/13/2002                           |                    |      |               |                            |         |
| Cas No                                                                          | Analyte                              |                    | MDL  | Result        | Units                      | Q       |
| 14000 70 8 60                                                                   | lfata                                |                    | 0.39 | 188           | ppm                        |         |



14808-79-8 Sulfate

- M6865 -

Page 38 of 45

Phone - 631-249-1456 Fax - 631-249-8344

## Sulfate - EPA 375.4

01/18/2002

| Sample: M                             | 6865-5                        |            |       |           |             |          |
|---------------------------------------|-------------------------------|------------|-------|-----------|-------------|----------|
| Client Sam                            | ple ID: SMP-4                 |            |       | Collected | :01/08/2002 | 2 16:05  |
| Matrix: Lígu                          | Iid                           | Type: Grab |       |           |             |          |
| Remarks:                              |                               |            |       |           |             |          |
| Analyzed E                            | )ate: 01/13/2002              |            |       |           |             |          |
| Cas No                                | Analyte                       |            | MDL   | Result    | Units       | Q        |
| 14808-79-8                            | Sulfate                       |            | 1.56  | 1630      | ррт         |          |
|                                       |                               |            |       |           |             |          |
| Sample: M                             | 6 <u>865-6</u>                |            |       | · .       |             |          |
| Client Sam                            | ple ID: DMP-4                 |            |       | Collected | 01/08/2002  | 2 15:25  |
| Matrix: Liqu                          | id                            | Type: Grab |       |           | •           |          |
| Remarks:                              |                               |            |       |           |             |          |
| Analyzed D                            | ate: 01/13/2002               |            |       |           |             |          |
| Cas No                                | Analyte                       |            | MDL   | Result    | Units       | Q        |
| 14808-79-8                            | Sulfate                       |            | 0.39  | 146       | ppm         |          |
| <u>Sample: M</u><br>Client Sam        | <u>6865-7</u><br>ple ID: MW-7 | _          |       | Collected | :01/08/2002 | 2 11:40  |
| Matrix: Liqu                          | iid                           | Type: Grab |       | 4         |             |          |
| Remarks:<br>Analyzed D                | ate: 01/13/2002               |            |       |           |             |          |
| Cas No                                | Analyte                       |            | MDL   | Result    | Units       | Q        |
| 14808-79-8                            | Sulfate                       |            | 0.39  | 949       | ppm         |          |
| · · · · · · · · · · · · · · · · · · · |                               | · · ·      |       |           |             |          |
| <u>Sample: M</u>                      | <u>6865-8</u>                 |            |       | • • • • • |             |          |
| Client Sam                            | ple ID: MW-8                  |            |       | Collected | 01/08/2002  | 2 09:30  |
| Matrix: Liqu                          | lid                           | Type: Grab |       |           |             |          |
| Remarks:                              | A 14 0 100 00                 |            |       |           |             |          |
| Analyzed D                            | ate: 01/13/2002               |            |       | Result    | Units       | T Õ T    |
| Cas No                                | Analyte                       |            | 0.079 | 27 4      | Dom         | <u>+</u> |
| 1/1202_70_2                           | Sultate                       |            | V.V/0 | A1.**     | 1 PPIII     | 1        |



208 Route 109, Farmingdale NY 11735

Phone - 631-249-1456 Fax - 631-249-8344

01/18/2002

# Sulfate - EPA 375.4

#### Sample: M6865-9

Client Sample ID: MW-14 Matrix: Liquid Remarks:

Type: Grab

Collected: 01/08/2002 11:00

Analyzed Date: 01/13/2002

| Cas No     | Analyte | MDL  | Result | Units | Q |
|------------|---------|------|--------|-------|---|
| 14808-79-8 | Sulfate | 0.39 | 441    | ppm   |   |



Page 40 of 45

Phone - 631-249-1456 Fax - 631-249-8344

01/18/2002

# **Total Organic Carbon - Method 415.1**

| Client Sample ID: SMP-1       Collected: 01/08/2002 14:30         Matrix: Liquid       Type: Grab         Remarks:       Analyzed Date: 01/14/2002         Cas No       Analyze         TOC       0.94       23.8 ppm         Sample: M6865-2       Collected: 01/08/2002 12:30         Client Sample ID: DMP-1       Collected: 01/08/2002 12:30         Matrix: Liquid       Type: Grab         Remarks:       Analyzed Date: 01/18/2002         Cas No       Analyte       MDL         Result       Units         Q       0.94       8.14 ppm         Sample: M6865-3       Collected: 01/08/2002 14:50         Client Sample ID: SMP-3       Collected: 01/08/2002 14:50         Matrix: Liquid       Type: Grab         Remarks:       Analyzed Date: 01/18/2002         Analyzed Date: 01/18/2002       Toc         Cas No       Analyte         Mot       Result       Units         Q       0.94       34.4 ppm         Sample: M6865-4       Collected: 01/08/2002 13:51         Client Sample ID: DMP-3       Type: Grab         Remarks:       Analyzed Date: 01/18/2002         Analyzed Date: 01/18/2002       Type: Grab         Remarks:       Ana                                                                                                                                                                                    | Samole: N                                           | 6865-1                          |            |      |             |             |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------|------------|------|-------------|-------------|-------|
| Matrix: Liquid     Type: Grab       Remarks:     Analyzed Date: 01/14/2002       Cas No     Analyte     MDL     Result     Units     Q       Sample:     M6865-2     Collected: 01/08/2002 12:30       Client Sample ID: DMP-1     Collected: 01/08/2002 12:30       Matrix: Liquid     Type: Grab       Remarks:     Analyzed Date: 01/18/2002       Cas No     Analyte     MDL     Result     Units     Q       Cas No     Analyte     MDL     Result     Units     Q       Sample:     M6865-3     Collected: 01/08/2002 14:50       Client Sample ID: SMP-3     Collected: 01/08/2002 14:50       Matrix:     Liquid     Type: Grab       Remarks:     Analyzed Date: 01/18/2002     Collected: 01/08/2002 14:50       Analyzed Date:     01/18/2002     MDL     Result     Units     Q       Sample:     M6865-4     Collected: 01/08/2002 13:51       Client Sample ID: DMP-3     Type: Grab     Collected: 01/08/2002 13:51       Matrix:     Liquid     Type: Grab     Collected: 01/08/2002 13:51       Sample:     M6865-4     Collected: 01/08/2002 13:51       Client Sample ID: DMP-3     Type: Grab     Collected: 01/08/2002 13:51       Matrix:     Liquid     Type: Grab     Collected: 01/08/2002 13:51 </td <td>Client Sam</td> <td>ple ID: SMP-1</td> <td></td> <td></td> <td>Collected</td> <td>:01/08/2002</td> <td>14:30</td> | Client Sam                                          | ple ID: SMP-1                   |            |      | Collected   | :01/08/2002 | 14:30 |
| Remarks:         Analyzed Date:       01/14/2002         Cas No       Analyte       MDL       Result       Units       Q         TOC       0.94       23.8       ppm       0         Sample:       M6865-2       Collected:       01/08/2002       12:36         Matrix: Liquid       Type:       Grab       Result       Units       Q         Cas No       Analyte       MDL       Result       Units       Q         Sample:       M6865-3       Collected:       01/08/2002       14:55         Client Sample ID: SMP-3       Collected:       01/08/2002       14:55         Analyzed Date:       01/18/2002       Cas No       Analyte       MDL       Result       Units       Q         Sample:       M6865-4       Collected:       01/08/2002       13:55       01/08/2002       13:55         Matrix:       Liquid       Type:       Grab       Result       Units </td <td>Matrix: Liqu</td> <td>lid</td> <td>Type: Grab</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                            | Matrix: Liqu                                        | lid                             | Type: Grab |      |             |             |       |
| Analyzed Date:       01/14/2002         Cas No       Analyte       MDL       Result       Units       Q         TOC       0.94       23.8       ppm       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0<                                                                                                                                                                                                                                                                                                                                                 | Remarks:                                            |                                 |            |      |             |             |       |
| Cas No     Analyte     MDL     Result     Units     Q       TOC     0.94     23.8     ppm        Sample: M6865-2     Collected: 01/08/2002 12:30       Client Sample ID: DMP-1     Type: Grab     Collected: 01/08/2002 12:30       Matrix: Liquid     Type: Grab     Result     Units     Q       Cas No     Analyte     MDL     Result     Units     Q       Cas No     Analyte     MDL     Result     Units     Q       Sample: M6865-3     Collected: 01/08/2002 14:55       Client Sample ID: SMP-3     Collected: 01/08/2002 14:55       Matrix: Liquid     Type: Grab       Remarks:     Analyte     MDL     Result       Matrix: Liquid     Type: Grab       Sample: M6865-4     Collected: 01/08/2002 13:53       Client Sample ID: DMP-3     Collected: 01/08/2002 13:53       Matrix: Liquid     Type: Grab       Sample: M6865-4     Collected: 01/08/2002 13:53       Client Sample ID: DMP-3     Collected: 01/08/2002 13:53       Matrix: Liquid     Type: Grab       Remarks:     Analyzed Date: 01/18/2002       Cas No     Analyzed       Client Sample ID: DMP-3     Collected: 01/08/2002 13:53       Matrix: Liquid     Type: Grab       Remarks:     Analyzed Date:                                                                                                                                                            | Analyzed D                                          | Date: 01/14/2002                |            |      |             |             |       |
| TOC     0.94     23.8     ppm       Sample: M6865-2     Collected: 01/08/2002 12:30       Matrix: Liquid     Type: Grab       Remarks:     Analyzed Date: 01/18/2002       Cas No     Analyte       TOC     0.94       8.14     ppm       Sample: M6865-3     Collected: 01/08/2002 14:55       Client Sample ID: SMP-3     Collected: 01/08/2002 14:55       Matrix: Liquid     Type: Grab       Remarks:     Analyzed Date: 01/18/2002       Cas No     Analyte       MDL     Result       Units     Q       TOC     0.94       Sample: M6865-4     Collected: 01/08/2002 13:52       Cas No     Analyte       MDL     Result       Units     Q       Sample: M6865-4     Collected: 01/08/2002 13:52       Client Sample ID: DMP-3     Collected: 01/08/2002 13:52       Matrix: Liquid     Type: Grab       Remarks:     Analyzed Date: 01/18/2002       Cas No     Analyte       Matrix: Liquid     Type: Grab       Remarks:     Analyzed Date: 01/18/2002       Cas No     Analyte                                                                                                                                                                                                                                                                                                                                                            | Cas No                                              | Analyte                         |            | MDL  | Result      | Units       | Q     |
| Sample: M6865-2       Collected: 01/08/2002 12:30         Matrix: Liquid       Type: Grab         Remarks:       Analyzed Date: 01/18/2002         Cas No       Analyte       MDL       Result       Units       Q         TOC       0.94       8.14       ppm          Sample: M6865-3       Collected: 01/08/2002 14:55         Client Sample ID: SMP-3       Collected: 01/08/2002 14:55         Matrix: Liquid       Type: Grab         Remarks:       Analyte       MDL       Result       Units       Q         Cas No       Analyte       MDL       Result       Units       Q         Sample: M6865-4       01/18/2002       Collected: 01/08/2002 13:52       Collected: 01/08/2002 13:52         Sample: M6865-4       Collected: 01/08/2002 13:52       Collected: 01/08/2002 13:52         Sample: M6865-4       Collected: 01/08/2002 13:52         Client Sample ID: DMP-3       Type: Grab         Remarks:       Analyzed Date: 01/18/2002         Analyzed Date: 01/18/2002       Type: Grab         Remarks:       Analyzed Date: 01/18/2002         Cas No       Analyte       MDL       Result         Matrix: Liquid       Type: Grab         Remarks:       Analyte                                                                                                                                                            |                                                     | ТОС                             |            | 0.94 | 23.8        | рргп        |       |
| Sample: M6865-2         Collected: 01/08/2002 12:30         Matrix: Liquid       Type: Grab         Remarks:       MDL       Result       Units       Q         Cas No       Analyte       MDL       Result       Units       Q         Sample:       M6865-3       Collected: 01/08/2002 14:55         Client Sample ID: SMP-3       Collected: 01/08/2002 14:55         Matrix: Liquid       Type: Grab       Remarks:         Analyzed Date:       01/18/2002       MDL       Result       Units       Q         Sample:       M6865-4       Collected: 01/08/2002 13:55       Collected: 01/08/2002 13:55         Sample:       M6865-4       Collected: 01/08/2002 13:55         Matrix:       Liquid       Type:       Grab         Remarks:       Analyzed       Duty       MDL       Result       Units       Q         Analyzed       Date:       01/18/2002       MDL       Result       Units       Q <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                               |                                                     |                                 |            |      |             |             |       |
| Client Sample ID: DMP-1       Collected: 01/08/2002 12:30         Matrix: Liquid       Type: Grab         Remarks:       Analyzed Date: 01/18/2002         Cas No       Analyte         TOC       0.94         Sample: M6865-3         Client Sample ID: SMP-3         Matrix: Liquid       Type: Grab         Remarks:       Analyzed Date: 01/18/2002         Cas No       Analyte         Mol       Result         Units       Q         Sample: M6865-4       Collected: 01/08/2002 14:55         Client Sample ID: SMP-3       Collected: 01/08/2002 14:55         Matrix: Liquid       Type: Grab         Remarks:       Analyte       MDL         Analyzed Date: 01/18/2002       0.94       34.4         Client Sample ID: DMP-3       Type: Grab         Remarks:       Analyzed Date: 01/08/2002 13:55         Matrix: Liquid       Type: Grab         Remarks:       Analyzed Date: 01/18/2002         Cas No       Analyte       MDL         Remarks:       Analyzed Date: 01/18/2002         Cas No       Analyte       MDL                                                                                                                                                                                                                                                                                                             | Sample: M                                           | 6865-2                          |            |      |             |             |       |
| Matrix: Liquid     Type: Grab       Remarks:     Analyzed Date: 01/18/2002       Cas No     Analyte     MDL     Result     Units     Q       TOC     0.94     8.14     ppm     Image: Stample: M6865-3       Client Sample: M6865-3     Collected: 01/08/2002 14:55       Client Sample ID: SMP-3     Type: Grab       Remarks:     Analyte     MDL       Analyzed Date: 01/18/2002     Type: Grab       Sample: M6865-4     Collected: 01/08/2002 13:55       Client Sample ID: DMP-3     Type: Grab       Sample: M6865-4     Collected: 01/08/2002 13:55       Client Sample ID: DMP-3     Type: Grab       Remarks:     Analyzed Date: 01/18/2002       Cas No     Analyte       Matrix: Liquid     Type: Grab       Remarks:     Analyzed Date: 01/18/2002       Cas No     Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Client Sam                                          | ple ID: DMP-1                   |            |      | Collected   | 01/08/2002  | 12:30 |
| Remarks:<br>Analyzed Date: 01/18/2002         Cas No       Analyte       MDL       Result       Units       Q         TOC       0.94       8.14       ppm       0.94       8.14       ppm         Sample:       M6865-3       Collected: 01/08/2002 14:55         Client Sample ID: SMP-3       Collected: 01/08/2002 14:55         Matrix: Liquid       Type: Grab         Remarks:       Analyzed Date: 01/18/2002         Cas No       Analyte       MDL       Result       Units       Q         TOC       0.94       34.4       ppm       0.94       34.4       ppm         Sample:       M6865-4       Collected: 01/08/2002 13:52       Collected: 01/08/2002 13:52         Sample:       M6865-4       Collected: 01/08/2002 13:52         Client Sample ID: DMP-3       Type: Grab       Collected: 01/08/2002 13:52         Remarks:       Analyzed Date: 01/18/2002       Type: Grab       Collected: 01/08/2002 13:52         Remarks:       Analyzed Date: 01/18/2002       MDL       Result       Units                                                                                                                                                                                                                                                                                                                                | Matrix: Lig                                         | ıid                             | Type: Grab |      |             |             |       |
| Analyzed Date:       01/18/2002         Cas No       Analyte       MDL       Result       Units       Q         TOC       0.94       8.14       ppm       0.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94       9.94 <td< td=""><td>Remarks:</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                       | Remarks:                                            |                                 |            |      |             |             |       |
| Cas No     Analyte     MDL     Result     Units     Q       TOC     0.94     8.14     ppm        Sample: M6865-3<br>Client Sample ID: SMP-3<br>Matrix: Liquid     Collected: 01/08/2002 14:55       Remarks:<br>Analyzed Date: 01/18/2002     Type: Grab       Cas No     Analyte     MDL       TOC     0.94     34.4       Collected: 01/08/2002 13:52     Matrix: Liquid       Type: Grab     Collected: 01/08/2002 13:52       Matrix: Liquid     Type: Grab       Remarks:<br>Analyzed Date: 01/18/2002     MDL       Cas No     Analyte       MDL     Result       Units     Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Analyzed D                                          | ate: 01/18/2002                 |            |      |             |             |       |
| TOC     0.94     8.14 ppm       Sample: M6865-3<br>Client Sample ID: SMP-3<br>Matrix: Liquid     Collected: 01/08/2002 14:55       Matrix: Liquid     Type: Grab       Remarks:<br>Analyzed Date: 01/18/2002     MDL       Cas No     Analyte       TOC     0.94       34.4 ppm       Collected: 01/08/2002 14:55       Cas No     Analyte       MDL     Result       Units     Q       Cas No     Analyte       Sample: M6865-4<br>Client Sample ID: DMP-3<br>Matrix: Liquid     Type: Grab       Remarks:<br>Analyzed Date: 01/18/2002     Type: Grab       Remarks:<br>Analyzed Date: 01/18/2002     MDL       Cas No     Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cas No                                              | Analyte                         |            | MDL  | Result      | Units       | Q     |
| Sample: M6865-3       Collected: 01/08/2002 14:5!         Client Sample ID: SMP-3       Type: Grab         Matrix: Liquid       Type: Grab         Remarks:       Analyzed Date: 01/18/2002         Cas No       Analyte         TOC       0.94         Sample: M6865-4       Collected: 01/08/2002 13:5!         Client Sample ID: DMP-3       Type: Grab         Matrix: Liquid       Type: Grab         Remarks:       Analyzed Date: 01/18/2002         Cas No       Analyte         Matrix: Liquid       Type: Grab         Remarks:       Analyzed Date: 01/18/2002         Cas No       Analyte         MDL       Result         Units       Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | TOC                             |            | 0.94 | 8.14        | ppm         |       |
| Client Sample ID: SMP-3     Type: Grab       Matrix: Liquid     Type: Grab       Remarks:     Analyzed Date: 01/18/2002       Cas No     Analyte       TOC     0.94       34.4     ppm       Sample: M6865-4     Collected: 01/08/2002 13:58       Client Sample ID: DMP-3     Type: Grab       Matrix: Liquid     Type: Grab       Remarks:     Analyzed Date: 01/18/2002       Cas No     Analyte       MDL     Result       Units     Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>Sample: M</u>                                    | 16865-3                         |            |      | Collocted   | 01/08/2002  | 11.55 |
| Matrix: Liquid     Type: Grab       Remarks:<br>Analyzed Date: 01/18/2002     MDL     Result     Units     Q       Cas No     Analyte     MDL     Result     Units     Q       Sample:     M6865-4<br>Client Sample ID: DMP-3<br>Matrix: Liquid     Collected: 01/08/2002 13:58<br>Type: Grab       Remarks:<br>Analyzed Date: 01/18/2002     MDL     Result     Units     Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     | pie in: Sivir-S                 | Tupo: Grah |      | , Conected, | 01100/2002  | 14.00 |
| Sample: M6865-4       MDL       Result       Units       Q         Sample: M6865-4       0.94       34.4       ppm         Client Sample ID: DMP-3       Collected: 01/08/2002 13:58         Matrix: Liquid       Type: Grab         Remarks:       Analyzed Date: 01/18/2002         Cas No       Analyte       MDL         Result       Units       Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Matrix: Liqu                                        | 110                             | Type. Grab | •    |             |             |       |
| Cas NoAnalyteMDLResultUnitsQTOC0.9434.4ppmSample: M6865-40.9434.4ppmClient Sample ID: DMP-3Collected: 01/08/2002 13:58Matrix: LiquidType: GrabRemarks:<br>Analyzed Date: 01/18/2002MDLResultUnitsQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analyzed D                                          | Date: 01/18/2002                |            |      |             |             |       |
| TOC     0.94     34.4 ppm       Sample: M6865-4<br>Client Sample ID: DMP-3<br>Matrix: Liquid     Collected: 01/08/2002 13:58<br>Matrix: Liquid       Matrix: Liquid     Type: Grab       Remarks:<br>Analyzed Date: 01/18/2002     MDL       Cas No     Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cas No                                              | Analyte                         |            | MDL  | Result      | Units       | Q     |
| Sample: M6865-4       Collected: 01/08/2002 13:58         Client Sample ID: DMP-3       Collected: 01/08/2002 13:58         Matrix: Liquid       Type: Grab         Remarks:       Analyzed Date: 01/18/2002         Cas No       Analyte         MDL       Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     | TOC                             |            | 0.94 | 34.4        | ppm         |       |
| Cas No Analyte MDL Result Units Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample: M<br>Client Sam<br>Matrix: Liqu<br>Remarks: | 16865-4<br>ple ID: DMP-3<br>uid | Type: Grab |      | Collected   | 01/08/2002  | 13:55 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analyzeu L                                          |                                 |            | MDL  | Result      | Units       | Q     |

0.94



### Page 41 of 45

29.6 ppm

TOC

208 Route 109, Farmingdale NY 11735

Phone - 631-249-1456 Fax - 631-249-8344

# Total Organic Carbon - Method 415.1

01/18/2002

| Sample: M                                                         | <u>16865-5</u><br>Inle ID: SMP-4     |                                        |      | Collected  | 01/09/200    | <b>2 1</b> 6-0 |
|-------------------------------------------------------------------|--------------------------------------|----------------------------------------|------|------------|--------------|----------------|
| Matrix Liqu                                                       | id                                   | Type: Grab                             |      | CONACIAN   | . 0 (100/200 | 2 10:0         |
| Remarks                                                           | au                                   | Type: Olab                             |      |            |              |                |
| Analyzed D                                                        | )ate: 01/18/2002                     |                                        |      | ι.         |              |                |
| Cas No                                                            | Analyte                              |                                        | MDL  | Result     | Units        | Q              |
|                                                                   | TOC                                  |                                        | 0.94 | 31.0       | ppm          |                |
|                                                                   | · ·                                  | ······································ |      |            |              |                |
| Sample: M                                                         | 6865-6                               |                                        |      |            |              |                |
| Client Sam                                                        | ple ID: DMP-4                        |                                        |      | Collected  | 01/08/2002   | 2 15:2         |
| Matrix: Liqu                                                      | lid                                  | Type: Grab                             |      |            |              |                |
| Remarks:                                                          |                                      |                                        |      |            |              |                |
| Analyzed D                                                        | vate: 01/18/2002                     |                                        |      |            |              |                |
| Cas No                                                            | Analyte                              |                                        | MDL  | Result     | Units        | Q              |
|                                                                   | TOC                                  |                                        | 0.94 | 7.10       | ppm          |                |
| <u>Sample:</u> <u>M</u><br>Client Sam<br>Matrix: Liqu<br>Remarks: | <u>6865-7</u><br>ple ID: MW-7<br>iid | Type: Grab                             |      | Collected: | 01/08/2002   | 2 11:4         |
| Analyzed D                                                        | ate: 01/18/2002                      |                                        |      |            |              |                |
| Cas No                                                            | Analyte                              |                                        | MDL  | Result     | Units        | Q              |
|                                                                   | TOC                                  |                                        | 0.94 | 1.67       | ppm          | <u> </u>       |
| Sample: M                                                         | <u>6865-8</u><br>ple ID: MW-8        | Turus Onch                             |      | Collected  | 01/08/2002   | 2 09;3         |
| Client Sam<br>Matrix: Liqu<br>Remarks:<br>Analyzed F              | iid<br>ate: 01/18/2002               | Type: Grap                             |      |            |              |                |
| Client Sam<br>Matrix: Liqu<br>Remarks:<br>Analyzed D              | iid<br>Pate: 01/18/2002              |                                        | MDL  | Result     | Units        |                |



Page 42 of 45

PHOTOCIRCUITS EHS

- M6865 -

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/18/2002

### Total Organic Carbon - Method 415.1

#### Sample: M6865-9

Client Sample ID: MW-14 Matrix: Liquid Remarks: Analyzed Date: 01/18/2002

Type: Grab

Collected: 01/08/2002 11:00

 Cas No
 Analyte
 MDL
 Result
 Units
 Q

 TOC
 0.94
 2630
 ppm



#### Page 43 of 45

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/18/2002

#### Case Narrative

VOLATILES:

The following compounds were calibrated at 25, 50, 100, 150 and 200 ppb levels in the initial calibration curve:

Acetone 2-Butanone 4-Methy1,2-pentanone 2-Hexanone

M&P-Xylenes were calibrated at 10, 40, 100, 200 and 300 ppb levels.

All other compounds were calibrated at 5, 20, 50, 100 and 150 ppb levels.

Samples were quantitated using the continuing calibration standard response factor as opposed to the initial calibration average response factor.

cua

Reviewed by:



SHE STIUDOTOTAS

<u>01/53/5005\_10:46\_\_216-603-152/10</u>

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

#### 01/18/2002

#### **ORGANIC METHOD QUALIFIERS**

- Q Qualifier specified entries and their meanings are as follows:
  - U The analytical result is a non-detect.
  - J Indicates an estimated value. The concentration reported was detected below the Method Detection Limit.
  - B The analyte was found in the associated method blank as well as the sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action.
  - E The concentration of the analyte exceeded the calibration range of the instrument,
  - D This flag identifies all compounds identified in an analysis at a secondary dilution.
     In the case of a surrogate this flag indicates a system mointoring compound diluted out.

#### **INORGANIC METHOD QUALIFIERS**

- C (Concentration) qualifiers are as follows:
  - B Entered if the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL).
  - U Entered when the analyte was analyzed for, but not detected.
  - J Indicates an estimated value. The concentration reported was detected below the Method Detection Limit.
- Q Qualifier specific entries and their meanings are as follows:
  - E Reported value is estimated because of the presence of interferences.
- M (Method) qualifiers are as follows:
  - A Flame AA
  - AS Semi-automated Spectrophotometric
  - AV Automated Cold Vapor AA
  - C Manual Spectrophotometric
  - F Furnace AA
  - NR when the analyte is not required to be analyzed.
  - P 1CP
  - T Titrimetric

#### **OTHER QUALIFIERS**

- ND Not Detected
- NA Not Applicable
  - Outside Expected Range (NYCDEP Table I/II or Surrogate Limits)



95

Page 45 of 45

01/29/2002 15:46 516-609-1257

•

PHOTOCIRCUITS EHS

PAGE 47

#### Environmental Testing Laboratories, Inc. 208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/22/2002

#### Custody Document: M6868

Received: 01/10/2002 17:26 Sampled by: Dave Hanny

#### Client: Photo Circuits

31 Sea Cliff Avenue Glen Cove, NY 11542

#### Project: Photocircuits Corp.

31 Sea Cliff Avenue Glen Cove, NY

Manager: Andy Barber

Respectfully submitted an Laborato ager

NYS Lab ID.# 10969 NJ Cert. # 73812 CT Cert. # PH0645 MA Cert. # NY061 PA Cert. # 68-535 VA Cert. # 108 NH Cert. # 252592-BA RI Cert. # 161



- M6868 -

#### Page 1 of 37

PAGE 02

PHOTOCIRCUITS EHS

2921-609-919 91:91 2002/62/10

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

## Volatiles - EPA 8260B

01/22/2002

#### Sample: M6868-3

Client Sample ID: MW-12 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/15/2002

Type: Grab

Collected: 01/09/2002 14:45

| Cas No     | Analyte                        | File ID      | MDL   | Concentration | Units | Q  |
|------------|--------------------------------|--------------|-------|---------------|-------|----|
| 75-71-8    | Dichlorodifluoromethane        | B 672 -9048  | 0.49  | 0.49          | ppb   | U  |
| 75-45-6    | Chlorodifluoromethane          | B 672-9048   | 0.21  | . 0.21        | ppb   | U  |
| 74-87-3    | Chloromethane                  | B 672-9048   | 0.49  | 0.49          | ppb   | U  |
| 75-01-4    | Vinyl Chloride                 | C 388-6598   | 42.5  | 298           | ppb   |    |
| 74-83-9    | Bromomethane                   | B 672-9048   | 0.43  | 0.43          | ppb   | U  |
| 75-00-3    | Chloroethane                   | B 672-9048   | 0.61  | 6.10          | ррб   |    |
| 75-69-4    | Trichlorofluoromethane         | B 672 - 9048 | 0.24  | 0.24          | ppb   | U  |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | B 672-9048   | 0.23  | 0.23          | ppb   | U  |
| 75-35-4    | 1,1-Dichloroethene             | B 672 -9048  | 0.30  | 2.30          | ppb   |    |
| 67-64-1    | Acetone                        | B 672-9048   | 3.12  | 3.12          | ррь   | U  |
| 75-15-0    | Carbon disulfide               | B 672 -9048  | 0.20  | 0.20          | ppb   | U  |
| 75-09-2    | Methylene Chloride             | B 672 -9048  | 0.54  | 0.54          | ррь   | U  |
| 156-60-5   | t-1,2-Dichloroethene           | B 672 - 9048 | 0.20  | 5.60          | ppb   |    |
| 1634-04-4  | Methyl t-butyl ether           | B 672 -9048  | 0.34  | 0.34          | ppb   | U  |
| 75-34-3    | 1,1-Dichloroethane             | C 388-6598   | 12.5  | 329           | ppb   | 1  |
| 590-20-7   | 2,2-Dichloropropane            | B 672 -9048  | 0,18  | 0.18          | ppb   | U  |
| 156-59-2   | c-1,2-Dichloroethene           | C 388-6598   | 9.00  | 430           | ppb   |    |
| 78-93-3    | 2-Butanone                     | B 672-9048   | 5.00  | 5.00          | ppb   | U  |
| 74-97-5    | Bromochloromethane             | B 672-9048   | 0.27  | 0.27          | ppb   | U  |
| 67-66-3    | Chloroform                     | B 672-9048   | 0.20  | 0.20          | ppb   | U  |
| 71-55-6    | 1,1,1-Trichloroethane          | B 672-9048   | 0.22  | 0.22          | ppb   | U  |
| 56-23-5    | Carbon Tetrachloride           | B 672-9048   | 0.25  | 0.25          | ppb   | U  |
| 563-58-6   | 1,1-Dichloropropene            | B 672-9048   | 0,59  | 0.59          | ppb _ | U  |
| 71-43-2    | Benzene                        | B 672-9048   | 0.16  | 5.40          | ppb   |    |
| 107-06-2   | 1,2-Dichloroethane             | B 672-9048   | 0.23  | 1.40          | ppb   |    |
| 79-01-6    | Trichloroethene                | B 672-9048   | 0.16  | 16.5          | ppb   |    |
| 78-87-5    | 1,2-Dichloropropane            | B 672-9048   | 0.36  | 0.36          | ppb   | U  |
| 74-95-3    | Dibromomethane                 | B 672-9048   | 0.18  | 0.18          | ppb   | U  |
| 75-27-4    | Bromodichloromethane           | B 672-9048   | 0.15  | 0.15          | ppb   | U  |
| 110-75-8   | 2-Chloroethylvinylether        | B 672-9048   | 0.13  | 0.13          | рры   | U  |
| 10061-01-5 | c-1,3-Dichloropropene          | B 672 -9048  | 0.16  | 0.16          | ppb   | U  |
| 108-10-1   | 4-Methyl-2-pentanone           | B 672-9048   | 5.00  | 5.00          | ppb   | U  |
| 108-88-3   | Toluene                        | B 672-9048   | 0.14  | 5.60          | ppb   | 11 |
| 10061-02-6 | t-1,3-Dichloropropene          | B 672-9048   | 0.080 | 0.080         | ррб   | U  |
| 79-00-5    | 1,1,2-Trichloroethane          | B 672-9048   | 0.090 | 0.090         | ppb   | U  |
| 127-18-4   | Tetrachioroethene              | B 672-9048   | 0.24  | 0.24          | ppb   | U  |



PHOTOCIRCUITS EHS

#### Page 8 of 37

91:91 2002/62/10

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

#### 01/22/2002

# Volatiles - EPA 8260B

#### Sample: M6868-3...continue

Client Sample ID: MW-12 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/15/2002

Type: Grab

Collected: 01/09/2002 14:45

| Cas No   | Analyte                     | File ID     | MDL  | Concentration | Units | Q        |
|----------|-----------------------------|-------------|------|---------------|-------|----------|
| 142-28-9 | 1,3-Dichloropropane         | B 672-9048  | 0.20 | 0.20          | ppb   | U        |
| 591-78-6 | 2-Hexanone                  | B 672-9048  | 5.00 | 5.00          | ppb   | 10       |
| 124-48-1 | Dibromochloromethane        | B 672-9048  | 0.11 | 0.11          | ppb   | -U       |
| 106-93-4 | 1,2-Dibromoethane           | B 672-9048  | 0.10 | 0.10          | ppb   | U        |
| 108-90-7 | Chlorobenzene               | B 672-9048  | 0.15 | 0.15          | ppb   | 0        |
| 630-20-6 | 1,1,1,2-Tetrachloroethane   | B 672-9048  | 0.18 | 0.18          | ppb   | U        |
| 100-41-4 | Ethylbenzene                | B 672-9048  | 0.22 | 0.22          | ppb   | U        |
| 108-38-3 | m,p-xylene                  | B 672-9048  | 0.42 | .0.42         | ppb   | U -      |
| 95-47-6  | o-xylene                    | B 672-9048  | 0.20 | 2.30          | рры   | <u> </u> |
| 100-42-5 | Styrøne                     | B 672-9048  | 0.17 | 0.17          | ppb   | U        |
| 75-25-2  | Bromoform                   | B 672-9048  | 0.10 | 0.10          | ppb   | U        |
| 98-82-8  | Isopropylbenzene            | B 672-9048  | 0.25 | 0.25          | ppb   | U        |
| 108-86-1 | Bromobenzene                | B 672-9048  | 0.24 | 0.24          | ppb   | U        |
| 79-34-5  | 1,1,2,2-Tetrachloroethane   | B 672-9048  | 0.16 | 0.16          | ppb   | U        |
| 103-65-1 | n-Propylbenzene             | B 672-9048  | 0.21 | 0.21          | ppb   | U        |
| 96-18-4  | 1,2,3-Trichloropropane      | B 672-9048  | 0.21 | 0.21          | ppb   | Ū        |
| 622-96-8 | p-Ethyltoluene              | B 672-9048  | 0.24 | 0.24          | ppb   | U        |
| 108-67-8 | 1,3,5-Trimethylbenzene      | B 672-9048  | 0.20 | 0.20          | ppb   | U        |
| 95-49-8  | 2-Chlorotoluene             | C 388-6598  | 10.5 | 2690          | ppb   |          |
| 106-43-4 | 4-Chlorotoluene             | B 672 -9048 | 0.35 | 82.8          | ppb   |          |
| 98-06-6  | tert-Butylbenzene           | B 672-9048  | 0.24 | 0.24          | ppb   | U        |
| 95-63-6  | 1,2,4-Trimethylbenzene      | B 672-9048  | 0.17 | 0.17          | ppb   | U        |
| 135-98-8 | sec-Butylbenzene            | B 672 -9048 | 0.16 | 0.16          | ppb   | U        |
| 99-87-6  | 4-Isopropyltoluene          | B 672-9048  | 0.24 | 0.24          | ррр   | U        |
| 541-73-1 | 1,3-Dichlorobenzene         | B 672-9048  | 0.23 | 0.23          | ppb   | U        |
| 106-46-7 | 1,4-Dichlorobenzene         | B 672-9048  | 0.23 | 0.23          | ppb   | U        |
| 95-50-1  | 1,2-Dichlorobenzene         | B 672-9048  | 0.15 | 0.99          | ppb   |          |
| 105-05-5 | p-Diethylbenzene            | B 672-9048  | 0.24 | 0.24          | ppb   | U        |
| 104-51-8 | n-Butylbenzene              | B 672-9048  | 0.14 | 0.14          | ppb   | 10       |
| 95-93-2  | 1,2,4,5-Tetramethylbenzene  | B 672-9048  | 0.26 | 0.26          | ppb   | U        |
| 96-12-8  | 1,2-Dibromo-3-chloropropane | B 672-9048  | 0.33 | 0.33          | ppb   | U.       |
| 120-82-1 | 1,2,4-Trichlorobenzene      | B 672-9048  | 0.22 | 0.22          | ppb   | Ū        |
| 87-68-3  | Hexachlorobutadiene         | B 672-9048  | 0.26 | 0.26          | ppb   | 10       |
| 91-20-3  | Naphthalene                 | B 672-9048  | 0.14 | 0,14          | ppb   | 10       |
| 87-61-6  | 1,2,3-Trichlorobenzene      | B 672-9048  | 0.17 | 0.17          | ppb   | U        |



SHA SITONATOOIOHA

Page 9 of 37

Phone - 631-249-1456 Fax - 631-249-8344

01/22/2002

# Volatiles - EPA 8260B

#### Sample: M6868-3.,.continue

Client Sample ID: MW-12 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/15/2002

Type: Grab

Collected: 01/09/2002 14:45





#### PHOTOCIRCUITS EHS

Z9ZI-609-9I9 9I:9I Z00Z/6Z/I0

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

#### 01/22/2002

# Volatiles - EPA 8260B

#### Sample: M6868-4

Client Sample ID: MW-13 Matrix: Liquid Rémarks: See Case Narrative Analyzed Date: 01/15/2002

Type: Grab

Collected: 01/10/2002 09:00

| Analyzed D | ate: 01/15/2002                |                     |       |               | <u> </u> |          |
|------------|--------------------------------|---------------------|-------|---------------|----------|----------|
| Cas No     | Analyte                        | File ID             | MDL   | Concentration | Units    | Q        |
| 75-71-8    | Dichlorodifluoromethane        | B 672 -9049         | 0.49  | 0.49          | ppb      | <u> </u> |
| 75-45-6    | Chlorodifluoromethane          | В 672 <b>-</b> 9049 | 0.21  | 0.21          | ppb      | 10       |
| 74-87-3    | Chloromethane                  | B 672 -9049         | 0.49  | 0.49          | ррб      | U        |
| 75-01-4    | Vinyl Chloride                 | B 672 -9049         | 0.10  | 112           | ррр      |          |
| 74-83-9    | Bromomethane                   | B 672 -9049         | 0.43  | 0.43          | ррь      | U        |
| 75-00-3    | Chloroethane                   | B 672 -9049         | 0.61  | 0.61          | ppb ·    | U        |
| 75-69-4    | Trichlorofluoromethane         | B 672-9049          | 0.24  | 0.24          | ppb      | U        |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | B 672 -9049         | 0.23  | 0.23          | ppb      | U        |
| 75-35-4    | 1,1-Dichloroethene             | B 672-9049          | 0.30  | 75.5          | ppb      |          |
| 67-64-1    | Acetone                        | B 672-9049          | 3,12  | 18.7          | ppb      |          |
| 75-15-0    | Carbon disulfide               | B 672-9049          | 0.20  | 0.20          | ppp      | U        |
| 75-09-2    | Methylene Chloride             | B 672-9049          | 0.54  | 0.54          | ppb      | U        |
| 156-60-5   | t-1,2-Dichloroethene           | B 672-9049          | 0.20  | 11.9          | ppb      |          |
| 1634-04-4  | Methyl t-butyl ether           | B 672-9049          | 0.34  | 0.34          | ppb      | U        |
| 75-34-3    | 1,1-Dichloroethane             | C 388-6599          | 12.5  | 476           | ppb      |          |
| 590-20-7   | 2,2-Dichloropropane            | B 672-9049          | 0.18  | 0.18          | ppb      | U        |
| 156-59-2   | c-1,2-Dichloroethene           | C 388-6599          | 9.00  | 1950          | ppb      |          |
| 78-93-3    | 2-Butanone                     | B 672-9049          | 5.00  | 5.00          | ppb      | υ        |
| 74-97-5    | Bromochloromethane             | B 672-9049          | 0.27  | 0.27          | ppb      | U        |
| 67-66-3    | Chloroform                     | B 672-9049          | 0,20  | 0.86          | ppb      | -        |
| 71-55-6    | 1,1,1-Trichloroethane          | B 672-9049          | 0.22  | 32.2          | ppb      |          |
| 56-23-5    | Carbon Tetrachloride           | B 672-9049          | 0.25  | 0.25          | ppb      | U        |
| 563-58-6   | 1,1-Dichloropropene            | B 672 -9049         | 0.59  | 0.59          | рръ      | U -      |
| 71-43-2    | Benzene                        | B 672-9049          | 0.16  | 8.00          | ppb      |          |
| 107-06-2   | 1,2-Dichloroethane             | B 672-9049          | 0.23  | 2.80          | ppb      |          |
| 79-01-6    | Trichloroethene                | C 388-6599          | 8.50  | 216           | ppb      |          |
| 78-87-5    | 1,2-Dichloropropane            | B 672-9049          | 0.36  | 0.36          | ppb      | U        |
| 74-95-3    | Dibromomethane                 | B 672-9049          | 0.18  | 0.18          | рръ      | U        |
| 75-27-4    | Bromodichloromethane           | B 672-9049          | 0.15  | 0.15          | ppb      | U        |
| 110-75-8   | 2-Chloroethylvinylether        | B 672-9049          | 0.13  | 0.13          | ppb      | U        |
| 10061-01-5 | c-1,3-Dichloropropene          | B 672-9049          | 0.16  | 0.16          | ррЬ      | Ū        |
| 108-10-1   | 4-Methyl-2-pentanone           | B 672-9049          | 5.00  | 5.00          | ppb      | U        |
| 108-88-3   | Toluene                        | B 672 -9049         | 0.14  | 0.14          | ppb      | U        |
| 10061-02-6 | t-1,3-Dichloropropene          | B 672-9049          | 0.080 | 0.080         | ppb      | U        |
| 79-00-5    | 1,1,2-Trichloroethane          | B 672 -9049         | 0.090 | 0.090         | ppb      | U        |
| 127-18-4   | Tetrachloroethene              | C 388-6599          | 6.00  | 216           | ppb      | 1        |



בעם כוומרארמווא בעס

#### Page 11 of 37

### Environmental Testing Laboratories, Inc. 208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

# Volatiles - EPA 8260B

01/22/2002

#### Sample: M6868-4...continue

Client Sample ID: MW-13 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/15/2002

Type; Grab

Collected: 01/10/2002 09:00

| Cas No   | Analyte                     | File ID      | MDL  | Concentration | Units | Q        |
|----------|-----------------------------|--------------|------|---------------|-------|----------|
| 142-28-9 | 1,3-Dichloropropane         | B 672-9049   | 0.20 | 0.20          | ррь   | υ –      |
| 591-78-6 | 2-Hexanone                  | B 672-9049   | 5.00 | 5,00          | ppb   | U        |
| 124-48-1 | Dibromochloromethane        | B 672-9049   | 0.11 | 0.11          | ppb   | U        |
| 106-93-4 | 1,2-Dibromoethane           | B 672-9049   | 0.10 | 0.10          | ррь   | U        |
| 108-90-7 | Chlorobenzene               | B 672-9049   | 0.15 | 0.15          | ppb   | U        |
| 630-20-6 | 1,1,1,2-Tetrachloroethane   | B 672 -9049  | 0.18 | 0.18          | ppb   | U        |
| 100-41-4 | Ethylbenzene                | B 672 -9049  | 0.22 | 0.22          | ppb   | U        |
| 108~38-3 | m,p-xylene                  | B 672-9049   | 0,42 | 0.42          | ррь   | <u>u</u> |
| 95-47-6  | o-xylene                    | . B 672-9049 | 0.20 | 0.20          | рръ   | U        |
| 100-42-5 | Styrene                     | B 672-9049   | 0.17 | 0.17          | ррь   | υ        |
| 75-25-2  | Bromoform                   | B 672-9049   | 0.10 | 0.10          | ddd   | U        |
| 98-82-8  | Isopropylbenzene            | B 672-9049   | 0.25 | 0.25          | ppb   | Ų        |
| 108-86-1 | Bromobenzene                | B 672-9049   | 0.24 | 0.24          | ppb   | U        |
| 79-34-5  | 1,1,2,2-Tetrachloroethane   | B 672-9049   | 0.16 | 0.16          | ppb   | U        |
| 103-65-1 | n-Propylbenzene             | B 672-9049   | 0.21 | 0.21          | ppb   | U        |
| 96-18-4  | 1,2,3-Trichloropropane      | B 672-9049   | 0.21 | 0.21          | ppb   | U        |
| 622-96-8 | p-Ethyltoluene              | B 672-9049   | 0.24 | 0.24          | ppb   | U        |
| 108-67-8 | 1,3,5-Trimethylbenzene      | B 672-9049   | 0.20 | 0.20          | ppb   | U        |
| 95-49-8  | 2-Chlorotoluene             | B 672-9049   | 0.27 | 76.4          | ppb   |          |
| 106-43-4 | 4-Chlorotoluene             | B 672-9049   | 0.35 | 0.35          | ppb   | U        |
| 98-06-6  | tert-Butylbenzene           | B 672-9049   | 0.24 | 0.24          | ppb   | Ų        |
| 95-63-6  | 1,2,4-Trimethylbenzene      | B 672-9049   | 0.17 | 0.17          | ррЪ   | U        |
| 135-98-8 | sec-Butylbenzene            | B 672-9049   | 0.16 | 0.16          | ppb   | U        |
| 99-87-6  | 4-isopropyltoluene          | B 672 -9049  | 0.24 | 0.24          | ppb   | U        |
| 541-73-1 | 1,3-Dichlorobenzene         | B 672-9049   | 0.23 | 0.23          | ppb   | U        |
| 106-46-7 | 1,4-Dichlorobenzene         | B 672-9049   | 0.23 | 0.23          | ppb   | TU       |
| 95-50-1  | 1,2-Dichlorobenzene         | B 672-9049   | 0.15 | 0.15          | ddd   | U        |
| 105-05-5 | p-Diethylbenzene            | B 672-9049   | 0.24 | 0.24          | ppb   | U        |
| 104-51-8 | n-Butylbenzene              | B 672-9049   | 0.14 | 0.14          | ppb   | U        |
| 95-93-2  | 1,2,4,5-Tetramethylbenzene  | B 672-9049   | 0.26 | 0.26          | ppb   | υ        |
| 96-12-8  | 1,2-Dibromo-3-chloropropane | B 672-9049   | 0.33 | 0.33          | ppb   | U        |
| 120-82-1 | 1,2,4-Trichlorobenzene      | B 672-9049   | 0.22 | 0.22          | ppb   | U        |
| 87-68-3  | Hexachlorobutadiene         | B 672-9049   | 0,26 | 0.26          | ppb   | U        |
| 91-20-3  | Naphthalene                 | B 672 -9049  | 0.14 | 0.14          | ppb   |          |
| 87-61-6  | 1,2,3-Trichlorobenzene      | B 672-9049   | 0.17 | 0.17          | ppb   |          |



**BHOLOCIKCUITS EHS** 

#### Page 12 of 37

Phone - 631-249-1456 Fax - 631-249-8344

01/22/2002

## Volatiles - EPA 8260B

#### Sample: M6868-4...continue

Client Sample ID: MW-13 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/15/2002

Type: Grab

Collected: 01/10/2002 09:00



#### Page 13 of 37

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

### Volatiles - EPA 8260B

01/22/2002

#### Sample: M6868-10

Client Sample ID: Trip Blank Matrix: Liquid Remarks: See Case Narrative

Type: Blank

Collected: 01/10/2002

| Cas No     | Analyte                        | File ID     | MDL   | Concentration | Units |     |
|------------|--------------------------------|-------------|-------|---------------|-------|-----|
| 75-71-8    | Dichlorodifluoromethane        | B 672-9041  | 0.49  | 0.49          | onb   |     |
| 75-45-6    | Chlorodifluoromethane          | B 672-9041  | 0.21  | 0.21          | ppb   | 10- |
| 74-87-3    | Chloromethane                  | B 672-9041  | 0,49  | 0.49          | lopb  |     |
| 75-01-4    | Vinyl Chloride                 | B 672-9041  | 0.10  | 0.10          | ppb   |     |
| 74-83-9    | Bromomethane                   | B 672-9041  | 0.43  | 0.43          | ppb.  | U   |
| 75-00-3    | Chloroethane                   | B 672-9041  | 0.61  | 0.61          | ppb   | - U |
| 75-69-4    | Trichlorofluoromethane         | B 672-9041  | 0.24  | 0.24          | ppb   | U   |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | B 672-9041  | 0.23  | 0.23          | ppb   | 0   |
| 75-35-4    | 1,1-Dichloroethene             | B 672-9041  | 0.30  | 0.30          | ррб   | U   |
| 67-64-1    | Acetone                        | B 672-9041  | 3.12  | 3.12          | ppb   | U   |
| 75-15-0    | Carbon disulfide               | B 672-9041  | 0.20  | 0.20          | ppb   | U   |
| 75-09-2    | Methylene Chloride             | B 672-9041  | 0.54  | 0.54          | ppb   | U   |
| 156-60-5   | t-1,2-Dichloroethene           | B 672-9041  | 0.20  | 0.20          | ppb   | U   |
| 1634-04-4  | Methyl t-butyl ether           | B 672-9041  | 0.34  | 0.34          | ррь   | Ū   |
| 75-34-3    | 1,1-Dichloroethane             | B 672-9041  | 0.22  | 0.22          | рръ   | U   |
| 590-20-7   | 2,2-Dichloropropane            | B 672-9041  | 0.18  | 0.18          | ppb   | U   |
| 156-59-2   | c-1,2-Dichloroethene           | B 672-9041  | 0.21  | 0.21          | ppb   | U   |
| 78-93-3    | 2-Butanone                     | B 672-9041  | 5.00  | 5.00          | ppb   | U   |
| 74-97-5    | Bromochloromethane             | B 672-9041  | 0.27  | 0.27          | bbp   | Ū   |
| 67-66-3    | Chloroform                     | B 672-9041  | 0.20  | 0.20          | ррр   | Τυ  |
| 71-55-6    | 1,1,1-Trichloroethane          | B 672-9041  | 0.22  | 0,22          | ррр   | U   |
| 56-23-5    | Carbon Tetrachloride           | B 672-9041  | 0.25  | 0.25          | ppb   | U   |
| 563-58-6   | 1,1-Dichloropropene            | B 672-9041  | 0.59  | 0.59          | ppb   | U   |
| 71-43-2    | Benzene                        | B 672-9041  | 0.16  | 0.16          | ppb   | U   |
| 107-06-2   | 1,2-Dichloroethane             | B 672-9041  | 0.23  | 0.23          | ррв   | U   |
| 79-01-6    | Trichloroethene                | B 672-9041  | 0.16  | 0.16          | ppb   | U   |
| 78-87-5    | 1,2-Dichloropropane            | B 672-9041  | 0.36  | 0.36          | ppb   | U   |
| 74-95-3    | Dibromomethane                 | B 672-9041  | 0.18  | 0.18          | ppb   | U   |
| 75-27-4    | Bromodichloromethane           | B 672 -9041 | 0.15  | 0.15          | ppp   | U   |
| 110-75-8   | 2-Chloroethylvinylether        | B 672-9041  | 0.13  | 0.13          | ppb   | U   |
| 10061-01-5 | c-1,3-Dichloropropene          | B 672-9041  | 0,16  | 0.16          | ppb   | U   |
| 108-10-1   | 4-Methyl-2-pentanone           | B 672-9041  | 5.00  | 5.00          | ppb   | U   |
| 108-88-3   | Toluene                        | B 672-9041  | 0.14  | 0.14          | ррв   | U   |
| 10061-02-6 | t-1,3-Dichloropropene          | B 672-9041  | 0.080 | 0.080         | ppb   | U   |
| 79-00-5    | 1,1,2-Trichloroethane          | B 672-9041  | 0.090 | 0.090         | ppb   | U   |
| 127-18-4   | Tetrachloroethene              | B 672-9041  | 0.24  | 0.24          | ppb   | U   |



#### Page 29 of 37

PHOTOCIRCUITS EHS

/971-609-919

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

#### Volatiles - EPA 8260B

Type: Blank

01/22/2002

Collected: 01/10/2002

#### Sample: M6868-10...continue

Client Sample ID: Trip Blank Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/15/2002

Concentration File ID MDL Units Cas No Analyte Q 142-28-9 1,3-Dichloropropane B 672-9041 0.200.20 ppb U 5.00 5.00 ppb U B 672-9041 591-78-6 2-Hexanone Ū 124-48-1| Dibromochloromethane B 672-9041 0.11 0.11 ppb B 672-9041 0.10 0.10 ppb υ 106-93-4 1.2-Dibromoethane 0.15 ppb Ū 108-90-7 Chlorobenzene B 672-9041 0.15 U 630-20-6 1,1,1,2-Tetrachloroethane B 672-9041 0.18 0.18 ppb 0.22 0.22 ppb Ũ 100-41-4 Ethylbenzene B 672-9041 υ 0.42 ppb 108-38-3 m,p-xylene B 672-9041 0.42 0.20 0.20 ppb U 95-47-6 o-xylene B 672-9041 0.17 ppb Ū B 672-9041 0.17 100-42-5 Styrene 0.10 0.10 ppb Ū B 672-9041 75-25-2 Bromoform U 0.25 0.25 ppb 98-82-8 Isopropylbenzene B 672-9041 υ 0.24 0.24 ppb 108-86-1 Bromobenzene B 672-9041 0.16 ppb B 672-9041 0.16 Ū 79-34-5 1,1,2,2-Tetrachloroethane Ũ 0.21 0.21 ppb B 672-9041 103-65-1 n-Propylbenzene 0.21 0.21 ppb υ B 672-9041 96-18-4 1,2,3-Trichloropropane 0.24 0.24 ppb Ũ 622-96-8 p-Ethyltoluene B 672-9041 บิ 0.20 0.20 ppb 108-67-8 1,3,5-Trimethylbenzene B 672 -9041 0,27 0.27 ppb U B 672-9041 95-49-8 2-Chlorotoluene Ū 0.35 ppb 106-43-4 4-Chlorotoluene B 672-9041 0.35 Ũ 0.24 0.24 ppb B 672-9041 98-06-6 tert-Butylbenzene U 0.17 0.17 ppb 95-63-6 1,2,4-Trimethylbenzene B 672-9041 Ū 0.16 ppb 135-98-8 sec-Butylbenzene B 672-9041 0.16 0.24 ppb Ũ 0.24 99-87-6 4-Isopropyltoluene B 672-9041 Ū 0.23 ppb B 672-9041 0.23 541-73-1 1.3-Dichlorobenzene Ū 0.23 ppb 0.23 106-46-7 1.4-Dichlorobenzene B 672-9041 0.15 0.15 ppb ΰ B 672-9041 95-50-1 1.2-Dichlorobenzene 0.24 ppb Ū 0.24 105-05-5 p-Diethylbenzene B 672-9041 U 0,14 ppb 0.14 104-51-8 n-Butylbenzene B 672-9041 0.26 ppb Ū 0.26 B 672-9041 95-93-2 1,2,4,5-Tetramethylbenzene ΰ 0.33 0.33 ppb B 672-9041 96-12-8 1,2-Dibromo-3-chloropropane U 0,22 0.22 ppb 120-82-1 1.2.4-Trichlorobenzene B 672-9041 U 0.26 0.26 ppb B 672-9041 Hexachlorobutadiene 87-68-3 U 0.14 B 672-9041 0.14 ddd 91-20-3 Naphthalene Ū 0,17 0.17 ppb B 672-9041 1.2.3-Trichlorobenzene 87-61-6



- M6868 -

#### Page 30 of 37

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/22/2002

# Volatiles - EPA 8260B

#### Sample: M6868-10...continue

Client Sample ID: Trip Blank Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/15/2002

Type: Blank

Collected: 01/10/2002



#### - M6868 -

#### Page 31 of 37

SHALOCIKONI 2 FH2

/971-609-919 91:91 Z00Z/6Z/I0

Phone - 631-249-1456 Fax - 631-249-8344

#### 01/22/2002

# Iron, Total

| Sample: M6<br>Client Sampl<br>Matrix: Liquic<br>Remarks:<br>Analyzed Da | <u>868-3</u><br>ie ID: MW-12<br>i<br>te: 01/14/2002 | Type: Grab |       | Collected     | :01/09/200 | 2 14:45 |
|-------------------------------------------------------------------------|-----------------------------------------------------|------------|-------|---------------|------------|---------|
| Cas No                                                                  | Analyte                                             |            | MDL   | Concentration | Units      | Q       |
| 7439-89-6                                                               | tron                                                |            | 0.096 | 61.0          | ppm        |         |
|                                                                         |                                                     |            |       | •             | ·          |         |

#### Sample: M6868-4

| Client Sample             | ID: MW-13    |            |       | Collected:    | :01/10/2002 | 2 09:00 |
|---------------------------|--------------|------------|-------|---------------|-------------|---------|
| Matrix: Liquid            |              | Type: Grab |       |               |             |         |
| Remarks:<br>Analyzed Date | : 01/14/2002 |            |       |               |             |         |
| Cas No                    | Analyte      | ļ          | MDĻ   | Concentration | Units       | Q       |
| 7439-89-6 Irc             | on           |            | 0.096 | 0.93          | ppm         |         |



SHE STRONTOLINHA

JUAU

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/22/2002

### Nitrogen/Nitrate - EPA 353.2

#### Sample: M6868-3

Client Sample ID: MW-12 Matrix: Liquid Remarks: Analyzed Date: 01/21/2002

Type; Grab

Collected: 01/09/2002 14:45

| Analyzed D | ate: 01/21/2002 |       | ·      |       |   |
|------------|-----------------|-------|--------|-------|---|
| Cas No     | Analyte         | MDL   | Result | Units | Q |
| 14797-55-8 | Nitrate         | 0.050 | 0,0050 | ppm   | J |

#### Sample: M6868-4

| Client Sam<br>Matrix: Liqu | ble ID: MW-13<br>id | Type: Grab | Collected: 01/10/2002 09 |        |       |   |  |
|----------------------------|---------------------|------------|--------------------------|--------|-------|---|--|
| Remarks:<br>Analyzed D     | ate: 01/21/2002     |            |                          |        |       |   |  |
| Cas No                     | Analyte             |            | MDL.                     | Result | Units | Q |  |
| 14797-55-8                 | Nitrate             |            | 0.050                    | 3,54   | ppm   |   |  |



L∀CE.

34

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/22/2002

## Sulfate - EPA 375.4

Type: Grab

Type: Grab

#### Sample: M6868-3

Client Sample ID: MW-12. Matrix: Liquid Remarks: 4/40/2002

| Analyzeo L | ate: 01/19/2002 |      |        |       |   |
|------------|-----------------|------|--------|-------|---|
| Cas No     | Analyte         | MDL  | Result | Units | Q |
| 14808-79-8 | Sulfate         | 0.16 | 418    | ppm   |   |

#### Sample: M6868-4

Matrix: Liquid

Collected: 01/10/2002 09:00

Collected: 01/09/2002 14:45

Remarks: Analyzed Date: 01/19/2002

Client Sample ID: MW-13

| Cas No     | Analyte | <br>MDL | Result | Units | Q |
|------------|---------|---------|--------|-------|---|
| 14808-79-8 | Sulfate | 0.78    | 648    | ppm   | · |


208 Route 109, Farmingdale NY 11735

Phone - 631-249-1456 Fax - 631-249-8344

01/22/2002

## **Total Organic Carbon - Method 415.1**

## Sample: M6868-3

Client Sample ID: MW-12 Matrix: Liquid

Type: Grab

Collected: 01/09/2002 14:45

Remarks: Analyzed Date: 01/14/2002

| Cas No | Analyte | MDL  | Result | Units | Q |
|--------|---------|------|--------|-------|---|
|        | ТОС     | 0.94 | 0.94   | ppm   | U |

## Sample: M6868-4

| Client Sam             | ple ID: MW-13    |            |      | Collected: 01/10/2002 09:0 |       |   |
|------------------------|------------------|------------|------|----------------------------|-------|---|
| Matrix: Liqu           | id               | Type: Grab |      |                            | ·     |   |
| Remarks:<br>Analyzed D | Date: 01/14/2002 |            |      |                            |       |   |
| Cas No                 | Analyte          |            | MDL  | Result                     | Units | Q |
|                        | TOC              |            | 0.94 | 0.94                       | ppm   | U |



7984

39

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/22/2002

### **Case Narrative**

8260

The following compounds were calibrated at 25, 50, 100, 150 and 200 ppb levels in the initial calibration curve:

Acetone 2-Butanone 4-Methyl-2-pentanone 2-Hexanone

M&P-Xylenes were calibrated at 10, 40, 100, 200 and 300 ppb levels.

All other compounds were calibrated at 5, 20, 50, 100 and 150 ppb levels.

a

Reviewed by:



Page 36 of 37

## Environmental Testing Laboratories, Inc. 208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

### 01/22/2002

### ORGANIC METHOD QUALIFIERS

- Q Qualifier specified entries and their meanings are as follows:
  - U The analytical result is a non-detect.
  - J Indicates an estimated value. The concentration reported was detected below the Method Detection Limit.
  - B The analyte was found in the associated method blank as well as the sample, It indicates possible/probable blank contamination and warns the data user to take appropriate action.
  - E The concentration of the analyte exceeded the calibration range of the instrument.
  - D This flag identifies all compounds identified in an analysis at a secondary dilution. In the case of a surrogate this flag indicates a system mointoring compound diluted out.

## **INORGANIC METHOD QUALIFIERS**

- C (Concentration) qualifiers are as follows:
  - B Entered if the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL).
  - U Entered when the analyte was analyzed for, but not detected.
  - J Indicates an estimated value. The concentration reported was detected below the Method Detection Limit.
- Q Qualifier specific entries and their meanings are as follows:
  - E Reported value is estimated because of the presence of interferences.
- M (Method) qualifiers are as follows:
  - A Flame AA
  - AS Semi-automated Spectrophotometric
  - AV Automated Cold Vapor AA
  - C Manual Spectrophotometric
  - F Furnace AA
  - NR when the analyte is not required to be analyzed.
  - P ICP
  - T Titrimetric

### **OTHER QUALIFIERS**

- ND Not Detected
- NA Not Applicable
  - Outside Expected Range (NYCDEP Table I/II or Surrogate Limits)



### Page 37 of 37

208 Route 109, Familingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/22/2002

Collected: 01/10/2002 14:30

## Volatiles - EPA 8260B

#### Sample: M6868-6

Client Sample ID: MW-15 (45 A-Site) Matrix: Liquid Type: Grab Remarks: See Case Narrative Analyzed Date: 01/15/2002

Analyte File ID MDL Concentration Units Q Cas No 0.49 ppb B 672-9051 0.49 U 75-71-8 Dichlorodifluoromethane 75-45-6 Chlorodifluoromethane B 672-9051 0.21 0.21 ppb Ũ 0.49 0.49 ppb Ū 74-87-3 Chloromethane B 672-9051 U 75-01-4 Vinyl Chloride B 672-9051 0.10 0.10 ppb 7 Ū Bromomethane B 672-9051 0.43 0.43 ppb 74-83-9 0.61 0.61 ppb U Chloroethane B 672-9051 75-00-3 3 Ū 0.24 0.24 ppb 75-69-4 Trichlorofluoromethane B 672-9051 0.23 0.23 ppb U B 672-9051 76-13-1 1,1,2-Trichlorotrifluoroethane 0.30 ppb Ũ B 672-9051 0.30 75-35-4 1.1-Dichloroethene 10 B 672-9051 3.12 3,12 ppb Ū 67-64-1 Acetone Ű 0.20 0.20 ppb 75-15-0 Carbon disulfide B 672-9051 0.54 ppb U 0.54 75-09-2 Methylene Chloride B 672-9051 0.20 ppb Ū 0.20 B 672-9051 156-60-5 t-1,2-Dichloroethene Ū 0.34 0.34 ppb 1634-04-4 Methyl t-butyl ether B 672-9051 Ū 0.22 ppb 0.22 B 672-9051 75-34-3 1.1-Dichloroethane 2 0.18 0.18 ppb Ū B 672-9051 590-20-7 2,2-Dichloropropane Ũ 0.21 ppb 0.21 B 672-9051 c-1,2-Dichloroethene 156-59-2 ับ 5.00 ppb 5.00 B 672-9051 78-93-3 2-Butanone Ũ 0.27 0.27 ppb Bromochloromethane B 672-9051 74-97-5 0.20 ppb U 0.20 Chloroform B 672-9051 67-66-3 0.22 ppb Ū 0.22 B 672-9051 1.1.1-Trichloroethane 71-55-6 1 Ũ 0.25 0.25 ppb Carbon Tetrachloride B 672-9051 56-23-5 ΰ 0.59 ppb 0.59 1,1-Dichloropropene B 672-9051 563-58-6 Ū 0.16 ppb B 672-9051 0.16 71-43-2 Benzene ΰ 0.23 ppb B 672-9051 0.23 1.2-Dichloroethane 107-06-2 Ū 0.16 ppb 0.16 79-01-6 Trichloroethene B 672-9051 0.36 0.36 ppb Ũ B 672-9051 78-87-5 1,2-Dichloropropane Ũ Dibromomethane 0.18 0.18 ppb 74-95-3 B 672-9051 ū 0.15 0.15 ppb B 672-9051 75-27-4 Bromodichloromethane Ū 0.13 ppb 0.13 B 672-9051 110-75-8 2-Chloroethylvinylether Ū 0.16 0.16 ppb B 672-9051 c-1,3-Dichloropropene 10061-01-5 5.00 ppb Ū 5.00 108-10-1 4-Methyl-2-pentanone B 672-9051 U 0.14 0.14 ppb B 672-9051 108-88-3 Toluene U 0.080 ppb 0.080 B 672-9051 10061-02-6 t-1.3-Dichloropropene U 0.090 ppb 0.090 B 672-9051 1,1,2-Trichloroethane 79-00-5 0.24 7.40 ppb B 672-9051 Tetrachloroethene 127-18-4 A



## Environmental Testing Laboratories, Inc. 208 Route 109, Farmingdale NY 11735

Phone - 631-249-1456 Fax - 631-249-8344

### 01/22/2002

## Volatiles - EPA 8260B

### Sample: M6868-6...continue

Client Sample ID: MW-15 (45 A-Site) Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/15/2002

Type: Grab

Collected: 01/10/2002 14:30

| Cas No   | Analyte                     | File ID     | MDL  | Concentration | Units       | Q        |
|----------|-----------------------------|-------------|------|---------------|-------------|----------|
| 142-28-9 | 1,3-Dichloropropane         | B 672-9051  | 0.20 | 0.20          | ррр         | U        |
| 591-78-6 | 2-Hexanone                  | B 672-9051  | 5.00 | 5.00          | ppb         | U        |
| 124-48-1 | Dibromochloromethane        | B 672-9051  | 0.11 | 0.11          | p <b>pb</b> | U        |
| 106-93-4 | 1,2-Dibromoethane           | B 672-9051  | 0.10 | 0.10          | ppb         | U        |
| 108-90-7 | Chlorobenzene               | B 672-9051  | 0.15 | 0.15          | ppb         | Ų        |
| 630-20-6 | 1,1,1,2-Tetrachloroethane   | B 672-9051  | 0.18 | 0.18          | ррр         | U        |
| 100-41-4 | Ethylbenzene                | B 672-9051  | 0.22 | 0.22          | рръ         | U        |
| 108-38-3 | m,p-xylene                  | B 672-9051  | 0.42 | · 0.42        | ppb         | Ų.       |
| 95-47-6  | o-xylene                    | B 672-9051  | 0.20 | 0.20          | ppb         | U        |
| 100-42-5 | Styrene                     | B 672-9051  | 0.17 | 0,17          | ppb         | U        |
| 75-25-2  | Bromoform                   | B 672-9051  | 0.10 | 0.10          | ppb         | U        |
| 98-82-8  | Isopropylbenzene            | B 672-9051  | 0.25 | 0.25          | ррб         | U        |
| 108-86-1 | Bromobenzene                | B 672-9051  | 0.24 | 0.24          | ррб         | Ų        |
| 79-34-5  | 1,1,2,2-Tetrachloroethane   | B 672-9051  | 0.16 | 0.16          | ppb         | υ        |
| 103-65-1 | n-Propylbenzene             | B 672-9051  | 0.21 | 0.21          | ррь         | U        |
| 96-18-4  | 1,2,3-Trichloropropane      | B 672-9051  | 0.21 | 0.21          | ррб         | U        |
| 622-96-8 | p-Ethyltoluene              | B 672-9051  | 0.24 | 0.24          | ppb         | U        |
| 108-67-8 | 1,3,5-Trimethylbenzene      | B 672-9051  | 0.20 | 0.20          | ppb         | U        |
| 95-49-8  | 2-Chlorotoluene             | B 672-9051  | 0.27 | 0.27          | ppb         | <u>U</u> |
| 106-43-4 | 4-Chlorotoluene             | B 672-9051  | 0.35 | 0.35          | ppb         | U        |
| 98-06-6  | tert-Butylbenzene           | B 672-9051  | 0.24 | 0.24          | ppb         | U        |
| 95-63-6  | 1,2,4-Trimethylbenzene      | B 672-9051  | 0.17 | 0.17          | ppb         | U        |
| 135-98-8 | sec-Butylbenzene            | B 672-9051  | 0.16 | 0.16          | ppb         | U        |
| 99-87-6  | 4-lsopropyltoluene          | B 672-9051  | 0.24 | 0.24          | ppb         | Ų        |
| 541-73-1 | 1,3-Dichlorobenzene         | B 672-9051  | 0.23 | 0.23          | ppb         | <u> </u> |
| 106-46-7 | 1,4-Dichlorobenzene         | B 672-9051  | 0.23 | 0.23          | ррр         | U        |
| 95-50-1  | 1,2-Dichlorobenzene         | B 672-9051  | 0.15 | 0.15          | ррь         | Ų        |
| 105-05-5 | p-Diethylbenzene            | B 672-9051  | 0.24 | 0.24          | ppb         | U        |
| 104-51-8 | n-Butylbenzene              | B 672-9051  | 0.14 | 0.14          | ppb         | U        |
| 95-93-2  | 1,2,4,5-Tetramethylbenzene  | B 672-9051  | 0.26 | 0.26          | ppb         | U        |
| 96-12-8  | 1,2-Dibromo-3-chloropropane | B 672-9051  | 0.33 | 0.33          | ррь         | U        |
| 120-82-1 | 1,2,4-Trichlorobenzene      | B 672 -9051 | 0.22 | 0.22          | ppb         | U        |
| 87-68-3  | Hexachlorobutadiene         | B 672-9051  | 0.26 | 0.26          | ppp         | U        |
| 91-20-3  | Naphthalene                 | B 672-9051  | 0.14 | 0.14          | ppb         | U        |
| 87-61-6  | 1,2,3-Trichlorobenzene      | B 672 -9051 | 0.17 | 0.17          | ррр         | U        |



SHE STEDATOLIOHA

### Page 18 of 37

AT 39∀A

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/22/2002

## Volatiles - EPA 8260B

## Sample: M6868-6...continue

Client Sample ID: MW-15 (45 A-Site) Matrix: Liquid T Remarks: See Case Narrative Analyzed Date: 01/15/2002

Type: Grab

Collected: 01/10/2002 14:30



208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

### 01/22/2002

## Volatiles - EPA 8260B

### Sample: M6868-7

Client Sample ID: MW-25 (45 A-Site) Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/15/2002

Type: Grab

Collected: 01/10/2002 15:30

| Analyzed Date: 01/15/2002 |                                |             |       |               |       |    |  |  |  |  |
|---------------------------|--------------------------------|-------------|-------|---------------|-------|----|--|--|--|--|
| Cas No                    | Analyte                        | File ID     | MDL   | Concentration | Units | Q  |  |  |  |  |
| 75-71-8                   | Dichlorodifluoromethane        | B 672-9052  | 0.49  | . 0.49        | ppb   | U  |  |  |  |  |
| 75-45-6                   | Chlorodifluoromethane          | B 672-9052  | 0.21  | 0.21          | ppb   | U  |  |  |  |  |
| 74-87-3                   | Chloromethane                  | B 672-9052  | 0.49  | 0.49          | ppb   | U  |  |  |  |  |
| 75-01-4                   | Vinyl Chloride                 | B 672-9052  | 0.10  | 0.10          | ppb   | U  |  |  |  |  |
| 74-83-9                   | Bromomethane                   | B 672-9052  | 0.43  | . 0.43        | ррр   | U. |  |  |  |  |
| 75-00-3                   | Chloroethane                   | B 672-9052  | 0.61  | 0.61          | ррь   | u  |  |  |  |  |
| 75-69-4                   | Trichlorofluoromethane         | B 672-9052  | 0.24  | 0.24          | ррб   | U  |  |  |  |  |
| 76-13-1                   | 1,1,2-Trichlorotrifluoroethane | B 672-9052  | 0.23  | 0.23          | ррь   | U  |  |  |  |  |
| 75-35-4                   | 1,1-Dichloroethene             | B 672-9052  | 0.30  | 0.30          | ppb   | U  |  |  |  |  |
| 67-64-1                   | Acetone                        | B 672-9052  | 3.12  | 3.12          | ppb   | U  |  |  |  |  |
| 75-15-0                   | Carbon disulfide               | B 672-9052  | 0.20  | 0.20          | ррр   | U  |  |  |  |  |
| 75-09-2                   | Methylene Chloride             | B 672-9052  | 0.54  | 0.54          | ppb   | U  |  |  |  |  |
| 156-60-5                  | t-1,2-Dichloroethene           | B 672-9052  | 0.20  | 0.20          | ppb   | U  |  |  |  |  |
| 1634-04-4                 | Methyl t-butyl ether           | B 672-9052  | 0.34  | 0.34          | ррб   | U  |  |  |  |  |
| 75-34-3                   | 1,1-Dichloroethane             | B 672-9052  | 0.22  | 0.22          | ррр   | U  |  |  |  |  |
| 590-20-7                  | 2,2-Dichloropropane            | B 672-9052  | 0.18  | 0,18          | ррб   | U  |  |  |  |  |
| 156-59-2                  | c-1,2-Dichloroethene           | B 672-9052  | 0.21  | 0.21          | ррб   | U  |  |  |  |  |
| 78-93-3                   | 2-Butanone                     | B 672-9052  | 5.00  | 5.00          | ppb   | U. |  |  |  |  |
| 74-97-5                   | Bromochloromethane             | B 672-9052  | 0.27  | 0.27          | ррь   | U  |  |  |  |  |
| 67-66-3                   | Chloroform                     | B 672-9052  | 0.20  | 0.20          | ppb   | U  |  |  |  |  |
| 71-55-6                   | 1,1,1-Trichloroethane          | B 672-9052  | 0.22  | 0.22          | ppb   | U  |  |  |  |  |
| 56-23-5                   | Carbon Tetrachloride           | B 672-9052  | 0.25  | 0.25          | ppb   | U  |  |  |  |  |
| 563-58-6                  | 1,1-Dichloropropene            | B 672-9052  | 0.59  | 0.59          | ppb   | U  |  |  |  |  |
| 71-43-2                   | Benzene                        | B 672-9052  | 0.16  | 0.16          | ppb   | U  |  |  |  |  |
| 107-06-2                  | 1,2-Dichloroethane             | B 672 -9052 | 0.23  | 0.23          | ppb   | U  |  |  |  |  |
| 79-01-6                   | Trichloroethene                | B 672-9052  | 0.16  | 0.16          | ррь   | U  |  |  |  |  |
| 78-87-5                   | 1,2-Dichloropropane            | B 672-9052  | 0.36  | 0.36          | ppb   | υ  |  |  |  |  |
| 74-95-3                   | Dibromomethane                 | B 672-9052  | 0.18  | 0.18          | ррь   | U  |  |  |  |  |
| 75-27-4                   | Bromodichloromethane           | B 672-9052  | 0.15  | 0.15          | ppb   | υ  |  |  |  |  |
| 110-75-8                  | 2-Chloroethylvinylether        | B 672-9052  | 0.13  | 0.13          | рры   | U  |  |  |  |  |
| 10061-01-5                | c-1,3-Dichloropropene          | B 672-9052  | 0.16  | 0.16          | ррЪ   | U  |  |  |  |  |
| 108-10-1                  | 4-Methyl-2-pentanone           | B 672-9052  | 5.00  | 5.00          | ppb   | U  |  |  |  |  |
| 108-88-3                  | Toluene                        | B 672-9052  | 0.14  | 0.14          | ppb   | U  |  |  |  |  |
| 10061-02-6                | t-1,3-Dichloropropene          | B 672-9052  | 0.080 | 0.080         | ррь   | U  |  |  |  |  |
| 79-00-5                   | 1,1,2-Trichloroethane          | B 672-9052  | 0.090 | 0.090         | ppb   | U  |  |  |  |  |
| 127-18-4                  | Tetrachloroethene              | B 672-9052  | 0.24  | 0.24          | ppb   | U  |  |  |  |  |



- M6868 -

Page 20 of 37

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

## Volatiles - EPA 8260B

01/22/2002

### Sample: M6868-7...continue

Client Sample ID: MW-25 (45 A-Site) Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/15/2002

Type: Grab

Collected: 01/10/2002 15:30

| Cas No   | Analyte                     | File ID             | MDL  | Concentration | Units | Q |
|----------|-----------------------------|---------------------|------|---------------|-------|---|
| 142-28-9 | 1,3-Dichloropropane         | B 672-9052          | 0.20 | 0.20          | ppb   | U |
| 591-78-6 | 2-Hexanone                  | B 672-9052          | 5.00 | 5.00          | ppb   | U |
| 124-48-1 | Dibromochloromethane        | B 672 -9052         | 0.11 | 0.11          | ppb   | U |
| 106-93-4 | 1,2-Dibromoethane           | B 672-9052          | 0.10 | 0.10          | ppb   | U |
| 108-90-7 | Chlorobenzene               | B 672 -9052         | 0.15 | 0.15          | ppb   | U |
| 630-20-6 | 1,1,1,2-Tetrachloroethane   | B 672 -9052         | 0.18 | 0.18          | ppb   | U |
| 100-41-4 | Ethylbenzene                | B 672-9052          | 0.22 | 0.22          | ppb   | U |
| 108-38-3 | m,p-xylene                  | B 672-9052          | 0.42 | 0.42          | ppb   | U |
| 95-47-6  | o-xylene                    | B 672 -9052         | 0.20 | Ó.20          | ppb   | U |
| 100-42-5 | Styrene                     | B 672-9052          | 0.17 | 0.17          | ppb   | Ū |
| 75-25-2  | Bromoform                   | B 672 -9052         | 0.10 | 0.10          | ppb   | U |
| 98-82-8  | Isopropylbenzene            | B 672-9052          | 0.25 | 0.25          | ppb   | U |
| 108-86-1 | Bromobenzene                | B 672 -9052         | 0.24 | 0.24          | ppb   | U |
| 79-34-5  | 1,1,2,2-Tetrachloroethane   | B 672-9052          | 0.16 | 0.16          | ppb   | U |
| 103-65-1 | n-Propylbenzene             | B 672-9052          | 0.21 | 0.21          | ppb   | Ų |
| 96-18-4  | 1,2,3-Trichloropropane      | B 672 -9052         | 0.21 | 0.21          | ppb   | U |
| 622-96-8 | p-Ethyltoluene              | B 672 -9052         | 0.24 | 0.24          | ppb   | U |
| 108-67-8 | 1,3,5-Trimethylbenzene      | B 672-9052          | 0.20 | 0.20          | ppb   | U |
| 95-49-8  | 2-Chlorotoluene             | B 672-9052          | 0.27 | 0.27          | ppb   | U |
| 106-43-4 | 4-Chlorotoluene             | B 672 -9052         | 0.35 | 0.35          | ppb   | U |
| 98-06-6  | tert-Butylbenzene           | B 672 -9052         | 0.24 | 0,24          | ррб   | U |
| 95-63-6  | 1,2,4-Trimethylbenzene      | B 672-9052          | 0.17 | 0.17          | ppb   | U |
| 135-98-8 | sec-Butylbenzene            | B 672-9052          | 0.16 | 0.16          | рръ   | U |
| 99-87-6  | 4-Isopropyltoluene          | B 672-9052          | 0.24 | 0.24          | ррЬ   | U |
| 541-73-1 | 1,3-Dichlorobenzene         | B 672-9052          | 0.23 | 0.23          | ррр   | υ |
| 106-46-7 | 1,4-Dichlorobenzene         | B 672 -9052         | 0.23 | 0.23          | ррь   | U |
| 95-50-1  | 1,2-Dichlorobenzene         | В 672 <b>-</b> 9052 | 0.15 | 0.15          | ppb   | U |
| 105-05-5 | p-Diethylbenzene            | B 672 -9052         | 0.24 | 0.24          | ррь   | υ |
| 104-51-8 | n-Butylbenzene              | B 672-9052          | 0.14 | 0.14          | ppb   | U |
| 95-93-2  | 1,2,4,5-Tetramethylbenzene  | B 672-9052          | 0.26 | 0.26          | ppb   | U |
| 96-12-8  | 1,2-Dibromo-3-chloropropane | B 672-9052          | 0.33 | 0.33          | ppb   | U |
| 120-82-1 | 1,2,4-Trichlorobenzene      | B 672-9052          | 0.22 | 0.22          | bbp   | U |
| 87-68-3  | Hexachlorobutadiens         | B 672-9052          | 0.26 | 0.26          | ppb   | U |
| 91-20-3  | Naphthalene                 | B 672-9052          | 0.14 | 0.14          | ppb   | U |
| 87-61-6  | 1,2,3-Trichlorobenzene      | B 672-9052          | 0.17 | 0.17          | ppb   | U |



### Page 21 of 37

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

. 01/22/2002

## Volatiles - EPA 8260B

## Sample: M6868-7...continue Client Sample ID: MW-25 (45 A-Site) Matrix: Liquid

Remarks: See Case Narrative Analyzed Date: 01/15/2002 Type: Grab

Collected: 01/10/2002 15:30



<u>/971-609-919</u> 91:91 2002/62/10

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

## Volatiles - EPA 8260B

01/22/2002

## Sample: M6868-8

Client Sample ID: MW-35 (45 A-Site) Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/15/2002

Type: Grab

Collected: 01/10/2002 14:05

| ſ   | Cas No     | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | File ID     | MDL   | Concentration | Units | Q   |
|-----|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|---------------|-------|-----|
| ľ   | 75-71-8    | Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B 672-9053  | 0.49  | 0.49          | ppb   | U   |
| Ī   | 75-45-6    | Chlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B 672-9053  | 0.21  | 0.21          | ppb   | U   |
| . [ | 74-87-3    | Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B 672-9053  | 0.49  | 0.49          | ppb   | U   |
| 71  | 75-01-4    | Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B 672-9053  | 0.10  | 0.10          | ppb   | U   |
| ' [ | 74-83-9    | Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B 672-9053  | 0.43  | 0.43          | ppb   | U   |
| 3   | 75-00-3    | Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B 672 -9053 | 0.61  | 0.61          | ppb   | U   |
| - [ | 75-69-4    | Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B 672 -9053 | 0.24  | 0.24          | ppb   | U   |
| F   | 76-13-1    | 1,1,2-Trichlorotrifluoroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B 672-9053  | 0.23  | 0.23          | ррь   | U   |
| 6   | 75-35-4    | Bromomethane B 672-9053 0.43 0.43 p   3 Chloroethane B 672-9053 0.61 0.61 p   4 Trichlorofluoromethane B 672-9053 0.24 0.24 p   1 1,1,2-Trichlorotrifluoroethane B 672-9053 0.23 0.23 p   1 1,1-Dichloroethene B 672-9053 0.30 0.30 p   1 1,1-Dichloroethene B 672-9053 0.20 0.20 p   1 Acetone B 672-9053 0.20 0.20 p   2 Carbon disulfide B 672-9053 0.20 0.20 p   2 Methylene Chloride B 672-9053 0.20 0.20 p   3 1,1-Dichloroethene B 672-9053 0.22 0.22 p   4 1,1-Dichloroethene B 672-9053 0.22 0.22 p   4 1,1-Dichloroethene B 672-9053 0.21 2.40 p   3 1,1-Dichloroethene B 672-9053 | ррь         | Ū.    |               |       |     |
| Ĭ   | 67-64-1    | Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B 672-9053  | 3.12  | 3.12          | ррь   | U . |
|     | 75-15-0    | Carbon disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B 672 -9053 | 0.20  | 0.20          | ppb   | U   |
| ſ   | 75-09-2    | Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B 672-9053  | 0.54  | 0.54          | ppb   | U   |
| F   | 156-60-5   | t-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B 672-9053  | 0.20  | 0.20          | ррь   | U   |
|     | 1634-04-4  | Methyl t-butyl other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B 672-9053  | 0.34  | 0.34          | ppb   | υ   |
| 2   | 75-34-3    | 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B 672-9053  | 0.22  | 0.22          | ppb.  | U   |
| Ť   | 590-20-7   | 2,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B 672 -9053 | 0.18  | 0.18          | ррЬ   | υ   |
| F   | 156-59-2   | c-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B 672-9053  | 0.21  | 2.40          | ppb   |     |
| -   | 78-93-3    | 2-Butanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B 672 -9053 | 5.00  | 5.00          | ppb   | U   |
|     | 74-97-5    | Bromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B 672-9053  | 0.27  | 0.27          | ррр   | U   |
|     | 67-66-3    | Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B 672-9053  | 0.20  | 0.20          | ррь   | υ   |
| 1   | 71-55-6    | 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B 672-9053  | 0.22  | 0.22          | ppb   | U   |
|     | 56-23-5    | Carbon Tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B 672-9053  | 0.25  | 0.25          | ррь   | U   |
| Ī   | 563-58-6   | 1,1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B 672-9053  | 0.59  | 0.59          | ppb   | U   |
| Γ   | 71-43-2    | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B 672-9053  | 0,16  | 0.16          | ррб   | TU  |
| ſ   | 107-06-2   | 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B 672-9053  | 0.23  | 0.23          | ррр   | U   |
| 5   | 79-01-6    | Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B 672-9053  | 0.16  | 96.7          | ррь   |     |
| 1   | 78-87-5    | 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B 672-9053  | 0.36  | 0.36          | ppb   | U   |
| · [ | 74-95-3    | Dibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B 672-9053  | 0.18  | 0.18          | ppb   | U   |
|     | 75-27-4    | Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B 672-9053  | 0.15  | 0.15          | ppb   | υ   |
| Ĩ   | 110-75-8   | 2-Chloroethylvinylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B 672 -9053 | 0.13  | 0.13          | ppb   | Ų   |
|     | 10061-01-5 | c-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B 672-9053  | 0.16  | 0.16          | ppb   | U   |
| Γ   | 108-10-1   | 4-Methyl-2-pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B 672-9053  | 5.00  | 5.00          | ppb   | U   |
| ſ   | 108-88-3   | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B 672 -9053 | 0.14  | 0.14          | ppb   | U   |
| ſ   | 10061-02-6 | t-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B 672 -9053 | 0.080 | 0.080         | ppb   | U   |
| ſ   | 79-00-5    | 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B 672-9053  | 0.090 | 0.090         | ppb   | U   |
| uĪ  | 127-18-4   | Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B 672 -9053 | 0.24  | <b>9.6</b> 0  | ррб   |     |



בעתו הרדערהדו א בעא

### Page 23 of 37

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

## 01/22/2002

## Volatiles - EPA 8260B

### Sample: M6868-8...continue

Client Sample ID: MW-35 (45 A-Site) Matrix: Liquid Remarks: See Case Narrative

Type: Grab

Collected: 01/10/2002 14:05

| Analyzed D | ate: 01/15/2002             | _           |      |               |       |   |
|------------|-----------------------------|-------------|------|---------------|-------|---|
| Cas No     | Analyte                     | File ID     | MDL  | Concentration | Units | Q |
| 142-28-9   | 1,3-Dichloropropane         | B 672-9053  | 0.20 | 0.20          | ppb   | U |
| 591-78-6   | 2-Hexanoné                  | B 672-9053  | 5.00 | 5.00          | ppb   | U |
| 124-48-1   | Dibromochloromethane        | B 672-9053  | 0.11 | 0.11          | ppb   | U |
| 106-93-4   | 1,2-Dibromoethane           | B 672-9053  | 0.10 | 0.10          | ppb   | U |
| 108-90-7   | Chlorobenzene               | B 672-9053  | 0.15 | 0,15          | ppb   | U |
| 630-20-6   | 1,1,1,2-Tetrachloroethane   | B 672-9053  | 0.18 | 0.18          | ppb   | U |
| 100-41-4   | Ethylbenzene                | B 672-9053  | 0.22 | 0.22          | ppb   | U |
| 108-38-3   | m,p-xylene                  | B 672-9053  | 0.42 | 0.42          | ppb   | U |
| 95-47-6    | o-xylene                    | B 672-9053  | 0.20 | 0.20          | ppb   | U |
| 100-42-5   | Styrene                     | B 672-9053  | 0.17 | 0.17          | ppb   | U |
| 75-25-2    | Bromoform                   | B 672-9053  | 0.10 | 0.10          | ppb   | U |
| 98-82-8    | Isopropylbenzene            | B 672-9053  | 0.25 | 0.25          | ppb   | U |
| 108-86-1   | Bromobenzene                | B 672-9053  | 0.24 | 0.24          | ppb   | Ū |
| 79-34-5    | 1,1,2,2-Tetrachloroethane   | B 672-9053  | 0.16 | 0.16          | ppb   | U |
| 103-65-1   | n-Propylbenzene             | B 672-9053  | 0.21 | 0.21          | ppb   | U |
| 96-18-4    | 1,2,3-Trichloropropane      | B 672-9053  | 0.21 | 0.21          | ppb   | U |
| 622-96-8   | p-Ethyltoluene              | B 672-9053  | 0.24 | 0.24          | ppb   | U |
| 108-67-8   | 1,3,5-Trimethylbenzene      | B 672-9053  | 0.20 | 0.20          | ppb · | U |
| 95-49-8    | 2-Chlorotoluene             | B 672-9053  | 0.27 | 0.27          | ppb   | U |
| 106-43-4   | 4-Chlorotoluene             | B 672-9053  | 0.35 | 0.35          | ppb   | U |
| 98-06-6    | tert-Butylbenzene           | B 672-9053  | 0.24 | 0.24          | ppb   | U |
| 95-63-6    | 1,2,4-Trimethylbenzene      | B 672-9053  | 0.17 | 0.17          | ppb   | U |
| 135-98-8   | sec-Butylbenzene            | B 672-9053  | 0.16 | 0.16          | ppb   | U |
| 99-87-6    | 4-Isopropyltoluene          | B 672-9053  | 0.24 | 0,24          | ppb   | U |
| 541-73-1   | 1,3-Dichlorobenzene         | B 672-9053  | 0.23 | 0.23          | ppb   | υ |
| 106-46-7   | 1,4-Dichlorobenzene         | B 672-9053  | 0.23 | 0.23          | ppb   | U |
| 95-50-1    | 1,2-Dichlorobenzene         | B 672-9053  | 0.15 | 0.15          | ppb   | U |
| 105-05-5   | p-Diethylbenzene            | B 672-9053  | 0.24 | 0,24          | ppb   | U |
| 104-51-8   | n-Butylbenzene              | B 672-9053  | 0.14 | 0.14          | ррь   | U |
| 95-93-2    | 1,2,4,5-Tetramethylbenzene  | B 672-9053  | 0.26 | 0.26          | ppb   | U |
| 96-12-8    | 1,2-Dibromo-3-chloropropane | B 672-9053  | 0.33 | 0.33          | ррb   | υ |
| 120-82-1   | 1,2,4-Trichlorobenzene      | B 672-9053  | 0.22 | 0.22          | ррь   | U |
| 87-68-3    | Hexachlorobutadiene         | B 672 -9053 | 0.26 | 0.26          | ррь   | U |
| 91-20-3    | Naphthalene                 | B 672-9053  | 0.14 | 0.14          | ррь   | υ |
| 87-61-6    | 1.2.3-Trichlorobenzene      | B 672-9053  | 0,17 | 0.17          | ddd   | υ |



### Page 24 of 37

SHALLOCTROPTIC FHS

/977-609-919 91:91 ZANZ/6Z/10

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/22/2002

## Volatiles - EPA 8260B

### Sample: M6868-8...continue

Client Sample ID: MW-35 (45 A-Site) Matrix: Liquid Type: Grab Remarks: See Case Narrative Analyzed Date: 01/15/2002 Collected: 01/10/2002 14:05





208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

## Volatiles - EPA 8260B

01/22/2002

Collected: 01/10/2002 15:40

### Sample: M6868-9

Client Sample ID: MW-45 (45 A-Site) Matrix: Liquid Type: Grab Remarks: See Case Narrative

Remarks: See Case Narrative Analyzed Date: 01/15/2002

|       | Cas No     | Analyte                        | File ID     | MDL   | Concentration | Units | Q |
|-------|------------|--------------------------------|-------------|-------|---------------|-------|---|
|       | 75-71-8    | Dichlorodifluoromethane        | B 672-9054  | 0.49  | 0.49          | ppb   | U |
|       | 75-45-6    | Chlorodifluoromethane          | B 672-9054  | 0.21  | 0.21          | ppb   | U |
|       | 74-87-3    | Chloromethane                  | B 672-9054  | 0.49  | 0,49          | ppb   | U |
| 7     | 75-01-4    | Vinyl Chloride                 | B 672-9054  | 0.10  | 0.10          | ppb   | U |
| . t   | 74-83-9    | Bromomethane                   | B 672-9054  | 0.43  | 0.43          | ppb   | U |
| 3     | 75-00-3    | Chloroethane                   | B 672-9054  | 0.61  | 0.61          | ррб   | 0 |
| -     | 75-69-4    | Trichlorofluoromethane         | B 672-9054  | 0.24  | 0.24          | ppb   | U |
|       | 76-13-1    | 1,1,2-Trichlorotrifluoroethane | B 672-9054  | 0.23  | 0.23          | ppb   | U |
| 6     | 75-35-4    | 1,1-Dichloroethene             | B 672-9054  | 0.30  | 0.30          | ppb   | U |
|       | 67-64-1    | Acetone                        | B 672-9054  | 3.12  | 3.12          | ppb   | U |
|       | 75-15-0    | Carbon disulfide               | B 672-9054  | 0.20  | 0.20          | ppb   | U |
|       | 75-09-2    | Methylene Chloride             | B 672-9054  | 0.54  | 0.54          | ppb   | U |
|       | 156-60-5   | t-1,2-Dichloroethene           | B 672-9054  | 0.20  | 0.20          | ppb   | U |
|       | 1634-04-4  | Methyl t-butyl ether           | B 672-9054  | 0.34  | 0.34          | ppb   | U |
| 2     | 75-34-3    | 1,1-Dichloroethane             | B 672-9054  | 0.22  | 0.22          | ррр   | U |
| ~     | 590-20-7   | 2,2-Dichloropropane            | B 672-9054  | 0.18  | 0.18          | ppb   | U |
| ĺ     | 156-59-2   | c-1,2-Dichloroethene           | B 672-9054  | 0.21  | 3.40          | ppb   |   |
| ļ     | 78-93-3    | 2-Butanone                     | B 672-9054  | 5.00  | 5.00          | ррь   | U |
| Ĭ     | 74-97-5    | Bromochloromethane             | B 672-9054  | 0.27  | 0.27          | ppb   | U |
|       | 67-66-3    | Chloroform                     | B 672-9054  | 0.20  | 0.20          | ppb   | U |
| / [   | 71-55-6    | 1,1,1-Trichloroethane          | B 672-9054  | 0.22  | 0.22          | ррь   | U |
|       | 56-23-5    | Carbon Tetrachloride           | B 672-9054  | 0.25  | 0.25          | ppb   | U |
| ľ     | 563-58-6   | 1,1-Dichloropropene            | B 672-9054  | 0.59  | 0.59          | ррь   | U |
|       | 71-43-2    | Benzene                        | B 672-9054  | 0.16  | 0.16          | ррр   | U |
| [     | 107-06-2   | 1,2-Dichloroethane             | B 672-9054  | 0.23  | 0.23          | ррь   | U |
| 5[    | 79-01-6    | Trichloroethene                | B 672 -9054 | 0.16  | 20.7          | ppb   |   |
|       | 78-87-5    | 1,2-Dichloropropane            | B 672 -9054 | 0.36  | 0.36          | ppb   | U |
| [     | 74-95-3    | Dibromomethane                 | B 672-9054  | 0.18  | 0.18          | ppb . | U |
|       | 75-27-4    | Bromodichloromethane           | B 672-9054  | 0.15  | 0.15          | ppb   | U |
| [     | 110-75-8   | 2-Chloroethylvinylether        | B 672-9054  | 0.13  | 0.13          | ррр   | U |
| [     | 10061-01-5 | c-1,3-Dichloropropene          | B 672-9054  | 0.16  | 0.16          | ppb   | Ū |
|       | 108-10-1   | 4-Methyl-2-pentanone           | B 672-9054  | 5.00  | 5.00          | ppb   | U |
| . [   | 108-88-3   | Toluene                        | B 672-9054  | 0.14  | 0.14          | ррЪ   | U |
|       | 10061-02-6 | t-1,3-Dichloropropene          | B 672-9054  | 0.080 | 0.080         | ррь   | Ū |
| [     | 79-00-5    | 1,1,2-Trichloroethane          | B 672-9054  | 0.090 | 0.090         | ppb   | U |
| - y [ | 127-18-4   | Tetrachloroethene              | C 388-6602  | 6.00  | 1240          | ppb   |   |



- M6868 -

Page 26 of 37

PAGE 27

# Environmental Testing Laboratories, Inc. 208 Route 109, Farmingdale NY 11735

Phone - 631-249-1456 Fax - 631-249-8344

## Volatiles - EPA 8260B

01/22/2002

## Sample: M6868-9...continue

Client Sample ID: MW-45 (45 A-Site) Matrix: Liquid Remarks: See Case Narrative

Type: Grab

Collected: 01/10/2002 15:40

| Analyzed D | Analyzed Date: 01/15/2002   |                     |      |               |       |          |  |  |  |  |  |
|------------|-----------------------------|---------------------|------|---------------|-------|----------|--|--|--|--|--|
| Cas No     | Analyte                     | File ID             | MDL. | Concentration | Units | Q        |  |  |  |  |  |
| 142-28-9   | 1,3-Dichloropropane         | B 672-9054          | 0.20 | 0.20          | ppb   | Ü        |  |  |  |  |  |
| 591-78-6   | 2-Hexanone                  | B 672 -9054         | 5.00 | 5,00          | ррь   | U        |  |  |  |  |  |
| 124-48-1   | Dibromochloromethane        | B 672-9054          | 0.11 | 0.11          | ppb   | υ        |  |  |  |  |  |
| 106-93-4   | 1,2-Dibromoethane           | B 672-9054          | 0.10 | 0.10          | ppb   | U        |  |  |  |  |  |
| 108-90-7   | Chlorobenzene               | B 672 -9054         | 0.15 | 0.15          | ррь   | U        |  |  |  |  |  |
| 630-20-6   | 1,1,1,2-Tetrachloroethane   | B 672-9054          | 0.18 | 0.18          | ppb . | TÛ       |  |  |  |  |  |
| 100-41-4   | Ethylbenzene                | B 672-9054          | 0.22 | 0.22          | ррр   | U        |  |  |  |  |  |
| 108-38-3   | m,p-xylene                  | B 672-9054          | 0.42 | 0.42          | ppb   | υ        |  |  |  |  |  |
| 95-47-6    | o-xylene                    | B 672-9054          | 0.20 | 0.20          | ppb   | U        |  |  |  |  |  |
| 100-42-5   | Styrene                     | B 672-9054          | 0.17 | 0.17          | ppb   | U        |  |  |  |  |  |
| 75-25-2    | Bromoform                   | B 672-9054          | 0.10 | 0.10          | ppb   | U        |  |  |  |  |  |
| 98-82-8    | Isopropylbenzene            | B 672-9054          | 0.25 | 0.25          | ррб   | U        |  |  |  |  |  |
| 108-86-1   | Bromoberizene               | В 672 <b>-</b> 9054 | 0.24 | 0.24          | ppb   | U        |  |  |  |  |  |
| 79-34-5    | 1,1,2,2-Tetrachloroethane   | B 672-9054          | 0.16 | 0.16          | ррр   | U        |  |  |  |  |  |
| 103-65-1   | n-Propylbenzene             | B 672-9054          | 0.21 | .0.21         | ppb   | υ_       |  |  |  |  |  |
| 96-18-4    | 1,2,3-Trichloropropane      | B 672-9054          | 0.21 | 0.21          | ppb   | U        |  |  |  |  |  |
| 622-96-8   | p-Ethyltoluene              | B 672-9054          | 0.24 | 0.24          | ppb   | U        |  |  |  |  |  |
| 108-67-8   | 1,3,5-Trimethylbenzene      | B 672-9054          | 0.20 | 0.20          | ppb   | U        |  |  |  |  |  |
| 95-49-8    | 2-Chlorotoluene             | B 672-9054          | 0.27 | 0.27          | ppb   | U        |  |  |  |  |  |
| 106-43-4   | 4-Chlorotoluene             | B.672-9054          | 0.35 | 0,35          | ррь   | U        |  |  |  |  |  |
| 98-06-6    | tert-Butylbenzene           | B 672-9054          | 0.24 | 0.24          | ррЬ   | U        |  |  |  |  |  |
| 95-63-6    | 1,2,4-Trimethylbenzene      | B 672-9054          | 0,17 | 0.17          | ppb   | U        |  |  |  |  |  |
| 135-98-8   | sec-Butylbenzene            | B 672-9054          | 0.16 | 0.16          | ppb ` | Ŭ        |  |  |  |  |  |
| 99-87-6    | 4-Isopropyltoluene          | B 672-9054          | 0.24 | 0.24          | ppb   | U        |  |  |  |  |  |
| 541-73-1   | 1,3-Dichlorobenzene         | B 672-9054          | 0.23 | 0.23          | ppp   | U        |  |  |  |  |  |
| 106-46-7   | 1,4-Dichlorobenzene         | B 672-9054          | 0.23 | 0.23          | ррб   | ្រ       |  |  |  |  |  |
| 95-50-1    | 1,2-Dichlorobenzene         | B 672-9054          | 0.15 | 0.15          | ppb   | U        |  |  |  |  |  |
| 105-05-5   | p-Diethylbenzene            | B 672-9054          | 0.24 | 0.24          | ppb   | U        |  |  |  |  |  |
| 104-51-8   | n-Butylbenzene              | B 672-9054          | 0.14 | 0.14          | ppb   | υ        |  |  |  |  |  |
| 95-93-2    | 1,2,4,5-Tetramethylbenzene  | B 672-9054          | 0.26 | 0.26          | ppb   | U        |  |  |  |  |  |
| 96-12-8    | 1,2-Dibromo-3-chloropropane | B 672-9054          | 0.33 | 0.33          | ppb   | U        |  |  |  |  |  |
| 120-82-1   | 1,2,4-Trichlorobenzene      | B 672-9054          | 0.22 | 0.22          | ppb   | u        |  |  |  |  |  |
| 87-68-3    | Hexachlorobutadiene         | B 672-9054          | 0.26 | 0.26          | ppb   | 10       |  |  |  |  |  |
| 91-20-3    | Naphthalene                 | B 672-9054          | 0.14 | 0.14          | ppb   | <u> </u> |  |  |  |  |  |
| 87-61-6    | 1.2.3-Trichlorobenzene      | B 672-9054          | 0.17 | 0.17          | ppb   | JU       |  |  |  |  |  |



באם בודחראדים וחאם

Page 27 of 37

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/22/2002

## Volatiles - EPA 8260B

### Sample: M6868-9...continue

Client Sample ID: MW-45 (45 A-Site) Matrix: Liquid Type: Grab Remarks: See Case Narrative Analyzed Date: 01/15/2002 Collected: 01/10/2002 15:40





2921-609-919 91:91 2002/62/10

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

### 01/22/2002

## Volatiles - EPA 8260B

Sample: M6868-1

Client Sample ID: MW-9 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/15/2002

Type: Grab

Collected: 01/09/2002 13:00

|   | Cas No     | Analyte                        | File ID             | MDL    | Concentration | Units | Q        |
|---|------------|--------------------------------|---------------------|--------|---------------|-------|----------|
|   | 75-71-8    | Dichlorodifluoromethane        | B 672-9046          | 0.49   | 0.49          | ppb   | U        |
| • | 75-45-6    | Chlorodifluoromethane          | B 672-9046          | 0,21   | 0.21          | ppb   | U        |
| • | 74-87-3    | Chloromethane                  | B 672-9046          | 0.49   | 0.49          | ppb   | U        |
| 7 | 75-01-4    | Vinyl Chloride VC              | B 672-9046          | 0.10   | 0.10          | ppb   | Ū        |
| ę | 74-83-9    | Bromomethane                   | B 672-9046          | 0.43   | 0.43          | ppb   | U        |
| 3 | 75-00-3    | Chloroethane < A               | B 672-9046          | 0.61   | 0.61          | ppb   | U        |
| _ | 75-69-4    | Trichlorofluoromethane         | B 672-9046          | 0.24   | 0,24          | ppb   | U        |
|   | 76-13-1    | 1,1,2-Trichlorotrifluoroethane | B 672 -9046         | 0.23   | 0.23          | ppb   | U        |
| 6 | 75-35-4    | 1,1-Dichloroethene // Dec=     | B 672 -9046         | 0.30   | 0.30          | ppb   | U        |
|   | 67-64-1    | Acetone                        | B 672-9046          | . 3.12 | 3.12          | ppb   | V        |
|   | 75-15-0    | Carbon disulfide               | B 672 -9046         | 0.20   | 0.20          | ppb   | U        |
|   | 75-09-2    | Methylene Chloride             | B 672-9046          | 0.54   | 0,54          | ppb   | υ        |
|   | 156-60-5   | t-1,2-Dichloroethene           | B 672-9046          | 0.20   | 0.20          | ppb   | U        |
|   | 1634-04-4  | Methyl t-butyl ether           | B 672-9046          | 0.34   | 0.34          | ppb   | U        |
| 2 | 75-34-3    | 1,1-Dichloroethane IIDCA       | B 672-9046          | 0.22   | 0.22          | ppb   | U        |
|   | 590-20-7   | 2,2-Dichloropropane            | B 672-9046          | 0.18   | 0.18          | ppb   | U        |
| 1 | 156-59-2   | c-1,2-Dichloroethene           | B 672-9046          | 0.21   | 0.21          | ppb   | . U      |
|   | 78-93-3    | 2-Butanone                     | B 672 -9046         | 5.00   | 5.00          | ррр   | U        |
|   | 74-97-5    | Bromochloromethane             | B 672-9046          | 0.27   | 0.27          | ррЪ   | U        |
|   | 67-66-3    | Chloroform                     | B 672-9046          | 0.20   | 0.20          | ррб   | Ų        |
| + | 71-55-6    | 1,1,1-Trichloroethane MITA     | B 672-9046          | 0.22   | 0.22          | ррр   | U        |
|   | 56-23-5    | Carbon Tetrachloride           | B 672-9046          | 0.25   | 0.25          | ррр   | U        |
|   | 563-58-6   | 1,1-Dichloropropene            | B 672 -9046         | 0.59   | 0.59          | ppb   | U        |
|   | 71-43-2    | Benzene                        | B 672-9046          | 0.16   | 0.16          | ppb   | υ        |
|   | 107-06-2   | 1,2-Dichloroethane             | B 672 -9046         | 0.23   | 0.23          | ррр   | U        |
| 5 | 79-01-6    | Trichloroethene Tec            | B 672-9046          | 0.16   | 0.16          | ppb   | U        |
|   | 78-87-5    | 1,2-Dichloropropane            | B 672-9046          | 0.36   | 0.36          | ppb   | U        |
|   | 74-95-3    | Dibromomethane                 | B 672 -9046         | 0,18   | 0.18          | ppb   | U        |
| ļ | 75-27-4    | Bromodichloromethane           | B 672 -9046         | .0.15  | 0.15          | ppb   | U        |
| ļ | 110-75-8   | 2-Chloroethylvinylether        | B 672-9046          | 0.13   | 0.13          | ppb   | U        |
| F | 10061-01-5 | c-1,3-Dichloropropene          | B 672 -9046         | 0.16   | 0.16          | ppb   | U        |
|   | 108-10-1   | 4-Methyl-2-pentanone           | B 672-9046          | 5.00   | 5.00          | ppb   | <u>U</u> |
| ł | 108-88-3   | loluene                        | B 672-9046          | 0.14   | 0.14          | ppb   | U        |
| } | 10061-02-6 | t-1,3-Dichloropropene          | B 672 -9046         | 0.080  | 0.080         | ppb   | U        |
|   | /9-00-5    | 1,1,2-Trichloroethane          | B 672 -9046         | 0.090  | 0.090         | ррь   | <u>u</u> |
| Ч | 127-18-4   | Tetrachloroethene PCF          | B 672 <i>-</i> 9046 | 0.24   | 0.24          | ppb   | U        |



SHA STRONTALIO

### Page 2 of 37

## Environmental Testing Laboratories, Inc. 208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

me · 051-245-1450 Fax - 051-245-852

## Volatiles - EPA 8260B

01/22/2002

### Sample: M6868-1...continue

Client Sample ID: MW-9 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/15/2002

Type: Grab

Collected: 01/09/2002 13:00

| Cas No    | Analyte                     | File ID      | MDL  | Concentration | Units                                                                                                           | Q   |
|-----------|-----------------------------|--------------|------|---------------|-----------------------------------------------------------------------------------------------------------------|-----|
| 142-28-9  | 1,3-Dichloropropane         | B 672-9046   | 0.20 | 0.20          | ppb                                                                                                             | U   |
| 591-78-6  | 2-Hexanone                  | B 672-9046   | 5.00 | 5.00          | ppb                                                                                                             | U   |
| 124-48-1  | Dibromochloromethane        | B 672 -9046  | 0.11 | 0.11          | ppb                                                                                                             | U   |
| 106-93-4  | 1,2-Dibromoethane           | B 672-9046   | 0.10 | 0.10          | ppb                                                                                                             | U   |
| 108-90-7  | Chlorobenzene               | B 672-9046   | 0.15 | 0.15          | ppb                                                                                                             | U   |
| 630-20-6  | 1,1,1,2-Tetrachloroethane   | B 672-9046   | 0.18 | 0.18          | ppb                                                                                                             | U   |
| 100-41-4  | Ethylbenzene                | B 672-9046   | 0.22 | 0.22          | ppb                                                                                                             | U   |
| 108-38-3  | m,p-xylene                  | B 672-9046   | 0.42 | 0.42          | ppb                                                                                                             | U   |
| 95-47-6   | o-xylene                    | B 672-9046   | 0.20 | 0.20          | ppb .                                                                                                           | U   |
| 100-42-5  | Styrene                     | B 672-9046   | 0.17 | 0.17          | ppb                                                                                                             | U   |
| 75-25-2   | Bromoform                   | B 672-9046   | 0.10 | 0.10          | ppb                                                                                                             | U   |
| 98-82-8   | Isopropylbenzene            | B 672-9046   | 0.25 | 0.25          | ppb                                                                                                             | U   |
| 108-86-1  | Bromobenzene                | B 672-9046   | 0.24 | 0.24          | ppb                                                                                                             | U   |
| 79-34-5   | 1,1,2,2-Tetrachloroethane   | B 672 -9046  | 0.16 | 0.16          | ppb                                                                                                             | U - |
| 103-65-1  | n-Propylbenzene             | B 672-9046   | 0.21 | 0.21          | ppb                                                                                                             | U   |
| 96-18-4   | 1,2,3-Trichloropropane      | 8 672 - 9046 | 0.21 | 0.21          | ppb                                                                                                             | U   |
| 622-96-8  | p-Ethyltoluene              | B 672-9046   | 0.24 | 0.24          | ррб                                                                                                             | U   |
| 108-67-8  | 1,3,5-Trimethylbenzene      | B 672-9046   | 0.20 | 0.20          | ppb                                                                                                             | U   |
| . 95-49-8 | 2-Chlorotoluene             | B 672-9046   | 0.27 | 0.27          | ppb                                                                                                             | U   |
| 106-43-4  | 4-Chlorotoluene             | B 672-9046   | 0.35 | 0.35          | ppb                                                                                                             | U   |
| 98-06-6   | tert-Bulylbenzene           | B 672-9046   | 0.24 | 0.24          | ppb                                                                                                             | U   |
| 95-63-6   | 1,2,4-Trimethylbenzene      | B 672-9046   | 0.17 | 0.17          | ppb                                                                                                             | U   |
| 135-98-8  | sec-Butylbenzene            | B 672 -9046  | 0.16 | 0.16          | ddd                                                                                                             | U   |
| 99-87-6   | 4-Isopropyltoluene          | B 672-9046   | 0.24 | 0.24          | ppb                                                                                                             | U   |
| 541-73-1  | 1,3-Dichlorobenzene         | B 672-9046   | 0.23 | 0.23          | ppb                                                                                                             | U   |
| 106-46-7  | 1,4-Dichlorobenzene         | B 672-9046   | 0.23 | 0.23          | ррь                                                                                                             | U   |
| 95-50-1   | 1,2-Dichlorobenzene         | B 672-9046   | 0.15 | 0.15          | ppb                                                                                                             | U   |
| 105-05-5  | p-Diethylbenzene            | B 672-9046   | 0.24 | 0.24          | ppb                                                                                                             | U   |
| 104-51-8  | n-Butylbenzene              | B 672 -9046  | 0.14 | 0,14          | ррб                                                                                                             | U   |
| 95-93-2   | 1,2,4,5-Tetramethylbenzene  | B 672-9046   | 0.26 | 0.26          | ppb                                                                                                             | U   |
| 96-12-8   | 1,2-Dibromo-3-chloropropane | B 672-9046   | 0.33 | 0.33          | ррб                                                                                                             | U   |
| 120-82-1  | 1,2,4-Trichlorobenzene      | B 672 -9046  | 0.22 | 0.22          | ppb                                                                                                             | U   |
| 87-68-3   | Hexachlorobutadiene         | B 672-9046   | 0.26 | 0.26          | ppb                                                                                                             | U   |
| 91-20-3   | Naphthalene                 | B 672-9046   | 0.14 | 0.14          | ppb                                                                                                             | U   |
| 87-61-6   | 1,2,3-Trichlorobenzene      | B 672-9046   | 0.17 | 0.17          | ppb                                                                                                             | U   |
| ~         |                             |              |      |               | A CONTRACT OF |     |



SHE STRONTOHIA

## Environmental Testing Laboratories, Inc. 208 Route 109, Farmingdale NY 11735

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

01/22/2002

## Volatiles - EPA 8260B

## Sample: M6868-1...continue

Client Sample ID: MW-9 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/15/2002

Type: Grab

Collected: 01/09/2002 13:00



### - M6868 -

## Page 4 of 37

1071\_E00\_010 01.01 2002/E2/10

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

## Volatiles - EPA 8260B

01/22/2002

## Sample: M6868-2

Client Sample ID: MW-10 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/15/2002

Type: Grab

Collected: 01/09/2002 18:00

| Cas No     | Analyte                        | File ID     | MDL   | Concentration | Units | Q   |
|------------|--------------------------------|-------------|-------|---------------|-------|-----|
| 75-71-8    | Dichlorodifluoromethane        | B 672 -9047 | 0.49  | 0.49          | ppb   | U   |
| 75-45-6    | Chlorodifluoromethane          | B 672 -9047 | 0.21  | 0.21          | ppb   | U   |
| 74-87-3    | Chloromethane                  | B 672-9047  | 0.49  | 0.49          | ppb   | U   |
| 75-01-4    | Vinyl Chloride VC              | B 672-9047  | 0.10  | 2.70          | ррь   |     |
| - 74-83-9  | Bromomethane                   | B 672-9047  | 0.43  | 0.43          | ppb   | U   |
| 75-00-3    | Chloroethane CA                | B 672-9047  | 0.61  | 20.0          | ррь   |     |
| 75-69-4    | Trichlorofluoromethane         | B 672-9047  | 0.24  | 0.24          | ppb   | U   |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | B 672-9047  | 0.23  | 0.23          | ppb   | U   |
| 75-35-4    | 1,1-Dichloroethene 119CE       | B 672-9047  | 0.30  | 50.3          | ppb   |     |
| 67-64-1    | Acetone                        | B 672-9047  | 3.12  | 3.12          | ppb   | U   |
| 75-15-0    | Carbon disulfide               | B 672-9047  | 0.20  | 0.20          | ppb   | Ŭ   |
| 75-09-2    | Methylene Chloride             | B 672-9047  | 0.54  | 0.54          | ppb   | Ü   |
| 156-60-5   | t-1,2-Dichloroethene           | B 672-9047  | 0.20  | 0.20          | ppb   | υ   |
| 1634-04-4  | Methyl t-butyl ether           | B 672-9047  | 0.34  | 0.34          | ppb   | Ŭ   |
| 75-34-3    | 1,1-Dichloroethane //-DCA      | C 388 -6612 | 2,50  | 206           | ppb   |     |
| 590-20-7   | 2,2-Dichloropropane            | B 672-9047  | 0.18  | 0.18          | ppb   | U   |
| 156-59-2   | c-1,2-Dichloroethene           | C 388-6612  | 1.80  | 231           | ppb · |     |
| 78-93-3    | 2-Butanone                     | B 672-9047  | 5.00  | 5.00          | ppb   | U   |
| 74-97-5    | Bromochloromethane             | B 672-9047  | 0.27  | 0.27          | ppb   | U   |
| 67-66-3    | Chloroform                     | B 672-9047  | 0.20  | 0.20          | ppb   | U   |
| 71-55-6    | 1,1,1-Trichloroethane IIITCA   | B 672-9047  | 0.22  | 0.22          | ppb   | บ   |
| 56-23-5    | Carbon Tetrachloride           | B 672-9047  | 0.25  | 0.25          | ppb   | ΰ   |
| 563-58-6   | 1,1-Dichloropropene            | B 672 -9047 | 0.59  | 0.59          | ррь   | . U |
| 71-43-2    | Benzene                        | B 672-9047  | 0.16  | 0.16          | ppb   | U   |
| 107-06-2   | 1,2-Dichloroethane             | B 672-9047  | 0.23  | 5.00          | ррb   |     |
| 79-01-6    | Trichloroethene TCE            | B 672-9047  | 0.16  | · 6.70        | ppb   |     |
| 78-87-5    | 1,2-Dichloropropane            | B 672-9047  | 0.36  | 0.36          | ppb   | U   |
| 74-95-3    | Dibromomethane                 | B 672-9047  | 0.18  | 0.18          | ррь   | U   |
| 75-27-4    | Bromodichloromethane           | B 672-9047  | 0.15  | 0.15          | ppb   | U   |
| 110-75-8   | 2-Chloroethylvinylether        | B 672-9047  | 0.13  | 0.13          | ррь   | U   |
| 10061-01-5 | c-1,3-Dichloropropene          | B 672-9047  | 0.16  | 0.16          | ppb   | υ   |
| 108-10-1   | 4-Methyl-2-pentanone           | B 672-9047  | 5.00  | 5.00          | ppb   | U   |
| 108-88-3   | Toluene                        | B 672-9047  | 0.14  | 0.14          | ppb   | U   |
| 10061-02-6 | t-1,3-Dichloropropene          | B 672-9047  | 0.080 | 0.080         | ppb   | U   |
| 79-00-5    | 1,1,2-Trichloroethane          | B 672-9047  | 0.090 | .0.090        | ppb   | Ū   |
| 127-18-4   | Tetrachloroethene PCE          | B 672-9047  | 0.24  | 2.30          | ppb   |     |



SHE SITACATIC EHR

Page 5 of 37

### /97.1-609-919 91

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

### 01/22/2002

## Volatiles - EPA 8260B

### Sample: M6868-2...continue

Client Sample ID: MW-10 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/15/2002

: Type: Grab

Collected: 01/09/2002 18:00

| Cas No   | Analyte                     | File ID     | MDL  | Concentration | Units | Q    |
|----------|-----------------------------|-------------|------|---------------|-------|------|
| 142-28-9 | 1.3-Dichloropropane         | B 672-9047  | 0.20 | 0.20          | ppb   | U    |
| 591-78-6 | 2-Hexanone                  | B 672-9047  | 5.00 | 5.00          | ppb   | U    |
| 124-48-1 | Dibromochloromethane        | B 672-9047  | 0.11 | 0,11          | ppb   | U    |
| 106-93-4 | 1,2-Dibromoethane           | B 672-9047  | 0.10 | 0.10          | ppb   | U    |
| 108-90-7 | Chlorobenzene               | B 672-9047  | 0.15 | 0.15          | ppb   | U    |
| 630-20-6 | 1,1,1,2-Tetrachloroethane   | B 672-9047  | 0.18 | 0.18          | ppb   | U    |
| 100-41-4 | Ethylbenzene                | B 672-9047  | 0.22 | 0.22          | ppb   | U    |
| 108-38-3 | m,p-xylene                  | B 672-9047  | 0.42 | 0.42          | ppb   | Ū    |
| 95-47-6  | o-xylene                    | B 672-9047  | 0.20 | 0.20          | ppb   | U    |
| 100-42-5 | Styrene                     | B 672-9047  | 0.17 | 0.17          | ppb   | U    |
| 75-25-2  | Bromoform                   | B 672-9047  | 0.10 | 0.10          | ppb   | U    |
| 98-82-8  | Isopropylbonzene            | B 672-9047  | 0.25 | 0.25          | ppb   | U    |
| 108-86-1 | Bromobenzene                | B 672-9047  | 0.24 | 0.24          | ppb   | U    |
| 79-34-5  | 1,1,2,2-Tetrachloroethane   | B 672-9047  | 0.16 | 0.16          | ppb   | U    |
| 103-65-1 | n-Propylbenzene             | B 672-9047  | 0.21 | 0.21          | рры   | U    |
| 96-18-4  | 1,2,3-Trichloropropane      | B 672-9047  | 0.21 | 0.21          | ppb   | υ    |
| 622-96-8 | p-Ethyltoluene              | B 672-9047  | 0.24 | 0.24          | ppb   | U    |
| 108-67-8 | 1,3,5-Trimethylbenzene      | B 672-9047  | 0.20 | 0.20          | ppb   | υ    |
| 95-49-8  | 2-Chlorotoluene             | B 672-9047  | 0.27 | 0.27          | ppb   | U    |
| 106-43-4 | 4-Chlorotoluene             | B 672-9047  | 0.35 | 0.35          | ррь   | U    |
| 98-06-6  | tert-Butylbenzene           | B 672-9047  | 0.24 | 0.24          | ррь   | U    |
| 95-63-6  | 1,2,4-Trimethylbenzene      | B 672-9047  | 0.17 | 0.17          | ppb   | U    |
| 135-98-8 | sec-Butylbenzene            | B 672-9047  | 0.16 | 0.16          | ppb   | U    |
| 99-87-6  | 4-Isopropyltoluene          | B 672-9047  | 0.24 | 0.24          | ppb   | U    |
| 541-73-1 | 1,3-Dichlorobenzene         | B 672-9047  | 0.23 | 0.23          | ppb   | U    |
| 106-46-7 | 1,4-Dichlorobenzene         | B 672-9047  | 0.23 | 0.23          | ррb   | U    |
| 95-50-1  | 1,2-Dichlorobenzene         | B 672-9047  | 0.15 | 0.15          | ppb   | U    |
| 105-05-5 | p-Diethylbenzene            | B 672-9047  | 0.24 | 0.24          | ppb   | U    |
| 104-51-8 | n-Butylbenzenø              | B 672-9047  | 0.14 | 0.14          | ppb   | U    |
| 95-93-2  | 1,2,4,5-Tetramethylbenzene  | B 672-9047  | 0.26 | 0.26          | ppb   | U    |
| 96-12-8  | 1,2-Dibromo-3-chloropropane | B 672 -9047 | 0.33 | 0.33          | ppb   | U-1  |
| 120-82-1 | 1,2,4-Trichlorobenzene      | B 672-9047  | 0.22 | 0.22          | ppb   |      |
| 87-68-3  | Hexachlorobutadiene         | B 672-9047  | 0.26 | 0.26          | opb   | 10-1 |
| 91-20-3  | Naphthalene                 | B 672-9047  | 0.14 | 0.14          | ppb   | 10   |
| 87-61-6  | 1,2,3-Trichlorobenzene      | B 672 -9047 | 0.17 | 0.17          | ppb   | U    |



## Environmental Testing Laboratories, Inc. 208 Route 109, Farmingdale NY 11735

Phone - 631-249-1456 Fax - 631-249-8344

### 01/22/2002

## Volatiles - EPA 8260B

## Sample: M6868-2...continue

Client Sample ID: MW-10 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/15/2002

Type: Grab

Collected:01/09/2002 18:00





HAGE

80

## Page 7 of 37

SHE STIDOMOULAH

/971-609-919 91:91 2007/67/10

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

## Volatiles - EPA 8260B

01/22/2002

## Sample: M6868-5

Client Sample ID: MW-11 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/17/2002

Type: Grab

Collected: 01/10/2002 13:00

| Cas No            | Analyte                        | File ID     | MDL    | Concentration | Units | Q        |
|-------------------|--------------------------------|-------------|--------|---------------|-------|----------|
| 75-71-8           | Dichlorodifluoromethane        | C 388-6601  | 0.24   | 0.24          | ppb   | U        |
| 75-45-6           | Chlorodifluoromethane          | C 388-6601  | 0.21   | 0.21          | ррь   | U        |
| 74-87-3           | Chloromethane                  | C 388-6601  | 0.85   | 0.85          | ррь   | U        |
| 75-01-4           | Vinyl Chloride VC              | C 388-6601  | 0.85   | 0.85          | ppb   | U        |
| 74-83-9           | Bromomethane                   | C 388-6601  | 0.65   | 0.65          | ppb   | U        |
| 75-00-3           | Chloroethane CA                | C 388-6601  | 0.67   | 0.67          | ppb   | Ų        |
| 75-69-4           | Trichlorofluoromethane         | C 388-6601  | 0.12   | 0.12          | ppb   | U        |
| 76-13-1           | 1,1,2-Trichlorotrifluoroethane | C 388-6601  | 0.19   | 0.19          | ppb   | U        |
| 75-35-4           | 1,1-Dichloroethene //DCE       | C 388-6601  | Ó.22   | 0.22          | ppb   | U        |
| 67-64-1           | Acetone                        | C 388-6601  | 2.30   | 2.30          | ppb   | U        |
| 75-15-0           | Carbon disulfide               | C 388-6601  | 0.33   | 0.33          | ppb   | U        |
| 75-09-2           | Methylene Chloride             | C 388-6601  | 0.37   | 0.37          | ppb   | U        |
| 156-60-5          | t-1,2-Dichloroethene           | C 388-6601  | 0.28   | 0.28          | ppb   | U        |
| 1634-04-4         | Methyl t-butyl ether           | C 388-6601  | 0.18   | 0.18          | ppb   | U        |
| 75-34-3           | 1,1-Dichloroethane // DCA      | C 388-6601  | 0.25   | 0.25          | ppb   | U        |
| 590-20-7          | 2,2-Dichloropropane            | C 388-6601  | 0.30   | 0.30          | ppb   | <u> </u> |
| 156-59-2          | c-1,2-Dichloroethene           | C 388-6601  | 0.18   | 0.18          | ppb   | Ų        |
| 78-93-3           | 2-Butanone                     | C 388-6601  | 17.2   | 17.2          | ppb   | U        |
| 74-97-5           | Bromochloromethane             | C 388-6601  | 0.15   | 0.15          | ppb   | U        |
| 67-66-3           | Chloroform                     | C 388-6601  | 0.22   | 0.22          | ppb.  | υ        |
| 71-55-6           | 1,1,1-Trichloroethane I//TCA   | C 388-6601  | 0.14   | 0.14          | ppb   | U        |
| 56-23-5           | Carbon Tetrachloride           | C 388-6601  | 0.10   | 0.10          | ppb   | U        |
| 563-58 <b>-</b> 6 | 1,1-Dichloropropene            | C 388-6601  | 0.18   | 0.18          | ppb   | U        |
| 71-43-2           | Benzene                        | C 388 -6601 | 0.17   | <u>0.17</u>   | ррЬ   | U        |
| 107-06-2          | 1,2-Dichloroethane             | C 388-6601  | 0.16   | 0.16          | ppb   | Ų        |
| 79-01-6           | Trichloroethene TCE            | C 388-6601  | 0.17   | 0.17          | ppb   | U        |
| 78-87-5           | 1,2-Dichloropropane            | C 388-6601  | . 0.14 | 0.14          | ppb   | U        |
| 74-95-3           | Dibromomethane                 | C 388-6601  | 0.16   | 0.16          | ppb   | U        |
| 75-27-4           | Bromodichloromethane           | C 388-6601  | 0.16   | 0.16          | ppb   | U        |
| 110-75-8          | 2-Chloroethylvinylether        | C 388-6601  | 0.29   | 0.29          | ppb   | U        |
| 10061-01-5        | c-1,3-Dichloropropene          | C 388-6601  | 0.22   | 0.22          | ppb   | U        |
| 108-10-1          | 4-Methyl-2-pentanone           | C 388-6601  | 9.00   | 9.00          | ppb   | U        |
| 108-88-3          | Toluene                        | C 388-6601  | 0.14   | 0.14          | ppb   | U        |
| 10061-02-6        | t-1,3-Dichloropropene          | C 388-6601  | 0.14   | 0.14          | ppb   | U        |
| 79-00-5           | 1,1,2-Trichloroethane          | C 388-6601  | 0.19   | 0.19          | ppb   | U        |
| 127-18-4          | Tetrachloroethene PUF          | C 388-6601  | 0.12   | 0.12          | ppb   | U        |



- M6868 -

Page 14 of 37

208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

## Volatiles - EPA 8260B

01/22/2002

## Sample: M6868-5...continue

Client Sample ID: MW-11 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/17/2002

Type: Grab

Collected: 01/10/2002 13:00

| Cas No   | Analyte                     | File 1D    | MDL   | Concentration | Units | Q |
|----------|-----------------------------|------------|-------|---------------|-------|---|
| 142-28-9 | 1,3-Dichloropropane         | C 388-6601 | 0.12  | 0.12          | ppb   | U |
| 591-78-6 | 2-Hexanone                  | C 388-6601 | 5.00  | 5.00          | ppb   | U |
| 124-48-1 | Dibromochloromethane        | C 388-6601 | 0.17  | 0.17          | ppb   | U |
| 106-93-4 | 1,2-Dibromoethane           | C 388-6601 | 0.19  | 0.19          | ppb   | U |
| 108-90-7 | Chlorobenzene               | C 388-6601 | 0.19  | 0.19          | ppb   | U |
| 630-20-6 | 1,1,1,2-Tetrachloroethane   | C 388-6601 | 0.15  | 0.15          | ppb   | U |
| 100-41-4 | Ethylbenzene                | C 388-6601 | 0.16  | 0.16          | ppb   | U |
| 108-38-3 | m,p-xylene                  | C 388-6601 | 0.21  | 0.21          | ppb   | U |
| 95-47-6  | o-xylene                    | C 388-6601 | 0.16  | 0.16          | ppb   | U |
| 100-42-5 | Styrene                     | C 388-6601 | 0.13  | 0.13          | ppb   | U |
| 75-25-2  | Bromoform                   | C 388-6601 | 0.27  | 0.27          | ppb   | U |
| 98-82-8  | Isopropylbenzene            | C 388-6601 | 0.10  | 0.10          | ppb   | U |
| 108-86-1 | Bromobenzene                | C 388-6601 | 0.21  | 0.21          | ppb   | U |
| 79-34-5  | 1,1,2,2-Tetrachloroethane   | C 388-6601 | 0.15  | 0.15          | ppb   | U |
| 103-65-1 | n-Propylbenzene             | C 388-6601 | 0.14  | 0.14          | ррр   | U |
| 96-18-4  | 1,2,3-Trichloropropane      | C 388-6601 | 0.24  | 0.24          | ррь   | U |
| 622-96-8 | p-Ethyltoluene              | C 388-6601 | 0.24  | 0.24          | ppb   | U |
| 108-67-8 | 1,3,5-Trimethylbenzene      | C 388-6601 | 0.12  | 0.12          | ppb   | U |
| 95-49-8  | 2-Chlorotoluene             | C 388-6601 | 0.21  | 0.21          | ррб   | U |
| 106-43-4 | 4-Chlorotoluene             | C 388-6601 | 0.16  | 0.16          | ррb   | U |
| 98-06-6  | tert-Butylbenzene           | C 388-6601 | 0.13  | 0.13          | ppb   | U |
| 95-63-6  | 1,2,4-Trimethylbenzene      | C 388-6601 | 0.13  | 0.13          | ppb   | U |
| 135-98-8 | sec-Butylbenzene            | C 388-6601 | 0.080 | 0.080         | ppb   | U |
| 99-87-6  | 4-Isopropyltoluene          | C 388-6601 | 0.10  | 0.10          | ppb   | Ū |
| 541-73-1 | 1,3-Dichlorobenzene         | C 388-6601 | 0.15  | 0.15          | ppb   | U |
| 106-46-7 | 1,4-Dichlorobenzene         | C 388-6601 | 0.15  | 0.15          | ppb   | U |
| 95-50-1  | 1,2-Dichlorobenzene         | C 388-6601 | 0.14  | 0.14          | ppb   | U |
| 105-05-5 | p-Diethylbenzene            | C 388-6601 | 0.27  | 0.27          | ppb   | U |
| 104-51-8 | n-Butylbenzene              | C 388-6601 | 0.14  | 0.14          | ppb   | U |
| 95-93-2  | 1,2,4,5-Tetramethylbenzene  | C 388-6601 | 0.27  | 0.27          | ppb   | U |
| 96-12-8  | 1,2-Dibromo-3-chloropropane | C 388-6601 | 0.50  | 0.50          | ppb   | U |
| 120-82-1 | 1,2,4-Trichlorobenzene      | C 388-6601 | 0.25  | 0.25          | ppb   | U |
| 87-68-3  | Hexachlorobutadiene         | C 388-6601 | 0.24  | 0.24          | ppb   | U |
| 91-20-3  | Naphthalene                 | C 388-6601 | 0.27  | 0.27          | ppb   | U |
| 87-61-6  | 1,2,3-Trichlorobenzene      | C 388-6601 | 0.38  | 0.38          | ppb   | U |



### Page 15 of 37

208 Route IO9, Farmingdal∈ NY II735 Phone - 63I-249-I456 Fax - 63I-249-8344

## 01/22/2002

## Volatiles - EPA 8260B

Sample: M6868-5...continue

Client Sample ID: MW-11 Matrix: Liquid Remarks: See Case Narrative Analyzed Date: 01/17/2002

Type: Grab

Collected: 01/10/2002 13:00



| Environ<br>208 Roi<br><b>531-2</b> | ument<br>ute 1<br><b>49-1</b> | al Té<br>09 •<br>1 <b>45</b> | esting<br>Farn<br>6 • | g La<br>ning<br><b>Fa</b> ) | bor<br>dal<br>(: ( | atories, 1<br>e • New 1<br>5 <b>31-24</b> 9 | Inc.<br>Fork 1173<br><b>3-8344</b>           | 5                    | Resu                                   | 6 f               | e<br>Pi            | havi     | ie.<br>i (ci | Neh     | r)g<br>J                         |     |     |      |                      | <br>     | M        | <br>E         | 381      | <u>.</u><br>38 | <u> </u>                 |          |
|------------------------------------|-------------------------------|------------------------------|-----------------------|-----------------------------|--------------------|---------------------------------------------|----------------------------------------------|----------------------|----------------------------------------|-------------------|--------------------|----------|--------------|---------|----------------------------------|-----|-----|------|----------------------|----------|----------|---------------|----------|----------------|--------------------------|----------|
| Project                            | Nam                           | e:PV                         | 104                   | , ) ( ,                     | (ci                | xits F                                      | Project Mar                                  | ager A               | nd-1 Far                               | ber               | Sar                | npler (  | Signat       | ure):   | 1.91                             |     | [   |      | (Prì                 | nt): i   | Day      | e H           | متر ۱۰۱۰ | `!             |                          |          |
| Project                            | Addre                         | ess:                         | 31                    |                             | Rc.                | Cliff                                       | AJE, 1                                       | al.                  | LAUR N                                 | 14                |                    |          | 77           | 7       | 77                               | 1   | 1   | 7    | 7                    | 7        | 7        | 7             | 7        | 7              | $\overline{\mathcal{T}}$ | T        |
| Client                             | not                           | (;;;                         | isite                 | , J/Ň                       | :                  |                                             |                                              | ish by               | 1 1                                    | <u> </u>          | ł                  |          | [.]          |         | $\langle \rangle_{\mathfrak{F}}$ | 8   |     | \$ 0 |                      | ×<br>*/_ |          | [][s          |          | s.             | ]                        |          |
| SAMP                               | PLE IN                        | IFO                          | Type<br>Matr          | : 59 :<br>1x: L =           | Split<br>Liquid    | Spoon; G = Gra<br>f, S = Soll; SL =         | ab: C = Camposik<br>• Sludge; A* • Ai        | ; B=Bkan k<br>W=Wape | 'Air - Vol. (Liter<br>include: Flow (1 | s)<br>CFM9        |                    |          | \$/y)        |         |                                  |     |     |      |                      |          | 3        | L.F           |          | 0              | 7 /                      | //       |
| ID Da                              | ite   Ti                      | me                           | Туре                  | Ma                          | trix               | Sample I                                    | Location                                     |                      | -                                      | Total. #<br>Cont. | /&                 | ¥\$]     | \$ 3         | \$_\$`] | \\$ <sup>\$</sup> /              | ð/4 | 5/ð |      |                      |          | $\sum$   | \$ <u>/</u> ~ | Ľ        | Ľ              | $\Box$                   |          |
| 1 1 0                              | 1/2/2                         | 6)                           | 4                     | L                           | • `                | mw.                                         | 9                                            |                      |                                        | 2                 |                    |          |              |         |                                  |     |     |      | X                    |          |          |               |          |                |                          |          |
| 2 10                               | 12/19                         | 00                           | Υ.                    |                             | }                  | mw                                          | - 1D                                         |                      |                                        | 2                 |                    |          |              |         |                                  |     |     |      | ۲Ì                   |          | •        |               |          |                |                          |          |
| 3                                  | 214                           | 45                           |                       | Γ                           | T                  | mr.                                         | -12                                          |                      |                                        | 6                 |                    |          |              |         |                                  |     |     |      | X                    | X        | Ý        | γ             | X        |                |                          |          |
| 4                                  | 12()                          | 320                          | T                     |                             | Ħ                  | mi                                          | - 13                                         |                      |                                        | 14                |                    |          |              |         |                                  |     |     |      | X                    | X        | X        |               | V.       |                |                          |          |
| 5                                  | 12 11 12                      | 100                          | -                     | ╀╌                          |                    | tin na                                      | -11                                          |                      | · · · · · · · · · · · · · · · · · · ·  | 12                |                    |          |              |         |                                  |     |     |      | Y                    | <u>.</u> |          | ă             |          |                |                          |          |
| 6                                  | 1. 14                         | 20                           | _                     | †                           |                    | Gale                                        | 18/14                                        | <br>5 D.c            | cite)                                  | 17                |                    |          |              |         |                                  | 1   |     |      | $\frac{1}{\sqrt{2}}$ |          |          |               |          |                |                          |          |
| 7                                  | 4                             | 30                           | -+                    | ┢                           | +                  | 15.J-15 (45 H-sile)                         |                                              |                      |                                        | 17                | +                  |          |              |         | -                                |     |     |      | 1_                   |          |          |               |          |                |                          |          |
| 8                                  | <u>046  </u><br>  -           | 46                           |                       | +                           | +                  | And I                                       | 25 6 40                                      | <u> </u>             | Cita S                                 | 17                | $\mathbf{t}$       |          |              |         |                                  |     |     | -    | <u></u>              |          |          |               |          |                |                          |          |
| 9                                  | 1/1                           | 540                          | -+                    | ╀─                          | +                  | <u> </u>                                    | <u>)                                    </u> | 4-                   | Strip                                  | 1-                | +                  |          | _            |         |                                  |     |     | _    |                      |          |          |               |          |                |                          |          |
| ///<br>10                          | Ø                             |                              | -+-                   | ╁──                         | $\mathbf{H}$       | 5410 J- 4                                   | 5 (13                                        | <u>н-</u>            | 3/10/20                                | 17                | $\left  - \right $ |          |              |         |                                  |     |     |      | <u>X</u>             |          | <u> </u> |               |          |                |                          |          |
| 11                                 | -+-                           |                              | -+-                   |                             |                    | Ir ip                                       | Slant                                        | <u> </u>             |                                        | +                 | -                  |          | -            |         |                                  | 1   |     |      | <u> </u>             |          |          |               |          |                |                          |          |
| 12                                 | +                             | -                            | +                     | +                           |                    | ··                                          |                                              |                      | - <u></u>                              | +                 |                    |          |              |         |                                  |     |     |      |                      |          |          |               | <u> </u> | <u> </u>       |                          |          |
| 42                                 |                               | -+                           |                       |                             | +                  |                                             |                                              | V P                  |                                        |                   | +                  |          |              |         |                                  |     |     |      |                      |          |          |               |          |                |                          | <u>`</u> |
|                                    |                               |                              | <u> </u>              |                             |                    |                                             |                                              |                      |                                        |                   | <b> </b>           |          |              |         |                                  |     |     |      |                      |          |          |               | <u> </u> |                |                          |          |
| 14                                 |                               |                              | 4                     | –                           |                    |                                             |                                              |                      |                                        |                   | +-                 |          |              |         |                                  |     |     |      |                      |          | <u> </u> |               |          |                |                          |          |
| Ta  <br>Relinoui                   | ished I                       | y (Si                        | gnat                  | ure):                       |                    | Da                                          | teriman                                      | Printed              | Name & Ager                            | <br>\t:           | Rei                | ceived t |              | nature  | ):                               |     |     | Dat  | e                    |          | Print    | l<br>led N:   | ame      | <br>& Age      |                          | <u> </u> |
| Factor                             | 1                             | ]                            |                       | τ.                          |                    | Tir                                         | ne 1785                                      | Davis                | A Hanny /                              | Buch              | 1                  |          | , (-,3       |         |                                  |     |     | Tim  | e                    |          |          |               |          |                |                          |          |
| Relinqui                           | ished                         | oy (S                        | gnąt                  | are:                        |                    | Da                                          | ite                                          | Printed              | Name & Ager                            | nt: Eugla         | Reg                | eived 1  | or Lab       | by (Si  | gnatur                           | e): |     | Dat  | ė, o                 | 1        | Prim     | led N         | áme      |                |                          |          |
|                                    |                               |                              | ζ.                    |                             | -                  | Tir                                         | ne                                           |                      |                                        |                   |                    | M.       |              |         | <u>v</u>                         |     |     | Tim  | e                    | .)6      |          | en.           | B        | ęy C           | <u>.</u>                 |          |
| Comme                              | ints &                        | Spec                         | al Ins                | truct                       | ions               |                                             |                                              | QAVQC                | Туре:                                  | 4                 | Nur                | nber &   | Туре с       | f Cont  | iners:                           |     |     | Pre  | serva                | tive     | 5:       | T             | emp      | 10             | 1                        | 1        |

1 .

4