

The experience to listen. The power to Solve

March 17, 2004

Mr. Joseph Jones Bureau of Eastern Remedial Action Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233

Re: Site Numbers 1-30-009 and 1-30-053A Fourth Quarter 2003 Progress Report

File: 643.001

Dear Mr. Jones:

Enclosed please find three copies of the Fourth Quarter 2003 Progress Report for the subject sites.

Should you have any questions regarding the enclosed, please feel free to contact Charlie Nehrig at 516-609-1052. Thank you.

Very truly yours,

BARTON & LOGUIDICE .P. C.

Andrew J. Barber Senior Managing Environmental Scientist

AJB/mfg

cc: G. Anders Carlson, Ph.D., NYSDOH, Albany, NY (2 copies) Robert Becherer, NYSDEC, Region 1, Stony Brook, NY (1 copy) John F. Byrne, Esq., NYSDEC-DEE, Tarrytown, NY (1 copy) James Harrington, NYSDEC, Albany, NY (1 copy) Charlie Nehrig, Photocircuits (1 copy) Louis Stans, Photocircuits (1 copy) Mark Pennington, Esq., Morgan, Lewis & Bockius (1 copy)

S\PROJECTS\600\643_001\Q4 03 Qrtrly Rpt\coverltrQ403.doc

E

¢

FOURTH QUARTER 2003 PROGRESS REPORT

PHOTOCIRCUITS AND FORMER PASS & SEYMOUR SITES 31 & 45 SEA CLIFF AVENUE

SITE NUMBERS 1-30-009 AND 1-30-053A

Prepared for: Photocircuits Corporation 31 Sea Cliff Avenue Glen Cove, New York 11542

Prepared by: Barton and Loguidice, P.C. 2 Corporate Plaza 264 Washington Avenue Extension Albany, New York 12203

January, 2004

1.0 Introduction

This Fourth Quarter 2003 Progress Report (4Q03) is being submitted pursuant to the 1997 Order on Consent between Photocircuits Corporation and the New York State Department of Environmental Conservation (NYSDEC).

Ê

During the Fourth Quarter of 2003, the following was accomplished:

- One groundwater sampling event was conducted for monitoring wells located on both the 31 and 45A Sea Cliff Avenue sites during the period of December 16-17.
- Operation of the Soil Vapor Extraction (SVE) and Air Sparging (AS) system at the 45A Sea Cliff Avenue site was continued through the fourth quarter of 2003.
- Operation of the hydraulic control system at the 31 Sea Cliff Avenue site was continued.

2.0 Discussion of Results

2.1 SVE System at 31 Sea Cliff Avenue

The SVE system is in the process of being decommissioned.

2.2 Bioremediation Pilot Test

The bioremediation pilot test was started during the week of August 28, 2000 when Terra Systems conducted the injection of a nutrient solution (substrate) into the subsurface at the 31 Sea Cliff Avenue site. Following the injection, groundwater samples were collected from the following monitoring wells/points: MW-7, MW-14, SMP-1, DMP-1, SMP-3, DMP-3, SMP-4 and DMP-4. These wells/points were sampled again on October 18-19, December 20, 2000, March 27-28, 2001 and July 11-12, 2001; the March and July sampling events included several wells located along Sea Cliff Avenue (MW-8, MW-9, MW-12 and MW-13) along with the wells sampled during the previous events. By letter dated October 25, 2001, NYSDEC authorized an additional injection of substrate that had been recommended by Photocircuits. A first phase of additional substrate injection was conducted during the period of February 25 to March 3, 2002; during this period, slightly over 5,000 gallons of substrate was injected (as reported in the 1Q 02 report). On April 29, 2002, an additional injection of 5,777 gallons of substrate was injected using the injection points that had been installed during the February-March injection event. Sampling events conducted in 2002 were January 8-10, April 2-4, June 25-26 and October 2-3. Sampling in 2003 was conducted on January 13-15 and April 28-29.

The most recent sampling event was conducted on December 16-17, 2003; the results from the December 2003 sampling event are provided in Appendix A of this report (Note: well MW-7 was not sampled during this event as it was filled with oil substrate).

ê

A status report on the pilot test (including the data from the samples collected in December 2003) was prepared by Terra Systems and is included as Appendix B of this report. The main conclusions of the report are as follows

- The addition of the edible oil substrate has enhanced the extent and rate of chlorinated solvent biodegradation at the site; degradation rates as high as 160 ug/L per day of total volatile organic compounds (TVOCs) have been observed in areas of higher concentration.
- A first order degradation half life of 533 days was calculated for the average total VOC concentration within the pilot cell area (January 2003 data); this degradation rate suggests that 90% of the total VOC mass within the pilot test cell will be removed within 48 months.
- The newly injected edible oil substrate appears to be adequately distributed.
- Bioremediation will be the primary treatment technology for contaminant destruction at the site.

2.3 IRM at 45 Sea Cliff Avenue

As discussed in the 4Q 2000 report, SVE/AS equipment was procured and delivered to the site. The SVE/AS system consists of a 10 horsepower (hp) regenerative blower and 5 hp compressor, along with electrical controls, filters, moisture separators, and valves; the system is contained within an insulated trailer, which has been located just outside of Building 7. Following delivery, the system components were connected to the piping networks for the AS and SVE wells. Two 1200 lb activated carbon adsorbers were attached in series to the blower outlet to treat recovered vapors. The SVE system was started on November 1, 2000; because the initial contaminant concentrations were relatively high, the AS portion of the system was not started. The AS component of this system was started on March 28, 2001. The system was down from April 20-24 due to an electrical problem. The system was down most of June and July due to equipment overheating; the system was re-started on July 30 and shut down on September 20.

Monitoring data was presented in the 2Q01 report, including data from sampling of individual SVE wells (March 2001) and sampling of total SVE system effluent over time. Prior to the start of the AS component, the relationship of total contaminant mass removal versus time was clearly becoming asymptotic. The start of the AS component increased contaminant mass recovery somewhat (see the April 2001 sample results).

However, the results of the May vapor sample indicate that mass removal versus time relationship became asymptotic. We concluded at that time that we demonstrated that there is little or no residual contamination at that location, and that further contaminant removal is infeasible.

Based on results from the January 2002 groundwater sampling event, Photocircuits proposed extending the SVE/AS system at the 45A Sea Cliff Avenue site from the west side to the east side of Building 7. The basis for the extension of the system and the proposed piping and equipment layout were provided in the February 13, 2002 letter to NYSDEC.

The SVE wells and AS points were installed at the proposed locations on the east side of Building 7 in late February, 2002 in preparation for the extension of the system. After field evaluation, it was decided that it would be more efficient to move the aboveground portions of the system (equipment trailer, carbon vessels) to the east side of Building 7 rather than to extend their operation by piping from the west side to the east side of Building 7, as originally proposed. The trailer and carbon vessels were moved in April, and electrical service was also provided to the new location April. Piping and mechanical connections were completed in early May; the original blower malfunctioned and a smaller replacement blower was installed.

The SVE portion of the system was started on May 8, 2002, and a sample of the total system effluent, prior to treatment, was collected; tetrachloroethene was detected at a concentration of 5.3 ppmv. Another effluent sample was collected on June 26; tetrachloroethene was detected at a concentration of 142 ppmv and trichloroethene was detected at a concentration of 2 ppmv. Further sampling in 2002 was conducted on October 3, December 12 (tetrachloroethene was detected at 1.2 and 1.1 ppmv in these two samples, respectively). The AS portion of the system was started on December 11, 2002. On May 1, 2003, the system was modified to also extract vapor from monitoring well MW-4S; the well was fitted with a cap and connected to the SVE portion of the system. Concentrations of tetrachloroethene in effluent samples for 2003 are provided in the following table:

Concentra AS/SVE s			ethene (pp	mv) in
Jan-03	May-03	May-03	Aug-03	Dec-03
1.0	0.9	1.1	1.1	0.03

Concentrations of tetrachloroethene (ug/L) in samples from monitoring well MW-4S over time are summarized in the following table:

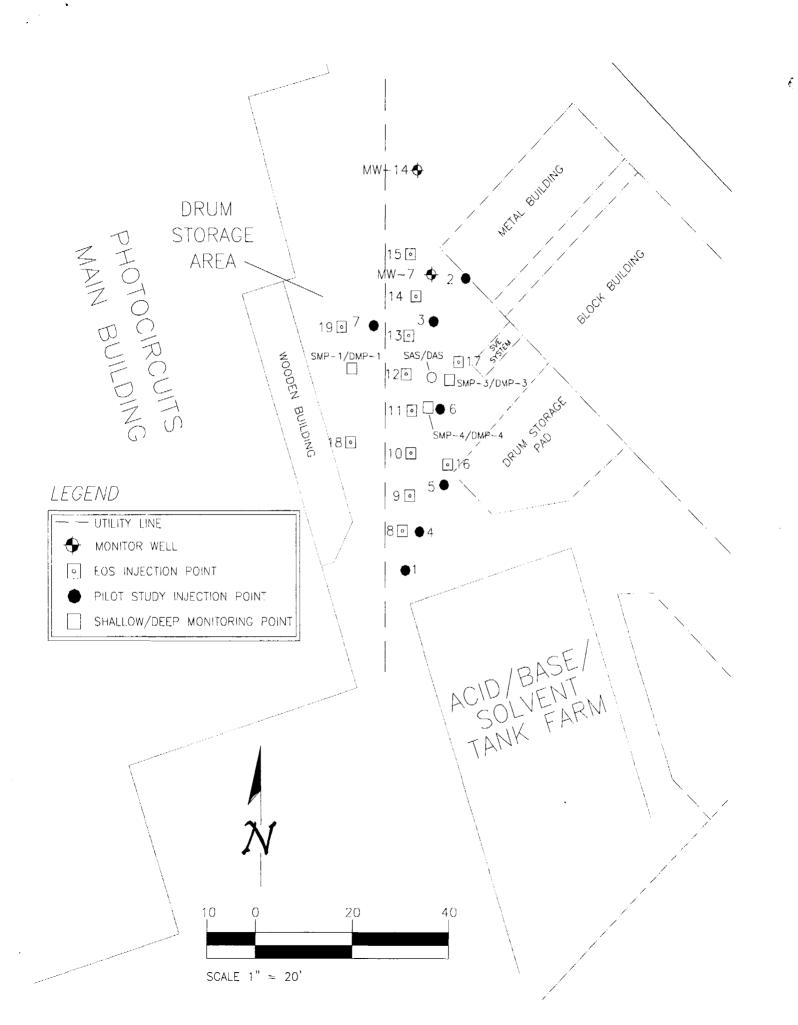
Ê

Concentra	ations of te	etrachloro	ethene (ug		V-4S		
	Apr-02		Oct-02		Apr-03	Aug-03	Dec-03
1240	1910	2200	2510	3600	1420	118	180

2.4 Hydraulic Control along Sea Cliff Avenue

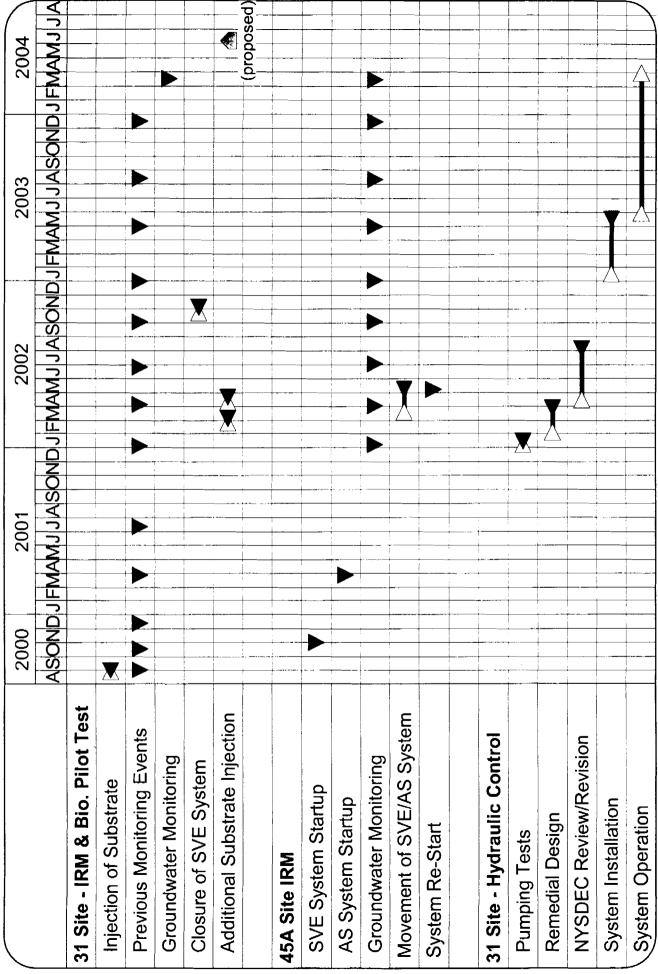
A meeting was held with NYSDEC on October 11, 2001 to discuss the progress of the bioremediation pilot test. Although there was substantial disagreement between Photocircuits and the NYSDEC over the progress of the bioremediation pilot test and the need for groundwater remediation, Photocircuits agreed to review available options for containment of groundwater along the northern boundary of the Photocircuits site (31 Sea Cliff Avenue). Photocircuits conducted the review of remedial options, and by letter dated October 26, 2001, Photocircuits presented the results of the review. The recommended approach for the conditions at the Photocircuits site is the use of hydraulic control. Photocircuits submitted a work plan for the performance of pumping tests necessary for the design of a hydraulic control system on November 13, 2001; following receipt of verbal comments from NYSDEC, Photocircuits submitted a revised work plan on December 7, 2001. Approval for implementation of the work plan was received from NYSDEC by letter dated December 19, 2001. The pumping tests were performed in January, 2002 and the remedial design report was submitted to NYSDEC on April 11, 2002. NYSDEC approval of the remedial design was received in a letter dated September 19, 2002.

Four recovery wells were installed in January, 2003. The fifth recovery well could not be installed due to the proximity of numerous underground utility lines. Groundwater modeling conducted for the design of the hydraulic control system (appended to the remedial design report/work plan) indicates that configuration of the four wells is also capable of providing hydraulic control in the subject area. The wells were installed to depths of 80 feet below grade and were constructed as described in the work plan.


The pumps, piping and control systems were installed during the week of April 28, 2003. The layout of the piping and controls are provided on the attached figure. The system was started up on May 1, 2003, with each well pumping at an initial flow rate of one gallon per minute (gpm). On May 20, the pumping rate for each well was increased to three gpm. Data and figures presented in the 2Q03 Report demonstrated that hydraulic control was being achieved in the area hydraulically downgradient of the bioremediation pilot test area. During the August sampling event, it was noted that the pumping rate of the wells had reduced to roughly one gpm, although the pump controllers had not been adjusted. We believe that the reduction in pumping resulted from an interruption in the compressed air supply to the pumps; compressed air is supplied by the facility, and

periodic interruptions occur due to maintenance activities. Because the pump controllers are pneumatic, the pump cycle logic re-sets upon re-start. We had planned to provide a back-up compressed air supply to allow the pumps to maintain the three gpm pumping rate, however, an accumulation of weathered soybean oil was detected in well MW-14 during the December 2003 sampling event. This well is located directly downgradient of the bioremediation pilot test area; fresh soybean oil was found in this well on three occasions in 2002, but has not been detected for roughly a year. We believe that the presence of the weathered soybean oil indicates that the hydraulic control system has not only been collecting contaminated groundwater, but may have accelerated the movement of contaminants from the bioremediation pilot test area. As a result, we plan to operate the hydraulic control system at the lower flow rate (roughly 1 gpm per well) and to reevaluate the issue based on data from the next monitoring event.

ê


3.0 Schedule

The planned schedule of activities for the next few months is attached.

Photocircuits - Updated Schedule of Remedial Activities 31 & 45 Sea Cliff Avenue Sites

Page 1 of 1

December 31, 2003

Bryan Tiskowitz Photocircuits Corporation 31 Sea Cliff Avenue Glen Cove, NY 11542

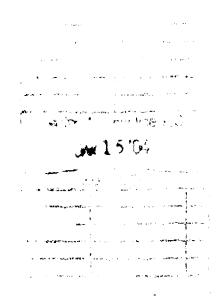
TEL: (516) 609-1779 FAX (516) 609-1257

RE: Photocircuits 31 Sea Cliff Ave. Glen Cove,

Dear Bryan Tiskowitz:

Order No.: 0312106

American Analytical Laboratories received 17 samples on 12/17/2003 for the analyses presented in the following report.


There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Her Ber

Lori Beyer Lab Director

۱.

_

t

Date: 31-Dec-03

CLIENT:Photocircuits CorporationProject:Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.Lab Order:0312106

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
0312106-01A	SMP-1		12/16/2003	12/17/2003
0312106-01B	SMP-1		12/16/2003	12/17/2003
0312106-01C	SMP-1		12/16/2003	12/17/2003
0312106-02A	DMP-1		12/16/2003	12/17/2003
0312106-02B	DMP-1		12/16/2003	12/17/2003
0312106-02C	DMP-1		12/16/2003	12/17/2003
0312106-03A	SMP-3		12/16/2003	12/17/2003
0312106-03B	SMP-3		12/16/2003	12/17/2003
0312106-03C	SMP-3		12/16/2003	12/17/2003
0312106-04A	DMP-3		12/16/2003	12/17/2003
0312106-04B	DMP-3		12/16/2003	12/17/2003
0312106-04C	DMP-3		12/16/2003	12/17/2003
0312106-05A	SMP-4		12/16/2003	12/17/2003
0312106-05B	SMP-4		12/16/2003	12/17/2003
0312106-05C	SMP-4		12/16/2003	12/17/2003
0312106-06A	DMP-4		12/16/2003	12/17/2003
0312106-06B	DMP-4		12/16/2003	12/17/2003
0312106-06C	DMP-4		12/16/2003	12/17/2003
0312106-07A	MW-8		12/16/2003	12/17/2003
0312106-07B	MW-8		12/16/2003	12/17/2003
0312106-07C	MW-8		12/16/2003	12/17/2003
0312106-08A	MW-12		12/16/2003	12/17/2003
0312106-08B	MW-12		12/16/2003	12/17/2003
0312106-08C	MW-12		12/16/2003	12/17/2003
0312106-09A	MW-13		12/17/2003	12/17/2003
0312106-09B	MW-13		12/17/2003	12/17/2003
0312106-09C	MW-13		12/17/2003	12/17/2003
0312106-10A	MW-14		12/16/2003	12/17/2003
0312106-10B	MW-14		12/16/2003	12/17/2003
0312106-10C	MW-14		12/16/2003	12/17/2003
0312106-11A	RW-1		12/17/2003	12/17/2003
0312106-12A	RW-2		12/17/2003	12/17/2003
0312106-13A	RW-3		12/17/2003	12/17/2003
0312106-14A	RW-4		12/17/2003	12/17/2003
0312106-15A	MW-35 (45A SITE)		12/17/2003	12/17/2003
0312106-16A	MW-35 (45A SITE)		12/17/2003	12/17/2003
0312106-17A	Pretreatment		12/17/2003	12/17/2003

11418

a"

	CH/		OF CL	ISTODY / REQU	EST F	0	R		I A		SIS	D	00	:0	ME	EN				
CLIENT NAME/ADDRE				Contact: Charlie Nehrig	SAMPLER (SI		-	لمنط	₽ <u></u>		DATE	山山	GTIME	1115	5	SAMPI SEALE		Q	Ê\$ / NO	D
					SAMPLER NA	ME (P)	RINT)	Dav	is if	Ding		,				CORR CONT/	ECT AINER(S)	¢	E9 / N	С
PROJECT LOCATION	Photo 31 Gl	sea l	HS Liff A.	2	And	0,000	\$/	7	er/s			$\left \right $		<i></i>	<u> </u> .				OR	
LABORATORY ID #	MATRIX		PRES.	SAMPLE # - LOCATION	Si S	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	No/	n N	ete et en eve	Leon /								SA	, PRÈSERV MPLES ILE VIAL #	
0312106-013		6		Smp-1	×	X			X						·		(
-02	2			Dmp-1	X	٠x	x	x	X											
-03	Ari I			SmP-3	X	X_	x	X	X											
-04				DMP-3	X	X	X	X	X											
-05				SMPCY	X	X	X	X	r											
05				Dmp-4	X	x	K	人	x					·						
-07	372			mw-8	K	X	X	X	X											
-08	RE			mw-12	X		X	x	X											
-09	2			mw~13	X	X.	×	X												
-10				mw-14	X	X	X	X	X											
-11				RWA	X															
-12	A.	7		RW-2	X															
													COOLE	ER TE	EMPE	ERAT	URE:			
MATRIX S=SOIL; L=L	IQUID; SL=S	SLUDGE; A	-AIR; W≠WIPE	; P=PAINT CHIPS; B=BULK MATERIAL	TURNAROUN	ID RE	QUIR	ED:				0	СОММ	IENTS	5 / IN	STRI	UCTIONS			
TYPE G=GRAB; C	=COMPOS	SITE, SS≈	SPLIT SPOO	N		s s		1	BY	1	1									
RELINQUISHED BY (S	GIGNATURE	E)	DATE 12/17/09 TIME 12:00	Bryce Dingmun	RECEIVED	BY L	AB (:	SIGN.	ATUR	E)			10 -	1			NAME	ad	Dur	2
RELADERSHED AT (S	RANATORI	E) ·	DATE NINOS	PRINTED NAME	RECEIVED	BYL	AB (S	SIGN	ATUR	E)		DATE			PRIN	ITED	NAME	- / /		H
Baran Ta	Kan	,	TIME 12:00								1	IME		ĺ						
·	+	<u>ا</u> ل		CE / CANARY-LAB / PINK-SAMP	LE CUSTO	DIAN	/ G(NRC	D-CL	IENT			·····						

.

•

1	CH	AIN (OF CI	JSTODY / REQU	EST	FC	DR	A	A	LY	SI	S C	00	CU	ME	ENT	<u></u>		
CLIENT NAME/ADDR	ess pho	bCirc	uits Uitt	CONTACT: Any Charlie Nichrig	SAMPLEF	R (SIGI	NATURE	Dur Dur	1 A.	1ª	DAT	_Е 12/17 З	£3 _{тім} 15-4			SAMPLE(S) SEALED		ES /	NO
	6	Ion C	ove, N	×	SAMPLER	NAM	e (print		wid Bryc	На -С - 1	nn7 Dia	y Ig Ma				CORRECT CONTAINER	(S))	/ NO
PROJECT LOCATION	PI	hots Ci	rcuits		Angle -	PEO.	Star S	[]			7				//			FOR	
LABORATORY ID #	MATRIX	TYPE	PRES.	SAMPLE # - LOCATION	And A	3/.	30 X	e rr	12 12 12 12 12 12 12 12	en la								ANOL PRES SAMPLES DLATILE VIA	6
0312106-13	外はト	6	HU	RW-3		χÌ													
144-15	1 KL	G	ſ	rw ~4		X													
15A18	AEL	G		MW-35 (45ASIT	E)	X													· · · · · · · · · · · · · · · · · · ·
16A17	AGL	G	<u>↓</u>	MW-45 (45 A 51	TC)	X													
174 18	A A	6	NONE	PRETREATMENT		X							-						
· · · · · · · · · · · · · · · · · · ·				·								_							
														_			<u> </u>		
									-										
· · · · · · · · · · · · · · · · · · ·				·					+							-			
	1		!l				I							<u> </u>	}				
												ſ	COOL	ER TI	EMPE	RATURE			
MATRIX S=SOIL; L=L	IQUID; SL=S	SLUDGE; A	-AIR; W≃WIP	E; P=PAINT CHIPS; B=BULK MATERIAL	TURNARG	DUND	REQU	IRED:					COM	MENT	S / IN	STRUCTI	ONS		
TYPE G=GRAB; (C=COMPOS	SITE, SS=	SPLIT SPOC	DN .	NORMAL	X	STAT	a	BY	1	/	/							
RELINQUISHED BY (SIGNATURE	E)	TIME	PRINTED NAME	RECEIV	ED B	Y LAB	(SIGN	IATUR	E)		DATE	-16.	v3	PRIN	TED NAM	E		
Bran N.A.	7		TIME 12.00	Bryce Dingman		h	· (7.10	<u></u>				551	m	(This	ton.	r D d	am
RELINOUISHED BY	SIGNATURE	Ξ)	DATE	PRINTED NAME	RECEIV	ED B		(SIGN	IATUR	E)		DATE			PRIN	TED NAM	E		"17-
Kara Ti	K. X											TIME							
in ins	/	/		ICE / CANARY-LAB / PINK-SAMP	LE CUST	ODI	AN / C	GOLD	ENRC	D-CI	LIEN	г							J

56 Toledo Street Farmingdale, NY 11735-(631) 454-6100

Subcontractor:

Environmental T 208 Route 109 Farmingdale, Ne	esting Laboratories	TEL FA>	• •					
•		Acc	:t #:				18-I	Dec-03
· · · · · · · · · · · · · · · · · · ·				Toc	 Requested Test	s		
Sample ID	Matrix	Collection Date	Bottle Type	E415.1				
0312106-01C	Liquid	12/16/2003	250ML PU	1				
0312106-02C	Liquid	12/16/2003	250ML PU	1				
0312106-03C	Liquid	12/16/2003	250ML PU	1				
0312106-04C	Liguid	12/16/2003	250ML PU	1				
0312106-05C	Liquid	12/16/2003	250ML PU	1				
0312106-06C	Liquid	12/16/2003	250ML PU	1	 			
0312106-07C	Liquid	12/16/2003	250ML PU	1				
0312106-08C	Liquid	12/16/2003	250ML PU	1				
0312106-09C	Liquid	12/17/2003	250ML PU	1				
0312106-10C	Liquid	12/16/2003	250ML PU	1				

CHAIN-OF-CUSTODY RECORD

Comments:

Ś

.TAT Required: by12/26/03

· · · · · · · · · · · · · · · · · · ·	Date/Time		Date/Time
	11.45		
Relinquished by: May Jun 12	2-18-03 A Received by:	Wlark Joon	
Relinquished by:	Received by:	0	

Page 1 of 1

AMERICAN ANALYTICAL LABORATORIES, INC. 56 TOLEDO STREET FARMINGDALE, NEW YORK 11735 TELEPHONE: (631) 454-6100 FAX: (631) 454-8027

DATA REPORTING QUALIFIERS

For reporting results, the following "Results Qualifiers" are used:

/

1

Value	If the result is greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
J	 Indicates an estimated value. The flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3ug/L was calculated report as 3J. This flag is used when similar situations arise on any organic parameter i.e. Pesticide, PCBs and others.
В	Indicates the analyte was found in the blank as well as the sample report "10B".
E	Indicates the analytes concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide / PCB target analyte when there is >25% difference for detected concentrations between the two GC Columns. The higher of the two values is reported on Form I and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.

...

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID: SMP-1
Lab Order:	0312106	Tag Number:
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date: 12/16/2003
Lab ID:	0312106-01A	Matrix: LIQUID

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW8260B			Analyst: LDS
1,1,1,2-Tetrachloroethane	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
1,1,1-Trichloroethane	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
1,1,2,2-Tetrachloroethane	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
1,1,2-Trichloro-1,2,2-trifluoroethane	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
1,1,2-Trichloroethane	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
1,1-Dichloroethane	42	1.0	μg/L	1	12/18/2003 8:45:00 AM
1,1-Dichloroethene	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
1,1-Dichloropropene	U	1.0	μg/L	1	12/18/2003 8:45:00 AM
1,2,3-Trichlorobenzene	υ	1.0	µg/L	1	12/18/2003 8:45:00 AM
1,2,3-Trichloropropane	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
1,2,4,5-Tetramethylbenzene	U	1.0	μg/L	1	12/18/2003 8:45:00 AM
1,2,4-Trichlorobenzene	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
1,2,4-Trimethylbenzene	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
1,2-Dibromo-3-chloropropane	U	1.0	μg/L	1	12/18/2003 8:45:00 AM
1,2-Dibromoethane	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
1,2-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
1,2-Dichloroethane	U	1.0	μg/L	1	12/18/2003 8:45:00 AM
1,2-Dichloropropane	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
1,3,5-Trimethylbenzene	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
1,3-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
1,3-dichloropropane	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
1,4-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
2,2-Dichloropropane	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
2-Butanone	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
2-Chloroethyl vinyl ether	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
2-Chlorotoluene	4.3	1.0	µg/L	1	12/18/2003 8:45:00 AM
2-Hexanone	U	1.0	μg/L	1	12/18/2003 8:45:00 AM
4-Chlorotoluene	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
4-Isopropyltoluene	υ	1.0	μg/L	1	12/18/2003 8:45:00 AM
4-Methyl-2-pentanone	U	1.0	µg/L	1	12/1 8/2 003 8:45:00 AM
Acetone	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
Acrolein	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
Acrylonitrile	U	1.0	μg/L	1	12/18/2003 8:45:00 AM
Benzene	1.2	1.0	µg/L	1	12/18/2003 8:45:00 AM
Bromobenzene	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
Bromochloromethane	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
Bromodichloromethane	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
Bromoform	U	1.0	μg/L	1	12/18/2003 8:45:00 AM
Bromomethane	U	1.0	μg/L	1	12/18/2003 8:45:00 AM
Carbon disulfide	Ų	1.0	µg/L	1	12/18/2003 8:45:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

• - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

,

Date: 31-Dec-03

_

CLIENT:	Photocircuits Corporation	Client Sample ID:	SMP-1
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/16/2003
Lab ID:	0312106-01A	Matrix:	LIQUID

Analyses	Result	Limit Qu	ial Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW8260	B		Analyst: LDS
Carbon tetrachloride	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
Chlorobenzene	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
Chlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
Chloroethane	680	1.0	μg/L	1	12/18/2003 8:45:00 AN
Chloroform	U	1.0	μg/L	1	12/18/2003 8:45:00 AN
Chloromethane	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
cis-1,2-Dichloroethene	5.4	1.0	µg/L	1	12/18/2003 8:45:00 AN
cis-1,3-Dichloropropene	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
Dibromochloromethane	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
Dibromomethane	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
Dichlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
Diisopropyl ether	U	1.0	μg/L	1	12/18/2003 8:45:00 AN
Ethanol	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
Ethyl acetate	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
Ethylbenzene	U	1.0	μg/L	1	12/18/2003 8:45:00 AN
Freon-114	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
Hexachlorobutadiene	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
Isopropy! acetate	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
Isopropyibenzene	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
m,p-Xylene	U	2.0	µg/L	1	12/18/2003 8:45:00 AN
Methyl tert-butyl ether	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
Methylene chloride	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
Naphthalene	U	1.0	μg/L	1	12/18/2003 8:45:00 AN
n-Butyl acetate	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
n-Butylbenzene	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
n-Propyl acetate	U	1.0	μg/L	1	12/18/2003 8:45:00 AM
n-Propylbenzene	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
o-Xylene	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
p-Diethylbenzene	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
p-Ethyltoluene	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
sec-Butylbenzene	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
Styrene	U	1.0	μg/L	1	12/18/2003 8:45:00 AM
t-Butyl alcohol	U	1.0	μg/L	1	12/18/2003 8:45:00 AN
tert-Butylbenzene	U	1.0	μg/L	1	12/18/2003 8:45:00 AM
Tetrachloroethene	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
Toluene	22	1.0	µg/L	1	12/18/2003 8:45:00 AM
trans-1,2-Dichloroethene	U	1.0	µg/L	1	12/18/2003 8:45:00 AN
trans-1,3-Dichloropropene	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
Trichloroethene	U	1.0	µg/L	1	12/18/2003 8:45:00 AM
Trichlorofluoromethane	U	1.0	μg/L	1	12/18/2003 8:45:00 AM

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- E Value above quantitation range

ND - Not Detected at the Reporting Limit

ţ

,

Date: 31-Dec-03

Analyses	Result	Limit Qual	Units	DF	Date Analyzed	
Lab ID:	0312106-01A		Matrix	LIQU	D	
Project:	Photocircuits 31 Sea Cliff Ave. Gler	n Cove, N.Y.	Collection Date:	12/16/	2003	
Lab Order:	0312106		Tag Number:			
CLIENT:	Photocircuits Corporation	C	lient Sample ID:	SMP-	1	

VOLATILES SW-846 METHOD 8260		SW8260)B	Analyst: LD	
Vinyl acetate	U	1.0	μg/L	1	12/18/2003 8:45:00 AM
Vinyl chloride	40	1.0	μg/L	1	12/18/2003 8:45:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

£

CLIENT: Lab Order:	Photocircuits Corpora 0312106			Client Sample ID: SM Tag Number: Collection Date: 12/			
Project: Lab ID:	Photocircuits 31 Sea (0312106-01B	Cliff Ave. Gler	i Cove, N.Y.		trix: LIQ		
Analyses		Result	Limit Qua	d Units	DF	Date Analyzed	
TOTAL IRON			E200.7	(SW30	10A)	Analyst: JP	
Iron		21.7	0.0200	mg/L	1	12/19/2003 10:25:13 Al	

Quali	fiers:
-------	--------

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits

...

- R RPD outside accepted recovery limits
- E Value above quantitation range

ł

Date: 31-Dec-03

NITRATE AS N		E353.2			Analyst: BP
Analyses	Result	Limit Qual	Units	DF	Date Analyzed
Lab ID:	0312106-01C		Matrix:	LIQUI	D
Project:	Photocircuits 31 Sea Cliff Ave. Gle	n Cove, N.Y. 🤇 🤇	Collection Date:	12/16/2	2003
Lab Order:	0312106		Tag Number:		
CLIENT:	Photocircuits Corporation	Cli	ient Sample ID:	SMP-1	

Nitrogen, Nitrate-Nitrite	U	0.100	mg/L	1	12/19/2003
SULFATE		E375.4	ļ		Analyst: BK
Sulfate	30.0	1.00	mg/L	1	10/30/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID:	DMP-1
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/16/2003
Lab ID:	0312106-02A	Matrix:	LIQUID

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260			60B		Analyst: LDS
1,1,1,2-Tetrachloroethane	U	1.0	μg/L	1	12/18/2003 9:24:00 AN
1,1,1-Trichloroethane	U	1.0	µg/L	1	12/18/2003 9:24:00 AN
1,1,2,2-Tetrachloroethane	U	1.0	µg/L	1	12/18/2003 9:24:00 AN
1,1,2-Trichloro-1,2,2-trifluoroethane	U	1.0	µg/L	· 1	12/18/2003 9:24:00 AN
1,1,2-Trichloroethane	U	1.0	µg/L	1	12/18/2003 9:24:00 AN
1,1-Dichloroethane	320	1.0	μg/L	1	12/18/2003 9:24:00 AN
1,1-Dichloroethene	U	1.0	µg/L	1	12/18/2003 9:24:00 AN
1,1-Dichloropropene	U	1.0	μg/L	1	12/18/2003 9:24:00 AN
1,2,3-Trichlorobenzene	U	1.0	μg/L	1	12/18/2003 9:24:00 AN
1,2,3-Trichloropropane	U	1.0	μg/L	1	12/18/2003 9:24:00 AN
1,2,4,5-Tetramethylbenzene	U	1.0	μg/L	1	12/18/2003 9:24:00 AN
1,2,4-Trichlorobenzene	U	1.0	µg/L	1	12/18/2003 9:24:00 AN
1,2,4-Trimethylbenzene	1.7	1.0	μg/L	1	12/18/2003 9:24:00 AN
1,2-Dibromo-3-chloropropane	U	1.0	µg/L	1	12/18/2003 9:24:00 AN
1,2-Dibromoethane	U	1.0	µg/L	1	12/18/2003 9:24:00 AN
1,2-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 9:24:00 AN
1,2-Dichloroethane	U	1.0	µg/L	1	12/18/2003 9:24:00 AN
1,2-Dichloropropane	U	1.0	µg/L	1	12/18/2003 9:24:00 AM
1,3,5-Trimethylbenzene	1.5	1.0	µg/L	1	12/18/2003 9:24:00 AM
1,3-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 9:24:00 AN
1,3-dichloropropane	U	1.0	µg/L	1	12/18/2003 9:24:00 AM
1,4-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 9:24:00 AN
2,2-Dichloropropane	U	1.0	µg/L	1	12/18/2003 9:24:00 AM
2-Butanone	67	1.0	μg/L	1	12/18/2003 9:24:00 AM
2-Chloroethyl vinyl ether	U	1.0	μg/L	1	12/18/2003 9:24:00 AM
2-Chlorotoluene	43	1.0	μg/L	1	12/18/2003 9:24:00 AM
2-Hexanone	U	1.0	μg/L	1	12/18/2003 9:24:00 AN
4-Chlorotoluene	2.8	1.0	µg/L	1	12/18/2003 9:24:00 AM
4-lsopropyltoluene	U	1.0	µg/L	1	12/18/2003 9:24:00 AM
4-Methyl-2-pentanone	U	1.0	µg/L	1	12/18/2003 9:24:00 AM
Acetone	U	1.0	µg/L	1	12/18/2003 9:24:00 AM
Acrolein	U	1.0	µg/L	1	12/18/2003 9:24:00 AM
Acrylonitrile	U	1.0	µg/L	1	12/18/2003 9:24:00 AM
Benzene	58	1.0	µg/L	1	12/18/2003 9:24:00 AM
Bromobenzene	U	1.0	µg/L	1	12/18/2003 9:24:00 AM
Bromochloromethane	U	1.0	μg/L	1	12/18/2003 9:24:00 AM
Bromodichloromethane	U	1.0	µg/L	1	12/18/2003 9:24:00 AM
Bromoform	U	1.0	µg/L	1	12/18/2003 9:24:00 AM
Bromomethane	U	1.0	μ g/L	1	12/18/2003 9:24:00 AM
Carbon disulfide	U	1.0	μg/L	1	12/18/2003 9:24:00 AM

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- E Value above quantitation range

ND - Not Detected at the Reporting Limit

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID:	DMP-1
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/16/20
Lab ID:	0312106-02A	Matrix:	LIQUID

ag Number: ection Date: 12/16/2003 Matrix: LIQUID

Result Limit Qual Units Analyses DF **Date Analyzed** ~_ VOLATILES SW-846 METHOD 8260 SW8260B Analyst: LDS Carbon tetrachloride υ µg/L 1.0 1 12/18/2003 9:24:00 AM Chlorobenzene υ 1.0 µg/L 1 12/18/2003 9:24:00 AM Chlorodifluoromethane υ 1.0 µg/L 1 12/18/2003 9:24:00 AM Chloroethane 530 10 ua/L 10 12/19/2003 6:26:00 PM Chloroform U 1.0 µg/L 1 12/18/2003 9:24:00 AM Chloromethane υ 1.0 µg/L 1 12/18/2003 9:24:00 AM cis-1,2-Dichloroethene 53 1.0 µg/L 1 12/18/2003 9:24:00 AM cis-1,3-Dichloropropene U 1.0 µg/L 1 12/18/2003 9:24:00 AM Dibromochloromethane υ 1.0 µg/L 1 12/18/2003 9:24:00 AM U Dibromomethane 1.0 µg/L 1 12/18/2003 9:24:00 AM U Dichlorodifluoromethane 1.0 µg/L 1 12/18/2003 9:24:00 AM U Diisopropyl ether 1.0 µg/L 1 12/18/2003 9:24:00 AM Ethanol U 1.0 µg/L 1 12/18/2003 9:24:00 AM Ethyl acetate υ 1.0 µg/L 1 12/18/2003 9:24:00 AM Ethylbenzene 1.8 1.0 µg/L 12/18/2003 9:24:00 AM 1 Freon-114 U 1.0 µg/L 1 12/18/2003 9:24:00 AM Hexachlorobutadiene U 1.0 µg/L 1 12/18/2003 9:24:00 AM Isopropyl acetate U 1.0 1 12/18/2003 9:24:00 AM µg/L υ Isopropylbenzene 1.0 µg/L 1 12/18/2003 9:24:00 AM 2.1 m,p-Xylene 2.0 µg/L 1 12/18/2003 9:24:00 AM Methyl tert-butyl ether U 1.0 µg/L 1 12/18/2003 9:24:00 AM Methylene chloride 8.0 1.0 µg/L 1 12/18/2003 9:24:00 AM Naphthalene U 1.0 µg/L 1 12/18/2003 9:24:00 AM n-Butyl acetate υ 1.0 µg/L 1 12/18/2003 9:24:00 AM U 1.0 n-Butylbenzene µg/L 1 12/18/2003 9:24:00 AM n-Propyl acetate U 1.0 µg/L 1 12/18/2003 9:24:00 AM n-Propylbenzene U 1.0 μ<mark>g/L</mark> 1 12/18/2003 9:24:00 AM o-Xylene 1.5 1.0 µg/L 1 12/18/2003 9:24:00 AM p-Diethylbenzene U 1.0 µg/L 1 12/18/2003 9:24:00 AM U p-Ethyltoluene 1.0 μg/L 1 12/18/2003 9:24:00 AM υ sec-Butylbenzene 1.0 µg/L 12/18/2003 9:24:00 AM 1 Styrene U 1.0 µg/L 12/18/2003 9:24:00 AM 1 t-Butyl alcohol υ 1.0 µg/L 12/18/2003 9:24:00 AM 1 υ tert-Butylbenzene 1.0 μg/L 1 12/18/2003 9:24:00 AM Tetrachloroethene υ 1.0 µg/L 1 12/18/2003 9:24:00 AM Toluene 19 1.0 µg/L 1 12/18/2003 9:24:00 AM trans-1,2-Dichloroethene 5.2 1.0 µg/L 1 12/18/2003 9:24:00 AM trans-1,3-Dichloropropene U 1.0 µg/L 1 12/18/2003 9:24:00 AM Trichloroethene υ 1.0 µg/L 1 12/18/2003 9:24:00 AM Trichlorofluoromethane υ 1.0 µg/L 1 12/18/2003 9:24:00 AM

Qualifiers:

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- •- Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

ĺ

Vinyl chloride

1

12/18/2003 9:24:00 AM

CLIENT:	Photocircuits Corpora	tion	(Client Sample	ID: DM	IP-1		
Lab Order:	0312106	Tag Number:			ber:			
Project:	Photocircuits 31 Sea (Cliff Ave. Gler	n Cove, N.Y.	Collection Date: 12/16/2003		16/2003		
Lab ID:	0312106-02A			Mai	rix: LIQ	ĮUID		
Analyses		Result	Limit Qual	Units	DF	Date Analyzed		
VOLATILES SV	N-846 METHOD 8260	<u>-</u>	SW8260B			Analyst: LDS		
Vinyl acetate		U	1.0	μg/L	1	12/18/2003 9:24:00 AN		

1.0

µg/L

260

Qualifiers:

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

American Analytical Laboratories

ł

4

CLIENT: Lab Order:	Photocircuits Corporation 0312106 Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y. 0312106-02B			Client Sample ID: DMP-1 Tag Number:		
Project: Lab ID:				Collection Date: Matrix:		12/16/2003 LIQUID
Analyses		Result	Limit Qua	l Units	DF	Date Analyzed
TOTAL IRON		3.09	E200.7 0.0200	(SW30 mg/L	10A) 1	Analyst: JP 12/19/2003 10:32:39 AM

Qualifiers:

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

ł

CLIENT:	Photocircuits Corporation	Client Sample ID:	DMP-1
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/16/2003
Lab ID:	0312106-02C	Matrix:	LIQUID

Analyses	Result	Limit Qual Units	DF	Date Analyzed
NITRATE AS N		E353.2		Analyst: BK
Nitrogen, Nitrate-Nitrite	0.087	0.100 J mg/L	1	12/19/2003
SULFATE		E375.4		Analyst: BK
Sulfate	226	1.00 mg/L	1	10/30/2003

Qualifiers:

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- •- Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

American A	Analvtical	Laboratories
------------	------------	--------------

Date: 31-Dec-03

_

CLIENT:	Photocircuits Corporation	Client Sample ID:	SMP-3
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/16/2003
Lab ID:	0312106-03A	Matrix:	LIQUID
Analyses	Result Limit (ual Units	DF Date Analyzed

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW82	60B		Analyst: LDS
1,1,1,2-Tetrachloroethane	U	1.0	µg/L	1	12/18/2003 10:04:00 Al
1,1,1-Trichloroethane	2300	100	µg/L	100	12/19/2003 7:05:00 PM
1,1,2,2-Tetrachloroethane	U	1.0	μg/L	1	12/18/2003 10:04:00 Al
1,1,2-Trichloro-1,2,2-trifluoroethane	U	1.0	µg/L	1	12/18/2003 10:04:00 A
1,1,2-Trichloroethane	U	1.0	µg/L	1	12/18/2003 10:04:00 Al
1,1-Dichloroethane	19000	100	µg/L	100	12/19/2003 7:05:00 PM
1,1-Dichloroethene	50	1.0	µg/L	1	12/18/2003 10:04:00 A
1,1-Dichloropropene	U	1.0	µg/L	1	12/18/2003 10:04:00 Al
1,2,3-Trichlorobenzene	U	1.0	µg/L	1	12/18/2003 10:04:00 A
1,2,3-Trichloropropane	U	1.0	μg/L	1	12/18/2003 10:04:00 A
1,2,4,5-Tetramethylbenzene	U	1.0	µg/L	1	12/18/2003 10:04:00 A
1,2,4-Trichlorobenzene	U	1.0	µg/L	1	12/18/2003 10:04:00 A
1,2,4-Trimethylbenzene	U	1.0	µg/L	1	12/18/2003 10:04:00 A
1,2-Dibromo-3-chloropropane	U	1.0	µg/L	1	12/18/2003 10:04:00 A
1,2-Dibromoethane	U	1.0	µg/L	1	12/18/2003 10:04:00 A
1,2-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 10:04:00 A
1,2-Dichloroethane	7.6	1.0	µg/L	1	12/18/2003 10:04:00 A
1,2-Dichloropropane	U	1.0	µg/L	1	12/18/2003 10:04:00 A
1,3,5-Trimethylbenzene	U	1.0	µg/L	1	12/18/2003 10:04:00 A
1,3-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 10:04:00 A
1.3-dichloropropane	U	1.0	µg/L	1	12/18/2003 10:04:00 A
1,4-Dichlorobenzene	U	1.0	μg/L	1	12/18/2003 10:04:00 A
2.2-Dichloropropane	U	1.0	μg/L	1	12/18/2003 10:04:00 A
2-Butanone	270	1.0	μg/L	1	12/18/2003 10:04:00 A
2-Chloroethyl vinyl ether	U	1.0	µg/L	1	12/18/2003 10:04:00 A
2-Chlorotoluene	28	1.0	μg/L	1	12/18/2003 10:04:00 A
2-Hexanone	 U	1.0	µg/L	1	12/18/2003 10:04:00 A
4-Chlorotoluene	1.7	1.0	μg/L	1	12/18/2003 10:04:00 A
4-lsopropyltoluene	U	1.0	µg/L	1	12/18/2003 10:04:00 A
4-Methyl-2-pentanone	U	1.0	µg/L	1	12/18/2003 10:04:00 A
Acetone	U	1.0	μg/L	1	12/18/2003 10:04:00 A
Acrolein	U	1.0	μg/L	1	12/18/2003 10:04:00 A
Acrylonitrile	U	1.0	μg/L	1	12/18/2003 10:04:00 A
Benzene	4.9	1.0	µg/L	1	12/18/2003 10:04:00 A
Bromobenzene	U	1.0	μg/L	1	12/18/2003 10:04:00 A
Bromochloromethane	U	1.0	µg/L	1	12/18/2003 10:04:00 A
Bromodichloromethane	U	1.0	µg/L	1	12/18/2003 10:04:00 A
Bromoform	U	1.0	μg/L	1	12/18/2003 10:04:00 A
Bromomethane	U	1.0	μg/L	1	12/18/2003 10:04:00 A
Carbon disulfide	Ū	1.0	µg/L	1	12/18/2003 10:04:00 A

Qualifiers:

J - Analyte detected below quantitation limits

- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID:	SMP-3
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/16/2003
Lab ID:	0312106-03A	Matri x :	LIQUID

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW826	i0B		Analyst: LDS
Carbon tetrachloride	U	1.0	µg/L	1	12/18/2003 10:04:00 AM
Chlorobenzene	U	1.0	µg/L	1	12/18/2003 10:04:00 AN
Chlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 10:04:00 AM
Chloroethane	4600	100	μg/L	100	12/19/2003 7:05:00 PM
Chloroform	U	1.0	μg/L	1	12/18/2003 10:04:00 AM
Chloromethane	U	1.0	µg/L	1	12/18/2003 10:04:00 AM
cis-1,2-Dichloroethene	2.5	1.0	μg/L	1	12/18/2003 10:04:00 AN
cis-1,3-Dichloropropene	U	1.0	μg/L	1	12/18/2003 10:04:00 AM
Dibromochloromethane	U	1.0	µg/L	1	12/18/2003 10:04:00 AM
Dibromomethane	U	1.0	µg/L	1	12/18/2003 10:04:00 AM
Dichlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 10:04:00 AM
Diisopropyl ether	U	1.0	μg/L	1	12/18/2003 10:04:00 AM
Ethanol	U	1.0	µg/L	1	12/18/2003 10:04:00 AM
Ethyl acetate	U	1.0	µg/L	1	12/18/2003 10:04:00 AM
Ethylbenzene	U	1.0	μg/L	1	12/18/2003 10:04:00 AN
Freon-114	U	1.0	µg/L	1	12/18/2003 10:04:00 AM
Hexachlorobutadiene	U	1.0	µg/L	1	12/18/2003 10:04:00 AN
Isopropyl acetate	U	1.0	μg/L	1	12/18/2003 10:04:00 AN
Isopropylbenzene	U	1.0	µg/L	1	12/18/2003 10:04:00 AM
m,p-Xylene	U	2.0	µg/L	1	12/18/2003 10:04:00 AM
Methyl tert-butyl ether	U	1.0	µg/L	1	12/18/2003 10:04:00 AN
Methylene chloride	24	1.0	µg/L	1	12/18/2003 10:04:00 AN
Naphthalene	Ū	1.0	µg/Ľ	1	12/18/2003 10:04:00 AM
n-Butyl acetate	υ	1.0	µg/L	1	12/18/2003 10:04:00 AM
n-Butylbenzene	U	1.0	µg/L	1	12/18/2003 10:04:00 AM
n-Propyl acetate	U	1.0	µg/L	1	12/18/2003 10:04:00 AM
n-Propylbenzene	U	1.0	μg/L	1	12/18/2003 10:04:00 AN
o-Xylene	υ	1.0	µg/L	1	12/18/2003 10:04:00 AM
p-Diethylbenzene	U	1.0	µg/L	1	12/18/2003 10:04:00 AN
p-Ethyltoluene	U	1.0	µg/L	1	12/18/2003 10:04:00 AM
sec-Butylbenzene	U	1.0	μg/L	1	12/18/2003 10:04:00 AM
Styrene	U	1.0	µg/L	1	12/18/2003 10:04:00 AM
t-Butyl alcohol	U	1.0	μg/L	1	12/18/2003 10:04:00 AM
tert-Butylbenzene	U	1.0	µg/L	1	12/18/2003 10:04:00 AM
Tetrachloroethene	U	1.0	µg/L	1	12/18/2003 10:04:00 AM
Toluene	160	1.0	µg/L	1	12/18/2003 10:04:00 AM
trans-1,2-Dichloroethene	U	1.0	µg/L	1	12/18/2003 10:04:00 AM
trans-1,3-Dichloropropene	U	1.0	µg/L	1	12/18/2003 10:04:00 AM
Trichloroethene	U	1.0	μg/L	1	12/18/2003 10:04:00 AN
Trichlorofluoromethane	U	1.0	µg/L	1	12/18/2003 10:04:00 AM

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- E Value above quantitation range

ND - Not Detected at the Reporting Limit

ł

Vinyl chloride

1

12/18/2003 10:04:00 AM

CLIENT: Lab Order:	Photocircuits Corpora 0312106	tion	(Client Sample ID: Tag Number:			
Project: Lab D :	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y. 0312106-03A		Cove, N.Y.	Collection Date:			
Analyses		Result	Limit Qual	Units	DF	Date Analyzed	
VOLATILES SV Vinyl acetate	W-846 METHOD 8260	Ų	SW8260B 1.0	µg/L	1	Analyst: LDS 12/18/2003 10:04:00 AM	

1.0

µg/L

190

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- Page 13 of 71

ł

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation		Client Sample ID:		
Lab Order:	0312106		Tag Number:		
Project:	Photocircuits 31 Sea Cliff Ave.	Glen Cove, N.Y.	Collection Date:	12/16/2	2003
Lab ID:	0312106-03B		Matrix:	LIQUI	D
Analyses	Resu	lt Limit Q	1al Units	DF	Date Analyzed
TOTAL IRON		E200.7	/ (SW3010A)	Analyst: JP
Iron	8.9	0.0200	mg/L	1	12/19/2003 10:34:59 AM

Qualifiers:

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

١

NITRATE AS N		E353.2		Analyst: BK
Analyses	Result	Limit Qual Units	DF	Date Analyzed
Lab ID:	0312106-03C	Matrix:	LIQU	ID
Project:	Photocircuits 31 Sea Cliff Ave. Gl	en Cove, N.Y. Collection Date:	12/16	/2003
Lab Order:	0312106	Tag Number:		
CLIENT:	Photocircuits Corporation	Client Sample ID:	SMP-	3

Nitrogen, Nitrate-Nitrite	υ	0.100	mg/L	1	12/19/2003
SULFATE		E375.4	ŧ		Analyst: BK
Sulfate	377	1.00	mg/L	1	10/30/2003

Qualifiers:

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID:	DMP-3
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/16/2003
Lab ID:	0312106-04A	Matrix:	LIQUID

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW8260)B		Analyst: LDS
1,1,1,2-Tetrachloroethane	U	1.0	µg/L	1	12/18/2003 10:45:00 AN
1,1,1-Trichloroethane	540	50	µg/L	50	12/19/2003 1:48:00 PM
1,1,2,2-Tetrachloroethane	U	1.0	µg/L	1	12/18/2003 10:45:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethane	U	1.0	µg/L	1	12/18/2003 10:45:00 AN
1,1,2-Trichloroethane	U	1.0	µg/L	1	12/18/2003 10:45:00 AM
1,1-Dichloroethane	5100	50	µg/L	50	12/19/2003 1:48:00 PM
1,1-Dichloroethene	18	1.0	µg/L	1	12/18/2003 10:45:00 AM
1,1-Dichloropropene	U	1.0	μg/L	1	12/18/2003 10:45:00 AM
1,2,3-Trichlorobenzene	U	1.0	µg/L	1	12/18/2003 10:45:00 AM
1,2,3-Trichloropropane	U	1.0	µg/L	1	12/18/2003 10:45:00 AM
1,2,4,5-Tetramethylbenzene	U	1.0	µg/L	1	12/18/2003 10:45:00 AM
1,2,4-Trichlorobenzene	U	1.0	µg/L	1	12/18/2003 10:45:00 AM
1,2,4-Trimethylbenzene	3.8	1.0	μg/L	1	12/18/2003 10:45:00 AN
1,2-Dibromo-3-chloropropane	U	1.0	μg/L	1	12/18/2003 10:45:00 AM
1,2-Dibromoethane	U	1.0	μg/L	1	12/18/2003 10:45:00 AM
1,2-Dichlorobenzene	U	1.0	μg/L	1	12/18/2003 10:45:00 AM
1,2-Dichloroethane	24	1.0	μg/L	1	12/18/2003 10:45:00 AM
1,2-Dichloropropane	U	1.0	μg/L	1	12/18/2003 10:45:00 AM
1,3,5-Trimethylbenzene	4.8	1.0	μg/L	1	12/18/2003 10:45:00 AM
1,3-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 10:45:00 AM
1,3-dichloropropane	U	1.0	μg/L	1	12/18/2003 10:45:00 AM
1,4-Dichlorobenzene	U	1.0	μg/L	1	12/18/2003 10:45:00 AM
2,2-Dichloropropane	U	1.0	μg/L	1	12/18/2003 10:45:00 AM
2-Butanone	U	1.0	μg/L	1	12/18/2003 10:45:00 AM
2-Chloroethyl vinyl ether	U	1.0	µg/L	1	12/18/2003 10:45:00 AM
2-Chlorotoluene	46	1.0	hð\r	1	12/18/2003 10:45:00 AM
2-Hexanone	U	1.0	µg/L	1	12/18/2003 10:45:00 AM
4-Chlorotoluene	4.9	1.0	μg/L	1	12/18/2003 10:45:00 AM
4-Isopropyltoluene	U	1.0	μg/L	1	12/18/2003 10:45:00 AN
4-Methyl-2-pentanone	U	1.0	μg/L	1	12/18/2003 10:45:00 AM
Acetone	U	1.0	μg/L	1	12/18/2003 10:45:00 AM
Acrolein	U	1.0	μg/L	1	12/18/2003 10:45:00 AM
Acrylonitrile	U	1.0	μg/L	1	12/18/2003 10:45:00 AM
Benzene	U	1.0	μg/ L	1	12/18/2003 10:45:00 AN
Bromobenzene	Ū	1.0	µg/L	1	12/18/2003 10:45:00 AM
Bromochloromethane	U	1.0	yg/L	1	12/18/2003 10:45:00 AM
Bromodichloromethane	U	1.0	µg/L	1	12/18/2003 10:45:00 AM
Bromoform	Ŭ	1.0	μg/L	1	12/18/2003 10:45:00 AM
Bromomethane	U	1.0	μg/L	1	12/18/2003 10:45:00 AM
Carbon disulfide	Ŭ	1.0	μg/L	1	12/18/2003 10:45:00 AM

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- E Value above quantitation range

ND - Not Detected at the Reporting Limit

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID:	DMP-3
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/16/2003
Lab ID:	0312106-04A	Matrix:	LIQUID

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW82	608		Analyst: LDS
Carbon tetrachloride	U	1.0	µg/L	1	12/18/2003 10:45:00 AM
Chlorobenzene	บ	1.0	µg/L	1	12/18/2003 10:45:00 AM
Chlorodifluoromethane	υ	1.0	μg/L	1	12/18/2003 10:45:00 AN
Chloroethane	3900	50	μ g/L	50	12/19/2003 1:48:00 PM
Chloroform	U	1.0	µg/L	1	12/18/2003 10:45:00 AN
Chloromethane	U	1.0	µg/L	1	12/18/2003 10:45:00 AN
cis-1,2-Dichloroethene	U	1.0	µg/L	1	12/18/2003 10:45:00 AN
cis-1,3-Dichloropropene	υ	1.0	µg/L	1	12/18/2003 10:45:00 AN
Dibromochloromethane	υ	1.0	µg/L	1	12/18/2003 10:45:00 AM
Dibromomethane	U	1.0	µg/L	1	12/18/2003 10:45:00 AN
Dichlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 10:45:00 AM
Diisopropyl ether	U	1.0	µg/L	1	12/18/2003 10:45:00 AN
Ethanol	U	1.0	µg/L	1	12/18/2003 10:45:00 AM
Ethyl acetate	U	1.0	μg/L	1	12/18/2003 10:45:00 AN
Ethylbenzene	3.1	1.0	µg/L	1	12/18/2003 10:45:00 AM
Freon-114	U	1.0	µg/L	1	12/18/2003 10:45:00 AM
Hexachlorobutadiene	U	1.0	µg/L	1	12/18/2003 10:45:00 AM
Isopropyl acetate	υ	1.0	µg/L	1	12/18/2003 10:45:00 AM
Isopropylbenzene	υ	1.0	µg/L	1	12/18/2003 10:45:00 AM
m,p-Xylene	5.2	2.0	µg/L	1	12/18/2003 10:45:00 AM
Methyl tert-butyl ether	υ	1.0	µg/L	1	12/18/2003 10:45:00 AM
Methylene chloride	47	1.0	µg/L	1	12/18/2003 10:45:00 AM
Naphthalene	U	1.0	µg/L	1	12/18/2003 10:45:00 AM
n-Butyl acetate	υ	1.0	μg/L	1	12/18/2003 10:45:00 AM
n-Butylbenzene	U	1.0	μg/L	1	12/18/2003 10:45:00 AM
n-Propyl acetate	U	1.0	µg/L	1	12/18/2003 10:45:00 AM
n-Propylbenzene	U	1.0	μg/L	1	12/18/2003 10:45:00 AM
o-Xylene	5.7	1.0	μg/L	1	12/18/2003 10:45:00 AM
p-Diethylbenzene	6.1	1.0	μg/L	1	12/18/2003 10:45:00 AM
p-Ethyltoluene	U	1.0	μg/L	1	12/18/2003 10:45:00 AN
sec-Butylbenzene	U	1.0	µg/L	1	12/18/2003 10:45:00 AN
Styrene	U	1.0	μg/L	1	12/18/2003 10:45:00 AN
t-Butyl alcohol	U	1.0	µg/L	1	12/18/2003 10:45:00 AM
tert-Butylbenzene	U	1.0	µg/L	1	12/18/2003 10:45:00 AN
Tetrachloroethene	U	1.0	μg/L	1	12/18/2003 10:45:00 AN
Toluene	160	1.0	μg/L	1	12/18/2003 10:45:00 AM
trans-1,2-Dichloroethene	3.1	1.0	μg/L	1	12/18/2003 10:45:00 AM
trans-1,3-Dichloropropene	υ	1.0	μg/L	1	12/18/2003 10:45:00 AM
Trichloroethene	U	1.0	μg/L	1	12/18/2003 10:45:00 AM
Trichlorofluoromethane	Ū	1.0	μg/L	1	12/18/2003 10:45:00 AM

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

ND - Not Detected at the Reporting Limit

ļ

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	(Client Sample	e ID: DMP-	3
Lab Order:	0312106		Tag Nurr	ber:	
Project:	Photocircuits 31 Sea Cliff Ave. Gl	en Cove, N.Y.	Collection I	Date: 12/16/	2003
Lab ID:	0312106-04A		Ma	trix: LIQUI	D
Analyses	Result	Limit Qual	l Units	DF	Date Analyzed

VOLATILES SW-846 METHOD 8260	SW8260B				Analyst: LDS
Vinyl acetate	U	1.0	µg/L	1	12/18/2003 10:45:00 AM
Vinyl chloride	520	1.0	µg/L	1	12/18/2003 10:45:00 AM

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

...

Ì

1

TOTAL IRON		E200.7	(SW3010A)		Analyst: JF
Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
Lab ID:	0312106-04B		Matrix:	LIQUII)
Project:	Photocircuits 31 Sea Cliff Ave. Glen	Cove, N.Y.	Collection Date:	12/16/2	003
Lab Order:	0312106		Tag Number:		
CLIENT:	Photocircuits Corporation	4	Client Sample ID:	DMP-3	

0.0200

mg/L

7.29

iron

12/19/2003 10:38:43 AM

Qualifiers:

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

ł

Lab Order: (212100			
)312106	Tag Number:		
Project: 1	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/16/2003	
Lab ID:)312106-04C	Matrix:	LIQUID	

NITRATE AS N		E353.2	2		Analyst: BK	
Nitrogen, Nitrate-Nitrite	Ų	0.100	mg/L	1	12/19/2003	
SULFATE		E375.4	L .		Analyst: BK	
Sulfate	30.0	1.00	mg/L	1	10/30/2003	

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

		1 1 1	
Amorioon	A no lyrtioo	I L oborotos	2010
Ашенсан	Analytica	l Laboratoı	ICS
T TITLAT VALUE AND			

CLIENT:	Photocircuits Corporation	Client Sample ID:	SMP-4
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/16/2003
Lab ID:	0312106-05A	Matrix:	LIQUID

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW82	260B		Analyst: LDS
1,1,1,2-Tetrachloroethane	U	1.0	µg/L	1	12/18/2003 11:25:00 Al
1,1,1-Trichloroethane	4.2	1.0	µg/L	1	12/18/2003 11:25:00 AI
1,1,2,2-Tetrachloroethane	U	1.0	µg/L	1	12/18/2003 11:25:00 Al
1,1,2-Trichloro-1,2,2-trifluoroethane	U	1.0	µg/L	1	12/18/2003 11:25:00 Al
1,1,2-Trichloroethane	U	1.0	μg/L	1	12/18/2003 11:25:00 Al
1,1-Dichloroethane	110	1.0	µg/L	1	12/18/2003 11:25:00 Al
1,1-Dichloroethene	U	1.0	µg/L	1	12/18/2003 11:25:00 Al
1,1-Dichloropropene	U	1.0	µg/L	1	12/18/2003 11:25:00 Al
1,2,3-Trichlorobenzene	U	1.0	µg/L	1	12/18/2003 11:25:00 A
1,2,3-Trichloropropane	U	1.0	µg/L	1	12/18/2003 11:25:00 Al
1,2,4,5-Tetramethylbenzene	U	1.0	µg/L	1	12/18/2003 11:25:00 A
1,2,4-Trichlorobenzene	U	1.0	µg/L	1	12/18/2003 11:25:00 A
1,2,4-Trimethylbenzene	U	1.0	µg/L	1	12/18/2003 11:25:00 A
1,2-Dibromo-3-chloropropane	U	1.0	µg/L	1	12/18/2003 11:25:00 A
1,2-Dibromoethane	U	1.0	µg/L	1	12/18/2003 11:25:00 A
1,2-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 11:25:00 A
1,2-Dichloroethane	U	1.0	µg/L	1	12/18/2003 11:25:00 A
1,2-Dichloropropane	U	1.0	hð/r	1	12/18/2003 11:25:00 A
1,3,5-Trimethylbenzene	U	1.0	µg/L	1	12/18/2003 11:25:00 A
1,3-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 11:25:00 A
1,3-dichloropropane	U	1.0	µg/L	1	12/18/2003 11:25:00 A
1,4-Dichlorobenzene	υ	1.0	μg/L	1	12/18/2003 11:25:00 A
2,2-Dichloropropane	U	1.0	µg/L	1	12/18/2003 11:25:00 A
2-Butanone	230	1.0	µg/L	1	12/18/2003 11:25:00 AI
2-Chloroethyl vinyl ether	U	1.0	μg/L	1	12/18/2003 11:25:00 AI
2-Chlorotoluene	2.0	1.0	μg/L	1	12/18/2003 11:25:00 Al
2-Hexanone	U	1.0	μg/L	1	12/18/2003 11:25:00 A
4-Chlorotoluene	U	1.0	μg/L	1	12/18/2003 11:25:00 AI
4-isopropyltoluene	U	1.0	µg/L	1	12/18/2003 11:25:00 A
4-Methyl-2-pentanone	U	1.0	μg/L	1	12/18/2003 11:25:00 AI
Acetone	1200	1.0	E µg/L	1	12/18/2003 11:25:00 A
Acrolein	U	1.0	μg/L	1	12/18/2003 11:25:00 Al
Acrylonitrile	U	1.0	μg/L	1	12/18/2003 11:25:00 Al
Benzene	U	1.0	μg/L	1	12/18/2003 11:25:00 A
Bromobenzene	U	1.0	μg/L	1	12/18/2003 11:25:00 AI
Bromochloromethane	ប	1.0	μg/L	1	12/18/2003 11:25:00 AI
Bromodichloromethane	U	1.0	μ g /L	1	12/18/2003 11:25:00 Al
Bromoform	U	1.0	μg/L	1	12/18/2003 11:25:00 AI
Bromomethane	U	1.0	μg/L	1	12/18/2003 11:25:00 Al
Carbon disulfide	U	1.0	µg/L	1	12/18/2003 11:25:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 31-Dec-03

LIENT:	Photocircuits Corporation	Client Sample ID:	SMP-4
ab Order:	0312106	Tag Number:	
oject:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/16/2003
ab ID:	0312106-05A	Matrix:	LIQUID

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW820	50B		Analyst: LDS
Carbon tetrachloride	U	1.0	μ g/L	1	12/18/2003 11:25:00 AI
Chlorobenzene	U	1.0	µg/L	1	12/18/2003 11:25:00 Al
Chlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 11:25:00 AI
Chloroethane	740	10	µg/L	10	12/19/2003 2:27:00 PM
Chloroform	U	1.0	µg/L	1	12/18/2003 11:25:00 A
Chloromethane	U	1.0	μg/L	1	12/18/2003 11:25:00 A
cis-1,2-Dichloroethene	180	1.0	µg/L	1	12/18/2003 11:25:00 A
cis-1,3-Dichloropropene	U	1.0	µg/L	1	12/18/2003 11:25:00 A
Dibromochloromethane	U	1.0	µg/L	1	12/18/2003 11:25:00 A
Dibromomethane	U	1.0	μg/L	1	12/18/2003 11:25:00 A
Dichlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 11:25:00 A
Diisopropyl ether	U	1.0	µg/L	1	12/18/2003 11:25:00 A
Ethanol	U	1.0	μ g/L	1	12/18/2003 11:25:00 A
Ethyl acetate	U	1.0	µg/L	1	12/18/2003 11:25:00 A
Ethylbenzene	U	1.0	µg/L	1	12/18/2003 11:25:00 A
Freon-114	U	1.0	µg/L	1	12/18/2003 11:25:00 A
Hexachlorobutadiene	U	1.0	µg/L	1	12/18/2003 11:25:00 A
Isopropyl acetate	U	1.0	µg/L	1	12/18/2003 11:25:00 A
Isopropylbenzene	U	1.0	µg/L	1	12/18/2003 11:25:00 A
m,p-Xylene	U	2.0	µg/L	1	12/18/2003 11:25:00 A
Methyl tert-butyl ether	U	1.0	μ g/L	1	12/18/2003 11:25:00 A
Methylene chloride	17	1.0	μg/L	1	12/18/2003 11:25:00 A
Naphthalene	U	1.0	µg/L	1	12/18/2003 11:25:00 A
n-Butyl acetate	υ	1.0	μg/L	1	12/18/2003 11:25:00 A
n-Butylbenzene	U	1.0	µg/L	1	12/18/2003 11:25:00 A
n-Propyl acetate	U	1.0	μg/L	1	12/18/2003 11:25:00 A
n-Propylbenzene	ប	1.0	µg/L	1	12/18/2003 11:25:00 A
o-Xylene	U	1.0	μg/L	1	12/18/2003 11:25:00 A
p-Diethylbenzene	υ	1.0	µg/L	1	12/18/2003 11:25:00 A
p-Ethyltoluene	U	1.0	µg/L	1	12/18/2003 11:25:00 Al
sec-Butylbenzene	U	1.0	µg/L	1	12/18/2003 11:25:00 A
Styrene	U	1.0	µg/L	1	12/18/2003 11:25:00 A
t-Butyl alcohol	U	1.0	μg/L	1	12/18/2003 11:25:00 A
tert-Butylbenzene	U	1.0	μg/L	1	12/18/2003 11:25:00 A
Tetrachloroethene	180	1.0	µg/L	1	12/18/2003 11:25:00 A
Toluene	9.0	1.0	µg/L	1	12/18/2003 11:25:00 A
trans-1,2-Dichloroethene	ບ	1.0	µg/L	1	12/18/2003 11:25:00 A
trans-1,3-Dichloropropene	U	1.0	μg/L	1	12/18/2003 11:25:00 AI
Trichloroethene	13	1.0	μg/L	1	12/18/2003 11:25:00 A
Trichlorofluoromethane	U	1.0	μg/L	1	12/18/2003 11:25:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- E Value above quantitation range

ţ

12/18/2003 11:25:00 AM

CLIENT: Lab Order:	Photocircuits Corporation 0312106 Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y. 0312106-05A		Client Sample ID: Tag Number:				
Project: Lab ID:			len Cove, N.Y. Collection Date:		ate: 12/10 rix: LIQU	• •	
Analyses		Result	Limit Qua	Units	DF	Date Analyzed	
VOLATILES SV	W-846 METHOD 8260	U	SW8260B	μg/L	1	Analyst: LDS 12/18/2003 11:25:00 AM	

Vinyl acetate	U	1.0	µg/L	1
Vinyl chloride	78	1.0	µg/L	1

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

· - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- E Value above quantitation range

ì

TOTAL IRON		E200.7	(SW3010A)		Analyst: JF
Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
Lab ID:	0312106-05B		Matrix:	LIQUID)
Project:	Photocircuits 31 Sea Cliff Ave. G	ilen Cove, N.Y.	Collection Date:	12/16/20	003
Lab Order:	0312106		Tag Number:		
CLIENT:	Photocircuits Corporation		Client Sample ID:	SMP-4	

 OTAL IRON
 E200.7
 (SW3010A)
 Analysis of

 Iron
 176
 0.0200
 mg/L
 1
 12/19/2003 10:46:46 AM

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

ļ

1

CLIENT: Lab Order:	Photocircuits Corporation 0312106 Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y. 0312106-05C		Client Sample Tag Nurr				
Project: Lab ID:			Cove, N.Y.	Collection Date:			
Analyses		Result	Limit Qua	l Units	DF	Date Analyzed	
NITRATE AS N Nitrogen, Nitrat		υ	E353.2 0.100	mg/L	1	Analyst: BK 12/19/2003	

178

E375.4

1.00

mg/L

Qua	lifiers:
-----	----------

SULFATE

Sulfate

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Analyst: BK

10/30/2003

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID: DMP-4
Lab Order:	0312106	Tag Number:
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date: 12/16/2003
Lab ID:	0312106-06A	Matrix: LIQUID

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW826	0B		Analyst: LDS
1,1,1,2-Tetrachloroethane	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
1,1,1-Trichloroethane	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
1,1,2,2-Tetrachloroethane	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
1,1,2-Trichloroethane	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
1,1-Dichloroethane	U	1.0	µg/L	1	12/18/2003 12:05:00 PI
1,1-Dichloroethene	U	1.0	µg/L	1	12/18/2003 12:05:00 PI
1,1-Dichloropropene	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
1,2,3-Trichlorobenzene	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
1,2,3-Trichloropropane	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
1,2,4,5-Tetramethylbenzene	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
1,2,4-Trichlorobenzene	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
1,2,4-Trimethylbenzene	2.3	1.0	µg/L	1	12/18/2003 12:05:00 PM
1,2-Dibromo-3-chloropropane	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
1,2-Dibromoethane	υ	1.0	µg/L	1	12/18/2003 12:05:00 Pf
1,2-Dichlorobenzene	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
1,2-Dichloroethane	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
1,2-Dichloropropane	U	1.0	μg/L	1	12/18/2003 12:05:00 PI
1,3,5-Trimethylbenzene	2.4	1.0	µg/L	1	12/18/2003 12:05:00 PM
1,3-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 12:05:00 PI
1,3-dichloropropane	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
1,4-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
2,2-Dichloropropane	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
2-Butanone	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
2-Chloroethyl vinyl ether	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
2-Chlorotoluene	25	1.0	μg/L	1	12/18/2003 12:05:00 PM
2-Hexanone	υ	1.0	μg/L	1	12/18/2003 12:05:00 PM
4-Chiorotoluene	2.4	1.0	µg/L	1	12/18/2003 12:05:00 PM
4-Isopropyltoluene	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
4-Methyl-2-pentanone	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
Acetone	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
Acrolein	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
Acrylonitrile	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
Benzene	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
Bromobenzene	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
Bromochloromethane	U	1.0	µg/∟	1	12/18/2003 12:05:00 PM
Bromodichloromethane	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
Bromoform	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
Bromomethane	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
Carbon disulfide	U	1.0	μg/L	1	12/18/2003 12:05:00 PM

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- · Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- E Value above quantitation range

ND - Not Detected at the Reporting Limit

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID: DMP-4
Lab Order:	0312106	Tag Number:
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date: 12/16/20
Lab ID:	0312106-06A	Matrix: LIQUID

Tag Number: Collection Date: 12/16/2003 Matrix: LIQUID

Analyses	Result	Limit Qı	1al Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW8260	B		Analyst: LDS
Carbon tetrachloride	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
Chlorobenzene	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
Chlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 12:05:00 PN
Chioroethane	510	10	µg/L	10	12/19/2003 3:07:00 PM
Chloroform	U	1.0	μg/L	[.] 1	12/18/2003 12:05:00 PN
Chloromethane	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
cis-1,2-Dichloroethene	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
cis-1,3-Dichloropropene	U	1.0	µg/L	1	12/18/2003 12:05:00 PN
Dibromochloromethane	U	1.0	µg/L	1	12/18/2003 12:05:00 PN
Dibromomethane	U	1.0	µg/L	1	12/18/2003 12:05:00 PN
Dichlorodifluoromethane	U	1.0	μg/L	1	12/18/2003 12:05:00 PN
Diisopropyl ether	U	1.0	µg/L	1	12/18/2003 12:05:00 PN
Ethanol	U	1.0	µg/L	1	12/18/2003 12:05:00 PN
Ethyl acetate	U	1.0	µg/L	1	12/18/2003 12:05:00 PN
Ethylbenzene	U	1.0	µg/L	1	12/18/2003 12:05:00 PN
Freon-114	U	1.0	μg/L	1	12/18/2003 12:05:00 PN
Hexachlorobutadiene	U	1.0	µg/L	1	12/18/2003 12:05:00 PN
Isopropyl acetate	U	1.0	μg/L	1	, 12/18/2003 12:05:00 PM
Isopropylbenzene	U	1.0	µg/L	1	12/18/2003 12:05:00 PN
m,p-Xylene	U	2.0	μg/L	1	12/18/2003 12:05:00 PM
Methyl tert-butyl ether	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
Methylene chloride	4.3	1.0	μg/L	1	12/18/2003 12:05:00 PM
Naphthalene	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
n-Butyi acetate	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
n-Butylbenzene	Ŭ	1,0	μg/L	1	12/18/2003 12:05:00 PM
n-Propyl acetate	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
n-Propylbenzene	Ū	1.0	μg/L	1	12/18/2003 12:05:00 PM
o-Xylene	Ŭ	1.0	µg/L	1	12/18/2003 12:05:00 PM
p-Diethylbenzene	4.8	1.0	μg/L	1	12/18/2003 12:05:00 PM
p-Ethyltoluene	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
sec-Butylbenzene	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
Styrene	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
t-Butyl alcohol	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
tert-Butylbenzene	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
Tetrachloroethene	U	1.0	μg/L	1	12/18/2003 12:05:00 PM
Toluene	16	1.0	µg/L	1	12/18/2003 12:05:00 PM
trans-1,2-Dichloroethene	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
trans-1,3-Dichloropropene	U	1.0	µg/L	1	12/18/2003 12:05:00 PM
Trichloroethene	Ū	1.0	μg/L	1	12/18/2003 12:05:00 PM
Trichlorofluoromethane	Ŭ	1.0	µg/L	1	12/18/2003 12:05:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- E Value above quantitation range

ł

Vinyl chloride

1

12/18/2003 12:05:00 PM

CLIENT:	Photocircuits Corporation		(Client Sample ID: Tag Number: Collection Date:				
Lab Order:	0312106	12106						
Project:	oject: Photocircuits 31 Sea Cliff Ave. Glen Cove, N.		n Cove, N.Y.			12/16/2003		
Lab ID:	0312106-06A			Mat	rix: LIQU	ЛD		
Analyses		Result	Limit Qual	Units	DF	Date Analyzed		
VOLATILES SV	W-846 METHOD 8260		SW8260B			Analyst: LDS		
Vinyl acetate		U	1.0	µg/L	1	12/18/2003 12:05:00 PM		

1.0

µg/L

U

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

21

Ι

.

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation 0312106 Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.		Client Sample				
Lab Order: Project:			Tag Num Collection E		:: :: 12/16/2003		
Lab ID:	0312106-06B			Ma	trix: LIQU	JD	
Analyses		Result	Limit Qua	l Units	DF	Date Analyzed	
TOTAL IRON			E200.7	(SW30	10A)	Analyst: JP	
Iron		66.3	0.0200	mg/L	1	12/19/2003 10:49:23 AM	

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level

•·•

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Ì

CLIENT:	Photocircuits Corporation	Client Sample ID:	DMP-4
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/16/2003
Lab ID:	0312106-06C	Matrix:	LIQUID

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
NITRATE AS N		E353.2			Analyst: BK
Nitrogen, Nitrate-Nitrite	0.080	0.100 J	mg/L	1	12/19/2003
SULFATE		E375.4			Analyst: BK
Sulfate	57.0	1.00	mg/L	1	10/30/2003

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 31-Dec-03

			and the second se
CLIENT:	Photocircuits Corporation	Client Sample ID:	MW-8
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/16/20
Lab ID:	0312106-07A	Matrix:	LIQUIT

Tag Number: llection Date: 12/16/2003 Matrix: LIQUID

Analyses	Result	Limit Qu	1al Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW8260	B		Analyst: LDS
1,1,1,2-Tetrachloroethane	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
1,1,1-Trichloroethane	U	1.0	μ g/L	1	12/18/2003 12:46:00 PM
1,1,2,2-Tetrachloroethane	U	1.0	μα/L	1	12/18/2003 12:46:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
1,1,2-Trichloroethane	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
1,1-Dichloroethane	17	1.0	µg/L	1	12/18/2003 12:46:00 PM
1,1-Dichloroethene	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
1,1-Dichloropropene	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
1,2,3-Trichlorobenzene	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
1,2,3-Trichloropropane	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
1,2,4,5-Tetramethylbenzene	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
1,2,4-Trichlorobenzene	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
1,2,4-Trimethylbenzene	U	1.0	μ g/L	1	12/18/2003 12:46:00 PM
1,2-Dibromo-3-chloropropane	U	1.0	μ g/ L	1	12/18/2003 12:46:00 PM
1,2-Dibromoethane	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
1,2-Dichlorobenzene	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
1,2-Dichloroethane	Ŭ	1.0	μg/L	1	12/18/2003 12:46:00 PM
1,2-Dichloropropane	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
1,3,5-Trimethylbenzene	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
1,3-Dichlorobenzene	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
1,3-dichloropropane	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
1,4-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
2,2-Dichloropropane	ປ	1.0	µg/L	1	12/18/2003 12:46:00 PM
2-Butanone	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
2-Chloroethyl vinyl ether	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
2-Chlorotoluene	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
2-Hexanone	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
4-Chlorotoluene	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
4-Isopropyltoluene	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
4-Methyl-2-pentanone	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
Acetone	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
Acrolein	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
Acrylonitrile	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
Benzene	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
Bromobenzene	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
Bromochloromethane	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
Bromodichloromethane	Ų	1.0	μg/L	1	12/18/2003 12:46:00 PM
Bromoform	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
Bromomethane	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
Carbon disulfide	U	1.0	μg/L	1	12/18/2003 12:46:00 PM

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

• - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

ND - Not Detected at the Reporting Limit

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID:	MW-8
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/16/20
Lab ID:	0312106-07A	Matrix:	LIQUIE

Collection Date: 12/16/2003 Matrix: LIQUID

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW826	0B		Analyst: LDS
Carbon tetrachloride	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
Chlorobenzene	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
Chlorodifluoromethane	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
Chloroethane	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
Chloroform	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
Chioromethane	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
cis-1,2-Dichloroethene	140	1.0	μg/L	1	12/18/2003 12:46:00 PM
cis-1,3-Dichloropropene	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
Dibromochloromethane	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
Dibromomethane	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
Dichlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
Diisopropyl ether	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
Ethanol	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
Ethyl acetate	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
Ethylbenzene	υ	1.0	μg/L	1	12/18/2003 12:46:00 PM
Freon-114	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
Hexachlorobutadiene	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
Isopropyl acetate	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
Isopropylbenzene	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
m,p-Xylene	U	2.0	μg/L	1	12/18/2003 12:46:00 PM
Methyl tert-butyl ether	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
Methylerie chloride	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
Naphthalene	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
n-Butyl acetate	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
n-Butylbenzene	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
n-Propyl acetate	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
n-Propylbenzene	U	1.0	μ g/L	1	12/18/2003 12:46:00 PM
o-Xylene	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
p-Diethylbenzene	U	1.0	μ g/L	1	12/18/2003 12:46:00 PM
p-Ethyltoluene	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
sec-Butylbenzene	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
Styrene	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
t-Butyl alcohol	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
tert-Butylbenzene	U	1.0	µg/L	1	12/18/2003 12:46:00 PM
Tetrachloroethene	3.2	1.0	μg/L	1	12/18/2003 12:46:00 PM
Toluene	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
trans-1,2-Dichloroethene	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
trans-1,3-Dichloropropene	U	1.0	μg/L	1	12/18/2003 12:46:00 PM
Trichloroethene	39	1.0	μg/L	1	12/18/2003 12:46:00 PM
Trichlorofluoromethane	U	1.0	μ g/L	1	12/18/2003 12:46:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- · Value exceeds Maximum Contaminant Level
- E Value above quantitation range

Page 32 of 71

ļ

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation			Client Sample	ID: MW-8	8
Lab Order:	0312106		Tag Numi			
Project: Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.		Collection Date: 12/10		6/2003		
Lab ID:	0312106-07A			Matrix: LIQUID		
Analyses		Result	Limit Qual	Units	DF	Date Analyzed
	W-846 METHOD 8260		SW8260B			Analyst: LDS
Vinyl acetate		U	1.0	µg/L	1	12/18/2003 12:46:00 PM
Vinyl chloride		U	1.0	µg/L	1	12/18/2003 12:46:00 PN

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank

...

- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

f

Date: 31-Dec-03

CLIENT:	Photocircuits CorporationO0312106Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.			Client Sample		MW-8		
Lab Order:				Tag Number:				
Project:				Collection I)ate: 12	2/16/2003		
Lab ID:	0312106-07B			Ma	trix: Ll	QUID		
Analyses		Result	Limit Qual	Units	D	F	Date Analyzed	
TOTAL IRON			E200.7	(SW30)10A)		Analyst: JP	
Iron		0.0681	0.0200	mg/L	1	f	2/19/2003 10:51:59 AM	

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Ŷ

.

Sulfate

Date: 31-Dec-03

1

10/30/2003

CLIENT: Lab Order: Project: Lab ID:	Photocircuits Corporation 0312106 Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y. 0312106-07C			ıber:	12/16/2003	
Analyses		Result	Limit Qu	al Units	DF	Date Analyzed
NITRATE AS N Nitrogen, Nitrati		3.99	E353.2 0.100	mg/L	1	Analyst: BK 12/19/2003
SULFATE			E375.4	•		Analyst: BK

1.00

mg/L

23.0

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID: MW-12
Lab Order:	0312106	Tag Number:
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date: 12/16/2003
Lab ID:	0312106-08A	Matrix: LIQUID

Апаlyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW8260)B		Analyst: LDS
1,1,1,2-Tetrachloroethane	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
1,1,1-Trichloroethane	U	1.0	μ g/L	1	12/18/2003 1:26:00 PM
1,1,2,2-Tetrachloroethane	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
1,1,2-Trichloroethane	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
1,1-Dichloroethane	190	1.0	µg/L	1	12/18/2003 1:26:00 PM
1,1-Dichloroethene	2.5	1.0	µg/L	1	12/18/2003 1:26:00 PM
1,1-Dichloropropene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
1,2,3-Trichlorobenzene	U	1.0	μg/L	1	12/18/2003 1:26:00 PM
1,2,3-Trichloropropane	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
1,2,4,5-Tetramethylbenzene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
1,2,4-Trichlorobenzene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
1,2,4-Trimethylbenzene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
1,2-Dibromo-3-chloropropane	U	1.0	μ g/ L	1	12/18/2003 1:26:00 PM
1,2-Dibromoethane	U	1.0	μ g/ L	1	12/18/2003 1:26:00 PM
1,2-Dichlorobenzene	U	1.0	μg/L	1	12/18/2003 1:26:00 PM
1,2-Dichloroethane	U	1.0	μg/L	1	12/18/2003 1:26:00 PM
1,2-Dichloropropane	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
1,3,5-Trimethylbenzene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
1,3-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
1,3-dichloropropane	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
1,4-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
2,2-Dichloropropane	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
2-Butanone	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
2-Chloroethyl vinyl ether	υ	1.0	µg/L	1	12/18/2003 1:26:00 PM
2-Chlorotoluene	300	1.0	µg/L	1	12/18/2003 1:26:00 PM
2-Hexanone	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
4-Chlorotoluene	370	1.0	μg/L	1	12/18/2003 1:26:00 PM
4-Isopropyltoluene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
4-Methyl-2-pentanone	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
Acetone	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
Acrolein	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
Acrylonitrile	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
Benzene	1.9	1.0	µg/L	1	12/18/2003 1:26:00 PM
Bromobenzene	υ	1.0	µg/L	1	12/18/2003 1:26:00 PM
Bromochloromethane	Ų	1.0	µg/L	1	12/18/2003 1:26:00 PM
Bromodichloromethane	Ų	1.0	μg/L	1	12/18/2003 1:26:00 PM
Bromoform	Ų	1.0	µg/L	1	12/18/2003 1:26:00 PM
Bromomethane	บ	1.0	µg/L	1	12/18/2003 1:26:00 PM
Carbon disulfide	U	1.0	µg/L	1	12/18/2003 1:26:00 PM

Qualifiers:

- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank

• - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

R - RPD outside accepted recovery limits

Date: 31-Dec-03

OT TENUE.	Plate: it Classic	
CLIENT:	Photocircuits Corporation	Client Sample ID: MW-12
Lab Order:	0312106	Tag Number:
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date: 12/16/20
Lab ID:	0312106-08A	Matrix: LIQUID

Tag Number: Collection Date: 12/16/2003 Matrix: LIQUID

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW820	30B		Analyst: LDS
Carbon tetrachloride	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
Chlorobenzene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
Chlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 1:26:00 PN
Chloroethane	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
Chloroform	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
Chloromethane	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
cis-1,2-Dichloroethene	230	1.0	µg/L	1	12/18/2003 1:26:00 PM
cis-1,3-Dichloropropene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
Dibromochloromethane	U	1.0	µg/L	1	12/18/2003 1:26:00 PN
Dibromomethane	U	1.0	µg/L	1	12/18/2003 1:26:00 PN
Dichlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
Diisopropyl ether	υ	1.0	µg/L	1	12/18/2003 1:26:00 PM
Ethanol	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
Ethyl acetate	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
Ethylbenzene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
Freon-114	U	1.0	μg/L	1	12/18/2003 1:26:00 PM
Hexachlorobutadiene	U	1.0	μg/L	1	12/18/2003 1:26:00 PN
Isopropyl acetate	U	1.0	μα/Γ	1	12/18/2003 1:26:00 PN
isopropylbenzene	U	1.0	μg/L	1	12/18/2003 1:26:00 PM
m,p-Xylene	U	2.0	µg/L	1	12/18/2003 1:26:00 PM
Methyl tert-butyl ether	U	1.0	μ g/L	1	12/18/2003 1:26:00 PM
Methylene chloride	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
Naphthalene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
n-Butyl acetate	U	1.0	μ g/L	1	12/18/2003 1:26:00 PM
n-Butylbenzene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
n-Propyl acetate	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
n-Propylbenzene	U	1.0	μց/Լ	1	12/18/2003 1:26:00 PM
o-Xylene	Ų	1.0	µg/L	1	12/18/2003 1:26:00 PM
p-Diethylbenzene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
p-Ethyltoluene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
sec-Butylbenzene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
Styrene	U	1.0	μg/L	1	12/18/2003 1:26:00 PM
t-Butyl alcohoi	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
tert-Butylbenzene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
Tetrachloroethene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
Toluene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
trans-1,2-Dichloroethene	3.3	1.0	µg/L	1	12/18/2003 1:26:00 PM
trans-1,3-Dichloropropene	U	1.0	µg/L	1	12/18/2003 1:26:00 PM
Trichloroethene	57	1.0	µg/L	1	12/18/2003 1:26:00 PM
Trichlorofluoromethane	U	1.0	μ g /L	1	12/18/2003 1:26:00 PM

Qualifiers:

- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- E Value above quantitation range

ŕ

.

.

Date: 31-Dec-03

CLIENT:	Photocircuits Corpora	tion		Client Sample	D: MW	-12
Lab Order:			Tag Num	ber:		
Project:			ate: 12/10	12/16/2003		
Lab ID:	0312106-08A			Ma	trix: LIQU	ЛD
Analyses		Result	Limit Qu	al Units	DF	Date Analyzed
VOLATILES SV	V-846 METHOD 8260		SW8260	B		Analyst: LDS
Vinyl acetate		U	1.0	µg/L	1	12/18/2003 1:26:00 PM
Vinyl chloride		45	1.0	µg/L	1	12/18/2003 1:26:00 PM

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

f

Date: 31-Dec-03

TOTAL IRON			E200 7	(SW3010A)		Analyst: IE
Analyses	Re	sult	Limit Qual	Units	DF	Date Analyzed
Lab ID:	0312106-08B			Matrix:	LIQUI	D
Project:	Photocircuits 31 Sea Cliff A	ve. Glen C	ove, N.Y.	Collection Date:	12/16/	2003
Lab Order:	0312106			Tag Number:		
CLIENT:	Photocircuits Corporation		(Client Sample ID:	MW-1	.2

 TOTAL IRON
 E200.7
 (SW3010A)
 Analyst: JP

 Iron
 16.7
 0.0200
 mg/L
 1
 12/19/2003 10:56:47 AM

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

1

Date: 31-Dec-03

CLIENT:	Photocircuits Corpora	tion		(Client Sample	e ID:	MW-1	2
Lab Order:	0312106				Tag Num	ber:		
Project:	Photocircuits 31 Sea (Cliff Ave. Gler	n Cove, N.Y	ζ.	Collection I	Date:	12/16/	2003
Lab ID:	0312106-08C				Ma	trix:	LIQU	D
Analyses		Result	Limit	Qual	l Units		DF	Date Analyzed
NITRATE AS N	I .		E35	53.2				Analyst: BK
Nitrogen, Nitrat	e-Nitrite	0.098	0.100	J	mg/L		1	12/19/2003
SULFATE			E37	5.4				Analyst: BK
Sulfate		312	1.00		mg/L		1	10/30/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- · Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID:	MW-13
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/17/200
Lab ID:	0312106-09A	Matrix:	LIQUID

Tag Number: Collection Date: 12/17/2003 Matrix: LIQUID

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW8260	B		Analyst: LDS
1,1,1,2-Tetrachloroethane	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
1,1,1-Trichloroethane	57	1.0	µg/L	1	12/18/2003 2:07:00 PM
1,1,2,2-Tetrachloroethane	บ	1.0	µg/L	1	12/18/2003 2:07:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	ບ	1.0	µg/L	1	12/18/2003 2:07:00 PM
1,1,2-Trichloroethane	U	1.0	µg/L	[.] 1	12/18/2003 2:07:00 PM
1,1-Dichloroethane	770	1.0	µg/L	1	12/18/2003 2:07:00 PM
1,1-Dichloroethene	210	1.0	µg/L	1	12/18/2003 2:07:00 PM
1,1-Dichloropropene	Ú	1.0	µg/L	1	12/18/2003 2:07:00 PM
1,2,3-Trichlorobenzene	ម	1.0	µg/L	1	12/18/2003 2:07:00 PM
1,2,3-Trichloropropane	U	1.0	μ g /L	1	12/18/2003 2:07:00 PM
1,2,4,5-Tetramethylbenzene	U	1.0	µg/L	1	12/18/2003 2:07:00 PM
1,2,4-Trichlorobenzene	υ	1.0	µg/L	1	12/18/2003 2:07:00 PM
1,2,4-Trimethylbenzene	U	1.0	µg/L	1	12/18/2003 2:07:00 PM
1,2-Dibromo-3-chloropropane	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
1,2-Dibromoethane	9	1.0	µg/L	1	12/18/2003 2:07:00 PM
1,2-Dichlorobenzene	ບ	1.0	μg/L	1	12/18/2003 2:07:00 PM
1,2-Dichloroethane	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
1,2-Dichloropropane	U	1.0	µg/L	1	12/18/2003 2:07:00 PM
1,3,5-Trimethylbenzene	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
1,3-Dichlorobenzene	U	1.0	μ g/ L	1	12/18/2003 2:07:00 PM
1,3-dichloropropane	υ	1.0	µg/L	1	12/18/2003 2:07:00 PM
1,4-Dichlorobenzene	U	1.0	μα/L	1	12/18/2003 2:07:00 PM
2,2-Dichloropropane	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
2-Butanone	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
2-Chloroethyl vinyl ether	υ	1.0	μg/L	1	12/18/2003 2:07:00 PM
2-Chlorotoluene	17	1.0	µg/L	1	12/18/2003 2:07:00 PM
2-Hexanone	υ	1.0	µg/L	1	12/18/2003 2:07:00 PM
4-Chlorotoluene	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
4-isopropyitoluene	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
4-Methyl-2-pentanone	U	1.0	μ g/ L	1	12/18/2003 2:07:00 PM
Acetone	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
Acrolein	υ	1.0	μg/L	1	12/18/2003 2:07:00 PM
Acrylonitrile	U	1.0	µg/L	1	12/18/2003 2:07:00 PM
Benzene	16	1.0	µg/L	1	12/18/2003 2:07:00 PM
Bromobenzene	υ	1.0	µg/L	1	12/18/2003 2:07:00 PM
Bromochloromethane	υ	1.0	µg/L	1	12/18/2003 2:07:00 PM
Bromodichloromethane	υ	1.0	µg/L	1	12/18/2003 2:07:00 PM
Bromoform	U	1.0	µg/L	1	12/18/2003 2:07:00 PM
Bromomethane	υ	1.0	μg/L	1	12/18/2003 2:07:00 PM
Carbon disulfide	υ	1.0	µg/L	1	12/18/2003 2:07:00 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- E Value above quantitation range

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID: MW-1	3
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date: 12/17/2	2003
Lab ID:	0312106-09A	Matrix: LIQUI	D

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW826)B		Analyst: LDS
Carbon tetrachloride	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
Chlorobenzene	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
Chlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 2:07:00 PM
Chloroethane	U	1.0	μg/ L .	1	12/18/2003 2:07:00 PM
Chloroform	U	1.0	µg/L	1	12/18/2003 2:07:00 PM
Chloromethane	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
cis-1,2-Dichloroethene	2000	10	µg/L	10	12/19/2003 3:47:00 PM
cis-1,3-Dichloropropene	U	1.0	µg/L	1	12/18/2003 2:07:00 PM
Dibromochloromethane	U	1.0	µg/L	1	12/18/2003 2:07:00 PM
Dibromomethane	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
Dichlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 2:07:00 PM
Diisopropyl ether	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
Ethanol	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
Ethyl acetate	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
Ethylbenzene	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
Freon-114	U	1.0	µg/L	1	12/18/2003 2:07:00 PM
Hexachlorobutadiene	U	1.0	µg/L	1	12/18/2003 2:07:00 PM
Isopropyl acetate	U	1.0	µg/L	1	12/18/2003 2:07:00 PM
Isopropylbenzene	U	1.0	µg/L	1	12/18/2003 2:07:00 PM
m,p-Xylene	U	2.0	μg/L	1	12/18/2003 2:07:00 PM
Methyl tert-butyl ether	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
Methylene chloride	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
Naphthalene	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
n-Butyl acetate	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
n-Butylbenzene	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
n-Propyl acetate	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
n-Propylbenzene	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
o-Xylene	U	1.0	µg/L	1	12/18/2003 2:07:00 PM
p-Diethylbenzene	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
p-Ethyltoluene	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
sec-Butylbenzene	U	1.0	µg/L	1	12/18/2003 2:07:00 PM
Styrene	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
t-Butyl alcohol	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
tert-Butylbenzene	U	1.0	μg/L	1	12/18/2003 2:07:00 PM
Tetrachloroethene	770	1.0	μg/L	1	12/18/2003 2:07:00 PM
Toluene	U	1.0	µg/L	1	12/18/2003 2:07:00 PM
trans-1,2-Dichloroethene	21	1.0	μg/L	1	12/18/2003 2:07:00 PM
trans-1,3-Dichloroproperie	U	1.0	µg/L	1	12/18/2003 2:07:00 PM
Trichloroethene	580	1.0	μg/L	1	12/18/2003 2:07:00 PM
Trichlorofluoromethane	U	1.0	μg/L	1	12/18/2003 2:07:00 PM

Qualifiers:

- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- E Value above quantitation range

ND - Not Detected at the Reporting Limit

ł

٠

CLIENT:	Photocircuits Corporation	Client Sample ID:	MW-13
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/17/2003
Lab ID:	0312106-09A	Matrix:	LIQUID

VOLATILES SW-846 METHOD 8260		SW8260	B		Analyst: LDS
Vinyl acetate	U	1.0	µg/L	1	12/18/2003 2:07:00 PM
Vinyl chloride	300	1.0	µg/L	1	12/18/2003 2:07:00 PM

Qualifiers:

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

.

ļ

Date: 31-Dec-03

CLIENT: Lab Order:	Photocircuits Corporation 0312106		Client Sample ID Tag Number		MW-13		
Project: Lab ID:	Photocircuits 31 Sea Cliff Ave. C 0312106-09B	Hen Cove, N.Y.	Collection Date				
Analyses	Result	Limit Qu	al Units	DF	Date Analyzed		
TOTAL IRON	4.31	E200.7	(SW3010A mg/L	N) 1	Analyst: JP 12/19/2003 10:59:49 AN		

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

ţ

•

.

Date: 31-Dec-03

CLIENT:	Photocircuits Corporati	on		Client Sample	D : MW-1	3
Lab Order:	0312106			Tag Num	ber:	
Project:	Photocircuits 31 Sea Cl	iff Ave. Gler	Cove, N.Y.	Collection D	ate: 12/17/	2003
Lab ID:	0312106-09C			Mat	rix: LIQUI	D
Analyses		Result	Limit Qu	al Units	DF	Date Analyzed

NITRATE AS N Nitrogen, Nitrate-Nitrite	2.03	E353.2 0.100	mg/L	1	Analyst: BK 12/19/2003
SULFATE Sulfate	403	E375.4 1.00	mg/L	1	Analyst: BK 10/30/2003

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID:	MW-14
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/16/2003
Lab ID:	0312106-10A	Matrix:	LIQUID

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW8260	В		Analyst: LDS
1,1,1,2-Tetrachloroethane	U	1.0	μg/L	1	12/18/2003 2:47:00 PM
1,1,1-Trichloroethane	1200	20	µg/L	20	12/19/2003 4:27:00 PN
1,1,2,2-Tetrachloroethane	υ	1.0	µg/L	1	12/18/2003 2:47:00 PN
1,1,2-Trichloro-1,2,2-trifluoroethane	U	1.0	µg/L	1	12/18/2003 2:47:00 PN
1,1,2-Trichloroethane	U	1.0	µg/L ∘	1	12/18/2003 2:47:00 PN
1,1-Dichloroethane	6100	20	µg/L	20	12/19/2003 4:27:00 PN
1,1-Dichloroethene	820	1.0	µg/L	1	12/18/2003 2:47:00 PN
1,1-Dichloropropene	υ	1.0	µg/L	1	12/18/2003 2:47:00 PN
1,2,3-Trichlorobenzene	U	1.0	µg/L	1	12/18/2003 2:47:00 PN
1,2,3-Trichloropropane	U	1.0	µg/L	1	12/18/2003 2:47:00 PN
1,2,4,5-Tetramethylbenzene	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
1,2,4-Trichlorobenzene	υ	1.0	µg/L	1	12/18/2003 2:47:00 PM
1,2,4-Trimethylbenzene	υ	1.0	μg/L	1	12/18/2003 2:47:00 PM
1,2-Dibromo-3-chloropropane	U	1.0	µg/L	1	12/18/2003 2:47:00 PN
1,2-Dibromoethane	U	1.0	μg/L	1	12/18/2003 2:47:00 PN
1,2-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 2:47:00 PN
1,2-Dichloroethane	40	1.0	μg/L	1	12/18/2003 2:47:00 PN
1,2-Dichloropropane	U	1.0	μg/L	1	12/18/2003 2:47:00 PM
1,3,5-Trimethylbenzene	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
1,3-Dichlorobenzene	U	1.0	μg/L	1	12/18/2003 2:47:00 PM
1,3-dichloropropane	υ	1.0	μg/L	1	12/18/2003 2:47:00 PM
1,4-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 2:47:00 PN
2,2-Dichloropropane	υ	1.0	µg/L	1	12/18/2003 2:47:00 PM
2-Butanone	1500	20	µg/L	20	12/19/2003 4:27:00 PM
2-Chloroethyl vinyl ether	U	1.0	μg/L	1	12/18/2003 2:47:00 PN
2-Chiorotoluene	U	1.0	μg/L	1	12/18/2003 2:47:00 PN
2-Hexanone	150	1.0	µg/L	1	12/18/2003 2:47:00 PM
4-Chlorotoluene	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
4-Isopropyltoluene	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
4-Methyl-2-pentanone	U	1.0	μg/L	1	12/18/2003 2:47:00 PN
Acetone	10000	20	μg/L	20	12/19/2003 4:27:00 PM
Acrolein	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
Acrylonitrile	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
Benzene	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
Bromobenzene	U	1.0	µg/L	1	12/18/2003 2:47:00 PN
Bromochloromethane	U	1.0	µg/Ľ	1	12/18/2003 2:47:00 PM
Bromodichloromethane	U	1.0	µg/L	1	12/18/2003 2:47:00 PN
Bromoform	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
Bromomethane	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
Carbon disulfide	U	1.0	µg/L	1	12/18/2003 2:47:00 PM

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

• - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

ND - Not Detected at the Reporting Limit

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	С
Lab Order:	0312106	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	
Lab ID:	0312106-10 A	

Client Sample ID: MW-14 Tag Number: Collection Date: 12/16/2003 Matrix: LIQUID

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW8260	В		Analyst: LDS
Carbon tetrachloride	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
Chlorobenzene	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
Chlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 2:47:00 PN
Chloroethane	1400	20	µg/L	20	12/19/2003 4:27:00 PM
Chloroform	U	1.0	µg/L	1	12/18/2003 2:47:00 PN
Chloromethane	4.0	1.0	µg/L	1	12/18/2003 2:47:00 PM
cis-1,2-Dichloroethene	32	1.0	µg/L	1	12/18/2003 2:47:00 PM
cis-1,3-Dichloropropene	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
Dibromochloromethane	U	1.0	μg/L	1	12/18/2003 2:47:00 PM
Dibromomethane	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
Dichlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
Diisopropyl ether	U	1.0	μg/L	1	12/18/2003 2:47:00 PM
Ethanol	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
Ethyl acetate	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
Ethylbenzene	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
Freon-114	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
Hexachlorobutadiene	U	1.0	μg/L	1	12/18/2003 2:47:00 PM
Isopropyl acetate	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
Isopropylbenzene	U	1.0	μg/L	1	12/18/2003 2:47:00 PM
m,p-Xylene	U	2.0	µg/L	1	12/18/2003 2:47:00 PM
Methyl tert-butyl ether	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
Methylene chloride	130	1.0	μg/L	1	12/18/2003 2:47:00 PM
Naphthalene	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
n-Butyl acetate	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
n-Butylbenzene	U	1.0	μg/L	1	12/18/2003 2:47:00 PM
n-Propyl acetate	U	1.0	μg/L	1	12/18/2003 2:47:00 PM
n-Propylbenzene	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
o-Xylene	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
p-Diethylbenzene	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
p-Ethyltoluene	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
sec-Butylbenzene	U	1.0	μg/L	1	12/18/2003 2:47:00 PM
Styrene	U	1.0	.ο μg/L	1	12/18/2003 2:47:00 PM
t-Butyl alcohol	U	1.0	μg/L	1	12/18/2003 2:47:00 PM
tert-Butylbenzene	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
Tetrachloroethene	3.9	1.0	μg/L	1	12/18/2003 2:47:00 PM
Toluene	35	1.0	µg/L	1	12/18/2003 2:47:00 PM
trans-1,2-Dichloroethene	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
trans-1,3-Dichloropropene	U	1.0	µg/L	1	12/18/2003 2:47:00 PM
Trichloroethene	5.8	1.0	µg/L	1	12/18/2003 2:47:00 PM
Trichlorofluoromethane	U	1.0	μg/L	1	12/18/2003 2:47:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- E Value above quantitation range

ł

CLIENT:	Photocircuits Corporation			Client Sampl	e ID: MW-2	MW-14		
Lab Order: 0312106		Tag Nun	aber:					
Project:	Photocircuits 31 Sea (Cliff Ave. Glei	n Cove, N.Y.	Collection 1	Date: 12/16	/2003		
Lab ID:	0312106-10A			Ma	trix: LIQU	ID		
Analyses		Result	Limit (Qual Units	DF	Date Analyzed		
VOLATILES SI	W-846 METHOD 8260		SW820	50B		Analyst: LDS		
Vinyl acetate		U	1.0	μg/L	1	12/18/2003 2:47:00 PM		
		810	1.0	µg/L	-	12/18/2003 2:47:00 PM		

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

American Analytical La	boratories
------------------------	------------

ł

CLIENT: Lab Order:	Photocircuits Corporation 0312106		(Client Sample Tag Num		MW-1	4
Project: Lab ID:	Photocircuits 31 Sea Cliff Av 0312106-10B	e. Glen	Cove, N.Y.	Collection D	Date:	12/16/ LIQU	
Analyses	Res	sult	Limit Qual	l Units		DF	Date Analyzed
TOTAL IRON		168	E200.7 0.0200	(SW30 mg/L)10A)	1	Anaiyst: JP 12/19/2003 11:02:50 AM

Qualifiers:	
-------------	--

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

ļ

CLIENT:	Photocircuits Corporatio	n		Client Sample	e ID: MW-1	4
Lab Order:	0312106			Tag Nun	ıber:	
Project:	Photocircuits 31 Sea Clif	f Ave. Glen	Cove, N.Y	Collection I	Date: 12/16/	2003
Lab ID:	0312106-10C			Ma	trix: LIQUI	D
Analyses	··· _ ··· ·	Result	Limit	Qual Units	DF	Date Analyzed

NITRATE AS N		E353.2			Analyst: BK
Nitrogen, Nitrate-Nitrite	U	0.100	mg/L	1	12/19/2003
SULFATE		E375.4			Analyst: BK
Sulfate	238	1.00	mg/L	1	10/30/2003

Qualifier	5:
-----------	----

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID: RW-1
Lab Order:	0312106	Tag Number:
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date: 12/17/2003
Lab ID:	0312106-11A	Matrix: LIQUID

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW8260)B		Analyst: LDS
1,1,1,2-Tetrachloroethane	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
1,1,1-Trichloroethane	28	1.0	µg/L	1	12/18/2003 3:28:00 PN
1,1,2,2-Tetrachloroethane	U	1.0	µg/L	1	12/18/2003 3:28:00 PN
1,1,2-Trichloro-1,2,2-trifluoroethane	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
1,1,2-Trichloroethane	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
1,1-Dichloroethane	73	1.0	µg/L	1	12/18/2003 3:28:00 PM
1,1-Dichloroethene	68	1.0	µg/L	1	12/18/2003 3:28:00 PM
1,1-Dichloroproperie	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
1,2,3-Trichlorobenzene	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
1,2,3-Trichloropropane	U	1.0	µg/L	1	12/18/2003 3:28:00 PN
1,2,4,5-Tetramethylbenzene	U	1.0	µg/L	1	12/18/2003 3:28:00 PN
1,2,4-Trichlorobenzene	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
1,2,4-Trimethylbenzene	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
1,2-Dibromo-3-chloropropane	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
1,2-Dibromoethane	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
1,2-Dichlorobenzene	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
1,2-Dichloroethane	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
1,2-Dichloropropane	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
1,3,5-Trimethylbenzene	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
1,3-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
1,3-dichloropropane	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
1,4-Dichlorobenzene	υ	1.0	µg/L	1	12/18/2003 3:28:00 PM
2,2-Dichloropropane	U	1.0	μ g/L	1	12/18/2003 3:28:00 PM
2-Butanone	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
2-Chloroethyl vinyl ether	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
2-Chlorotoluene	20	1.0	μg/L	1	12/18/2003 3:28:00 PM
2-Hexanone	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
4-Chlorotoluene	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
4-Isopropyitoluene	U	1.0	µg/L	1	12/18/2003 3:28:00 PN
4-Methyl-2-pentanone	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
Acetone	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
Acrolein	U	1.0	μg/L	1	12/18/2003 3:28:00 PN
Acrylonitrile	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
Benzene	1.1	1.0	µg/L	1	12/18/2003 3:28:00 PN
Bromobenzene	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
Bromochloromethane	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
Bromodichloromethane	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
Bromoform	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
Bromomethane	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
Carbon disulfide	U	1.0	μg/L	1	12/18/2003 3:28:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

....

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID:	RW-1
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/17/2003
Lab ID:	0312106-11A	Matrix:	LIQUID

Analyses -	Result	Limit Q	ual Units	DF	Date Analyzed
OLATILES SW-846 METHOD 8260		SW826	0B		Analyst: LDS
Carbon tetrachloride	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
Chlorobenzene	U	1.0	µg/L	1	12/18/2003 3:28:00 PN
Chlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 3:28:00 PN
Chloroethane	16	1.0	μg/L	1	12/18/2003 3:28:00 PN
Chloroform	5.3	1.0	µg/L	1	12/18/2003 3:28:00 PN
Chloromethane	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
cis-1,2-Dichloroethene	2800	10	μg/L	10	12/19/2003 5:07:00 PN
cis-1,3-Dichloropropene	U	1.0	µg/L	1	12/18/2003 3:28:00 PN
Dibromochloromethane	U	1.0	µg/L	1	12/18/2003 3:28:00 PN
Dibromomethane	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
Dichlorodifluoromethane	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
Diisopropyl ether	U	1.0	µg/L	1	12/18/2003 3:28:00 PN
Ethanol	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
Ethyl acetate	U	1.0	µg/L	1	12/18/2003 3:28:00 PN
Ethylbenzene	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
Freon-114	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
Hexachlorobutadiene	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
Isopropyl acetate	U	1.0	μg/L	1	12/18/2003 3:28:00 PM
Isopropylbenzene	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
m,p-Xylene	U	2.0	µg/L	1	12/18/2003 3:28:00 PN
Methyl tert-butyl ether	U	1.0	µg/L	1	12/18/2003 3:28:00 PN
Methylene chloride	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
Naphthalene `	U	1.0	µg/L	1	12/18/2003 3:28:00 PN
n-Butyl acetate	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
n-Butylbenzene	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
n-Propyl acetate	U	1.0	µg/L	1	12/18/2003 3:28:00 PN
n-Propylbenzene	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
o-Xylene	U	1.0	µg/L	1	12/18/2003 3:28:00 PN
p-Diethylbenzene	U	1.0	µg/L	1	12/18/2003 3:28:00 PN
p-Ethyltoluene	U	1.0	µg/L	1	12/18/2003 3:28:00 PN
sec-Butylbenzene	U	1.0	µg/L	1	12/18/2003 3:28:00 PN
Styrene	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
t-Butyl alcohol	U	1.0	µg/L	1	12/18/2003 3:28:00 PN
tert-Butylbenzene	U	1.0	μ g/L	1	12/18/2003 3:28:00 PN
Tetrachloroethene	130	1.0	µg/L	1	12/18/2003 3:28:00 PM
Toluene	6.4	1.0	μ g/L	1	12/18/2003 3:28:00 PM
trans-1,2-Dichloroethene	12	1.0	µg/L	1	12/18/2003 3:28:00 PM
trans-1,3-Dichloropropene	U	1.0 ·	μg/L	1	12/18/2003 3:28:00 PM
Trichloroethene	240	1.0	µg/L	1	12/18/2003 3:28:00 PM
Trichlorofluoromethane	U	1.0	μ g/L	1	12/18/2003 3:28:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

ų

CLIENT:	Photocircuits Corporat	ion	(Client Sample		1
Lab Order:	0312106			Tag Num	ber:	
Project:	Photocircuits 31 Sea C	liff Ave. Gler	n Cove, N.Y.	Collection D	ate: 12/17	/2003
Lab ID:	0312106-11A			Ma	trix: LIQU	ЛD
Analyses		Result	Limit Qual	l Units	DF	Date Analyzed

VOLATILES SW-846 METHOD 8260		SW8260	В		Analyst: LDS
Vinyl acetate	U	1.0	µg/L	1	12/18/2003 3:28:00 PM
Vinyl chloride	280	1.0	µg/L	1	12/18/2003 3:28:00 PM

Qualifiers:

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Clie
Lab Order:	0312106	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	С
Lab ID:	0312106-12A	

Client Sample ID: RW-2 Tag Number: Collection Date: 12/17/2003 Matrix: LIQUID

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW826	0B		Analyst: LDS
1,1,1,2-Tetrachloroethane	U	1.0	μg/L	1	12/18/2003 4:09:00 PM
1,1,1-Trichloroethane	U	1.0	µg/L	1	12/18/2003 4:09:00 PN
1,1,2,2-Tetrachloroethane	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	U	1.0	µg/L	1	12/18/2003 4:09:00 PN
1,1,2-Trichloroethane	Ų	1.0	µg/L	1	12/18/2003 4:09:00 PN
1,1-Dichloroethane	120	1.0	µg/L	1	12/18/2003 4:09:00 PN
1,1-Dichloroethene	6.2	1.0	µg/L	1	12/18/2003 4:09:00 PM
1,1-Dichloropropene	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
1,2,3-Trichlorobenzene	U	1.0	µg/L	1	12/18/2003 4:09:00 PN
1,2,3-Trichloropropane	U	1.0	μg/L	1	12/18/2003 4:09:00 PM
1,2,4,5-Tetramethylbenzene	U	1.0	μg/L	1	12/18/2003 4:09:00 PM
1,2,4-Trichlorobenzene	U	1.0	μg/L	1	12/18/2003 4:09:00 PM
1,2,4-Trimethylbenzene	U	1.0	μg/L	1	12/18/2003 4:09:00 PM
1,2-Dibromo-3-chloropropane	U	1.0	μg/L	1	12/18/2003 4:09:00 PM
1,2-Dibromoethane	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
1,2-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
1,2-Dichloroethane	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
1,2-Dichloropropane	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
1,3,5-Trimethylbenzene	U	1.0	μg/L	1	12/18/2003 4:09:00 PM
1,3-Dichlorobenzene	U	1.0	μg/L	1	12/18/2003 4:09:00 PM
1,3-dichloropropane	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
1,4-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
2,2-Dichloropropane	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
2-Butanone	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
2-Chloroethyl vinyl ether	U	1.0	μ g/L	1	12/18/2003 4:09:00 PM
2-Chlorotoluene	570	1.0	µg/L	1	12/18/2003 4:09:00 PM
2-Hexanone	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
4-Chlorotoluene	40	1.0	μg/L	1	12/18/2003 4:09:00 PM
4-isopropyltoluene	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
4-Methyl-2-pentanone	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Acetone	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Acrolein	U	1.0	μg/L	1	12/18/2003 4:09:00 PM
Acrylonitrile	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Benzene	2.6	1.0	µg/L	1	12/18/2003 4:09:00 PM
Bromobenzene	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Bromochloromethane	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Bromodichloromethane	υ	1.0	µg/L	1	12/18/2003 4:09:00 PM
Bromoform	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Bromomethane	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Carbon disulfide	U	1.0	µg/L	1	12/18/2003 4:09:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID: RW-2
Lab Order:	0312106	Tag Number:
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date: 12/17/2003
Lab ID:	0312106-12A	Matrix: LIQUID

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW8260)B		Analyst: LDS
Carbon tetrachloride	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Chlorobenzene	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Chlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Chloroethane	U	1.0	µg/L	. 1	12/18/2003 4:09:00 PM
Chloroform	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Chloromethane	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
cis-1,2-Dichloroethene	710	1.0	µg/L	1	12/18/2003 4:09:00 PM
cis-1,3-Dichloropropene	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Dibromochloromethane	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Dibromomethane	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Dichlorodifluoromethane	U	1.0	μg/L	1	12/18/2003 4:09:00 PM
Diisopropyl ether	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Ethanol	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Ethyl acetate	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Ethylbenzene	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Freon-114	U	1.0	μg/L	1	12/18/2003 4:09:00 PM
Hexachlorobutadiene	U	1.0	μg/L	1	12/18/2003 4:09:00 PM
Isopropyl acetate	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Isopropylbenzene	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
m,p-Xylene	U	2.0	μg/L	1	12/18/2003 4:09:00 PM
Methyl tert-butyl ether	U	1.0	μg/L	1	12/18/2003 4:09:00 PM
Methylene chloride	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
Naphthalene	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
n-Butyl acetate	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
n-Butylbenzene	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
n-Propyl acetate	U	1.0	μg/L	1	12/18/2003 4:09:00 PM
n-Propylbenzene	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
o-Xylene	U	1.0	μg/L	1	12/18/2003 4:09:00 PM
p-Diethylbenzene	U	1.0	μg/L	1	12/18/2003 4:09:00 PM
p-Ethyltoluene	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
sec-Butylbenzene	U	1.0	μg/L	1	12/18/2003 4:09:00 PM
Styrene	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
t-Butyl alcohol	U	1.0	µg/L	1	12/18/2003 4:09:00 PM
tert-Butylbenzene	U	1.0	μg/L	1	12/18/2003 4:09:00 PM
Tetrachloroethene	14	1.0	µg/L	1	12/18/2003 4:09:00 PM
Toluene	3.9	1.0	μg/L	1	12/18/2003 4:09:00 PM
trans-1,2-Dichloroethene	4.4	1.0	μg/L	1	12/18/2003 4:09:00 PM
trans-1,3-Dichloropropene	U	1.0	μg/L	1	12/18/2003 4:09:00 PM
Trichloroethene	140	1.0	μg/L	1	12/18/2003 4:09:00 PM
Trichlorofluoromethane	U	1.0	μg/L	1	12/18/2003 4:09:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

 ${\bf S}$ - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

• - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

١

CLIENT:	Photocircuits Corporation			lient Sample l	D: RW	RW-2	
Lab Order:	0312106		Tag Numb	er:			
Project: Photocircuits 31 Sea		Cliff Ave. Gler	n Cove, N.Y.	Collection Da	te: 12/	12/17/2003	
Lab ID:	0312106-12A	· .		Matr	ix: LIÇ	ĮUD	
Analyses		Result	Limit Qual	Units	DF	Date Analyzed	
VOLATILES SV	W-846 METHOD 8260		SW8260B			Analyst: LDS	
Vinyl acetate		U	1.0	μg/L	1	12/18/2003 4:09:00 PM	
Vinyl chloride		82	1.0	µg/L		12/18/2003 4:09:00 PM	

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- E Value above quantitation range

American	Analytical	Laboratories
----------	------------	--------------

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID:	RW-3
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/17/2003
Lab ID:	0312106-13A	Matrix:	LIQUID

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW826	0B		Analyst: LDS
1,1,1,2-Tetrachloroethane	U	1.0	μg/L	1	12/18/2003 5:00:00 PM
1,1,1-Trichloroethane	U	1.0	µg/L	1	12/18/2003 5:00:00 PN
1,1,2,2-Tetrachloroethane	U	1.0	µg/L	1	12/18/2003 5:00:00 PN
1,1,2-Trichloro-1,2,2-trifluoroethane	U	1.0	μg/L	1	12/18/2003 5:00:00 PM
1,1,2-Trichloroethane	U	1.0	µg/L	1	12/18/2003 5:00:00 PN
1,1-Dichloroethane	65	1.0	µg/L	1	12/18/2003 5:00:00 PM
1,1-Dichloroethene	18	1.0	µg/L	1	12/18/2003 5:00:00 PM
1,1-Dichloropropene	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
1,2,3-Trichlorobenzene	U	1.0	. μg/L	1	12/18/2003 5:00:00 PN
1,2,3-Trichloropropane	U	1.0	μ g/L	1	12/18/2003 5:00:00 PM
1,2,4,5-Tetramethylbenzene	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
1,2,4-Trichlorobenzene	U	1.0	µg/L	1	12/18/2003 5:00:00 PN
1,2,4-Trimethylbenzene	U	1.0	μg/L	1	12/18/2003 5:00:00 PN
1,2-Dibromo-3-chloropropane	U	1.0	μg/L	1	12/18/2003 5:00:00 PM
1,2-Dibromoethane	U	1.0	µg/L	1	12/18/2003 5:00:00 PN
1,2-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
1,2-Dichloroethane	U	1.0	μg/L	1	12/18/2003 5:00:00 PM
1,2-Dichloropropane	U	1.0	µg/L	1	12/18/2003 5:00:00 PN
1,3,5-Trimethylbenzene	U	1.0	µg/L	1	12/18/2003 5:00:00 PN
1,3-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 5:00:00 PN
1,3-dichloropropane	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
1,4-Dichlorobenzene	U	1,0	µg/L	1	12/18/2003 5:00:00 PM
2,2-Dichloropropane	U	1.0	µg/L	1	12/18/2003 5:00:00 PN
2-Butanone	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
2-Chloroethyl vinyl ether	U	1.0	µg/L	1	12/18/2003 5:00:00 PN
2-Chlorotoluene	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
2-Hexanone	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
4-Chlorotoluene	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
4-Isopropyltoluene	۰U	1.0	µg/L	1	12/18/2003 5:00:00 PM
4-Methyl-2-pentanone	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
Acetone	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
Acrolein	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
Acrylonitrile	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
Benzene	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
Bromobenzene	U	1.0	µg/L	1	12/18/2003 5:00:00 PN
Bromochloromethane	U	1.0	µg/L	1	12/18/2003 5:00:00 PN
Bromodichloromethane	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
Bromoform	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
Bromomethane	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
Carbon disulfide	U	1.0	µg/L	1	12/18/2003 5:00:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

•, •

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID:	RW-3
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/17/2003
Lab ID:	0312106-13A	Matrix:	LIQUID

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW82	60B		Analyst: LDS
Carbon tetrachloride	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
Chlorobenzene	U	1.0	μ g /L	1	12/18/2003 5:00:00 PM
Chlorodifluoromethane	8.0	1.0	μg/L	1	12/18/2003 5:00:00 PM
Chloroethane	U	1.0	µg/L	. 1	12/18/2003 5:00:00 PM
Chloroform	U	1.0	µg/L	1	12/18/2003 5:00:00 PN
Chloromethane	U	1.0	µg/L	1	12/18/2003 5:00:00 PN
cis-1,2-Dichloroethene	610	1.0	µg/L	1	12/18/2003 5:00:00 PM
cis-1,3-Dichloropropene	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
Dibromochloromethane	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
Dibromomethane	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
Dichlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
Diisopropyl ether	U	1.0	μg/L	1	12/18/2003 5:00:00 PN
Ethanol	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
Ethyl acetate	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
Ethylbenzene	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
Freon-114	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
Hexachlorobutadiene	U	1.0	μg/L	1	12/18/2003 5:00:00 PM
Isopropyl acetate	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
Isopropylbenzene	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
m,p-Xylene	U	2.0	µg/L	1	12/18/2003 5:00:00 PM
Methyl tert-butyl ether	U	1.0	µg/L	1	12/18/2003 5:00:00 PN
Methylene chloride	U	1.0	μg/L	1	12/18/2003 5:00:00 PM
Naphthalene	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
n-Butyl acetate	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
n-Butylbenzene	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
n-Propyl acetate	U	1.0	μg/L	1	12/18/2003 5:00:00 PM
n-Propylbenzene	U	1.0	μg/L	1	12/18/2003 5:00:00 PM
o-Xylene	U	1.0	μg/L	1	12/18/2003 5:00:00 PM
p-Diethylbenzene	U	1.0	μg/L	1	12/18/2003 5:00:00 PM
p-Ethyltoluene	U	1.0	μg/L	1	12/18/2003 5:00:00 PM
sec-Butylbenzene	U	1.0	μg/L	1	12/18/2003 5:00:00 PM
Styrene	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
t-Butyl alcohol	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
tert-Butylbenzene	U	1.0	µg/L	1	12/18/2003 5:00:00 PM
Tetrachioroethene	57	1.0	µg/L	1	12/18/2003 5:00:00 PM
Toluene	U	1.0	μg/L	1	12/18/2003 5:00:00 PM
trans-1,2-Dichloroethene	4.5	1.0	μg/L	1	12/18/2003 5:00:00 PM
trans-1,3-Dichloropropene	U	1.0	μg/L	1	12/18/2003 5:00:00 PM
Trichloroethene	470	1.0	μg/L	1	12/18/2003 5:00:00 PM
Trichlorofluoromethane	U	1.0	μg/L	1	12/18/2003 5:00:00 PM

Qualifiers:

B - Analyte detected in the associated Method Blank

*- Value exceeds Maximum Contaminant Level

- R RPD outside accepted recovery limits
- E Value above quantitation range

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

ł

۰.

CLIENT:	Photocircuits Corporation	С	lient Sample ID:	RW-3	
Lab Order:	0312106		Tag Number:		
Project:	Photocircuits 31 Sea Cliff Ave. Gler	n Cove, N.Y.	Collection Date:	12/17/	2003
Lab ID:	0312106-13A		Matrix:	LIQUI	D
Analyses	Result	Limit Qual	Units	DF	Date Analyzed

VOLATILES SW-846 METHOD 8260		SW8260	B		Analyst: LDS
Vinyl acetate	υ	1.0	µg/L	1	12/18/2003 5:00:00 PM
Vinyl chloride	4.6	1.0	µg/L	1	12/18/2003 5:00:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID:	RW-4
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/17/2
Lab ID:	0312106-14A	Matrix:	LIQUII

Tag Number: Collection Date: 12/17/2003 Matrix: LIQUID

Analyses	Result	Limit	Qual Uni	ts DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW8	260B		Analyst: LDS
1,1,1,2-Tetrachloroethane	U	1.0	μc/L	1	12/18/2003 5:42:00 PM
1,1,1-Trichloroethane	1.1	1.0	µg/L	1	12/18/2003 5:42:00 PM
1,1,2,2-Tetrachloroethane	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
1,1,2-Trichloroethane	U	1.0	μ g/ L	1	12/18/2003 5:42:00 PM
1,1-Dichloroethane	99	1.0	բեշր	1	12/18/2003 5:42:00 PM
1,1-Dichloroethene	16	1.0	μ ς/ L	1	12/18/2003 5:42:00 PM
1,1-Dichloropropene	U	1.0	µg∕L	1	12/18/2003 5:42:00 PM
1,2,3-Trichlorobenzene	U	1.0	μg/L	1	12/18/2003 5:42:00 PM
1,2,3-Trichloropropane	U	1.0	μ g /L	1	12/18/2003 5:42:00 PM
1,2,4,5-Tetramethylbenzene	U	1.0	μg.L	· 1	12/18/2003 5:42:00 PM
1,2,4-Trichlorobenzene	U	1.0	μg/L	1	12/18/2003 5:42:00 PM
1,2,4-Trimethy/benzene	U	1.0	µg∕L	1	12/18/2003 5:42:00 PM
1,2-Dibromo-3-chloropropane	υ	1.0	μg/L	1	12/18/2003 5:42:00 PM
1,2-Dibromoethane	υ	1.0	µg/L	1	12/18/2003 5:42:00 PM
1,2-Dichlorobenzene	ບ	1.0	µg∕L	1	12/18/2003 5:42:00 PM
1,2-Dichloroethane	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
1,2-Dichloropropane	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
1,3,5-Trimethylbenzene	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
1,3-Dichlorobenzene	U	1.0	μ g/ L	1	12/18/2003 5:42:00 PM
1,3-dichloropropane	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
1,4-Dichlorobenzene	U	1.0	μgγĽ	1	12/18/2003 5:42:00 PM
2,2-Dichloropropane	U	1.0	µg∕L	1	12/18/2003 5:42:00 PM
2-Butanone	U	1.0	μç/L	1	12/18/2003 5:42:00 PM
2-Chloroethyl vinyl ether	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
2-Chlorotoluene	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
2-Hexanone	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
4-Chlorotoluene	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
4-isopropyltoluene	U	1.0	μg/L	1	12/18/2003 5:42:00 PM
4-Methyl-2-pentanone	U ·	1.0	µg∕L	1	12/18/2003 5:42:00 PM
Acetone	U	1.0	μg/L	1	12/18/2003 5:42:00 PM
Acrolein	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
Acrylonitrile	U	1.0	րշ/լ	1	12/18/2003 5:42:00 PM
Benzene	U	1.0	μ g/L	1	12/18/2003 5:42:00 PM
Bromobenzene	U	1.0	µ ց/ ∟	1	12/18/2003 5:42:00 PM
Bromochloromethane	U	1.0	µg∕L	1	12/18/2003 5:42:00 PM
Bromodichloromethane	U	1.0	hðvr	1	12/18/2003 5:42:00 PM
Bromoform	U	1.0	µg∕L	1	12/18/2003 5:42:00 PM
Bromomethane	U	1.0	µg∕L	1	12/18/2003 5:42:00 PM
Carbon disulfide	υ	1.0	μg/L	1	12/18/2003 5:42:00 PM

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level

- R RPD outside accepted recovery limits
- E Value above quantitation range

ND - Not Detected at the Reporting Limit

•

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID:	RW-4
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/17/2003
Lab ID:	0312106-14A	Matrix:	LIQUID

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW826	0B		Analyst: LDS
Carbon tetrachloride	U	1.0	μgΛ	1	12/18/2003 5:42:00 PM
Chlorobenzene	U	1.0	μ g/L	1	12/18/2003 5:42:00 PM
Chlorodifluoromethane	6.6	1.0	μ g/L	1	12/18/2003 5:42:00 PM
Chloroethane	U	1.0	μg/L	1	12/18/2003 5:42:00 PM
Chloroform	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
Chloromethane	U	1.0	µg/L	1	12/18/2003 5:42:00 PN
cis-1,2-Dichloroethene	360	1.0	μ g/ L	1	12/18/2003 5:42:00 PM
cis-1,3-Dichloropropene	U	1.0	μ g/L	1	12/18/2003 5:42:00 PM
Dibromochloromethane	U	1.0	μg/L	1	12/18/2003 5:42:00 PM
Dibromomethane	U	1.0	μg/L	1	12/18/2003 5:42:00 PM
Dichlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
Diisopropyl ether	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
Ethanol	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
Ethyl acetate	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
Ethylbenzene	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
Freon-114	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
Hexachlorobutadiene	U	1.0	μ g/L	1	12/18/2003 5:42:00 PM
Isopropyl acetate	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
Isopropylbenzene	U	1.0	μg/L	1	12/18/2003 5:42:00 PM
m,p-Xylene	U	2.0	µg/L	1	12/18/2003 5:42:00 PM
Methyl tert-butyl ether	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
Methylene chloride	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
Naphthalene	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
n-Butyl acetate	บ	1.0	µg/L	1	12/18/2003 5:42:00 PM
n-Butylbenzene	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
n-Propyl acetate	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
n-Propylbenzene	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
o-Xylene	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
p-Diethylbenzene	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
p-Ethyltoluene	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
sec-Butylbenzene	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
Styrene	υ	1.0	µg/L	1	12/18/2003 5:42:00 PM
t-Butyl alcohol	υ	1.0	µg/L	1	12/18/2003 5:42:00 PM
tert-Butylbenzene	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
Tetrachloroethene	39	1.0	µg/L	1	12/18/2003 5:42:00 PM
Toluene	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
trans-1,2-Dichloroethene	2.4	1.0	µg/L	1	12/18/2003 5:42:00 PM
trans-1,3-Dichloropropene	U	1.0	µg/L	1	12/18/2003 5:42:00 PM
Trichloroethene	170	1.0	µg/L	1	12/18/2003 5:42:00 PM
Trichlorofluoromethane	U	1.0	µg/L	1	12/18/2003 5:42:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level

- R RPD outside accepted recovery limits
- E Value above quantitation range

ļ

•

٠

						<u> </u>	
Analyses		Result	Limit (Dual Units		DF	Date Analyzed
Lab ID:	0312106-14A				Matrix:	LIQUI	D
Project:	Photocircuits 31 Sea Clif	f Ave. Glei	n Cove, N.Y.	Collecti	on Date:	12/17/	2003
Lab Order:	0312106			Tagl	Number:		
CLIENT:	Photocircuits Corporation	n		Client Sa	mple ID:	RW-4	

VOLATILES SW-846 METHOD 8260		SW8260	B	Analyst: L		
Vinyl acetate	U	1.0	µg/L	1	12/18/2003 5:42:00 PM	
Vinyl chloride	U	1.0	µg/L	1	12/18/2003 5:42:00 PM	

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

•

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID:	MW-35 (45A SITE)
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/17/2003
Lab ID:	0312106-15A	Matrix:	LIQUID

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW826)B		Analyst: LDS
1,1,1,2-Tetrachloroethane	U	1.0	µg/L	1	12/18/2003 8:53:00 PN
1,1,1-Trichloroethane	U	1.0	µg/L	1	12/18/2003 8:53:00 PN
1,1,2,2-Tetrachloroethane	U	1.0	µg/L	1	12/18/2003 8:53:00 PN
1,1,2-Trichloro-1,2,2-trifluoroethane	U	1.0	µg/L	1	12/18/2003 8:53:00 PN
1,1,2-Trichloroethane	U	1.0	μg/ L	1	12/18/2003 8:53:00 PN
1,1-Dichloroethane	U	1.0	µg/L	1	12/18/2003 8:53:00 PN
1,1-Dichloroethene	U	1.0	µg/L	1	12/18/2003 8:53:00 PN
1,1-Dichloropropene	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
1,2,3-Trichlorobenzene	U	1.0	µg/L	1	12/18/2003 8:53:00 PN
1,2,3-Trichloropropane	U	1.0	µg/L	1	12/18/2003 8:53:00 PN
1,2,4,5-Tetramethylbenzene	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
1,2,4-Trichlorobenzene	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
1,2,4-Trimethylbenzene	U	1.0	µg/L	1	12/18/2003 8:53:00 PM
1,2-Dibromo-3-chloropropane	U	1.0	µg/L	1	12/18/2003 8:53:00 PN
1,2-Dibromoethane	U	1.0	µg/L	1	12/18/2003 8:53:00 PN
1,2-Dichlorobenzene	U	1.0	μg/L	1	12/18/2003 8:53:00 PN
1,2-Dichloroethane	U	1.0	µg/L	1	12/18/2003 8:53:00 PN
1,2-Dichloropropane	U	1.0	µg/L	1	12/18/2003 8:53:00 PN
1,3,5-Trimethylbenzene	U	1.0	µg/L	1	12/18/2003 8:53:00 PN
1,3-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 8:53:00 PN
1,3-dichloropropane	U	1.0	µg/L	1	12/18/2003 8:53:00 PN
1,4-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 8:53:00 PM
2,2-Dichloropropane	U	1.0	µg/L	1	12/18/2003 8:53:00 PM
2-Butanone	U	1.0	µg/L	1	12/18/2003 8:53:00 PM
2-Chloroethyl vinyl ether	U	1.0	μg/L	1	12/18/2003 8:53:00 PN
2-Chlorotoluene	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
2-Hexanone	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
4-Chlorotoluene	U	1.0	μg/L	`1	12/18/2003 8:53:00 PM
4-Isopropyltoluene	U	1.0	µg/L	1	12/18/2003 8:53:00 PM
4-Methyl-2-pentanone	U	1.0	µg/L	1	12/18/2003 8:53:00 PM
Acetone	U	1.0	µg/L	1	12/18/2003 8:53:00 PM
Acrolein	U	1.0	µg/L	1	12/18/2003 8:53:00 PM
Acrylonitrile	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
Benzene	U	1.0	µg/L	1	12/18/2003 8:53:00 PM
Bromobenzene	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
Bromochloromethane	U	1.0	µg/L	1	12/18/2003 8:53:00 PM
Bromodichloromethane	U	1.0	µg/L	1	12/18/2003 8:53:00 PM
Bromoform	U	1.0	µg/L	1	12/18/2003 8:53:00 PM
Bromomethane	U	1.0	μ g /L	1	12/18/2003 8:53:00 PM
Carbon disulfide	U	1.0	μg/L	1	12/18/2003 8:53:00 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level

- R RPD outside accepted recovery limits
- E Value above quantitation range

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

American	Analytical Laboratories	Date:	31-Dec-03
CLIENT:	Photocircuits Corporation	Client Sample ID:	MW-35 (45A SITE)
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/17/2003
Lab ID:	0312106-15A	Matrix:	LIQUID

Analyses	Result	Limit Q	Qual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW826	60B		Analyst: LDS
Carbon tetrachloride	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
Chlorobenzene	U	1.0	µg/L	1	12/18/2003 8:53:00 PM
Chlorodifluoromethane	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
Chloroethane	U	1.0	μg/L	. 1	12/18/2003 8:53:00 PM
Chloroform	U	1.0	µg/L	1	12/18/2003 8:53:00 PM
Chloromethane	U	1.0	µg/L	1	12/18/2003 8:53:00 PM
cis-1,2-Dichloroethene	U	1.0	µg/L	1	12/18/2003 8:53:00 PM
cis-1,3-Dichloropropene	U	1.0	µg/L	1	12/18/2003 8:53:00 PM
Dibromochloromethane	U	1.0	µg/L	1	12/18/2003 8:53:00 PM
Dibromomethane	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
Dichlorodifluoromethane	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
Diisopropyl ether	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
Ethanol	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
Ethyl acetate	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
Ethylbenzene	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
Freon-114	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
Hexachlorobutadiene	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
Isopropyl acetate	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
Isopropylbenzene	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
m,p-Xylene	U	2.0	μg/L	1	12/18/2003 8:53:00 PM
Methyl tert-butyl ether	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
Methylene chloride	U	1.0	р <u>у</u> µg/L	1	12/18/2003 8:53:00 PM
Naphthalene	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
n-Butyl acetate	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
n-Butylbenzene	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
n-Propyl acetate	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
n-Propylbenzene	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
o-Xylene	U	1.0	μg/ L	1	12/18/2003 8:53:00 PM
p-Diethylbenzene	U	1.0	ру/L	1	12/18/2003 8:53:00 PM
p-Ethyltoluene	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
sec-Butylbenzene	Ŭ	1.0	μg/L	1	12/18/2003 8:53:00 PM
Styrene	Ŭ	1.0	μg/L	1	12/18/2003 8:53:00 PM
t-Butyl alcohol	. U	1.0	μg/L	1	12/18/2003 8:53:00 PM
tert-Butylbenzene	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
Tetrachloroethene	6.8	1.0	μg/L	1	12/18/2003 8:53:00 PM
Toluene	U.0	1.0	μg/L	1	12/18/2003 8:53:00 PM
trans-1,2-Dichloroethene	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
trans-1,3-Dichloropropene	U	1.0	μg/L	1	12/18/2003 8:53:00 PM
Trichloroethene	35	1.0	μg/L	1	12/18/2003 8:53:00 PM
Trichlorofluoromethane	35 U	1.0	μ g/L	1	12/18/2003 8:53:00 PM

Qualifiers:

.

.

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits

Date: 31-Dec-03

- R RPD outside accepted recovery limits
- E Value above quantitation range

ł

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID:	MW-35 (45A SITE)
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/17/2003
Lab ID:	0312106-15A	Matrix:	LIQUID

VOLATILES SW-846 METHOD 8260		SW8260	В		Analyst: LDS
Vinyl acetate	U	1.0	µg/L	1	12/18/2003 8:53:00 PM
Vinyl chloride	U	1.0	µg/L	1	12/18/2003 8:53:00 PM

Qualifiers:

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits

~

- R RPD outside accepted recovery limits
- E Value above quantitation range

•

٠

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID:	MW-35 (45A SITE)
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/17/2003
Lab ID:	0312106-16A	Matrix:	LIQUID

Алајуses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW8260)B		Analyst: LDS
1,1,1,2-Tetrachloroethane	Ų	1.0	µg/L	1	12/18/2003 9:39:00 PM
1,1,1-Trichloroethane	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
1,1,2,2-Tetrachloroethane	Ų	1.0	µg/L	1	12/18/2003 9:39:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	U	1.0	µg/L	. 1	12/18/2003 9:39:00 PM
1,1,2-Trichloroethane	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
1,1-Dichloroethane	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
1,1-Dichloroethene	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
1,1-Dichloropropene	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
1,2,3-Trichlorobenzene	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
1,2,3-Trichloropropane	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
1,2,4,5-Tetramethylbenzene	U	1.0	µg/L	1	12/18/2003 9:39:00 PN
1,2,4-Trichlorobenzene	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
1,2,4-Trimethylbenzene	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
1,2-Dibromo-3-chloropropane	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
1,2-Dibromoethane	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
1,2-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
1,2-Dichloroethane	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
1,2-Dichloropropane	U	1.0	μg/Ľ	1	12/18/2003 9:39:00 PM
1,3,5-Trimethylbenzene	U	1.0	µg/L	1	12/18/2003 9:39:00 PN
1,3-Dichlorobenzene	U	1.0	μg/L	1	12/18/2003 9:39:00 PM
1,3-dichloropropane	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
1,4-Dichlorobenzene	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
2,2-Dichloropropane	U	1.0	μg/L	1	12/18/2003 9:39:00 PM
2-Butanone	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
2-Chloroethyl vinyl ether	U	1.0	μg/L	1	12/18/2003 9:39:00 PM
2-Chlorotoluene	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
2-Hexanone	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
4-Chlorotoluene	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
4-lsopropyltoluene	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
4-Methyl-2-pentanone	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
Acetone	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
Acrolein	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
Acrylonitrile	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
Benzene	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
Bromobenzene	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
Bromochloromethane	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
Bromodichloromethane	U	1.0	μg/L	1	12/18/2003 9:39:00 PM
Bromoform	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
Bromomethane	U	1.0	μg/L	1	12/18/2003 9:39:00 PM
Carbon disulfide	U	1.0	μg/L	1	12/18/2003 9:39:00 PM

Qualifiers:

B - Analyte detected in the associated Method Blank

, ···

* - Value exceeds Maximum Contaminant Level

- R RPD outside accepted recovery limits
- E Value above quantitation range

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

٠

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID:	MW-35 (45A SITE)
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/17/2003
Lab ID:	0312106-16A	Matrix:	LIQUID

Analyses	Result	Limit Q	1al Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW8260	B		Analyst: LDS
Carbon tetrachloride	U	1.0	µg/L	1	12/18/2003 9:39:00 PN
Chlorobenzene	U	1.0	µg/L	1	12/18/2003 9:39:00 PN
Chlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 9:39:00 PN
Chloroethane	U	1.0	µg/L	1	12/18/2003 9:39:00 PN
Chloroform	U	1.0	µg/L	1	12/18/2003 9:39:00 PN
Chloromethane	U	1.0	µg/L	1	12/18/2003 9:39:00 PN
cis-1,2-Dichloroethene	U	1.0	µg/L	1	12/18/2003 9:39:00 PN
cis-1,3-Dichloropropene	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
Dibromochloromethane	U	1.0	µg/L	1	12/18/2003 9:39:00 PN
Dibromomethane	U	1.0	µg/L	1	12/18/2003 9:39:00 PN
Dichlorodifluoromethane	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
Diisopropyl ether	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
Ethanol	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
Ethyl acetate	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
Ethylbenzene	U	1.0	µg/L	1	12/18/2003 9:39:00 PN
Freon-114	U	1.0	µg/L	1	12/18/2003 9:39:00 PN
Hexachlorobutadiene	U	1.0	µg/L	1	12/18/2003 9:39:00 PN
Isopropyl acetate	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
Isopropylbenzene	U	1.0	μg/L	1	12/18/2003 9:39:00 PN
m,p-Xylene	U	2.0	µg/L	1	12/18/2003 9:39:00 PM
Methyl tert-butyl ether	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
Methylene chloride	U	1.0	μg/L	1	12/18/2003 9:39:00 PN
Naphthalene	U	1.0	μg/L	1	12/18/2003 9:39:00 PM
n-Butyl acetate	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
n-Butylbenzene	υ	1.0	µg/L	1	12/18/2003 9:39:00 PM
n-Propyl acetate	U	1.0	μg/L	1	12/18/2003 9:39:00 PM
n-Propylbenzene	U	1.0	μg/L	1	12/18/2003 9:39:00 PM
o-Xylene	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
p-Diethylbenzene	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
p-Ethyltoluene	U	1.0	μg/L	1	12/18/2003 9:39:00 PM
sec-Butylbenzene	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
Styrene	U	1.0	μg/L	1	12/18/2003 9:39:00 PM
t-Butyt alcohol	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
tert-Butylbenzene	U	1.0	µg/L	1	12/18/2003 9:39:00 PM
Tetrachloroethene	180	1.0	μg/L	1	12/18/2003 9:39:00 PM
Toluene	U	1.0	μg/L	1	12/18/2003 9:39:00 PM
trans-1,2-Dichloroethene	U	1.0	μg/L	1	12/18/2003 9:39:00 PM
trans-1,3-Dichloropropene	Ų	1.0	µg/L	1	12/18/2003 9:39:00 PM
Trichloroethene	2.7	1.0	μg/L	1	12/18/2003 9:39:00 PM
Trichlorofluoromethane	U	1.0	µg/L	1	12/18/2003 9:39:00 PM

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level

- R RPD outside accepted recovery limits
- E Value above quantitation range

ND - Not Detected at the Reporting Limit

ļ

Vinyl chloride

1

12/18/2003 9:39:00 PM

CLIENT:	Photocircuits Corpora	tion	(Client Sample ID	: MW-:	35 (45A SITE)
Lab Order:	0312106			Tag Number	:	
Project:	Photocircuits 31 Sea (Cliff Ave. Glen	Cove, N.Y.	Collection Date	: 12/17	/2003
Lab ID:	0312106-16A			Matrix	: LIQU	Ð
Analyses		Result	Limit Qual	Units	DF	Date Analyzed
VOLATILES SI	W-846 METHOD 8260		SW8260B			Analyst: LDS
Vinyl acetate		υ	1.0	µg/L	1	12/18/2003 9:39:00 PM

1.0

µg/L

υ

Qualifie	ers:	

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- - Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID:	Pretreatment
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/17/2003
Lab ID:	0312106-17A	Matrix:	AIR

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW82	60B	- .	Analyst: LDS
1,1,1,2-Tetrachloroethane	U	0.080	µg/m³	1	12/18/2003 4:08:00 AN
1,1,1-Trichloroethane	U	0.11	µg/m²	1	12/18/2003 4:08:00 AN
1,1,2,2-Tetrachloroethane	U	0.10	µg/m³	1	12/18/2003 4:08:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethane	U	1.0	µg/m³	[•] 1	12/18/2003 4:08:00 AN
1,1,2-Trichloroethane	U	0.14	µg/m³	1	12/18/2003 4:08:00 AN
1,1-Dichloroethane	U	0.11	µg/m³	1	12/18/2003 4:08:00 AN
1,1-Dichloroethene	U	0.17	µg/m³	1	12/18/2003 4:08:00 AN
1,1-Dichloropropene	U	0.22	µg/m³	1	12/18/2003 4:08:00 AN
1,2,3-Trichlorobenzene	U	0.13	µg/m³	1	12/18/2003 4:08:00 AM
1,2,3-Trichloropropane	U	0.18	µg/m³	1	12/18/2003 4:08:00 AM
1,2,4,5-Tetramethylbenzene	U	0.12	µg/m³	1	12/18/2003 4:08:00 AM
1,2,4-Trichlorobenzene	U	0.15	µg/m³	1	12/18/2003 4:08:00 AM
1,2,4-Trimethylbenzene	U	0.10	µg/m³	1	12/18/2003 4:08:00 AM
1,2-Dibromo-3-chloropropane	U	0.81	µg/m³	1	12/18/2003 4:08:00 AM
1,2-Dibromoethane	U	0.10	µg/m³	1	12/18/2003 4:08:00 AM
1,2-Dichlorobenzene	U	0.080	µg/m³	1	12/18/2003 4:08:00 AN
1,2-Dichloroethane	U	0.15	µg/m³	1	12/18/2003 4:08:00 AM
1,2-Dichloropropane	U	0.060	µg/m³	1	12/18/2003 4:08:00 AM
1,3,5-Trimethylbenzene	U	0.23	µg/m³	1	12/18/2003 4:08:00 AM
1,3-Dichlorobenzene	U	0.11	µg/m³	1	12/18/2003 4:08:00 AM
1,3-dichloropropane	U	0.070	µg/m³	1	12/18/2003 4:08:00 AM
1,4-Dichlorobenzene	υ	0.14	µg/m³	1	12/18/2003 4:08:00 AM
2,2-Dichloropropane	U	0.090	µg/m³	1	12/18/2003 4:08:00 AM
2-Butanone	υ	0.50	µg/m³	1	12/18/2003 4:08:00 AM
2-Chloroethyl vinyl ether	U	0.23	µg/m³	1	12/18/2003 4:08:00 AM
2-Chlorotoiuene	U	0.18	µg/mª	1	12/18/2003 4:08:00 AM
2-Hexanone	ບ	0.22	µg/m³	1	12/18/2003 4:08:00 AM
4-Chlorotoluene	U	0.11	µg/m³	1	12/18/2003 4:08:00 AM
4-Isopropyltoluene	U	0.15	µg/m³	1	12/18/2003 4:08:00 AM
4-Methyl-2-pentanone	U	0.24	µg/m³	1	12/18/2003 4:08:00 AM
Acetone	υ	0.46	µg/m³	1	12/18/2003 4:08:00 AM
Acrolein	υ	0.92	µg/m³	1	12/18/2003 4:08:00 AM
Acrylonitrile	U	0.090	µg/m³	1	12/18/2003 4:08:00 AM
Benzene	U	0.11	µg/m²	1	12/18/2003 4:08:00 AM
Bromobenzene	U	0.43	μg/m³	1	12/18/2003 4:08:00 AM
Bromochioromethane	U	0.080	µg/m³	1	12/18/2003 4:08:00 AM
Bromodichloromethane	U	0.040	µg/m³	1	12/18/2003 4:08:00 AM
Bromoform	U	0.16	μg/m³	1	12/18/2003 4:08:00 AM
Bromomethane	U	0.31	µg/m³	1	12/18/2003 4:08:00 AM
Carbon disulfide	U	0.16	µg/mª	1	12/18/2003 4:08:00 AM

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level

- R RPD outside accepted recovery limits
- E Value above quantitation range

ND - Not Detected at the Reporting Limit

Date: 31-Dec-03

CLIENT:	Photocircuits Corporation	Client Sample ID:	Pretreatment
Lab Order:	0312106	Tag Number:	
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.	Collection Date:	12/17/2003
Lab ID:	0312106-17A	Matrix:	AIR

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8260		SW820	50B		Analyst: LDS
Carbon tetrachloride	U	0.13	µg/m³	1	12/18/2003 4:08:00 AM
Chlorobenzene	U	0.11	µg/m³	1	12/18/2003 4:08:00 AM
Chlorodifluoromethane	U	1.0	µg/mª	1	12/18/2003 4:08:00 AM
Chloroethane	U	0.18	µg/m³	. 1	12/18/2003 4:08:00 AM
Chloroform	U	0.080	µg/m³	1	12/18/2003 4:08:00 AM
Chloromethane	U	0.080	µg/m³	1	12/18/2003 4:08:00 AM
cis-1,2-Dichloroethene	U	0.20	µg/m³	1	12/18/2003 4:08:00 AM
cis-1,3-Dichloropropene	U	0.090	µg/m³	1	12/18/2003 4:08:00 AM
Dibromochloromethane	U	0.10	µg/m³	1	12/18/2003 4:08:00 AM
Dibromomethane	U	0.080	µg/mª	1	12/18/2003 4:08:00 AM
Dichlorodifluoromethane	U	0.10	µg/m³	1	12/18/2003 4:08:00 AM
Diisopropyl ether	U	0.11	µg/m³	1	12/18/2003 4:08:00 AM
Ethanol	U	0.68	µg/m³	1	12/18/2003 4:08:00 AM
Ethyl acetate	U	0.78	µg/m³	1	12/18/2003 4:08:00 AM
Ethylbenzene	U	0.12	ug/m³	1	12/18/2003 4:08:00 AM
Freon-114	U	0.10	µg/m³	1	12/18/2003 4:08:00 AM
Hexachiorobutadiene	U	0.18	μg/m²	1	12/18/2003 4:08:00 AM
Isopropyl acetate	U	0.53	μg/m³	1	12/18/2003 4:08:00 AM
Isopropylbenzene	U	0.12	µg/m³	1	12/18/2003 4:08:00 AM
m,p-Xylene	U	0.23	µg/m³	1	12/18/2003 4:08:00 AM
Methyl tert-butyl ether	U	0.080	µg/m³	1	12/18/2003 4:08:00 AM
Methylene chloride	U	0.17	µg/m³	1	12/18/2003 4:08:00 AM
Naphthalene	U	0.12	µg/m³	1	12/18/2003 4:08:00 AM
n-Butyl acetate	U	0.10	µg/m³	1	12/18/2003 4:08:00 AM
n-Butylbenzene	U	0.16	µg/m³	1	12/18/2003 4:08:00 AM
n-Propyl acetate	Ŭ	0.15	µg/m³	1	12/18/2003 4:08:00 AM
n-Propylbenzene	Ū	0.13	µg/m³	1	12/18/2003 4:08:00 AM
o-Xylene	U	0.090	µg/m³	1	12/18/2003 4:08:00 AM
p-Diethylbenzene	U	0.14	µg/m³	1	12/18/2003 4:08:00 AM
p-Ethyltoluene	U	0.23	ug/m³	1	12/18/2003 4:08:00 AM
sec-Butylbenzene	U	0.14	µg/m³	1	12/18/2003 4:08:00 AM
Styrene	U	0.10	µg/m³	1	12/18/2003 4:08:00 AM
t-Butyl alcohol	U	0.13	µg/m³	1	12/18/2003 4:08:00 AM
tert-Butylbenzene	U	0.13	µg/m³	1	12/18/2003 4:08:00 AM
Tetrachloroethene	180	0.13	µg/m³	1	12/18/2003 4:08:00 AM
Toluene	U	0.10	μg/m³	1	12/18/2003 4:08:00 AM
trans-1,2-Dichloroethene	U	0.14	µg/m³	1	12/18/2003 4:08:00 AM
trans-1,3-Dichloropropene	U	0.10	µg/m³	1	12/18/2003 4:08:00 AM
Trichloroethene	1.3	0.11	µg/m³	1	12/18/2003 4:08:00 AM
Trichlorofluoromethane	U	0.14	µg/m³	1	12/18/2003 4:08:00 AM

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- Value exceeds Maximum Contaminant Level

- R RPD outside accepted recovery limits
- E Value above quantitation range

ND - Not Detected at the Reporting Limit

	American	Analyti	cal Labo	oratories
--	----------	---------	----------	-----------

ł

CLIENT: Lab Order:	Photocircuits Corporation 0312106			Client Sample Tag Numb		reatment
Project:	Photocircuits 31 Sea Cliff Ave. Glen Cove, N.Y.		Collection Da		: 12/17/2003	
Lab ID: Analyses	0312106-17A	Result	Limit Qual		DF	Date Analyzed
VOLATILES SV	W-846 METHOD 8260	· · · ·	SW8260B			Analyst: LDS
Vinyl acetate		U	1.0	µg/m³	1	12/18/2003 4:08:00 AN
Vinyl chloride		U	0.12	µg/m³	1	12/18/2003 4:08:00 AN

Qualifiers:

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Environmental Testing Laboratories, Inc. 208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

12/23/2003

Collected: 12/16/2003

Total Organic Carbon - Method 415.1

Sample: R3866-1 Client Sample ID: 0312106-01C Matrix: Liquid Type: Grab Remarks: Analyzed Date: 12/22/2003 12:00:00 PM

Analytical Results

Cas No	Analyte	MDL	Result	Units	Q
	TOC	0.51	50.5	ppm	

Sample: R3866-2

Client Sample II	D: 0312106-020	>	
Matrix: Liquid		Type: Grab	
Remarks:			
Analyzed Date:	12/22/2003	12:00:00 PM	

Analytical Results

Cas No	Analyte	MDL	Result	Units	Q
	TOC	0.51	74.8	ppm	

Sample: R3866-3

Client Sample II	D: 0312106-03	C
Matrix: Liquid		Type: Grab
Remarks:		
Analyzed Date:	12/22/2003	12:00:00 PM

Collected: 12/16/2003

Collected: 12/16/2003

Cas No	Analyte	MDL	Result	Units	Q
	TOC	0.51	0.51	ppm	υ

Environmental Testing Laboratories, Inc. 208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

12/23/2003

Collected: 12/16/2003

Total Organic Carbon - Method 415.1

Sample:R3866-4Client Sample ID:0312106-04CMatrix:LiquidType:GrabRemarks:Analyzed Date:12/22/200312:00:00 PM

Analytical Results

Cas No	Analyte	MDL	Result	Units	Q
	TOC	0.51	18.9	ppm	

Sample: R3866-5

Client Sample I	D: 0312106-05	C
Matrix: Liquid		Type: Grab
Remarks:		
Analyzed Date:	12/22/2003	12:00:00 PM

Collected: 12/16/2003

Analytical Results

Cas No	Analyte	MDL	Result	Units	Q
	TOC	0.51	0.51	ppm	U

Sample: R3866-6

Client Sample ID: 0312106-06C				
Matrix: Liquid		Type: Grab		
Remarks:				
Analyzed Date:	12/22/2003	12:00:00 PM		

Collected: 12/16/2003

Cas No	Analyte	MDL	Result	Units	Q
	TOC	0.51	0.51	ppm	U

Environmental Testing Laboratories, Inc. 208 Route 109, Farmingdale NY 11735

Phone - 631-249-1456 Fax - 631-249-8344

12/23/2003

Collected: 12/16/2003

Collected: 12/16/2003

Total Organic Carbon - Method 415.1

Sample: R3866-7Client Sample ID: 0312106-07CMatrix: LiquidType: GrabRemarks:Analyzed Date: 12/22/200312:00:00 PM

Analytical Results

Cas No	Analyte	MDL	Result	Units	Q
	TOC	0.51	0.51	ppm	U

Sample: R3866-8

Client Sample II	С	
Matrix: Liquid		Type: Grab
Remarks:		
Analyzed Date:	12/22/2003	12:00:00 PM

Analytical Results

Cas No	Analyte	MDL	Result	Units	Ø
	TOC	0.51	0.51	ppm	Ü

Sample; R3866-9

Client Sample II	D: 0312106-09	С
Matrix: Liquid		Type: Grab
Remarks:		
Analyzed Date:	12/22/2003	12:00:00 PM

Collected: 12/17/2003

Cas No	Analyte	MDL	Result	Units	Q
	TOC	0.51	0.51	ppm	υ

Environmental Testing Laboratories, Inc. 208 Route 109, Farmingdale NY 11735 Phone - 631-249-1456 Fax - 631-249-8344

12/23/2003

Total Organic Carbon - Method 415.1

Sample: R3866-10

Client Sample ID: 0312106-10C Matrix: Liquid Type: Grab Remarks: Analyzed Date: 12/22/2003 12:00:00 PM Collected: 12/16/2003

Cas No	Analyte	MDL	Result	Units	Q
	TOC	0.51	0.51	ppm	U

March 11, 2003

Charlie Nehrig Photocircuits Corporation 31 Sea Cliff Avenue Glen Cove, NY 11542

RE: December 2003 Status Report Photocircuits Accelerated Anaerobic Bioremediation Pilot

Dear Charlie:

Attached is the December 2003 Status Report for the Photocircuits Accelerated Anaerobic Bioremediation Project. Data from the beginning of the project in August 2000 through December 2003 is provided and discussed. Please let me know if you have any questions.

Sincerely, TERRA SYSTEMS, INC. Michael D Rie, PhD.

Michael D. Lee, Ph.D. Vice-President

cc: Andy Barber

8017 St .

1

DECEMBER 2003 STATUS REPORT PHOTOCIRCUITS ACCELERATED ANAEROBIC BIOREMEDIATION PROJECT

PREPARED FOR:

PHOTOCIRCUITS CORPORATION 31 SEA CLIFF AVENUE GLEN COVE, NY 11542

PREPARED BY:

TERRA SYSTEMS, INC. 1035 PHILADELPHLA PIKE SUITE E WILMINGTON DE 19809

MARCH 11, 2004

1

TABL	E OF CONTENTS	. L
1.0	EXECUTIVE SUMMARY	1
3.0	BACKGROUND	4
3.1	SITE GEOLOGY/HYDROLOGY	
3.2	NATURE AND EXTENT OF CONTAMINATION	4
3.3	RATIONALE FOR USE OF TECHNOLOGY	
3.4	TECHNOLOGY DESCRIPTION	5
4.0	MATERIALS AND METHODS	8
4.1	STUDY AREA	8
4.2	TECHNICAL CHALLENGES	8
4.3	Key Design Criteria	8
4.4	TREATMENT SYSTEM SCHEMATIC AND OPERATION	8
4.5	OPERATING PARAMETERS	9
5.0	RESULTS 1	Û
5.1	PERFORMANCE EVALUATION CRITERIA 1	0
5.2	ORGANIZATION OF DATA	
5.3	PROJECT TO DATE RESULTS 1	
-	5.3.1 Chlorinated Ethene Results	
	5.3.2 Chlorinated Ethane Results	
-	5.3.3 Other Organic Compounds Results	
	5.3.4 Sum of VOAs	
	5.3.5 Substrate Distribution	
	5.3.6 Electron Acceptor Results	
	5.3.7 Field Parameters	0
6.0	DISCUSSION 1	7
7.0	CONCLUSIONS 1	9
8.0	REFERENCES	1

TABLE OF CONTENTS

FIGURES

2

.

Figure 1. Site Map Figure 2. Treatment Cell

TABLES

- Table 1. Photocircuits Anaerobic Treatment Cell Analytical SummaryTable 2. Photocircuits Anaerobic Treatment Cell Chlorinated Solvents in Micromolar Concentrations
- Table 3. Photocircuits Anaerobic Treatment Cell Field Data
- Table 4. Photocircuits Anaerobic Treatment Cell Percent Change Between 9/1/00 and 1/8/02 or 12/16/03

...

- Table 5. Photocircuits Downgradient Wells Percent Change between 3/28/00 and 1/8/02 or 12/16/03
- Table 6. Summary of Changes in Concentrations of Chloroethenes, Chloroethanes, Electron

 Acceptors, and Electron Donor by Well

ABBREVATIONS

- 1DCA 1,1-Dichloroethane
- 1DCE 1,1-Dichloroethene or 1,1-Dichloroethylene or Vinylidene Chloride
- 1TCA 1,1,1-Trichloroethane
- bgs Below Ground Surface
- CA Chloroethane

4

,

- cDCE cis-1,2-Dichloroethene or cis-1,2-chloroethylene
- msl mean sea level
- MTBE Methyl Tert Butyl Ether
- µg/L Microgram per Liter
- μM Micromole per Liter
- PCE Tetrachloroethene or Perchloroethylene
- SRSTM Slow Release Substrate
- TCE Trichloroethene or Trichloroethylene
- tDCE trans-1,2-Dichloroethene or trans-1,2-Dichloroethylene
- TOC Total Organic Carbon
- TSI Terra Systems, Inc.
- VC Vinyl Chloride
- VOC Volatile Organic Carbon

1.0 EXECUTIVE SUMMARY

In August 2000, Photocircuits Corporation initiated a pilot study at its 31 Sea Cliff Ave. property to treat chlorinated volatile organic compounds (VOC) using in situ anaerobic bioremediation. The site is characterized by VOC contamination of a sandy, silt, and gravel aquifer. Monitoring data indicate that some biodegradation of these contaminants was occurring at the site prior to the start of the pilot study. The two primary objectives of this pilot study are to 1) evaluate the use of substrate injection to enhance in situ anaerobic biological degradation of chlorinated VOCs in the study area and 2) obtain operating and performance data to optimize the design and operation of a full-scale system. During the operational period of this pilot study, there is no emphasis on reducing any contaminants to a specific regulatory level.

The study area, which encompasses a triangular area roughly 92 feet wide, 157 feet long, and 60 feet deep, underlies the former drum storage area of the Photocircuits Corporation facility. Prior to the start of the pilot test, total chlorinated contaminant concentrations in wells within the pilot area ranged from 457 to 539,000 μ g/L. The initial pilot bioremediation system consisted of six injection points in a line spaced about 15 to 20 feet apart. A slow release substrate (SRS) containing edible soybean oil was designed to provide a slow release food grade carbon source over a period in excess of twelve months. A total of 3,600 gallons of the soybean oil emulsion was injected. The substrate concentrations were selected based on previous experience.

An additional 5,722 gallons of the emulsified substrate was injected in months 17 and 19 (February and April 2002) at twelve injection points in a full-scale treatment cell. VOC and substrate concentrations have been monitored twelve times over a thirty-nine month period at eight wells spaced throughout the treatment area. VOC and substrate concentrations have also been monitored at six wells downgradient of the treatment area to determine if the substrate has migrated outside of the area and if the substrate amendment has affected these wells.

The system has been operating since August 31, 2000. Substrate monitoring data after the first injection indicated that substrate was delivered throughout the treatment cell with the highest substrate levels found in well MW-14. In the initial injection event in August 2000, the emulsion moved into this well from several of the injection points and displaced much of the contaminated groundwater within this well. Well MW-7 has contained the emulsion since April 2002 and has not been sampled. Contaminant levels had increased in MW-7 between August 2000 and January 2002 when the last sample was collected from this well. An increase in total VOCs has also been observed in well MW-14 since the first injection of substrate in August 2000. Desorption of contaminants adsorbed to the soil due to enhanced biological activity may be contributing to the increased contaminant concentrations in MW-14 and MW-7. Contaminants that partitioned into the injected oil may also be released. Where substrate levels were above 50 mg/L, significant declines in total VOC concentrations (63-99%) were generally observed. Degradation rates for the total VOCs (9/1/00 concentration minus 12/16/03 concentration divided by 1201 days) were as high as 160 µg/L-day (well SMP-3) in higher concentration areas with greater than 100,000 µg/L total volatiles. In other areas with lower concentrations, total VOC degradation rates were lower, in the range of 1.8 (DMP-4) to $24.8 \,\mu$ g/L-day (SMP-1). The average total contaminant concentrations within the treatment cell have fallen by 79% since September 2000. This average includes the wells sampled on 12/17/03 and the well (MW-7) last

sampled on 1/8/02. The substrate reinjection in February and April 2002 increased the TOC concentrations in all wells within the treatment cell. However, in December 2003, TOC levels ranged from non-detect (<0.51 mg/L) in MW-14, SMP-3, SMP-4, and DMP-4 to 74.8 mg/L in DMP-4 with an average of 20.6 mg/L in the seven wells sampled within the treatment cell. Only wells SMP-1 and DMP-1 had TOC levels above the target level of 50 mg/L. Additional substrate is needed.

L

4

2.0 INTRODUCTION

.

The enclosed report describes the field study of *in situ* anaerobic bioremediation of a chlorinated solvent plume at the Photocircuits Corporation's 31 Sea Cliff Avenue, Glen Cove, NY facility. The study, which was initiated on August 31, 2000, has the following objectives:

- Determine if the addition of a food grade carbon source will enhance the extent and rate of chlorinated solvent biodegradation at the site.
- Determine the rate of chlorinated solvent biodegradation to estimate the time frame required for contaminant removal.
- Determine if the food grade carbon source can be adequately distributed in the formation such that the microorganisms can utilize it.
- Determine what role bioremediation technology has in the overall remediation strategy for the site.

..-

3.0 BACKGROUND

The Photocircuits Corporation's 31 Sea Cliff Avenue facility, Glen Cove, New York is located on the north shore of Long Island. The plant site is bordered on the north by a light industrial area, to the south and east are arterial roads, and to the west by railroad tracks. The site is generally flat and is covered by manufacturing buildings and parking lots.

3.1 Site Geology/Hydrology

Based on analysis of soil borings and details of well construction at the Photocircuits site, the surficial deposit below the facility is primarily composed of interbedded sand, silt, gravel, and clay layers.

3.2 Nature and Extent of Contamination

The groundwater at the facility has been impacted by chlorinated ethene and chlorinated ethane compounds from various sources. Prior to the start of the pilot test, total volatile organic contaminant concentrations (TVOC) in groundwater ranged from 457 to 539,000 μ g/L. Generally, the contamination extends to approximately 90 below ground surface (bgs) with the highest concentrations in the 20 to 50 ft. bgs zone.

3.3 Rationale for Use of Technology

As part of the technology review program, Photocircuits Corporation engaged Terra Systems, Inc. (TSI) to conduct an anaerobic bioremediation field pilot study at the facility. The study, which encompasses a triangular area roughly 92 feet wide and 157 long that had been used for drum storage, commenced in August-September, 2000. Eight monitoring points (MW-14, MW-7, SMP-1, DMP-1, SMP-3, DMP-3, SMP-4, and DMP-4) are being utilized to track the progress of the pilot study and full-scale implementation. Beginning in March 2001, groundwater samples were also collected from 4 additional wells (MW-8, MW-9, MW-12, and MW-13) to determine if any of the injected substrate had migrated away from the study area. Wells MW-10 and MW-11 were monitored in January 2002 and January 2003. The locations of these wells are shown in Figure 1 with the exception of MW-9, MW-10, and MW-11 that are further to the west. It should be noted that these wells are not expected to be impacted by the bioremediation study.

Ground surface in the vicinity of the study area is about 60 feet above mean sea level (msl). In the treatment area, wells are screened between 10 and 52 feet msl. Downgradient wells 8, 10, and 11 are deep monitoring wells and wells MW-9, MW-12, and MW-13 are shallow wells. The screen intervals for the wells are shown below:

- Well MW-14 10 to 20 feet msl
- MW-7 37 to 52 feet msl
- SMP-1 50 to 52 feet msl
- SMP-3 45 to 47 feet msl
- SMP-4 45 to 47 feet msl
- DMP-1 40 to 42 feet msl

- DMP-3 35 to 37 feet msl,
- DMP-4 38 to 40 feet msl
- MW-8 –111 and –96 feet msl
- MW-9 31 to 46 feet msl
- MW-10 -72 to 57 feet msl,
- MW-11 -112 to -97 feet mls
- MW-12 9 to 19 feet msl, and
- MW-13 11 to 21 feet msl.

Historical data indicates that anacrobic biodegradation is occurring at the site as evidenced by the presence of daughter products from the breakdown of tetrachloroethene (PCE) and trichloroethene (TCE) including cis-1,2-dichloroethene (cDCE), trans-1,2-dichloroethene (tDCE), vinyl chloride (VC), and ethene. Acetylene can be produced by the abiotic reaction of PCE or TCE with ferrous sulfide (Butler and Hayes 2000). 1,1,1-Trichloroethane (1TCA) breaks down to 1,1-dichloroethene (1DCE), 1,1-dichloroethane (1DCA), chloroethane (CA), and ethane. However, VC and ethene can also be generated from the breakdown of the 1TCA, 1DCA, and 1DCE. Based on a review of the site historical data, it appears that the biological degradation process is limited by the availability of organic carbon.

3.4 Technology Description

14

Anaerobic bioremediation, also referred to as reductive dechlorination, of chlorinated solvents is a well documented process that converts chlorinated ethenes and ethanes to innocuous gases.

The following technology description is from a report entitled "Cost and Performance Report – In Situ Anaerobic Bioremediation Pinellas Northeast Site Largo, Florida" prepared for the U.S. Department of Energy (1998) by Sandia National Laboratories and Hazardous Waste Remedial Actions Program.

Bacteria metabolize soluble organic and inorganic compounds to provide energy for the growth and maintenance of bacterial cells. The complex organic molecules that bacteria consume are converted to new cells and various simpler compounds, such as carbon dioxide, that are released back into the environment. This process is referred to as biodegradation. Biodegradation has been used very cost effectively for more than a century in public and industrial wastewater treatment systems. Since bacteria occur naturally in both soil and ground water environments, bioremediation technologies attempt to stimulate the activity of these naturally occurring (or introduced bacteria) to degrade contaminants in a cost-effective manner. Bioremediation is being considered more often as the processes that control the biological degradation of contaminants in soil and ground water become better understood.

In order to produce new bacterial cells, bacteria require carbon, nitrogen, phosphorus, and energy sources, as well as a number of trace minerals. Electrons are released by the biochemical reactions that metabolize complex organic compounds for energy. Biological systems capture this biochemical energy through a series of electron transfer (redox) reactions. The bacteria that are most commonly used in bioremediation systems use organic compounds as their source of carbon and energy; these carbon compounds are referred to as electron donors. Bacterial respiration requires that some chemical compound is available to act as a terminal electron

acceptor. Common electron acceptors used by bacteria include oxygen, nitrate, sulfate, Fe^{3-} , and carbon dioxide.

Recently, a class of anaerobic bacteria has been identified that uses halogenated organic compounds as their electron acceptors. The chlorinated VOCs present in the soil and ground water at the Northeast site are among the halogenated organic compounds that can be used in this manner. Halogenated compounds have a high oxidation state; and when a halogen (e.g. chlorine) is chemically replaced by hydrogen, the oxidation state of the chemical is reduced. This process is referred to as reductive dehalogenation, and it forms the basis of the anaerobic process used by the in situ bacteria at the Photocircuits site. Under anaerobic conditions, chlorinated compounds can be degraded via reductive dehalogenation reactions to successively lower chlorinated degradation products, and finally to compounds of significantly lower toxicity. This process is illustrated for PCE below.

 $PCE \rightarrow TCE \rightarrow DCE \rightarrow VC \rightarrow ethene, ethane step 1 step 2 step 3 step 4$

Biological activity is frequently limited by the availability of a single growth factor (e.g. electron acceptor, electron donor, nitrogen, etc.) and supplying the proper growth factor can often stimulate bacterial growth and biodegradation rates. For in situ bioremediation applications, nutrients or electron acceptors are often injected into the contaminated area to enhance the existing microbial degradation processes. Effectively delivering nutrients requires that factors such as site permeability and geochemistry be considered. Each class of contaminant varies in its susceptibility to biodegradation and factors such as aquifer oxidation-reduction potential, microbial ecology, and contaminant toxicity will affect the success of bioremediation at a site. The effective application of in situ bioremediation therefore depends upon careful consideration of the geologic and hydrologic properties at the site and on the type and concentration of contaminants to be treated.

Evaluations of the monitoring data from the Photocircuits site suggested that microbial dechlorination is occurring naturally. cDCE and VC are degradation products of TCE that were measured in high concentrations, but were not contaminants originally disposed of at the site, which suggests that a population of dechlorinating microorganisms is relatively active at Photocircuits

The report continues on to outline the technology advantages and disadvantages which are listed below:

Technology Advantages

- Contaminants are treated in situ with little waste generation
- Contaminant degradation can be relatively fast
- Bioremediation is capable of reducing contaminants to very low levels
- The process stimulates a microbial population that can continue to feed off the dissolved phase of a continuing source after nutrient injection ceases, and
- Often provides a low overall remediation cost relative to other technologies.

· •

•

Technology Disadvantages

.

- Contaminant degradation enhancement is dependent on adequate nutrient delivery to all areas of contamination before the nutrients are directly metabolized, which often is primarily a function of site hydrogeology and the appropriate mixing of nutrients, contaminants, and active microbes,
- Site conditions (e.g. soil and ground water chemistry, reductive processes, etc.) must be conducive to the stimulation of biological activity to be effective,
- Bioremediation will not directly degrade contaminants occurring in an immiscible phase,
- High concentrations of contaminants often are toxic to microorganisms,
- Bioremediation may be difficult to optimize at sites with multiple contaminants of concern,
- Incomplete biodegradation of contaminants can lead to the generation of degradation products that are just as toxic or even more so than the parent contaminants, and
- Regulatory concerns over chemical injections into aquifers.

4.0 MATERIALS AND METHODS

4.1 Study Area

The study area encompasses a triangular area roughly 92 feet by 157 feet with a contaminated interval of 50 feet (from the water table at 10 feet to 60 feet) underlies the former drum storage area of the Photocircuits Corporation 31 Sea Cliff Ave, Glen Cove, NY facility. Eight monitoring points (MW-14, MW-7, SMP-1, DMP-1, SMP-3, DMP-3, SMP-4, and DMP-4) are being utilized to track the progress of the enhanced anaerobic bioremediation treatment. Beginning in March 2001 groundwater samples were also collected from four additional wells (MW-8, MW-9, MW-12, and MW-13) to determine if the injected substrate had migrated away from the study area. Wells MW-10 and MW-11 were sampled in January 2002 and January 2003. It should be noted that the downgradient wells are not expected to be impacted by the bioremediation project. Recovery wells RW-1, RW-2, RW-3, and RW-4 were first monitored in December 2003.

4.2 Technical Challenges

The key technical challenges for this study are:

- a. ability to move a carbon source throughout the contaminated area;
- b. estimation of quantity of chlorinated compounds
- c. determination of minimum level of TOC required to optimize reductive dechlorination

4.3 Key Design Criteria

The in situ anaerobic bioremediation pilot system was designed for two main objectives;

- develop a nutrient delivery system capable of providing a mixture of nutrients to the subsurface within the heterogeneous aquifer, such that the nutrients will be delivered to all levels in the treatment area within an approximately 24 month operating period, and
- deliver a sufficient quantity of substrate to the treatment area to last for approximately 24 months.

4.4 Treatment System Schematic and Operation

The test area was injected with emulsified soybean oil in August 29 to September 1, 2000. The key objective of the pilot study is to determine if the addition of a food grade carbon source will enhance the extent and rate of chlorinated solvent biodegradation at the site. TSI formulated an emulsion containing soybean oil, lecithin (a soybean derivative that acts as an emulsifier), and water to provide required organic carbon. The soybean oil is broken down into smaller organic molecules and hydrogen that are then used by the dechlorinating bacteria. In the second injection event, soybean oil, a surfactant mix, a quick release substrate package, sodium bromide (a tracer), and activated carbon-treated water was used to prepare an emulsion.

Figure 2 is a schematic of the anacrobic biotreatment system showing the monitoring wells and the injection locations within the treatment cell. Injection points 1 to 7 were used in the first

10

injection event. In this injection event, the nutrients were distributed throughout the vertical extent of the treatment area by a Geoprobe® rig at the beginning of the pilot. The Geoprobe® pushed a drivepoint to about 50 feet bgs. The drill rod was pulled back two feet to inject the fluids under pressure with a Rupe pump. The rod was then withdrawn four feet and additional fluid was injected. This process continued until about 22 ft bgs. Approximately 3,500 gallons of soybean oil emulsion containing soybean oil, soybean lecithin, and tap water (treated to remove chlorine) was injected into five points. Forty gallons of soybean oil was injected at an additional point. About 4,530 pounds of soybean oil and lecithin was injected. In addition to pressure injection of the emulsion followed by injection of chase water to disperse the nutrients, natural groundwater flow has dispersed the substrate.

During the period of February 25, 2002 to March 3, 2002, Terra Systems, Inc. constructed and utilized a low pressure injection system to inject substrate into the treatment cell with twelve injection wells (injection points 8-19). The injection system consisted of 7 one-inch wells installed to 60 ft. bgs and 5 one-inch wells installed to 55 ft. bgs. Eight of the wells were spaced 7.5 feet apart in a line. Two additional wells were placed on either side of the line. All of the wells had 20 ft. of PVC blank riser and 40 and 35 ft. of PVC screen (0.02 slot) respectively. The wells were installed using the Geoprobe[™] direct-push method. Approximately 5,777 gallons of the emulsion was prepared and injected in February and April 2002. A total of 5,777 gallons of the emulsion containing 9,588 pounds of the soybean oil and surfactant mix, 94 pounds of a quick release substrate package, and 5.9 pounds of sodium bromide was injected.

4.5 **Operating Parameters**

The major operating parameters needed to assess the performance and cost of the bioremediation system were considered to be substrate concentrations and substrate longevity.

5.0 RESULTS

The bioremediation study at the Photocircuits Corporation site is being conducted to accelerate the degradation of the chlorinated contaminants of concern.

5.1 Performance Evaluation Criteria

.

The performance criteria considered in evaluating this in situ anacrobic bioremediation system included:

- Substrate transport and utilization in the remediation study area,
- Contaminant degradation rates and the reduction in mass of the contaminants,
- Fate of chlorinated solvent degradation compounds, and
- Levels to which contaminants can be reduced.

The evaluation data were collected by a monitoring program of eleven field sampling events over a 32 month period.

5.2 Organization of Data

The analytical data from the treatment cell collected from each of the seven sampling events are summarized in the following five tables.

- Table 1 presents the volatile organic data (VOCs), final biodegradation byproducts (ethene and ethane), important electron acceptors (total iron, sulfate, nitrate, and methane), and electron donor as represented by total organic carbon (TOC).
- Table 2 converts the concentrations of the chlorinated ethenes and chlorinated ethanes to micromolar units so that one unit of PCE is equivalent to one unit of TCE, cDCE, tDCE, VC, and ethene. Similarly one unit of 1TCA is equivalent to one unit of 1DCE, 1DCA, CA, or ethane.
- Table 3 presents the field data collected in January, April, June, and October 2002 and January, April, August, and December 2003.
- Table 4 summarizes the changes between the samples collected within the treatment cell immediately after the oil emulsion injection and the samples collected twenty-five months later. For wells MW-14 and MW-7, samples could not be collected in April, June, or October 2002 because of the accumulation of emulsion. Well MW-14 was sampled in January, April, August, and December 2003. MW-7 could not be sampled at any of these time points because of the presence of the emulsion. Positive changes indicate that the concentrations of the analyte have decreased. A negative change indicates that the concentrations have increased. In a number of cases, the contaminants were not detected in the initial samples collected after emulsion injection or in the samples collected after thirty-nine months. In these cases, the

percent change was calculated using the analyte detection limit and the percent changes are designated as greater than (>) or less than (<) the calculated change.

- For the downgradient wells, Table 5 summarizes the percent changes between the sample collected on 3/28/01 and the sample collected on 12/16-17/03 for wells MW-8, MW-12, and MW-13, for well MW-9 between 3/28/01 and 1/14/03, and between 1/22/02 and 1/14/03 for wells MW-10 and MW-11.
- Table 6 summarizes the changes in the chloroethenes, chloroethanes, electron acceptors, and electron donor for all wells from the beginning of the project in August-September 2000 to January 2002 or December 2003.

5.3 **Project To Date Results**

The following table summarizes the status of the key performance measures for this project as of December 2003. Details are described in subsequent sections..

Performance Measures	Values/Results
Treatment Volume:	
Soil	Approximately 92' X 157' X 60', 866,640 ft ³
Ground Water Treated:	Approximately 1,620,617gallons
System substrate transport effectiveness:	Demonstrated distribution throughout treatment area
Substrate effectiveness:	Enhanced dechlorination
Substrate viability	Lasted for more than one year
Total volatile contaminant degradation rates; 100 mg/L concentration levels 1 – 100 mg L concentration levels	160 µg/L-day 1.8 to 24.8 µg/L-day
Reduction of total contaminants of concern:	Achieved reductions of 30% to >99% except in MW-14 and MW-7 (through 1/8/02)
Chlorinated solvent degradation product production	General decline in all contaminants with some temporary increases in degradation products, followed by reduction of the degradation products themselves by biological degradation
Waste generated	None
Achievable contaminant reduction levels:	Estimated 90% within 48 months

5.3.1 Chlorinated Ethene Results

In the monitoring wells within the treatment cell, cis-1,2-DCE, VC, and ethene were initially the predominant chlorinated ethenes with little of the parent compounds, PCE or TCE, being detected. Trans-1,2-DCE is a minor product, present at 1.1% or less of the total chlorinated ethenes. Chlorinated ethenes concentrations greater than 1,000 μ g/L were initially only detected in SMP-1 and DMP-3.

PCE, TCE, cDCE, tDCE, and VC were not detected in well DMP-4 in December 2003; only ethene remained in this well. TCE, cDCE, tDCE, VC, and ethene concentrations increased in wells MW-14, SMP-1, DMP-1, SMP-3, DMP-3, and SMP-4 between the August 2003 and December 2003 sampling events as TOC levels became limiting.

As previously discussed, the goal of the process is to convert PCE into ethene because the ethene is considered to be environmentally acceptable. Ethene has not been associated with long-term toxicological problems and is a natural occurring plant hormone (Sims et al 1991). Unfortunately, given the field conditions, it is difficult to conduct a material balance. Ethene may be converted to carbon dioxide, ethane, or another product. Ethene may also be transported away with the groundwater, or production of ethene may have slowed due to some limitation on the microbial population including lack of substrate, insufficient nutrients, or lower concentrations of the parent compounds.

Ethene represented the predominant chlorinated ethene product in wells MW-14, MW-7. SMP-1, DMP-1, SMP-3, DMP-3, and DMP-4. Ethene concentrations have increased in wells MW-14, MW-7 (through 1/8/02), SMP-3, and DMP-3 through 12/16/03 from the initial levels observed on 8/31/00-9/1/00. Ethene concentrations for the other four wells of the treatment were lower than measured initially in September 2000. The continued presence of ethene in all of the wells in the treatment area shows that complete dechlorination of the chlorinated ethenes is occurring. Low levels of acetylene, an abiotic degradation product from the reaction of PCE or TCE with ferrous sulfide and ferrous disulfide, have been detected in wells MW-14, SMP-1, and SMP-3.

The addition of soybean oil emulsion has resulted in an increase in intermediate and final daughter products from the chlorinated ethenes in treatment area wells MW-7, SMP-1, DMP-3, and DMP-4.

In the downgradient monitoring wells sampled since March 2001, wells MW-8, MW-10, MW-11, MW-12, and MW-13 had parent compounds PCE and/or TCE. Concentrations greater than 1,000 µg/L of chlorinated ethenes only detected in MW-12. Since March 2001, six months after the first substrate injection, TCE, cDCE, tDCE, and VC concentrations have declined in MW-12. The first emulsion injection appeared to have had an effect on MW-12 based upon the increases in ethene, methane, and TOC. However, TCE, cDCE, and VC concentrations have changed little since January 2002. The availability of substrate (<0.51 to 73 mg/L TOC) may be limiting the extent of dechlorination at this well. Ethene has only been detected at low levels in the other downgradient wells. The very low levels of TCE and cDCE found in MW-8 had dissipated from April 2002 until to January 2003, but were detected again in April, August, and December 2003. Little change in the concentrations of PCE, TCE, cDCE, or VC was noted in the deep well MW-10 between 1/22/02 and 1/14/03. Low levels of TCE and cDCE appeared in the deep well MW-11 in January 2003. PCE, TCE, cDCE, tDCE, and VC concentrations have increased in MW-13, but ethene has only been detected at low concentrations of 5.8 μ g/L or less in this well. Although the area around MW-13 appeared to be substrate-limited from March 2001 until November 2002, the availability of substrate has increased to between 24 and 39 mg/L from January through August 2003. In December 2003, TOC was below detection limits and PCE, TCE, cDCE, and VC increased over the levels seen in August 2003.

In December 2003, the new recovery wells contained a mix of PCE, TCE, cDCE, tDCE, and VC with cDCE being the dominant compound. Ethene and ethane were not analyzed in these wells in December 2003.

5.3.2 Chlorinated Ethane Results

The analytical data for the treatment test to date provides evidence for biodegradation of the chlorinated ethanes. Wells DMP-1, SMP-3, DMP-3, and SMP-4 had the highest concentrations of total chlorinated ethanes in September 2000 with greater than 1,000 µg/L. 1TCA was the primary chlorinated ethane contaminant in wells SMP-3 and DMP-3. Reduced products such as 1,1-dichloroethane, chloroethane, and ethane predominated in wells MW-14, MW-7, SMP-1, DMP-1, SMP-4, and DMP-4.

Well SMP-3 has shown a 99% (178,000 µg/L to 2,300 µg/L) reduction in the 1TCA concentrations. 1TCA levels in wells DMP-3, SMP-4, and DMP-4 have dropped by >98 to 99.9 percent. 1DCA concentrations have dropped in SMP-1 (92%), SMP-3 (50%), DMP-3 (2%), SMP-4 (97%), and. DMP-4 (>97%). However, increased 1DCA concentrations have been noted in MW-14, MW-7 (through 1/8/02), and DMP-1 as a result of the dechlorination of 1TCA. Large reductions in the 1DCE concentrations have been observed in wells SMP-3 (>72%), DMP-3 (88%) and SMP-4 (>99%), but 1DCE increased in MW-14. 1DCE was not detected in August 2000 or December 2003 in SMP-1 and DMP-1. CA concentrations have declined by 84% in DMP-1, 27% in DMP-3, 39% in SMP-4, and 79% in DMP-4, but increased in other treatment cell wells. Based upon these results and laboratory studies currently underway with an anaerobic culture derived from the Photocircuits groundwater, we believe that direct utilization of 1TCA and 1DCA may be occurring in addition to the reductive dechlorination reaction where daughter products such as CA are produced and degraded. Acetic acid has been reported as a byproduct of 1TCA degradation (Lee and Davis 2000). Alternatively, sulfides generated from the reduction of sulfate may be reacting abiotically with the 1TCA and 1DCA (Gander et al. 2002).

Well SMP-4 has shown decreases in the 1TCA, 1DCA, CA, and ethane concentrations over the thirty-five months following the first injection of the oil emulsion. There was a rebound in concentrations of these compounds between December 2000 and January 2002 in SMP-4. When substrate levels were elevated after the second application of SRSTM, the 1TCA and 1DCA concentrations dropped and have remained lower than the initial levels even with the low TOC level found in December 2003. Concentrations of 1TCA, 1DCA, and 1DCE higher than initial levels were observed in wells MW-14, MW-7 (through 1/8/02), and DMP-1. However, further degradation products CA and ethane levels are elevated in wells MW-14, MW-7, SMP-1, SMP-3, and DMP-3. Chloroethane can be biodegraded under aerobic and methanogenic conditions (Lee and Davis 2000).

Relatively low levels of 1TCA and daughter products were found in downgradient monitoring wells MW-12 and MW-13, which were first monitored for this program in March 2001. Little of the chlorinated ethanes have been found in MW-8 or MW-9. In the deep well MW-10, concentrations of 1DCA, 2DCA, 1DCE were relatively stable between January 2002 and January 2003, and CA was detected. A low level of 1DCA was detected in MW-11 in January 2003. 1DCA and ethane concentrations have increased in MW-12 between July 2001 and December 2003. In MW-13, 1TCA, 1DCA, 1DCE, and ethane concentrations have increased by 43 to 247%.

5.3.3 Other Organic Compounds Results

4

Several other organic compounds were detected in the groundwater including acetone, methylene chloride, 2-butanone, toluene, benzene, p-ethyltoluene, 1,3,5-trimethylbenzene, 2-chlorotoluene, 4-chlorotoluene 1,2,4-trimethylbenzene, naphthalene, o-xylene, n-propylbenzene, and methyl tert butyl ether (MTBE). Over the thirty-nine months of the project operation to date, acctone concentrations decreased by 100% in DMP-1, but increased in MW-14 and SMP-4. In December 2003, acetone was found at 1200 µg/L in SMP-4 and represented 43% of the total volatiles in this well. Methylene chloride has decreased in all wells except MW-14 with declines by as much as 99.8 percent in SMP-1, >99% in DMP-1, 99.7% in SMP-3, 98% in DMP-3, 99% in SMP-4, 55% in DMP-4, and 38% in MW-7 (through 1/8/02), but increased in MW-14 through August 2003. Methylene chloride can also be anaerobically degraded. Toluene concentrations have declined in all eight wells in the project area. Although toluene can be also degraded anaerobically, the addition of soybean oil may have little effect on its biodegradation of toluene as dechlorinators are probably not involved in the biotransformation of toluene. 2-Chlorotoluene concentrations declined by 97% in SMP-4 and >98% in DMP-4, but increased in MW-7 (through 1/8/02) and DMP-1. 2-Chlorotoluene may be biodegraded to toluene and potentially further under anaerobic conditions. MTBE was first detected at 9.0 µg/L in SMP-3 in July 2001. MTBE was found at levels up to 125 µg/L in DMP-3, SMP-1, SMP-3, and DMP-4 in January 2002. We are speculating that the MTBE plume is from an off-site source since it was not used on the Photocircuits site. MTBE has not been detected in any monitoring well since July 2002. The MTBE appears to have flushed through the system. In December 2003, other potential components of gasoline or other petroleum fuels including benzene, toluene, o-xvlene, 1,2,4trimethyl benzene, 1,3,5-trimethyl benzene, and/or naphthalene were detected in wells MW-14, SMP-1, DMP-1, SMP-3, DMP-3, SMP-4, DMP-4, MW-12, MW-13, RW-1, RW-2, but not wells MW-8, RW-3, or RW-4.

Few of the contaminants other than the chlorinated ethenes and ethanes were found in the downgradient wells. 2-Chlorotoluene concentrations have increased by 4% in MW-13 between 3/28/01 and 12/16/03, but decreased by 24% in MW-12. 4-Chlorotoluene has been found in MW-12. Benzene was often detected in MW-12 and MW-13. Acetone, methylene chloride, benzene, and n-propylbenzene have been detected in MW-13. None of these compounds were detected in wells MW-10 or MW-11 in January 2002 or January 2003.

In December 2003, the recovery wells contained the following compounds: PCE. TCE, cDCE, tDCE, VC, 1TCA, 1DCA, 1DCE, CA, toluene, 2-chlorotoluene, 4-chlorotoluene, chloroform, and chlorodifluoromethane.

5.3.4 Sum of VOAs

The sum of the concentrations of all of the contaminants in each well was calculated excluding the final degradation endproduct gases, acetylene, ethene, and ethane. The sum of the VOAs has declined by up to 97% in SMP-1 with large decreases in DMP-1 (89%), SMP-3 (88%), DMP-3 (68%), SMP-4 (71%), and DMP-4 (79%). The sum of VOAs has increased by 5,514% in MW-14 as the contaminated groundwater displaced during injection came back into the well and potentially as VOCs adsorbed into the oil were released. Increases in the sum of VOAs were also observed to a lesser degree in MW-7 (-33 through 1/8/02). The overall average of the sum of the volatiles has declined by 79% over the course of the pilot and full scale implementation.

This average includes the seven wells sampled on 12/16/03 and the well (MW-7) last sampled on 1/8/02.

A first order degradation half-life of 533 days was calculated for the average total volatile contaminants within the treatment cell. Based upon this degradation rate, 90 percent of the total contaminants should be removed within 48 months.

Since 3/28/01, the total volatiles in the downgradient wells outside of the influence of the substrate injection have fallen in MW-10 (1%), and MW-12 (44%), but increased in MW-8 (-10967%), MW-11 (-5617%), and MW-13 (-228%) and have remained non-detect in MW-9. The highest concentrations of total VOAs in the recovery wells were in well RW-1 (3,680 µg/L) followed by RW-2 (1,679 µg/L), RW-3 (1,172 µg/L), and RW-4 (649 µg/L).

5.3.5 Substrate Distribution

The total organic carbon concentrations in December 2003 within the treatment cell ranged from <0.51 mg/L in MW-14, SMP-3, SMP-4, and DMP-4 to 74.8 mg/L in DMP-1. Well MW-7 contained the emulsion in December 2003 and was not sampled. It presumably contains very high levels of TOC. TOC levels were above the target level of 50 mg/L only in wells SMP-1 and DMP-1 in December 2003. A substrate level of 50 mg/L TOC should provide sufficient carbon to support dechlorination and other electron accepting processes such as methanogenesis and sulfate-reduction.

The substrate injections have apparently impacted TOC levels only in wells MW-12 and MW-13 of the downgradient wells. Downgradient wells MW-8, MW-9, MW-10, MW-11, MW-12, and MW-13 appear to be substrate-limited and did not have measurable levels of TOC in December 2003.

5.3.6 Electron Acceptor Results

As the microbes break down the emulsion, sulfate would be depleted and the concentrations of iron and methane would increase. Nitrate-nitrogen was present in December 2003 at low concentrations of 0.080 to <0.100 mg/L in the treatment cell and is a minor electron acceptor. Nitrate was detected in downgradient wells MW-8, MW-12, and MW-13 in December 2003. The predominant electron acceptor in the groundwater in December 2003 was sulfate with concentrations that ranged from 30 mg/L in SMP-1 and DMP-3 to 377 mg/L in DMP-3. Sulfate concentrations have declined from the initial concentrations in September 2000 in wells MW-14 (96%), SMP-1 (87%), DMP-1 (99.2% from 29,600 to 226 mg/L), DMP-3 (76%), SMP-4 (81%), and DMP-4 (57%) as would be expected with consumption of the oil emulsion. However, sulfate levels have increased in MW-7 (though 1/8/02) and SMP-3 over the course of the treatment. The average sulfate concentration in the cell has declined by 94%. However, as substrate levels dropped between August 2003 and December 2003, sulfate levels increased in wells MW-14, SMP-1, DMP-1, SMP-3, and SMP-4. Total iron concentrations within the treatment cell in December 2003 ranged from 3.09 mg/L in DMP-1 to 176 mg/L in SMP-4, which indicated that iron is also an important electron acceptor. Total iron concentrations have increased in five of the eight wells in the study area. The drop in dissolved iron concentrations in the other wells may be due to precipitation of the ferrous iron with sulfide produced from the utilization of sulfate. During the most recent sampling event in December 2003, methanogenic

conditions (>1,000 μ g/L) was detected in all wells. Methane concentrations have increased in all eight monitoring wells in the project area between September 2000 and December 2003.

Well MW-8 appears to be under aerobic conditions based upon the presence of dissolved oxygen, nitrate, and sulfate, and the low levels of iron and methane. This well is largely uncontaminated. While MW-9 has little organic contamination, it appears to have been impacted by the biodegradation processes upgradient as it has elevated iron and methane levels and decreased sulfate levels. No electron acceptor data was available for wells MW-10 and MW-11. Well MW-12 is under sulfate or iron-reducing conditions based upon the elevated iron levels and drops in sulfate concentrations. Although methane and iron concentrations have increased in MW-13 and sulfate levels have declined, nitrate levels are high enough (2.03 mg/L) for it to be the dominant electron acceptor.

5.3.7 Field Parameters

Field parameters including water level, pH, temperature, specific conductivity, redox potential, dissolved oxygen, and bromide (a tracer added with the emulsion) were collected since January 2002 for wells SMP-1, DMP-1, SMP-3, DMP-3, SMP-4, and DMP-4. Field parameters were collected for downgradient wells MW-8, MW-9, MW-12, and MW-13 since the April 2002 sampling event. The water levels ranged between 6.42 feet (SMP-1) to 7.96 feet (MW-8) below the top of the casing for wells from which this data was collected in January 2002. The pH was generally neutral, between 6.3 and 7.8. Well SMP-3 had an elevated pH readings, 8.7-9.9, but declined to between 7.0 and 7.6 from January to December 2003. The pH dropped to slightly acidic conditions of 5.3-6.3 in SMP-4. Downgradient wells MW-12 and MW-13 were slightly acidic, 6.4 to slightly basic, 8.7. Groundwater temperatures ranged between 11.5 to 24.8 °C. In general, the specific conductivity of the groundwater within the treatment cell was high, between 6 and 5,890 umhos/cm. Downgradient wells MW-8 and MW-9 had lower specific conductivity readings of 120 to 221 μ mhos/cm. Downgradient wells MW-12 and MW-13 had higher specific conductivity levels.

Negative redox potentials of -35 (SMP-4) to -128 mV (DMP-4) were found in the wells within the treatment cell in December 2003. Downgradient well MW-8 had a positive redox potential in December 2003, which is consistent with the low levels of contaminants found in this well. Although well MW-13 has higher contaminant levels, its redox potential ranged from -10 to 300 mV. The redox potential of MW-12 has ranged between -136 mV to 69 mV. Low (<1.0 mg/L) dissolved oxygen reading were observed in well DMP-3 and DMP-4 in December 2003. Higher dissolved oxygen levels were found in DMP-1, SMP-3, and SMP-4; the high dissolved oxygen levels are not consistent with the low redox potentials and anaerobic conditions found in these wells. Bromide was injected with the emulsion. Wells SMP-1, DMP-1, SMP-3, DMP-3, SMP-4, and DMP-4 had bromide levels of greater than 10 mg/L in June 2002. These wells generally had elevated TOC levels. Bromide levels increased between April and June 2002 in all monitoring wells within the cell except DMP-4. The highest bromide levels were in wells DMP-1, DMP-3, and SMP-4. Wells DMP-3 and SMP-4 had high TOC concentrations. Bromide was not measured after July 2002.

6.0 **DISCUSSION**

Previous studies have demonstrated the anaerobic dechlorination of PCE using aquifer solids and water in the laboratory (Parsons et al. 1985, Scholz-Muramatsu et al. 1995, and DiStefano et al. 1991). Previous field studies have also demonstrated the anaerobic dechlorination of PCE (Beeman et al. 1994, Ellis et al. 2000). Therefore, microbial reductive dehalogenation is a potential remedial mechanism for halogenated compounds in groundwater aquifers.

The objective of the technology is to convert PCE and 1TCA into ethene and ethane. The produced ethene is considered to be environmentally acceptable, because ethene has not been associated with long-term toxicological problems and is a natural occurring plant hormone (Sims et al. 1991). Furthermore, ethene is known to further biodegrade to carbon dioxide under aerobic environmental conditions (Beeman et al 1994).

VC has been thought to persist in anaerobic environments and to be more toxic to bacteria than the parent compounds (Barrio-Lage et al. 1991). However, subsequent work has clearly established that VC is biodegraded to ethene and ethane. The pattern of increase and disappearance of cDCE and VC is suggestive of microbial succession.

Conditions continue to be favorable for accelerated anaerobic biodegradation of the chlorinated solvents at the Photocircuits site based upon the following positive results from the treatment cell to date including:

- decreases in the parent compound concentrations observed in many wells, particularly the large drops in the 1TCA and 1DCA concentrations in wells SMP-3 and DMP-3
- increases in the daughter products including final products ethene and ethane in many of the wells.
- good distribution of substrate and its consumption
- prevalence of reducing conditions based upon the removal of sulfate and the production of dissolved iron and methane

There have been twelve groundwater sampling events during the course of the study. As of December 2003, the average total volatile contaminant concentrations within the treatment cell have decreased by 79%.

During the treatment period of 39 months, we have successfully demonstrated that the addition of a food grade carbon source will enhance the extent and rate of chlorinated solvent biodegradation at this site as indicated by the following observations:

- Total contaminant concentrations have decreased by an average 79%.
- The average concentrations of the parent compound 1,1,1-trichloroethane has decreased by 98%.
- PCE, TCE, cDCE, and VC were not detected in well DMP-4 in December 2003.
- Two monitoring wells (MW-7 and MW-14) have shown increased total volatile concentrations since September 1, 2000 by 33 to 5,514%. Well MW-7 could not be sampled in since January 2002 due to the presence of emulsion and the percent change

calculations are from September 2000 to January 2002. However, when viewed over the last 13 years, the total VOC concentrations in MW-7 have decreased 96%. From 11/1/99 to 4/28/03, total VOC concentrations decreased by 57% in MW-14. Since first monitored in May 1999, well DMP-4 has shown an decrease in total volatiles from 1,636 to 560 µg/L.

It is difficult to determine the total contaminant mass present at this site because of the limited number of soil samples and limited definition of the vertical distribution of this contamination. The total contaminant mass was estimated to be approximately 1,195 pounds based upon the average soil concentrations found in the 1996 or earlier soil borings and a contaminated volume of 361,100 ft³ (a triangular area 92 feet by 157 feet with a contaminated interval below the water table from 10 to 60 feet below ground surface).

Please note that the goal of this study has been to gather sufficient data to determine the rate and extent of chlorinated solvent biodegradation. If the study area could be isolated such that the contaminant mass did not receive any additional contaminants, Terra Systems, Inc. estimates that based upon the current degradation rates that approximately 90% of the total contaminant mass can be removed in 48 months. Although an acceptable remediation end point has not been defined for this site, the data suggests that this reduction will be environmentally acceptable since it significantly reduces the probability that chlorinated solvents will migrate off-site.

7.0 CONCLUSIONS

Although the study is an on-going program, there is now sufficient data to facilitate a comparison of the project to date results with the project's objectives. The following summary presents the project objectives in bold with the results.

Determine if the addition of a food grade carbon source will enhance the extent and rate of chlorinated solvent biodegradation at the site.

The overall average of the sum of the volatiles has declined by 79% over the course of 39 months. Increases in intermediate and final daughter products from the chlorinated ethenes and ethanes have been observed in all of the primary monitoring wells.

Degradation rates for the total VOCs are as high as $160 \ \mu g/L$ per day in higher concentration areas. In areas with lower total volatile concentrations, degradation rates range from 1.8 to 24.8 $\mu g/L$ per day. Wells MW-7 (through January 2002) and MW-14 have shown increases in total VOCs through their last sampling point in December 2003.

Determine the rate of chlorinated solvent biodegradation to estimate the time frame required for contaminant removal.

A first order degradation half-life of 533 days was calculated for the average total volatile contaminants within the treatment cell. This average includes the wells sampled on 12/16/03 and the well MW-7 last sampled on 1/8/02. Based upon this degradation rate, 90% of the total contaminants should be removed within 48 months.

Determine if the food grade carbon source can be adequately distributed in the formation such that the microorganisms can utilize it.

TOC levels in excess of 50 mg/L were established in all eight of the primary monitoring wells in the study area. The TOC levels after system start up ranged from 39 mg/L to 23,500 mg/L. TOC levels declined from the beginning of the treatment in most wells as the emulsified oil was utilized. TOC levels rose in all wells in the treatment cell after the second injection of the emulsion and ranged from 132 to 1,360 mg/L in August 2003. In December, 2003, TOC levels had fallen below the desired level of 50 mg/L in six of the eight wells in the treatment cell. Although it is not possible to do a mass balance because of site conditions, evidence of primary contaminant reduction combined with increases in intermediate and final daughter products strongly suggests that the TOC decreases are a result of biological utilization.

Determine what role bioremediation has in the overall remediation strategy for the site.

Based on the results to date, it appears that bioremediation can cost effectively destroy the contaminants in an acceptable time frame. As a consequence, it appears that bioremediation will be the primary treatment technology for contaminant destruction at this site.

The one unexplained observation is the increase in contaminant concentrations in MW-14 and MW-7 through 1/8/02. There are several potential reasons for the increased concentrations: 1) desorption of contaminants adsorbed to the soil due to enhanced biological activity may be contributing to the increase; or 2) contaminated groundwater displaced during the injection process could be moving back into the well. We are working to understand this phenomenon.

4

•

8.0 **REFERENCES**

Barrio-Lage, G. A., F. Z. Parsons, R. M. Narbaitz, P. A. Lorenzo, and H. E. Archer. 1990. Enhanced anaerobic biodegradation of vinyl chloride in ground water. *Environ. Toxicol. Chem.* 9:403-415.

Beeman, R. E., S. H. Shoemaker, J. E. Howell, E. A. Salazar, and J. R. Buttram. 1994. A field evaluation of in situ microbial reductive dehalogenation by the biotransformation of chlorinated ethenes. In R. E. Hinchee, A. Leeson, L. Semprini, and S. K. Ong, ed., *Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds*, Lewis Publishers, Boca Raton, FL. pp. 14-27.

Butler, E. C. and K. F. Hayes. 2000. Kinetics of the transformation of halogenated aliphatic compounds by iron sulfide. *Environ. Sci. Technol.* 34(3):422-429.

DiStefano, T. D., J. M. Gossett, and S. H. Zinder. 1991. Reductive dehalogenation of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. *Appl. Environ. Microbiol.* 57(8):2287-2292.

Ellis, D. E., E. J. Lutz, J. M. Odom, R. J. Buchanan, M. D. Lee, C. L. Bartlett, M. R. Harkness, K. A. DeWeerd. 2000. Bioaugmentation for accelerated in situ anacrobic bioremediation. *Environmental Science and Technology*34(11):2254-2260.

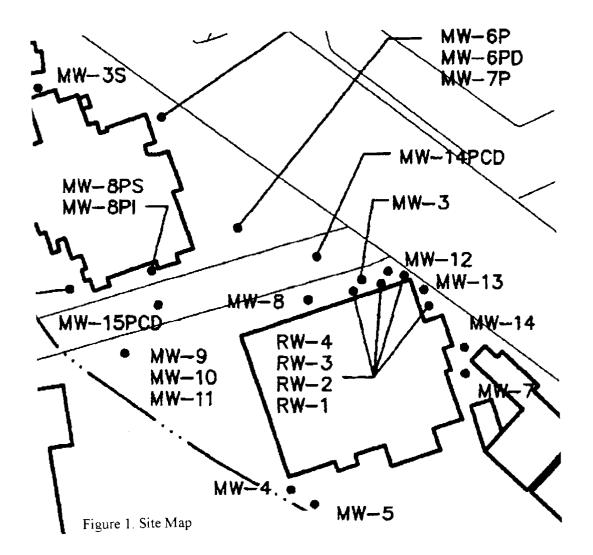
Gander, J. W. G. F. Parkin, and M. M. Scherer. 2002. Kinetics of 1,1,1-trichloroethane transformation by iron sulfide and a methanogenic consortia. *Environmental Science and Technology* 36(21):4540-4546.

Lee, M. D. and J. W. Davis. 2000. Natural remediation of chlorinated organic compounds. In Swindoll, M., R. G. Stahl, Jr. and S. J. Ells, editors. *Natural Remediation of Environmental Contaminants: Its Role in Ecological Risk Assessment and Risk Management.* SETAC Press. Pensacola FL. p. 199-245.

Parsons, F., G. B. Lage, and R. Rice. 1985. Biotransformation of chlorinated organic solvents in static microcosms. *Environ. Toxicol. Chem.* 4:739-742.

Scholz-Muramatsu, A. Neumann, M. Meβmer, E. Moore, and G. Diekert. 1995. Isolation and characterization of *Dehalospirillum multivorans* gen., sp. Nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. *Arch. Microbiol.* 163:48-56.

Sims, J. L., J. M. Suflita, and H. R. Russell. 1991. *Reductive Dehalogenation of Organic Contaminants in Soils and Ground Water*. EPA/540/4-90/054. Superfund Technology Support Center for Ground Water, U. S. EPA, Ada, OK.


U.S. Department of Energy. 1998. Cost and Performance Report – In Situ Anaerobic Bioremediation, Pinellas Northeast Site, Largo, Florida. Innovative Treatment Remediation

Demonstration. April 1998. Sandia National Laboratories, Albuquerque. NW and Hazardous Waste Remedial Actions Program, Oak Ridge, TN. 33 p.

•

4

FIGURES

. .

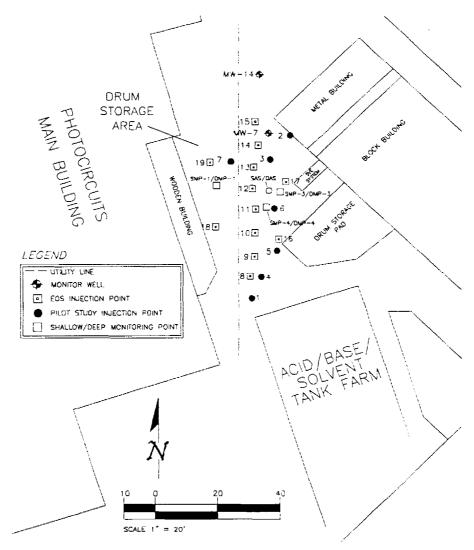


Figure 2. Treatment Cell

۰,

TABLES

.

Ξ.

yanamuet holtylanik joll¶ oldorenuk attuorioolul¶. A oldu P

•

•

sbiroh	।/तेन 1/तेन	81* 521 5	2 F 9 01	09 S£15	ço F11	061 ST-1	06 1741	5.57 -	89 7M	16 1	SS DIR
ы	ਾµਰੋਜ ਪਤੇਜ	(b			.0		L'S		71.	₹1> 50	Z '1:+
stuadiscrotitatie	1:3세	F†I	LAS	6.8	† 66	0102	0251	0201	0£91	L05	0071
pundroad	ា/តំព	971	917	162	0676	00883	00151	0858	0988	0856	1019
อดธิปไวตากไ	նցպ	08.0>	56.0 -	08.0 ×	01 ->	7 11	7 E S	\$112	<i>L</i> 1 *	0£11~	1017
anaihtorrah	1.74	\$0°1 ×	£ 9	50.1	1 **	186	7 † 5	E7F	962	8.06	1078
онец	् (<i>त्वेर्त</i>	951	571 -	5915	711	867	105	818	0621	0917	ю г 1
	्रा, जेत	Z\$	69	81	+1 ⁻	99	61		81	01	FI
	<i>:</i> तत	8.46	07.1	971	r	155	986	905 -	715	tsi2	14000E
sbrold') on	1\argumbda	151	05-1	01	077	951	±51	S HE 1	51.	675	DE I
500	- L'ard	151	¥ 51	L'S -	¥71 ·	£98	ffi:	978 -	t41 -	L6L	0051
	. Ng4	0 £	418'0 ×	08 D ·	÷ L +	1725	S7.	61 -	47.4	00.2 -	sί
	ियंश	02.0 ·	ntio -	02.0 -	÷ •	977 -	t E -	07.5	17 -	17.	0 •
օրջուխ	្រាត	715	\$0.1 -	2.1.	н·	t t ·	х t •	14 +	SI -	515	01 -
anaznadiyibani	.Egu	09.0>	05.1 5	09.10	11 -	77.	117 ·	5.97	L1 -	04.1 ×	051
susulou	.1⊴µt	58.0 -	SE 1 -	\$8.0	5 D1	73.5	7.81	61	÷1 •	05.1 ×	0.1
əbəznəqtAqqəon	ियम	SV 0 -	5Z 1	\$9.15	11-	tt ·	97.	m ·	515	05.1.5	01.5
આરો	ា/តំព	SE (S	06.0 -	SF 1 -	5.62	7 N ·	t 5 -	1+-	01-	00°† ×	n I -
	1 dri	01101>	\$£11 ×	0110	8.>	21-	2 E -	\$191×	ZL -	0715	01>
allaztragi	ा जे ग	0 <u>7</u> 0 >	0 1 11 -	06.01	501.5	2'9×	872 -	(1 -	915	91>	0° :>
eng king J	। जैत	57.1 -	51.1 *	SZ 1 5	rl>	91.	91.	67 -	55-	ES (1)>	01>
(\$3\$P) 0/8) 8¥(្រភព	961	86 1	HSH	1111	12967	57581	122.04	OFFEL	680±1	12722
	្រៅជ	tt	*5	081	INR)	0010	0508		09901	0979	INTS
ha	រុ/ដំព	7.55	731	69	661	881	622	981	617	981	K91
	9. 8 m	0645	GLL	9.25	2.04	1520	1111	46'5	111	5 2 8	RT Z
regority	្រភព	00517	898 5110	0661 7110		0ESE S 100-0 5	NE9Z EL 0 -	0061 SZ010 -	0597 520.0-	09E1 (18010	[\$'05 007-0 5

+

- узвочного Іврігурая соліч зіцогания, «Вирагізотол'я - А айди Г

•

.

nutur) mingk) lein l	patru	N #1	115	09	671	\$ 85	29.1
regonik sterily	្រភ័ព		\$10.0>	0.023	620 0	210.0	580.0
outing	pata.	101	Z11	102	107	6.89	616
leto L. nos	្រតិពេ	7,22	f81	£6 £	7119	NEN	131
ananata	1, Art	(19)9	0061	n97	0501	0155	0505
(sasað a.w) sAOV cuið	1504	061	0118	126	955	61	259
RADIA DAMA L'ANDA	1/spt	sz (-	91-0	57 L -	9 5 -	08010 -	81.0 -
suszusalygund i	ा/होगी	02:0>	95.05	7.0 ·	7.4.2	1£'0 -	t1 0>
οποίχ τ	[/គឺ ព ័	015.0 -	ts 0 -	t n.	ζ'ε -	11	91.0 2
Sustanting	ा, ते <i>म</i>	SET >	96.02	51 1 -	816 -	21	12:0 -
suszasolythsmirif 4,5,1	<u>्र</u> तंत	59 0 %	05 N>	£9 n -	t't v	Z')	660
areatharoid') S	្រភព	58.0 -	25	\$8.0	7 t~>	6.8	F'8
anovically (bottom $1/2, k_{\rm e}$)	្រូកវា	0910 -	69.0 ~	9.0 -	8.0 -	11:0>	210 -
pranjo (Aiji 1, 4	្រុកថ	2.1 -	89.0 -	71.	21-	77.0 -	t7 0 ·
знализр	1/dd	0.4	512	LD^{∞}	z.	8.2	59
anaulai	्र, तीर्ग	7.9	t H	£ R	ť >	98	56-0
SBOURDIEL S	1/414	15-	H911 -	1.5	05 -	s7.9 s	t 21
spirold") susiyitisty	१७१म	871	0.0	[-	9.15	61	0.8
suolosiA	្រុកាត	stin -	2.25	St 6 -	9.67 -	5.81	673
2016411	1,8H	Q >	0£1	18	ti i	14	K0
sumpor off.	1,81	852	181	107	091	598	wi£
anaihaoyofdar(17,1	1.51	\$0.1 ~	96.0 -	5011 -	91.	61	- 0'55
staffsondilsift 2,4	1/8n	08.0 >	85.0 %	08.0	t ·	ET 0 ×	LE
anerhaonoidaist. Ut	/तेव	221	t1Z	892	SET	202	161
anattaorohjahT_1,1,1	្រភ័ព	ssin -	29°0 ×	\$5.0 -	t٠	91.0 -	H 0 ·
ουσικίσοιγ	्रते म						21.
50.51[F]	<i>∕</i> तेर्म	F9	0/1	011	F E	t6	n 1
spuoją 5 jama	1/Art	E'64	1.79	611	09	6.69	5 01
anadisonoldaj(L-S, L-anau	1/44	581 -	95.0 -	SE 1 -	t t >	972	17
anafilaurahiaiO_5.1 si:	ា/ភិព	€'2₽	582	556	671	L81	6.8
anathaorohian i	११/मेन	\$8°0>	£'61	\$8.05	† *>	91	67
ensitisciolitisens	्रतन	0 † 0 ×	95.0 -	05.0 -	22.	oz n -	710.
sár()		0	61	111	807	FIL	sot
OIBC .		000Z/1£/8	0007/61/01	0007/07/21	1002/27/€	100Z/11/2	2002/8/1
llow		2 MW					

Table 1. Photochrotils Anacrobic Päot Analytical Summury

۹.

٠

Well		SMP 1												
Date		8/31/2000	10/18/2000	12/20/2800	3/27/2001	7/11/2001	1/8/2002	4/2/2002	6/25/2002	10/2/2002	1/13/2003	4/28/2003	8.4.2003	12/16/2003
Days		¢	4	E 1 J	2014	114	495	525	66.5	742	No.5	026	1068	1202
Tetrachlometheae	ug/L	9]-s	0110.4	, 22	< 5.5	-20	(19)	717	<\$\$>	<0.22	÷2.48	920+	<3.80	11 2
Irichlorectione	li gu	÷	12	860	1530	253	01++	26600	Ŧ	< 0.72	∆ ¥	<0.42	< 2.10	012
ers 1.2 Dichloroethene	uert.	24900	375001	\$114.43	.0.27	12300	150081	42500	25700	089	<1.68	<0.32 ×0.32	-1.60	15
hand 1.2 Dichloroethene	ne.	7	6.69	п т .	112	4. 1	s 843	909	5.515	- 0.62	7 -	** 0 ·	- 2.20	01,
Vinyl Chharide	h y y	1127	136745	NUM	1770	117.75	14.60	1182	0768	240	- 2 04	+ 0 - 6	198 7 ·	4
Lihone	, hugu	0.0	2400	11711	URU	0681	0.9	CALOR N	1420	9710	11HO	NUN	1901	7
Acciptene	ыр Я.						Π.	+1	<u>.</u>	.21	+22	• 5 5	- 2.2	- 1 -
1,1,1 Erichtonochune	jupit.	- 22	- 0 -	7,	1361	158	- 7.0	Ļ	П.	- 0.52	+	tt 0 ·	+ 2.20	01.
1,1 Dichlonactione	up/L	506	1740	628	708	536	554	400	205	197	2.0.5	26.1	+ 2.20	14
1,2 Dichloroethane	ug/t.	+ 32	+ 0,80	- 11	e.	- 1 -	. 8.0	5115	-115	91-01	- 0.92	4°07	021 -	
3, 1.1 Achiamethene	p.a.d	21-5	5 13	- 27	Ŧ	1.55	17	2965	S 05	+0.54	- 2.52	91 0 -	× 2 Ju	÷
Chloroethane	l, na	-72	21.6	82	~13 -	x i ·	+ 13.5	- 30.5	< 12.0	37.6	38.7	1+2	26]	680
Ethane	.lvau	4 ,	4	+25	< 2.5	< 75	÷12	<13	3.6	4.5	1.8	09,	47 Y	č.l -
Accione	hg/L	₩LC >	54.9-	+ 166	HL -	F1+1 >	- 115	-156	< 56.5	+ 2 ZV	45.3 ⊷	101	. ⊧ >	3 [7
Methylene (Bloride	Jug/L.	482	43.1	95.	< 20 S	6/11	- 18.5	~ 27	10.5	- 0.42	<2.52	2 75	<] 50	0 I ·
2 Butanone	l'au	- 204	-51	¥9 -	< 125	≤ 62 €	- 860	< 250	161	< 7.6	<:66.1	51.2K	F9]>	817
Foluciae	urs-L.	<32	1 19	61.	126	415	5.5	194	Ξ	58.5	257	418.9	7 15	22
Benzene	, haj i	- 28	1 4	Į,	57	4. >	1.87	8.4	105	1 6	22.8	24.4	-2.10	1.2
p I thyltohaene	्रतन	5 4 8	-12	- 20	ж ×	11	71 -	- 12	• 8.0	×0.32	2 HX	DE 07	0572	n I •
1.3.5 Trimethylhenzene	Jugit.	¥,	~0.60	- 20	× 1.7		+ 6.0	- 10	-10	tip>	<2.28	†€ 0 ×	02.1 >	51 U
2. Chlorutaluene	µg/1.	¥,	16.3	¥2,	< 10.5	173	× 10.5	-13.5	< 12.5	17.8	<1.52	1.01	051 -	Ŧ
1.2.4 Enimethythenzeue	J/4/L	4 7 -	<0.65	- 0.65	-1	151	\$9.	5 X ·	< 8 S	0.34	<2.4	06.05	0512	01.
Naphthulene	1/alu	Ţ	51.12	· 16	5.60	212	- 13 5	1	51417	85.0	97.16	()X () ×	100 1 -	-10
a Xylene	hip ² it	- 16	010.0	81	¥ ,	ד ב	- X D	01 -	- 12.5	1.2	- 1.42	12.0	02 I -	0.1 -
n Propythenzene	tup/t	NZ -	0.0	- 11	· 10 ·	17	112	, n ,	11 K -	-0.32	2 - 2 HK	2f 0 2	-1 60	0.1.2
Methyl 4-Mutyl Lifter	l:3u	• 50	1.25	52	Ţ	- 0 8 .0	117	<17	0.6 •	+0.36	- 2.32	11 0>	650.0	0
Sum VOAs (w/o Gases)	, l'equ	30.508	14380	M56.7B	7500	60521	56740	72112	15151	1611	117	7	279	tre
Methate	l/ậµ	0011	6200	2500	2060	0005	101	2110	DV:N1	2570	3680	1625	0187	6470
Iron, Fotal	լ,։Յա	19.61	11 6	131	П	bihi	104	34.5	11.2	12.2	1	42.2	27 6	217
Sulfae	l'qm	236	UNU.	+ + + +	¥I ¥	500	7.42	115	Ť	1	109	25.2	¥. X	101
Nitute Natogen	mpd.		1-010	0.071	12.4	e ute	- 0 F	040.0	- 0.025	+0.025	0.084		1900 0	001.02
 A of A have seed a 4 have see 	in a second	-												

guantimed having that A rolly vide reaction with a reaction of the figure of the second secon

.

-

undia') simero lino	1/gra	667	\$74	251	211	5 15	F1.8	117	5 tZ	L 85	104	F87	151	K tL
nequaliN startid	bym		n z n	F70 0	\$0.0	610.0	£1:0 -	\$70.0 -	100.0	170.0	91 n	880.0	57d'A	680.0
alistin	Equa	00967	6.65	64. i	\$17	0721	0021	0207	0.05	0401	0201	175	811	977
latert, no	្រជាប	S 88	588	14	£ 17	512 8	631	11+	8.6	2° P	RR Z	1164	LT7	60 Y
anntat	j/dri	0078	CM1135 7	005.01	0994	ni L	013	091	075	0157	117 kg	00001	00177	00117
Desired of white the fillenge of the second se	្រាជ	91471	017	F01.1	7461	7197	105	715	RM4	988	57011	1167	06F1	яя Г
isati (Bang T daa	្រ៩៧	571 -	57.0 -	\$7.1.	F1 ·	11F 11	06.9 -	89.0 ·	81.0 -	XI 0 ·	67.	110	92.0 -	01+
problepsing	្រុង៧	ne 0 ~	tr] () -	691	\$101 -	55-1	07.1 -	710-	91.0 -	91.0 -	11-	21 Q ·	7.57	n i -
sudian	j, dat	ut a -	080.01 -	41† 11	N -	08-0	09.0	EO	78.0	E I	\$911 -	107	09.0 -	51
ծուշինդիվը։	1/ahri	11	67.0	si t	5.6.	502 -	51.1	RC 0 ·	62.0	9 I	Lt·	811	40 Z ×	a (
energiality files (n. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	្រុកព	÷ H	7.7 m	t X	11 -	81	L. 🕈	t i	71	α ι Γ	031-	701	12.0	11
aradoto off.)	լյու	4.1.7	710	6 M I	s nt -	1.11	1.61.	9.72	1.01	N 12	7.95	618	1.67	11
sussinally them in 1.22,	patr	ЯZ	7 n -	09'n -	21-	550 -	wa -	F 0 S	£T	94	\$8.7 -	FE 0 *	\$8.0 -	\$°1
susulo)(qt/1	1/dzi	67	†? 0 s	Z 1 ·	8.1	PU -	71.	F0-	F I	L'1	1.11	010-	10	0 ¹ -
202702	j <i>a</i> tet	ni n -	F10	5.5	x ·	59.0 -	516.0	21-11-	12.0	18	86	±17	F 0F	85
ananto	19 ¹ 1	5.95	08.7	1 17	s nt	1.6	02.0 -	5.5	ж 5	ζ Γ	1° 11	£1#1	2°F1	61
Stronging	¦∕तीत	15-	ZO 1 -	1.5	\$71 -	¥ 14 •	98 -	01 -	REA	81 -	L'78 +	82 Y -	07 N -	69
շինտիլ է օրթիհիթք	्र _ा त्रोत्त	£.8.5	011	†77	161	8.75	\$8 10 s	80.1	<u>7</u> .1	H 1	513 -	28 H	56.01.	0.8
ອັນບາລອ	j/∺ri	0768	611	155	t-L ·	0511	511 -	17.9 1	н к г	8.91	9.95 -	98	\$0 L+	015
south	ा/#frf	9 >	φ.	-05	001 •	05 -	¥ ő	11-	81	£ 4	91	51	19	04
horochane	⊺ तेत	0621	r (r	717	651	Fet	26	£ 69	6.91	551	strz -	ፈገተቲ	0011	015
susificoroliford. L	्र तत	so 1 -	1 T D >	\$014 ×	6.	02.0 -	01.1 %	9.6 -	120.	6.0 %	\$15>	64	\$112	01.
2 Dichlouxebance	្រក់ជ	08.0 +	910>	08.0 5	01	6111	N8 Q >	91-01-	672	٤Z	\$11×	ተና በ s	\$8.0 -	012
anaittaoroidaide L,	l/gų	8.10	9771	651	of t	0714	171	017	711	r1+	985	101	791	071
smatismuldsini 1,1,	∕ etd	5511-	110	\$5.0 -	161	1187	02.0 -	ttn-	68.0	92.0 -	541.	FF0.	0111	01-
અપ્રેયુલ્પ્યલ	1944						71 e	215	715	715	Z11 >	2.2.5	2.2 -	21 -
anodi	/drf	nas	0901	076	069	011	16	091	017	01 F	ONOL	006	071	991
abinahi Mya	1.00	881	51	11 1	521	47F	stti	79	+ 52	081	084.1	0201	856	092
spottsonullaid 2.1 sus	[:dd	5615	17.0 -	SE L 1	11.5	0£.0 ×	F1 -	611	872	15	£ 7>	525	011>	Z S
snathsonoldai(1-5,1-8	n/dn	1:05	07.1	₩21	512	ተገя ሮ	06 O ×	£164	1 29	121	0194	0011	8'71	65
snortheorolificin	1/ਦੇਸ਼	\$8.0 >	£1:0>	58 O ×	01 -	ST	\$8.0 -	£'67	\$'01	91	€7>	ES S	50115	01.2
опофотофовло	1/24	0110 -	08010 +	ot a ·	555	n L •	69 N -	810 -	1.1	11:0 ~	Line -	97 n -	06.1 -	0'1 ~
NĂP		n		111	807	111	sót	665	L99	Z91.	\$98	026	8901	2021
218-		0002/19/8	000Z/81/01	0002/07/21	1002/22-8	1007/11/2	7007/8/1	7007/7/1	2002/\$2/9	2002/2/01	£00Z/£1/1	£007/87/h	£007/#/8	£002/91/21
1)9/		1 ding												

·

¥,

Lable 1. Photochrentis Anarrohic Phot Analytical Summary

.

•

Well		SNP 3												
Date		947,2000	10:19/2000	12/26/2000	4:27:2001	1002-11/2	1/8/2002	4-2-2002	6/25/2002	10/2/2002	1-1 V2003	4: 28:2003	874-2004	12-16/2004
Aye		5	(i†	111	208	TH:	192	879	6612	761	1498	969	106.7	1201
l'ettrachilari coefficave	Jug/L.	082	68.v	×	13.7	122	0.6.0	-24	-5.5	9.6	<0.2	~3.K	-3.80	0.14
richlorosthene	- f/did	+ 170	- 170	- 17	· 0.2	-17	5 % -	11.2	×1 ·	26	914 -	-2.10	- 2.10	0 I ·
cis 1,2 Dichlorocthene	1/81	190	0613	61 -	2.3	Lot	06,2	414	, 12	51	-4.2	4.1.4	09.1.5	2.5
ranse 1,2. Duchloroethene	l∕i8d	<:270	< 270	- 27	<0.22	F1.2	t.	95 2	- 155	1.7	546	<2.2	<2.20	A 1.0
Vruyt Chloude	h g q	1151 -	150	* † ·	4 X Y	X X0	5 7 F	071 -	811	105	- 5.1	71.9	22.9	1901
1 thene	p µ/l	ž	¥4,	2	18	170	181	220	7017	1 10	40	3	071	3
Acciptenc	ug-L.						117	т'́с	77	4.4	-12	71-	77	-12
 I. Frieldonoctione 	μad.	1 7N000	2.35000	52000	3.3700	13100	00541	7610	0208	5660	5780	4510	372	2,400
, i Dichlorochanc	. Papil	38200	4.7800	1770	50-	17600	REAL	205UD	10800	7620	7 547	116315	14600	00001
.2 Dichlereethane	1/HIT	- 160	+ 160	91 ·	¢	20.6	0.8 -	26.5	5113	5.3	< 7.J	1211	- 1.70	7.6
1.1-Dichlonoethene	J/gu	<210	~ 210	- 21	<0.27	164	\$F.	7	112	711	312	239	38.9	9
Chloroethance	hg/l	• 330	3.30	£1 •	76.6	÷.	346	# -	12	509	519	1220	9290	nost
F Ibane	/ad	96	45	Ŧ	స	24	17	9	3.4	=	Ξ	5.5	£.X	9 2
Acclone	-1/ян	0681 >	- 18'90	- 189	3690	534	211.5	1934 -	5.45	70.3	f 11-	256	['1]	0.1.0
Methylene Chloride	нg/I.	2400	~ 200	· 20	9 †1	122	68	152	- 10.5	24.7	6.0 -	13.6	K.13	51
2 Butanone	л <i>г</i> ///	<10201>	10201 -	201 -	- 2 5	- 62.5	· 860	- 3440	061.2	4.3.K	<165	- 164	-164	270
l oluenc	Jugel.	~1001 >	- 160	41 ·	34.7	2.60	с, т	: 2K	42	53.8	3.1.2	12.2	- :+	[6]
Benzene	[/fin	θŧ.	071 -	<u>-</u>	10,	20.6	5. X -	1	+ 10.5	2.6	0.4.0	9 9	-2 10	÷ †
p 1.thyladiume	ред	- 240	4177 /	7.	<01.0 ×	- 2.2	×12	×7 ·	0 × -	< 0.16	- 0	08 T	1.50	0.7 -
1,3,5 Trimethythenzene	-1/8rd	-120	~ 120	× 12	690	11.	- 6.0	- 24	01 -	<0.2	15.	1211	-1.70	0'1 ×
2 Chlorotacue	.1/дц	021 -	07.1 ·	11.	12	-16	5 DI -	42	- 12 5	21 K	×1.,	051-	-150	K7
2,4 Irimethythenzene	l/#π	001+	001 -	£1 -	+0.22	- 2 2	- 6 5	- 26	5 X -	16	- 6.0	-1.50	-1.50	- 1.0
Naphrhatene	j, i ti	+ 270	< 270	- 27	+019	I t	2.61 -	ţ	541 -	1.1	T ñ -	<4 00	00 F>	0
a Xylene	µр/].	0R ·	ΩX ·	×	÷	7	- N.O	~,12	- 12.5	0.82	<3.3	41.2	1 20	0 1 -
a Propylbeazene	ру/I.	01717	· 140	-	- 0.21	11.	0.7.0	÷.28	-80	<0.16	<6.2	(R) [7	091 >	8 v
Methyl I Butyl Ether	ы <i>р</i> /1	<250	< 2.50	· 25	+ 0.28	9.0	117	-36	6,9%	<0.18	5.8	-0.53	65.0×	0.1 -
Sun VOAs (w'o Gases)	hgu	218600	2K2K(H)	37.170	37574	32207	241143	28262	19530	14434	1.3804	12175	24373	20037
Methane	μg/L	100	140	4	ЧE	2005	1020	2000	5500	940	00561	14000	116001	2(19:00
Iron, Total	mg/l.	50.6	14 2	6.9.6	3 92	32.5	5.99	97 X	4 65	10.1	6.92	6	13.4	ίħ 8
Sulfate	tight.	286	269.	ž	53.7	10501	1640	01-01	611	¥5\$	1	75.2	85.6	111
Nitute Nitropen	hyto.		- 0.015	0.53	0.037	5 10 Cl ·	110-	600.8	0.017	· 0.025	610	0.076	\$\$11'0	- (1.10)
Later of the second of the second	1	100		5		1.1	111	1 CLUD	11	1.1.1	1 11	2	222	1.5

Тавде 1. Рікогосітеція Анаеголіс Рію, Анаруісы Залинану.

•

•

												6 417C		112A
1071 2007/91/71	£901 £007/b/8	696 £007/87/t	F98 £007/£1/1	192 2002/2/01	299 2002/SZ/9	645 2007/2/†	\$6# 7007/8/1	F1F 1002/11/L	90Z 100Z/ZZ/E	111 0002/02/21	6† 0002/61/01	0 0007/1/6		SABC SIEC
1 ·	0.61 -	517	<u>16 · </u>	10.	77.	<u></u>	tY	1.27	11.	01-	\$109	<u>91+</u>	<u>Jard</u>	spethorochaene
11 ×	s:01 -	07.4	£7>	92.0 >	7 L>	*>	\$18 -	9.8	2 •	\$ 8 *	S'€I ≻	† € •	1/au	nehtmosthene
n' l >	00.8>	1.54	12>	9.1	н' т =	\$012	0.9.5	611	£ >	5.6 *	L1 -	86 -	ղ/#ժ	susitionalitaiQ_2,1 ai
LT	0 [1 >	0t t>	17.	£.1	7.9 -	01>	±1%	t1>	2.2.2	541-	t1 ·	t\$ >	T/ដីថ	susdisonoldaKL S, Lausa
175	246	911	< 52 -	2 19	£11	£6£	t59	5 N.L.	541	818	¥Z6	0001	1/Bri	<u>օրտ</u> ել էս։չ
t 1	067	015	026	055	079	077	695	06 t	067	011	05+	130	ा, तेत	presic.
ZI -	71.	Z Z >	τι.	7 1 -	2°C -	211	z L -						/∄d	ensiylene
Its	0195	0151	0665	±12	0531	00991	00561	00017	164	ontez	00111	00461	n, an	snathsorolition (-1.1,
1015	00701	071'8	00801	0864	0117	OLLY	0922	0576	t 92	0021	0981	nezs	្រៅថ	anathaotofilaid. U
12	05.8 5	t'E+	5112	\$ 67	0.08	511 -	0.8 -	6 SZ	ζ۰	0.8	\$ 6 -	25 -	ា/ពីព	anaitheomhlaid - S.
41	1.80	2.96	\$185	9.5	F21	\$1>	11.	891	812	\$ 01 5	t2>	451	'¶∂n	analisotolitaid, 1,
X065	0818	0091	0506	0198	00101	6061	0972	0.500	67L	0924	0£69	02.65	1/84	ទានាដែរបាលដៃ
۰. ۱	н	£1	58	97	ii:	91	98	28	71	ff	16	LS	[/#d	-ment.
11.	5 02 -	121	995	171	514,	951 -	\$11-	r+1 ·	stl.	5 16	59 -	821 ×	1/404	aliojaay
t.	05.2	2 ++	5 11 -	29	8.16	17 -	5 81 -	6.85	8.11	ni -	6 t	911	(<i>p</i> tri	shinold") sasigitab
11	0.78	N 21 -	978	81.	92 -	057	(H9N -	\$ 79 -	52-	15	lt+	H07 -	्रमेत	pitoimate :
191	8'08	\$ 27	5.95	SIDE	9.28	t8	801	1171	2151	£01	151	292	†/ ∂r l	ananto
n i e	ទី៧]>	7.40	02	12.0.5	7 t -	8	58-	£ [-	1 -	01	07~	NZ -	(atri	oussuss
n Le	DS L	0.6.>	15 -	91.0~	212	zi >	71.	6.6	912	Z1 -	4.	81	1/80	seaupután r
	05.8 -	Dri-	5 87 -	51	01	01 -	11.9 -	115	++-	9	51.	t7 ·	[// व	anazuagi Anjanin 1, C.C.
11-	0.7.	00.5 -	61.	1.8	0.5	551 -	5 0 [-	\$ 15	12.	N R	511	H ·	j/did	promotory (
K 1	DS E.	001 -	05 4	sit	F.F.+	5.8	\$ 9 .	<u>i</u>	27.	59.	571-	97 .	1/ild	onexhedbydrauinE 4.5.
5°1 -	007>	0.8 >	Lt>	61	85-	6-	5112	L 🖬 🕫	615	5 81 -	0.6 -	t5 -	n, ∂ri	analestidev
1.5	00.9 -	ot Z -	5.01+	81	0.5	0	0.8	91	9.1	0.1-	5115	91 -	1/ಕೆಗ	analysis (
11~	00.85	07.5	15.	91'0 -	215-	SOLS	04.5	TT S	12.	04.	DTL -	8Z -	ា/តិព	спольбі реплене
010	5979	90.1	62>	81.0.1	0.92	415	571	010	87	s Z1 -	511-	05	1/51d	Activity Figures
2101	86422	20611	16852	SOLET	92151	15221	11617	19759	62+2	18771	20122	19121	1/itrl	(spsp() 0/m) SVOA 1000
10697	0011	0875	00201	0011	00113	058£	0051	078	016	008	068	060	្រូង៧	of the second
57.1	01	Lĩ	611	8.86	F11	RSE	0.64	511	8.02	1 +L	8.99	109	Than	listell, jaser
ял 0. Е	615	0671	981	0021	581	421	881	ELL	976	451	981	121	-Dyn	otajna
5181 001:10:>	7£1 5110	991 TS0'0	91£ 211	107 \$70'0 >	641) 52010-2	201 670 0	9.62 81.02	H ES DEODIO	9°72 1,700	F01 55:0	9-88 6610	Z 86	ា/ឡាព - ប្រឡាព	Mirale Mirugea Onal Organic Carbon

grammark lasitgianA toff sidersanA stitustisotoff. A sida T

•

.

otal Orpanic Carbon	. Ugia	981	£ 09	t fs (}	9741	5.94	0.1£	0745	089€	0061	0911	218	15.02
uegentiN etsatiN	1/3ut		\$10.0 ×	16.0	61-0	750.0	£1:0×	520.0>	\$Z0'0 -	6610	50.0	EE.0	101:0×
suffus	្រុងល	EE6	021	SET	0071	161	01.01	611	1.62	+Z'S	611	1.65	871
hou, tout	ា/តំណ	Z91	6.81	1.24	š'ts	7 115	8 L I	0101	0(11	165	607	+1Z	971
onabolo	1,0रेग	nst-	041	0071	05'91'	0081	0097	0711	0064	009±1	00552	00824	10991
(sasei) o'w) sAOV mu2	l/gu	9616	SODE	0125	1272	1221	0676	064	1571	1 687	\$691	L50Z	£92 2
waliyi Li Banyi Lihar	J/84	s71 ×	914 >	5 Z >	t12	08.0%	911-	96.01	81.0 -	67.>	97.0 -	£570-	012
anayana ang ang ang ang ang ang ang ang ang	ា/តិ៨	07.0 >	955	F 1 -	ទាំ	116.4	8.2 ×	28.0>	91.0 -	(C >	08.0>	091>	04~
ο χλιεικό	्//हेत	05.0 -	t S.F	8.0 -	9	41 -	7.1.2	0510 -	\$7.0	591>	09:0>	07.1 -	01:-
anoladırlıqaN	J\gu	SC 1>	945	27.	\$6.	1 🖅	† '\$'*	85.0.5	67.0 %	Lt>	00.4 >	00°#+	012
ənəznədiyilərnin 🛛 🖶 🛵	ា/តិ៧	A.N	0.52	E.F.	٤I٠	72 -	9.5 -	†€ 0.≥	L1 0 -	0£>	51.0 >	05 UN	0 E#
snouloioold") S	ा/जे ग	5.54	t '5 ?	$L^{+} \vdash \mathbb{N}$	\$ h] >	t 12	211-	05 N>	\$2.0>	61>	\$2.0 >	05.1 -	07
sussanditythenan L. E. E. I	្ប/តិព	25	0.9 >	21-	612	1115	t"Z>	01:0>	Z'0>	S'8Z>	58'0 >	021>	01 -
storiotiyit. ti	្រៅព	ЯŦ	8.6 -	-54	x ·	7.2 -	N'to-	710 -	91°0×	15 -	51.00%	05.1>	0'1 *
anaznañ	1/81	02:05	8.2 -	E12	5 -	€l≻	t { >	さだり>	12.05	DZ -	50°1>	01.5	01.5
anoulu 1	्रत्वेष	911	9 LF	5 52	\$ 4 .	Z X1	9.69	010 -	96.0	61>	00.[>	00.2 -	0.6
Shearshift 2	1/514	l'S>	►91>	701 -	\$71.	520-	HH'S	9'L ·	4E1	978~	n718 ×	F91>	530
sbirold") sostytisty	. Nguj	\$6Z	121	7 -	822	171	8.99	56	8.8	5162	SR 6	051 -	L1
50015.5Å	ា/តិដ	t 6-	97 -	6'R1 ~	+L -	ビヤレ・	9t -	201	12+	0591	£f'ተ	£19	0071
positi	(<i>त</i> ोत्त	4,	9~	61	01 ~	01 5	t Z	21	17	Ľε	4	€l>	67
Stationold")	រុ/តិដ	15.50	LTB	0008	0651	516	96L	<u>∠</u> €1	657	0901	0101	0671	012
anadianolifaid 1,1	∏/dri	501	9.6 >	177 -	6.	7 RF	0FT	t 5 0 ×	LZ 0 -	5 UC>	5115	01 2 •	0/1>
anathaonahbaO. S, I	1/g4	7 97	81Y *	91.	012	± 61	71E >	94.0 -	0.6	\$115	58.0 -	02.1 -	0'1 >
snathsenoblard 1.1	्राजीम	0201	0141	0811	0122	0756	0687	SEL	611	F81	±08	5 45	911
sumborottair1-1,1,1	ा जेत	0513	947	£66	0016	0192	0022	17	5.11	521-	F5'8	07.23	7.2
analylene Acelylene	/ ∄ r						210	215	21 -	2°1 >	21>	2.21 -	712
availt3	h 6 a'	550	061	077	024	891	0tri	LX	62	ЯZ	28	21	54
shindd") lyni V	្រុសីដ	561	9 11	9.61	5 7L	111	971	614	1.5	5 57 -	1.01	0872 >	84
onothoriobiloi(C, f, ensu	្រុកវិជ	501 -	95-	17	11.5	÷1.	95.	7941	ti a -	5 Z 3	0110 -	077-	01-
anadrooroldard 2,1 ais	j/∂ní	664	8.0 ->	61,	\$1+	8.04	9 F >	01	Z 1.Z	12-	l E	4.05	081
susdiamoldani	(1/8n)	\$ 8 '0 >	+5>	211 •	01>	$L^{-1} >$	t-£>	çq	9£ 0 ×	£7>	8.6	012.*	£1
snadtsorold antis (.Tugui	2.81	9.5 5	08.0 -	\$`\$>	£6	75	Z'04	5768	18>	201	0.20	081
sár(]		0	81	011	202	ELE .	101	299	192	F98	696	2901	1071
216		0002/1/6	0002/61/01	0002/02/21	1002/12/6	1007/11/L	7007/8/1	2002/\$2/9	2007/2/01	£00Z/£1/1	£00Z/8Z/ 1	£002/†/8	13/19/2002
\$Å\$(]		0	81	011	102	£	٤l	t6t E1	299 161 11	19 <u>2 799 161 El</u>	13 464 995 294 1884	13 464 495 141 894 606	1901 696 198 19 <u>1</u> 299 tot E1

•

grammue instigant, tuff9 siderant, animerisoted9. J. alda T

٠

•

nodu. O similar O lato	. Dqn.	L 11	t čs	6.05	9'h.	L 51	TL.	LIL	191	£ 84	162	90£	562	1 <u>50</u> -
подотній - эцілий	1/สัน		22.0	110	71.0	\$10.0	î10×	120.0	\$2010-	\$20.0	\$70.01+	81.0	21.0	60 O
andhai	្រភព	111	121	5 86	602	171	941	97.1	647	522	LLI	777	1.65	145
late 1, not	1/200	Z %†	7.61	5 Z†	t 58	911	911	1.67	1 **	851	8.95	1.58	†1 1	£ 90
suscials	ា/កំព	081	n17	061	00£	ij.	05 Z	057	0817	0098	00517	55300	00261	10987
(sessit) p/w) sAOV runk	। जेत	6897	\$187	2115	8881	0627	(0£1	\$8E1	1241	6745	0150	1555	009£	095
radia) Egundi T. yobab	្រុកដា	\$71>	t Z -	52 n -	87.0.>	08.0%	617	89.0>	06.0 ×	81.0 ~	62 -	59.2 %	£510 -	012
εποτηροιτεσης	1/मेर्स	1°44	0611	† 1'0≥	12.0 -	11-	† 1.≥	21:05	08.0 -	91:0>	if ·	00.8 ×	F 61	0° 🕻 👂
analy i	t∿g u	811	08.0 ×	800.0	0.2	917	91>	91	571	92	591.	()() 9 ×	0Z 12	01 -
analadh qab	/តី ព ៍	E't	0 <u>7</u> 2 ×	22 n -	93	i t >	27-	82 0 -	st I	N 7	2 1 -2	0.02 >	00 t >	011
onoxnodigiftominT é,S,	्।,तत	ENI	651	65	22:0>	26	0'6	5.61	C S	£.ð	0£ >	05°2>	051>	5.5
supulation of the second se	្រុកា	5'49	s tt	121	9.16	6116	2.46	210 h	1.15	515	61.	05.7 >	051 -	SZ.
sussinglighten 12.5.	្រុកព	26	nz •	52	F 1	E1 •	211	6.9	01+	62	\$ 82 -	ns 8 -	05 [2	t Z
aranjoji Argan	िया ।	L'1	n t 'z -	† 2 u -	21	27	F77 1	8t 0 ·	08.0 -	62	16.5	05 L =	0512	042
anaznaš	L,8 d	02.03	01-15	ELO-	01.0 +	015	611	(71.0 -	so t	17.0 -	02 •	5'01×	017-	0.12
anaulo i	ាក់(្	11	512	13	19	F1 2	69	7.01	i L	2.02	61.	0'01>	2.01	91
SHORADEL 3	r/äri	15+	Z'01 -	70°1 ·	57-	\$ 79 -	721 -	01 ×	61 -	815 -	978	D 78 -	F91-	01.
appoint Constants	1/44	N 22 K	9.91	611	8.61	N 07	± 8	271	2.22	6.92	\$ 16 -	525	2.01	£F
ອນດາລາງ	1/8H	St 6-	6'81 -	68 1 2	2.5%	P+1 -	17>	t79 -	59.5%	£1.1>	995 -	5702.2	1+1>	015
ગાસ્પા	1 an	ų -	95	68	<i>(</i>).	95	F Z	112	61	11	17	t t	67	112
santhoooh?	իքվ	02112	0857	0011	0891	0897	0121	0971	0111	0173	0151	0945	0956	015
susification ditate. L	L'au	501 -	0175	12.0 -	81 n -	\$1 -	77.	9.0 -	561 -	22 n -	516 -	511.	01.2 -	0 f e
sondranohisid S,	1/ đ đ	08.0 -	091 -	91 n⇒	LN	£17	91.*	9 1 0 >	5.9	£'01	\$11 >	05'8-	011>	011×
anathaorohiaid 1,	្រុងដ	167	1'07	†1'0≥	1.05	0.0£	£ 91	9.81	1.82	2 NL	\$ 12 >	\$ 76	0Z Z>	011
sugitscooldarif. L.L.	្នុះទី៧	£95	091	11.0 -	651	1 X L	EL /	FF 0 ×	£ L>	97 D ×	561-	0115	07.7	04-
analytical	្រកិជ						714	Z11	2114	Z 'T ~	21.	71.	71.	71.5
onoidi.	1/8ri	052	092	550	n91	95	04.2	051	007	011	68	021	18	<u>98</u>
əpuorii) (Arriy	- pairt	$SET \simeq$	05.6 5	SC 0	67	0210 5	58.	07.0>	st i.»	t 'S	5'52 -	0.11>	08'Z>	012
sustrisosoldsiči 2,1 enar	ा/तेल	Si: [>	51'JO	22 10 -	FΈ	+1.8	8'Z' \	0t 0 >	\$\$1-	61	12>	0112	07.2.>	01.
snathaoroldaid. 2,1 si	ា/រៅក	\$ 5 .0>	061	61'n -	0£0>	†1.×	81.	2505	21>	t7:02	17.*	00.8 >	091>	$\mathcal{Y} \models \mathbb{R}$
sentionoliton	1.34	\$10>	0£1.1⇒	41.0 -	07.0 -	L1>	2.15	ZE:0>	8.1.5	95.0 >	62>	\$1015	01.2 >	9 1>
sinally confidence	1.81	01+ 01>	08010	090.05	11.0 -	0.2.	712	81-05	\$5.0 -	11.0 >	162	0.61>	08.6 -	015
sybs		0	Xt-	011	202	EIE	tot	845	299	192	t-98	696	2901	lozi
3)R(0007/1/6	0007/61/01	0007/02/21	1002/12/6	E007/11/2	2002/8/1	2002/2/1	2007/\$7/9	2002/2/01	1007/111	1007/87/1	£007/h/8	15419300
UPA		r aiso						-			-		-	

ytical Sammury	
ис Ана	
ohic Pil	
Anaer	
Photocircuite	
Fable I.	

< •

Well		NW 8									z	MW 9			
Date		3/28/2001	7/12/2001	1/8/2002	4/3/2002	6/26/2002	10/3/2002	1/15/20/03	4/28/2003	875-2003	12/36/2003	3/28/2001	7/12/2001	1-8/2002	1/14/2003
Days		0	1	494	579	643	15	658	761	No.0	566	=	115	161	657
Letenhoroethene	μr/l.	+0.11	<0.20	<0.12	~0.24	<0.22	H.US	<0.62	<0.7b	86.0 +	3.2	<0.11	<0.20	+2'0'>	<0.62
l richlosoethene	pg/l.	N :	1	101	<0.16	41.72	<0.36	~046	161	4 22	96	<0.20	< 0.17	< 0,15	<0.46
cis 1,2 Dichlarachene	, l'au	<0.30	1	×0.18	< 0.21	10.48	- 0.24	- 0.42	55 E	154	0 1 1	~(1 3 I)	< 0.14	-11,21	<0.42
saus 1.2 Dichloroethene	ne'l	+ 0.22	€ [∩>	87 D /	<0.20	<0.62	-0.23	91-11-5	14 (15	<0.22	6/1×	<0.22	÷0.14	< 0.20	+0.46
Vinyt Chloride	Jugit	+0.25	02010 -	59 D	+ 0.10	- 0 +0	-13	150 -	0.56	+0.28	410	<11.2.5	020.0	+ B.10	15:02
there	, ал	4 ,	ų -	11,	E.t.>	12	112	9°F	- I -	1.1	4.3	-0	ţ		
Acetylene	, l'add			12	× 1.2	- 1 2	- 0.26	-12	-12	1.2	·1.2				
1,1,1-Frichlopaethane	urd.	<0.20	+0.16	41'0-	< U.22	<0.82 <	f o ·	- n 35	H-11-	< 0.22	-1.0	· 0.20	-0.16	÷ U 22	< 0 35
,1 Dichlorocthane	hgu	+ 0.14	< 0.12	< 0.25	×0.22	19.0 -	+ 0.31	Et n -	11 -0 -	+0.22	17	÷1,0 ·	< 0.12	< 0 22	<0 4J
,2-Dichlorochane	l'su	~0.20	<0.13	< 0.16	<0.23	9† 0×	1242	-4.23	46.0 ×	<0.17	615	50,20	- 0.13	< 0.23	×0.23
L.I. Dichlarochene	, hgu	<.0.18	40°14	< 0.22	+ 0.30	40.05	- 0.27	< 0.n3	< 0146	< 0.23	9 7	+ 0.18	< () 4	0£ ny	+ 0 63
Chlurothaac	p p. 1.	- 0.30	+0.18	- 0.42	- 0.61	Nt.0 -	1.1	610.	110	11 07	al.	¥ 0 ·	81.0	19/0 -	61-10 -
t thanc	hug d	ų,	9.	÷1.5	1.1	411 - E	e.	ų. L	Υ.L.	÷	÷1.	9·	ų.		
Acelone	Jug I	辛丁	11 17	-23	< 3.12	12.20	611 -	• 11.3	- 2.82	171,	0 v	81-1-2	btk. >	3 12	611 ·
Methylene Chloride	hurl	14:0 -	< 0.15	- 0.37	ts a -	×0.42	<0.21	600	- 0 'N	<0.15	0.1.v	1102	< 0.15	75 B)	< 0.63
2 Butunone	pred.	< 2.5	< 6.25	- 17 2	0.5	+ 7.6	841.1	< 10.5	4 J.28	1011	0 v	~ 7.5	-6.25	-5.0	10.5
Boluenc	μe/L.	÷0 15	+0.14	10.	× 0, 14	01-02	~.0.2	RE 0 -	010 -	× 0.20	-10	s'I 0%	†1 0 y	† 1 0≥	0.3K
Benzene	J'au	(I) U>	< 0.13	-013	91 rl >	- 0.42	< 0.21	1 07	-0.42	1505	< 1.0	0 I 0>	<0.13	<0.16	F'0 -
p Ethyltolnene	μę/l.	40.16	-11.22	12 D -	+0.24	-0.32	-016	1910 -	- 0.30	\$1.0 -	10	+016	- 0.22	10,24	~ 0.62
3.5 Irimethylhenzone	μp/l.	H OF	11 10 -	u.12	- U 20	014 01 -	< 0.2	40.57	11 10 -	21.0 ×	<1.0	+0 34	11 9 -	- 0.20	45 IF+
2 Chlorotolueae	hgμ	<0.21	- 0 16	- 0.21	<0.27	0N 05	< 0.25	< 0.38	+0.30 ×	<0.15	0 -	<0.21	41.15	-0.27	< 0.3K
4 Chlorotolaene	μp/l.										<1.0				
2,4 Trimethylhenzene	μr'l.	-u 22	<0.22	£1.0 ×	< 0.26	10 P.	- 0.17	<0.6D	<0.30	\$1.0 ×	0 v	<0.22	÷u.12	<0.17	09.02
Naphthalone	лр I.	61 N ×	110 -	× ti 27	50 4	85 0×	< 0.29	te:0 -	×0.80	<01-10×	0.1×	61.0 -	14.0 -	× 0,14	P6 U 2
o Xylene	μ μ -Γ.	<0 16	<0 16	-0]6	+ 0-20	-0 SU	\$7.0 -	- 0.33	< 0.24	< 0.12	0.1 ~	<0.16	91'D-	- 0.20	< 0 33
n Propylhenzene	нр I.	-0.21	<0.31	f l n -	<0.21	- II. A2	- 0.16	- 0.62	<(1.32	<0.16	-10	-0.21	16.02	< 0.21	<'0.62
Mediyl i Butyl Filler	.Vau	<0.28	-19:080	×0.18	11.03	-0.36	< 0.18	85.0 -	×.0.11	<0.053	017	< 0.2K	080.0>	HC 012	<0.58
Sunt VOAs (w/o Gases)	μg:1.	X -1	2.9	1.0	00	00	3.7	Ð	65	19.61	1.00.2	0.0	0.0	0.0	0
Methane	1-dim	ę.	19	1 0	10.1	20	3.1	76.0		96	21	300	014		
Iron, Jutal	l'an	0.023	60.048	10.096	0.000	6.00	0.23	0.069	0.00	0.056	1890-0	101	21.9		
Sultate	att: 1.	22.6	23.4	+ 12	212	11	951	\$ 71	24 I	0.85	23.0	17 7	23.1		
Nitrate Nitrogen	any I.	9	5.63	14.93	6.66	69.4	5.67	利の	6.14	5 70	66 E	- 0.025	< 0.015		
Tutal Organic Carbon	mg/1.	4.97	16 00	1 5 0 -	171	6.6	4.7	7 8 F	6, 5K	4 69	< 0.51	86.2	6.79		

•

•···

Eable E. Photochreuth Auscendie Pilot Analytical Numuary

•

÷

Well	-	NW 10	AN M	JW II	Ÿ	MW 12									
Dak		1/22/2002	1/14/2003	1/22/2002	1/14/2003	3/28/2001	1/12/2001	1/9/2002	4/3/2002	6/26:2002	10/3/2002	1/15/2003	4/28/2003	8/5/2003	12/16/2003
Days	1	=	37635	0	37635	e	106	287	371	455	554	658	401	560	169
Ectrachloroethene	μμA.	2.3	<0.62	<0.12	< 0.62	<0']]	- 0.20	40 SH	< 2.4	1.12	×0.55	<0.62	<0.76	×0.38	0.15
Eichloroethene	ካሪካ	6.7	t-: 7	<0.17	9.9	122	590	16.5	H.	67.8	82.5	48.7	101	34.1	53
cis 1,2 Dichlaractione	μμ ^{.0} .	24	543	40.18	18.1	1280	18.2	064	503	467	***	311	369	223	230
trans-1,2 Dichloroethoue	J/Jan	<0.20	<01.46	< 0.2K	<040	7.3	FI 0 ×	5.6	<2.0	<2.1	-1.55	9†'0×	3.84	1.70	5.5
Vinyt Chloride	Jight.	2.7	15.0 -	+0.85	1502	742	5.7	Χς.	666	151	1.63	8 87	5.27	29.7	÷
Ethene	J/44					6.7	60	1xi	04T	061	17	•1.J	2	17	•: †
Acetylene	, Marti								· 1.2	× 1.2	2</td <td><u>.</u>12</td> <td><1.2</td> <td>4 I 2</td> <td>-1.2</td>	<u>.</u> 12	<1.2	4 I 2	-1.2
1,1,1 3 richloroethanc	με/l,	<0.22	<0.35	+ († 14	< 0.35	-0.20	< 0 16	- 0.22	< 2.2	- 2.6	L . >	5E 02	46.02	< 0.22	0.1.5
1,1 Dichloruethane	ped.	200 200	1901	52.011	63	72.2	17	926	189	345	91.2	38.6	38.6	107	<u>16</u>
1,2 Dichlonethane	μr/l	v.	8.8	91.0-	-424	2.9		-	+ 2 -	-24	511,	12.0 -	1 0 1	- 013	0)-
L.) Dicklinoethene	biti	1.05	4 14	0.10	19.0 -	7 %	t 0 ·	17	-	- 17	11 - 1	1001	2.59	6.4.9	1
Cháorocthane	յեր՝։	610.5	531	- 0.67	01 0 ·	01.0 -	×0.1X	61	19.	+7.	-12	61107	- 0.KK	16.0	0 -
t there	1.411					\$ ^{\$}	"	72	Ξ	18	0.8	(1) (1)	2.0	4 X	5.4
Acctone	I-44	• 4.12	113	+7-	10 H -	X1 I -	11 1-	214 -	2.11.	5 I -	1.5.05	11.	2 8 2	1+2.	0 I ·
Methytene Chloride	,1/q4	15°0 -	10.03	-037	< U 65	1407	- 0.15	15,01	† 5. ·	-2.1	5 U 1 -	50°05	-0 3 0	- 0 I S	-10
2 Butanone	μµ/1.	115	16.5	- 17 2	- 161 -	- 2.5	· 6.25	131	0,	¥1, -	ų1,	· 16.5	- 1.28	+1.64	0.1.5
Loluene	. I'verg	+1 0 ·	51, 15	t 10·	40.38	10.07	H D -	A 6	+	-20	0.1 -	+0 IR	111-0	0.20	0 <u> </u> ·
BURZUNC	µ⊭∕t.	-0.16	+0	- 0 2	t:0 -	17	- 0.13	7 7 7	· 1 6	- 2.1	• Les	† D -	7 (H	1.18	÷.1
p Ethyltohuene	ur:1.	<0.24	59/0 -	72.0.2	- 0.62	10.16	<0.22	FZ () >	- 2.4	6.1.×	<0.8	-0.62	<030 30	<015	0 I >
1.4.5 Trimethythenzene	µв/1.	<0.20	<0.57	- 0.12	- 0 S7	1 £ 0 /	· 0.11	~0.20	- 2.0	<2.0	~	45 02	H.0+	110 -	01-
2 (hkorotoluene	ur'l.	<0.27	×0.48	- 0.21	×0.38	1.01	5 थे. स	2690	10:01	0161	555	54	571	417	1001
4.Chlorotolaene	hqu,					14.5	- 0.17	828	81	147	÷	55 0 *	5.95	040	370
1,2,4 Framethythenzene	up/l-	- 0 I 7	09.0	- 0 (3	- 11 643	- 11 12	- 0 22	- 012	1.1	<u>, 1</u> ,	- 0 8 5	0.00	· 0.30	111	- 10
Naphthalene	µ⊮/I	10.	16°N ·	- 0.27	10.0 -	· 0.19	140,	1 10	+ . -	.24	- 1.45	16 11-	0 H O -	-0:10 -	-10
а Хујене	j.an	< 0.20	50.33	- 0.16	11.0+	1.16	- 0.16	2.3	- 2.0	< 2.5	-1 25	10.03	· 11.24	+ 0.12	91.
a Papytheazene	hed.	- 0.21	- 0.42	†1 n -	× 01.62	-0.21	11.0 -	12.0 -	12.	 1.6 	× n ·	+0.62	105	155	- -
Methyl CBury Effer	l'qu	1.0.	10.35	Ki 10 -	85.0 -	-11-28	080.0	1	F ()	+ 1.8	- 0.0	+0.58	11.0.	1500	u] -
Sum VOAs (w/o Gases)	l/gtt	105	2 277	0	11	2151	÷.	4X.75	1965	8118	Du2	1515	4 54	1184	1200
Methane	nup/1.					071	(1995)	2170	1670	1120	110	=	679	110	111
kon, Fotal	nip'l.					6772	45 EI	6 0	t+ 6	41.7	1.11	7 11	171	612	10.7
Sultiate	l'qui					117	지지	81 7	1160	100	407	2.16	545	4	312
Nitrate Nitropers	1.dro					· 0 025	0.070	0.0425	000	< 0 02.5	150.0	0.026	0.10	0.085	0.098
Todal A hometer (Carbone	l'am					111	10.6	10.0	72.6	15 @ -	10.1	13.6	(13)	2.02	1511 -

10 of 12

gramming heatylen A toll 9 vidersam A stinenteoroff - 1 elds T

.

*

negoditi shahi	1)stur	\$63	89 F	ts 1	+ *¥ †	SI 7	751	17-1	78.0	91.7	5 01
օալիւ	tajn N	268	07.5	81-0	991	171	ILt	\$91	(tt	615	10t
lated into	[}aµn	15 H	815.0	16.0	97.0	47 O	H0 S	11. T	19	t7 7.	11' †
Subtate	. Papo	71	17	057	011	061	076	0101	ofo)	078	IF16
(soon they) sA()V run	1,81	stt	\$691	9611	0181	87 I SR	\$18	1.896	707	1611	11111
Aethyl i Budyl Eiher	្រឹក	8Z10 ··	080.0 -	FE 10 -	t1'0>	81.0 -	81.0 -	85.0 -	11.0 -	£\$0'0's	91 ·
Propyfbenreac	្រតិជ	-0.21	W 0 -	12.0 -	12.0 -	57.0 -	91.0	79 D -	02.7	064	9°1 ~
analyX	្រក់ព	91'0~	910 -	07.0	• 0 50	57.0 -	\$7.0	44.0 -	17:0 -	71 D>	915
օսօրդրվո	្រភិព	61.0	1H 0 -	t1.0 ·	†4 n •	67-0	67.0	t6'0 -	08.0	01-0	9 I ·
severally/form1.4.4	թեն	77.0 -	27 n -	71.0 -	710-	CL 0 ·	7.1 0	09.0 -	OF D -	st o -	91 -
similatorold")	្រភ័ព	4.01	2 11 2	t 92	8.72	5.2	7.01	91	Z5 F	th t	51
sing nedby through 1.2.3.	<u>।</u> ਗੋਸ	t£ 0 ∘	11.0 >	07.0 -	× 0.5ft	07.0 -	07.0	2510 %	tf:n>	<u>7</u> Γ0×	9 I S
anantorityd	1/dvl	9110 -	77.0 5	17 D -	±2.0 >	91.0	91.0 ×	790 -	06.02	\$1.0 >	91.
anavnaj	,3rl	16	11	0.8	64	17.0 -	0.5	17	21°0 -	12.0 ×	H
enonto	[/def	51.0 -	#1.0×	FL 0 -	† 10×	07.0 -	07.0	8910	0 1 10 -	07.0 >	n i -
auouring	,ते न	523	52.0 -	05.	055	817 -	8.1	\$ 91 -	8711 -	1 915	915
օբազգել) օսօլ հպօր	n,Sri	() (0%	\$1.0 %	ts 0 -	†r\$ n >	17.0 -	[7:0 -	£0.U -	881	\$1.0>	91 -
ອາເດນອ	្រុទិត	811 ×	tt I 2	LNI	2119 -	EL L -	£1:1>	£11 -	177	141>	0 I.e
suad.	្រៅជ	815	L'9	17	68	67	81	£1 >	£1>	٤ [>	17
annatisonald'	। /∄त	000-	81 D ×	19:05	19.0 -	17.0 -	12 O -	61:0 -	88'0>	tt 0 >	915
snadtsoroldai(I-1.	1/Sul	9.04	h '09	556	9111	к.С	EEL	\$ 01	910 -	18.5)1Z
sumbroughbid 5.	ा/लेल	9.2	67	87	12.0 -	17.0 -	£7:0 ×	£2.0 >	† €'0≥	£1.0>	112
analbouoldaid 1,	,धन	157	151	921	ç0£	LI	8.96	156	SH'N	115	NL L
prentporoblaj (1. 1. 4.	ា/ភិហ	OF	6.06	7.75	661	č 1	11	61	FF 0 -	60.1	5
ອນອງຊົມອອ	₂ ਰੋਜ			5 I ×	2115	7 1 -	Z 1 -	Z 117	21-	Z1>	71 ×
ouoqa	្រភិព	9 ×	9.	91	61>	11	11 L	£1.2	515	8'5	€1>
shoold Styre	្រភិព	9'85	9.82	711	ተረ	915	2.92	£ 91	0972	8172	Ю£
senderenoldarCLS, Lane	្រភិជ	0.H	L"+	611	0'8	15'0 -	0.1	9110 -	tt'n -	77'0>	17
susdisoroldsi(L-\$,1 si	¦, वैत्त	†%L	268	0561	886	9.69	105	269	SEL	97t	3002
anarhaonoirtair	ा <i>र</i> वैत्त	6'58	t1[917	261	6'81	TLL	8'69	171	0.12	385
etrachiorochiene	ा/तेत	878	071	917	127	2.91	\$108	69	۴L	6.61)LL
sára		0	901	887	128	Sst	t\$\$	0	Z9L	098	66
ote		100Z/8Z/E	1002/21/2	2002/04/1	2002/£/F	2002/92/9	2002/6/01	£002/#1/1	£007/67/th	£007/\$/\$	E002/21/21
IIPA		EL MIN									

.

ę`

Table 1. Photocircolts Anacrobic Filot Analytical Samoary

4

•

Well		kw i k	RW 2 K	KWJ H	F 74 T
Date		12/17/2003	12/17/2003	12/17/2003	12/17/2003
Days		•	0	•	0
ferracidonothene	J'yyų	130	1	23	6F
Lichkonschene	l/gu	240	140	470	170
cis 1,2-Dichloroethene	u pril.	2800	710	019	360
trans 1,2 Dichlowethene	1-3 d	21	7	v. +	2.4
Vinyl Chloride	hgu	280	K2	97	012
1, f., l-Trichloroethane	hg4	28	0 ·	0.1.2	2
 Dichloroethane 	Jup-L.	81	120	5.0	3
1,2 Dichloroethane	upd.	0.1 +	nj,	0.1 -	0.1 >
1,1 Dickloroetiene	μg/L.	89	6.2	ž	16
Chlorothanc	.1, 3 п	41	0.1.	0 I -	
Acclute	∕au	01 .	0.1	οI.	0.1.
Methykae Chloride	,l/qtt	•1.a	• I.o	01.	5 U
2 Butanone)/nh	41.0	1.0	0	o.1.e
l of uence	up/l.	6.4	24	• - -	01-
Benzene	l/gµ	7	2.6	.	
p § thyliotucne	1, 3n	0:1÷	010	e 1 ·	
1.1. Truncthylbenzene	[dat	81.	u [·	n ! .	÷
2. Chlomotolaene	hµ/	50	92.5	-10	01.
4 Chlorotolucae	μu'l.	0 ·	Ŧ	-1.0	=
1,2.4 Ennethylbenzene	hgi(nı,	01.	-10	3 - 7 C
Naphihalene	hqu	ti 1 -	01·	e -	01.
a Nylenc	յել՝	u.1 ×	• I •	N -	a 7
n Propylbenzene	Jup/1.	11.	n(,	0,1.	01.
Methylit Buryl I Iho	, Muri	0.1 -	· 10	-	n -
Chloroform	j,rhf,	15	•10	=	() () ()
Chlorodiftmonethane	J/aut	615	0 I ·	0.8	66
Stills VOAs (with Gases)	hgiq	0680	6791	1172	Ĩ

rmoltaring Analoration (Contention) and the structure of the structure of

.

.

and the second se	1.11	ε ι	26	1		89	ti	nc	\$9	111	CT.
лиу С, рјоније	IN II	54	96	18	97	89	95	82	CET.	H¢.	£100×
anadiooroldar(1-S, 1-ana	Mu	95.0	77.0	11/0 -	F1	95.0	11:0	61	91.0 -	1900.0 -	610.0 -
anadisonoldai(J-S, L-si	Mu	152	LHY	Hť	8200.0 -	LEI	981	687	\$97	0 L	210.0 -
enstheoroldaia	Muj	< 0.026	09.0	ĉ.a	9.11	61.0	9.55	1,202	15.0	\$\$00.0>	610.0×
อนอนุเอดมยุปจะมอ	IN ri	960.0>	1:00.0	ELU-	550.0-	210/0 -	969:05	160'0 >	210.0	£100.02	\$10.02
41r(0007/18/8	0002/81/01	15\50\5001	1002/12/5	1007/11/2	2002/8/1	1/5/5005	2002/\$2/9	2002/2/01	£09Z/£1/1
Jusnimelno	11 ² M	<u>I-dBNS</u>	<u></u>								
parte	Mu	07:0>	€.k	52	1.1	5.1	5'7				
50mHsmald*	With	0.1	R'Z	Γ¥	\$77	21r	0.6				
อกจก่าอยางได้อเป-1,	Mu	V10'0>	660010 >	[10]0 ~	110.0 -	07010	1200.0 -				
anishaaroldajQ-S,	1571	180010 >	8£00'0 ~	[808.0 >	010.0 -	£100'0 h	110.0				
smithsoroldbiCl-1.	157f	2.1	5'7	ĽZ	P.1	5.1	61				
saertisenatrianit-1,1,	1/Virl	11/0010 %	91:0:0 >	11/0010 %	0:00	2100'0 ·	0100.0 ~				
auajAuaoy	leg ri						910.0 2				
punqi	LNT .	5.5	1.8	61	Z1	F.K	6.2				
eptional) (Ym)	121	£9°0	L.T.	2.2	01	0.1	L110				
anadioonoldoiQ-S, L-ana	Mu	¢10.0>	8\$00.0>	±10.0>	\$1:0:0	120.0	220'0				
ацаціаото(ПаіСІ-2,1-га	Mit	61/0	67	LY	51	61	980'9				
anaditame	1501	5900 O ·	\$1.0	\$980.0 -	010.0	71.0	170.0				
anatheorolifearte	(A) f	t700'0 >	1100.0	1-200.0	£1000 ···	7100 D ·	71000.0				
ગાર(0007/11/8	0007/61/01	15/30/3000	1007/17/6	1007/11/2	2002/8/1				
រងសារពាររដ្ឋា	liow.	<u></u>									
aury	Mil	L'I	12	91	11	57	9.1		09:0	11:0	21/0
anad taoroid	INT	12.0	610.0>	920 0	0.2	0']-	8.7	131	0.02	5.55	217
anotherroldor()-1.	LAN1	110.0>	\$90.0	110'0 -	9.4	N'L	97 S	55	13	P6'0	9618
onschooroldoi(I-5.	14/H	180010.5	9608.0 1	1100	01:0	8£0	230'0''	Z110%	LTO>	L[0:0>	01:0
annianoldat@	TAN IT	£T	7'7	0.5	216	6 681	#700 #771	L'98	5.98	8'96	8.18 01.0
amerborohian [-[, [,	TA IT	17.0	£100 ·	740.0	572	60a) 1051	FU	0.T 2.32	2'21	8.6	0.9
cerylene	[A] fl	1.0	(10.0	E MAN	36	1.31	27:0	. 5	950.0~	990.02	0.6 9F0.0>
ามอนุร	Mq	5 1	L'I	17	5.5	91	21 0 7 E			370 02 71	9700.
	Mil	870.0~	UT0	820'0 -	кс ЯТ	17	кт КТ	(1·0·)	12 515	53	07 071
enertheo tolifloid 1-2, 1-ant	EV II	1:10:0 -	110.0 -	F10.0	аз П'0-	170.0	090.0	1.2.0	170-	120.02	010.02
anadramoldaiO-2,1-si	EN TÍ	860910%	810.0 -	860910	5110×	67010 -	210.0.	22.0 -	L['0>	880.0	010 0 S
richloroethene	NTI .	\$900'0>	010.0 >	\$909'0>	920.0 -	970'0>	970'0>	81:0>	21.0>	910.0>	FI2010
		2 700 0	1800.0 -	\$300.02	520.0	1/20/00	\$10'0×	610-	91 02 £20'0~	910 0× £70:0:-	F70.0 F20.0
anaillagioidasita	N 1					1	1 1 1 1 1 1			1100	1000
ate etrachiorosthene	h/u	0002/15/8	000Z/6f/01	0007/07/71	1007/87/£	1007/11/2	2007/8/1	1115003	1128/2003	£(K)2/5/8	12/16/2003

թունն	i Ni	07:0 >	07.0	£8'0>	£8'0 >	EX 0 >	€F0>	£1:0>	2110	\$1.0	09010	<070>	<0.080	£H01014
ploroethane	Wit	[1>	E3	28.0>	<0.23	17:0>	25°0>	110 -	6[10 >	85.0	09'0	LE	01)	5.01
snadtsoroldarG-T,	Mu .	£1:0>	99'0	47.0 5	61	LS'0	S I	Ľŕ	75'0	\$20.0>	\$20.0>	91:00:0	1.20.0	010.0 -
anishacrotha(L-S,	15 rf	7.6.0 >	1800.0 -	L10 ·	££0.0>	1100	180.0 -	71.0%	2110 ·	£600'0>	£600.0>	1/E00.0	210.0 -	010.0
anishacrotharO-1,	LV ri	E S	ъt	£"9	ζL	të S	9 F	Ľĩ	0.5	0.5	0510	12.0	+ 0.022	21-10
amidiaenoldan (- I, I,	N/I	91:85	11:00.0 -	\$7.0 -	LT	7.1	250.0%	780 O ×	260°0 ·	010.0~	010'0 -	- 0.0032	910:05	\$200.0~
analylana	EV II						71:0	820	910.0 -	\$80.0	\$80.0	17.05	S80.0 -	91-0-0-
anodi	IN II	tĭ .	98	It:	δĭ.	89	57	67	\$9	τťΙ	٤t-	67	8.0	9° I
əpuo(ų,) (Kur/	15 rf	54	96	18	97	89	95	82	CF1	HF.	£10'0>	0600.0	\$100	970
anadiootofdat(1-\$,1-zna	Mų	95.0 -	77.0	11/0 -	F.1	9510	11.0	61	91'0 -	1900.0 -	610.0 -	S100.0 ·	170.0	010.0
anarhaonoldai Cl-S, L-si	Mu	152	682	Π£	8200.0	LĨI	981	657	\$97	0 L	L10'0 ·	1100.0	710,0	950.0
anadraoroldain	Mul	< 0.026	09.0	çq	9.11	61.0	9.55	1.202	18.0	\$\$00.0>	610.0 >	710000	910'0~	9700.02
อนอนุเอดเตนุวะบอ	IN 11	960.0>	1:00.0	ern-	££0.0	210'0 ·	960.0~	160'0 >	2F0/0 ··	\$100.0~	\$10.0%	910010 -	£20,0>	0900101-
ate(000Z/1E/9	0002/81/01	15/50/5000	1002/12/5	1007/11/2	2002/8/1	1/5/5005	2002/52/9	2002/2/01	£097/£1/1	1.58,5003	1007/1/8	15/16/5003
manualno	11245	LEUNS												

Apple 2. Photocircuits Anserobic Pitor Chlorinated Solvents in Alicromolar Concentrations

ប្រការជាអង្គរ	an the second se	DWb-1		··· ·· -· - ·					51111111111111111111111111111111111111			survey the P	CO000710	
anadiorendenen Alexandenen	14/d	1700'0> 0007/19/8	81:000/0> 0002/81/01	+700.0 > 0007/07/71	EE0'0~ 1002/LZ/E	- 0'0090 1/1/2	~010030 1/8/3003	2007/2/14	990010 2002/52/9	990000> Z002/2/01	610/0> E0/07/E1/1	010014 1007/87/10	110'0.* £007/F/8	0900'0> £007/91/71
anadiaoroidai Steritoroidai	INT Wit	\$900°0 >	810010>	\$900.0~	92010	F£0'0	\$900°0>	22.0	030.0	210'0	810.0>	210.0	0800.0>	920010 ~
-1,2-Dichloroethene	EAD1	2510	810.0	£95995671.0	9210	01/10	£600.0 ×	91-10	F9.0	£"l	41	F H	0.44	\$\$"0
anantaonoInfaiCl-S. L-an	PMI,	110.0 -	820010 >	F10.0	11.01	7200'0 -	110.0~	01-010	67010	£1+0°.0	+70.054	65010	r (0,0 ×	F\$0.0
əpirələf yaşı	151	0.£	95670	01-910	0.2	89.0	890.0 -	66 0	10	67	87	£'91	1.2	7"V
ວມວາ	Мц	02	61	EE	\$2	6.8	τ¥	$L^{*}S$	5° L	1.21	65	177	F 11	6'5
ອມລຸ/ຄາວ	(A) IL						999 0 -	91-010	91-0:0	31:0:0 ×	91-010	\$80'0-	\$80'0	910.0>
sumboroldori [-],[мп	1000.0>	78000.0>	(100.0 -	FT	17:0	7500'0~	EE0010 ~	290010	6100.0>	£100.0 >	££00.0>	0.0082	\$20010>
suchagoldajel.	t viul	16.0	81:0	19.2	11	ย	£ þ	177	712	7.4.2	610	1 P	91	216
entritectoldaid-	WT	1800.0>	9100'0>	1800.0 -	01.0>	510	1800.0 >	91:00:0.5	67010	£200 0	Z10'0>	\$E0000>	9800'0 >	010.0>
ວແຮບງອດນອງແລະ(]-ງ	14th	110.05	7200'0>	110.0 >	£60'0 >	1200'0 \	5 I 110'0>	790010 ×	8200.0 -	4200'0>	800× 600×	21°0	7 1010 >	са 610'0>
horoethane	Mц ГЛЦ	07:0> TS	07:0> 79:0	L'1 5 097£	5°7	0.8 7.1 ~	750.0 2.1	£1010.5 [1]	090'D 25'0	25010 †710	8£0,0> £2,0	0810 ES10	0210 1121	6610 218
		07:0	47.0.				170:0	C1010						
ព្រះពារកដ្ឋាល ទាំរ	[]PA\	0007/1/6 £*#WS	0002/61/01	0007/07/71	1007777	1002/11/2	2002/8/1	2002/2/1/	7007/57/9	2002/2/01	1113/5003	£007/87/\$	£002/\$/8	1007/91/21
สมอนุเอดมกุนุลชมเ	Mul	81/10>	81-0	81:0:0 -	680.0	\$20.0	950.0+	F1:0 -	££070 ·	85010	850.0.5	100 -	620.0	0900.85
anadiaoroldai	1MH	£.1 >	$\Sigma 1 >$	£110 h	\$100.0>	£10.0 -	\$90.0>	97'0>	\$C0>	£70.0	SE0:0 >	910.0>	910:0 >	920030~
-1,2-Dichloroethene	1404	0'7>	0'7.>	07'0''	†70°0	21.0	160.0>	2C0>	Z110×	22010	££0.0>	£10.0>	L10'0 >	920.0
anadtsovoldaiQ-S, L-an	Mu	8'2>	812 ->	87'0 ->	\$200.0%	F10.0 ×	F1:0>	85.0>	9130 -	810.0	L1:0:0 >	£20'0>	£20.0 ×	910.0>
nyl ("hloride	150 f	0.2>	95>	9501	Ĉ910	9.1	89.0>	71'72 ×	6'T	L'1	280.0>	Z"I	15.0	0.8
ອນອນຸ	Μų	0.5	515	FT	19.0	61	1:9	61	£16	9°F	VE	F'E	0.8	£.£
aua Aia:	Mit						180.0	12:0	580.0	12.0	91:0.0-	91-010 >	9100	910.02
anethorothbir (-1, 1	ŅП	1334	7921	117	ESZ	86	601	LS	09	20 21:	Et	τ.ε 1	872	2721
anuthamoldai()-1	TA II	985	£81/	81	(\$00°0 ×	841	68	102	601	LL	7L	65	21007 211	260 0 761
ວແມະຖາວບາວປາວເປັ	1A rl	91.	91-	91.02	190.0	12:0	0801015	56:0> 75:0>	CT 71105	5°E 7.10°0	CT C70100	5 C 2100 >	01:0 710.0 ×	250 22010
ansihered Prohiered	ivit 1721	7.5 >	15× 77-	15'0× 77'0×	711 8700'0	€19 ∠11	175 51	112> 5140>	515 711	6 L	018 219	6'81 5'7	147	17 22:0
ມາມຈະນານ ເມາະອຸດເງົານາຍ	Nu l	£" ["\$>	5°1 1963	të l Konsta	LL'0	2610	LS'0	07.1	Γ) C	21.0	26.0	\$7.0	82.0	15.0
าธรรมเหตุกร	llow.	0007/1/6 £5815C1	0007-61/04	15/50/5000	1007/L7/	1007/11/2	2002/8/1	2007/7/1	2002/\$2/9	2002/2/01	1007/11/1	002/87/0	1082:1/8	6002/91/21
anadhaoroldaish: Ile	Mul	26010 -	9£.0	170.05	9900'0 >	1150	17:0	720101	\$10.0 %	99000.0>	6['0^	£1.0	<u> </u>	090010 -
anartaonolitar	INT	92.0>	018>	\$90.0 -	\$10.0 -	\$9010	590 B ×	100.0 >	\$\$0.0 >	6200.0	81.0 ->	2£070>	080.0	920010~
anathanuldaiQ-2,1-i	IN11	6610>	810 M	860.0 %	150.0 -	\$1.0	£60 0 -	11.9 ×	050.0 >	L10.0	~0'55	FF.0	£80.0 ×	010.0 -
onorhorrohford-5.1-en	NIL.	95.0 -	1:10 ·	¥1'0'*	£20.0.2	110.0 -	FL0>	0110 -	19030 -	£10.0	17:0>	51070>	11.0 ~	750.0
ոթսօր լ) լ հ ս	ыd	21	51	£1	677	9.71	5.01	119	8.1	0.1	D: 0 %	57	5.2	£Π
อแอน	TV0	le s f	1.91	0.01	1:07	511	671	6.6	55	961	51	171	SZE	0.01
สมอาภาจ	TV II		D.C.T	501			91-010	910.0.2	91:0:0 ~	910:0>	900.01	91:0:0 >	91010 -	91-010>
snahsotoldan (- i, i	14rd	81/1	201	SEL	6'5	091	91-1	L N	0[8.1	501	0158 1113	0'1'01 1'22	515 015
ວມແປນອອດດີດາດໃຈ	LAL	££ 07 £\$	96010 ·· 61:	780 a - 71:	LL	92'0 8'76	-01081 8122	71105 1981	40'0 17	0£'0 Z'0†	7110 :- 601	F£070>	99010 >	5°15
ອແອປເອດເດໄຕ່ອງ(1-1 ອາເອຊເອດເດັ່ອງ(1-1	মেন মেন	91 7£10>	57'0> 070'0-	11'0 % 180'0 %	810'0> 070'0>	L'1 117:0	11°0>	\$1:0> \$1.0>	810	850.0	26.0 -	26.0	2910	600
sustinotoli	Mu	ER	801	85	11	103	55	62	<i>L</i> \$ [t C L	011	5Z	121	09
annd	ENU.	610	16.0	51	01-0	LZ 0	62.0	55.0	0.1	78.0	51	25.0	15.0	65.0

12.0

62.0

51

0 #B

0.31

61.0

(on

25.0

65.0

.

•

150

L5'0

1.2

18.0

0.1

.

aunyaji

Table 2. Photocircuits Anacrobic Pllot Chlorinated Solvents in Alicromolar Concentrations

.

•

. Ortanizment Doct		00027156	10/19/2000	12/20/2000	3-27/2001	7/11/2003	1/8/2002	6/25/2002	10/2/2002	1/13/2003	4/28/2003	8:4/2003	12/16/2005	
1/415	11.	V DHO	- 0.003.1	- 0.0018	0.033	0.056	191.0	0.42	6.23	<0.19	0.62	0.40		
l etrachtorochene		0.000		100.	0.076	~0.076	970.0	0.619	0.0027	< 0.1K	0.075	~0.016	0.099	
l richloroethene	Μų	C000/0~	1148/02	51070-5		110	-0.026	12.0	80.13	~0.22	0.32	0.35	1.9	
cis-1,2-Dichkyroethene	μM	2.1	n/070 ×	0700.0~	0.10	110	120,02	10.000	COMPA	PC 0 -	140.02	50.023	<010.0×	
trans-1.2-Dichlorocthene	ЧŅ	<0.014	· 0.05K	0.0028	•0.11	F10'0'-	20102	+0001.0 -	250005		110.0	-0.045	61	
Vinyl Chloride	μ	2 K	0.55	0.00	1.2	8.	077	9.0.6		110	01-D	L MA	7	
Lthene	μM	6.7	6.8	6.1	6.1	5.7	12.1		-	-	4.7	10.0	0.00	
Averylene	Mu						41-0-10 ×	< 0.036	~0.046	05070	<01.01+6	04005	u-0.0	
1.1.1.4. friehlandethaute	141	21	1.6	7.5	ζ.	97 97	20	017	0.086	0.13	1 (14)-1	0.016	1100	
1.1.1.2.4bit.org/officiality	- Mil	415	×	12	23	Ŕ	29	÷	1.5	1.9	0.81	0.55		
1-DictionAddianc		46.4	N 0.34	-0.016	010-	0,0	<0.032	~0.0046	0.030	< 0.12	< 0.0086	< 0.017	< 0.010	
1,2-i)ichlomethane	МЦ	07-0			CHO V	50	11	2 () (M) 56	×0.00 0.×	<0.12	<0.012	<0.023	< 0.010	
1.1-Dichlomethene	μM	-	66070 2	770(0)	660.0~	(K.)	<u>ה</u>			16	15.7	20.0	511	
('hlyroethane	μМ	6	61	47	25	<u>c</u>	71	7.7		2		107	0.10	
Ihane	μh	-0.20	-0.20		-0.33	£170-	0.080	010	060:0	0.10	- 11	\$1005	0.0	
butaminant	We)]	DMP-4									Control Carlo	CINDER CO	CONCILIAN	TURCALLEL
Date		9/1/2000	10/19/2000	12-20/2000	3/27/2001	7/11/2001	1/8/2002	4/2/2002	2007/02/9	10/2/2007	C002-8171	CUN2 107.1-	00071510	0007-01-21
l etrachloroethene	μŅ	+2(8):0 >	8F000.0-	+0.00048	<0.00066	<0.012	- 0.0072	-0.0029	~0.0033	-0.0XX066	-0.19	-0.11	578'0 2	
l'richleroethete	Μų	-0.0065	· 0.013	• 0.013	2100.0	10.02	-0.013	- 0.0024	+0.14	- 0.0027	· 0 IX	0.080	91010	4/00-
eta 1.2.1 Siele la conflictue	IN I	SC(0) 0 -	0700-	070800	0 001	-001	610.0 -	1100.0 -	100-	<000 II-	27 P-	1 90 0 -	100	810.0
ter and the first of the second s	Ņ	+0.014	820.0 -	~0.0028	0 015	1.10.0	0.029	<0.0011	- 0.016	070'0	-0.24	< 0.14	0.023	0.010
d and the factor of the second se	N.	<0.028	- 0.056	~0.0056	0.046	110.0 -	-0.14	< 0.0032	+0.018	0.086	<0.41	• 0.18	10.045	- 0.016
	1	7 ×	16	79	5.7	<0.21	8.2	1.2	7.1	5.0	2.5	6.1	2.9	1.2
							~0.046	~0.046	-0.046	<0.046	< 0.046	<8.04n	<0.046	~0.046
Acetylene V 1 1 Princhene above		0.42	19.07	- 0.00082	0.11	0.1.1	<0.010	0.0013	1200.0	<0.0019	< 0.13	<0.0X2	< 0.016	- 0.0075
		01.0	0.00	-0.0014	0.51	0.00	0 16	60,04	0.79	0.79	$\cdot 0.22$	0.93	< 0.022	· 0.010
annuantanan (1. t. t.		10000	2101 V	- 0.0016 - 0.0016	0.088	<0.013	<0.016	-0.00-16	0.066	0.10	· 0.12	0.086	< 0.017	010.0
- Z-I Diculoroethane	E E	1900.02	61010-		00000	-0.014	5 CH 10 -	< 0.0h2	10.01	<0.0028	11,02	<0.12	< 0.024	+0.010
J. (-Dicklonethene	MH .	110:0.5	77010.4	15		CT	1	20	21	20	*	85	55	6 <i>i</i>
hlocoethane	MI	5	<u></u>	2 2	10 HZ	10 JU	080	10.02	0.16	0.04	270.0	0.15	0.10	- 0.043
. thane	M	× 0.20	07.0%		07705	07.0	1010-T0							
l'anteniment	Well	MW-8												
Date		3/28/2001	7/12/2001	1:102002	4/3/2002	6/25/2002	10/3/2002	1/15/2003	4/28/2003	8/5/2003	12/16/2003			
t etrachlor octhene	μM	> 0.00866	-0.0012	27000.0	-0.0014	£100.0>	< 0.0066	<0.0037	<0.0046	-0.0023	0.019			
l richloroethese	μM	0.014	0.013	0.0074	<0.0012	< 5) (K) 5 5	- 0,0027	< 0.0035	0.015	0.032	0.0			
cis-1,2-Dichloroschene	Μц	< 0.0031	0.012	+ 0.0019	-0.022	- 0.0050	<0.0025	-0.0043	0.041	0.16				
trans-1,2-(Dichlosoethene	μM	-0.0022	100.0	· 0.0029	-0.0021	< 0.0064	<0.0012	- 0.047	<0.0045	< 0.0023	<0.010			
Vavi Chloride	Νų	0100.0	1100.0	< 0.014	910070>	< 0.0074	< 0.0037	< 0.0082	<0.0040	<0.00.15	-0.016			
thene	Mu	< 0.21	~0.21	>0.046	+ 0.046	0.043	>0.0016	0,16	~ 0.046	0.25	< 0.046			
Acetvlene	μM			< 0,046	- 0.046	~ 0.046	<0.046	< 0.046	~ 0.046	914010-5	<0.046			
1.1.1-1 mehloroethane	ΜH	<0.0015	-0.0012	+0.0010	<0.0016	0.0039	- 0.0020	0.0026	< 0.0033	-0.0016	<0.0075			
1.1-Dichlonsethatte	Мц	<0.0014	-0.0012	<0.0025	< 0.0022	0.0062	- 0.0030	0.043	<0.00.05	<0.0022	0.17			
2-Dichlonsethane	Mu	< 0.0020	£100.0>	~0.0016	<0.0023	< 0.00-16	<0.0023	< 0.0023	-0.0034	<0.0017	<0.010			
1.1-Dichlonachene	Mu	< 0.0019	<0.0014	< 0.0023	0.0030>	< 0.0056	~0.002K	~10.0065	<0.0X)47	<0.0024	< 0.018			
(Thtorsethane	INT	< 0.0047	~0.0028	×0.010	<0.0005	-0.0074	0.057	+ 0 1076	<0.014	<0.0068	< 0.016			

e.,

3 of S

	Well	6-WM			2	0(-WW		NW-11			
Date		3/28/2001	7/12/2001	1/8/2002	1/14/2003	1/22/2002	1/14/2003	1/22/2002	1/14/2003		
Tetrachloroethene	Мц	<0.00066 <	<0.0012	~0.0014	< 0.00.47	£10:0	<0.0037	<0.00072	< 0.0037		
l'rich loroethene	Мц	< 0.0015	<0.0013	- 0.0012	< 0.0035	0.051	0.0.46	< 0.0013	0.075		
cis-1,2-Dichloroethene	μМ	<0.00.11	F10.0×	<0.0022	< 0.00.03	1.1	2.5	< 0.0019	0.19		
trans-1,2-Dichloroethene	μМ	<0.0022	<0.0014	< 0.0021	<0.047	+0.0021	<0.0047	<0.0029	< 0.0047		
Vinyl Chloride	μNI	<0.0040	< 0.0011	<0.0016	<0.0082	0.043	<0.0082	<0.14	- 0.0082		
1.thene	лNц	<0.21	<0.21								
Acelylene	μM										
1,1,1-Fretheroethane	Mu	< 0.0015	<0.0012	~ a.0016	-0.0026	+0.0016	- 0.0026	<0.00.0>	~0.0026		
1,1-Dichloroethane	Мц	<0.0014	× 0.0012	< 0.0023	10.0-2	2.1	9.1	< 0.0025	0.064		
1,2-Dichlomethane	Мц	<0.0020	< 100,0 ×	< 0.0023	< 0.0023	0.051	0.059	<010016 ×	<0.0023		
1,1-Dichlomethene	Мц	<0.0019	40000	<0.00.0 >	< 0.0065	0.52	0.42	<0.0025	< 0.0065		
('hloroethane	Mu H	<0.0047	×:0.0028	\$600.0	<0.0076	- 0.0047	0.21	<0.010	~ 0.0076		
lahane		-0.20	19710 -								
Certammant	Well	MW-12									
l)ate		1/28/2001	7:12/2001	1/9/2002	4.372002	6/26/2002	10:3/2002	1/15/2003	4/28/2003	8/5/2003	12/16/2003
l'etrachloroethene	Мц	~0.0006	< 0.0012	>0.0144	+0.014	+0.0066	<0.0033	<0.00.0>	~030140	<0.0023	~0.0000
Enchloroethene	Μų	56.0	12000	0.13	0.24	0.52	0.6,1	0.37	0.79	0.29	0.43
eis-1,2-iDichlaroethene	Μų	13.2	61.0	4.4	5.2	4.8	5.0	3.2	3.K	2.3	2.4
trans-1.2-Dichloroethene	Мц	0.075	~03014	85010	< 0.021	<0.032	-0.016	<0.047	0.040	0.018	0.014
Vinyt Chloride	μMi	9.9	10011	-1.K	е. У	2.4	۲. I	0.78	1.2	0.48	0.72
Ethene	μM	0.24	Â	6.1	4.6	6.K	0.61	+ 0.0 le	0.57	1970	0.15
Acetylene	μМ			~0.046	<0.046	<0.046	<0.046	<0.046	<0.016	+ 0.0-l6	< 0.046
 J. J. I richlorwithane 	Νп	- 0.0015	< 0.0012	+ 0.0014	-0.016	6100 -	2600.0	0.0026	6E00.0 ->	- 0.0016	-0.0075
1, 1-1 Sichloniethane	μM	0.73	140.0	1.1	6.9	3.5	01	60.0	0.39		9.1
1,2-Dichloroethane	NI,	0.029	1100.0 -	100	-0.023	12007	-0.012	0,0023	11,000 0	< 0.0017	0100
 1.1.Defiderente 	NI,	0.083	1 (100 0) -	1700	1100.0 -	100.	100.	6000.0	0.023	100	970.0
(Tikopethane	Z	1.00.0	1100.0 -	160.0	CO 0 -	- 0.042	- 0 0 19	0.00 /6	1,500.0	0.0	-0.016
l'thane	M	< 0.20	0.43	0.73	0.37	0.60	0.027	<0.013	0.097	0.16	0.14
("setterities of	Well	11-WIN									
Date	5	1-28/2001	7/12/2001	1/10/2002	4/3/2002	6/26/2002	10/3/2002	1/14/2003	4/29/2003	8/5/2003	12/17/2003
Lerrachloroethene	Мц	0.50	0.72	Ϋ́Γ	14	0.10	61710	0.42	0.07K	0.12	4.6
Lrich loroethene	Мц	0.65	0.87	1.6	1.0	0.11	0.59	0.53	0.092	0.16	4.4
cis-1,2-Dichloroethene	Мц	K. N	٤.9	201	10.2	0.72	5.2	7.2	1.39	3.36	20.6
trans-1,2-Dichloroethene	Мц	0.037	0.049	0.123	0.083	· 0.0032	0 031	< 0.00.17	< 0.0045	<0.00415	0.22
Vinyl Chloride	μM	0.62	1:0:0	8.1	1.2	0.074	0.42	0.26	0.042	0.11	4.8
i thene	μM	< 0.21	17.0 -	0.057	<0.046	0.039	0.046	-0.016	0.16	0.21	00.0
Acetylene	μМ			~ 0.046	-0.046	- 0.046	<0.046	<0.046	<0.046	<0.046	0.046
1,1,1 - Irichloroethane	μMI	0.30	0.28	0.24	0.15	060010	0.032	0.029	< 0.0033	0.0082	0.43
1, 1-Dichloroethune	μMI	3.3	3.5	4.K	3.1	0.17	0.98	1.0	0.089	115.0	7.8
1,2-Dichlowethane	μNI	0.026	0.023	0.028	<0.002	< 0.0023	<0.0023	-0.0023	< 0.0034	<0.0017	≤0.010
l, l-Dichlowethene	Мų	0.63	0.62	0.78	0.45	0.029	0.14	0.11	< 0.0034	0.039	12
('hloroethane	Ă	<0.00H7	< 0.0025	<0.0045	<0.0055	<0.0037	~0.0037	~0.0076	1007	<0.0068	~81016
Lithane	Nц	0.19	0.22	0.77	0.29	060.0	0.060	CF0.0-	<0.043	< 0.013	0.67

Table 2. Photocircuits Anaecubic Phot Chinzinated Solvents in Micromolar Concentrations

•

•

•

Table 2. Photocircuits Anaevohic Pilot Chlorinated Solvents in Micromolar Concentrations

٠

۷

C.ontaminant	Well	Well RW-1 N	KW-2 I	RW-3 I	RW-4
Date		12/17/2003	12/17/2003	12/17/2003 12/17/2003 12/17/2003 12/17/2003	12/17/2003
Letrachloroethene	Мц	0.78	1,80,0	16.0	0.24
Frichknoethene	РХd	1.83	1.1	36	1.1
ets 1,2-Dichlemethetic	μM	28.9	7.7	6.3	3.7
trans-1,2-Dichlowethene	μN	0.12	0.015	010.0	0.025
Vinyl Chlorofa	Mit	5.1	1 1	0.07.1	$0.074 \le 0.016$
1 Thene	[N](
Acutylene	Мц				
1.1.1. Firehloreethane	Μц	0.21	0.075	· 0.075	0,0082
1.1-Dichlorochane	μN	0.74	12.1	99.0	1.0
4.2-Diehloroethane	M	010.0 -	<0.010	010.0 -	010.0
 I-Dichlomethene 	μM	0.70	0.00	61.0	61.0
t 'hloroethane	Μų	0.016	+ 0.016	0.016	-0.016
1 thane	Wi				

Table 3. Photoclecults Anaccodic Plan Field Data

¢

.

	Well	2	NW-7	I-dWS	F-					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Well Depth	IJ	23.2		1.6					
at 1	Well Mameter Date	lnch	1/8/2002	4/2/2002	1/8/2002	4/2/2002	6/25/2002	10/2/2002	4/28/2003	8/4/2003
(0,0) $(1,0)$ $(2,1)$ $(1,1)$ $(1,2)$ $(2,1)$ $(1,2)$ $(2,1)$ $(1,2)$ $(2,1)$ $(1,2)$ $(2,1)$ $(1,2)$ $(2,1)$ $(1,2)$ $(2,1)$ $(1,2)$ $(2,1)$ $(1,2)$ $(2,1)$ $(1,2)$ $(2,1)$ $(1,2)$ $(2,1)$ $(1,2)$ $(2,1)$ $(2,2)$ <	Witter Level	=	21.1		140					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	pl I		4.1	1 /.	1	11	1	11	17	F'1.
	t emperature	.) ,	671	16.81	11 64	14 21	18.24	24 RO	14.87	22.84
	Spec Conductivity	umhuseen	427	0017	0942	0.220	14hs	22	10071	¢
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Reto Polental.	mV	-53 -	Ŧ	16	-130	1 %	92	F],	132
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dissolved Oxygen	mg/L	0.16	940 1	1.21	27.1	15.5	1.2.4	1.61	16 L
Ppin Differ Differ <thdiffer< th=""> <thdifer< th=""> <thdifer< th=""></thdifer<></thdifer<></thdiffer<>	Bromide	mz/1.				8	11			
Depin 0 104 Diameter 1ck 104 Diameter 1ck 1ck 1ck 1ck 1ck 1ck Level 3 7.3 7.3 7.3 7.4 7.6 3.500 1ck 3.500 1ck 3.500 1ck 3.500 1ck 3.500 1ck 3.500	Well		VIP-1							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Well Depth									
Level 10Kbatz 422002 1022002 1012001 41701 4200 at level 1 23 74 78 74 74 74 at level 10 23 74 73 74 76 at level 10 73 74 73 74 76 at level 233 14 233 14 233 76 at level 11 233 114 233 76 70 at level 1 311 233 14 233 70 73 at level 1 311 233 245 100 233 70 70 at level 1 97 11 97 114 233 70 1240 at level 1 97 114 233 233 234 233 at level 1 97 114 234 234 234 at level	Well Dameter	lach	-							
If lead 0.88 7.3 7.4 7.6 7.7 7.1 7.6	Date		1/8/2002	4/2/2002	6/25/2002	10/2/2002	1/13/2003	4/28/2003	8/4/2003	12/16/2003
Return 7	Water Level	G	6.XX							
penture (contraction) $(7, -1)$ (13) (17) (12)	hd		2.3		5.5	t 1,	472	7.8	6.4	1.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	l empendure	Э,	17.85		17.7	12.12	174	14,85	18.73	17.6
or blond(AL) mV -142 -154 -131 -50 $me(al)$ $mg(1)$ 196 114 235 114 235 $me(al)$ $mg(1)$ 166 140 114 235 55 174 235 $me(al)$ $mg(1)$ 140 98 88 88 87 70 $me(al)$ $me(al)$ 98 88 88 88 87 70 $me(al)$ $me(al)$ 98 88	Spee Conductivity	unthosi'em	5560		3547	1438	0001	43K4	01.62	1915
obset (b), gen rg/l 104 2.55 174 2.15 oile n_{1} y_{11} 14.6 y_{11} y_{11} 2.13 2.14 2.15 Defin n_{1} x_{11} y_{1} y_{11} y_{11} y_{11} y_{11} z_{2} $z_$	Redov PotenIAL.	anV	-142		127	<u>(</u> ()-	CA-	441- 1	Ŧ	-130
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	lhseolved Ux) gen	mg/l.	86.1		2.55	121	2.35	35.1	e	2
I. Replic S. NF-3 I. Replic f. I. A. I. Replic I. A. A.22002 G.25002 G.102.2002 G.102.2003 I. Replic N. A.3 A.8 N.8 Y.0 A.3003 Perture "C I. B. A.8 N.8 Y.0 A.3003 Actiol/Argen m. Y.3 2.93 1.02.2002 G.102.2003 G.1003 Actiol/Argen m. Y.3 2.93 1.03 3.93 1 Actiol/Argen m. Y.3 2.94 1.10 2.10 2.1003 4.2003 Action M.4 Y.3 2.94 1.10 2.10 2.94 1.10 Action M.4 A.4 A.4 A.4 A.4 A	Bromtde	117. J.			1/6					
Item NU-3 NU-3 NU-3 Dilancter incl 1 4.0 9.9 8.7 8.8 8.8 7.0 4.2.800 <										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	well									
Matrix INUL 472002 422002 413200 41300 <td>Well Depth</td> <td>= 1 1</td> <td>a -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Well Depth	= 1 1	a -							
ar Level II 68 83 83 70 70 70 70 70 70 70 70 70 70 70 70 70	bate		1/8/2002	4/2/2002	6/25/2002	10/2/2002	1/13/2003	4/28/2003	8/4/2003	12/16/2003
minimum main	Weiter Local	-	× 4							
perture induction sector T 12.0s 11.47 91.8 22.8% (33) 1 c. finduction set distribution ing't minoscon 5530 5640 90.8 330 62 c. state itAl minoscon 5530 5640 90.8 500 630	bell and the second sec	:	5 - F	8.7	X X	××	07.0	11	1.6	1.1
Final Letter () with weat (0.50) 56.0 54.1 54.1 dveet(0.xgen mg/L 37.3 2.9 7.0 2.10 2.10 2.10 54.1 freed ft mg/L 14.35 4.22002 10.22002 10.7004 4.2302 freed ft 6.0 7.1 6.0 7.1 6.0 7.1 freed </td <td>Tenneralure</td> <td></td> <td>12.05</td> <td>1147</td> <td>8161</td> <td>22.KC</td> <td>65.61</td> <td>[24]</td> <td>21.26</td> <td>13.91</td>	Tenneralure		12.05	1147	8161	22.KC	65.61	[24]	21.26	13.91
a Foleni AL mV12012062	Spec. Uniductivity	umhos/cm	5550	Seto	0685	1058	354	050	[14]	()62
alged (A) $3/3$ 2.94 1.16 2.16 3.41 ode mg^{1}_{1} 0.0164 3.03 3.03 3.03 3.41 1 0.0164 $1.4.5$ $1.4.5$ 3.16 3.41 3.36 3.16 3.41 1 0.0164 $1.4.5$ 0.012 2.552002 0.022002 0.1022002 4.2303 4.386 1 0.011 0.011 0.110 0.011 0.02002 0.1022002 0.102003 4.3802 $0.010000000000000000000000000000000000$	Radov PotenLAL	шV	7	8	÷.	92 - 22 -	42	-161	71: -	- 108
Bile Bigli D.MICA 5 D3 D3 I Depth I DMICA 14.55 12.2002 10.22002 10.22003 438.03 I Depth I Banteer 1.45 1.455 1.022002 10.22003 438.03 438.03 I Denteer I Bal 5.9 7.1 6.9 1.0 1.0 438.03 448.03 438.03 438.03 <td>Dissolved Oxygen</td> <td>mg'l.</td> <td>3.47</td> <td>294</td> <td>4 1</td> <td>216</td> <td>14.6</td> <td>16.</td> <td>5.12</td> <td>4.83</td>	Dissolved Oxygen	mg'l.	3.47	294	4 1	216	14.6	16.	5.12	4.83
I DMI-3 DMI-3 1 Neph 1 0 MI-3 34.35 1 Dennicier 10cb 24.35 422002 4252002 4235003 423803 1 Dennicier 10cb 14.35 112 yr 114 0.91 42803 42803 1 Dennicier 1 6.91 12.9 7.1 6.0 7.0 1 Dennicier 1 6.9 7.1 6.9 7.1 6.9 1 Dennicier 1 6.9 1.1 9.0 1.0 7.0 4.2803 1 Dennicier 7 1.1 1.1 1.1 9.1 9.1 1.1 1 Dennicier 7 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1 Stationary mg/1 1.1	Bumbide	nr, 1.		~	2					
Hepha It 24.35 Difference Inch 2										
Diffuctor Inch 1 0.022002 1.022002 1.022002 1.022002 1.022002 1.022002 1.022002 1.022002 1.022002 1.022002 1.022002 1.022003 4.2003	Well Well Doub									
e (K2001 4/22102 6/25002 (1/22003) 4/22003 4/2	Well Dameter	Inch	-							
ar Level (1 0.01) Performe (2 11.90 1.1) Performe (2 11.90 1.10) 1.10 1.10 Performe (2 11.90 1.10) 1.10 1.10 a Performation (1 1.2) 1.10 1.10 a Per	Duir		1/8/2002	4/2/2002	6/25/2002	10/2/2002	1/13/2003	4/28/2003	K/4/2003	12/16/2003
perform C 1/20 16/4 16/4 19/5 17/6 1 ac PendiAL: mV -1/20 -1/20 -1/20 -1/29 1/20 1/29 1/2 1/20 1/29 1/20 1/29 1/20 1/29 1/2 1/20 1/29 1/2 1/20 1/29 1/20 1/20 1/20 <td>Water Level</td> <td>IJ</td> <td>6.91 4.4</td> <td>-</td> <td></td> <td>4</td> <td>02</td> <td></td> <td>41</td> <td>11.6</td>	Water Level	IJ	6.91 4.4	-		4	02		41	11.6
No. 17.90 12.14 0.04 17.95 13.14 ubartility mcNovern 12.00 12.00 12.00 13.90 34.00 14.90 <t< td=""><td>1.</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 1</td><td></td><td></td></t<>	1.							1 1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	l cinperature		46.71 1960	11.0	14 O	14 DE	17.78 Abda	10.01	31771	10.7
Observer math 1.31 1.31 0.31 0.39 0.44 (Dasgerr mg/L 1.31 1.31 0.39 0.44 (Dasgerr mg/L 1.31 1.31 0.39 0.44 (Dasgerr mg/L 1.31 1.39 0.39 0.44 (Dasgerr mg/L 1.31 1.39 0.39 0.44 (Dasgerr floch 1.51 0.39 0.44 2.202 (Dasgerr floch 1.52 5.31 4.22002 4.22002 4.22002 (Dasgerr 1.0 0.82 4.22002 0.355002 4.22002 4.2862 (Dasgerr 1.0 0.82 4.22002 0.355002 4.2862 4.2862 (Dasgerr 1.0 0.82 4.32 1.87 2.246 11.08 1 (Dasgerr 0.81 4.44 8.30 4.44 8.30 4.00 (Dasgerr 0.10 0.05 5.3 4.10 4.10 <t< td=""><td>apec. A calendaria Madas Balandari</td><td></td><td>0011</td><td>0716</td><td>ALL.</td><td>77</td><td>64].</td><td>11 E-</td><td>211-</td><td>071-</td></t<>	apec. A calendaria Madas Balandari		0011	0716	ALL.	77	64].	11 E-	211-	071-
mcl. 10 13 mcl. SNP4 10 13 mcl. SNP4 1 10 10 mcl. SNP4 1 1 100 100 mcl. SNP4 1 1 100 1	Dissidved Davien	ma/l.	2	1	12.9	6.0	1	2.15	64.0	1 C
matter fireh 5.82 matter fireh 1.5.82 matter fireh 1.5.82 matter fireh 1.5.82 matter fireh 1.6.1 matter fireh 1.6.2002 0.552002 0.1102001 4.2002 are 1 1.6 1.5 5.3 6.1 5.1 4.2002 are 7 1.6 1.8 1.8.2 18.7 22.4.0 11.68 1 are 7 1.6 1.8.2 1.8.2 3.2.6 1.0.8 10.66 1.0.8 10.66 10.	Brounide	mc't.	-	9	621					
All SAIP4 fit 1.52 meter fack 1.52 meter fack 1.62 4.22002 0.250102 0.1V2003 4.2003 nel 1 1.0 2.2 2.3 5.3 6.1 8.7 4.2003										
nh f1 15.82 meter fneth 1 15.82 meter fneth 1 1/82002 4/22002 6/25/2002 6/27/2002 1/1/1/2005 4/28/2003 ref H 6/2 1/3 1/3 1/3 1/3 4/28/2003 4/22/2003 4/2/2003 4/2/2003 4/2/2003 4/2/2003 4/2/2003 4/2/2003 4/2/2003 4/2/2003 4/2/2003 4/2/2003 4/2/2003 4/2/2003 4/2/2003 4/2/2003 4/2/2003 4/2/2003 4/2/2003 4/2/2003 4/2/20	Well								1	
matter Tack 1 1/22002 0/25/2002 1/0/2003 1/22003 1/22002 1/22002 1/22003 1/22003 1/22003 1/22003 1/22003 1/22003 1/22003 1/22003 1/22003 1/22003 1/22003 1/22003 1/22003 1/22003 1/22003 1/22003 1/22003 1/22003 1/22023 1/22023 1/22023 1/22023 1/22023 1/22023 1/22023 1/22023 1/22023 1/22033 1/220	Well thepth	=	15.62							
ref H 6.82 1.5 5.3 6.1 5.7 rea 2.6 1.5 1.5 5.3 6.1 5.7 rea 2.6 1.5 1.4.2 1.4.2 2.2.47 11.08 1 rea 7 5.3 1.4.2 2.2.47 11.08 1 distribution 5.10 1.4.2 5.50 3.00 3.00 distribution 6.1 2.2 5.5 4.0 5.0 1.08 Object 0.5 4.0 2.5 5.5 4.0 4.0 Object 0.5 1.7 2.2 1.2 1.19 1.19	Well Dianater Date	iach	1 (2010)	CHICAT	547442000	0001777001	fundy 131	LUNC/NC/T	1102/77/3	F1045A14241
The The <td>Wates Level</td> <td>=</td> <td>(1.4.)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Wates Level	=	(1.4.)							
uz (° 16,54 14.82 1872 22.40 11.68 17 ductor(y umbaseum \$186 \$139 14.40 \$5.00 32.00 ductor() nV (c) 51.0 25 55 10 ductor() nV (c) 25 55 10 (05.560 00 13 10.5 7.5 132 7.19		:	47	51	5.1	6.1	11	5.4	1.4	6.3
ukatotoj urbascu 2000 210 4440 2000 300 ukatotoj urbascu 200 100 20 40 200 ualdAt uV 100 100 20 40 40 Ubsygen urg 073 073 065 7.5 132 7.19	l ambabalana	e e e	74	02.51	1.8.72	JF G	11 224		2461	14
ind A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Snee Combiences		- IX		0714		DIK1	05 X	HER.	10107
1055gen mg1 - 073 - 065 - 75 - 132 - 719 	Redex PotentAb.	Var	165	9/ 1	4	4	2	7	2	12- 12-
	Dissofted Oxygei	ing i	67.0	640	67	2	(1)	77	3.05	30 T
Ing I.	Bromide	Ing-1.			3116					

Page 1 of 2

.

and hists threads any supervector first start

٠

۰.

מייזעונות (. Dam	t/	9.0							
nages O haves to	$1/3$ ω	121	81-01	9.0	7.8 Y	63	98.1			
AAInstoff zobol	Λu	005	612	011	101	£*	612			
 viccituabile() usqi 	un/soquin	0781	(#16	8551	1961	\$88	8251			
a mikiadora j	.) ,	691	00.91	±67.1	1671	91.91	181			
114		219	Q Q	44	0.6	C.L.	C Q			
leve. Lietek										
न) श (2002/2/1	2007/57/9	2082/1/01	114/1	C002/67/1	E002/S/8			
Well Diameter Well Diameter	itsal									
unan liaw liaw	IJ	EI-MIN								
		<u> </u>					· · ·			
apittiong	րժա			11	117			-		
nsgyaO baylosatt.	. F.Sm	76'0	101	2.0	NE D	† [1]	88.11	87.1	11-0	
JAInsio9 vobež	Au	052	87. I	057	981-	221-	64	261 °	661	
- ytrzitoubrio Droadé	noseotan	007	071	0711	089F	0617	098 F	8657	808C	
emberance.	.) _e	97 14 39	7.6 \$1	115	6.4.I	LZ:91	68 ±1	8t s /	20191	I
119		E7.	8.4	<i>4</i> 9	9.4	4.4	Γ <i>Έ</i>	84	6.9	
1975.1 1918.4	u									
)M(C	4500	2002/2/1	\$607/\$1/1	711117/2/1	2002/52/9	2002/0/01	1/12/2002	1007/82/1	1007/5/8	7/91/67
aojonnejci ilo <i>44</i>	don!									
niqoti llo W	IJ									
<u>II9A</u>		6- MIX	<u></u>	<u> </u>		··-···				
abiacok	1/8		85	0.2						
nagezO baaloasiC	-ц/Ясц	87.8	25.2	29 F	£01	96.1	96 (1	FS [1]	81.61	
JAInstof zolas)	Au	017	07.2	812	F H	621	86	F 617	19	
Austranpuo y and s	unysoquin	£8)	061	177	\$11	81.1	161	57.1	905	
anuistegnia l	.),.	51°51	28°#1	158721	41-11	STH	61-11	ECEL	(†°E)	
H		1.8	÷'8	F 9	2.8	21	07.	19	0'7.	
lava.l rainW	ŧ	967.			-			-		
alaC		2002/8/1	2002/2/1	P\52/5005	2002/5/01	£002/S1/1	1002/82/1	£002/\$/8	17/191/21	
Totom BRG No W	at sul	*								
diga() Jia W	ŋ	2017								
10 M		8-MIX								
ลุกันเกร	-1/Mui		80	6						
angez () havlored	ា/ឥល	1+0	26.0	85.0	1910	672	87.0	SS 0	87.0	
TAtrateS sales	Λ^{11}	121-	08-	97.11	871-	671-	£91-	971-	2011	
Alivitanhira Yaada	unspectium	917.7	01111	CN82	0811	6755	OSSE	0617	0617	
europeradute j	.) .,	HF7.1	2.91	15.5	21 07	05.91	tv. tri	9971	\$7.4	
11		17	17	6.9	1.1.	07.	01	÷9	6.9	
lava.t vota K	U.	17.9								
9¥(2002/8/1	2002/2/1	2007/57/9	2002/2/01	£002/£1/I	1158/5003	K002/1/8	12/19/2103	
TO DATE BY NO 4	dən i	1								
Andoct How	11	\$\$'07								
liow Mell		p-aiyo								

.

iest Sampled isst Sampled ast Sampled	E002/91/21 0002/1E/8 #3~A&W	2002/8/1 0002/1£/8 2-AAI&	£007/91/71 0007/1£/8 1-d18S	2007/91/21 0007/12/8 1-114/0	£007/94/71 0007/1/6 £-aWS	12/19/2003 0/1/2000 5-TMG	€007/91/21 0007/1/6 ₩dWS	15/16/5003 6/1/5000 DW6-4
ວແດງວວ	52101-			100				
fethylene Chloride	192-	IE .	8.60	88	0.66	86	76	18
əuənjo	L901-	:8	1£<	81	0	1£	76	01
-Chlorotolucite	0	188	1.8<	18-	t:X	58-	96	19
(sossg o/w) sAOV mu	t155-	£-	<i>L</i> 6	68	88	89	1 <i>L</i>	6L
anadiat	22161-	:99-	L8-	681-	-50800	-4533	6858-	684ST-
uo.	-504	64-	01-	26	ZX X	88	151-	86-
ətefin	96	18-	<i>L</i> 8	2.66	78-	92	18	15
OC.	66`66<	96	st	<i>\$1.</i>	8`66<	[8]	66<	66
CR	0)	0	0	0	0	-1564	0
CE	785-<	12-<	0	0	()	0	-1458	0
DCE	8975-<	.8	86'66	<u>S</u> -	0	0	92-	0
3L)C	0	K	0	>-582	0	t6<	0	0
.).	98195	L	66	86-	9 H ~	05	55	0
อนอนุเ	82-	1	\$6	07	01	t .	68	L8
vəi	-8533)	0	0	66	Lli	6.00	86<
V. XI	1+2+-	<u>اچ-</u>	20	6+2-	05	2	L6	L6<
DCB	\$66LL-<)	0	0	7L<	88	66<	0
V	t/88-	<u>ç</u> -	****	1 -8	t671~	22	65	6L
ា ព្រះបទ	٤Z	E01-<	0	L9-<	92	\$L-	25	0

.

Table 4. Photocircuits Anaerobic Pilot Percent Change Between 9/1/00 and 1/8/02 or 1/13/03

٠

Compound	MW-8	MW-9	MW-10	MW-11	MW-12	MW-13
First Sampled	3/28/2001	3/28/2001	1/22/2002	1/22/2002	3/28/2001	3/28/2001
Last Sampled	12/16/2003	1/14/2003	1/14/2003	1/14/2003	12/16/2003	12/16/2003
Acetone	0		0	0	0	0
Methylene Chloride	0		0	0	0	0
Toluene	0		0	0	>-3	0
2-Chlorotoluene	0		0	0	24	-4
Sum VOAs (w o gases)	-10967		l	>-5617	44	-228
Methane	>-250				20	-81067
Iron	-196				-129	-698
Sulfate	-2				25	32
TOC	>90				98	>95
PCE	0		>73	0	0	-830
TCE	-2067		30	>-5722	53	-575
CDCE	>-46567		-6	>-9956	82	-155
tDCE	0		0	0	55	-483
VC	0		>82	0	82	-677
Ethene	0				36	0
ITCA	0		0	0	0	-43
1DCA	0		8	>-2420	-163	-138
IDCE	0		-16	0	70	-247
CA	0		>-2655	0	0	0
Ethane	0				>28	-245

ĸ,

•

Table 5. Photocircuits Downgradient Wells Percent Change Between 3/28/01 and 1/14/03

Well	Chiorinated Ethene Dechlorination	Chlorinated Ethane Dechlorination	Electron Acceptors	Electron Donor Availability
MW-14	Ethene high, VC increasing since Marel 2001 and now primary chlorinated ethene. PCE, TCE, and cDUE detected inf)ccember 2003 when substrate limited.	increased between December 2000 and		Emulsion found 4/02, 6/02, and 10/02 and TOC levels had been above 1,000 mg/L. TOC availability now limited.
₩₩-7	Ethene generally predominant product, TCE up slightly. cDCE and VC down by 82 and 73% from start of pilot. tDCE up slightly. Not sampled since 1/02 because of emulsion.		Sulfate increased from 69 to 949 mg/L from 7/11/01 to 1/8/02, methane and iron up greatly.	TCC had fallen to 1.7 mg/L in 1/02. Emulsion found thereafter.
SMP-I	TCE and cDCE op beginning in January 2002, but fell between July and October 2002 and were not detected from January 2003 until August 2003. VC increased and then fell to non-detect as more substrate became available. VC found in December 2003. Ethene increased when substrate levels were higher, but declined in December 2003.	down by 92% and HDCE not detected. CA produced. Little ethane.	Sulfate down 87% from start of pilor; sulfate levels decreasing with higher substrate. Methane and iron up from start of pilot.	
DMP-1	eDCE, (DCE, and VC concentrations up from start of pilot, but ethene predominant product.	IDCA up 249%, CA down by 84%, little ethane detected.	Suffate down 99.2% and iron by 97%, methane increased	TOC increased from 24 mg/L in 6/02 to 284 mg/L in 4/03. Adequate supply in December 2003.
SMP-3	PCE, TCE, and tDCE not detected in December 2003, cIXE and VC detected, but ethene predominant product.	ITCA down by 99%, IDCA down 50%, IDCE down 72%, and CA increasing as ITCA and IDCA degraded. Some ethane,	Sulfate decreased from 3.640 mg/l, in April 2002 to 75 mg/l, in April 2003, but increased to 377 mg/l, in December 2003. Methane increased greatly and iron variable.	mg/L, but then fell below optimal
DMP-3	Low level of tDCE detected 12/03, but VC increasing as substrate limited. Ethene major product.	ITCA down by 97%, IDCA down by2%, and IDCE down by 88%. CA decreased by 27%. Ethane up.	Sulfate decreased by 76%. Methanc up, but iron decreasing.	TOC increased to 349 mg/L after second emulsion injection, but has fallen below target to 19 mg/L in December 2003.
SMP-4	PCE and TCE, and cDCE up, and VC down, ethene decreased to point where it is no longer predominant chlorinated ethene.	to 99.9%, but CA increased. Little	Sulfate decreased to 178 mg/L in December 2003, methane and iron increased greatly.	High levels of TOC (3.680 mg/L

Table 6. Summary of Changes in Concentrations of Chloroethenes, Chloroethanes, Electron Acceptors Electron Donor by Well

.

•

		and Electron Donor by Well	Well	
Well	Chlorinated Ethene Dechlorination	Chlorinated Ethene Dechlorination Chlorinated Ethane Dechlorination Flectron Accentory		Management Provide Activity of the Party of
t-JMC]	No detectable PCE, TCE, cDCE,	ITCA down >80. IDCA down by		FIELDER DOUDL AVAILADULLEY
	(DCE, or VC in December 2003			1CK now below adequate levels.
			memane increased.	
	Example predictionants.	predominant product and decreasing.		
		Little ethane.		
MW-8	PCE, TCP, and eDCF detected 12/03. HDCA detected in December 2003		Little suffate but income and much	
	No VC or ethene.		burne second way and incurate Lettle JCA available.	Lettice JCX available.
MW-9	No chlorinated otherws or others			
		INO CHIOFIDATED CHIMBES OF ETBADE	Low suffate, some methane and I little TOC avaitable	Little TOC available
	detected in January 2002.	detected.		
MW-12	TCE, cDCE, tDCE, VC, and ethene	UX'A increasing but UX'F		
	decreasing, ethene lower than in	development of burners determined in the	onnate decleased by 20.00 Holl	ICA [level not adequate, <0.5]
	January2002 to June 2002.	accounts variable between at row revertible reason, but the the theory and [] mg/[upcreased, put methane decreased.	mg/i
MW-13	Increases in PCE, TCE, cDCE, (DCE, Increases in 1TCA (43%), 1DCA		Methana and investment between the second second	
	and VC concentrations, trace ethene. (138%), 1DCT: (247), and ethane		sulfate driver 32%.	n (Light ICO) to love the ICO
				eccentiser zoos, nelow optimal.

Table 6 continued. Summary of Changes in Concentrations of Chloroethenes, Chloroethanes, Electron Acceptors,

ж **с и и**

•. •